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Abstract 

Background. Difference in joint mechanics between running shoes are commonly assessed 

using discrete parameters, yet statistically significant differences in these parameters between 

shoes are often scarce with small effect sizes. Statistical parametric mapping (SPM) has been 

suggested as suitable method for analyzing one-dimensional data such as kinematic, kinetic 

or muscle intensity time series. 

Research question. The purpose of this study was to determine differences in treadmill 

running mechanics between novel running shoes using SPM.  

Methods. Joint kinematics, muscle activity and ground reaction force were assessed in 19 

rearfoot runners in their own shoes and in two test shoes during treadmill running (test shoe 

1: 13 distinct rubber elements in the outer sole, springboard within EVA midsole with 

posterior elements shifted anteriorly by approximately 1.5 cm; test shoe 2: 17 distinct EVA 

elements with conventional heel geometry). Joint kinematics were measured using an inertial 

sensor system, and ground reaction force was measured using an instrumented treadmill. 

Results. SPM analysis with repeated measures ANOVA revealed significant reductions in the 

ankle angle and in tibialis anterior, peroneus longus, vastus medialis and lateralis muscle 

activity during weight acceptance and in peroneus longus muscle activity during early and 

late swing and in semitendinosus muscle activity during late swing for the test shoes. 

Significant differences in muscle activity were observed in the interval of the main activity of 

the respective muscle. SPM on individual data revealed statistically significant and relevant 

within-subject differences between conditions in kinematic, muscle activity and ground 

reaction force patterns. 

Significance. Inertial sensor systems and SPM may provide an efficient way of detecting 

changes in joint mechanics between running shoes within runners. Detecting within-subject 
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differences in running mechanics between conditions not only requires statistical criteria but 

also criteria on the relevance of the magnitude of differences. 

 

Keywords: running shoes; statistical parametric mapping; electromyography; joint 

kinematics; ground reaction force 
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Introduction 

Running shoes are characterized by the geometric and material properties of the sole 

construction and the shoe upper that are known to affect running biomechanics.1,2 Recently, a 

shoe design has been introduced to the market comprising open interlocking rubber 

components on the outer sole in the heel and forefoot regions presumably cushioning landing 

and providing firm push-off. An early model of this novel shoe had little effects on selected 

ground reaction force parameters but shifted the center of pressure compared to runners’ own 

conventional running shoes.3 Other modifications in sole design have resulted in changes in 

foot and leg kinematics4, kinetics2,5,6 and in inconsistent shoe-induced changes in muscle 

activity between runners.7-9 Similarly, we expect that the novel shoe design will also cause 

changes in running biomechanics.  

 

Assessing joint kinematics and kinetics and lower extremity muscle activity during running 

has been important not only in the development of novel footwear2,10-12 but also in 

understanding the development and risk of injuries.13-15 These time series are characterized 

by their cyclic patterns and often described by few discrete parameters, i.e. zero-dimensional 

metrics, such as peak values or range of motion1,13-15 assuming that these parameters are 

functionally relevant. However, discrete parameters do not capture important aspects of time 

series such as the shape of the pattern and hence are limited in their ability to detect 

differences between conditions or populations. Other approaches considering the entire times 

series apply complex statistical methods such as principal component analysis.16-18 Results of 

such analyses are difficult to interpret because the principle axes do not coincide with 

anatomical or functional axes. Recently, statistical parametric mapping (SPM) has been 

suggested as suitable method for analyzing one-dimensional (1D) data such as kinematic, 

kinetic or muscle intensity time series and shown to be superior to the over-simplification of 
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discrete parameter analyses.19 For instance, SPM has been used to detect differences in knee 

kinematics between patients after anterior cruciate ligament injury and healthy control 

subjects20, gait compensations after tibiotalar arthrodesis 21, differences in muscle intensity 

during walking between age groups22 and differences in ground reaction force between 

running at different running speeds.19 

 

In recent years, inertial measurement units (IMUs) have gained popularity for assessing joint 

kinematics during running. Advantages of such systems include their ease of use, high 

efficiency and ability to measure data in free-living as opposed to laboratory environments. 

