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Significance statement

The Neoproterozoic Urucum manganese deposit (Brazil) is a ~600 Mt microbially-mediated
sedimentary Mn ore. Proto-ore formation via sedimentation and diagenesis occurred under
suboxic-oxic and semi-neutral pH conditions in the Ediacaran ocean, wherein microbial Mn(II)
oxidation ensued from the fine-grained accumulation of Mn oxides and organic matter. Oxic
conditions that facilitated enzymatic Mn oxidation and overwhelmed microbial Fe oxidation
appears as a sharp contact between manganese and iron beds. The Urucum deposit arose from a
complex suite of diagenetic processes, including decomposition and mineralization of microbially-
derived organic matter involving extracellular polymeric substances. Kremydilite — a new type of
diagenetic concentric Mn mineral structure — formed by randomly activated heterotrophic cell

colonies that generated pores in the microbialite sediment after burial, coincident with lithification.

Highlights
1. Urucum Mn deposit formed in an Ediacaran marginal basin with more than 600 Mt of ore

formed from manganiferous microbialite.
2. Kremydilite is diagenetic structure that comprises a new type of Mn ore.
3. Microbial mediation occurred during Mn ore sedimentation and diagenesis.

4. Cellular and extracellular polymeric substances from Fe and Mn bacteria and cyanobacteria

were mineralized.
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Abstract

The Urucum district in Mato Grosso do Sul (Brazil), hosts the youngest and largest sedimentary
Mn ore of Neoproterozoic age; units Mn-1, Mn-2, and Mn-3 are found in jaspilites and ironstones,
and represent approximately 600 Mt of extractable rock with 27-44% Mn and 12-30% Fe. High-
resolution optical- and cathodoluminescence microscopy, as well as Raman and FTIR
spectroscopy show that the lower Mn-1 is ferruginous, while the upper Mn-1 consists mainly of
30-75 vol.% braunite, < 0.5% aegirine, 3—15% quartz, 5-10% feldspar, and 1-5% clay minerals,
including apatite, chlorite, and organic matter. Here, we model the control of this ore mineralogy
by homogeneous oxidation and microbial processes. Layers Mn-2 and Mn-3 contain kremydilite,
as a characteristic ore structure, with 77-95 vol.% cryptomelane, 0-23% hollandite, 9-19 %
braunite, 7-21% hematite, and 0—5% pores filled with clay minerals and organic matter. These are
present within a micro-nodule matrix composed of cryptomelane and hematite in varying
proportions. The first syngenetic products of microbial enzymatic oxidation were, on the Fe side,
ferrihydrite and lepidocrocite, and on the Mn side, vernadite, todorokite, birnessite, and manganite.
These formed under obligatory oxic (Mn) and suboxic (Fe) conditions and close to neutral pH. We
describe the genesis of Urucum via complex diagenetic processes, which include the
decomposition and mineralization of cellular- and extracellular-polymeric substances from Fe and
Mn bacteria and cyanobacteria. The kremydilite forms in successive stages of oxidation of organic
matter mediated by microbes, which generate pores and produce methane and CO,/H, bubbles.
They are a unique type of diagenetic structure formed by heterotrophic cell colonies randomly
activated in the microbialite milieu following burial in suboxic neutral/alkaline conditions, side-

by-side with the lithification and stabilization of the mineral assemblages. (294 words)
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1. INTRODUCTION

The Urucum mining district occupies an area of approximately 800 km? and is located in the
Pantanal swamps region of west-central Brazil. Three layers of massive manganese oxides, named
Mn-1, Mn-2, and Mn-3, occur interbedded with massive jasper, banded iron formations (BIFs),
and massive iron formations (IF) that comprise the Santa Cruz Formation of the Neoproterozoic
Jacadigo Group (Urban et al. 1992; Frei et al. 2017; Fig. 1 and SI 1-Fig). It was estimated that the
Urucum district originally contained more than 600 Mt of rock with the manganese content
between 2744 wt.% and iron content between 12-30 wt.% (Urban et al. 1992).

Fig. 1 HERE

The stratigraphic sequence of the Urucum region was first defined by Dorr (1945) and Almeida
(1946), who also conducted the first systematic studies on the origin of iron and manganese
deposits in the region. Urban et al. (1992) mapped the entire mining region, and since that time,
the regional geological map has been minimally updated. Following the work of Urban et al.
(1992), the most relevant changes to our understanding of the regional geology arose from the
work of Freitas et al. (2011), who detailed the Jacadigo Group lithologies and defined their
sedimentation environments. Biondi and Lopez (2017) identified faults that acted as conduits for
hydrothermal fluids which altered the rocks of the Jacadigo Group basement, and exhaled fluids
with iron and other elements at the base of the sedimentary sequence of the Urucum basin. They
also correlated the Mn-1, Mn-2, and Mn-3 layers with those recognized at different Urucum sites.

Various and mutually-exclusive proposed genetic models for the Jacadigo Group iron and
manganese rocks have been a topic of discussion and debate since their discovery. These models
can be summarized as follows: (a) marine genesis with sediments of continental origin (Dorr
1945); (b) marine genesis with sediments of marine origin (Almeida 1946; Putzer, 1958; Haralyi
and Walde, 1986); (c¢) volcanogenic marine genesis (Walde 1981; Walde et al. 1981; Leonardos
and Walde 1982; O'Connor and Walde 1985); (d) formation in a glacio-marine sedimentary
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environment followed by supergene enrichment (Schneider 1984; Schreck 1984; Leeuwen and
Graf 1987; Graf et al. 1994; Costa et al. 2005); (e) sedimentary genesis in a flooded graben with a
contribution of hydrothermal leaching from hidden mafic rocks (Haralyi and Walde 1986; Walde
1988; Trompette et al. 1998); (f) SEDEX, or sedimentary exhalation (Dardenne 1998); and (g)
sedimentary genesis in an oceanic environment with a deep-sea hydrothermal contribution (Klein
and Ladeira 2004). Recently, Angerer et al. (2016) proposed a biologically-mediated origin in a
glacio-marine environment for the carbonate BIFs of the Santa Cruz Mine region located on the
southeastern part of the Santa Cruz plateau. In a recent comprehensive study, Biondi and Lopez
(2017) (a) recognized the biogenic mediation during the genesis of manganese ore; (b) described
in detail mineral structures termed by them kremydilites and argued that they may represent
fossilized microbial colonies from organisms that mediated the formation of the manganese layers;
and (c) modified the region's stratigraphy based on the fossil assemblages, showing that the
Urucum iron-manganese rocks correlate to the carbonate rocks of the Bocaina Formation, of the
Corumba Group, previously considered post-depositional to those of the Jacadigo Group.

The Ediacaran Period of formation is proposed by the authors based on the presence of the
Corumbella Verneri fossil, found amidst the ironstones separating Mn-2 from Mn-3 (Figs 2B and
Figs 4B to D, Biondi and Lopez 2017). This fossil has always been considered Ediacaran, which
establishes a wider interest concerning the Urucum Mn deposit.

Here, we explore the origin of kremydilites described in Biondi and Lopez (2017) and
present a model that explains the processes of sedimentation and diagenesis that facilitated the
origin of these structures and the manganese layers. Recent works have provided a geological
setting diagram, mineralogy (low magnification optical microscopy, X-ray diffraction, SEM-EDS-
based), and chemistry datasets based on bulk samples and in situ (SEM-EDS) data (e.g. Frei et al.
2017), but microbial mediation as a plausible mechanism for the genesis of these rocks is still
under debate (Biondi and Lopez 2017). We expand the results of these previous studies with more
detailed optical microscopy (OM), cathodoluminescence microscopy (CL), Raman- and Fourier-
transform infrared spectroscopy (FTIR) to document the micro-mineralogy, presence, and

distribution of embedded organic matter. The goal here is to explore the role of microorganisms
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in the process of manganese ore genesis from Urucum, and to understand the diagenesis, structures,

and process of formation of kremydilites.

2. GEOLOGICAL AND GEOCHRONOLOGICAL BACKGROUND

The Santa Cruz Formation is mainly composed of jaspilitic BIFs, (massive) iron formations
(IFs), massive banded jasper, and ferruginous arkosic silt and sandstones. The greatest thickness
of the Santa Cruz Formation, 396 m, is documented in drill hole (DH) 44-28, made at the Vetorial
Mine, and bookended by a 40 m section at the northern end of the Rabicho plateau (Fig. 2). The
massive manganese layers, Mn-1, Mn-2, and Mn-3, occur in the lower half of this formation and
are interlayered with BIFs and massive jasper.

The Jacadigo and Corumba Groups are considered coeval (Biondi and Lopez 2017) and of
Ediacaran age, based on the presence of stromatolites below Mn-1 (Jacadigo Group) and
Corumbella fossils in the rocks of the Bocaina and Santa Cruz Formations (respectively, Corumba
and Jacadigo Groups). The age of this fossil in the ironstones of the Santa Cruz Formations
(Jacadigo Group) and limestones of the Tamengo Formation (Corumbéa Group) was estimated at
ca. 550 Ma (Germs 1972; Grant 1990; Grotzinger et al. 1990; Hofmann and Mountjoy 2001;
Bengtson 2002). The proposed age of this horizon was 555-542 Ma by ichnofossils, identified by
Parry et al. (2017), in the Bocaina Formation. These ages are consistent with U-Pb geochronology
of detrital zircons from a volcanic ash layer intercalated with carbonate rocks of the Tamengo
Formation, at 543+3 Ma (Babinski et al. 2008), and the “°Ar/°Ar age of 587+7 Ma for
cryptomelane in the Mn-1 to Mn-3 layers (Piacentini et al. 2013; Frei et al. 2017 and references
therein).

Dating braunite from the Mn-1 layer, Piacentini et al. (2013) interpreted the 54743 to 51344
Ma (*°Ar/3°Ar) age as a minimum age, arguing that the Ar/Ar thermo-chronological system was
rejuvenated by tectonic warming, which was considered a consequence of the metamorphism
underwent by the Jacadigo Group rocks. Also using the “°Ar/3°Ar method, they dated 513+3 Ma
some crystals of muscovite collected from the arkoses that are interlayered with the BIFs, which

was also considered metamorphic. According to Piacentini et al. (2013), these ages are “possibly
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related to disruption between the Amazon Craton and the Apa River cratonic fragment and they
do not reflect the time of Jacadigo Group deposition”, which would be greater than 590 Ma, and
concluded that Jacadigo’s rocks would have at least 587 + 7 Ma.

To reconstruct the paleogeography of the sedimentary basin, Mn-2 and Mn-3 were leveled
and used as stratigraphic markers. This procedure makes it possible to outline the geometrical
differences between the Mn-layers. This reconstruction shows that stratigraphy observed within
the Urucum plateaux always includes Mn-1, and that this stratum lines the basin floor wherever
the Jacadigo Group is described (e.g., Urban et al. 1992; Biondi and Lopez 2017) (Fig. 2). Yet,
unlike Mn-1, both the Mn-2 and Mn-3 layers occur only in the interpreted depocenter of the basin,
in the region of Urucum, Santa Cruz and southeast of the Morro Grande plateaux (Fig. 1). In the
interior of each plateau, mining of the manganese layers reveals that Mn-2 and Mn-3 are flat and
parallel to one another, whereas the Mn-1 unit follows the contours of the basin floor. By
positioning Mn-2 and Mn-3 in their respective stratigraphic horizons it is now possible to
reconstruct Urucum marginal basin floor (Fig. 2).

The origin of the sediments of Urucum has been detailed elsewhere (Walde 1981; Walde
et al. 1981; Leonardos and Walde 1982; O'Connor and Walde 1985, Haralyi and Walde 1986;
Walde 1988; Trompette et al. 1998, Dardenne 1998, Klein and Ladeira 2004, Angerer et al. 2016;
Biondi and Lopez 2017), and we provided a brief synopsis, here. The Santa Cruz Formation formed
as an in-fill of an ancient graben with iron and manganese-rich sediments overlying fluvial deposits
from the Urucum Formation, while limestones from the Bocaina and Tamengo Formations were
deposited in the shallow marginal regions (Biondi and Lopez 2017; Fig. 2). As has been proposed
for some Phanerozoic Mn ores (e.g. Polgari et al. 2012ab, 2016b), the most probable sources of
the Mn and Fe was hydrothermal exhalations in a submarine environment. The Mn and Fe fluids

were transported to the sedimentary basin via basement faults (SI 1-2-Figs) that became activated
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each time the graben widened. During inundations attributed to sedimentation of the Mn-1, Mn-2,
and Mn-3 units, Mn and Fe discharged on basin floor mixed with Mn and Fe brought in by water
from the open ocean as well as with that originating from the exhalates located outside the Urucum
basin.
Fig. 2.

A transition between the Urucum and Santa Cruz formations through the Mn-1 horizon
exists in all mines from the area (Urban et al. 1992). Furthermore, Biondi and Lopez (2017)
showed that there are typically two or more layers of Mn-1 manganese ore with meter- to
decimeter-scale thicknesses, locally interlayered with jaspillite-rich clasts. We now describe these
relationships in more detail.

The lower Mn-1 ore layer is relatively siliceous and composed mainly of braunite,
cryptomelane cement and Mn—Fe-rich carbonate, whereas the Upper Mn-1 layer is a fine-grained,
massive, clastic layer of manganese oxides with undulating parallel lamination and numerous
decimeter-scale oblate structures, characterized by a massive core and silty clay and arkose wrap
dubbed amygdalites (Fig. 3C). The ore layer is bounded by sharp planar contacts typically overlain
by conglomerate consisting of angular granite pebbles in an arkosic matrix. Layers Mn-2 and Mn-3
contain mostly massive manganese ore with lamination. They are composed mainly of
cryptocrystalline manganese oxides and hydroxides, commonly containing kremydilites (Figs. 3D-
E and 4) with minor amygdalites (Biondi and Lopez 2017). In Mn-2 and Mn-3, what have been
interpreted as the remains of microbial colonies form oblate, 5—15-cm sized concentric kremydilite
structures, within the fine-grained and biomass-rich basin floor shale as well as intergranular,
oblate gas structures (Figs. 4A, C, F, and H). The main features of the ore beds, including their
mineralogical and selective element compositions are summarized in Table 1.

