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Abstract 

Green tea has been consumed for thousands of years and its concentrated extract is 

now a popular herbal supplement frequently consumed in isolation or as part of a 

multi-ingredient product. Green tea extract (GTE) is commonly used for its wide 

range of purported health benefits and, as with most herbal supplements, its sale on 

the Australian market is regulated by the Therapeutic Goods Administration without 

requiring pre-market safety or efficacy analysis. Unfortunately, GTE has been 

implicated in over 50 cases of liver damage in the last 20 years, a number of which 

resulted in transplantation as the only option for patient survival. Despite the clear 

link between this supplement and liver injury in these individuals, little is currently 

known in regards to which biochemical pathways are affected during GTE-induced 

hepatotoxicity and the extent to which this is mediated by metabolic products of 

GTE. 

In this study, GTE and individual catechins were metabolised with S9 human liver 

fraction and subsequently analysed using untargeted metabolomics. The results 

confirmed that some metabolism of the GTE had occurred, with the production of at 

least 17 GTE metabolites. Of these suspected metabolites, 10 were also found in the 

metabolised catechins, suggesting that more than half of these compounds were 

metabolites of the catechins in GTE. 

To assess hepatotoxicity, HepG2 cells were exposed to either unmetabolised or 

metabolised GTE at doses equivalent to 1 mg/mL. Additionally, to assess the impact 

of GTE on drug-induced liver injury, another group of cells were exposed to 15 mM 

paracetamol, 1 mg/mL GTE or a combination of both treatments.  The exposure 
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period for all treatments was 24 h, after which small molecule metabolites were 

extracted from harvested cells and analysed using untargeted metabolomics. 

Changes were observed in amino acids, carbohydrates and fatty acids in all treatment 

groups, and the same biochemical pathways appeared to be affected in all GTE 

treatment variations. Cell treatment with GTE metabolites appeared to yield less 

cytotoxicity than those treated with unmetabolised GTE. It was unable to be 

determined whether GTE exacerbated paracetamol-induced hepatotoxicity from the 

results obtained in this study.  

Overall, the findings from this study suggested that GTE causes disruption to cellular 

lipids, proteins, nucleic acids and the mitochondria, potentially as a result of 

oxidative stress. Given the popularity and ready availability of GTE, regulation of 

herbal supplements containing this product must be improved to ensure consumer 

safety and ultimately prevent further cases of liver damage.  
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1. Introduction 

Herbal complementary and alternative medicines (HCAMs) are becoming an 

increasingly popular therapeutic choice amongst consumers, largely due to the 

perception that their natural origin indicates they are a safer option compared to 

conventional medicines.1 Green tea extract is a herbal medicine that has a wide range 

of purported benefits, such as its ability to aid in weight loss and the prevention and 

management of certain chronic diseases, believed to be due to its high catechin 

content.2 

Over the last 20 years there have been more than 50 cases of liver injury in which 

green tea extract has been implicated, with the most severe cases requiring liver 

transplantation.3, 4 The idiosyncratic, acute onset has made it difficult to predict 

which individuals may be predisposed to a hepatotoxic response to this HCAM.3, 4 It 

is currently unknown which green tea extract constituents or metabolites are 

responsible for this liver damage, although the catechins are suspected due to their 

presence in high concentrations. Additionally, the mechanisms by which the 

hepatotoxicity occurs are also poorly understood. 

Using metabolomics for hepatotoxicity analysis is a novel approach which may 

provide insight into both of these unknowns by providing a snapshot of the 

metabolome following exposure to green tea extract and its metabolites, enabling 

conclusions to be drawn about the biochemical responses to these compounds.5 
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1.1 Herbal complementary and alternative medicines 