Kinematic waveform patterns measured with these systems are comparable to those measured 

using standard instrumented 3-dimensional gait analysis with reflective markers and high-

speed cameras.23,24 Moreover, spatiotemporal and discrete kinematic parameters computed by 

IMU systems have shown good within and between day reliability.23,25  

 

The purpose of this study was to determine differences in treadmill running mechanics 

between novel running shoes using SPM. We hypothesized that waveforms of joint 

kinematics, ground action force and electromyographic (EMG) signals differ between the 

tested running shoes. 

 

Materials and methods 

Nineteen habitual rearfoot runners with a minimum weekly running distance of 20 km to 

prevent possible fatigue during the test (11 female; age, 27.7 ± 8.6 years; height, 1.75 ± 0.08 

m; body mass, 66.1±12.3 kg; body mass index, 21.6 ± 2.5 kg/m2; weekly running distance, 

42.3 ± 18.6 km) participated in this study after providing informed consent. This study was 
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approved by the institutional review board and conducted in accordance with the Declaration 

of Helsinki. 

 

Written informed consent was obtained prior to participation. Participants were able to 

familiarize with treadmill running at their self-selected running speed that was kept constant 

for all shoe conditions. Surface electrodes were placed bilaterally. Inertial sensors were 

attached to the lower extremity and pelvis. Subsequently, participants walked for 1 minute 

and ran for 5 minutes with the three different shoes while kinematic, EMG and force data 

were collected. The study was designed as a modified block design. Participants first wore 

their personal running shoes to ensure capturing their habitual running mechanics (mean 

mass: 274 ± 42 g; mean drop: 10.1 ± 2.2 mm; 13 training and 6 competition; 6 stability and 

13 neutral; 13 posterior heel flare). Subsequently, two test shoes (both On AG, Zürich, 

Switzerland; Figure 1) were tested in randomized order. The Cloudsurfer (260 g, drop: 7.0 

mm; training; neutral) comprises 13 distinct rubber elements in the outer sole and a 

springboard within the EVA midsole where the posterior elements are shifted anteriorly by 

approximately 1.5 cm compared to a standard running shoe. The Cloud (165 g, drop: 6.0 mm; 

training; neutral) comprises 17 distinct EVA elements with heel geometry similar to that of 

conventional running shoes. 

 

Sagittal plane joint angles of the ankle, knee and hip were measured using the RehaGait® 

system (Version 2.0.7.2; Hasomed GmbH, Magdeburg, Germany) consisting of seven mobile 

inertial sensors and analysis software.23 Sensors were firmly attached bilaterally to the lateral 

aspect of the heel, shank and thigh using Velcro belts. One sensor was attached to the skin 

overlying L4 using double-sided tape to ensure secure location on the skin. The system was 

calibrated during a 10-s standing trial and a 10-s slight squatting movement. Kinematic 
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patterns for running including information on the time of heel-strike were exported for further 

analysis. Kinematic data were cut at heel-strike, and all steps time normalized to the gait 

cycle (101 data points per gait cycle). 

 

Simultaneously with the kinematic measurements, EMG data were collected using a 14-

channel EMG system (Biovision, Wehrheim, Germany; sampling rate, 2400 Hz; bandwidth, 

10–700 Hz; gain range, 1000–5000). Bipolar round Ag/AgCl surface electrodes (Noraxon 

U.S.A. Inc., Scottsdale, AZ, USA; 10-mm diameter, 20-mm inter-electrode distance) were 

placed bilaterally on the tibialis anterior, gastrocnemius medialis and lateralis, peroneus 

longus, vastus medialis and lateralis, and semitendinosus muscles according to the European 

recommendations for surface EMG (SENIAM)26 after shaving and cleaning the skin with 

alcohol. To reduce movement artifacts, amplifiers and cables were taped to the skin. The 

ground electrode was placed on the left tibial tubercle. EMG signals were recorded for the 

treadmill running trials and high-pass filtered (4th order Butterworth filter; cut-off frequency, 

20 Hz). After full-wave rectification, the moving average was calculated with a time constant 

of 41.7 ms. EMG intensities for each muscle were normalized to the average of the maximum 

EMG activity of all trials during running with the participant’s personal shoes. EMG intensity 

traces were cut at heel-strike, and all steps time normalized to the gait cycle (101 data points 

per gait cycle). 

