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ABSTRACT

Eddy current testing (ET) is one of the Non destructive testing (NDT) techniques for the
detection and evaluation of surface and sub-surface defects in electrically conducting
materials. This technique is the most effective technique for the assessment of heat
exchanger tubes in monitoring the integrity of a heat exchanger system. In performing
the eddy current inspection, probe is the most important component in acquiring
information from the heat exchanger system. It is the main factor that determines the
success of an eddy current testing for optimum and reliable inspection results.

This research work covers the experimental and numerical approach in fabricating an
eddy current probe for tube inspection. The aim of the research is to study the physics
and engineering parameters which can enable us to produce eddy current probes with
the focus of studying the probe coil configuration that affect its sensitivity and
resolution for eddy current testing. With the achievement in fabricating an eddy current
probe that fulfill the requirement of code and standards for tube inspection, the work is
proceed in the study of the effect of inter-coil spacing and coil width to the probe
sensitivity and resolution. The sensitivity and resolution of the fabricated probes have
been studied by measurement of Vpp values and signal phase separation between
internal groove defect (ID) & external groove defect (OD) wall loss at different inter-
coil spacing and different coil width.

The results obtained by both experimental and numerical work have shown that with
reduced inter-coil spacing and coil width, the sensitivity and the resolution of the
fabricated probes will be increased thus giving a better inspection reliability and
performance. This behavior is mainly attributed to the physical parameter of the probe
geometry. With reduced spacing and coil width, the eddy current density becomes
denser in the test specimen at a specific region. This reflects that the resistance for the
eddy currents to flow in the sample is reduced and the phase will be increased. In
addition, with reduced inter-coil spacing between the two coils, the mutual impedance
of the two coils will become dominant thus a denser eddy current will be induced in the
sample. In eddy current testing, defect detection is based on how the eddy current is
disturbed in the sample, with more induced current, more current will be affected by the
presence of a defect thus increase the sensitivity and the resolution of the probe.

In this study, there are good agreement between the experimental data and numerical
model in determining the reliable eddy current probe for engineering application.
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CHAPTER 1

INTRODUCTION

1.1 Background

Non destructive testing (NDT) is the testing of engineering material or component to
detect internal and surface defects or discontinuities using methods which do not
damage or destroy the material under test [1]. NDT techniques are essential in various
sectors of industries, including the transportation, aerospace, automotive, manufacturing,
petrochemical and defense industries [2]. It plays a critical role in assuring that
structural components and systems perform their function in a reliable and cost effective
fashion. They are employed to detect and characterize flaws, as well as to measure
material and structure properties to ensure the continued safety and performance
reliability of components in industry. These techniques improve the performance
reliability of components through periodic In-Service Inspections (ISI), by way of

preventing premature and catastrophic failures [3].

In NDT applications, the eddy current technique is one of the most commonly
performed techniques and has been used for more than four decades for metal
inspection. There are many advantages that make this technique so popular [4]. The
technique is sensitive to various magnetic and structural properties of cenductive
samples. This leads to diverse applications of eddy current testing, such as flaw
detection, proximity measurement, metal thickness measurement, non-conductive
coating thickness measurement, conductivity measurement and metal sorting [5].

Surface preparation prior to inspection is generally not necessary or very minimum,
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