1.1.1 Background 

Complementary and alternative medicines (CAMs) have become an increasingly 

popular therapeutic option around the world in recent years, with an estimated two-

thirds of the Australian population using these medicinal products.1, 6, 7 This 

popularity led CAM revenue in Australia to reach $4.9 billion in 2018.1, 8 

HCAMs make up a large portion of CAM sales and are typically taken in a bid to 

maintain or enhance the consumer’s health.8 They contain ingredients derived from 

plants, parts of plants (e.g. leaves, flowers, seeds and roots) or other organisms which 

the International Code of Botanical Nomenclature regards as plants (e.g. yeast, fungi 

and algae).9 HCAMs are typically complex multicomponent substances, however, due 

to their natural origins they are generally perceived by consumers to be safer than 

conventional medicines.1, 10 This, however, is a misconception as HCAMs, like 

pharmaceuticals, contain active ingredients capable of causing adverse effects in the 

consumer.6 For this reason, they are required to be evaluated by the Therapeutic 

Goods Administration (TGA) prior to going on the Australian market.9 

1.1.2 Regulation of HCAMs 

The TGA requires that all medicinal products, including HCAMs, be either registered 

or listed with the Australian Register of Therapeutic Goods (ARTG) in order to be 

marketed.9 Whether a medicine is registered or listed is based on whether the 

product’s ingredients are deemed high- or low-risk, respectively, along with its 

indication.9  For a medicine to be registered, the TGA assesses the product to ensure 

its safety, efficacy and quality before approving its addition to the ARTG.9 The 
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evaluation of a medicinal product is carried out based on an extensive report 

provided to the TGA by the manufacturer, which should include data to support the 

efficacy, safety and quality of the substance.9 

Medicines may instead be listed if they are composed of low-risk ingredients at 

appropriate concentrations, manufactured in compliance with Good Manufacturing 

Practice and are only indicated for certain “non-serious, self-limiting conditions” or 

health maintenance and enhancement.9 The TGA does not assess the indications on 

medicines applying for listing on the ARTG.9 Instead, manufacturers must only claim 

to have recorded evidence for their product’s efficacy.9 Whilst they must make this 

information available to the TGA should they request it, it is not a requirement to 

prove they have the documentation in order to be listed.9 

The TGA carries out annual compliance reviews on listed medicines; however, due to 

the sheer number of listed products it is impossible to evaluate all of them.9 Instead, 

random or targeted reviews for noncompliance are undertaken, based on a risk 

management approach employed to identify priority substances.9 Random 

compliance reviews are carried out on a proportion of newly listed medicinal 

products, chosen using a computer-based mathematical model.9 Targeted 

compliance reviews are also carried out on listed products which have been 

highlighted as being potentially noncompliant.9 

The vast majority of HCAMs are listed on the ARTG, meaning they face less stringent 

regulation than mainstream medicines.11 This enables them to reach the Australian 

market with relative ease.6, 9 This in turn is associated with a greater risk to the 

consumer, and leaves many questions surrounding the efficacy, quality and safety of 
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HCAMs.6, 7, 12, 13 To date, a number of safety concerns in relation to HCAM usage have 

been identified, including from research carried out at Murdoch University.7, 12 

1.1.3 Safety issues with HCAMs 

The consumption of HCAMs is associated with a number of safety issues which pose 

a considerable risk to the consumer; for example, batch and product variation, 

contamination, adulteration and the ability of consumers to self-prescribe without 

medical supervision.12-17 

The chemical composition of a given HCAM is subject to variability.7, 14, 15 This 

variation may be due to differences between plant species and variety, growth 

conditions, time and season of harvest, the geographical origin of the herbal 

materials and the harvesting and handling processes involved.7, 15 These factors alone 

can result in significant variation among batches of the same herbal medicine, and 

also between different products containing the same ingredients.7, 14 

A number of HCAMs have been found to be contaminated or adulterated.7, 12, 13 An 

example of a chemical contaminant found in HCAMs is heavy metals.12  A 2015 study 

found arsenic levels well over 10 times the recommended daily limit in one particular 

traditional Chinese medicine.12 This is of particular concern given that arsenic is a 

highly toxic metal which has the potential to cause serious adverse reactions in the 

consumer, or even death.12 Perhaps more concerning is the fact that some HCAMs 

have been found to have been intentionally adulterated, with parts of exotic animals 