 

Ground reaction force between the foot and the treadmill were captured using an 

instrumented treadmill with an embedded plantar pressure plate (h/p/cosmos, Zebris FDM-T; 

7168 sensors; area, 1.5 * 0.5 m2; range, 1–120 N/cm2; precision, 1-120 N/cm2 ± 5%; 

sampling rate, 120 Hz). The shoe print was divided into three regions: heel, midfoot and 

forefoot. The vertical ground reaction force was calculated for the entire contact area and 
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normalized to body weight. Force data for each step were time normalized to the gait cycle 

(101 data points per gait cycle). 

 

We tested the null hypothesis that there are no differences in 1D biomechanical data between 

the different running shoes by statistically examining the entire times series using SPM. All 

SPM analyses were conducted in Matlab (MathWorks Inc., Natick, MA, USA) using the 

open-source software package spm1D 0.427 (www.spm1d.org). Between-condition statistical 

analyses were conducted as described by Pataky.27 Briefly, repeated measures analyses of 

variance (ANOVA) were performed on all three conditions with post hoc paired t-tests to 

compare condition pairs. The null hypothesis was rejected if the experimentally computed t-

value for trajectory 1D data exceeded the critical value that smooth, 1D multivariate Gaussian 

data would reach in an infinite number of experiments involving smooth 1D data. For each 

subject and condition, data for 20 steps were available and the mean trajectory was computed. 

We detected differences between shoes for the entire group. In addition, we detected 

differences between conditions for each subject and 1D parameter. The significance level for 

all statistical tests was set a priori to 0.05. A relevance criteria was defined as the root mean 

square error of repeated measurements for the same condition.23 Statistically significant 

differences in 1D force and EMG patterns were considered relevant if the difference between 

conditions were greater than 5%. 

 

Results 

Cadence and stride duration did not differ significantly between shoes (Table 1). Running 

speed was kept constant for all test conditions and was 2.98 ± 0.39 m/s. 
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The SPM analysis with repeated measures ANOVA revealed significant differences between 

shoe conditions in the ankle angle and in tibialis anterior, peroneus longus, vastus medialis 

and vastus lateralis muscle activity during weight acceptance (Figure 2). Moreover, 

differences between shoe conditions were observed in peroneus longus muscle activity during 

early and late swing and in semitendinosus muscle and tibialis anterior activity during late 

swing (Figure 2). 

 

The Cloudsurfer (interlocking elements, altered heel geometry) reduced the ground reaction 

force during push-off and the foot to ground angle during early swing compared to the own 

shoes (Figure 3). Moreover, the Cloudsurfer reduced tibialis anterior and semitendinosus 

muscle activity during late swing (Figure 3). 

 

The Cloud (interlocking elements, normal heel geometry) did not change kinematic or kinetic 

parameters compared to the own shoes (Figure 4). However, the Cloud reduced tibialis 

anterior and vastus medialis and lateralis muscle activity during weight acceptance, peroneus 

longus muscle activity during early swing and semitendinosus muscle activity during late 

swing (Figure 4). 

 

SPM on individual data revealed statistically significant differences between conditions for 

some participants and most parameters. Applying the relevance criteria23 substantially 

reduced the participant-parameter-time interval combinations with statistically significant and 

relevant differences between conditions. Specifically, participants showed differences 

between conditions based on SPM and the relevance criteria only for some parameters, and 

these differences did not occur in the same parameters or during the same gait phase among 



 10 

these participants (Figures 5 and 6). Systematic differences depending on the properties of the 

control shoes were not observed.  

 

Discussion 

The purpose of this study was to determine differences in treadmill running mechanics 

between novel running shoes using SPM. We hypothesized that waveforms of joint 

kinematics, ground reaction force and EMG signals differ between the tested running shoes. 