Fig. 3
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Fig. 4.
Table 1.

The textures of the Mn-2 and Mn-3 layers express as 1-10 millimeter-sized spherical, often
zoned manganese oxide micro-nodules that coalesce to form the massive ores. These probably
involved the aforementioned kremydilite structures made solely of manganese and minor iron
oxides. All observed Mn-2 and Mn-3 outcrops have kremydilites, although they do not constitute
all of the ore mass from these layers. As previously described, kremydilites occur between the ore
bands (Figs. 4A-J), which are massive or banded (and/or laminated), and are distributed in the
layers in an apparently homogeneous manner. It is difficult to estimate the volume occupied by
kremydilites owing to the fact that they are complicated to see in discontinuous outcrops. For those
observed on the mining fronts, it is likely that they occupy more than about 50% of the ore layer
by volume.

2.1. Forms and type of kremydilites

Kremydilites occur only between the laminations of the massive ore in the Mn-2 and Mn-
3 layers, and are absent in banded- or massive ironstones. They are always contoured by the fine
laminated ore with micronodular, microbialite micro-texture, in which the diameters of micro-
nodules range from 0.2-0.8 mm (Fig. 4; SI 5-Fig, zones 1, 2, 3; and zones 20 to 24). Microbialite
and micro-nodule rich layers are in turn contoured by wavy microbialite layers apparently
composed by the amalgamation of nodules smaller than 10 pm. Its forms are oblate, centimeter-
to-decimeter scale (Fig. 3) and concentrically zoned. Structures of what we interpret to be the
different growth development stages also appear to occur together (Figs. 4 and 5), and each stage
of growth is marked by the presence of pores, which delineate coarse concentric, sometimes
incomplete envelopes (Fig. 4). Kremydilites on the other hand are porous structures absent of

micro-nodules. They occur in varied forms as shown in Figures 4A to H.

10
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Fig. 5.

The simplest kremydilite form consists of a bubble-filled nucleus (Fig. 4A), followed by
those with a nucleus having diffuse borders (Figs. 4C). Other forms include a nucleus with one
(Fig. 4E) or two (Fig.4G) diffuse concentric laminae (or shells). The more complex kremdylites,
with a nucleus and many concentric shells delineated by millimeter to submillimeter pores,
crosscut with lighter, massive, and metallic zones (Figs. 4I). In general, the various kremydilite
forms contain many oblate structures (Figs. 4A, E, and G). These are less than 20 mm across
distributed along the layer containing the kremydilite, and inside and/or near them. Mesoscopic
inspections of sawn samples (Fig. 4K) as well as thin and polished sections, show that each layer
contains disseminated pores. The quantity of pores increases toward the margin of the shell, and
each lamina is surrounded and delimited by areas with high pore density (Biondi and Lopez 2017).

The pores are often lined by shiny acicular microcrystals of cryptomelane and/or contain
organic matter (Biondi and Lopez 2017). Although kremydilites do not contain micro-nodules,
and are instead inside the micronodular bands and contoured by microbialite layers, the outermost
zones of kremydilite appear to have a composition similar to that of amalgamated micro-nodules.
In these zones, the presence of ring-like structures of carbonate microcrystals are common (SI 5-
Fig, zone 16 - detail image, Biondi and Lopez, 2017). The zones closer to the nucleus (zones 9,
10, and 11) contain mixed anhedral minerals with metallic luster, but with larger dimensions than
the anterior zones. The nucleus of the kremydilites (zones 12 and 13) are microgranular and

heterogeneous.

3. SAMPLES

Representative samples and the methods applied (number of photos and spectra) are

summarized in Table 2 and Fig. 3—4. Localities of the sample collection are shown in Fig. 2.

11
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The samples of Mn-1 are (Fig. 3, SI 3-Fig): COR-4B, a clast-bearing massive ironstone;
COR-6, a massive manganese ore; COR-7, a very fine-grained clast-bearing ore with braunite and
carbonate; COR-10, a sandy, detritic ore with braunite, quartz, and feldspar; COR-31, an arkosic
sandstone with hematite matrix; and COR-32, an amygdalite with cryptomelane massive nucleus
surrounded by arkosic sandstone with hematite matrix.

Samples of Mn-2 and Mn-3 are: COR-81, a sample of massive manganese ore; COR-78-
F3 (Fig. 4F), a nucleus of porous kremydilite with diffuse boundaries, surrounded by two zones
also with diffuse boundaries; COR-78-D1 (Fig. 4C), a kremydilite with a diffuse core enveloped
by two shells, also with diffuse boundaries; COR-75-B5 (Fig. 4E), a porous kremydilite nucleus;
COR-75-2 and COR-48 (Fig. 4]), complex kremydilites with porous core surrounded by many
concentric, porous shells; and COR-36-A1 (Fig. 4G), a kremydilite with a nucleus and at least two
shells (hereafter the samples are cited without COR).

Table 2.

4. METHODS

Thin section and polished section mineralogy was described and quantified using a ZEISS
Axio Imager A2m microscope (Federal University of Parana State, Polytechnic Center, Geology
Department, Curitiba, Brazil).

Petrographic structural-textural studies by optical rock microscopy (OM) were also made
on 12 thin sections in transmitted and reflected light (NIKON ECLIPSE 600 rock microscope,
Institute for Geology and Geochemistry, Research Centre for Astronomy and Earth Sciences,
Hungarian Academy of Sciences - IGGR RCAES HAS, Budapest, Hungary).

Cathodoluminescence (CL) petrography was carried out on 7 thin sections using a

Reliotron cold cathode cathodoluminescence apparatus mounted on a BX-43 Olympus

12
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polarization microscope (Szeged University, Hungary). The accelerating voltage was 7-7.7 keV
during the analysis. Cathodoluminescence spectra were recorded by using an Ocean Optics
USB2000+VIS-NIR spectrometer. Spectrometer specifications are a wavelength range of 350—
1000 nm and 1.5-nm (FWHM) optical resolution.

Mineralogical analyses were performed on three bulk samples using a Rigaku Miniflex-600
X-ray diffractometer (XRD), with carbon monochromator and Cu-Ka radiation, at 40 kV and 15
mA (IGGR RCAES HAS, Budapest, Hungary). Mineral composition was determined on randomly
oriented powdered samples. The diffraction patterns were processed using Siroquant V4 software,
and the modal contents determined by the Rietveld method.

In situ FTIR microspectrometry used for micro-mineralogy and organic material
identification on nine thin sections to determine the mineralogy and characterize the organic
material, as well as clarify the concentric structures (415 spectra, IGGR RCAES HAS, Budapest,
Hungary), using a Bruker FTIR VERTEX 70 equipped with a Bruker HYPERION 2000
microscope with a 20x ATR objective and MCT-A detector. During attenuated total reflectance
Fourier transform infrared spectroscopy (ATR) analysis, the samples were contacted with a Ge
crystal (0.5-pm) tip with 1 N pressure. The measurement was conducted for 32 s in the 600—4000
cm! range with 4-cm! resolution. Opus 5.5 software was used to evaluate the data. The equipment
inappropriate for most of Mn-oxide determinations because those peaks fall in the < 600 cm™! range
(not equipped with that detector). Contamination by epoxy glue and glass was corrected for.

High-resolution in situ micro-Raman spectroscopy was used for micro-mineralogy and CM
identification and distribution on 9 thin sections (1 polished section) (Szeged University,
Hungary). A Thermo Scientific DXR Raman Microscope was used, with a 532-nm (green) diode
pumped solid-state (DPSS) Nd-YAG laser, using 1.5-mW laser power and 50x objective lens in

confocal mode (confocal aperture 25 um slit). The acquisition time was 1 min, and the spectral

13
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resolution was ~2 cm! for each measurement. The distance between each point was 10 pm, and
the measurement time was 10 min. A composite image of thin sections of Raman microscopy
measurements and a series of Raman spectra acquired along the vertical sections are provided in
the thin section photomicrographs (arrow points to measurement direction). Diagrams are
organized in terms of peak height versus analytical spot number for each of the phases along the
Raman-scanned section. Intensities were normalized to the highest peak for each spectrum.

Raman measurements were taken on 9 samples (4B, 7, 10, 31, 36-A, 75-2, 75-BS5, 48-D1,

81). In the case of the homogeneous-like cases 400-500 and in the case of 75-2, 800 spectra were
taken along the line shown on section photos (4B, 7, 10, 31). These are systematic investigations
along the line profile. Spectra were obtained every 10 um, providing a high-resolution sensitive
study. In samples 75-B5, 78-D1, and 81, the measurements were taken across whole thin sections.
The spectra were elaborated in two ways:
(1) Diagrams were organized in terms of peak height versus analytical spot number of each of the
phases along the Raman scanned section (main minerals and organic matter in general). (2) A
detailed determination of all spectra were also made. These results are summarized in tables (Excel
files, numbers 1, 2, and 3 indicate the intensity—1-weak, 2-moderate, 3-strong—reference data on
detection), in which the mineral composition can be followed from point to point, as well as the
type of organic matter. (Supporting Information)

Aside from the profile analyses, descriptions of the mineral phase transitions were also
constructed for clarification of aegirine (5 photos, 4 mineral spectra, and 1 profile), braunite (3
photos, 10 point analyses, and 1 profile across mineral transitional zones), cryptomelane (18
photos, 54 point analyses, and 2 profiles across spheres), and the composition of the oblate

structures (28 photos, 93 point analyses, and 1 profile).
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The following Raman bands were used for normalization: rhodochrosite: ~1086 cm!,
dolomite: ~1093-96 cm™!, apatite: ~965 cm™!, quartz: ~463 cm’!; todorokite 633 cm™'; manjiorite
641 cm!; ramsdellite: 650 cm™!; cryptomelane: 183 ¢cm™! and 580 cm!; hollandite: 585 cml;
birnessite: 656 cm!; ferrihydrite: 707 and 1045 cm!; goethite: 297 and 385 cm'!; celadonite: 545
cm!; barite: 446 and 985 cm’!; johannite: 785 cm!; aegirine: 970 cm!; jacobsite: 620 cm;
hausmannite: 661 cm!; braunite: 210, 510, 685 cm!; and carbonaceous matter: ~1605 cm!. The
identification of minerals was made with the RRUFF Database (Database of Raman —
spectroscopy, X-ray diffraction, and chemistry of minerals: http://rruff.info/). Contamination by
epoxy glue was taken into consideration. Along with the profile analyses, a detailed determination
of all peaks was also made.

Comparing the two in situ methods, the AT-FTIR, which did not considerably modify the
mineral phases while using the lowest exciting energy, was used to investigate the upper 1-2 um
of the samples. This is the also best method to determine organic matter (Polgari and Gyollai,
2019; Polgari et al., 2019). On the contrary, Raman spectroscopy, using higher excitation energy,
often caused the transformation of metastable minerals to more stable phases. This method yielded
information from the upper 3—4-um depth of the sample surfaces and was the best method for
identifying Mn oxides and hydroxides. The Raman comparative spectra database is more extensive

than the AT-FTIR database.

5. RESULTS

5.1. Optical (OM) and cathodoluminescence (CL) rock microscopy
5.1.1. Optical rock microscopy

Thin sections represent mineralized biomats based on structural observations, which are

eminently visible on smaller magnification photos (40x) (Fig. 6, SI 6-, 7-Figs). In all thin sections,
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adequately high-resolution optical rock microscopy (1000x) supports a series of mineralized
biomat microstructures, mineralized microbially produced textures (MMPT) as main constituents
(Fig. 6, SI 8-Fig). This microbial microtexture is a basic feature of all the samples, in transmitted
as well as reflective light. Well-preserved and mineralized remains of diverse filaments with pearl
necklace-like, vermiform inner signatures, and coccoid-like forms embedded in the Mn ore beds
are seen, and the whole samples appear densely woven. The minerals are very fine-grained (0.5-1
um) except Mn-1, where clastic contribution occurs. The diameter of the mineralized filaments is
around 0.5—1 pm, with variable length (Fig. 6).

Fig. 6.

Samples 4B, 7, 10, 31, 32 (all from Mn-1) include debris-like components of variable size
(20-200 um). In sample 4B, it seems that the darker gray mineral grains transform to lighter phase
(SI 8-Fig). The debris grains are mainly quartz with few fragments of jasper and hydrothermally
altered feldspar.

5.1.2. Cathodoluminescence microscopy

Cathodoluminescence revealed that a part of the debris-like grains (clastic components) is
probably composed of real clasts showing the bright, characteristic CL of the mineral (e.g., quartz-
blue, feldspar-yellowish) (Fig. 7AB, SI 9-Fig). Some other grains with sizes of some tens of um
resemble clasts but do not show luminescence. These non-luminescent grains are most probably
secondary minerals formed via diagenesis (Marshall 1998; Hassouta et al. 1999).

Bright blue luminescence is characteristic of kaolinite group-dickite (supported by Raman
spectroscopy; Gotze et al. 2002), which occurred frequently in our samples (samples 4B, 7, 10, 31,
Fig. 7A, B, G, H). The numerous small or larger bright yellow minerals are apatite grains, which
often have a lighter margin. These apatites occur along the ore lenses, minerals, and laminae in a

woven-like fine-grained biomat-type matrix which mark the borders as accompanying a series of
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minerals that occurred frequently (Fig. 7, SI 9-Fig) (samples 4B, 7, 10). The fine-grained
rhodochrosite (mixed carbonate) show dull reddish (orange) luminescence (Fig. 7A, B) (samples
4B, 7, 10). Samples 75-2, 75-BS5, and 78-D1 are non-luminescent.

Fig. 7.

5.2. FTIR spectroscopy

Measurements were performed in two ways: (i) randomly, in seven sections (6, 7, 10, 31,
32, 36-Al, 78-F3) and (ii) along profiles, in kremydilite sample 48B (Fig. 4K) and in oblate
structure (36-A2) (Fig. 4H).

5.2.1. Local area analyses

Mineral phases and types of organic matter for (i) are summarized in Table 3 and SI 10-
Table, according to the measuring area and frequency.

Table 3.