and pharmaceutical medications, such as anti-inflammatory drugs.12, 13 A 2018 paper 

found that a number of St John’s Wort samples contained food dye, which was 
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suggested to be a method used by some manufacturers to pass spectroscopic 

analysis with a product that is of inadequate quality.13 

Additionally, the ability of the consumer to self-prescribe poses another risk, 

particularly as many individuals do not disclose their herbal remedy regime to their 

medical practitioners.16, 17 This opens up the potential for herb-herb interactions, if 

the individual is taking multiple herbal remedies, and drug-herb interactions, if they 

are prescribed a pharmaceutical by a doctor who is unaware of the other substances 

being consumed by their patient.16, 17 

HCAMs, like other xenobiotics, are metabolised in the liver.18, 19 For this reason, the 

liver is the main target of toxicity should an ingested substance contain toxic 

compounds, heavy metals or undisclosed pharmaceuticals.18, 20, 21 Additionally, 

herbal compounds may be metabolised into toxic products during hepatic 

metabolism, increasing the risk of hepatotoxicity.18 Thus, HCAMs are becoming 

increasingly implicated in cases of liver damage.22 

1.2 Hepatotoxicity 

1.2.1 Xenobiotic metabolism in the liver 

The liver is the major site of xenobiotic metabolism, where molecules are converted 

into a more hydrophilic form with decreased biological activity in order to enable 

excretion via the kidneys.18, 19 There are two main phases involved in the 

biotransformation process and, depending on the type, xenobiotics may go through 

one or both of these phases prior to being eliminated from the body.18, 19 
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Phase I involves the modification of a molecule via oxidation, reduction and 

hydrolytic reactions to make the xenobiotic more polar, enhancing its water 

solubility.19 This changes the biological activity of the xenobiotic and can be a crucial 

step in the activation of prodrugs.18 The most important enzymes in Phase I 

metabolism are those of the cytochrome P450 (CYP450) superfamily.19 It is 

predominantly the CYP 1-4 families that are involved in xenobiotic metabolism and, 

of these, CYP3A4 is the most abundant.18, 19 

In Phase II, xenobiotics or their metabolites from Phase I are conjugated with 

endogenous compounds via the action of transferase enzymes.18 This process 

generally renders biologically active metabolites inactive and the resulting metabolic 

products are more readily excreted.18 Examples of reactions involved in Phase II 

metabolism are glucuronidation, sulfation and glutathione conjugation.18, 19 The 

majority of these reactions occur in the cytosol, excluding glucuronidation, which is 

carried out in microsomes and mediated by the uridine diphosphate-

glucuronosyltransferase (UGT) enzymes.18 

A third phase was first suggested in 1992, accounting for the efflux of metabolic 

products produced during the biotransformation phases.23 Phase III is considered a 

detoxification reaction, as it is responsible for the final transport of drug molecules 

out of the liver for excretion.23 Whilst no metabolic processes occur during this 

phase, it is important to consider as it has been found that polymorphisms in these 

transporters or inhibition of their activity may predispose certain individuals to herb 

or drug-induced liver injury.24, 25 
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Whilst hepatic metabolism plays an important role in preparing xenobiotics for 

elimination, it can also be responsible for the production of toxic metabolites.18 The 

accumulation of toxic compounds in the liver or metabolic activation of such 

substances may cause hepatotoxicity.18, 24 For example, whilst the majority of 

paracetamol (APAP) is metabolised via Phase II metabolism, approximately 5-15% is 

oxidised by CYP450 enzymes into the highly reactive metabolite N-acetyl-p-

benzoquinone imine (NAPQI).26 At therapeutic doses, glutathione-mediated 

detoxification prevents the accumulation of this toxic metabolite.26 In the event of 

an overdose glutathione becomes depleted, leading to NAPQI build-up and 

ultimately hepatotoxicity.26 

1.2.2 Herb-induced liver injury 

Drug-induced liver injury (DILI) is a major cause of acute liver failure worldwide.27 The 