SPM on group data detected only small differences in kinematic parameters between all 

shoes. Interestingly, SPM revealed difference in muscle activity for several leg muscles 

during different phases of running. Within individuals, SPM revealed statistically significant 

differences between conditions for most time series during most of the gait cycle. However, 

the magnitude of these differences did not always achieve relevance according to predefined 

criteria. Overall, SPM revealed differences in running biomechanics between the running 

shoes tested in this study. 

 

In recent years, SPM has been increasingly used to investigate differences in ambulatory 

mechanics. For instance, Tam et al.28 observed differences in sagittal plane kinematic at the 

knee during late stance and swing and at the ankle during early stance, mid-stance and swing 

phase, differences in vertical ground reaction force during early stance but no differences in 

EMG signals of selected muscles between barefoot and shod running in habitually shod 

runners. Similarly, SPM did not reveal posthoc differences in EMG intensity of selected 

lower leg muscles during walking between young and adult groups in a study by Robinson et 

al.22. These results are in contrast to differences in muscle activity between running shoes 

observed in our study. Sole et al.20 applied SPM to detect differences in knee trajectories 

during stair descent between participants with previous anterior cruciate ligament rupture 
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who underwent reconstruction or only physical therapy and healthy controls. Participants 

who received only physical therapy had a combination of less flexion at initial foot contact 

and less adduction during weight acceptance than healthy controls, but stair walking 

mechanics did not differ between patients after reconstruction and healthy controls. Reported 

differences in these studies were mostly below 3°, and none of these studies applied clinically 

or functionally based criteria to determine the relevance of observed differences. 

 

SPM detected some kinematic differences between shoe conditions. However, after applying 

the additional relevance criteria, these condition differences vanished. Interestingly, both 

shoes did not elicit any major changes in ankle, knee or hip kinematics although muscle 

activity in both shank and thigh muscles were affected. Reductions in muscle activity 

occurred in the interval of the main activity of these muscles, and hence are highly 

functionally relevant. These reductions were observed despite of constant running speed, 

cadence and stride time with both test shoes implying that running with these shoes should be 

more energy efficient 29. This result is particularly interesting because few studies have 

studied the effects of footwear on muscle activity and most reported inconsistent shoe-

induced changes in muscle activity between runners.7-9 The observed reductions in muscle 

activity may explain the feedback by some runners who had improved their performance or 

reported being able to return to running in these shoes after experiencing pain in conventional 

running shoes. These observations are further supported by differences in running economy 

when running with different running shoes as observed by Lussiana et al.2. The tibialis 

anterior muscle slows the foot roll-over motion during landing through eccentric contraction. 

Changes in the demands for eccentric contractions of the tibialis anterior may be highly 

relevant for some athletes. For instance, reducing eccentric activity of the tibialis anterior 

during landing may be beneficial in patients with chronic exertional compartment syndrome 
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without having to change their strike pattern.30 Moreover, hamstring activity before landing is 

necessary to decelerate and control the swing of the leg (semitendinosus) in preparation for 

landing. Finally, peroneus activity during weight acceptance is responsible for stabilization of 

the ankle joint in pronation, and reductions in its activity suggest a more natural position of 

the ankle joint complex during this phase requiring less muscle activity. 

 

The lack of group differences between conditions for 1D kinematic data may be explained by 

individual differences in these data between conditions. In fact, individual data showed very 

consistent differences in kinematic, EMG and force patterns within subject and condition. 

Moreover, the experimental conditions elicited different kinematic responses in different 

runners with consistent changes in muscle intensity across subjects. These results partially 

confirm previous data of subject specific responses to running footwear.31 Within-subject 

SPM analysis in our study clearly showed that running shoes affect biomechanical patterns 

during the entire gait cycle and not just specific aspects of these patterns. Hence, this method 

may be appropriate for determining kinematic responders and non-responders to specific shoe 

conditions.  