In summary, Fe-oxide-hydroxides (ferrihydrite, lepidocrocite, hematite) are common in all
the Mn ore beds, Fe-silicates (aegirine) are common in the Mn-1 ore bed, and Fe-sulphide (pyrite)
rarely occurs. Variable Mn oxides and hydroxides (todorokite, ramsdellite, pyrolusite,
cryptomelane), and oxide-silicates (braunite, serandite) are the main Mn ore minerals. Besides Fe
and Mn ore minerals, feldspar, chlorite, celadonite, kaolinite group-dickite, apatite, and quartz are
moderate or minor mineral components. Variable types of organic matter occur in all samples.

5.2.2. Analyses of kremydilite

Three profile analyses in kremydilite sample 48B were made (Fig. 4K and Fig. 8). Two
profiles crossed the concentric shells of the kremydilite structure on opposite sides (A and C), and
one profile crossed the inner part (B).

All concentric shells and the parts intersected between these shells are heterogenous and

very fine-grained. Considering that minerals represent the remnants of primary Mn and Fe
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minerals, each measuring point in the concentric shells and intersected parts resulted in a mixture
of minerals, with often poorly crystallized phases.
Fig. 8.

All shells and the inner part are heterogeneous and very fine-grained. Each measuring point
resulted in a mixture of minerals, with often poorly crystallized phases like ferrihydrite. The shells
—observed visually—often have the same mineralogy (cryptomelane, hollandite, hematite,
rhodocrosite, and pores). The mineralogy of the two sides of the structure are asymmetric (Fig.
8D). Profile A (Fig. 8B), from the margin toward the inner part, contain rhodochrosite-goethite,
manjiorite-todorokite, minor ferrihydrite-cryptomelane (6 shells), and in the vicinity of the inner
part, cryptomelane-ferrihydrite. Profile C, from the margin toward the inner part, contain braunite-
rhodochrosite, braunite-goethite-rhodochrosite (3 shells), braunite-cryptomelane-rhodochrosite,
braunite-rhodochrosite,  braunite,  cryptomelane-ferrihydrite-rhodochrosite (2 shells),
cryptomelane-ferrihydrite (2 shells), and cryptomelane-braunite, and in the vicinity of the inner
part, cryptomelane-ferrihydrite. Profile B, representing the inner part from the shells to the center,
contain cryptomelane-ferrihydrite, ramsdellite-rhodochrosite, birnessite-rhodochrosite (2 zones),
cryptomelane-quartz-rhodochrosite, cryptomelane-birnessite-dolomite, cryptomelane-quartz-
rhodochrosite, ferrihydrite-cryptomelane-dolomite-quartz, and cryptomelane-quartz-dolomite.
Varying amounts of pores, with or without organic matter, are characteristic in all layers and in
the central parts (Fig. 4).

In summary, mineralogical assemblages contain concentric zones (or “shells”) of poorly
crystallized, preserved Mn (birnessite, todorokite) and Fe minerals (ferrihydrite), and mainly more
stable cryptomelane, hollandite, braunite, hematite, goethite, and rhodochrosite. Profile C mineral
components are more stable. More stable minerals represent greater degree of crystallinity.

5.2.3. Analyses of oblate (bubble-like) structures
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Based on OM of sample 36-A1, the outer and inner matrix and also the dark spots of the
oblate structures appear very similar, with only the reflective color differing slightly (SI 11-Fig).
FTIR analyses resulted in a similar mineralogy and variable organic matter composition, as the
sample is very fine-grained and heterogeneous (Fig. 9). The peaks of most of the minerals show
broad bands and low intensities, which are characteristic of disordered, poorly crystallized quartz,
carbonates, and feldspar.

Fig. 9.

Out of the oblate structures, the ore contains a matrix, micro-nodules, and dark spots. The
micro-nodules and the matrix consist of cryptomelane, ferrihydrite, minor goethite, rhodochrosite,
and variable organic matter. The analyzed dark spot in the outer part consists of pores,
cryptomelane, ferrihydrite, minor goethite, rhodochrosite, and organic matter.

There are no micro-nodules inside the oblate structure. The light part of the matrix inside
the oblate structure contains cryptomelane, ferrihydrite, quartz, minor dolomite, and organic
matter. The dark part comprises dolomite, ferrihydrite, cryptomelane, and organic matter. Inside,
the dark spot consists of ramsdellite, quartz, minor dolomite, and organic matter (SI 11-Table).

The oblate, rim structure, separating the outer and inner parts, consists of two phases: (1)
the fine-grained rim built up of ferrihydrite, minor goethite, and organic matter; and (2) the coarse-
grained phase, which is a mixture of cryptomelane, disordered quartz, rhodochrosite, dolomite,
traces of braunite, and variable organic matter. Comparing the outer and inner parts, differences in
mineralogy are reflected in the type of carbonate (rhodochrosite outside and dolomite inside), the
Mn oxides of the dark spots (cryptomelane outside and ramsdellite (y-MnQO,) inside), and the
occurrence of quartz in the inner part and rim, and feldspar in the outer part. On the outside of the

oblate structure, the rock contains pores and the typical (micronodule-bearing) microtexture of
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Mn-2 and 3, whereas inside, the micro-noduliferous textures do not exist, and pores are partially
filled by hollandite.
5.3. Raman spectroscopy

Nearly 11,000 spectra were taken for micro-mineralogical and organic matter composition
determinations as well as for the distribution of minerals according to the thin section profiles.
Representative analyzed profiles are shown in Fig. 10 and SI 12-Fig. The mineral distribution was
evaluated visually based on a series of Raman profiles at the 10-pm scale (Fig. 10, SI 12-Fig). The
determined minerals, including FTIR data, are summarized in Table 4. Variable Mn oxides and
hydroxides, Mn oxides-silicates, Mn carbonates, variable Fe oxides hydroxides, Fe silicates, Fe
sulfide, ore minerals, apatite, feldspar (albite and orthoclase), mica (muscovite, chlorite,
celadonite), kaolinite-dickite, barite, carbonates (strontianite, dolomite, ankerite), and quartz occur
in the Mn ore beds. Variable organic material is also an important constituent. Based on low
intensity and broad peaks, the minerals are poorly crystallized and cryptocrystalline. The
representative samples contain a mixture of poorly crystallized mineral phases and organic matter.

Table 4.

5.3.1. Mineral distribution in profiles by Raman spectroscopy
A distribution of minerals is evident in all samples, alternating micro-laminae (a few tens
of um thick) along with the kremydilite inner part (Fig. 10, SI 12-Fig). This alternating micro-
lamination refer to mineralized microbial cycles in the sediment pile. The documented distribution
of minerals in the Mn ore beds is the following:
Mn-1 from Figueirinha Mine
- Sample 4B - Hematite (rarely aegirine)/rarely quartz alternation, starting with Mn

(braunite) alternation and random apatite, and K-feldspar.
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Sample 7 - Aegirine/braunite cycles with randomly occurring apatite, mica, and K-feldspar.
Sample 10 - Aegirine-hematite/quartz alternation (Fe cycles) and Mn cycles superposed
(braunite, serandite, hausmannite) occur with randomly occurring apatite, barite, feldspar

(albite, K-feldspar), and strontianite.

Mn-1 from Sdo Domingos Mine

Sample 31 - Hematite (rarely kaolinite/dickite)/quartz alternation (Fe cycles), and Mn

cycles superposed (braunite, manjiorite, jacobsite, todorokite, romanéchite).

Mn-2 from Urucum Mine

Sample 75-2 - Only Mn minerals occur, but jacobsite and hollandite contain Fe. Jacobsite
alternate with cryptomelane, ramsdellite, and hollandite. Ramsdellite is the most oxic
phase. In the zone of kremydilite, the micro-lamination turns into random mineral
distribution. Accessory minerals are: romanechite (psilomelane), manganite, todorokite,

pyrite, and pyrolusite.

Sample 75-B5 - Goethite is frequent only in this sample. Representative Mn cycles are
composed of cryptomelane, hollandite, and occasionally, braunite. Micro-lamination is
disordered, and in those zones, random mineral distribution occurs, but locally micro-
lamination is well visible. Accessory minerals are: jacobsite, manganite, ramsdellite,
todorokite, hausmannite, romanéchite, pyrolusite, ferrihydrite, apatite, and mica.

Sample 78-D1 - Hematite (Fe cycle) alternate with Mn oxide cycles (cryptomelane-
hollandite) forming double microbial ore forming lamination. Cryptomelane and hollandite
occur together. Hematite and braunite also occur together, but braunite occurs separately,

too. Braunite binds to hematite. Locally, pyrolusite, birnessite, romanéchite, jacobsite,
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manganite, ramsdellite, hausmannite, serandite, ferrihydrite, goethite, mica, and apatite
occur.
Mn-3 from MCR Mine
- Sample 81 - Hematite alternates with Mn oxide (cryptomelane-hollandite). Accessory
minerals are: todorokite, ramsdellite, jacobsite, rancieite, pyrolusite, birnessite, braunite,
ferrihydrite, magnetite, and mica.
Fig. 10.
5.3.2. Mineral phase transitions by Raman spectroscopy
Microscale mineral phase transitions offer very important information on syngenetic and
diagenetic formation processes. Mineral compositions of Urucum samples also provide
information on this aspect, which explains the focus on specific mineral transitions.
5.3.2.1. Aegirine

Aegirine is common in Mn-1, occurring as an alternating mineral with braunite. A detailed
study on the phase transition was made for sample 4B (Fig. 11). The microtexture of aegirine
resembles a vermiform network that intrudes into the quartz. The quartz occurs in the undulating
hematite network as a gel-like segregated silica. Aegirine is present at the contact of quartz, and
riebeckite seems to consume aegirine. This relationship shows that aegirine and riebeckite
consume quartz. At the contact of segregated quartz, hollandite/vernadite and apatite occur.

Braunite binds to hematite in the vicinity of quartz.

Fig. 11.

5.3.2.2. Braunite

Braunite also consumes segregated quartz similarly to aegirine, in a vermiform habit, and
is in close contact with the hematite network (Fig. 12) (sample 4B). Segregated quartz also contains
K-feldspar. Hematite occur as small clusters and contains an undulating network as mineralized

biomats.
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Fig. 12.

5.3.2.3. Cryptomelane

All the spectra taken in the micro-nodules (cell colonies) and matrix material show
dominant vernadite/hollandite-type Mn-oxides-hydroxide composition and a greater or less
amount of cryptomelane and variable organic matter (sample 75-2). The minerals are in a
cryptocrystalline mixture with variable amounts. The textural differences do not correspond to
significant mineralogical differences (Fig. 13, SI 13-Fig). The central part of the micro-nodules
consists of hollandite/vernadite and organic matter, around which cryptomelane, pyrolusite and
ramsdellite occur.

Fig. 13.

5.3.3. Oblate structures

Detailed Raman measurements were elaborated on a representative oblate structure, used
to compare the mineral composition and distribution inside the oblate structure, in its vicinity, and
in the rim (sample 36-A1, Fig. 14, SI 14-Fig).

The dark spots in the outer matrix are mainly pores, except dark porous inner rims with
variable thicknesses, which are composed of a hollandite-type Mn oxide phase (dominant phase),
cryptomelane, and goethite. The matrix among the dark spots is built up by hollandite,
cryptomelane, and goethite.

The non-porous rim of the oblate structure mainly consists of hollandite and cryptomelane
in variable amounts. Rarely fine-grained clusters of goethite occur among the hollandite-
cryptomelane flakes.

In comparing the mineral phases and distribution in the outer, inner, and rim areas of the
measured oblate structure, we find that they are similar. The matrix of the inner part of the oblate

structure is composed of very fine-grained goethite (ferrihydrite) and small particles of Mn oxides
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(hollandite and cryptomelane in variable amounts); however, hollandite is dominant in the dark
spots. The mineral composition of the matrix and dark spots show a unified distribution, as any
difference or significant trend in the matrix or in the dark spots was not detected.

Fig. 14.

5.3.4. Organic matter

The organic matter of Mn-1 ores from Figueirinha (samples 4B, 7, and 10) and Sao
Domingos (sample 31) area are dominated by two bands near 1320 and 1610 cm™!, which are D
and G bands of hydrogenated amorphous carbon (Chen et al. 2007). This ore bed contains also
traces of aromatic hydrocarbons (825 cm), and skeletal stretching of C=C and C=0 molecules.
Bands of aliphatic hydrocarbons occur at 1000—-1280 cm-!' (Okolo et al. 2015) (samples 4B, 7, 10,
31), 1300-1390 cm! represents CH;3 (Jehlicka et al. 2009), and 1487 cm! refer to CH,/CHj;
vibrational mode (Jehli¢ka et al. 2009) (samples 7, 10). The band at 1518 cm™! refers to the C=C
stretching in polyenes (sample 31), while 1620—1820 cm™! show the C=0 vibration of oils (Orange
et al. 1996) (sample 4B).

The organic matter of ores of Mn-2 (Urucum West Mines) (samples 75-2, 78-D1, and 75-
B35), contain bands of aliphatic hydrocarbons (1104 c¢cm'), CH;, and the D and G band of
hydrogenated amorphous carbon based on bands near 1320 and 1610 ¢cm'. The sample 75-2
contains only the D and G band of amorphous hydrocarbon, whereas sample 75-B5 contains the
aromatic hydrocarbon (825 c¢cm!) bands of CH,/CHj; vibration (1386, 1469 cm), and C=0
vibration of oils (1750-1800 cm'). The sample 78-D1 has bands D and G of hydrogenated
amorphous carbon and traces of CH,/CHj; vibrational mode of aliphatic hydrocarbon (1345, 1362
cm™). The sample of the Mn-3 ore bed (MCR Mine, sample 81) contains mostly hydrogenated

amorphous carbon (D and G bands at 1317 and 1600 cm!) and traces of aliphatic (1000-1200
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cm!, 1469 cm!) and aromatic hydrocarbons (825 cm!). Only 60 of 1903 spectra contains organic

material.

6. DISCUSSION
6.1. Sedimentation age and environments

The presence of long chain oil type in manganese layers with kremydilite indicates that
temperatures were hardly larger than 90°C, which eliminates the possibility that the Jacadigo
Group’ rocks have been metamorphosed. This find makes it likely that the “°Ar/3°Ar age of the
Mn-1 layer is effectively 547 £+ 3 to 513 + 4 Ma, the ages of braunite and muscovite determined
by Piacentini et al. (2013). This age seems to be reinforced by that determined by Babinsky et al.
(2008), which dated detrital zircons (U — Pb SHRIMP) from a volcanic ash layer intercalated with
carbonate rocks of the Tamengo Formation at 543 + 3 Ma.

