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30 Significance statement
31
32 The Neoproterozoic Urucum manganese deposit (Brazil) is a ~600 Mt microbially-mediated 

33 sedimentary Mn ore. Proto-ore formation via sedimentation and diagenesis occurred under 

34 suboxic-oxic and semi-neutral pH conditions in the Ediacaran ocean, wherein microbial Mn(II) 

35 oxidation ensued from the fine-grained accumulation of Mn oxides and organic matter. Oxic 

36 conditions that facilitated enzymatic Mn oxidation and overwhelmed microbial Fe oxidation 

37 appears as a sharp contact between manganese and iron beds. The Urucum deposit arose from a 

38 complex suite of diagenetic processes, including decomposition and mineralization of microbially-

39 derived organic matter involving extracellular polymeric substances. Kremydilite – a new type of 

40 diagenetic concentric Mn mineral structure – formed by randomly activated heterotrophic cell 

41 colonies that generated pores in the microbialite sediment after burial, coincident with lithification.

42
43 Highlights

44 1. Urucum Mn deposit formed in an Ediacaran marginal basin with more than 600 Mt of ore 

45 formed from manganiferous microbialite.

46 2. Kremydilite is diagenetic structure that comprises a new type of Mn ore.

47 3. Microbial mediation occurred during Mn ore sedimentation and diagenesis.

48 4. Cellular and extracellular polymeric substances from Fe and Mn bacteria and cyanobacteria 

49 were mineralized.
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51 Abstract

52 The Urucum district in Mato Grosso do Sul (Brazil), hosts the youngest and largest sedimentary 

53 Mn ore of Neoproterozoic age; units Mn-1, Mn-2, and Mn-3 are found in jaspilites and ironstones, 

54 and represent approximately 600 Mt of extractable rock with 27–44% Mn and 12–30% Fe. High-

55 resolution optical- and cathodoluminescence microscopy, as well as Raman and FTIR 

56 spectroscopy show that the lower Mn-1 is ferruginous, while the upper Mn-1 consists mainly of 

57 30–75 vol.% braunite, < 0.5% aegirine, 3–15% quartz, 5–10% feldspar, and 1–5% clay minerals, 

58 including apatite, chlorite, and organic matter. Here, we model the control of this ore mineralogy 

59 by homogeneous oxidation and microbial processes. Layers Mn-2 and Mn-3 contain kremydilite, 

60 as a characteristic ore structure, with 77–95 vol.% cryptomelane, 0–23% hollandite, 9–19 % 

61 braunite, 7–21% hematite, and 0–5% pores filled with clay minerals and organic matter. These are 

62 present within a micro-nodule matrix composed of cryptomelane and hematite in varying 

63 proportions. The first syngenetic products of microbial enzymatic oxidation were, on the Fe side, 

64 ferrihydrite and lepidocrocite, and on the Mn side, vernadite, todorokite, birnessite, and manganite. 

65 These formed under obligatory oxic (Mn) and suboxic (Fe) conditions and close to neutral pH. We 

66 describe the genesis of Urucum via complex diagenetic processes, which include the 

67 decomposition and mineralization of cellular- and extracellular-polymeric substances from Fe and 

68 Mn bacteria and cyanobacteria. The kremydilite forms in successive stages of oxidation of organic 

69 matter mediated by microbes, which generate pores and produce methane and CO2/H2 bubbles. 

70 They are a unique type of diagenetic structure formed by heterotrophic cell colonies randomly 

71 activated in the microbialite milieu following burial in suboxic neutral/alkaline conditions, side-

72 by-side with the lithification and stabilization of the mineral assemblages. (294 words)

73
74
75
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76 Keywords: 
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5

80 1. INTRODUCTION

81
82 The Urucum mining district occupies an area of approximately 800 km2 and is located in the 

83 Pantanal swamps region of west-central Brazil. Three layers of massive manganese oxides, named 

84 Mn-1, Mn-2, and Mn-3, occur interbedded with massive jasper, banded iron formations (BIFs), 

85 and massive iron formations (IF) that comprise the Santa Cruz Formation of the Neoproterozoic 

86 Jacadigo Group (Urban et al. 1992; Frei et al. 2017; Fig. 1 and SI 1-Fig). It was estimated that the 

87 Urucum district originally contained more than 600 Mt of rock with the manganese content 

88 between 27–44 wt.% and iron content between 12–30 wt.% (Urban et al. 1992).

89 Fig. 1 HERE

90 The stratigraphic sequence of the Urucum region was first defined by Dorr (1945) and Almeida 

91 (1946), who also conducted the first systematic studies on the origin of iron and manganese 

92 deposits in the region. Urban et al. (1992) mapped the entire mining region, and since that time, 

93 the regional geological map has been minimally updated. Following the work of Urban et al. 

94 (1992), the most relevant changes to our understanding of the regional geology arose from the 

95 work of Freitas et al. (2011), who detailed the Jacadigo Group lithologies and defined their 

96 sedimentation environments. Biondi and Lopez (2017) identified faults that acted as conduits for 

97 hydrothermal fluids which altered the rocks of the Jacadigo Group basement, and exhaled fluids 

98 with iron and other elements at the base of the sedimentary sequence of the Urucum basin. They 

99 also correlated the Mn-1, Mn-2, and Mn-3 layers with those recognized at different Urucum sites.

100 Various and mutually-exclusive proposed genetic models for the Jacadigo Group iron and 

101 manganese rocks have been a topic of discussion and debate since their discovery. These models 

102 can be summarized as follows: (a) marine genesis with sediments of continental origin (Dorr 

103 1945); (b) marine genesis with sediments of marine origin (Almeida 1946; Putzer, 1958; Haralyi 

104 and Walde, 1986); (c) volcanogenic marine genesis (Walde 1981; Walde et al. 1981; Leonardos 

105 and Walde 1982; O'Connor and Walde 1985); (d) formation in a glacio-marine sedimentary 
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106 environment followed by supergene enrichment (Schneider 1984; Schreck 1984; Leeuwen and 

107 Graf 1987; Graf et al. 1994; Costa et al. 2005); (e) sedimentary genesis in a flooded graben with a 

108 contribution of hydrothermal leaching from hidden mafic rocks (Haralyi and Walde 1986; Walde 

109 1988; Trompette et al. 1998); (f) SEDEX, or sedimentary exhalation (Dardenne 1998); and (g) 

110 sedimentary genesis in an oceanic environment with a deep-sea hydrothermal contribution (Klein 

111 and Ladeira 2004). Recently, Angerer et al. (2016) proposed a biologically-mediated origin in a 

112 glacio-marine environment for the carbonate BIFs of the Santa Cruz Mine region located on the 

113 southeastern part of the Santa Cruz plateau. In a recent comprehensive study, Biondi and Lopez 

114 (2017) (a) recognized the biogenic mediation during the genesis of manganese ore; (b) described 

115 in detail mineral structures termed by them kremydilites and argued that they may represent 

116 fossilized microbial colonies from organisms that mediated the formation of the manganese layers; 

117 and (c) modified the region's stratigraphy based on the fossil assemblages, showing that the 

118 Urucum iron-manganese rocks correlate to the carbonate rocks of the Bocaina Formation, of the 

119 Corumbá Group, previously considered post-depositional to those of the Jacadigo Group.

120 The Ediacaran Period of formation is proposed by the authors based on the presence of the 

121 Corumbella Verneri fossil, found amidst the ironstones separating Mn-2 from Mn-3 (Figs 2B and 

122 Figs 4B to D, Biondi and Lopez 2017). This fossil has always been considered Ediacaran, which 

123 establishes a wider interest concerning the Urucum Mn deposit.

124 Here, we explore the origin of kremydilites described in Biondi and Lopez (2017) and 

125 present a model that explains the processes of sedimentation and diagenesis that facilitated the 

126 origin of these structures and the manganese layers. Recent works have provided a geological 

127 setting diagram, mineralogy (low magnification optical microscopy, X-ray diffraction, SEM-EDS-

128 based), and chemistry datasets based on bulk samples and in situ (SEM-EDS) data (e.g. Frei et al. 

129 2017), but microbial mediation as a plausible mechanism for the genesis of these rocks is still 

130 under debate (Biondi and Lopez 2017). We expand the results of these previous studies with more 

131 detailed optical microscopy (OM), cathodoluminescence microscopy (CL), Raman- and Fourier-

132 transform infrared spectroscopy (FTIR) to document the micro-mineralogy, presence, and 

133 distribution of embedded organic matter. The goal here is to explore the role of microorganisms 
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134 in the process of manganese ore genesis from Urucum, and to understand the diagenesis, structures, 

135 and process of formation of kremydilites.

136

137 2. GEOLOGICAL AND GEOCHRONOLOGICAL BACKGROUND

138 The Santa Cruz Formation is mainly composed of jaspilitic BIFs, (massive) iron formations 

139 (IFs), massive banded jasper, and ferruginous arkosic silt and sandstones. The greatest thickness 

140 of the Santa Cruz Formation, 396 m, is documented in drill hole (DH) 44-28, made at the Vetorial 

141 Mine, and bookended by a 40 m section at the northern end of the Rabicho plateau (Fig. 2). The 

142 massive manganese layers, Mn-1, Mn-2, and Mn-3, occur in the lower half of this formation and 

143 are interlayered with BIFs and massive jasper.

144 The Jacadigo and Corumbá Groups are considered coeval (Biondi and Lopez 2017) and of 

145 Ediacaran age, based on the presence of stromatolites below Mn-1 (Jacadigo Group) and 

146 Corumbella fossils in the rocks of the Bocaina and Santa Cruz Formations (respectively, Corumbá 

147 and Jacadigo Groups). The age of this fossil in the ironstones of the Santa Cruz Formations 

148 (Jacadigo Group) and limestones of the Tamengo Formation (Corumbá Group) was estimated at 

149 ca. 550 Ma (Germs 1972; Grant 1990; Grotzinger et al. 1990; Hofmann and Mountjoy 2001; 

150 Bengtson 2002). The proposed age of this horizon was 555–542 Ma by ichnofossils, identified by 

151 Parry et al. (2017), in the Bocaina Formation. These ages are consistent with U-Pb geochronology 

152 of detrital zircons from a volcanic ash layer intercalated with carbonate rocks of the Tamengo 

153 Formation, at 543±3 Ma (Babinski et al. 2008), and the 40Ar/39Ar age of 587±7 Ma for 

154 cryptomelane in the Mn-1 to Mn-3 layers (Piacentini et al. 2013; Frei et al. 2017 and references 

155 therein).

156 Dating braunite from the Mn-1 layer, Piacentini et al. (2013) interpreted the 547±3 to 513±4 

157 Ma (40Ar/39Ar) age as a minimum age, arguing that the Ar/Ar thermo-chronological system was 

158 rejuvenated by tectonic warming, which was considered a consequence of the metamorphism 

159 underwent by the Jacadigo Group rocks. Also using the 40Ar/39Ar method, they dated 513±3 Ma 

160 some crystals of muscovite collected from the arkoses that are interlayered with the BIFs, which 

161 was also considered metamorphic. According to Piacentini et al. (2013), these ages are “possibly 
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162 related to disruption between the Amazon Craton and the Apa River cratonic fragment and they 

163 do not reflect the time of Jacadigo Group deposition”, which would be greater than 590 Ma, and 

164 concluded that Jacadigo’s rocks would have at least 587 ± 7 Ma. 

165 To reconstruct the paleogeography of the sedimentary basin, Mn-2 and Mn-3 were leveled 

166 and used as stratigraphic markers. This procedure makes it possible to outline the geometrical 

167 differences between the Mn-layers. This reconstruction shows that stratigraphy observed within 

168 the Urucum plateaux always includes Mn-1, and that this stratum lines the basin floor wherever 

169 the Jacadigo Group is described (e.g., Urban et al. 1992; Biondi and Lopez 2017) (Fig. 2). Yet, 

170 unlike Mn-1, both the Mn-2 and Mn-3 layers occur only in the interpreted depocenter of the basin, 

171 in the region of Urucum, Santa Cruz and southeast of the Morro Grande plateaux (Fig. 1). In the 

172 interior of each plateau, mining of the manganese layers reveals that Mn-2 and Mn-3 are flat and 

173 parallel to one another, whereas the Mn-1 unit follows the contours of the basin floor. By 

174 positioning Mn-2 and Mn-3 in their respective stratigraphic horizons it is now possible to 

175 reconstruct Urucum marginal basin floor (Fig. 2).

176 The origin of the sediments of Urucum has been detailed elsewhere (Walde 1981; Walde 

177 et al. 1981; Leonardos and Walde 1982; O'Connor and Walde 1985, Haralyi and Walde 1986; 

178 Walde 1988; Trompette et al. 1998, Dardenne 1998, Klein and Ladeira 2004, Angerer et al. 2016; 

179 Biondi and Lopez 2017), and we provided a brief synopsis, here. The Santa Cruz Formation formed 

180 as an in-fill of an ancient graben with iron and manganese-rich sediments overlying fluvial deposits 

181 from the Urucum Formation, while limestones from the Bocaina and Tamengo Formations were 

182 deposited in the shallow marginal regions (Biondi and Lopez 2017; Fig. 2). As has been proposed 

183 for some Phanerozoic Mn ores (e.g. Polgári et al. 2012ab, 2016b), the most probable sources of 

184 the Mn and Fe was hydrothermal exhalations in a submarine environment. The Mn and Fe fluids 

185 were transported to the sedimentary basin via basement faults (SI 1-2-Figs) that became activated 
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186 each time the graben widened. During inundations attributed to sedimentation of the Mn-1, Mn-2, 

187 and Mn-3 units, Mn and Fe discharged on basin floor mixed with Mn and Fe brought in by water 

188 from the open ocean as well as with that originating from the exhalates located outside the Urucum 

189 basin.

190 Fig. 2.

191 A transition between the Urucum and Santa Cruz formations through the Mn-1 horizon 

192 exists in all mines from the area (Urban et al. 1992). Furthermore, Biondi and Lopez (2017) 

193 showed that there are typically two or more layers of Mn-1 manganese ore with meter- to 

194 decimeter-scale thicknesses, locally interlayered with jaspillite-rich clasts. We now describe these 

195 relationships in more detail.

196 The lower Mn-1 ore layer is relatively siliceous and composed mainly of braunite, 

197 cryptomelane cement and Mn–Fe-rich carbonate, whereas the Upper Mn-1 layer is a fine-grained, 

198 massive, clastic layer of manganese oxides with undulating parallel lamination and numerous 

199 decimeter-scale oblate structures, characterized by a massive core and silty clay and arkose wrap 

200 dubbed amygdalites (Fig. 3C). The ore layer is bounded by sharp planar contacts typically overlain 

201 by conglomerate consisting of angular granite pebbles in an arkosic matrix. Layers Mn-2 and Mn-3 

202 contain mostly massive manganese ore with lamination. They are composed mainly of 

203 cryptocrystalline manganese oxides and hydroxides, commonly containing kremydilites (Figs. 3D-

204 E and 4) with minor amygdalites (Biondi and Lopez 2017). In Mn-2 and Mn-3, what have been 

205 interpreted as the remains of microbial colonies form oblate, 5–15-cm sized concentric kremydilite 

206 structures, within the fine-grained and biomass-rich basin floor shale as well as intergranular, 

207 oblate gas structures (Figs. 4A, C, F, and H). The main features of the ore beds, including their 

208 mineralogical and selective element compositions are summarized in Table 1.