proportion of these cases that result from herbal medicines has been difficult to 

determine, given the widespread use of HCAMs and underreporting of this usage to 

healthcare professionals.1, 16 However, a recent review found that herbs were 

implicated in approximately 25% of all DILI cases.22 

The majority of herb-induced liver injury (HILI) cases are idiosyncratic, in which the 

cause of damage is dose-independent and unpredictable.22 The pattern of injury 

observed in HILI cases is predominantly hepatocellular, which is associated with 

cellular necrosis and inflammation.4, 22, 28 Cholestatic and a mixed type of injury have 

also been observed to a lesser extent.4, 22, 28 Cholestatic injury occurs when bile flow 

from the liver reduces or ceases due to damage to the bile ducts, resulting in its 
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accumulation in the hepatocytes, while the mixed pattern of injury includes both 

hepatocellular and cholestatic characteristics.2 

Due to the unpredictable nature of HILI, the mechanisms of hepatotoxicity are better 

understood for DILI.29 There are a number of processes involved in DILI that have 

been identified, and it is often a combination of these that contributes to the 

development of liver damage.29, 30 Death of hepatocytes via apoptosis or necrosis can 

occur as a result of exposure to toxic metabolites formed during the 

biotransformation of medicinal compounds.18, 29 Reactive metabolites can act on a 

range of cellular molecules, resulting in loss or change in protein function, lipid 

peroxidation or damage to DNA.29 These metabolites may also induce an immune 

response or stress in the mitochondria and endoplasmic reticulum.29, 30 The 

activation of immune cells results in inflammation, which may exacerbate tissue 

damage in the liver.29 

Herbs contain multiple compounds and even single-ingredient HCAMs are chemically 

complex.10 This is worsened by individuals taking additional herbal or conventional 

medicines, increasing the risk of herb-herb or herb-drug interactions, which could 

also trigger liver injury.16, 17 Whilst HILI cases have been observed in individuals taking 

a single-component herbal medicine, those taking multicomponent HCAMs or 

concurrently taking multiple herbs or medicines have been found to be at an 

increased risk of liver damage.4 Liver injury in these individuals tends to be more 

severe than that observed in individuals taking a single herbal medicine, and females 

have been found to be more susceptible to HILI than males.4, 22, 28, 31  



 9 

It has been suggested that factors such as administration conditions and 

polymorphisms in certain genes may influence an individual’s predisposition to 

developing HILI or DILI.32-34 Fasting may affect the bioavailability or systemic 

clearance of some biologically active compounds, thus individuals who take HCAMs 

in a fasted state may be at an increased risk.32, 33 Significant genetic variation occurs 

in important biological molecules such as the CYP450 enzymes and major 

histocompatibility complex (MHC) classes I and II.34, 35 Polymorphisms such as these 

may predispose certain individuals to a heightened susceptibility to hepatotoxicity, 

although a clear link is yet to be established.34, 36 Specific polymorphisms suspected 

to influence the susceptibility of an individual to DILI or HILI have been found to occur 

at higher frequencies in certain ethnic groups.34 For example, a CYP2B6 

polymorphism is associated with increased susceptibility to ticlopidine DILI and 

occurs more frequently in Asian populations than European.34, 36 It is theorised that 

polymorphisms such as this may partly explain why DILI/HILI is more prevalent in 

individuals of certain ethnicities.35 

There are additional risk factors associated with DILI which may also influence the 

likelihood of HILI.37 It is unclear whether elderly individuals have an increased 

susceptibility to DILI, however it has been observed that the pattern of injury tends 

to be cholestatic as opposed to the predominance of hepatocellular injury in those 

who are younger.37 The reason for this is not yet fully understood, however it may 

be phenotypic or dependent on the type of drug consumed.37 Additionally, whilst 

there is currently no data suggesting that individuals with an underlying liver 

condition are at a higher risk for developing DILI, there appears to be an increased 
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likelihood that they will suffer more severe reactions when liver damage does 