Corumbella and stromatolite occurrences and field information published by Biondi and
Lopez (2017) indicate that the Santa Cruz Formation (BIFs) and the manganese layers sedimented
at the same time or after the Bocaina Formation; and that the ages of these rocks are about 550
Ma. The age of this fossil in the ironstones of the Santa Cruz Formations (Jacadigo Group) and
limestones of the Tamengo Formation (Corumba Group) was estimated at ca. 550 Ma (Germs
1972; Grant 1990; Grotzinger et al. 1990; Hofmann and Mountjoy 2001; Bengtson 2002). Also,
the proposed age of this horizon was 555-542 Ma by ichnofossils, identified by Parry et al. (2017),
in the Bocaina Formation.

There is no diagnostic evidence that sedimentation occurred during some glacial period or
during some glaciation, as initially proposed by Urban et al. (1992). The only arguments of these
authors were: (a) the presence of the granite blocks they interpreted as dropstones, without even
observing whether any of these blocks have faceted, friction-sectioned sides, and/or have striated
faces, as is typical of dropstones. These characteristics were never observed in the Urucum
(Trompette et al., 1998; Freitas et al., 2011; Biondi and Lopez, 2017). (b) To consider the Santa
Cruz Formation, with at least 400 m thick BIFs, as similar to the Rapitan Formation, with less than
10 m thick BIFs (Young, 1976). As the Rapitan Formation would be Ediacaran and of glacial
origin (Young, 1976), Urban et al. (1992) inferred that the Santa Cruz would have the same origin;
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and most subsequent authors adopted this idea. However, keeping in mind that this hypothesis is
traditionally defended by many authors (e.g. Angerer et al., 2016), it should be discussed.

The last glacier related to snowball earth, and the sedimentation of Rapitan-denominated
BIFs, was the Marinoan glaciation, which began at about 650 Ma and ended at about 635 Ma.
Considering all the information presented above, the Urucum’s BIFs, ironstones and manganese
layers sedimented about 550 Ma ago, 85 Ma after the end of the Marinoan and the snowball
glaciations. The Gaskiers glaciation, which existed for 340,000 years (579.9 to 579.6 Ma), has
occurred about 29 Ma before the end of the Jacadigo Group sedimentation, and could hardly
influence its sedimentation. It remains, therefore, to relate the formation of the Jacadigo Group
with Baykonurian glaciation (547 to 545.5 Ma), so far recognized only in Asia and Africa
(Chumakov, 2009; and Chumakov, 2011; Germs and Gaucher, 2012). We therefore propose to
consider the possibility that the sedimentation of the BIFs and manganese layers of the Santa Cruz
Formation occurred during the Baykonurian glaciation, which would explain the existence of what
is interpreted by Urban et al. (1992), among other authors, as dropstones.

We hold the view that Mn-1 was most likely formed during the first inundation of the
ancient graben by the fluvial, oxidative sediments that gave rise to the Urucum Formation. Unit
Mn-1 contains predominantly siltic and sandy, ferruginous clastic rocks, cemented by microbially
mediated Fe minerals (e.g., aegirine), and Mn-oxide and silicate (braunite, serandite, and
hollandite). The areas of Figueirinha and Sdo Domingos mines have a larger concentration of
manganese in Mn-1, which are contained in clast-bearing massive ores. The upper Mn-1 layers in
the Figueirinha and Sdo Domingos mines, which include amygdalites, were probably deposited in
the basin depocenter, where the amygdalites formed from hydrodynamic flux. Layers Mn-2 and
Mn-3 formed in “offshore” (= greater depth) environments during periods of tectonic quiescence,
when fine, clastic quartz fragments and other detrital sedimentation ceased.

6.2. Mineralogical interpretations

Microtextural evidence in all the studied samples appears as dense features, and the mineral
types and embedded variable organic matter raise the microbially-mediated formation of the ore
beds, which we argue occur as microbialites (MMPT). Two microbial ore forming systems are
proposed as dual systems, characterized by Fe- and Mn-oxidizing metabolic processes (Fe-

oxidizing bacteria (FeOB) and Mn-oxidizing bacteria (MnOB)).
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Several studies on the genesis and preservation of oil and natural gas have shown that long
chain hydrocarbons are decomposed at temperatures above 90°C (Chilingar et al. 2005, p.138-
142). Preservation in Mn-2 and Mn-3 of aromatic and aliphatic hydrocarbons, C=C stretching in
polyenes, C=0 vibration of oils, among others, indicates that temperatures during diagenesis were
low (<90°C) and that syngenetic as well as diagenetic minerals were preserved, as identified by
the Raman and FTIR analyses. Along with hydrocarbons, these analyses identified minerals such
as birnessite and ferrhydrite, which we consider remnants of the original sedimentation, (i.e. they
were not entirely destroyed during diagenesis). Remnants of syngenetic and diagenetic minerals
interpreted as complex systems give a plausible series of processes and environmental formation
conditions during sedimentation and diagenesis (Table 4, Fig. 15, SI 15-Table). The frequency of
the minerals is different: the main minerals, such as cryptomelane, hollandite, hematite, and
braunite, form the ore beds, but the moderate and minor minerals have also genetic importance.
The Mn layers are the result of complex diagenetic processes and formation of diagenetic minerals,
which include the components of the decomposition of cells and extracellular polymeric substance
material (Fe and Mn bacteria, cyanobacteria, and other types; see Ewers 1983; Wignall 1994;
Konhauser 1998; Villalobos et al. 2003; Dupraz and Visscher 2005; Dupraz et al 2009; Chan et al.
2011; Gyollai et al. 2017).

Some syngenetic poorly crystallized minerals were preserved, and that serves as a starting
point. For a clear understanding, a short review on the most important mineral assemblages and
primary minerals is needed. Many types of minerals occur, and these can be grouped as follows.

6.2.1. Remnants of syngenetic minerals — Syngenetic Fe- and Mn-rich biomat
formation

Remnant syngenetic minerals are reported as microbially mediated minerals forming under

obligatory oxic (Mn) and suboxic (Fe) conditions, with neutral and semi-neutral pH. The
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microbially mediated Mn and Fe oxidation have different oxygen demand, and the diagenetic
zones represent different oxygen conditions. The nomination “suboxic” has a double meaning
which can cause discrepancies. To avoid misunderstanding, definitions are listed in Table 5. In
general, Eh > 0 represent oxic conditions, but the concentration of oxygen can be different, as
shown in Table 5 and Fig. 15, and the microbially mediated processes occur at a given oxygen
content. Diagenetic zonation also separates the oxic, suboxic, and anoxic zones, and the oxidizing
agent is O, in the oxic zone, NO;, MnO», and Fe,0s3 in the suboxic zone, and SO4* in the anoxic
zone (Berner 1980; Coleman 1985; Wignall 1994; Polgari et al. 2012ab).

Table 5.

Ferrihydrite and lepidocrocite on the Fe side, and vernadite, todorokite, birnessite, and
manganite on the Mn side, are regarded as syngenetic minerals (Ehrlich 2002). Accordingly, it is
obvious that ore formation started with microbial Fe oxidation. That is why interpretation starts
with a description of the Fe system.

Syngenetic Fe system

Understanding the biochemistry of the biomat formation is a key factor in determining the
type of Fe-rich biomat that may have been involved in the formation of the Urucum Mn layers,
and to define the environmental conditions. There are various types of microbial metabolisms that
can oxidize Fe?* in nature, which occur under varying states of oxygen-deficient conditions. Three
types of Fe-rich biomats are considered for the Urucum; all are neutrophilic and consistent with
basin conditions (Fig. 15): (1) Microbial neutrophilic, micro-aerobic Fe(Il) oxidizing bacteria (pH
~8; Eh +0.3 V) (Hallbeck and Pedersen 1990; Ehrenreich and Widdel 1994; Konhauser 1998;
Ehrlich 2002) supported by mineral assemblage (ferrihydrite, goethite, hematite, celadonite); (2)
Nitrate-reducing Fe(Il) oxidizers in suboxic/anaerobic conditions (lack of filaments; Straub et al.

1996); and (3) Photoferrotroph metabolism in anoxic/anaerobic light-demanding conditions,
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which is not plausible based on mineral assemblage, which support suboxic-oxic conditions. The
fourth (4) type, strongly acidic, oxic metabolism is also not plausible in the Urucum basin, and
does not fit with the mineral assemblage. However, a further process we have to consider, is the
non—Fe-oxidizing microbes later overgrown by Fe oxides via microbial processes (Konhauser
1998). This cannot be excluded, but the homogenous Fe-precipitation on filamentous forms do not
support this scenario as a principal process.

The rhythmic developmental stages via microbial mediation is basic. Free-living Fe(II)
oxidizing bacteria exist in the lag and log phases (Novick 1955; Zwietering et al. 1990), and stalk
formation (Fe-rich biomat—mineralization) occurs during the stationary (abbrev.: stat) phase under
optimal conditions (pH > 6, aerobic, cell number > 6 x 103> mL~!, low organic C content, 1-3 week
whole microbial population growth period; e.g., Gallionella-like freshwater types and
Mariprofundus-like marine types) (Hallbeck and Pedersen 1990; Chan et al. 2011; Polgari et al.
2012a).

Organic biomarkers were not directly associated with Fe-rich biomat structures. Raman
and FTIR data show organic matter in the biomat lacework but is not diagnostic as to its type.
Based on these data, the diagenesis developed more in rocks represented by sample 75-2, where
only amorphous carbon remained in traces, and other type of organic material was consumed.
Preservation of organic material was best in sample 75-B5, in which organic material occurs in
180 of 2447 spectra, and more complex organic material, like oils and aromatic hydrocarbons,
were detected. Sample 78-D1 (SI 3-Fig) is more altered, because only traces of complex organic
material were preserved, and organic material—mostly D and G bands—occur in only 60 of 3456
spectra. Biomarkers cannot be isolated because of multiphase microbial activity and extensive
diagenetic overprinting.

Fig. 15.
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Syngenetic Mn system

Mn-oxide formation in Mn-1 ore bed can be explained by the oxide surface catalysis model
advocated by Morgan (2005). Metal-oxide surfaces are able to accelerate Mn(II) oxidation by
redox reactions (e.g., hematite, goethite, lepidocrocite, and manganese dioxide; Wilson 1980; Sung
and Morgan 1981; Davies and Morgan 1989). Raman spectroscopy detected vernadite as poorly
crystallized mineral phase in the vicinity of hematite biomat lacework (Fig. 11).

In the case of Mn-2 and Mn-3, during the development of the Mn-oxide proto-ore, the first
product of microbial enzymatic Mn(II) oxidation probably was a bio-oxide (e.g., vernadite,
todorokite, birnessite), similar to the experimental studies of Villalobos et al. (2003); Bargar et al.
(2005); and Bodei et al. (2007). This enzymatic Mn oxidation can be referred to as Cycle 1. The
demand of microbial (enzymatic) Mn(Il) oxidation is obligatory oxic conditions (>2 mL/L
dissolved oxygen). This bio-oxide is an X-ray amorphous oxide similar to 6-MnQO, (vernadite,
todorokite, birnessite; all detected by Raman), which is thought to be a disordered
thermodynamically unstable 7-A-vernadite (hexagonal phyllomanganate) containing Mn(IV)
vacancy defects, with very small particle sizes (< 20 nm lateral dimensions), and having only two
or three MnO; layers stacked along the c-axis (Villalobos et al. 2003). A decrease in the dissolved
Mn(II) appears to act as a reductant for the biogenic oxide and control the stability of secondary
abiotic reaction products (Mn?* components in minerals of Urucum support this process). Cation
binding, like Mg, supports phyllomanganate transformation to stable tectomanganate (Bodef et al.
2007). Experimental studies showed that extracellular polymers from bacteria catalyze the
adsorption of Mg on the surface of the cells (Mandernack et al. 1995). Thus, the bacterial cells not
only directly oxidize Mn(II) to Mn(IV), but also, in the early stages of oxidation, influence the
cation composition of the Mn-oxide mineral being produced. Mineralogical changes similar to

these are likely to be commonplace in natural settings where bacterial oxidation of Mn(II) occurs
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and may liberate sorbed metal ions or alter the rates of Mn-oxide surface processes, such as the
degradation of organic molecules. It is noteworthy that microbes may exploit such mineral
transformation reactions to indirectly control chemical conditions in the vicinity of the cell
(Mandernack et al. 1995).

A series of detailed mineralogy and micro-textures are shown in Fig. 13 (sample 75-2 from
Mn-2 ore bed). The studied part is representative for syngenetic microbial Mn oxidation. The
distribution of vernadite/hollandite and very early diagenetic cryptomelane and nsutite show
micro-nodules with mineralized microbial colonies with embedded organic matter, which appear
to support this scenario. Recent results also comport with the study of Piacentini et al. (2013) who,
based on petrographic evidence, reported that cryptomelane may not be the primary Mn mineral
precipitated in the Neoproterozoic ocean floor.

6.2.2. Diagenetic minerals

Diagenetic Fe system

According to the diagenesis of Fe-rich biomats, the microbes produce poorly ordered
ferrihydrite (lepidocrocite) as a primary mineral, which transforms to more ordered minerals, such
as goethite or hematite (reduced form as magnetite), within a few months or years via dissolution-
dehydration processes, as mentioned before (Konhauser 1998; Schwertmann and Cornell 2007;
Gyollai et al. 2015). The main Fe oxide mineral in the filaments of our samples is hematite, but
Raman analyses indicate that goethite also occurs (sample 75-B5, SI 12-Fig). In Mn-1, aegirine,
and in Mn-2, rare jacobsite can represent mineralized Fe-biomats. In other rare occurrences, pyrite
also occurs reflecting that locally anoxic conditions existed but did not become dominant. The
fossilized Fe-rich biomats were rapidly and extensively encrusted by minerals, such as dolomite

and silica, similar to what has been reported by Baele et al. (2008). Amorphous silica segregation
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is derived by either the destruction of organic complexes or the transformation of ferrihydrite
(Baele et al. 2008).