209 Fig. 3
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210 Fig. 4.

211 Table 1.

212 The textures of the Mn-2 and Mn-3 layers express as 1–10 millimeter-sized spherical, often 

213 zoned manganese oxide micro-nodules that coalesce to form the massive ores. These probably 

214 involved the aforementioned kremydilite structures made solely of manganese and minor iron 

215 oxides. All observed Mn-2 and Mn-3 outcrops have kremydilites, although they do not constitute 

216 all of the ore mass from these layers. As previously described, kremydilites occur between the ore 

217 bands (Figs. 4A–J), which are massive or banded (and/or laminated), and are distributed in the 

218 layers in an apparently homogeneous manner. It is difficult to estimate the volume occupied by 

219 kremydilites owing to the fact that they are complicated to see in discontinuous outcrops. For those 

220 observed on the mining fronts, it is likely that they occupy more than about 50% of the ore layer 

221 by volume. 

222 2.1. Forms and type of kremydilites

223 Kremydilites occur only between the laminations of the massive ore in the Mn-2 and Mn-

224 3 layers, and are absent in banded- or massive ironstones. They are always contoured by the fine 

225 laminated ore with micronodular, microbialite micro-texture, in which the diameters of micro-

226 nodules range from 0.2–0.8 mm (Fig. 4; SI 5-Fig, zones 1, 2, 3; and zones 20 to 24). Microbialite 

227 and micro-nodule rich layers are in turn contoured by wavy microbialite layers apparently 

228 composed by the amalgamation of nodules smaller than 10 μm. Its forms are oblate, centimeter-

229 to-decimeter scale (Fig. 3) and concentrically zoned. Structures of what we interpret to be the 

230 different growth development stages also appear to occur together (Figs. 4 and 5), and each stage 

231 of growth is marked by the presence of pores, which delineate coarse concentric, sometimes 

232 incomplete envelopes (Fig. 4). Kremydilites on the other hand are porous structures absent of 

233 micro-nodules. They occur in varied forms as shown in Figures 4A to H. 
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234 Fig. 5.

235 The simplest kremydilite form consists of a bubble-filled nucleus (Fig. 4A), followed by 

236 those with a nucleus having diffuse borders (Figs. 4C). Other forms include a nucleus with one 

237 (Fig. 4E) or two (Fig.4G) diffuse concentric laminae (or shells). The more complex kremdylites, 

238 with a nucleus and many concentric shells delineated by millimeter to submillimeter pores, 

239 crosscut with lighter, massive, and metallic zones (Figs. 4I). In general, the various kremydilite 

240 forms contain many oblate structures (Figs. 4A, E, and G). These are less than 20 mm across 

241 distributed along the layer containing the kremydilite, and inside and/or near them. Mesoscopic 

242 inspections of sawn samples (Fig. 4K) as well as thin and polished sections, show that each layer 

243 contains disseminated pores. The quantity of pores increases toward the margin of the shell, and 

244 each lamina is surrounded and delimited by areas with high pore density (Biondi and Lopez 2017).

245 The pores are often lined by shiny acicular microcrystals of cryptomelane and/or contain 

246 organic matter (Biondi and Lopez 2017). Although kremydilites do not contain micro-nodules, 

247 and are instead inside the micronodular bands and contoured by microbialite layers, the outermost 

248 zones of kremydilite appear to have a composition similar to that of amalgamated micro-nodules. 

249 In these zones, the presence of ring-like structures of carbonate microcrystals are common (SI 5-

250 Fig, zone 16 - detail image, Biondi and Lopez, 2017). The zones closer to the nucleus (zones 9, 

251 10, and 11) contain mixed anhedral minerals with metallic luster, but with larger dimensions than 

252 the anterior zones. The nucleus of the kremydilites (zones 12 and 13) are microgranular and 

253 heterogeneous.

254

255 3. SAMPLES

256 Representative samples and the methods applied (number of photos and spectra) are 

257 summarized in Table 2 and Fig. 3–4. Localities of the sample collection are shown in Fig. 2.
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258 The samples of Mn-1 are (Fig. 3, SI 3-Fig): COR-4B, a clast-bearing massive ironstone; 

259 COR-6, a massive manganese ore; COR-7, a very fine-grained clast-bearing ore with braunite and 

260 carbonate; COR-10, a sandy, detritic ore with braunite, quartz, and feldspar; COR-31, an arkosic 

261 sandstone with hematite matrix; and COR-32, an amygdalite with cryptomelane massive nucleus 

262 surrounded by arkosic sandstone with hematite matrix.

263 Samples of Mn-2 and Mn-3 are: COR-81, a sample of massive manganese ore; COR-78-

264 F3 (Fig. 4F), a nucleus of porous kremydilite with diffuse boundaries, surrounded by two zones 

265 also with diffuse boundaries; COR-78-D1 (Fig. 4C), a kremydilite with a diffuse core enveloped 

266 by two shells, also with diffuse boundaries; COR-75-B5 (Fig. 4E), a porous kremydilite nucleus; 

267 COR-75-2 and COR-48 (Fig. 4J), complex kremydilites with porous core surrounded by many 

268 concentric, porous shells; and COR-36-A1 (Fig. 4G), a kremydilite with a nucleus and at least two 

269 shells (hereafter the samples are cited without COR).

270 Table 2.

271

272 4. METHODS

273 Thin section and polished section mineralogy was described and quantified using a ZEISS 

274 Axio Imager A2m microscope (Federal University of Paraná State, Polytechnic Center, Geology 

275 Department, Curitiba, Brazil).

276 Petrographic structural-textural studies by optical rock microscopy (OM) were also made 

277 on 12 thin sections in transmitted and reflected light (NIKON ECLIPSE 600 rock microscope, 

278 Institute for Geology and Geochemistry, Research Centre for Astronomy and Earth Sciences, 

279 Hungarian Academy of Sciences - IGGR RCAES HAS, Budapest, Hungary).

280 Cathodoluminescence (CL) petrography was carried out on 7 thin sections using a 

281 Reliotron cold cathode cathodoluminescence apparatus mounted on a BX-43 Olympus 
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282 polarization microscope (Szeged University, Hungary). The accelerating voltage was 7–7.7 keV 

283 during the analysis. Cathodoluminescence spectra were recorded by using an Ocean Optics 

284 USB2000+VIS-NIR spectrometer. Spectrometer specifications are a wavelength range of 350–

285 1000 nm and 1.5-nm (FWHM) optical resolution.

286 Mineralogical analyses were performed on three bulk samples using a Rigaku Miniflex-600 

287 X-ray diffractometer (XRD), with carbon monochromator and Cu-Kα radiation, at 40 kV and 15 

288 mA (IGGR RCAES HAS, Budapest, Hungary). Mineral composition was determined on randomly 

289 oriented powdered samples. The diffraction patterns were processed using Siroquant V4 software, 

290 and the modal contents determined by the Rietveld method.

291 In situ FTIR microspectrometry used for micro-mineralogy and organic material 

292 identification on nine thin sections to determine the mineralogy and characterize the organic 

293 material, as well as clarify the concentric structures (415 spectra, IGGR RCAES HAS, Budapest, 

294 Hungary), using a Bruker FTIR VERTEX 70 equipped with a Bruker HYPERION 2000 

295 microscope with a 20x ATR objective and MCT-A detector. During attenuated total reflectance 

296 Fourier transform infrared spectroscopy (ATR) analysis, the samples were contacted with a Ge 

297 crystal (0.5-μm) tip with 1 N pressure. The measurement was conducted for 32 s in the 600–4000 

298 cm-1 range with 4-cm-1 resolution. Opus 5.5 software was used to evaluate the data. The equipment 

299 inappropriate for most of Mn-oxide determinations because those peaks fall in the < 600 cm-1 range 

300 (not equipped with that detector). Contamination by epoxy glue and glass was corrected for.

301 High-resolution in situ micro-Raman spectroscopy was used for micro-mineralogy and CM 

302 identification and distribution on 9 thin sections (1 polished section) (Szeged University, 

303 Hungary). A Thermo Scientific DXR Raman Microscope was used, with a 532-nm (green) diode 

304 pumped solid-state (DPSS) Nd-YAG laser, using 1.5-mW laser power and 50x objective lens in 

305 confocal mode (confocal aperture 25 μm slit). The acquisition time was 1 min, and the spectral 
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306 resolution was ~2 cm-1 for each measurement. The distance between each point was 10 μm, and 

307 the measurement time was 10 min. A composite image of thin sections of Raman microscopy 

308 measurements and a series of Raman spectra acquired along the vertical sections are provided in 

309 the thin section photomicrographs (arrow points to measurement direction). Diagrams are 

310 organized in terms of peak height versus analytical spot number for each of the phases along the 

311 Raman-scanned section. Intensities were normalized to the highest peak for each spectrum.

312 Raman measurements were taken on 9 samples (4B, 7, 10, 31, 36-A, 75-2, 75-B5, 48-D1, 

313 81). In the case of the homogeneous-like cases 400-500 and in the case of 75-2, 800 spectra were 

314 taken along the line shown on section photos (4B, 7, 10, 31). These are systematic investigations 

315 along the line profile. Spectra were obtained every 10 μm, providing a high-resolution sensitive 

316 study. In samples 75-B5, 78-D1, and 81, the measurements were taken across whole thin sections. 

317 The spectra were elaborated in two ways:

318 (1) Diagrams were organized in terms of peak height versus analytical spot number of each of the 

319 phases along the Raman scanned section (main minerals and organic matter in general). (2) A 

320 detailed determination of all spectra were also made. These results are summarized in tables (Excel 

321 files, numbers 1, 2, and 3 indicate the intensity—1-weak, 2-moderate, 3-strong—reference data on 

322 detection), in which the mineral composition can be followed from point to point, as well as the 

323 type of organic matter. (Supporting Information)

324 Aside from the profile analyses, descriptions of the mineral phase transitions were also 

325 constructed for clarification of aegirine (5 photos, 4 mineral spectra, and 1 profile), braunite (3 

326 photos, 10 point analyses, and 1 profile across mineral transitional zones), cryptomelane (18 

327 photos, 54 point analyses, and 2 profiles across spheres), and the composition of the oblate 

328 structures (28 photos, 93 point analyses, and 1 profile).
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329 The following Raman bands were used for normalization: rhodochrosite: ~1086 cm-1, 

330 dolomite: ~1093-96 cm-1, apatite: ~965 cm-1, quartz: ~463 cm-1; todorokite 633 cm-1; manjiorite 

331 641 cm-1; ramsdellite: 650 cm-1; cryptomelane: 183 cm-1 and 580 cm-1; hollandite: 585 cm-1; 

332 birnessite: 656 cm-1; ferrihydrite: 707 and 1045 cm-1; goethite: 297 and 385 cm-1; celadonite: 545 

333 cm-1; barite: 446 and 985 cm-1; johannite: 785 cm-1; aegirine: 970 cm-1; jacobsite: 620 cm-1; 

334 hausmannite: 661 cm-1; braunite: 210, 510, 685 cm-1; and carbonaceous matter: ~1605 cm-1. The 

335 identification of minerals was made with the RRUFF Database (Database of Raman – 

336 spectroscopy, X-ray diffraction, and chemistry of minerals: http://rruff.info/). Contamination by 

337 epoxy glue was taken into consideration. Along with the profile analyses, a detailed determination 

338 of all peaks was also made.

339 Comparing the two in situ methods, the AT-FTIR, which did not considerably modify the 

340 mineral phases while using the lowest exciting energy, was used to investigate the upper 1–2 μm 

341 of the samples. This is the also best method to determine organic matter (Polgári and Gyollai, 

342 2019; Polgári et al., 2019). On the contrary, Raman spectroscopy, using higher excitation energy, 

343 often caused the transformation of metastable minerals to more stable phases. This method yielded 

344 information from the upper 3–4-μm depth of the sample surfaces and was the best method for 

345 identifying Mn oxides and hydroxides. The Raman comparative spectra database is more extensive 

346 than the AT-FTIR database.

347

348 5. RESULTS

349 5.1. Optical (OM) and cathodoluminescence (CL) rock microscopy

350 5.1.1. Optical rock microscopy

351 Thin sections represent mineralized biomats based on structural observations, which are 

352 eminently visible on smaller magnification photos (40x) (Fig. 6, SI 6-, 7-Figs). In all thin sections, 
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353 adequately high-resolution optical rock microscopy (1000x) supports a series of mineralized 

354 biomat microstructures, mineralized microbially produced textures (MMPT) as main constituents 

355 (Fig. 6, SI 8-Fig). This microbial microtexture is a basic feature of all the samples, in transmitted 

356 as well as reflective light. Well-preserved and mineralized remains of diverse filaments with pearl 

357 necklace-like, vermiform inner signatures, and coccoid-like forms embedded in the Mn ore beds 

358 are seen, and the whole samples appear densely woven. The minerals are very fine-grained (0.5-1 

359 μm) except Mn-1, where clastic contribution occurs. The diameter of the mineralized filaments is 

360 around 0.5–1 μm, with variable length (Fig. 6).

361 Fig. 6.

362 Samples 4B, 7, 10, 31, 32 (all from Mn-1) include debris-like components of variable size 

363 (20–200 μm). In sample 4B, it seems that the darker gray mineral grains transform to lighter phase 

364 (SI 8-Fig). The debris grains are mainly quartz with few fragments of jasper and hydrothermally 

365 altered feldspar.

366 5.1.2. Cathodoluminescence microscopy

367 Cathodoluminescence revealed that a part of the debris-like grains (clastic components) is 

368 probably composed of real clasts showing the bright, characteristic CL of the mineral (e.g., quartz-

369 blue, feldspar-yellowish) (Fig. 7AB, SI 9-Fig). Some other grains with sizes of some tens of μm 

370 resemble clasts but do not show luminescence. These non-luminescent grains are most probably 

371 secondary minerals formed via diagenesis (Marshall 1998; Hassouta et al. 1999).

372 Bright blue luminescence is characteristic of kaolinite group-dickite (supported by Raman 

373 spectroscopy; Götze et al. 2002), which occurred frequently in our samples (samples 4B, 7, 10, 31, 

374 Fig. 7A, B, G, H). The numerous small or larger bright yellow minerals are apatite grains, which 

375 often have a lighter margin. These apatites occur along the ore lenses, minerals, and laminae in a 

376 woven-like fine-grained biomat-type matrix which mark the borders as accompanying a series of 
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377 minerals that occurred frequently (Fig. 7, SI 9-Fig) (samples 4B, 7, 10). The fine-grained 

378 rhodochrosite (mixed carbonate) show dull reddish (orange) luminescence (Fig. 7A, B) (samples 

379 4B, 7, 10). Samples 75-2, 75-B5, and 78-D1 are non-luminescent.