occur.37 

Dosage must also be taken into consideration as it has been suggested that, in the 

belief that HCAMs are harmless, some individuals may take more than the 

recommended daily dose in order to achieve their desired results sooner.4 For 

example, some athletes may turn to supplements rich in antioxidants in order to 

combat the oxidative stress induced by exercise.38, 39 Those that choose to take 

additional supplements may end up with liver damage, as studies have shown that 

an excessive intake of antioxidants may have a pro-oxidative effect.40, 41 

Alarmingly, certain HCAMs that are marketed as being hepatoprotective have been 

implicated in cases of HILI.42, 43 One such herbal medicine which has been gaining 

attention for its implication in hepatotoxicity is green tea extract (GTE).4, 43-45 In 

addition to potentially causing hepatotoxicity in its own right, it has been found that 

GTE may exacerbate liver injury caused by other drugs or herbs.46 For example, 

numerous studies have demonstrated that GTE exacerbates paracetamol-induced 

liver injury, even when consumed at therapeutic doses.46-48 

1.3 Green tea extract 

1.3.1 Composition 

Green tea has been consumed for thousands of years and has a reputation for having 

numerous health-promoting properties, resulting in its popularity continuing to 

increase.49 GTE is a concentrated form of the tea derived from the leaves of the 

Camellia sinensis (L.) plant.2 Unlike other teas, green tea is not fermented prior to 

drying and thus the high concentration of polyphenols found in the leaves is 
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retained.50 For example, it has been found that green tea has a polyphenol content 

up to 100 times higher than black tea.50 In addition to the polyphenols, GTE also 

contains methylxanthine alkaloids and phenolic acids, such as gallic acid.51 Other 

constituents commonly found in dried green tea leaves include proteins; amino 

acids, approximately 50% of which is theanine, an N-methylated derivative of 

glutamine; carbohydrates, such as glucose; vitamins, such as vitamin C; minerals and 

trace elements, such as potassium and aluminium; pigments, such as chlorophyll; 

and volatile compounds, such as aldehydes.50, 51 

Of its many constituents, the major pharmacologically active compounds of green 

tea are the polyphenols and methylxanthine alkaloids.51 The main methylxanthine 

alkaloid found in green tea is caffeine, although some GTE supplements may be 

decaffeinated.51, 52 Other examples of these compounds include theophylline and 

theobromine, although the quantities present in tea leaves are believed to be 

minimal, with levels as low as 0.02 and 0.1% reported in the literature, respectively.51 

Whilst the methylxanthine alkaloids, particularly caffeine, are biologically active, it is 

the polyphenols that are believed to be responsible for the broad range of health 

benefits claimed to be associated with GTE consumption.51, 53 

1.3.1.1 Catechins 

The most important polyphenols are the catechins, which are secondary plant 

metabolites that readily scavenge free radicals, an important property responsible 

for the antioxidant role of green tea.51 The main catechins found in green tea are (-)-

epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate 

(ECG), (-)-epicatechin (EC), with (-)-catechin and other isomers present to a lesser 
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extent (Figure 1).50, 54 The general consensus appears to be that EGCG is the most 

abundant green tea catechin (GTC) and primarily responsible for the various health-

promoting properties associated with its consumption.55 Some studies have found 

other catechins to be present in a higher concentration than EGCG, however this may 

be due to catechin concentration being highly dependent upon the age of the leaf 

from which the tea is derived, with first leaves and buds having been found to contain 

the highest EGCG concentrations.50, 51 In addition to the catechins, there are other 

polyphenols found in green tea, such as quercetin, however these are present in 

significantly lower concentrations.51, 55 

The catechins share a chemical structure composed of one dihydropyran heterocyclic 

ring and two benzene rings, but differ based on the presence or absence of additional 

functional groups (Figure 1).51 The gallocatechins, such as EGC, have an additional 

hydroxyl group on the B-ring; the catechin gallates, such as ECG, have a gallic acid 

group esterified to the hydroxyl group on the pyran ring (Figure 1.1).51 
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Figure 1.1 Chemical structure of the four main catechins found in green tea.56 The catechins each 

contain two benzene rings (A, B) and one dihydropyran heterocyclic ring (C).51 EGC and EGCG are 

classified as gallocatechins due to the addition of a third hydroxyl group on the B-ring.51 EGCG is also 

classified as a catechin gallate, along with ECG, due to the esterification of a gallic acid group (D) to 

the hydroxyl group on the dihydropyran ring.51 
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1.3.2 Catechin metabolism 