 

The data presented in this study are novel because we applied SPM to detect differences in 

kinematic, kinetic and EMG parameters between running shoes. Multiple tests were 

conducted but we did not adopt a correction for multiple comparisons. This was done because 

this study did not aim to test specific predictions regarding footwear-induced biomechanical 

changes. Instead this was an exploratory study aimed at detecting possible footwear-induced 

effects with maximum sensitivity. We acknowledge that some of these results may be false 

positives, and that further, predictive studies are needed to more clearly elucidate footwear-

related effects. In our study, participants wore their personal shoes that varied in construction 
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and stability parameters. While differences in running mechanics between the test running 

shoes and the same control shoe for all subjects may have led to different results, subjects 

may not adopt their habitual running style in these shoes. Moreover, we only assessed sagittal 

plane joint kinematics using the inertial sensor system. It is possible that the test running 

shoes included in this study may have also affected frontal plane kinematics, which were not 

assessed in our study. Nonetheless, this study showed that SPM can reveal differences in 

muscle activity of lower and upper leg muscles between running shoe on a group and 

individual level. Such analysis may be useful for the evaluation and development of novel 

running footwear. 

 

Conclusions 

To the best of our knowledge, this is the first study to use an inertial sensor system for 

detecting differences in running mechanics between running shoes. Moreover, we applied 

SPM to kinematic data obtained using an inertial sensor system. Greater individual than 

group differences in running mechanics between shoes represents further evidence for 

individual adaptations to running footwear. SPM may be particularly useful for studying 

within subject changes in kinematic, EMG and ground reaction force during running. 

However, because of the small step-to-step variability in biomechanical parameters within 

subjects, detecting within-subject differences in running mechanics between conditions not 

only requires statistical criteria but also criteria regarding the relevance of the magnitude of 

differences. 
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 Table 

Table 1 – Mean (1 standard deviation) of spatiotemporal parameters for the three test shoes 

(own shoe, Cloudsurfer, Cloud). P-values for the analysis of variance are listed. 

Parameter Own shoe Cloudsurfer Cloud P-value 

Cadence (steps/min) 114.4 (7.1) 115.8 (7.4) 115.3 (7.4) .089 

Stride duration (s) 1.053 

(0.065) 

1.040 

(0.064) 

1.045 

(0.064) 

.090 
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Figure captions 

Figure 1 – Photograph of the two test shoes. Top – Cloudsurfer; bottom – Cloud. 

 

Figure 2 – Mean (1 standard deviation) patterns for kinematic, EMG and ground reaction 

force data for the Cloudsurfer (cyan), Cloud (red) and own shoe (black) and time-dependent 

F-values of the SPM (main statistical test; analysis of variance) for all subjects (dashed red 

lines – P=0.05 level). Grey bars indicate regions with statistically significant differences. 

 

Figure 3 – Mean (1 standard deviation) patterns for kinematic, EMG and ground reaction 

force data for the Cloudsurfer (cyan) and own shoe (black) and time-dependent t-values of 

the SPM for all subjects (post hoc results; dashed red lines – P=0.05 level). Grey bars 

indicate regions with statistically significant differences with magnitude above the relevance 

criterion.23  

 

Figure 4 – Mean (1 standard deviation) patterns for kinematic, EMG and ground reaction 

force data for the Cloud (red) and own shoe (black) and time-dependent t-values of the SPM 

(post hoc results; dashed red lines – P=0.05 level). Grey bars indicate regions with 

statistically significant differences with magnitude above the relevance criterion.23  

 

Figure 5 – Mean (1 standard deviation) patterns for foot to ground angle for the Cloudsurfer 

(cyan) and own shoe (black) and time-dependent t-values of the SPM for each subject (post 

hoc results; dashed red lines – P=0.05 level). Grey bars indicate regions with statistically 

significant differences with magnitude above the relevance criterion.23  
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Figure 6 – Mean (1 standard deviation) patterns for kinematic, EMG and ground reaction 

force data for the Cloudsurfer (cyan) and own shoe (black) and time-dependent t-values of 

the SPM for subject 15. Grey bars indicate regions with statistically significant differences 

with magnitude above the relevance criterion.23 
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