380 Fig. 7.

381 5.2. FTIR spectroscopy

382 Measurements were performed in two ways: (i) randomly, in seven sections (6, 7, 10, 31, 

383 32, 36-A1, 78-F3) and (ii) along profiles, in kremydilite sample 48B (Fig. 4K) and in oblate 

384 structure (36-A2) (Fig. 4H).

385 5.2.1. Local area analyses

386 Mineral phases and types of organic matter for (i) are summarized in Table 3 and SI 10-

387 Table, according to the measuring area and frequency.

388 Table 3.

389 In summary, Fe-oxide-hydroxides (ferrihydrite, lepidocrocite, hematite) are common in all 

390 the Mn ore beds, Fe-silicates (aegirine) are common in the Mn-1 ore bed, and Fe-sulphide (pyrite) 

391 rarely occurs. Variable Mn oxides and hydroxides (todorokite, ramsdellite, pyrolusite, 

392 cryptomelane), and oxide-silicates (braunite, serandite) are the main Mn ore minerals. Besides Fe 

393 and Mn ore minerals, feldspar, chlorite, celadonite, kaolinite group-dickite, apatite, and quartz are 

394 moderate or minor mineral components. Variable types of organic matter occur in all samples.

395 5.2.2. Analyses of kremydilite

396 Three profile analyses in kremydilite sample 48B were made (Fig. 4K and Fig. 8). Two 

397 profiles crossed the concentric shells of the kremydilite structure on opposite sides (A and C), and 

398 one profile crossed the inner part (B).

399 All concentric shells and the parts intersected between these shells are heterogenous and 

400 very fine-grained. Considering that minerals represent the remnants of primary Mn and Fe 
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401 minerals, each measuring point in the concentric shells and intersected parts resulted in a mixture 

402 of minerals, with often poorly crystallized phases.

403 Fig. 8.

404 All shells and the inner part are heterogeneous and very fine-grained. Each measuring point 

405 resulted in a mixture of minerals, with often poorly crystallized phases like ferrihydrite. The shells 

406 —observed visually—often have the same mineralogy (cryptomelane, hollandite, hematite, 

407 rhodocrosite, and pores). The mineralogy of the two sides of the structure are asymmetric (Fig. 

408 8D). Profile A (Fig. 8B), from the margin toward the inner part, contain rhodochrosite-goethite, 

409 manjiorite-todorokite, minor ferrihydrite-cryptomelane (6 shells), and in the vicinity of the inner 

410 part, cryptomelane-ferrihydrite. Profile C, from the margin toward the inner part, contain braunite-

411 rhodochrosite, braunite-goethite-rhodochrosite (3 shells), braunite-cryptomelane-rhodochrosite, 

412 braunite-rhodochrosite, braunite, cryptomelane-ferrihydrite-rhodochrosite (2 shells), 

413 cryptomelane-ferrihydrite (2 shells), and cryptomelane-braunite, and in the vicinity of the inner 

414 part, cryptomelane-ferrihydrite. Profile B, representing the inner part from the shells to the center, 

415 contain cryptomelane-ferrihydrite, ramsdellite-rhodochrosite, birnessite-rhodochrosite (2 zones), 

416 cryptomelane-quartz-rhodochrosite, cryptomelane-birnessite-dolomite, cryptomelane-quartz-

417 rhodochrosite, ferrihydrite-cryptomelane-dolomite-quartz, and cryptomelane-quartz-dolomite. 

418 Varying amounts of pores, with or without organic matter, are characteristic in all layers and in 

419 the central parts (Fig. 4).

420 In summary, mineralogical assemblages contain concentric zones (or “shells”) of poorly 

421 crystallized, preserved Mn (birnessite, todorokite) and Fe minerals (ferrihydrite), and mainly more 

422 stable cryptomelane, hollandite, braunite, hematite, goethite, and rhodochrosite. Profile C mineral 

423 components are more stable. More stable minerals represent greater degree of crystallinity.

424 5.2.3. Analyses of oblate (bubble-like) structures
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425 Based on OM of sample 36-A1, the outer and inner matrix and also the dark spots of the 

426 oblate structures appear very similar, with only the reflective color differing slightly (SI 11-Fig). 

427 FTIR analyses resulted in a similar mineralogy and variable organic matter composition, as the 

428 sample is very fine-grained and heterogeneous (Fig. 9). The peaks of most of the minerals show 

429 broad bands and low intensities, which are characteristic of disordered, poorly crystallized quartz, 

430 carbonates, and feldspar.

431 Fig. 9.

432 Out of the oblate structures, the ore contains a matrix, micro-nodules, and dark spots. The 

433 micro-nodules and the matrix consist of cryptomelane, ferrihydrite, minor goethite, rhodochrosite, 

434 and variable organic matter. The analyzed dark spot in the outer part consists of pores, 

435 cryptomelane, ferrihydrite, minor goethite, rhodochrosite, and organic matter. 

436 There are no micro-nodules inside the oblate structure. The light part of the matrix inside 

437 the oblate structure contains cryptomelane, ferrihydrite, quartz, minor dolomite, and organic 

438 matter. The dark part comprises dolomite, ferrihydrite, cryptomelane, and organic matter. Inside, 

439 the dark spot consists of ramsdellite, quartz, minor dolomite, and organic matter (SI 11-Table). 

440 The oblate, rim structure, separating the outer and inner parts, consists of two phases: (1) 

441 the fine-grained rim built up of ferrihydrite, minor goethite, and organic matter; and (2) the coarse-

442 grained phase, which is a mixture of cryptomelane, disordered quartz, rhodochrosite, dolomite, 

443 traces of braunite, and variable organic matter. Comparing the outer and inner parts, differences in 

444 mineralogy are reflected in the type of carbonate (rhodochrosite outside and dolomite inside), the 

445 Mn oxides of the dark spots (cryptomelane outside and ramsdellite (γ-MnO2) inside), and the 

446 occurrence of quartz in the inner part and rim, and feldspar in the outer part. On the outside of the 

447 oblate structure, the rock contains pores and the typical (micronodule-bearing) microtexture of 
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448 Mn-2 and 3, whereas inside, the micro-noduliferous textures do not exist, and pores are partially 

449 filled by hollandite.

450 5.3. Raman spectroscopy

451 Nearly 11,000 spectra were taken for micro-mineralogical and organic matter composition 

452 determinations as well as for the distribution of minerals according to the thin section profiles. 

453 Representative analyzed profiles are shown in Fig. 10 and SI 12-Fig. The mineral distribution was 

454 evaluated visually based on a series of Raman profiles at the 10-μm scale (Fig. 10, SI 12-Fig). The 

455 determined minerals, including FTIR data, are summarized in Table 4. Variable Mn oxides and 

456 hydroxides, Mn oxides-silicates, Mn carbonates, variable Fe oxides hydroxides, Fe silicates, Fe 

457 sulfide, ore minerals, apatite, feldspar (albite and orthoclase), mica (muscovite, chlorite, 

458 celadonite), kaolinite-dickite, barite, carbonates (strontianite, dolomite, ankerite), and quartz occur 

459 in the Mn ore beds. Variable organic material is also an important constituent. Based on low 

460 intensity and broad peaks, the minerals are poorly crystallized and cryptocrystalline. The 

461 representative samples contain a mixture of poorly crystallized mineral phases and organic matter.

462 Table 4. 
463

464 5.3.1. Mineral distribution in profiles by Raman spectroscopy

465 A distribution of minerals is evident in all samples, alternating micro-laminae (a few tens 

466 of μm thick) along with the kremydilite inner part (Fig. 10, SI 12-Fig). This alternating micro-

467 lamination refer to mineralized microbial cycles in the sediment pile. The documented distribution 

468 of minerals in the Mn ore beds is the following:

469 Mn-1 from Figueirinha Mine 

470 - Sample 4B - Hematite (rarely aegirine)/rarely quartz alternation, starting with Mn 

471 (braunite) alternation and random apatite, and K-feldspar.
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472 - Sample 7 - Aegirine/braunite cycles with randomly occurring apatite, mica, and K-feldspar.

473 - Sample 10 - Aegirine-hematite/quartz alternation (Fe cycles) and Mn cycles superposed 

474 (braunite, serandite, hausmannite) occur with randomly occurring apatite, barite, feldspar 

475 (albite, K-feldspar), and strontianite.

476 Mn-1 from São Domingos Mine 

477 - Sample 31 - Hematite (rarely kaolinite/dickite)/quartz alternation (Fe cycles), and Mn 

478 cycles superposed (braunite, manjiorite, jacobsite, todorokite, romanèchite).

479 Mn-2 from Urucum Mine

480 - Sample 75-2 - Only Mn minerals occur, but jacobsite and hollandite contain Fe. Jacobsite 

481 alternate with cryptomelane, ramsdellite, and hollandite. Ramsdellite is the most oxic 

482 phase. In the zone of kremydilite, the micro-lamination turns into random mineral 

483 distribution. Accessory minerals are: romanèchite (psilomelane), manganite, todorokite, 

484 pyrite, and pyrolusite.

485 - Sample 75-B5 - Goethite is frequent only in this sample. Representative Mn cycles are 

486 composed of cryptomelane, hollandite, and occasionally, braunite. Micro-lamination is 

487 disordered, and in those zones, random mineral distribution occurs, but locally micro-

488 lamination is well visible. Accessory minerals are: jacobsite, manganite, ramsdellite, 

489 todorokite, hausmannite, romanèchite, pyrolusite, ferrihydrite, apatite, and mica.

490 - Sample 78-D1 - Hematite (Fe cycle) alternate with Mn oxide cycles (cryptomelane-

491 hollandite) forming double microbial ore forming lamination. Cryptomelane and hollandite 

492 occur together. Hematite and braunite also occur together, but braunite occurs separately, 

493 too. Braunite binds to hematite. Locally, pyrolusite, birnessite, romanèchite, jacobsite, 
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494 manganite, ramsdellite, hausmannite, serandite, ferrihydrite, goethite, mica, and apatite 

495 occur.

496 Mn-3 from MCR Mine

497 - Sample 81 - Hematite alternates with Mn oxide (cryptomelane-hollandite). Accessory 

498 minerals are: todorokite, ramsdellite, jacobsite, rancieite, pyrolusite, birnessite, braunite, 

499 ferrihydrite, magnetite, and mica.

500 Fig. 10.

501 5.3.2. Mineral phase transitions by Raman spectroscopy

502 Microscale mineral phase transitions offer very important information on syngenetic and 

503 diagenetic formation processes. Mineral compositions of Urucum samples also provide 

504 information on this aspect, which explains the focus on specific mineral transitions.

505 5.3.2.1. Aegirine

506 Aegirine is common in Mn-1, occurring as an alternating mineral with braunite. A detailed 

507 study on the phase transition was made for sample 4B (Fig. 11). The microtexture of aegirine 

508 resembles a vermiform network that intrudes into the quartz. The quartz occurs in the undulating 

509 hematite network as a gel-like segregated silica. Aegirine is present at the contact of quartz, and 

510 riebeckite seems to consume aegirine. This relationship shows that aegirine and riebeckite 

511 consume quartz. At the contact of segregated quartz, hollandite/vernadite and apatite occur. 

512 Braunite binds to hematite in the vicinity of quartz.
513

514 Fig. 11.

515 5.3.2.2. Braunite

516 Braunite also consumes segregated quartz similarly to aegirine, in a vermiform habit, and 

517 is in close contact with the hematite network (Fig. 12) (sample 4B). Segregated quartz also contains 

518 K-feldspar. Hematite occur as small clusters and contains an undulating network as mineralized 

519 biomats.
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520 Fig. 12.

521 5.3.2.3. Cryptomelane

522 All the spectra taken in the micro-nodules (cell colonies) and matrix material show 

523 dominant vernadite/hollandite-type Mn-oxides-hydroxide composition and a greater or less 

524 amount of cryptomelane and variable organic matter (sample 75-2). The minerals are in a 

525 cryptocrystalline mixture with variable amounts. The textural differences do not correspond to 

526 significant mineralogical differences (Fig. 13, SI 13-Fig). The central part of the micro-nodules 

527 consists of hollandite/vernadite and organic matter, around which cryptomelane, pyrolusite and 

528 ramsdellite occur.

529 Fig. 13.

530 5.3.3. Oblate structures

531 Detailed Raman measurements were elaborated on a representative oblate structure, used 

532 to compare the mineral composition and distribution inside the oblate structure, in its vicinity, and 

533 in the rim (sample 36-A1, Fig. 14, SI 14-Fig).

534 The dark spots in the outer matrix are mainly pores, except dark porous inner rims with 

535 variable thicknesses, which are composed of a hollandite-type Mn oxide phase (dominant phase), 

536 cryptomelane, and goethite. The matrix among the dark spots is built up by hollandite, 

537 cryptomelane, and goethite.

538 The non-porous rim of the oblate structure mainly consists of hollandite and cryptomelane 

539 in variable amounts. Rarely fine-grained clusters of goethite occur among the hollandite-

540 cryptomelane flakes.

541 In comparing the mineral phases and distribution in the outer, inner, and rim areas of the 

542 measured oblate structure, we find that they are similar. The matrix of the inner part of the oblate 

543 structure is composed of very fine-grained goethite (ferrihydrite) and small particles of Mn oxides 
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544 (hollandite and cryptomelane in variable amounts); however, hollandite is dominant in the dark 

545 spots. The mineral composition of the matrix and dark spots show a unified distribution, as any 

546 difference or significant trend in the matrix or in the dark spots was not detected.

547 Fig. 14.

548 5.3.4. Organic matter

549 The organic matter of Mn-1 ores from Figueirinha (samples 4B, 7, and 10) and São 

550 Domingos (sample 31) area are dominated by two bands near 1320 and 1610 cm-1, which are D 

551 and G bands of hydrogenated amorphous carbon (Chen et al. 2007). This ore bed contains also 

552 traces of aromatic hydrocarbons (825 cm-1), and skeletal stretching of C=C and C=O molecules. 

553 Bands of aliphatic hydrocarbons occur at 1000–1280 cm-1 (Okolo et al. 2015) (samples 4B, 7, 10, 

554 31), 1300–1390 cm-1 represents CH3 (Jehlička et al. 2009), and 1487 cm-1 refer to CH2/CH3 

555 vibrational mode (Jehlička et al. 2009) (samples 7, 10). The band at 1518 cm-1 refers to the C=C 

556 stretching in polyenes (sample 31), while 1620–1820 cm-1 show the C=O vibration of oils (Orange 

557 et al. 1996) (sample 4B).