As with other GTE components, GTCs undergo biotransformation in the liver prior to 

being excreted.57-59 Phase I metabolism of GTCs has not yet been observed in in vitro 

or in vivo studies, however, it does appear that they may inhibit the activity of certain 

CYP450 enzymes.60, 61 For example, GTE and EGCG have been found to 

noncompetitively inhibit CYP3A4 and competitively inhibit CYP2B6 and CYP2C8.60 

This inhibition of CYP450 enzymes appears to be clinically relevant, and may impact 

the Phase I metabolism of other drugs co-administered with GTE supplementation.60 

Catechins are predominantly metabolised via Phase II processes, with 

glucuronidation, sulphation and methylation appearing to be the major reactions 

involved in the biotransformation of these compounds.54, 57-59 The extensive Phase II 

metabolism of GTCs yields a wide range of metabolites; this is demonstrated by the 

full metabolic profile of EGCG, comprising 22 metabolites, shown in Figure 1.2.61 

  



 15 

 

Figure 1.2. Overview of the pathways involved in EGCG metabolism.61 Catechins are metabolised via 

Phase II reactions such as glucuronidation, sulfation and methylation.61 These compounds may 

undergo several Phase II reactions, leading to the production of a large variety of catechin 

metabolites.61 The metabolic profile of EGCG depicted here demonstrates that at least 22 different 

metabolites can be produced from this catechin alone.61 
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It is  important to note that GTCs may be metabolised at other sites in the body, 

including the small intestine or via microbial metabolism in the colon.59, 62 For 

example, a 2000 study that used rats to understand the metabolism of catechin and 

EC in the small intestine found that, depending on the location of absorption, GTCs 

may undergo methylation, glucuronidation and/or O-methyl-glucuronidation via 

various enzymes during their transfer through enterocytes.62 This has been found to 

occur with catechins absorbed in the jejunum, resulting in a significant proportion of 

these compounds entering the portal vein already partially metabolised.62 In 

contrast, this does not appear to occur with catechins absorbed in the ileum, with 

these compounds being transferred to the portal vein unmetabolised.62 Additionally, 

it was found that the total percentage of catechins that reach the portal vein via the 

ileum was approximately 5-fold greater than those absorbed in the jejunum.62 

1.3.2.1 Methylation 

GTCs undergo methylation by cytosolic catechol-O-methyl-transferase (COMT), with 

all four of the main catechins having been demonstrated to undergo this process.57 

In COMT-mediated methylation, a methyl group from S-adenosylmethionine is 

transferred to the compound being metabolised.19 Compared with EGC and EC, lower 

O-methylation rates have been demonstrated with EGCG and ECG; however, it has 

been found that glucuronidation on the B- or D-ring of EGCG inhibits methylation of 

the same ring, which may explain this observation (Figure 1).57 At high concentrations 

of EGCG, monomethylated EGCG metabolites are the most prevalent, whilst at low 

concentrations the majority of EGCG metabolic products are dimethylated.57 In 

addition to being methylated by COMT, EGCG has also been observed to 
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noncompetitively inhibit its activities by binding to a different site instead of the 