Aegirine, occurring in cyclic microlaminae alternating with braunite in Mn-1, is the
diagenetic mineral form of FeOB (Fig. 10). Aegirine forms via early diagenesis from the
syngenetic Fe-oxi-hydroxides (ferrihydrite) and segregated silica, and represents a more stable
mineral phase. Aegirine micro-laminae represent the Fe-oxidizing microbial cycles, and braunite
represents the Mn cycle in silicified and stable form, also reported by Johnson et al. (2016). This
aegirine-braunite microbialite represents oxic/suboxic conditions (Listova, 1961). High-resolution
Raman investigations show that aegirine consumes segregated silica from hematitic biomat toward
the segregated silica via the transitional mineral riebeckite (Fig. 11). Riebeckite is also a common
constituent in BIF with aegirine reported by Savko (2006), who proposed metamorphic formation,
which does not fit with our observations. In Mn-1, aegirine forms a woven network (Fig. 11), the
hematitic proforma of biomat with the segregated silica. At the contact between hematite and silica,
apatite, vernadite/hollandite, and braunite occur. Similar to aegirine, braunite also consumes the
segregated silica. Our results fail to fit with the hydrothermal origin of aegirine proposed for
Paleoproterozoic Hotazel iron-formation, South Africa (Tsikos and Moore 2005); the cyclic
occurrence, worm-like consuming behavior, and also the mineral assemblage contradicts with that
scenario. Comparison with other natural aegirine occurrences, however, such as authigenic
aegirine in the lacustrine Green River Formation of Wyoming, U.S.A. (Fortey and Michie 1978),
shows a close similarity. In short, the reported authigenic formation of aegirine fits well with our
results, but the source of Na instead of volcanic activity was more probably the decomposition of
cell and extracellular polymeric substance organic material.

As the depth of the basin is not known, fragments of slightly lithified and re-sedimented

and cemented biomats occur, a shallow marine condition cannot be excluded. In such
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environments, evaporitic alkaline sodium-rich conditions cannot be ruled out and indeed, are
preferred for aegirine formation. The high silica concentration favors aegirine formation instead
of clay minerals (Decarreau et al. 2004, 2008), which only sporadically occur in the samples
studied here (celadonite, chamosite).

Celadonite, a dominant mineral phase in the Mesozoic Urktit Mn-deposit (Polgari et al.
2012b; 2016ab), is an Fe-mica reflecting suboxic neutral conditions. It is rare in Urucum
presumably because of high silica content.

Chamosite formation is favored by seawater solutions at low temperatures with a relatively
reduced pH, a low amount of SiO,, high content of Fe?" and Fe3*, and a relatively high amount of
Al and Mg. Aluminum may be donated to the system by organic matter as reported by Maliva et
al. (1999) who showed that the aluminum content is greatly increased by complexation with
organic acids. Low silica concentration in solution is the most important condition for low-
temperature synthesis of clay minerals, as high silica concentration in solution inhibits their
formation (Harder 1976).

Diagenetic Mn system

In diagenesis, the stabilization of the syngenetic Mn oxide hydroxides proceeded and pure
forms, such as pyrolusite, ramsdellite, nsutite, hausmannite, manganite, and variable-cation-bound
forms (e.g., Na, K, Ca, Mg, Ba, Fe) such as cryptomelane, jacobsite, romanechite, and manjiorite
grew (Giovanoli 1980; Mandernack et al. 1995; Villalobos et al. 2003; Bargar et al. 2005; Bodei
et al. 2007; Johnson et al. 2016). Of note, as described by Polgari et al. (2012b), Maynard (2014),
and Johnson et al. (2016), rthodochrosite can result from the sporadic activity of heterotrophic
microbes during the early stages of diagenesis. Rhodochrosite is, however, only frequent in the
only fully analyzed kremydilite sample shown in Fig. 8. Otherwise, these poorly mineralized

cryptocrystalline mineral phases mix in a variable amount in the microlaminae as a manifestation
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of mineralized Mn cycles. Similarly, pyrolusite, ramsdellite, and romanéchite indicate Mn
precipitation via diagenesis from low-temperature pore fluids as reported by Rajabzadeh et al.
(2017).

6.3. Combined diagenesis of the two ore-forming microbial systems and other
microbial forms

Harder (1978) noted that “...the silica content of sedimentary iron ores is found in quartz
and different iron-containing clay minerals. Chamosite, greenalite, cronstedtite, nontronite,
glauconite, and thuringite are common minerals in sedimentary iron ores. In general, all these
minerals are extremely fine-grained.” We find that the formation of Mn-1 manganese ore in
Urucum influenced and changed this general protocol, despite the observation of quartz, local Fe
mica, and Fe clay. Highly alkaline pore water conditions in diagenesis (accompanied by elevated
Na content) caused aegirine precipitation instead of smectite (Decarreau et al. 2004, 2008). Low
silica content and Si/Fe ratio lead to chamosite formation under reduced pH and Eh conditions.
The high silica content probably influenced silica uptake of variable Mn oxide-hydroxide minerals.
Through stabilization caused by diagenetic processes, the Mn oxide hydroxide bound not only Fe**
and Fe** (e.g., jacobsite, hollandite minerals), but also silica (braunite, serandite), to form a highly
variable content of oxide-silicate mixed minerals. These are characterized by highly variable
composition. Texturally, mineral habits are strongly modulated (and perhaps templated) by
extracellular polymeric substances that form a network of pore spaces.

Braunite alternates with aegirine in Mn-1 and also occurs in Mn-2 representing the
mineralized Mn cycle (Fig. 10). The principal reasons for this viewpoint is that the system acts as
a diagenetic cycle owing to the fact that in Mn-1 an active oxide surface catalyst is likely
responsible for the mineral assemblage, as opposed to enzymatic Mn oxidation. The interpretation

is that braunite formation is due to combined diagenesis, as the segregated silica needed for
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braunite is typical of Fe system diagenesis. The most likely formation of braunite is sedimentary
or early diagenetic via biogeochemically mediated processes, as proposed by Serdyuchenko (1980)
and Johnson et al. (2016). These studies report scenarios that are broadly similarly to our Urucum
samples. Micro-textural evidence (Fig. 11-12) clearly shows the formation of braunite in the
vicinity of hematite biomat, vernadite/hollandite, and apatite, via the consumption of segregated
silica. While syngenetic mineralization took place under oxic neutrophilic conditions, slightly
alkaline and oxic conditions were also reported for braunite formation (pH 9.5-9.9; Eh +0.43 V;
Listova 1961); this comports well with our scenario.

Serandite, as an oxide-silicate mineral, also belong to this process (empirical composition
of hollandite also can contain Si). The relationship between serandite and braunite is documented
by our Raman profiles (Fig. 10). Jacobsite can be interpreted as the transitional form between Mn
and Fe oxides.

6.4. Diagenesis of other minerals

After cell death and decomposition, as well as breakdown of extracellular polymeric
substance, ions that were previously bound on their surfaces release Ca, Mg, Na, K, P, S, Si, Co,
Zn, Ba, Sr, and rare earth elements. These are bioactive elements in accordance with Takahashi et
al. (2007), Heim (2010), Meyer et al. (2012), Gyollai et al. (2017), and Yu et al. (2019). Formation
of COs*, PO4*, SiO4*, and SO4* anions commences and a complex transforming mineralization
begins to take place, which (depending on local geochemical conditions) can result in clay mineral
formation, mixed carbonates, feldspar, silica, and apatite. These poorly crystallized minerals can
transform into more stable minerals over time (Konhauser 1998; Dupraz and Visscher 2005). The
various geochemical features of Mn ores are modulated by such syngenetic and diagenetic
processes. These include increased Co content compared with crustal abundance, a characteristic

for Urucum ores as well as the Urkut locality (Polgari et al. 2012b; Biondi and Lopez 2017).

35



841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Reaction of FeOB with Co proceeds easily, and MnOB can also oxidize Cobalt (Moffett 1990).
The liberalization of the cell surface-bound elements provides sources of elements e.g., in the case
of K in the formation of hollandite or Si in the case of braunite and other elements (Piacentini et
al. 2013).

Abundant quartz is common in Mn-1, which in part is attributable to the contribution of
detrital debris, but also represents the dominant segregated reactive silica phase (Cole and Shaw
1983; Fisk et al. 2006). In laboratory experiments, FeOB requires protection against concentration
and other types of stress, and silica is used for protection by microbes (Mioszewska et al 2018).
The amorphous silica can easily transform into more stable minerals, such as quartz (Herdianita et
al. 2000).

In unit Mn-1, a part of the segregated silica is stabilized as quartz, but the formation of
aegirine and braunite also consumed considerable amounts. Through combined diagenesis in Mn-2
and Mn-3, braunite and serandite formed, which consumed (and thus, reduced) the segregated
silica content.

Feldspar and kaolinite/dickite also formed, and rarely, cancrinite occurs. Kaolinite minerals
can form under acidic condition (pH 2-7) and within a wide temperature range. In our Urucum
samples, only kaolinite and dickite were detected in this class of minerals. Kaolinite can form at
low temperatures 25 °C (Dekoninck et al. 2018). Dickite typically forms under low pH conditions.
that forms in the temperature range between 120 and 280 °C (Eberl and Hower 1975; Inoue 1995),
and its presence is not supported by our results, which favor low-temperature conditions. On the
other hand, the reported important role of organic matter in the formation of dickite fits with our
results (Maliva et al. 1999). Similar to the Al demand of chamosite mentioned above, the mobility

of aluminum is enhanced by complexation with organic acids. In such systems, aluminum is
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released and hence available for clay-mineral precipitation when the organo-aluminum complexes
are destabilized (Maliva et al. 1999).

Cancrinite is a mixed silicate-carbonate-sulfate transitional mineral, which only
sporadically occurs in Urucum, but nevertheless reflects the variability of diagenetic conditions.
Apatite can precipitate at pH of 7-8 and occurs in micrometer-sized crystals in the silica-rich part
of BIFs. Similar apatite occurrences were noted in our samples, based on Raman and CL analyses.
Muscovite (hydromuscovite) is common in the studied samples and was most likely formed by the
diagenesis of cyanobacteria filaments in Fe-rich microbialites by the leaching of biofilm alkali
elements (Na, Ka, Al, Mg) (Ewers 1983; Gyollai et al. 2015, 2017).

Among carbonates, the occurrence of dolomite (ankerite) in Mn-1 can be considerable, and
strontianite is present but scarce. Barite, gypsum, and johannite belong to the sulfates that form
from marine sulfate and/or organic constituents. Barite, a mineral precipitating under typical oxic
conditions (Eh > +0.2) at low temperature, is considered here as oxygen supply indicator, because
barite occurring with hematite indicates conditions that are more oxic than occurring without
hematite (Hanor 2000).

Considering the mineral assemblage, it is clear that the initially high segregated silica
content did not support clay formation via early diagenesis, and silica-consuming minerals are
numerous, which finally resulted in a decrease in silica content, which did not support quartz
formation. In Mn-1, the quartz content is considerable compared with Mn-2 and Mn-3, which can
be interpreted by the lower amount of Mn oxyhydroxides in Mn-1. Some quartz is probably of
clastic origin as well as feldspar and mica, but authigenic formation of these minerals is also
common in microbially mediated diagenetic processes, and non-luminescent minerals belong to

this group (Marshall 1998; Hassouta et al. 1999) (Fig. 7).
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The Mn-2 and Mn-3 beds represent real enzymatic Mn(II) oxidation with extremely high
amounts of Mn oxides and hydroxides, which overwhelm microbial Fe oxidation.

Most of the minerals detected here have well characterized formation conditions, as
summarized in Table 4. Based on mineralogy, proto-ore sedimentation and diagenesis occurred
under suboxic-obligatory to oxic and semi-neutral to alkaline conditions.

6.5. Formation of kremydilites and oblate structures

Kremydilites occur in varied forms shown in Figures 4A, C, E, G, I and K, which probably
correspond to different stages of development or growth. The presence of oblate structures and
pores inside and outside the kremydilites indicate that they and the sediments in which they formed
were a highly soft, porous, and permeable aqueous mud, within which pore fluids and gases could
form and migrate out (Figs. 4A-B, E-F, G-H and Fig. 16). Gas bubbles are common accompanying
phases of microbial mediation, which are trapped after burial, which is also characteristic of our
Urucum samples (Figs. 4A-B, E-F, and G-H). Different stages of the formation of a kremydilite,
including oblate structures, are shown in Fig. 4. The beginning of the microbial activity inside the
aqueous mud deposited in the marginal basin floor, composed mainly of birnessite, ferrihydrite,
organic matter, and Mn and Fe oxides (Fig. 8). Organic matter becomes oxidized (Fig. 4)
generating CO, and/or CH,4 and/or H,, which forms intergranular bubbles (Figs. 4A-B, E-F, and
G-H) that migrate towards the surface (Fig. 16B). After the first oxidation stage of organic matter,
a cluster of pores remains, constituting the nucleus zone of the kremydilite structures (Fig. 4A-B
and C-D). The reactivation of microbial oxidation of organic matter generates the first concentric
layer of pores (= shell) around the previously formed nucleus (Fig. 4E-F). The repetition of this
process can generate multiple concentric layers of pores (shells) (Fig. 4G-H), and evolve to form
a complex kremydilite (Fig 4 I-J) with many layers, marked by the accumulation of pores

concentrically organized around the nucleus, as in the kremydilite sample 48 (Figs. 4K and 8A-
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B). The reactivation process of microbial oxidation can cease at any time, forming kremydilites
with one or two concentric layers around the nucleus or repeating at different times, forming
complex structures with multiple concentric layers (Figs. 41-J and K). The oblate structures, now
preserved in the Urucum ores, did not reach the basin floor and were preserved during diagenesis.
The cryptomelane needle mesh structure, the prismatic cryptomelane crystallites, and the micro-
nodules were microbialites or organominerals (Dupraz et al. 2009), and the cylindrical holes are
likely tube escape structures through which gas bubbles migrated from the zone of microbial
activity (organic matter oxidation).