558 The organic matter of ores of Mn-2 (Urucum West Mines) (samples 75-2, 78-D1, and 75-

559 B5), contain bands of aliphatic hydrocarbons (1104 cm-1), CH3, and the D and G band of 

560 hydrogenated amorphous carbon based on bands near 1320 and 1610 cm-1. The sample 75-2 

561 contains only the D and G band of amorphous hydrocarbon, whereas sample 75-B5 contains the 

562 aromatic hydrocarbon (825 cm-1) bands of CH2/CH3 vibration (1386, 1469 cm-1), and C=O 

563 vibration of oils (1750–1800 cm-1). The sample 78-D1 has bands D and G of hydrogenated 

564 amorphous carbon and traces of CH2/CH3 vibrational mode of aliphatic hydrocarbon (1345, 1362 

565 cm-1). The sample of the Mn-3 ore bed (MCR Mine, sample 81) contains mostly hydrogenated 

566 amorphous carbon (D and G bands at 1317 and 1600 cm-1) and traces of aliphatic (1000–1200 
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567 cm-1, 1469 cm-1) and aromatic hydrocarbons (825 cm-1). Only 60 of 1903 spectra contains organic 

568 material.

569

570 6. DISCUSSION

571 6.1. Sedimentation age and environments

572 The presence of long chain oil type in manganese layers with kremydilite indicates that 

573 temperatures were hardly larger than 90°C, which eliminates the possibility that the Jacadigo 

574 Group’ rocks have been metamorphosed. This find makes it likely that the 40Ar/39Ar age of the 

575 Mn-1 layer is effectively 547 ± 3 to 513 ± 4 Ma, the ages of braunite and muscovite determined 

576 by Piacentini et al. (2013). This age seems to be reinforced by that determined by Babinsky et al. 

577 (2008), which dated detrital zircons (U – Pb SHRIMP) from a volcanic ash layer intercalated with 

578 carbonate rocks of the Tamengo Formation at 543 ± 3 Ma.

579 Corumbella and stromatolite occurrences and field information published by Biondi and 

580 Lopez (2017) indicate that the Santa Cruz Formation (BIFs) and the manganese layers sedimented 

581 at the same time or after the Bocaina Formation; and that the ages of these rocks are about 550 

582 Ma. The age of this fossil in the ironstones of the Santa Cruz Formations (Jacadigo Group) and 

583 limestones of the Tamengo Formation (Corumbá Group) was estimated at ca. 550 Ma (Germs 

584 1972; Grant 1990; Grotzinger et al. 1990; Hofmann and Mountjoy 2001; Bengtson 2002). Also, 

585 the proposed age of this horizon was 555–542 Ma by ichnofossils, identified by Parry et al. (2017), 

586 in the Bocaina Formation.

587 There is no diagnostic evidence that sedimentation occurred during some glacial period or 

588 during some glaciation, as initially proposed by Urban et al. (1992). The only arguments of these 

589 authors were: (a) the presence of the granite blocks they interpreted as dropstones, without even 

590 observing whether any of these blocks have faceted, friction-sectioned sides, and/or have striated 

591 faces, as is typical of dropstones. These characteristics were never observed in the Urucum 

592 (Trompette et al., 1998; Freitas et al., 2011; Biondi and Lopez, 2017). (b) To consider the Santa 

593 Cruz Formation, with at least 400 m thick BIFs, as similar to the Rapitan Formation, with less than 

594 10 m thick BIFs (Young, 1976). As the Rapitan Formation would be Ediacaran and of glacial 

595 origin (Young, 1976), Urban et al. (1992) inferred that the Santa Cruz would have the same origin; 
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596 and most subsequent authors adopted this idea. However, keeping in mind that this hypothesis is 

597 traditionally defended by many authors (e.g. Angerer et al., 2016), it should be discussed.

598 The last glacier related to snowball earth, and the sedimentation of Rapitan-denominated 

599 BIFs, was the Marinoan glaciation, which began at about 650 Ma and ended at about 635 Ma. 

600 Considering all the information presented above, the Urucum’s BIFs, ironstones and manganese 

601 layers sedimented about 550 Ma ago, 85 Ma after the end of the Marinoan and the snowball 

602 glaciations. The Gaskiers glaciation, which existed for 340,000 years (579.9 to 579.6 Ma), has 

603 occurred about 29 Ma before the end of the Jacadigo Group sedimentation, and could hardly 

604 influence its sedimentation. It remains, therefore, to relate the formation of the Jacadigo Group 

605 with Baykonurian glaciation (547 to 545.5 Ma), so far recognized only in Asia and Africa 

606 (Chumakov, 2009; and Chumakov, 2011; Germs and Gaucher, 2012). We therefore propose to 

607 consider the possibility that the sedimentation of the BIFs and manganese layers of the Santa Cruz 

608 Formation occurred during the Baykonurian glaciation, which would explain the existence of what 

609 is interpreted by Urban et al. (1992), among other authors, as dropstones.

610 We hold the view that Mn-1 was most likely formed during the first inundation of the 

611 ancient graben by the fluvial, oxidative sediments that gave rise to the Urucum Formation. Unit 

612 Mn-1 contains predominantly siltic and sandy, ferruginous clastic rocks, cemented by microbially 

613 mediated Fe minerals (e.g., aegirine), and Mn-oxide and silicate (braunite, serandite, and 

614 hollandite). The areas of Figueirinha and São Domingos mines have a larger concentration of 

615 manganese in Mn-1, which are contained in clast-bearing massive ores. The upper Mn-1 layers in 

616 the Figueirinha and São Domingos mines, which include amygdalites, were probably deposited in 

617 the basin depocenter, where the amygdalites formed from hydrodynamic flux. Layers Mn-2 and 

618 Mn-3 formed in “offshore” (= greater depth) environments during periods of tectonic quiescence, 

619 when fine, clastic quartz fragments and other detrital sedimentation ceased. 

620 6.2. Mineralogical interpretations 

621 Microtextural evidence in all the studied samples appears as dense features, and the mineral 

622 types and embedded variable organic matter raise the microbially-mediated formation of the ore 

623 beds, which we argue occur as microbialites (MMPT). Two microbial ore forming systems are 

624 proposed as dual systems, characterized by Fe- and Mn-oxidizing metabolic processes (Fe-

625 oxidizing bacteria (FeOB) and Mn-oxidizing bacteria (MnOB)).
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626 Several studies on the genesis and preservation of oil and natural gas have shown that long 

627 chain hydrocarbons are decomposed at temperatures above 90ºC (Chilingar et al. 2005, p.138-

628 142). Preservation in Mn-2 and Mn-3 of aromatic and aliphatic hydrocarbons, C=C stretching in 

629 polyenes, C=O vibration of oils, among others, indicates that temperatures during diagenesis were 

630 low (<90ºC) and that syngenetic as well as diagenetic minerals were preserved, as identified by 

631 the Raman and FTIR analyses. Along with hydrocarbons, these analyses identified minerals such 

632 as birnessite and ferrhydrite, which we consider remnants of the original sedimentation, (i.e. they 

633 were not entirely destroyed during diagenesis). Remnants of syngenetic and diagenetic minerals 

634 interpreted as complex systems give a plausible series of processes and environmental formation 

635 conditions during sedimentation and diagenesis (Table 4, Fig. 15, SI 15-Table). The frequency of 

636 the minerals is different: the main minerals, such as cryptomelane, hollandite, hematite, and 

637 braunite, form the ore beds, but the moderate and minor minerals have also genetic importance. 

638 The Mn layers are the result of complex diagenetic processes and formation of diagenetic minerals, 

639 which include the components of the decomposition of cells and extracellular polymeric substance 

640 material (Fe and Mn bacteria, cyanobacteria, and other types; see Ewers 1983; Wignall 1994; 

641 Konhauser 1998; Villalobos et al. 2003; Dupraz and Visscher 2005; Dupraz et al 2009; Chan et al. 

642 2011; Gyollai et al. 2017). 

643 Some syngenetic poorly crystallized minerals were preserved, and that serves as a starting 

644 point. For a clear understanding, a short review on the most important mineral assemblages and 

645 primary minerals is needed. Many types of minerals occur, and these can be grouped as follows.

646 6.2.1. Remnants of syngenetic minerals – Syngenetic Fe- and Mn-rich biomat 

647 formation

648 Remnant syngenetic minerals are reported as microbially mediated minerals forming under 

649 obligatory oxic (Mn) and suboxic (Fe) conditions, with neutral and semi-neutral pH. The 
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650 microbially mediated Mn and Fe oxidation have different oxygen demand, and the diagenetic 

651 zones represent different oxygen conditions. The nomination “suboxic” has a double meaning 

652 which can cause discrepancies. To avoid misunderstanding, definitions are listed in Table 5. In 

653 general, Eh > 0 represent oxic conditions, but the concentration of oxygen can be different, as 

654 shown in Table 5 and Fig. 15, and the microbially mediated processes occur at a given oxygen 

655 content. Diagenetic zonation also separates the oxic, suboxic, and anoxic zones, and the oxidizing 

656 agent is O2 in the oxic zone, NO3
-, MnO2, and Fe2O3 in the suboxic zone, and SO4

2- in the anoxic 

657 zone (Berner 1980; Coleman 1985; Wignall 1994; Polgári et al. 2012ab).

658 Table 5.

659 Ferrihydrite and lepidocrocite on the Fe side, and vernadite, todorokite, birnessite, and 

660 manganite on the Mn side, are regarded as syngenetic minerals (Ehrlich 2002). Accordingly, it is 

661 obvious that ore formation started with microbial Fe oxidation. That is why interpretation starts 

662 with a description of the Fe system.

663 Syngenetic Fe system

664 Understanding the biochemistry of the biomat formation is a key factor in determining the 

665 type of Fe-rich biomat that may have been involved in the formation of the Urucum Mn layers, 

666 and to define the environmental conditions. There are various types of microbial metabolisms that 

667 can oxidize Fe2+ in nature, which occur under varying states of oxygen-deficient conditions. Three 

668 types of Fe-rich biomats are considered for the Urucum; all are neutrophilic and consistent with 

669 basin conditions (Fig. 15): (1) Microbial neutrophilic, micro-aerobic Fe(II) oxidizing bacteria (pH 

670 ~8; Eh +0.3 V) (Hallbeck and Pedersen 1990; Ehrenreich and Widdel 1994; Konhauser 1998; 

671 Ehrlich 2002) supported by mineral assemblage (ferrihydrite, goethite, hematite, celadonite); (2) 

672 Nitrate-reducing Fe(II) oxidizers in suboxic/anaerobic conditions (lack of filaments; Straub et al. 

673 1996); and (3) Photoferrotroph metabolism in anoxic/anaerobic light-demanding conditions, 
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674 which is not plausible based on mineral assemblage, which support suboxic-oxic conditions. The 

675 fourth (4) type, strongly acidic, oxic metabolism is also not plausible in the Urucum basin, and 

676 does not fit with the mineral assemblage. However, a further process we have to consider, is the 

677 non–Fe-oxidizing microbes later overgrown by Fe oxides via microbial processes (Konhauser 

678 1998). This cannot be excluded, but the homogenous Fe-precipitation on filamentous forms do not 

679 support this scenario as a principal process.

680 The rhythmic developmental stages via microbial mediation is basic. Free-living Fe(II) 

681 oxidizing bacteria exist in the lag and log phases (Novick 1955; Zwietering et al. 1990), and stalk 

682 formation (Fe-rich biomat–mineralization) occurs during the stationary (abbrev.: stat) phase under 

683 optimal conditions (pH > 6, aerobic, cell number > 6 × 105 mL–1, low organic C content, 1–3 week 

684 whole microbial population growth period; e.g., Gallionella-like freshwater types and 

685 Mariprofundus-like marine types) (Hallbeck and Pedersen 1990; Chan et al. 2011; Polgári et al. 

686 2012a).

687 Organic biomarkers were not directly associated with Fe-rich biomat structures. Raman 

688 and FTIR data show organic matter in the biomat lacework but is not diagnostic as to its type. 

689 Based on these data, the diagenesis developed more in rocks represented by sample 75-2, where 

690 only amorphous carbon remained in traces, and other type of organic material was consumed. 

691 Preservation of organic material was best in sample 75-B5, in which organic material occurs in 

692 180 of 2447 spectra, and more complex organic material, like oils and aromatic hydrocarbons, 

693 were detected. Sample 78-D1 (SI 3-Fig) is more altered, because only traces of complex organic 

694 material were preserved, and organic material—mostly D and G bands—occur in only 60 of 3456 

695 spectra. Biomarkers cannot be isolated because of multiphase microbial activity and extensive 

696 diagenetic overprinting.

697 Fig. 15.
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698 Syngenetic Mn system

699 Mn-oxide formation in Mn-1 ore bed can be explained by the oxide surface catalysis model 

700 advocated by Morgan (2005). Metal-oxide surfaces are able to accelerate Mn(II) oxidation by 

701 redox reactions (e.g., hematite, goethite, lepidocrocite, and manganese dioxide; Wilson 1980; Sung 

702 and Morgan 1981; Davies and Morgan 1989). Raman spectroscopy detected vernadite as poorly 

703 crystallized mineral phase in the vicinity of hematite biomat lacework (Fig. 11). 

704 In the case of Mn-2 and Mn-3, during the development of the Mn-oxide proto-ore, the first 

705 product of microbial enzymatic Mn(II) oxidation probably was a bio-oxide (e.g., vernadite, 

706 todorokite, birnessite), similar to the experimental studies of Villalobos et al. (2003); Bargar et al. 

707 (2005); and Bodeï et al. (2007). This enzymatic Mn oxidation can be referred to as Cycle I. The 

708 demand of microbial (enzymatic) Mn(II) oxidation is obligatory oxic conditions (> 2 mL/L 

709 dissolved oxygen). This bio-oxide is an X-ray amorphous oxide similar to δ-MnO2 (vernadite, 

710 todorokite, birnessite; all detected by Raman), which is thought to be a disordered 

711 thermodynamically unstable 7-Å-vernadite (hexagonal phyllomanganate) containing Mn(IV) 

712 vacancy defects, with very small particle sizes (< 20 nm lateral dimensions), and having only two 

713 or three MnO2 layers stacked along the c-axis (Villalobos et al. 2003). A decrease in the dissolved 

714 Mn(II) appears to act as a reductant for the biogenic oxide and control the stability of secondary 

715 abiotic reaction products (Mn2+ components in minerals of Urucum support this process). Cation 

716 binding, like Mg, supports phyllomanganate transformation to stable tectomanganate (Bodeï et al. 

717 2007). Experimental studies showed that extracellular polymers from bacteria catalyze the 

718 adsorption of Mg on the surface of the cells (Mandernack et al. 1995). Thus, the bacterial cells not 

719 only directly oxidize Mn(II) to Mn(IV), but also, in the early stages of oxidation, influence the 

720 cation composition of the Mn-oxide mineral being produced. Mineralogical changes similar to 

721 these are likely to be commonplace in natural settings where bacterial oxidation of Mn(II) occurs 
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722 and may liberate sorbed metal ions or alter the rates of Mn-oxide surface processes, such as the 

723 degradation of organic molecules. It is noteworthy that microbes may exploit such mineral 

724 transformation reactions to indirectly control chemical conditions in the vicinity of the cell 

725 (Mandernack et al. 1995).