catechol binding site.57 

1.3.2.2 Glucuronidation 

Glucuronidation involves the production of uridine 5’-diphosphoglucuronic acid 

(UDPGA) in the cytoplasm, which is subsequently transported into the endoplasmic 

reticulum where UGT can catalyse its conjugation to the compound being 

metabolised.19 EGCG and EGC have been demonstrated to undergo glucuronidation 

in the liver, with UGT1A1, UGT1A8 and UGT1A9 being the main enzymes responsible 

for these reactions, although UGT1A8 has been shown to have low activity with 

EGC.58 A 2003 study found that the major EGCG glucuronide formed is EGCG-4’’-O-

glucuronide.58 

1.3.2.3 Sulfation 

Sulfotransferases (SULTs) are Phase II enzymes which are responsible for the 

sulfation of compounds, a process which is essential for the metabolism of many 

exogenous substances.19 There are two forms of SULT, one found in the cytosol and 

one which is membrane-bound; it is the cytosolic SULTs which are metabolically 

important.19 These enzymes conjugate 3’-phosphoadenosine 5’-phosphosulphate 

(PAPS) to sulfur, nitrogen or oxygen atoms in the compound being metabolised.19 

Sulfation of EC has been found to occur primarily through the action of SULT1A1, the 

SULT responsible for metabolising phenols, amines and alcohols.19, 56, 59 Sulfation of 

EGCG has also been demonstrated, although in this case it appears to be 

concentration- and time-dependent.56, 59 
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1.3.3 Uses of GTE 

GTE is widely used for its abundant antioxidants and claimed health benefits, 

including weight management, anti-inflammatory properties and protection against 

a number of chronic diseases.2, 63 For example, GTE is supposedly able to protect 

against, or alleviate the symptoms of, cardiovascular and liver diseases, Diabetes 

mellitus, Alzheimer’s disease and even cancer.43, 55, 64-66 These benefits of green tea 

have been extensively researched, with many studies yielding promising results, 

however it is worth noting that there have also been conflicting reports in the 

literature.67, 68 For this reason, further research is required in order to confidently 

establish whether GTE is capable of preventing or treating these diseases in a 

clinically significant manner. 

One of the most popular applications of GTE is for its purported ability to stimulate 

weight loss, a claim which has been researched extensively using mouse models and 

human studies.2, 69-72 The literature is inconclusive as to whether GTE 

supplementation leads to weight loss, although it seems that it may yield a modest 

reduction in weight, but only when administered at high doses.72 It appears that a 

catechin-caffeine combination is required for this weight loss to occur, with studies 

using decaffeinated GTE yielding no significant reduction in weight.52, 73 Furthermore, 

this weight loss is often clinically insignificant, therefore supplementation with GTE 

for this purpose is unlikely to yield substantial results in the consumer.74 

Whilst most individuals appear to be able to consume GTE regularly without ill effect, 

there are a number of cases of hepatotoxicity that have been associated with this 

supplement.4 The majority of these GTE-induced liver damage cases appear to occur 
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in individuals taking the supplement for weight loss purposes.4 As outlined above, 

the dosage required to achieve significant weight loss is likely to be higher than the 

recommended daily limit and, in the belief that the supplements are harmless due to 

their natural origin, consumers may be inclined to take extra doses to obtain the 

results they are looking for. 74 In addition to this, it is currently unknown whether 

long-term consumption of GTE is safe, thus individuals using it for extended periods 

of time, regardless of the purpose, could also be at an increased risk.2 

1.3.4 Hepatotoxicity of GTE 

In June 2018, the TGA issued a safety advisory for consumers and healthcare 

professionals to alert them to the potential for GTE-induced liver damage.44 At that 

time, 20 cases of hepatotoxicity associated with GTE consumption had been reported 

to the TGA, and three of these cases involved products containing only C. sinensis as 

the active ingredient.44 Hepatotoxicity associated with GTE is generally seen in 

individuals using the supplement for weight loss purposes.45, 75-81 The predominant 

pattern of liver injury is hepatocellular, with the acute onset of liver damage at times 

so severe that liver transplantation is the only treatment option.45, 75, 79, 81-85 In cases 

where the hepatotoxicity is caught early, the liver injury was resolved simply by 

discontinuing consumption of GTE.75, 76, 83, 85 In instances where these patients have 

rechallenged their system with GTE, recurrence of hepatotoxicity has been 

observed.3, 4 

Despite the bioavailability of GTCs being low following an oral dose, it can be 

enhanced under certain conditions, such as supplementing in a fasted state or repeat 

administration.33 Other HILI risk factors which have been suggested as contributors 
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to GTE hepatotoxicity include individuals taking concomitant medications, 

consumption of high doses, and gender, with females developing liver damage from 

this supplement more frequently than males.3, 4 Additionally, with growing evidence 

that certain polymorphisms in genes encoding CYP450, UGT and reactive oxygen 

species (ROS)-detoxifying enzymes increase the risk of HILI, along with particular 