The mineralogy of the kremydilite from sample 48 (Fig.8C-E) seems to reflect the changes
caused by the diagenesis of the original sediment while it was buried (Fig. 16), as defined by
Raiswell (1987). Burial initiated the diagenesis and ore formation (Figs. 8C-D and 16B)
simultaneously with successive cycles of heterotrophic microbial activity, which formed the
kremydilite concentric layers of cryptomelane, birnessite, ferrihydrite, rhodochrosite crystallized
in the nucleus zone, braunite, rhodochrosite, cryptomelane crystallized in the bottom part, and
ferrihydrite and cryptomelane in the upper part (Figs. 8C-D, and Fig. 16B). The complete oxidation
of the layer and of all the kremydilites contained therein, forming the massive Mn-2 and 3 ore
type, is a process that began during early diagenesis and was extended after lithification through
microbial mediation. The origin of the oblate form of kremydilites, with concentric layers around
anucleus, is a consequence only of the oxidation of the organic matter (biomass) during diagenesis
and the subsequent formation of pores. This process is independent of the chemical and/or mineral
composition of the original sediment (but Mn reduction occurs). The original and present chemical
and mineral composition of kremydilites arises from: (a) the abundant sedimentation of Mn
oxyhydroxides via enzymatic oxidation and, to a lesser extent, of Fe oxyhydroxides and (b) the

changes caused by diagenesis, which transforms the sediment into different minerals, as
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manganese (Fe-)-rich biomass becomes manganese-rich sediment, then Mn(Fe)-rich sedimentary
rock. This is the origin of an economical Mn ore deposit. The absence of iron kremydilites in the
jaspilites, similar to the Mn ore beds, shows that the formation of kremydilites was a unique
process that only occurred in the Mn-rich sediments, forming a new type of manganese ore.

Fig. 16.

It was previously proposed that kremydilite formed by photoferrotroph microbial processes
(photosynthetic) under anoxic conditions (Biondi and Lopez 2017), which is not in accordance
with the interpretation of recent results on the mineral assemblage. Our new interpretation is that
these formed in suboxic-oxic conditions and slightly alkaline pH. To reach a plausible
interpretation, as a first step, it is important to determine the formation processes of kremydilite.
The mineral assemblage of the studied sample supports an early diagenetic origin, rather than
syngenesis (Fig. 8). The kremydilite structure resembles both nodules and concretions; thus, to
compare these structures, definitions are necessary. Nodules and concretions are very similar, and
sometimes, these terms are used interchangeably. However, while concretions incorporate material
of the host sediment, nodules contain solely authigenic phases (Raiswell and Fisher 2000; Jackson
2005; Baumann et al. 2016; and references therein). In our case, there are only authigenic minerals
based on mineral assemblage in kremydilite and in oblate structures. Consequently, based on
definition, these cannot be concretions but instead are most probably better termed nodules. The
definition of a nodule is also contradictory in our case, however, as in sedimentology and geology
terminology a nodule is usually defined as a small, irregularly rounded knot, mass, or lump of a
mineral or mineral aggregate that typically has a contrasting composition from the enclosing
sediment or sedimentary rock (Jackson 2005). This is not the case in Urucum. In general, the
objects we dub “nodules” lack any internal structure except for the preserved remnants of original

bedding or fossils, which is also not the case here, as kremydilite is a concentric structure
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(structured pore system forming “pore shells” without cement infilling, which is also a difference).
A further aspect is mineralogy, which differs from the typical ones occurring in nodules and
concretions including most commonly calcite, siderite, chert, apatite (phosphorite), anhydrite, and
pyrite. In Urucum, kremydilite occurs as high-quality Mn oxide ore.

Hence, based on the above definitions and features, kremydilite could be considered as a
unique concretion-like structure, which lacks the background sediment, and the accumulated
sediment is the result of successive phases of oxidation of organic matter (Fig. 4) during diagenesis
(Fig. 8). Authigenic mineral formation occurs during syngenesis and early diagenesis. In this sense,
kremydilite, the most characteristic structure in Mn-2 and Mn-3 ore beds, can be interpreted as a
unique type of syngenetic and diagenetic structure and represent a unique type of ore (also taking
into consideration Maynard (2010) and Kuleshov (2011), on ore types). This interpretation is
further in accordance with the main features of kremydilites, like variable-preserved porous
content, signs of gas production and migration, concentric structures, and the multiple stages of
development. Then again, differences, such as lack of cementation and incorporation of material
of the host sediment, are consequential. All things considered, this is a rare ore-type, as reported
by Biondi and Lopez (2017).

Yet, how did these kremydilite structures form en masse? The interpretation that we favor
is that heterotrophic cell colonies randomly activated in the microbialite sediment after burial in
suboxic neutral/alkaline conditions, side-by-side with lithification and stabilization of minerals
(Mn reduction (MnR) and reactive organic matter decomposition via heterotrophic microbial
mediation can be referred to as Cycle II). Rhodochrosite is a common (dominant) component in
the kremydilite structure in the core zone and also in the shells, from the core to the margin (Fig.
8). The process probably continues only along the poorly crystallized reactive vernadite and

todorokite. Cryptomelane and braunite are more stable. They do not take part in the process, nor
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does ferrihydrite, as the system does not reach the Fe reduction zone (FeR) because of the high
Mn concentration and relatively low organic matter content.

Why is Urucum (Neoproterozoic, Brazil) concretionary and not laminated like in Urkuat
(Mesozoic, Hungary)? Much less organic matter was buried, and this fact did not lead to the
formation of a horizontally continuous MnR zone realizing rhodochrosite laminae. Instead, local
heterotrophic cell colony centers caused the formation of kremydilite in the biomat system,
overprinting the syngenetic lamination, causing a nodular, concretional appearance. The
kremydilites are most probably diagenetic and not syngenetic, as rhodochrosite is diagenetic, as
referred to in Polgari et al. (2012b), Maynard (2014), and Johnson et al. (2016).

Both FTIR and RAMAN analyses show that substances inside and outside the oblate
structures evolved in different ways. This is exemplified by the presence of pores in each
kremydilite shell, the absence of pores inside the bubbles, and the absence of micro-nodules inside
the oblate structures. At the contact zone of the “more” oxic outer part and “suboxic” inner part,
spherical enrichment of cryptomelane occurred, forming a dense margin (rim). The micro-texture
of this rim (and also the outer and inner part) is microbial and contain “diffusional channels” (SI
11-Fig).

6.6. Basin development

As mentioned, unit Mn-1 follows the basin floor relief, while Mn-2 and Mn-3 occur as
horizontal beds in the ironstone. This can be viewed as a special series produced by syngenetic
processes via authigenic mineral accumulation, summarized according to chronology of
syngenetic and diagenetic processes in Fig. 17. The ore formation commenced with flooding on
porous fluvial sediments, and the ore forming fluids (Fe** and Mn?") infiltrated and microbially
colonized the pores in a woven form, and around the clastic particles in the sediment to the depth

where diffusion was active (supported by microbially mediated micro-texture, which is
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syngenetic). Initially, biomass, composed of Mn and Fe hydroxides, organic matter, manganoan
and ferroan carbonate and amorphous silica, deposited on the basin floor. In the extracellular
polymeric substance network, diagenetic minerals along with clastic material dominated (based on
CL). The ore formation started with enzymatic Fe oxidation, as the Raman profiles of Mn-1
samples prove, resulting in a well-developed biomat system. This offered oxide surface catalysis
for Mn oxidation, which was not enzymatic during Mn-1 because the level of oxygen supply did
not reach the obligatory oxic level (Morgan 2005). The dynamic processes affected the top zone
of sediments up to the diffusion depth, which moved upward in time, forming the Mn-1 ore bed.

The effect of fluvial contribution decreased via marine flooding, and the clastic
contribution ceased gradually, offering excellent calm conditions for undisturbed Fe- and Mn-
biomat formation, resulting in fine cyclic mineral lamination (mineralized biomats, microbialite)
(Fig. 10, SI 12-Fig). The FeOB continued forming ironstone (Biondi and Lopez 2017), under
suboxic conditions, in which oxygen supply was not favorable for MnOB.

Enzymatic Mn oxidation starting as chemical nutrients (Mn?") were in the system, and the
Mn-2 and later Mn-3 layers suddenly occurred in the Fe sediments. This made conditions more
oxic and obligatory oxic. The sudden change is caused simply by the turning of oxygen supply
from suboxic (dissolved oxygen-DO 0.2-2.0 mL/L) to obligatory oxic (DO >2.0 mL/L) conditions,
which is the criterion of enzymatic Mn(II) oxidation. In the background of formation of Mn-2 and
Mn-3, the microbial Fe oxidation continued, as supported by the well detectable micro-lamination
(cyclicity) of microminerals. The sharp contact in the field representing that horizon where Fe is
forced back to local suboxic parts. The Fe?" ascending fluid does not reach the obligatory oxic
zone as a dominant contribution, because microbes oxidize it in the suboxic zone (Fig. 15). The
Raman profiles clearly show that the Fe biomat system existed via all Mn ore beds, but with

different intensity. Fe and Mn occurred together in an intimate form similar to Urkut (Polgari et
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al. 2012b). A similar sharp boundary (contact zone) occurs between gray (black) shale and Mn
carbonate ore in Urkut, which is also the result of change in the oxygen supply becoming
obligatory oxic. This was a sensitive redox system for enzymatic Mn oxidation (Polgari et al.
2016a).

Summarizing the ore formation, Fig. 17 shows our model for the process that generated the
massive manganese ore with kremydilites, found in the Mn-2 and Mn-3 layers of Urucum. After
the formation of the ferrihydrite, birnessite, organic matter, and rhodochrosite mud-like biomass
(Fig. 17A), the microbial reduction generates micro-nodules with the minerals of the original
sediment in the nucleus involved by ferrihydrite (Fig. 17B), then by rhodochrosite and braunite.
Late diagenetic and post-diagenetic oxidation generates Mn-2 and Mn-3 ore layers, composed of
massive and/or zoned, concentric, spherical nodules, and/or zoned nodules with an eye shape (Fig.
17C). The formation of kremydilites begins simultaneously or immediately after the formation of
micro-nodules, in places where a cluster of microbes begins to oxidize organic matter, generating
pores and producing methane, CO,, and/or H, bubbles. This activity forms a small structure with
a homogeneous and porous nucleus bound by a porous layer, which may involve the nucleus totally
or partially, formed at the edge of the zone of microbial activity. The resumption of microbial
activity around the same nucleus will cause greater oxidation where a greater amount of non-
oxidized organic matter is available, generally near and on the outside of the last formed layer.

Fig. 17.

Late and post-diagenetic processes cause complete oxidation of the micro-nodules and
kremydilites (Fig. 17D). Raman analyses of spherical nodules of sample 75-B2 show that central
parts of micro-nodules were transformed to hollandite/vernadite and organic matter, around which
cryptomelane and nsutite (pyrolusite and ramsdellite) crystallize (Fig. 17F). The minerals of the

kremydilites are entirely oxidized during post-diagenetic conditions and transformed mainly into
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cryptomelane, hollandite, braunite, with little organic matter, hematite and goethite, generating the
massive manganese ore of the Urucum and Mn-2 and Mn-3 layers (Fig. 17G). From time to time,
coarse detrital influx disturbed the calm formation of microbial mats, resulting in turbiditic
accumulation. It has been proposed that these turbidites were caused by earthquakes from rifting
activity (Biondi and Lopez 2017). The most probable source of ore was hydrothermal, exhalative

in submarine environment (Biondi and Lopez 2017 and references therein).

7. CONCLUSIONS

High-resolution Raman and AT-FTIR spectroscopy used on Mn ore samples of Mn-1, Mn-2, and
Mn-3 ore beds in the ca. 550 Ma Urucum deposit yields information used to construct a self-
consistent model for the formation of these ores. This approach was used to document numerous
metastable, poorly crystallized mineral phases and organic matter that represent the remnants of
primary microbially mediated Mn and Fe minerals.

1. Based on mineralogy, the proto-ore sedimentation and the diagenesis of the Urucum Mn
ore deposit occurred under suboxic-obligatory oxic and semi-neutral to alkaline conditions, where
microbial Mn?* enzymatic oxidation (with reactive organic matter) resulted in fine-grained
accumulation of Mn oxides (Cycle I).

2. The sharp contact between the manganese and iron layers represents that horizon, where
the obligatory oxic conditions facilitated the start of enzymatic Mn oxidation (Mn engine), which
overwhelmed microbial Fe oxidation. The Fe biomat system existed via all Mn ore beds, but with
different intensity. Fe and Mn occurred together in an intimate form.

3. Heterotrophic microbially mediated Mn reduction (Cycle II) developed only locally
embedded in the form of oxide kremydilite structure, which represents a unique, new ore type.

Among the kremydilite structures, regular double-microbial mineralogical cycles formed with
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alternating mineralized Fe- and Mn-oxidizing bacterial activity (microbialite). Detailed study
raised that kremydilite and oblate structures formed on the effect of heterotrophic cell colonies,
whose activity overprinted the original lamination. The Mn reduction resulted in rhodochrosite
(Cycle II) a characteristic constituent in these structures. The reason that rhodochrosite formation
did not become dominant in the form of laminae is the smaller amount of organic matter
accumulation, which allowed for Mn reduction via diagenesis only in random centers, resulting in
diagenetic kremydilite. That is why oxic-suboxic mineral stabilization and diagenetic mineral
formation became dominant.

4. Mn-1 follows the basin floor relief, whereas Mn-2 and Mn-3 occur as horizontal beds in
the ironstone pile. The ore formation started with flooding on porous fluvial sediments, and the
ore forming fluids (Fe?* and Mn?") infiltrated and microbially colonized the pores in a woven form,
and around the clastic particles on chemical (Fe?*, Mn?*) nutrients, in the sediment to the depth
where diffusion was active. In the extracellular polymeric substance network, diagenetic minerals
along with clastic material became dominant.

5. The Fe-oxidizing bacteria continued forming ironstone, under suboxic conditions, in
which oxygen supply was not favorable for Mn-oxidizing bacteria.