726 A series of detailed mineralogy and micro-textures are shown in Fig. 13 (sample 75-2 from 

727 Mn-2 ore bed). The studied part is representative for syngenetic microbial Mn oxidation. The 

728 distribution of vernadite/hollandite and very early diagenetic cryptomelane and nsutite show 

729 micro-nodules with mineralized microbial colonies with embedded organic matter, which appear 

730 to support this scenario. Recent results also comport with the study of Piacentini et al. (2013) who, 

731 based on petrographic evidence, reported that cryptomelane may not be the primary Mn mineral 

732 precipitated in the Neoproterozoic ocean floor.

733 6.2.2. Diagenetic minerals

734 Diagenetic Fe system

735 According to the diagenesis of Fe-rich biomats, the microbes produce poorly ordered 

736 ferrihydrite (lepidocrocite) as a primary mineral, which transforms to more ordered minerals, such 

737 as goethite or hematite (reduced form as magnetite), within a few months or years via dissolution-

738 dehydration processes, as mentioned before (Konhauser 1998; Schwertmann and Cornell 2007; 

739 Gyollai et al. 2015). The main Fe oxide mineral in the filaments of our samples is hematite, but 

740 Raman analyses indicate that goethite also occurs (sample 75-B5, SI 12-Fig). In Mn-1, aegirine, 

741 and in Mn-2, rare jacobsite can represent mineralized Fe-biomats. In other rare occurrences, pyrite 

742 also occurs reflecting that locally anoxic conditions existed but did not become dominant. The 

743 fossilized Fe-rich biomats were rapidly and extensively encrusted by minerals, such as dolomite 

744 and silica, similar to what has been reported by Baele et al. (2008). Amorphous silica segregation 



32

745 is derived by either the destruction of organic complexes or the transformation of ferrihydrite 

746 (Baele et al. 2008). 

747 Aegirine, occurring in cyclic microlaminae alternating with braunite in Mn-1, is the 

748 diagenetic mineral form of FeOB (Fig. 10). Aegirine forms via early diagenesis from the 

749 syngenetic Fe-oxi-hydroxides (ferrihydrite) and segregated silica, and represents a more stable 

750 mineral phase. Aegirine micro-laminae represent the Fe-oxidizing microbial cycles, and braunite 

751 represents the Mn cycle in silicified and stable form, also reported by Johnson et al. (2016). This 

752 aegirine-braunite microbialite represents oxic/suboxic conditions (Listova, 1961). High-resolution 

753 Raman investigations show that aegirine consumes segregated silica from hematitic biomat toward 

754 the segregated silica via the transitional mineral riebeckite (Fig. 11). Riebeckite is also a common 

755 constituent in BIF with aegirine reported by Savko (2006), who proposed metamorphic formation, 

756 which does not fit with our observations. In Mn-1, aegirine forms a woven network (Fig. 11), the 

757 hematitic proforma of biomat with the segregated silica. At the contact between hematite and silica, 

758 apatite, vernadite/hollandite, and braunite occur. Similar to aegirine, braunite also consumes the 

759 segregated silica. Our results fail to fit with the hydrothermal origin of aegirine proposed for 

760 Paleoproterozoic Hotazel iron-formation, South Africa (Tsikos and Moore 2005); the cyclic 

761 occurrence, worm-like consuming behavior, and also the mineral assemblage contradicts with that 

762 scenario. Comparison with other natural aegirine occurrences, however, such as authigenic 

763 aegirine in the lacustrine Green River Formation of Wyoming, U.S.A. (Fortey and Michie 1978), 

764 shows a close similarity. In short, the reported authigenic formation of aegirine fits well with our 

765 results, but the source of Na instead of volcanic activity was more probably the decomposition of 

766 cell and extracellular polymeric substance organic material. 

767 As the depth of the basin is not known, fragments of slightly lithified and re-sedimented 

768 and cemented biomats occur, a shallow marine condition cannot be excluded. In such 
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769 environments, evaporitic alkaline sodium-rich conditions cannot be ruled out and indeed, are 

770 preferred for aegirine formation. The high silica concentration favors aegirine formation instead 

771 of clay minerals (Decarreau et al. 2004, 2008), which only sporadically occur in the samples 

772 studied here (celadonite, chamosite).

773 Celadonite, a dominant mineral phase in the Mesozoic Úrkút Mn-deposit (Polgári et al. 

774 2012b; 2016ab), is an Fe-mica reflecting suboxic neutral conditions. It is rare in Urucum 

775 presumably because of high silica content.

776 Chamosite formation is favored by seawater solutions at low temperatures with a relatively 

777 reduced pH, a low amount of SiO2, high content of Fe2+ and Fe3+, and a relatively high amount of 

778 Al and Mg. Aluminum may be donated to the system by organic matter as reported by Maliva et 

779 al. (1999) who showed that the aluminum content is greatly increased by complexation with 

780 organic acids. Low silica concentration in solution is the most important condition for low-

781 temperature synthesis of clay minerals, as high silica concentration in solution inhibits their 

782 formation (Harder 1976).

783 Diagenetic Mn system

784 In diagenesis, the stabilization of the syngenetic Mn oxide hydroxides proceeded and pure 

785 forms, such as pyrolusite, ramsdellite, nsutite, hausmannite, manganite, and variable-cation-bound 

786 forms (e.g., Na, K, Ca, Mg, Ba, Fe) such as cryptomelane, jacobsite, romanèchite, and manjiorite 

787 grew (Giovanoli 1980; Mandernack et al. 1995; Villalobos et al. 2003; Bargar et al. 2005; Bodeï 

788 et al. 2007; Johnson et al. 2016). Of note, as described by Polgári et al. (2012b), Maynard (2014), 

789 and Johnson et al. (2016), rhodochrosite can result from the sporadic activity of heterotrophic 

790 microbes during the early stages of diagenesis. Rhodochrosite is, however, only frequent in the 

791 only fully analyzed kremydilite sample shown in Fig. 8. Otherwise, these poorly mineralized 

792 cryptocrystalline mineral phases mix in a variable amount in the microlaminae as a manifestation 
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793 of mineralized Mn cycles. Similarly, pyrolusite, ramsdellite, and romanèchite indicate Mn 

794 precipitation via diagenesis from low-temperature pore fluids as reported by Rajabzadeh et al. 

795 (2017).

796 6.3. Combined diagenesis of the two ore-forming microbial systems and other 

797 microbial forms 

798 Harder (1978) noted that “…the silica content of sedimentary iron ores is found in quartz 

799 and different iron-containing clay minerals. Chamosite, greenalite, cronstedtite, nontronite, 

800 glauconite, and thuringite are common minerals in sedimentary iron ores. In general, all these 

801 minerals are extremely fine-grained.” We find that the formation of Mn-1 manganese ore in 

802 Urucum influenced and changed this general protocol, despite the observation of quartz, local Fe 

803 mica, and Fe clay. Highly alkaline pore water conditions in diagenesis (accompanied by elevated 

804 Na content) caused aegirine precipitation instead of smectite (Decarreau et al. 2004, 2008). Low 

805 silica content and Si/Fe ratio lead to chamosite formation under reduced pH and Eh conditions. 

806 The high silica content probably influenced silica uptake of variable Mn oxide-hydroxide minerals. 

807 Through stabilization caused by diagenetic processes, the Mn oxide hydroxide bound not only Fe2+ 

808 and Fe3+ (e.g., jacobsite, hollandite minerals), but also silica (braunite, serandite), to form a highly 

809 variable content of oxide-silicate mixed minerals. These are characterized by highly variable 

810 composition. Texturally, mineral habits are strongly modulated (and perhaps templated) by 

811 extracellular polymeric substances that form a network of pore spaces. 

812 Braunite alternates with aegirine in Mn-1 and also occurs in Mn-2 representing the 

813 mineralized Mn cycle (Fig. 10). The principal reasons for this viewpoint is that the system acts as 

814 a diagenetic cycle owing to the fact that in Mn-1 an active oxide surface catalyst is likely 

815 responsible for the mineral assemblage, as opposed to enzymatic Mn oxidation. The interpretation 

816 is that braunite formation is due to combined diagenesis, as the segregated silica needed for 
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817 braunite is typical of Fe system diagenesis. The most likely formation of braunite is sedimentary 

818 or early diagenetic via biogeochemically mediated processes, as proposed by Serdyuchenko (1980) 

819 and Johnson et al. (2016). These studies report scenarios that are broadly similarly to our Urucum 

820 samples. Micro-textural evidence (Fig. 11–12) clearly shows the formation of braunite in the 

821 vicinity of hematite biomat, vernadite/hollandite, and apatite, via the consumption of segregated 

822 silica. While syngenetic mineralization took place under oxic neutrophilic conditions, slightly 

823 alkaline and oxic conditions were also reported for braunite formation (pH 9.5–9.9; Eh +0.43 V; 

824 Listova 1961); this comports well with our scenario. 

825 Serandite, as an oxide-silicate mineral, also belong to this process (empirical composition 

826 of hollandite also can contain Si). The relationship between serandite and braunite is documented 

827 by our Raman profiles (Fig. 10). Jacobsite can be interpreted as the transitional form between Mn 

828 and Fe oxides.

829 6.4. Diagenesis of other minerals

830 After cell death and decomposition, as well as breakdown of extracellular polymeric 

831 substance, ions that were previously bound on their surfaces release Ca, Mg, Na, K, P, S, Si, Co, 

832 Zn, Ba, Sr, and rare earth elements. These are bioactive elements in accordance with Takahashi et 

833 al. (2007), Heim (2010), Meyer et al. (2012), Gyollai et al. (2017), and Yu et al. (2019). Formation 

834 of CO3
2-, PO4

2-, SiO4
4-, and SO4

2- anions commences and a complex transforming mineralization 

835 begins to take place, which (depending on local geochemical conditions) can result in clay mineral 

836 formation, mixed carbonates, feldspar, silica, and apatite. These poorly crystallized minerals can 

837 transform into more stable minerals over time (Konhauser 1998; Dupraz and Visscher 2005). The 

838 various geochemical features of Mn ores are modulated by such syngenetic and diagenetic 

839 processes. These include increased Co content compared with crustal abundance, a characteristic 

840 for Urucum ores as well as the Úrkút locality (Polgári et al. 2012b; Biondi and Lopez 2017). 
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841 Reaction of FeOB with Co proceeds easily, and MnOB can also oxidize Cobalt (Moffett 1990). 

842 The liberalization of the cell surface-bound elements provides sources of elements e.g., in the case 

843 of K in the formation of hollandite or Si in the case of braunite and other elements (Piacentini et 

844 al. 2013).

845 Abundant quartz is common in Mn-1, which in part is attributable to the contribution of 

846 detrital debris, but also represents the dominant segregated reactive silica phase (Cole and Shaw 

847 1983; Fisk et al. 2006). In laboratory experiments, FeOB requires protection against concentration 

848 and other types of stress, and silica is used for protection by microbes (Młoszewska et al 2018). 

849 The amorphous silica can easily transform into more stable minerals, such as quartz (Herdianita et 

850 al. 2000).

851 In unit Mn-1, a part of the segregated silica is stabilized as quartz, but the formation of 

852 aegirine and braunite also consumed considerable amounts. Through combined diagenesis in Mn-2 

853 and Mn-3, braunite and serandite formed, which consumed (and thus, reduced) the segregated 

854 silica content.

855 Feldspar and kaolinite/dickite also formed, and rarely, cancrinite occurs. Kaolinite minerals 

856 can form under acidic condition (pH 2-7) and within a wide temperature range. In our Urucum 

857 samples, only kaolinite and dickite were detected in this class of minerals. Kaolinite can form at 

858 low temperatures 25 °C (Dekoninck et al. 2018). Dickite typically forms under low pH conditions. 

859 that forms in the temperature range between 120 and 280 °C (Eberl and Hower 1975; Inoue 1995), 

860 and its presence is not supported by our results, which favor low-temperature conditions. On the 

861 other hand, the reported important role of organic matter in the formation of dickite fits with our 

862 results (Maliva et al. 1999). Similar to the Al demand of chamosite mentioned above, the mobility 

863 of aluminum is enhanced by complexation with organic acids. In such systems, aluminum is 
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864 released and hence available for clay-mineral precipitation when the organo-aluminum complexes 

865 are destabilized (Maliva et al. 1999).

866 Cancrinite is a mixed silicate-carbonate-sulfate transitional mineral, which only 

867 sporadically occurs in Urucum, but nevertheless reflects the variability of diagenetic conditions. 

868 Apatite can precipitate at pH of 7–8 and occurs in micrometer-sized crystals in the silica-rich part 

869 of BIFs. Similar apatite occurrences were noted in our samples, based on Raman and CL analyses. 

870 Muscovite (hydromuscovite) is common in the studied samples and was most likely formed by the 

871 diagenesis of cyanobacteria filaments in Fe-rich microbialites by the leaching of biofilm alkali 

872 elements (Na, Ka, Al, Mg) (Ewers 1983; Gyollai et al. 2015, 2017).

873 Among carbonates, the occurrence of dolomite (ankerite) in Mn-1 can be considerable, and 

874 strontianite is present but scarce. Barite, gypsum, and johannite belong to the sulfates that form 

875 from marine sulfate and/or organic constituents. Barite, a mineral precipitating under typical oxic 

876 conditions (Eh > +0.2) at low temperature, is considered here as oxygen supply indicator, because 

877 barite occurring with hematite indicates conditions that are more oxic than occurring without 

878 hematite (Hanor 2000).

879 Considering the mineral assemblage, it is clear that the initially high segregated silica 

880 content did not support clay formation via early diagenesis, and silica-consuming minerals are 

881 numerous, which finally resulted in a decrease in silica content, which did not support quartz 

882 formation. In Mn-1, the quartz content is considerable compared with Mn-2 and Mn-3, which can 

883 be interpreted by the lower amount of Mn oxyhydroxides in Mn-1. Some quartz is probably of 

884 clastic origin as well as feldspar and mica, but authigenic formation of these minerals is also 

885 common in microbially mediated diagenetic processes, and non-luminescent minerals belong to 

886 this group (Marshall 1998; Hassouta et al. 1999) (Fig. 7).
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887 The Mn-2 and Mn-3 beds represent real enzymatic Mn(II) oxidation with extremely high 

888 amounts of Mn oxides and hydroxides, which overwhelm microbial Fe oxidation.

889 Most of the minerals detected here have well characterized formation conditions, as 

890 summarized in Table 4. Based on mineralogy, proto-ore sedimentation and diagenesis occurred 

891 under suboxic-obligatory to oxic and semi-neutral to alkaline conditions.

892 6.5. Formation of kremydilites and oblate structures

893 Kremydilites occur in varied forms shown in Figures 4A, C, E, G, I and K, which probably 

894 correspond to different stages of development or growth. The presence of oblate structures and 

895 pores inside and outside the kremydilites indicate that they and the sediments in which they formed 

896 were a highly soft, porous, and permeable aqueous mud, within which pore fluids and gases could 

897 form and migrate out (Figs. 4A-B, E-F, G-H and Fig. 16). Gas bubbles are common accompanying 

898 phases of microbial mediation, which are trapped after burial, which is also characteristic of our 

899 Urucum samples (Figs. 4A-B, E-F, and G-H). Different stages of the formation of a kremydilite, 

900 including oblate structures, are shown in Fig. 4. The beginning of the microbial activity inside the 

901 aqueous mud deposited in the marginal basin floor, composed mainly of birnessite, ferrihydrite, 

902 organic matter, and Mn and Fe oxides (Fig. 8). Organic matter becomes oxidized (Fig. 4) 

903 generating CO2 and/or CH4 and/or H2, which forms intergranular bubbles (Figs. 4A-B, E-F, and 

904 G-H) that migrate towards the surface (Fig. 16B). After the first oxidation stage of organic matter, 

905 a cluster of pores remains, constituting the nucleus zone of the kremydilite structures (Fig. 4A-B 

906 and C-D). The reactivation of microbial oxidation of organic matter generates the first concentric 

907 layer of pores (= shell) around the previously formed nucleus (Fig. 4E-F). The repetition of this 

908 process can generate multiple concentric layers of pores (shells) (Fig. 4G-H), and evolve to form 

909 a complex kremydilite (Fig 4 I-J) with many layers, marked by the accumulation of pores 

910 concentrically organized around the nucleus, as in the kremydilite sample 48 (Figs. 4K and 8A-
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911 B). The reactivation process of microbial oxidation can cease at any time, forming kremydilites 

912 with one or two concentric layers around the nucleus or repeating at different times, forming 

913 complex structures with multiple concentric layers (Figs. 4I-J and K). The oblate structures, now 

914 preserved in the Urucum ores, did not reach the basin floor and were preserved during diagenesis. 

915 The cryptomelane needle mesh structure, the prismatic cryptomelane crystallites, and the micro-

916 nodules were microbialites or organominerals (Dupraz et al. 2009), and the cylindrical holes are 

917 likely tube escape structures through which gas bubbles migrated from the zone of microbial 

918 activity (organic matter oxidation).

919 The mineralogy of the kremydilite from sample 48 (Fig.8C-E) seems to reflect the changes 

920 caused by the diagenesis of the original sediment while it was buried (Fig. 16), as defined by 

921 Raiswell (1987). Burial initiated the diagenesis and ore formation (Figs. 8C-D and 16B) 

922 simultaneously with successive cycles of heterotrophic microbial activity, which formed the 

923 kremydilite concentric layers of cryptomelane, birnessite, ferrihydrite, rhodochrosite crystallized 

924 in the nucleus zone, braunite, rhodochrosite, cryptomelane crystallized in the bottom part, and 

925 ferrihydrite and cryptomelane in the upper part (Figs. 8C-D, and Fig. 16B). The complete oxidation 

926 of the layer and of all the kremydilites contained therein, forming the massive Mn-2 and 3 ore 

927 type, is a process that began during early diagenesis and was extended after lithification through 

928 microbial mediation. The origin of the oblate form of kremydilites, with concentric layers around 

929 a nucleus, is a consequence only of the oxidation of the organic matter (biomass) during diagenesis 

930 and the subsequent formation of pores. This process is independent of the chemical and/or mineral 

931 composition of the original sediment (but Mn reduction occurs). The original and present chemical 

932 and mineral composition of kremydilites arises from: (a) the abundant sedimentation of Mn 

933 oxyhydroxides via enzymatic oxidation and, to a lesser extent, of Fe oxyhydroxides and (b) the 

934 changes caused by diagenesis, which transforms the sediment into different minerals, as 
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935 manganese (Fe-)-rich biomass becomes manganese-rich sediment, then Mn(Fe)-rich sedimentary 

936 rock. This is the origin of an economical Mn ore deposit. The absence of iron kremydilites in the 

937 jaspilites, similar to the Mn ore beds, shows that the formation of kremydilites was a unique 

938 process that only occurred in the Mn-rich sediments, forming a new type of manganese ore. 

939 Fig. 16.

940 It was previously proposed that kremydilite formed by photoferrotroph microbial processes 

941 (photosynthetic) under anoxic conditions (Biondi and Lopez 2017), which is not in accordance 

942 with the interpretation of recent results on the mineral assemblage. Our new interpretation is that 

943 these formed in suboxic-oxic conditions and slightly alkaline pH. To reach a plausible 

944 interpretation, as a first step, it is important to determine the formation processes of kremydilite. 

945 The mineral assemblage of the studied sample supports an early diagenetic origin, rather than 

946 syngenesis (Fig. 8). The kremydilite structure resembles both nodules and concretions; thus, to 

947 compare these structures, definitions are necessary. Nodules and concretions are very similar, and 

948 sometimes, these terms are used interchangeably. However, while concretions incorporate material 

949 of the host sediment, nodules contain solely authigenic phases (Raiswell and Fisher 2000; Jackson 

950 2005; Baumann et al. 2016; and references therein). In our case, there are only authigenic minerals 

951 based on mineral assemblage in kremydilite and in oblate structures. Consequently, based on 

952 definition, these cannot be concretions but instead are most probably better termed nodules. The 

953 definition of a nodule is also contradictory in our case, however, as in sedimentology and geology 

954 terminology a nodule is usually defined as a small, irregularly rounded knot, mass, or lump of a 

955 mineral or mineral aggregate that typically has a contrasting composition from the enclosing 

956 sediment or sedimentary rock (Jackson 2005). This is not the case in Urucum. In general, the 

957 objects we dub “nodules” lack any internal structure except for the preserved remnants of original 

958 bedding or fossils, which is also not the case here, as kremydilite is a concentric structure 
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959 (structured pore system forming “pore shells” without cement infilling, which is also a difference). 

960 A further aspect is mineralogy, which differs from the typical ones occurring in nodules and 

961 concretions including most commonly calcite, siderite, chert, apatite (phosphorite), anhydrite, and 

962 pyrite. In Urucum, kremydilite occurs as high-quality Mn oxide ore. 

963 Hence, based on the above definitions and features, kremydilite could be considered as a 

964 unique concretion-like structure, which lacks the background sediment, and the accumulated 

965 sediment is the result of successive phases of oxidation of organic matter (Fig. 4) during diagenesis 

966 (Fig. 8). Authigenic mineral formation occurs during syngenesis and early diagenesis. In this sense, 

967 kremydilite, the most characteristic structure in Mn-2 and Mn-3 ore beds, can be interpreted as a 

968 unique type of syngenetic and diagenetic structure and represent a unique type of ore (also taking 

969 into consideration Maynard (2010) and Kuleshov (2011), on ore types). This interpretation is 

970 further in accordance with the main features of kremydilites, like variable-preserved porous 

971 content, signs of gas production and migration, concentric structures, and the multiple stages of 

972 development. Then again, differences, such as lack of cementation and incorporation of material 

973 of the host sediment, are consequential. All things considered, this is a rare ore-type, as reported 

974 by Biondi and Lopez (2017).

975 Yet, how did these kremydilite structures form en masse? The interpretation that we favor 

976 is that heterotrophic cell colonies randomly activated in the microbialite sediment after burial in 

977 suboxic neutral/alkaline conditions, side-by-side with lithification and stabilization of minerals 

978 (Mn reduction (MnR) and reactive organic matter decomposition via heterotrophic microbial 

979 mediation can be referred to as Cycle II). Rhodochrosite is a common (dominant) component in 

980 the kremydilite structure in the core zone and also in the shells, from the core to the margin (Fig. 

981 8). The process probably continues only along the poorly crystallized reactive vernadite and 

982 todorokite. Cryptomelane and braunite are more stable. They do not take part in the process, nor 
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983 does ferrihydrite, as the system does not reach the Fe reduction zone (FeR) because of the high 

984 Mn concentration and relatively low organic matter content.

985 Why is Urucum (Neoproterozoic, Brazil) concretionary and not laminated like in Úrkút 

986 (Mesozoic, Hungary)? Much less organic matter was buried, and this fact did not lead to the 

987 formation of a horizontally continuous MnR zone realizing rhodochrosite laminae. Instead, local 

988 heterotrophic cell colony centers caused the formation of kremydilite in the biomat system, 

989 overprinting the syngenetic lamination, causing a nodular, concretional appearance. The 

990 kremydilites are most probably diagenetic and not syngenetic, as rhodochrosite is diagenetic, as 

991 referred to in Polgári et al. (2012b), Maynard (2014), and Johnson et al. (2016).

992 Both FTIR and RAMAN analyses show that substances inside and outside the oblate 

993 structures evolved in different ways. This is exemplified by the presence of pores in each 

994 kremydilite shell, the absence of pores inside the bubbles, and the absence of micro-nodules inside 

995 the oblate structures. At the contact zone of the “more” oxic outer part and “suboxic” inner part, 

996 spherical enrichment of cryptomelane occurred, forming a dense margin (rim). The micro-texture 

997 of this rim (and also the outer and inner part) is microbial and contain “diffusional channels” (SI 

998 11-Fig).

999 6.6. Basin development

1000 As mentioned, unit Mn-1 follows the basin floor relief, while Mn-2 and Mn-3 occur as 

1001 horizontal beds in the ironstone. This can be viewed as a special series produced by syngenetic 

1002 processes via authigenic mineral accumulation, summarized according to chronology of 

1003 syngenetic and diagenetic processes in Fig. 17. The ore formation commenced with flooding on 

1004 porous fluvial sediments, and the ore forming fluids (Fe2+ and Mn2+) infiltrated and microbially 

1005 colonized the pores in a woven form, and around the clastic particles in the sediment to the depth 

1006 where diffusion was active (supported by microbially mediated micro-texture, which is 
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1007 syngenetic). Initially, biomass, composed of Mn and Fe hydroxides, organic matter, manganoan 

1008 and ferroan carbonate and amorphous silica, deposited on the basin floor. In the extracellular 

1009 polymeric substance network, diagenetic minerals along with clastic material dominated (based on 

1010 CL). The ore formation started with enzymatic Fe oxidation, as the Raman profiles of Mn-1 

1011 samples prove, resulting in a well-developed biomat system. This offered oxide surface catalysis 

1012 for Mn oxidation, which was not enzymatic during Mn-1 because the level of oxygen supply did 

1013 not reach the obligatory oxic level (Morgan 2005). The dynamic processes affected the top zone 

1014 of sediments up to the diffusion depth, which moved upward in time, forming the Mn-1 ore bed. 

1015 The effect of fluvial contribution decreased via marine flooding, and the clastic 

1016 contribution ceased gradually, offering excellent calm conditions for undisturbed Fe- and Mn-

1017 biomat formation, resulting in fine cyclic mineral lamination (mineralized biomats, microbialite) 

1018 (Fig. 10, SI 12-Fig). The FeOB continued forming ironstone (Biondi and Lopez 2017), under 

1019 suboxic conditions, in which oxygen supply was not favorable for MnOB.

1020 Enzymatic Mn oxidation starting as chemical nutrients (Mn2+) were in the system, and the 

1021 Mn-2 and later Mn-3 layers suddenly occurred in the Fe sediments. This made conditions more 

1022 oxic and obligatory oxic. The sudden change is caused simply by the turning of oxygen supply 

1023 from suboxic (dissolved oxygen-DO 0.2-2.0 mL/L) to obligatory oxic (DO > 2.0 mL/L) conditions, 

1024 which is the criterion of enzymatic Mn(II) oxidation. In the background of formation of Mn-2 and 

1025 Mn-3, the microbial Fe oxidation continued, as supported by the well detectable micro-lamination 

1026 (cyclicity) of microminerals. The sharp contact in the field representing that horizon where Fe is 

1027 forced back to local suboxic parts. The Fe2+ ascending fluid does not reach the obligatory oxic 

1028 zone as a dominant contribution, because microbes oxidize it in the suboxic zone (Fig. 15). The 

1029 Raman profiles clearly show that the Fe biomat system existed via all Mn ore beds, but with 

1030 different intensity. Fe and Mn occurred together in an intimate form similar to Úrkút (Polgári et 
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1031 al. 2012b). A similar sharp boundary (contact zone) occurs between gray (black) shale and Mn 

1032 carbonate ore in Úrkút, which is also the result of change in the oxygen supply becoming 

1033 obligatory oxic. This was a sensitive redox system for enzymatic Mn oxidation (Polgári et al. 

1034 2016a).

1035 Summarizing the ore formation, Fig. 17 shows our model for the process that generated the 

1036 massive manganese ore with kremydilites, found in the Mn-2 and Mn-3 layers of Urucum. After 

1037 the formation of the ferrihydrite, birnessite, organic matter, and rhodochrosite mud-like biomass 

1038 (Fig. 17A), the microbial reduction generates micro-nodules with the minerals of the original 

1039 sediment in the nucleus involved by ferrihydrite (Fig. 17B), then by rhodochrosite and braunite. 

1040 Late diagenetic and post-diagenetic oxidation generates Mn-2 and Mn-3 ore layers, composed of 

1041 massive and/or zoned, concentric, spherical nodules, and/or zoned nodules with an eye shape (Fig. 

1042 17C). The formation of kremydilites begins simultaneously or immediately after the formation of 

1043 micro-nodules, in places where a cluster of microbes begins to oxidize organic matter, generating 

1044 pores and producing methane, CO2, and/or H2 bubbles. This activity forms a small structure with 

1045 a homogeneous and porous nucleus bound by a porous layer, which may involve the nucleus totally 

1046 or partially, formed at the edge of the zone of microbial activity. The resumption of microbial 

1047 activity around the same nucleus will cause greater oxidation where a greater amount of non-

1048 oxidized organic matter is available, generally near and on the outside of the last formed layer.

1049 Fig. 17.

1050 Late and post-diagenetic processes cause complete oxidation of the micro-nodules and 

1051 kremydilites (Fig. 17D). Raman analyses of spherical nodules of sample 75-B2 show that central 

1052 parts of micro-nodules were transformed to hollandite/vernadite and organic matter, around which 

1053 cryptomelane and nsutite (pyrolusite and ramsdellite) crystallize (Fig. 17F). The minerals of the 

1054 kremydilites are entirely oxidized during post-diagenetic conditions and transformed mainly into 
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1055 cryptomelane, hollandite, braunite, with little organic matter, hematite and goethite, generating the 

1056 massive manganese ore of the Urucum and Mn-2 and Mn-3 layers (Fig. 17G). From time to time, 

1057 coarse detrital influx disturbed the calm formation of microbial mats, resulting in turbiditic 

1058 accumulation. It has been proposed that these turbidites were caused by earthquakes from rifting 

1059 activity (Biondi and Lopez 2017). The most probable source of ore was hydrothermal, exhalative 

1060 in submarine environment (Biondi and Lopez 2017 and references therein).

1061

1062 7. CONCLUSIONS

1063 High-resolution Raman and AT-FTIR spectroscopy used on Mn ore samples of Mn-1, Mn-2, and 

1064 Mn-3 ore beds in the ca. 550 Ma Urucum deposit yields information used to construct a self-

1065 consistent model for the formation of these ores. This approach was used to document numerous 

1066 metastable, poorly crystallized mineral phases and organic matter that represent the remnants of 

1067 primary microbially mediated Mn and Fe minerals.