6. From time to time, coarse detrital influx disturbed the calm biomat formation, resulting
in clast accumulation, which interrupted the fine microbial lamination. These turbidites may have

been caused by earthquakes (due to rifting activity).
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FIGURE CAPTION

Fig. 1. (A) Map showing the positions of manganese layers Mn-1 to Mn-3 and the mines of the
central Urucum region (modified after Urban et al. 1992, Biondi and Lopez 2017) and, (B)
S — S’ regional geological section. The thicknesses of layers Mn-1 to Mn-3 are exaggerated
by a factor of approximately ten. UTM coordinates referenced to Datum WGS 84.

Fig. 2. Stratigraphic columns made in the region of manganese and iron mines of Urucum, and
sample locations. Note that the Mn-1 layer is not flat, and its shape is adapted to the basin
floor while Mn-2 and Mn-3 are plane-parallel (modified after Urban et al. 1992, Biondi
and Lopez 2017).

Fig. 3. Representative samples of Mn-1 (A-C), Mn-2, and Mn-3 (D-F). (A) Sample of silt, massive
Mn-1 (fragments of quartz, altered feldspar, apatite, chert). (B) Clast-bearing, massive-,
arkosean-, Fe-rich sample from Lower Mn-1. (C) Oblate amygdalite-bearing massive, fine-
grained manganese ore, with arkosean Fe-rich bands. (D-F) Kremydilite in its most
developed form after diagenesis, sawed according to orthogonal planes, showing its oblate
form. (D) Kremydilite sawn according to orthogonal planes, showing its oblate form. (E)
The concentric organization of the several layers that constitute complex kremydilite, each
concentric layer with limits marked by pores. (F) Schematic drawing of a cut kremydilite,

illustrating its shape and its interior. For more representative samples see SI-3-Fig.
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Fig. 4. Different stages of development or growth of kremydilites. The text in the figure explains

each stage. Bubbles: oblate structures. (A-I): photos of polished surfaces, (K)

photomicrograph.

Fig. 5. Photomicrographs (reflected light) of the micro-nodules that constitute the massive parts of

the Mn-2 and Mn-3 ore beds. (A-B) The larger nodules, less than 0.8 mm (3A) at present
are formed mainly by cryptomelane and hollandite, and the matrix is hematite (Biondi and
Lopez 2017). (C-D) Most micro-nodules are zoned, with a dark, porous nucleus. A, C, D
photos are photomicrographs made by optical rock microscope, reflective mode, (B) is

back scattered electron image by EPMA.

Fig. 6. Micro-textural features of samples (photomicrographs). Mineralized microbial

biosignatures. (A) biomat (arrow, sample 36-A); (B) clastic particles (arrow, reflected light
I N, sample 4B); (C) mineralized microbial biosignatures (arrows, reflected light 1 N,
sample 75-2, rectangle shows enlarged area); (D) mineralized microbial biosignatures
(arrows, reflected light 1 N, sample 75-2, enlarged area on C); (E) mineralized microbial
biosignatures (arrows, IN, transmitted light, sample 7); (F) mineralized microbial
biosignatures (arrows, reflected light 1 N, sample 10); (G, H) mineralized microbial
biosignatures (arrows, IN, transmitted light, samples 32 and 36-Al). On (G) putative
cyanobacteria are shown by arrow (based on similarity published by Gyollai et al., 2015

on Namibian Neoproterozoic sample).

Fig. 7. Mineralogy observed under cathodoluminescence microscopy. (A, B) Typical CL image of

Fig. 8.

Mn-1 samples. Bright blue luminescence is characteristic of kaolinite group-dickite
(supported by Raman spectroscopy, Gotze et al. 2002); bright yellow minerals are apatite
grains; the fine-grained rhodochrosite (mixed carbonate) show dull reddish (orange)
luminescence color. (C, E, G) transmitted light photos by 1N, crossed N, and CL images
of the same area of sample 7. (D, F, H) transmitted light photos by 1N, crossed N, and CL
images of the same area of sample 10. Circles show the clastic-like but non-luminescent
mineral grains.

Results of the FTIR analyses of the kremydilite sample 48-B and interpretation of the
results. (A-B) Image of sample (A), its concentric shells (layers) and location of the
analyzed points (B). (C) Simplified proposed syngenetic minerals that build up each layer.
(D) Interpretation of early diagenetic minerals detected by FTIR. Abbrev.: fehy-
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Fig

Fig

Fig

Fig

Fig.

Fig.

Fig.

ferrihydrite; Mnox-Mn oxide and hydroxide; manji-manjiorite; todor-todorokite; cryp-
cryptomelane; birn-birnessite; qz-quartz; rhod-rhodochrosite; Mndol-Mn-bearing
dolomite; brau-braunite; goeth-goethite; spherical micro-nodules border: fluffy

micronoduliferous host material.

. 9. Representative part of oblate structure, sample 36-A (A-B) and mineral distribution

(FTIR)(C). (A-B) Microtexture of a part of oblate structure, OM, reflective mode (1 and
xN), arrows show mineralized microbial signatures and diffusion channels. Abbrev: Ferri-
ferrihydrite; Goe-goethite; Rhod-rhodochrosite; Cryp-cryptomelane; C org-organic matter;
Q-quartz; Dol-dolomite; Brau-braunite; Ramsd-ramsdellite; Mx-matrix material; inhom-

inhomogenous, italic-the component is poorly crystallized, minor.

. 10. Raman profiles. Representative alternating (cyclic) mineral micro-lamination in sample 7

(Mn-1) (for detailed section see SI 12-Fig).

. 11. Distribution of minerals in sample 4B (A-B) by Raman spectroscopy. Aegirine, riebeckite,

braunite, quartz, hematite, apatite, hollandite/vernadite identified by Raman (A-B). Mineral
abbreviations are after Whitney and Evans (2010) except bra = braunite, ver = vernadite,

hol = hollandite.

. 12. Distribution of minerals in sample 4B (A-B) by Raman spectroscopy. Braunite, hematite,

apatite, quartz, and K-feldspar were identified by Raman (A-B). Mineral abbreviations are

after Whitney and Evans (2010); except bra = braunite.

13. Distribution of minerals in sample 75-2 by Raman spectroscopy. Cryptomelane,

hollandite/vernadite and nsutite (pyrolusite+ramsdellite) were identified in a micronodule,

as shown in Fig. 5C-D.

14. Composite map from the investigated oblate structure sample 36-A by Raman

spectroscopy—measured areas are indicated on the picture (those places which are detailed

in SI 14-Fig are in yellow color). Abbrev.: M-matrix area, 001 line-rim area.

15. Physico-chemical vs bacterial Fe and Mn oxidation (modified after Garrels and

MacKenzie 1971; Maynard 1983). Eh in Volt. Concerning NR, FeR, MnR, and SR see
Table 5 and note that “suboxic” zone is used for these diagenetic zones in the sense of an
oxidant agent. Sharp-turning contact between Fe and Mn mineralization as transformation

to obligatory oxic conditions is estimated at Eh = 0.4 V (DO > 2mL/L).
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1497  Fig. 16. Kremydilite formation environment on the floor of the Urucum basin. (A) General

1498 environment schematically showing the formation of a layer such as Mn-2 or Mn-3. (B)
1499 Detail of "mud" or silica-clayey biomass sedimented on the basin floor (left side), showing
1500 the evolutionary stages that occur from sedimentation to late diagenesis (right side).

1501  Fig. 17. Cartoon showing the processes of formation of the micro-nodules, oblate structures,

1502 kremydilites, and the massive manganese ore of the Mn-2 and Mn-3 layers of Urucum.
1503 Abbrev.: CM-organic matter. Read text for details.
1504
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"
b crossed stratification
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Whitish and greensh dolomite with
interbeded dolomite breccia

Banded, coarse ferruginous sandstone

Grain ironstone with intercalations or chert
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parallel lamination

E Turbidite or avalanche (channels)
Figure 2.




Pores filled with Mn hydroxides
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Figure 3.
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The onset of microbial activity
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P Core
sediment layer oxidizes organic
matter and generates gas bubbles.
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— e = . ) ) ) ‘poruus nUCleoUs | — | Lim'r_toftl_-;e region
—— \  After the oxidation of the organic e shmibohlacivey

e

matter, there remains a nucleus

P === Nucleus of

constituted by pores formed where D
organic matter was oxydized.

The first reactivation of the : , A
microbial activity oxidizes ~ of microbial activity
the organic matter
existing around the nucleus
>

generating a first layer
(shell) of pores around the
nucleus.

The second reactivatio bf microbial activity
forms the second pore layer (second shell)

I The limits of the region
of microbial activity
Last shell ' (= shells) are defined by

N the large concentration
d 4

In a well-developed kremydilite,
the amount of concentric layers
of pores (shells) indicates how

many times there was reactivation
of microbial activity in that location

Figure 4.
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Mineral abbreviations are after Whitney & Evans (2010), except ver: vernadite; hol: hollandite

bra: braunite
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Mineral abbreviations are after Whitney & Evans (2010)
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Physico-chemical vs. bacterial Fe and Mn oxidation
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Sedimentation and early diagenesis
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Table 1. Main features, mineralogical and selective element composition of ore beds (12
samples)(Biondi and Lopez 2017)

Ore bed Mn-1 Mn-2-3
Main features Sandy (fragments of quartz, altered feldspar, | Kremydilite
apatite, chert), laminated, amygdalite-
bearing
Mineralogy Figueirinha-Upper Mn-1 77-98 vol% cryptomelane
30-75 v% braunite 0-23 vol% hollandite
<0.5 vol% aegirine 9-19 vol% braunite
3-15 vol% quartz 7-21 vol% hematite
5-15 vol% feldspar 0-5 vol% clay minerals and CM

1-5 vol% clay minerals, apatite, chlorite
locally 10-30 vol%Fe-dolomite or siderite,
Mn-dolomite

S&o Domingos-Upper Mn-1

(laminated, amygdalite-bearing)

40-75 vol% cryptomelane-hollandite

10-30 vol% quartz

10-15 vol% hematite, apatite, clay minerals
Composition of amygdalite cores

60-90 vol% cryptomelane (hollandite?)
0-10 vol% quartz

5-15 vol% hematite, clay minerals

Santa Cruz-Mn-1

arkozic sandstone cemented by hollandite
(cryptomelane, pyrolusite), quartz, feldspar,
hematite

Composition of ferruginous sandstone
30-40 vol% hematite

60-70 vol% quartz

1-5 vol% clay minerals

Average chemical composition of selective elements (wt. %)

Mn Mn-1 contains a Lower and an Upper part, | 50.06 (SD-2.73%)
Fe whose compositions vary locally, which is | 8.58 (SD-2.59%)
K the reason why it is not possible to | 1.82 (SD-0.75%)
Ba determine the average chemical | 0.29 (SD-0.30%)
LOI composition of this unit. 10.80 (SD-0.88%)

Samples COR-16P, 16M, 17, 36A, 42, 43, 48L, 48P, 61L, 61P, 75 and 78 published in Biondi and Lopez (2017)



Sample ID
COR-81
COR-78-F3
COR-78-D1
COR-75-B5
COR-75-2

COR-48B
COR-36-A1-A2

COR-10
COR-7
COR-6
COR-4B
COR-32

COR-31

Total 14 samples

(photos, spectra)

Layer
Mn-3
Mn-2

Mn-2

Table 2. Samples and used methods

Locality (Fig. 1)

MCR-VALE mine, Sta
Cruz Plateau
Urucum-VALE mine,
Urucum W plateau
Urucum-VALE mine,
Urucum W plateau
Urucum-VALE mine,
Urucum W plateau
Urucum-VALE mine,
Urucum W plateau

MMX mine, Urucum E
plateau

Figueirinha mine, Sta
Cruz N plateau
Figueirinha mine, Sta
Cruz N plateau
Figueirinha mine, Sta
Cruz N plateau
Figueirinha mine, Sta
Cruz N plateau

Sao Domingos mine, Sta
Cruz SW plateau

Sao Domingos mine, Sta
Cruz SW plateau

TS*

X

X

oM
x(34)
X(65)
X(59)
x(63)

x(56)

X(56)
X(95)
X(38)
X(46)
X(43)
X(79)
X(56)

690

CL

x(11)
X(6)

X(9)

X(23)

x(27)

X(10)

x(27)

113

FTIR

X(60)

x(178)
X(50)

x(14)
x(12)

x(37)

X(32)
x(32)

415

Raman

x(1,903)

x(3,456)

X(2,449)

x(1,209)

x(504)

x(504)

X(400)

x(504)

10,997

XRD

Abbrev.: TS-thin section; OM-optical rock microscopy; CL-cathodoluminescence microscopy; FTIR-ATR-infra
red spectroscopy; Raman-Raman spectroscopy; XRD-X-ray powder diffraction
gray background: samples from Mn-2 and 3 beds (Fig. 3-4 and SI 3-Fig)

number of analyses in brackets.



Table 3. Mineral composition

Samples —
Minerals |

COR-6 COR-7 COR-10

COR-31

COR-32

COR-36A1

COR-78F3

Mn minerals
todorokite
ramsdellite
cryptomelane
pyrolusite
romanéchite
serandite
braunite

* %k %

Fe minerals
ferrihydrite
lepidocrocite
hematite
aegirine
pyrite

Other minerals
apatite

feldspar (albite,
anortite)
chlorite

quartz
kaolinite/dickite
celadonite

Organic matter

* * o+ ok
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Table 5. Environmental oxygen levels

Environmental Eh (V) Dissolved FeOB MnOB
oxygen levels oxygen (DO) demand* demand
obligatory oxic 0.4<Eh<1.0 DO >2 mL/L X
dysoxic 0.2-0.4 DO 0.2-2.0 ~0.3
mL/L
suboxic 0-0.2 DO 0-0.2 mL/L
anoxic <0

*: FeOB demand is around the dysoxic-suboxic zone, and suboxic is the generally used as simplified form; abbrev:
FeOB-Fe oxidizing bacteria; MnOB-Mn oxidizing bacteria (Berner 1980; Coleman 1985; Wignall 1994)
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SI 1-Fig. Map and geological section of Urucum
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m = ; Urucum Basin

the Neoproterozoic

SI 1-Fig. (A) Geological map (modified after Urban et al. 1992) and geological cross-section.
Lines with an interpretation of the probable relative depth of the depocenter of the Urucum
marginal basin, and the regional distribution of hydrothermalized granites were added to the

map. (B) Lithostratigraphy of the Urucum mining region (modified after Biondi and Lopez



SI 2-Fig. Stratigraphic columns of the Jacadigo Group

Location in the Urucum basin
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S andMn-2to4 = \assive manganese beds Mn-2, Mn-3 and Mn-4
1< manganese - )
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@ Ferruginous ’ . ’
Conglomerate with arkosean matrix and granite pebbles and boulders
E |SantaCruz |  sandstones 9 ) ) o )
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o faci [ Ferruginous arkosean sandstones
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8 . Conglomerate with sandstones matrix, sandstones with crossed stratificatipn
- Urucum and Bocaina and sandstones with carbonated cement
Formations BES] Dolomitic marble and sedimentary oligomitic breccias with dolomite
fragments

Stratigraphic columns of the Jacadigo Group, arranged from west to east passing through the
basin depocenter. The stratigraphic columns of the Morro Grande Norte and Rabicho plateaus,
located to the north of the basin, were positioned in the right part of the figure (modified after
Urban et al. 1992, Biondi and Lopez 2017). The column elevations are normalized to the

stratigraphic position of layer Mn-2 or, where this layer is absent, to the IF base.
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8 D1 (Mn-2) Urucum

Cut samples
For details see Fig. 1-3 and Table 2.