1068 1. Based on mineralogy, the proto-ore sedimentation and the diagenesis of the Urucum Mn 

1069 ore deposit occurred under suboxic-obligatory oxic and semi-neutral to alkaline conditions, where 

1070 microbial Mn2+ enzymatic oxidation (with reactive organic matter) resulted in fine-grained 

1071 accumulation of Mn oxides (Cycle I).

1072 2. The sharp contact between the manganese and iron layers represents that horizon, where 

1073 the obligatory oxic conditions facilitated the start of enzymatic Mn oxidation (Mn engine), which 

1074 overwhelmed microbial Fe oxidation. The Fe biomat system existed via all Mn ore beds, but with 

1075 different intensity. Fe and Mn occurred together in an intimate form.

1076 3. Heterotrophic microbially mediated Mn reduction (Cycle II) developed only locally 

1077 embedded in the form of oxide kremydilite structure, which represents a unique, new ore type. 

1078 Among the kremydilite structures, regular double-microbial mineralogical cycles formed with 
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1079 alternating mineralized Fe- and Mn-oxidizing bacterial activity (microbialite). Detailed study 

1080 raised that kremydilite and oblate structures formed on the effect of heterotrophic cell colonies, 

1081 whose activity overprinted the original lamination. The Mn reduction resulted in rhodochrosite 

1082 (Cycle II) a characteristic constituent in these structures. The reason that rhodochrosite formation 

1083 did not become dominant in the form of laminae is the smaller amount of organic matter 

1084 accumulation, which allowed for Mn reduction via diagenesis only in random centers, resulting in 

1085 diagenetic kremydilite. That is why oxic-suboxic mineral stabilization and diagenetic mineral 

1086 formation became dominant.

1087 4. Mn-1 follows the basin floor relief, whereas Mn-2 and Mn-3 occur as horizontal beds in 

1088 the ironstone pile. The ore formation started with flooding on porous fluvial sediments, and the 

1089 ore forming fluids (Fe2+ and Mn2+) infiltrated and microbially colonized the pores in a woven form, 

1090 and around the clastic particles on chemical (Fe2+, Mn2+) nutrients, in the sediment to the depth 

1091 where diffusion was active. In the extracellular polymeric substance network, diagenetic minerals 

1092 along with clastic material became dominant.

1093 5. The Fe-oxidizing bacteria continued forming ironstone, under suboxic conditions, in 

1094 which oxygen supply was not favorable for Mn-oxidizing bacteria.

1095 6. From time to time, coarse detrital influx disturbed the calm biomat formation, resulting 

1096 in clast accumulation, which interrupted the fine microbial lamination. These turbidites may have 

1097 been caused by earthquakes (due to rifting activity).

1098
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1416
1417 FIGURE CAPTION
1418
1419 Fig. 1. (A) Map showing the positions of manganese layers Mn-1 to Mn-3 and the mines of the 

1420 central Urucum region (modified after Urban et al. 1992, Biondi and Lopez 2017) and, (B) 

1421 S – S’ regional geological section. The thicknesses of layers Mn-1 to Mn-3 are exaggerated 

1422 by a factor of approximately ten. UTM coordinates referenced to Datum WGS 84.

1423 Fig. 2. Stratigraphic columns made in the region of manganese and iron mines of Urucum, and 

1424 sample locations. Note that the Mn-1 layer is not flat, and its shape is adapted to the basin 

1425 floor while Mn-2 and Mn-3 are plane-parallel (modified after Urban et al. 1992, Biondi 

1426 and Lopez 2017).

1427 Fig. 3. Representative samples of Mn-1 (A-C), Mn-2, and Mn-3 (D-F). (A) Sample of silt, massive 

1428 Mn-1 (fragments of quartz, altered feldspar, apatite, chert). (B) Clast-bearing, massive-, 

1429 arkosean-, Fe-rich sample from Lower Mn-1. (C) Oblate amygdalite-bearing massive, fine-

1430 grained manganese ore, with arkosean Fe-rich bands. (D-F) Kremydilite in its most 

1431 developed form after diagenesis, sawed according to orthogonal planes, showing its oblate 

1432 form. (D) Kremydilite sawn according to orthogonal planes, showing its oblate form. (E) 

1433 The concentric organization of the several layers that constitute complex kremydilite, each 

1434 concentric layer with limits marked by pores. (F) Schematic drawing of a cut kremydilite, 

1435 illustrating its shape and its interior. For more representative samples see SI-3-Fig.
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1436 Fig. 4. Different stages of development or growth of kremydilites. The text in the figure explains 

1437 each stage. Bubbles: oblate structures. (A-I): photos of polished surfaces, (K) 

1438 photomicrograph.

1439 Fig. 5. Photomicrographs (reflected light) of the micro-nodules that constitute the massive parts of 

1440 the Mn-2 and Mn-3 ore beds. (A-B) The larger nodules, less than 0.8 mm (3A) at present 

1441 are formed mainly by cryptomelane and hollandite, and the matrix is hematite (Biondi and 

1442 Lopez 2017). (C-D) Most micro-nodules are zoned, with a dark, porous nucleus. A, C, D 

1443 photos are photomicrographs made by optical rock microscope, reflective mode, (B) is 

1444 back scattered electron image by EPMA.

1445 Fig. 6. Micro-textural features of samples (photomicrographs). Mineralized microbial 

1446 biosignatures. (A) biomat (arrow, sample 36-A); (B) clastic particles (arrow, reflected light 

1447 1 N, sample 4B); (C) mineralized microbial biosignatures (arrows, reflected light 1 N, 

1448 sample 75-2, rectangle shows enlarged area); (D) mineralized microbial biosignatures 

1449 (arrows, reflected light 1 N, sample 75-2, enlarged area on C); (E) mineralized microbial 

1450 biosignatures (arrows, 1N, transmitted light, sample 7); (F) mineralized microbial 

1451 biosignatures (arrows, reflected light 1 N, sample 10); (G, H) mineralized microbial 

1452 biosignatures (arrows, 1N, transmitted light, samples 32 and 36-A1). On (G) putative 

1453 cyanobacteria are shown by arrow (based on similarity published by Gyollai et al., 2015 

1454 on Namibian Neoproterozoic sample).

1455 Fig. 7. Mineralogy observed under cathodoluminescence microscopy. (A, B) Typical CL image of 

1456 Mn-1 samples. Bright blue luminescence is characteristic of kaolinite group-dickite 

1457 (supported by Raman spectroscopy, Götze et al. 2002); bright yellow minerals are apatite 

1458 grains; the fine-grained rhodochrosite (mixed carbonate) show dull reddish (orange) 

1459 luminescence color. (C, E, G) transmitted light photos by 1N, crossed N, and CL images 

1460 of the same area of sample 7. (D, F, H) transmitted light photos by 1N, crossed N, and CL 

1461 images of the same area of sample 10. Circles show the clastic-like but non-luminescent 

1462 mineral grains.

1463 Fig. 8. Results of the FTIR analyses of the kremydilite sample 48-B and interpretation of the 

1464 results. (A-B) Image of sample (A), its concentric shells (layers) and location of the 

1465 analyzed points (B). (C) Simplified proposed syngenetic minerals that build up each layer. 

1466 (D) Interpretation of early diagenetic minerals detected by FTIR. Abbrev.: fehy-
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1467 ferrihydrite; Mnox-Mn oxide and hydroxide; manji-manjiorite; todor-todorokite; cryp-

1468 cryptomelane; birn-birnessite; qz-quartz; rhod-rhodochrosite; Mndol-Mn-bearing 

1469 dolomite; brau-braunite; goeth-goethite; spherical micro-nodules border: fluffy 

1470 micronoduliferous host material.

1471 Fig. 9. Representative part of oblate structure, sample 36-A (A-B) and mineral distribution 

1472 (FTIR)(C). (A-B) Microtexture of a part of oblate structure, OM, reflective mode (1 and 

1473 xN), arrows show mineralized microbial signatures and diffusion channels. Abbrev: Ferri-

1474 ferrihydrite; Goe-goethite; Rhod-rhodochrosite; Cryp-cryptomelane; C org-organic matter; 

1475 Q-quartz; Dol-dolomite; Brau-braunite; Ramsd-ramsdellite; Mx-matrix material; inhom-

1476 inhomogenous, italic-the component is poorly crystallized, minor.

1477 Fig. 10. Raman profiles. Representative alternating (cyclic) mineral micro-lamination in sample 7 

1478 (Mn-1) (for detailed section see SI 12-Fig).

1479 Fig. 11. Distribution of minerals in sample 4B (A-B) by Raman spectroscopy. Aegirine, riebeckite, 

1480 braunite, quartz, hematite, apatite, hollandite/vernadite identified by Raman (A-B). Mineral 

1481 abbreviations are after Whitney and Evans (2010) except bra = braunite, ver = vernadite, 

1482 hol = hollandite.

1483 Fig. 12. Distribution of minerals in sample 4B (A-B) by Raman spectroscopy. Braunite, hematite, 

1484 apatite, quartz, and K-feldspar were identified by Raman (A-B). Mineral abbreviations are 

1485 after Whitney and Evans (2010); except bra = braunite.

1486 Fig. 13. Distribution of minerals in sample 75-2 by Raman spectroscopy. Cryptomelane, 

1487 hollandite/vernadite and nsutite (pyrolusite+ramsdellite) were identified in a micronodule, 

1488 as shown in Fig. 5C-D.

1489 Fig. 14. Composite map from the investigated oblate structure sample 36-A by Raman 

1490 spectroscopy—measured areas are indicated on the picture (those places which are detailed 

1491 in SI 14-Fig are in yellow color). Abbrev.: M-matrix area, 001 line-rim area.

1492 Fig. 15. Physico-chemical vs bacterial Fe and Mn oxidation (modified after Garrels and 

1493 MacKenzie 1971; Maynard 1983). Eh in Volt. Concerning NR, FeR, MnR, and SR see 

1494 Table 5 and note that “suboxic” zone is used for these diagenetic zones in the sense of an 

1495 oxidant agent. Sharp-turning contact between Fe and Mn mineralization as transformation 

1496 to obligatory oxic conditions is estimated at Eh = 0.4 V (DO > 2mL/L). 
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1497 Fig. 16. Kremydilite formation environment on the floor of the Urucum basin. (A) General 

1498 environment schematically showing the formation of a layer such as Mn-2 or Mn-3. (B) 

1499 Detail of "mud" or silica-clayey biomass sedimented on the basin floor (left side), showing 

1500 the evolutionary stages that occur from sedimentation to late diagenesis (right side).

1501 Fig. 17. Cartoon showing the processes of formation of the micro-nodules, oblate structures, 

1502 kremydilites, and the massive manganese ore of the Mn-2 and Mn-3 layers of Urucum. 

1503 Abbrev.: CM-organic matter. Read text for details.

1504





































Table 1. Main features, mineralogical and selective element composition of ore beds (12 
samples)(Biondi and Lopez 2017)

Ore bed Mn-1 Mn-2-3
Main features Sandy (fragments of quartz, altered feldspar, 

apatite, chert), laminated, amygdalite-
bearing

Kremydilite

Mineralogy Figueirinha-Upper Mn-1
30-75 v% braunite
<0.5 vol% aegirine
3-15 vol% quartz
5-15 vol% feldspar
1-5 vol% clay minerals, apatite, chlorite
locally 10-30 vol%Fe-dolomite or siderite, 
Mn-dolomite
São Domingos-Upper Mn-1
(laminated, amygdalite-bearing)
40-75 vol% cryptomelane-hollandite
10-30 vol% quartz
10-15 vol% hematite, apatite, clay minerals
Composition of amygdalite cores 
60-90 vol% cryptomelane (hollandite?)
0-10 vol% quartz
5-15 vol% hematite, clay minerals
Santa Cruz-Mn-1
arkozic sandstone cemented by hollandite 
(cryptomelane, pyrolusite), quartz, feldspar, 
hematite
Composition of ferruginous sandstone
30-40 vol% hematite
60-70 vol% quartz
1-5 vol% clay minerals

77-98 vol% cryptomelane
0-23 vol% hollandite
9-19 vol% braunite
7-21 vol% hematite
0-5 vol% clay minerals and CM

Average chemical composition of selective elements (wt. %)
Mn 50.06 (SD-2.73%)
Fe 8.58 (SD-2.59%)
K 1.82 (SD-0.75%)
Ba 0.29 (SD-0.30%)
LOI

Mn-1 contains a Lower and an Upper part, 
whose compositions vary locally, which is 
the reason why it is not possible to 
determine the average chemical 
composition of this unit. 10.80 (SD-0.88%)

Samples COR-16P, 16M, 17, 36A, 42, 43, 48L, 48P, 61L, 61P, 75 and 78 published in Biondi and Lopez (2017)



Table 2. Samples and used methods
Sample ID Layer Locality (Fig. 1) TS* OM CL FTIR Raman XRD

COR-81 Mn-3 MCR-VALE mine, Sta 
Cruz Plateau

x x(34) x(1,903)

COR-78-F3 Mn-2 Urucum-VALE mine, 
Urucum W plateau

x x(65) x(60)

COR-78-D1 Mn-2 Urucum-VALE mine, 
Urucum W plateau

x x(59) x(11) x(3,456)

COR-75-B5 Mn-2 Urucum-VALE mine, 
Urucum W plateau

x x(63) x(6) x(2,449)

COR-75-2 Mn-2 Urucum-VALE mine, 
Urucum W plateau

x x(56) x(9) x(1,209)

COR-48B Mn-2 x x(178)
COR-36-A1-A2 Mn-2 MMX mine, Urucum E 

plateau
x x(56) x(50)

COR-10 Mn-1 Figueirinha mine, Sta 
Cruz N plateau

x x(95) x(23) x(14) x(504) x

COR-7 Mn-1 Figueirinha mine, Sta 
Cruz N plateau

x x(38) x(27) x(12) x(504) x

COR-6 Mn-1 Figueirinha mine, Sta 
Cruz N plateau

x x(46) x(37)

COR-4B Mn-1 Figueirinha mine, Sta 
Cruz N plateau

x x(43) x(10) x(400)

COR-32 Mn-1 Sao Domingos mine, Sta 
Cruz SW plateau

x x(79) x(32)

COR-31 Mn-1 Sao Domingos mine, Sta 
Cruz SW plateau

x x(56) x(27) x(32) x(504) x

Total 14 samples 
(photos, spectra)

690 113 415 10,997 3

Abbrev.: TS-thin section; OM-optical rock microscopy; CL-cathodoluminescence microscopy; FTIR-ATR-infra 
red spectroscopy; Raman-Raman spectroscopy; XRD-X-ray powder diffraction
gray background: samples from Mn-2 and 3 beds (Fig. 3-4 and SI 3-Fig)
number of analyses in brackets.