Scale: 1 cm



SI 4-Fig. Pores and micro-channels in kremydilites

>
'WDBmm SS60

Pores and micro-channels in kremydilites. (A) A set of pores that delineate the micro-layers
that surround the nucleus. (B) Pores covered by acicular microcrystals of cryptomelane. (C-G)
Micro-channels enveloped by acicular microcrystals of cryptomelane (image C = polished
section; images D to G obtained with SEM - Scanning Electron Microscopy)(Biondi and Lopez
2017)



SI 5-Fig. Structure of kremydilite

Detail of the
kremydilite core

Polished section of the sample 48B showing the bands or sheets of Mn-3 layer in between
kremydilite formed (zones 1, 2, 3, and 20 up to 24). Surrounding the core are the most distant
concentric micro-layers, shells (shells 4, 5, 6 and 14 to 18) and the nearest ones (shells 9, 10
and 11). Shells 12 and 13 are in the core of the structure. See text for details (Biondi and Lopez
2017).



The curved and undulating layers (bands) in which kremydilite formed are composed of flakes
whose diameters ranged from 0.8 to 0.2 mm (SI 5-Fig, zones 1, 2, 3; and zones 20 to 24),
apparently composed by the amalgamation of flakes, micronodules smaller than 10 pum (Fig.
4K). The outermost zones (shells) of kremydilite (SI 5-Fig, shells 4, 5, 6, and 14 to 18) consist
of anhedral and irregularly shaped minerals, looking like amalgamated flakes. In these shells
the presence of ring-like structures, composed of dark carbonate microcrystals are common (SI
5-Fig, shell 16 - detail image). The shells closer to the nucleus (9, 10 and 11) are also composed
of mixed anhedral, metallic minerals, but with larger dimensions than the anterior shells. The
nucleus of the kremydilites (zones 12 and 13) are microgranular and with homogeneous

appearances.



SI 6-Fig. Panorama images of the analyzed samples
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SI 7-Fig. Biomat structures of representative samples (arrows)

Optical rock microscopy, reflected light, 1 Nicol (left side) and crossed Nicols (right side)

Sample 32
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SI 8-Fig. Microtexture of samples by optical rock microscopy

Sample 4B
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Sample 7
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Arrows: mineralized microbial signatures
’ .
















Sample 10

20
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Sample-32

The sample is opaque, but at some places we
can look into the material, and microbial
signatures are well visible. The reflective
photos also show dense microbial mediation.
Also, cyanobacteria-like forms are visible.
The opaque part is a very dense microbially
mineralized material.
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dull: non lumin.
yellow: apatite
blue: ,,dickite”

orange: carbonate

500 pm
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(apatite) grains follow biomat texture

yellow

most of the grains looking like debris clasts are non luminescent.
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SI 11-Fig. Interpretation of mineral composition and distribution of spherical
(bubble-like) structure of sample 36-A based on FTIR

Outer area
This area is inhomogeneous, consist of dark spots and bright inhomogenous area.

Matrix

This inhomogenic matrix area was investigated in ,,outer area 1” This part is mixed by
goethite, feldspar, disordered rhodochrosite, traces of cryptomelane. The organic material
contains immaturated hydrocarbons - CH-CCN bonds of amid [-amid II (1520-1660 cm"

1)'

Dark spots

This parts contain ferrihydrite (with traces of goethite), disordered rhodochrosite, traces
of cryptomelane, organic material and maturated, long-chain hydrocarbon (bands 2900-
3100 cm™), and ketons (C=0)

Rim area

This is inhomogenous, composed of a fine-grained area, and coarser crystallized area.
The coarser area is mixture of cryptomelane and broad bands of disordered quartz,
rhodochrosite and dolomite, and traces of braunite. The dolomite has CO3 vibration at
1425 cm™!, the rhodocrosite has near 1390 cm™. This area contains variable organic
material, which contain long chain hydrocarbons (CH2 symmetric and asymmetric
stretching modes 2853-3130 cm™!), and C-O vibration of ketons (2343-2365 cm™)

The fine-grained porous part is composed of ferrihydrite, traces of goethite. This area
contain bands of C-O vibration of ketons at 2343 and 2365 cm™.

Inner area
It was measured by 3 FTIR area (inner area 1-3).

Matrix
The inhomogeneous matrix, which composed of porous, laminated parts, which was
measured by lighter part, darker part, and average inhomogeneous part:

The lighter part (area2) is mixture of cryptomelane, quartz, and dolomite, and organic
material with CH2 bonds (1452-1482 cm!) and ketons (C=0).

Inhomogenous matrix (areal) dark parts contains dolomite, ferrihydrite, cryptomelane.
Porous inhomogenous matrix (area2) is also mixed material, which contain cyptomelane,
ferrihydrite, dolomite (traces) and organic material with CH2 bonds (1452-1482 ¢cm™)
and ketons (C=0).

Dark spot
The inner area 3 focused on dark spots, which are composed of mixture of ramsdellite,

quartz and dolomite, and contains organic material of long-chain hydrocarbons (2900-
3100 cm™), ketons, and CN-CH bonds of PAHs.
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36-A FTIR vibrations

Part of spherical Outer area Rim Inner area
structure
Component Matrix Dark Matrix Dark
spot spot
Measuring area 1 2 1 1 2 3
Texture _ - ~ .
= . p= .
Sr | B [£E|E| £ | E| E | 2|z
eS| T ER) s 2 B 2 |2 °
Total No. of 5 5 2 2 2 3 4 5
spectra—
Mineral Ref | Wavelength [cm™]
phase
dol 1 720, 888, 1425, (1 |2 3 @))] 5
rhod 1 729, 860, 1394 5 5 2)
goe 798, 910, 3400 5 5) 2
trace)
ferri 7 692, 878, 3400 5 2 2 3 4
ramsdellite | 8 740, 880, 3420 5
feldspar 2 798, 950, 1000 5
(albite)
cryptom 8 600, 760 ®) ) 2 2 3 4
braunite 1 699, 940 (2)
quartz 2 701, 776, 1059 2 5
Organic
compound
s
vs CO 9 1360-1450 5
d CH2 9 1454-1482 5 4
C-N, CH|9 1526 5 5 5
deformatio
n
C-N N-H|9 1540-1550 5 5 5
amide II
amide (9 1632-1652 5 5 5
C=0, C-N,
N_H
CcO 9 2343 2 2 4 5
CO 9 2365 2 2 4 5
C-H sym. |9 2853 5 5 2 5
Stretch
CH2
C-H asym. |9 2926 5 5 2 5
Stretch
CH2
CH2/C=C |9 3130 5 5 2
OH 5 3230-3700 5 5
Summary table of mineral phases (References see in SI 10-Table).
Outer area Rim Inner area
inhom. dark spot coarse fine- inhom. inhom. dark part light dark spot
matrix grained matrix1 matrix2 part
goe ferri cryptom ferri ferri ferri ferri cryptom ramsdellite
feldsp goe quartz goe cryptom cryptom cryptom quartz quartz
rhod rhod rhod dol dol dol dol dol
cryptom cryptom dol
brau

Abbrev: goe-goethite, ferri-ferrihydrite, feldsp-feldspar, rhod-rhodochrosite, cryptom-cryptomelane, dol-dolomite, brau-braunite
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36-A — Microtexture of spherical (bubble-like) structure,OM, reflective mode, arrows show mineralized
microbial signatures and diffusion channels.

0,5 mm
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SI 12-Fig. Mineral distribution in profiles by Raman spectroscopy

Abbrev: Plg+Kfs-plagioclase+F-feldspar; CM-carbonaceous material (organic matter)

4B (Mn-1)
0 1000 2000 3000 — -
] ] 1 ] Aegirine
50 3 1050 2050 3050 — Quartz
3 ] ] ] — Apatite
100 - 1100 - 2100 3100 - — Braunite
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200 1200 > 2200 3200
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QO =, ] A 3
Q 500 1500 2500 3500
8 1 E 3 E
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[=) ] 1 :5 ]
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] B 1 ]
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900 | 1900 2900 3900
950 1950 2950 ] 3950
1000 - 2000 - 3000 -1 4000 -
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10 (Mn-1)
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31 (Mn-1)
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75-B5 (Mn-2)
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78-D1 (Mn-2)
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81 (Mn-3)
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SI 13-Fig. Mmeraloglcal dlstrlbutlon by Raman spectroscopy (sample 75-2)
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Hollandite/Vernadite
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All the spectra taken in the fluffy parts, micronodules (cell colonies) and matrix material
show dominant vernadite/hollandite-type Mn-oxides-hydroxides composition and more
or less amount of cryptomelane and variable organic matter. The textural differences do
not show significant mineralogical differences. The fluffy,micronodules are cell colonies
(clusters), the central part consists of hollandite/vernadite (G) and organic matter, around

which cryptomelane and nsutite (pyrolusite + ramsdellite) occur.
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SI 14-Fig. Mineral phases and distribution in spherical (bubble-like) structures
measured by Raman spectroscopy

1. Outer part

The “dark spots” in the matrix (M2 and M4 on Fig. 1) are mainly empty except dark
porous inner rim with various thickness, which consist of hollandite type Mn oxide phase
(dominant phase), cryptomelane and goethite (Fig. 2-5). The matrix among the “dark
spots” (M1 and M3 on Fig. 1) is built up also by hollandite, cryptomelane and goethite
(Fig. 2-5). The occurrence and distribution of the three minerals are consistent in the
matrix material any trend in their distribution was not observable.

2. Rim

The non-porous rim of the spherical structure ,,bubble-like structure” (001 line on Fig.
1) mainly consists of hollandite and cryptomelane in variable amounts (Fig. 6). Rarely
among the hollandite-cryptomelane flakes fine-grained clusters of goethite occur (Fig. 6).
The distribution of the mentioned phases are indicative of gradually drop of peak intensity
related to hollandite and cryptomelane phases in the direction from the spherical structure
("bubble-like structure)" to the matrix (Fig. 6).

3. Inner part

The matrix of the inner part of the spherical (bubble-like) structure is composed of
very fine grained goethite (ferrihydrite) and little particles of Mn oxides (hollandite,
cryptomelane in variable amounts), however hollandite is the dominant in the dark spots
(Fig. 7-11). The mineral composition of the matrix and the dark spots show a unified
distribution, any difference or significant trend in the matrix or in the dark spots was not
detected.

Representative sample areas where Raman spectra were acquired (the other
measured areas have similar mineral composition and distribution).
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Figure 1.: Composite map from the investigated spherical (bubble-like) structure - measured areas are
indicated on the picture (those places are detailed in this short report are in yellow color)
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Figure 2.: Measuring points and Raman spectra from place indicated by M1 on Fig. 1.
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Figure 3.: Measuring points and Raman spectra from place indicated by M2 on Fig. 1.
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Intensity (arbitrary unit)

i
N
A b A \wn“?\\\' 1.
\\; ;/\~er ﬁﬁ\l
Ay
N JMH/ pv/{‘v\\b**\ 2
I !
\/WA ! AP,
/ 4
NV I —
,»'1\/ ,‘1\\ 6.
M \AA 1 M
) (hl W1 7

200 400 600 800 1000 1200 1400 1600 1800
Raman shift (cm‘1)

Figure 4.: Measuring points and Raman spectra from place indicated by M3 on Fig. 1.
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Figure 5.: Measuring points and Raman spectra from place indicated by M4 on Fig. 1.

Peak at 800 cm! can be UO2 or janhaugite (Na,Ca)3(Mn?* Fe?")3(Ti,Zr,Nb)»(Si207)202(OH,F)»
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Figure 6.: 001-line map (indicated by yellow line marked with 001_line caption on the
image).
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Inner part
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Figure 7.: Map indicated on the composite picture by yellow box marked by number 1.

The leftmost part of the spherical (bubble-like) structure consists of goethite (ferrihydrite)
and little particles of Mn oxides (hollandite, cryptomelane in various amount), however
hollandite is the dominant in the dark spots.
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Figure 8.: Map indicated on the composite picture by yellow box marked by number 8.
The dark spots have porous hollandite (cryptomelane, goethite) rims indicated on (Fig. 8.
1-4, 7, 8) while in the matrix among dark spots the Mn oxide has higher cryptomelane
content (Fig 8. 5, 6, 9-11).

= | 3

= |

5 I I

> i 1M 4

g I

8 I I\

R M 3.

2 | |

@ INATT 1) 6.

5 |

2 i

£ I | 7
I

200 400 600 800 1000 1200 1400 1600 1800

Raman shift (cm'1)

Figure 9.: Map indicated on the composite picture by yellow box marked by number 15.
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Figure 10.: Map indicated on the composite picture by yellow box marked by number
20.
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Figure 11.: Map indicated on the composite picture by yellow box marked by number
25.

Comparing the mineral phases and distribution in the outer, inner and rim area of the
measured spherical (bubble-like) structure, they are similar.
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