Table 3. Mineral composition

Samples →
Minerals ↓

COR-6 COR-7 COR-10 COR-31 COR-32 COR-36A1 COR-78F3

Mn minerals
todorokite *
ramsdellite *
cryptomelane * * * *
pyrolusite *
romanéchite *
serandite *
braunite * *
Fe minerals
ferrihydrite * * * * *
lepidocrocite *
hematite * * *
aegirine *
pyrite *
Other minerals
apatite * * *
feldspar (albite, 
anortite)

* * *

chlorite * *
quartz * *
kaolinite/dickite *
celadonite *
Organic matter * * * * * * *
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Table 5. Environmental oxygen levels

Environmental 
oxygen levels

Eh (V) Dissolved 
oxygen (DO)

FeOB
demand*

MnOB
demand

obligatory oxic 0.4<Eh<1.0 DO > 2 mL/L x
dysoxic 0.2-0.4 DO 0.2–2.0 

mL/L
≈ 0.3

suboxic 0-0.2 DO 0–0.2 mL/L
anoxic <0

*: FeOB demand is around the dysoxic-suboxic zone, and suboxic is the generally used as simplified form; abbrev: 
FeOB-Fe oxidizing bacteria; MnOB-Mn oxidizing bacteria (Berner 1980; Coleman 1985; Wignall 1994)
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SI 1-Fig. Map and geological section of Urucum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SI 1-Fig. (A) Geological map (modified after Urban et al. 1992) and geological cross-section. 

Lines with an interpretation of the probable relative depth of the depocenter of the Urucum 

marginal basin, and the regional distribution of hydrothermalized granites were added to the 

map. (B) Lithostratigraphy of the Urucum mining region (modified after Biondi and Lopez 

2017). 
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SI 2-Fig. Stratigraphic columns of the Jacadigo Group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stratigraphic columns of the Jacadigo Group, arranged from west to east passing through the 

basin depocenter. The stratigraphic columns of the Morro Grande Norte and Rabicho plateaus, 

located to the north of the basin, were positioned in the right part of the figure (modified after 

Urban et al. 1992, Biondi and Lopez 2017). The column elevations are normalized to the 

stratigraphic position of layer Mn-2 or, where this layer is absent, to the IF base. 
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4b (Mn-1) Figueirinha 

6 (Mn-1) Figueirinha 

7 (Mn-1) Figueirinha 

10 (Mn-1) 
Figueirinha 

31 (Mn-1) 
São Domingos 

32 (Mn-1) Sao Domingos 
36 A1 (Mn-2) Urucum East 

75-2 (Mn-2) Urucum West 

78 F3 (Mn-2) Urucum 
75 (B5)(Mn-2) Urucum 

SI 3-Fig. Representative samples of Mn-1, Mn-2 and Mn-3 
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Cut samples 

For details see Fig. 1-3 and Table 2. 

Scale: 1 cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78 D1 (Mn-2) Urucum 

81 (Mn-3) MCR 
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SI 4-Fig. Pores and micro-channels in kremydilites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pores and micro-channels in kremydilites. (A) A set of pores that delineate the micro-layers 

that surround the nucleus. (B) Pores covered by acicular microcrystals of cryptomelane. (C-G) 

Micro-channels enveloped by acicular microcrystals of cryptomelane (image C = polished 

section; images D to G obtained with SEM - Scanning Electron Microscopy)(Biondi and Lopez  

2017) 
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SI 5-Fig. Structure of kremydilite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polished section of the sample 48B showing the bands or sheets of Mn-3 layer in between 

kremydilite formed (zones 1, 2, 3, and 20 up to 24). Surrounding the core are the most distant 

concentric micro-layers, shells (shells 4, 5, 6 and 14 to 18) and the nearest ones (shells 9, 10 

and 11). Shells 12 and 13 are in the core of the structure. See text for details (Biondi and Lopez 

2017). 
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The curved and undulating layers (bands) in which kremydilite formed are composed of flakes 

whose diameters ranged from 0.8 to 0.2 mm (SI 5-Fig, zones 1, 2, 3; and zones 20 to 24), 

apparently composed by the amalgamation of flakes, micronodules smaller than 10 μm (Fig. 

4K). The outermost zones (shells) of kremydilite (SI 5-Fig, shells 4, 5, 6, and 14 to 18) consist 

of anhedral and irregularly shaped minerals, looking like amalgamated flakes. In these shells 

the presence of ring-like structures, composed of dark carbonate microcrystals are common (SI 

5-Fig, shell 16 - detail image). The shells closer to the nucleus (9, 10 and 11) are also composed 

of mixed anhedral, metallic minerals, but with larger dimensions than the anterior shells. The 

nucleus of the kremydilites (zones 12 and 13) are microgranular and with homogeneous 

appearances. 
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SI 6-Fig. Panorama images of the analyzed samples 
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SI 7-Fig. Biomat structures of representative samples (arrows) 

Optical rock microscopy, reflected light, 1 Nicol (left side) and crossed Nicols (right side) 

Sample 32 
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SI 8-Fig. Microtexture of samples by optical rock microscopy 
Sample 4B 
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Sample 7 
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Arrows: mineralized microbial signatures 
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Sample 10 
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The sample is opaque, but at some places we 
can look into the material, and microbial 
signatures are well visible. The reflective 
photos also show dense microbial mediation. 
Also, cyanobacteria-like forms are visible. 
The opaque part is a very dense microbially 
mineralized material. 

Sample-32 



29 
 

 

1N refl 

1N refl 1N refl 



30 
 

 
 

SI 9-Fig. CL images of samples 
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dull: non lumin. 

yellow: apatite 

blue: „dickite” 

orange: carbonate 
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dull: non lumin. 

yellow: apatite 

blue: „dickite” 

orange: carbonate 
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yellow (apatite) grains follow biomat texture 

most of the grains looking like debris clasts are non luminescent. 
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SI 11-Fig. Interpretation of mineral composition and distribution of spherical 
(bubble-like) structure of sample 36-A based on FTIR 

Outer area  
 
This area is inhomogeneous, consist of dark spots and bright inhomogenous area. 
 
Matrix  
This inhomogenic matrix area was investigated in „outer area 1” This part is mixed by 
goethite, feldspar, disordered rhodochrosite, traces of cryptomelane. The organic material 
contains immaturated hydrocarbons - CH-CCN bonds of amid I-amid II (1520-1660 cm-

1). 
 
Dark spots  
This parts contain ferrihydrite (with traces of goethite), disordered rhodochrosite, traces 
of cryptomelane, organic material and maturated, long-chain hydrocarbon (bands 2900-
3100 cm-1), and ketons (C=O) 
 
Rim area  
 
This is inhomogenous, composed of a fine-grained area, and coarser crystallized area.  
The coarser area is mixture of cryptomelane and broad bands of disordered quartz, 
rhodochrosite and dolomite, and traces of braunite. The dolomite has CO3 vibration at 
1425 cm-1, the rhodocrosite has near 1390 cm-1. This area contains variable organic 
material, which contain long chain hydrocarbons (CH2 symmetric and asymmetric 
stretching modes 2853-3130 cm-1), and C-O vibration of ketons (2343-2365 cm-1) 
The fine-grained porous part is composed of ferrihydrite, traces of goethite. This area 
contain bands of C-O vibration of ketons at 2343 and 2365 cm-1. 
 
Inner area  
 
It was measured by 3 FTIR area (inner area 1-3). 
 
Matrix 
The inhomogeneous matrix, which composed of porous, laminated parts, which was 
measured by lighter part, darker part, and average inhomogeneous part: 
 
The lighter part (area2) is mixture of cryptomelane, quartz, and dolomite, and organic 
material with CH2 bonds (1452-1482 cm-1) and ketons (C=O). 
Inhomogenous matrix (area1) dark parts contains dolomite, ferrihydrite, cryptomelane. 
Porous inhomogenous matrix (area2) is also mixed material, which contain cyptomelane, 
ferrihydrite, dolomite (traces) and organic material with CH2 bonds (1452-1482 cm-1) 
and ketons (C=O). 
 
Dark spot 
 
The inner area 3 focused on dark spots, which are composed of mixture of ramsdellite, 
quartz and dolomite, and contains organic material of long-chain hydrocarbons (2900-
3100 cm-1), ketons, and CN-CH bonds of PAHs. 
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36-A FTIR vibrations 

    Part of spherical 
structure 

Outer area Rim Inner area 

    Component Matrix Dark 
spot 

 Matrix Dark 
spot 

  Measuring area 1 2 1 1 2 3 

    Texture 

in
ho

m
. 

m
x 

da
rk

 

fi
ne

-
gr

ai
ne

d 

co
ar

se
 

in
ho

m
. 1

 

da
rk

pa
rt

s 

in
ho

m
. 2

 

lig
ht

pa
rt

 

da
rk

 

  Total No. of 
spectra→ 

5 5 2 2 2 3 4 1 5 

Mineral 
phase 

Ref Wavelength [cm-1]                   

dol 1 720, 888, 1425,       (1) 2 3  (1) 1 5 

rhod 1 729, 860, 1394 5 5    (2)           

goe  798, 910, 3400 5  (5)  (2 
trace) 

            

ferri 7 692, 878, 3400   5 2   2 3 4     

ramsdellite 8 740, 880, 3420                 5 

feldspar 
(albite) 

2 798, 950, 1000 5                 

cryptom 8 600, 760  (5)  (5)   2  2  3 4 1   

braunite 1 699, 940        (2)           

quartz 2 701, 776, 1059       2       1 5 

Organic 
compound
s 

                      

vs CO 9 1360-1450 5                 

d CH2 9 1454-1482 5           4 1   

C-N, CH 
deformatio
n 

9 1526 5 5             5 

C-N N-H 
amide II 

9 1540-1550 5 5             5 

amide I 
C=O, C-N, 
N_H 

9 1632-1652 5 5             5 

CO 9 2343     2 2     4 1 5 

CO 9 2365     2 2     4 1 5 

C-H sym. 
Stretch 
CH2 

9 2853 5 5   2         5 

C-H asym. 
Stretch 
CH2 

9 2926 5 5   2         5 

CH2 /C=C 9 3130 5 5   2           

OH 5 3230-3700 5 5               

Summary table of mineral phases (References see in SI 10-Table). 
Outer area Rim Inner area 

inhom. 
matrix 

dark spot coarse fine-
grained 

inhom. 
matrix1 

inhom. 
matrix2 

dark part light 
part 

dark spot 

goe 
feldsp 
rhod 
cryptom 

ferri 
goe 
rhod 
cryptom 

cryptom 
quartz 
rhod 
dol 
brau 

ferri 
goe 

ferri 
cryptom 
dol 

ferri 
cryptom 
dol  

ferri  
cryptom 
dol 

cryptom 
quartz  
dol 

ramsdellite 
quartz 
dol 

Abbrev: goe-goethite, ferri-ferrihydrite, feldsp-feldspar, rhod-rhodochrosite, cryptom-cryptomelane, dol-dolomite, brau-braunite 
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 36-A – Microtexture of spherical (bubble-like) structure,OM, reflective mode, arrows show mineralized 
microbial signatures and diffusion channels. 
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SI 12-Fig. Mineral distribution in profiles by Raman spectroscopy 

Abbrev: Plg+Kfs-plagioclase+F-feldspar; CM-carbonaceous material (organic matter) 

4B (Mn-1) 
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10 (Mn-1) 
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31 (Mn-1) 
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75-2 (Mn-2) 
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75-B5 (Mn-2) 
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78-D1 (Mn-2) 
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81 (Mn-3) 
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SI 13-Fig. Mineralogical distribution by Raman spectroscopy (sample 75-2) 
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All the spectra taken in the fluffy parts, micronodules (cell colonies) and matrix material 

show dominant vernadite/hollandite-type Mn-oxides-hydroxides composition and more 

or less amount of cryptomelane and variable organic matter. The textural differences do 

not show significant mineralogical differences. The fluffy,micronodules are cell colonies 

(clusters), the central part consists of hollandite/vernadite (G) and organic matter, around 

which cryptomelane and nsutite (pyrolusite + ramsdellite) occur. 
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SI 14-Fig. Mineral phases and distribution in spherical (bubble-like) structures 
measured by Raman spectroscopy 

1. Outer part 

The “dark spots” in the matrix (M2 and M4 on Fig. 1) are mainly empty except dark 
porous inner rim with various thickness, which consist of hollandite type Mn oxide phase 
(dominant phase), cryptomelane and goethite (Fig. 2-5). The matrix among the “dark 
spots” (M1 and M3 on Fig. 1) is built up also by hollandite, cryptomelane and goethite 
(Fig. 2-5). The occurrence and distribution of the three minerals are consistent in the 
matrix material any trend in their distribution was not observable. 

2. Rim 

The non-porous rim of the spherical structure „bubble-like structure” (001 line on Fig. 
1) mainly consists of hollandite and cryptomelane in variable amounts (Fig. 6). Rarely 
among the hollandite-cryptomelane flakes fine-grained clusters of goethite occur (Fig. 6). 
The distribution of the mentioned phases are indicative of gradually drop of peak intensity 
related to hollandite and cryptomelane phases in the direction from the spherical structure 
("bubble-like structure)" to the matrix (Fig. 6). 

3. Inner part 

The matrix of the inner part of the spherical (bubble-like) structure is composed of 
very fine grained goethite (ferrihydrite) and little particles of Mn oxides (hollandite, 
cryptomelane in variable amounts), however hollandite is the dominant in the dark spots 
(Fig. 7-11). The mineral composition of the matrix and the dark spots show a unified 
distribution, any difference or significant trend in the matrix or in the dark spots was not 
detected. 

Representative sample areas where Raman spectra were acquired (the other 
measured areas have similar mineral composition and distribution). 
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Figure 1.: Composite map from the investigated spherical (bubble-like) structure - measured areas are 
indicated on the picture (those places are detailed in this short report are in yellow color) 
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Figure 2.: Measuring points and Raman spectra from place indicated by M1 on Fig. 1. 

 

Figure 3.: Measuring points and Raman spectra from place indicated by M2 on Fig. 1. 

Outer part 
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Figure 4.: Measuring points and Raman spectra from place indicated by M3 on Fig. 1. 

 

 

Figure 5.: Measuring points and Raman spectra from place indicated by M4 on Fig. 1. 

Peak at 800 cm-1 can be UO2 or janhaugite (Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2 
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Figure 6.: 001-line map (indicated by yellow line marked with 001_line caption on the 
image). 

Rim 
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Figure 7.: Map indicated on the composite picture by yellow box marked by number 1. 

The leftmost part of the spherical (bubble-like) structure consists of goethite (ferrihydrite) 
and little particles of Mn oxides (hollandite, cryptomelane in various amount), however 
hollandite is the dominant in the dark spots. 

Inner part 
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Figure 8.: Map indicated on the composite picture by yellow box marked by number 8. 
The dark spots have porous hollandite (cryptomelane, goethite) rims indicated on (Fig. 8. 
1-4, 7, 8) while in the matrix among dark spots the Mn oxide has higher cryptomelane 
content (Fig 8. 5, 6, 9-11). 
 

 

Figure 9.: Map indicated on the composite picture by yellow box marked by number 15. 
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Figure 10.: Map indicated on the composite picture by yellow box marked by number 
20. 

 

Figure 11.: Map indicated on the composite picture by yellow box marked by number 
25. 

 

Comparing the mineral phases and distribution in the outer, inner and rim area of the 
measured spherical (bubble-like) structure, they are similar. 
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