MHC class I and II genotypes, the possibility of a genetic basis for the development 

of GTE-induced liver damage in certain individuals cannot be ruled out.86 

A number of weight loss products containing GTE have been associated with 

hepatotoxicity and liver failure, examples of which include Hydroxycut, Exolise and 

SlimQuick.78, 79, 87-89 Hydroxycut has a long history of being associated with 

hepatotoxicity, with more recent events believed to be due to its GTE content; since 

this was uncovered, Hydroxycut products no longer contain GTE as an ingredient.2, 

77, 87 Exolise and SlimQuick are weight loss products containing GTE which have also 

been implicated in cases of liver damage.78, 79, 88, 89 The sale of Exolise was banned in 

France and Spain in 2003 due to its association with 13 adverse reactions since 1999, 

one of which resulted in an individual requiring a liver transplant, which prompted 

the manufacturer Arkopharma to withdraw the product from the market 

worldwide.88 In both Exolise- and SlimQuick-induced liver damage, GTE was 

determined to be the most likely cause.78, 79, 88, 89 The acute liver injury associated 

with these products typically manifests in a hepatocellular manner, which is 

consistent with GTE-induced hepatotoxicity.78, 79, 89 

Over 50 cases of hepatotoxicity believed to be linked to the consumption of green 

tea or GTE have been reported in the literature over the last 20 years.3, 4 Whilst some 
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of these cases were due to weight loss products such as those outlined above, others 

were the result of other supplements which either contained GTE as one of a number 

of constituents or from the consumption of green tea or GTE in isolation.3, 4 

1.3.4.1 Cases of GTE-induced liver injury 

In England, 2015, it was reported that a 16-year-old girl suffered acute liver damage 

in response to Chinese green tea purchased via the internet.90 It was concluded that 

green tea was the culprit after ruling out all other possibilities, such as pregnancy, 

alcohol, “over-the-counter” medications and illicit drugs, nor had she recently 

received a blood transfusion.90 Acute hepatitis, viral hepatitis, autoimmune hepatitis, 

Wilson’s disease, haemochromatosis, a-1-antitrypsin deficiency and rare portal vein 

disturbances, such as Budd-Chiari syndrome, were also excluded.90 The patient did 

not immediately divulge her consumption of the green tea, which was purchased in 

a bid to lose weight.90 With intravenous fluids and treatment with N-acetylcysteine, 

the observed hepatitis completely resolved soon after discontinuing green tea 

consumption.90 

In Italy, 2007, a 51-year-old woman presented with a long-term history of abnormal 

liver function tests, specifically elevated serum aminotransferases, g-glutamyl-

transpeptidase and alkaline phosphatase, with histological examination showing 

mild cholestasis.91 Cessation of oestrogen and progestogen treatment following a 

hysterectomy did not rectify her liver function results, and tests for viral hepatitis, 

sclerosing cholangitis and primary biliary cirrhosis were negative.91 It was uncovered 

that, for at least 5 years, the patient had been consuming green tea every day and, 

when green tea consumption was ceased, the patient’s liver function tests began to 
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normalise within two months.91 The individual rechallenged her system with green 

tea six months later and there was a marked increase in serum aminotransferases, g-

glutamyl-transpeptidase and alkaline phosphatase in response; again, these liver 

function tests returned to normal following cessation of green tea consumption.91 

Interestingly, the patient’s 20-year-old daughter also had abnormal liver function 

tests which normalised after she discontinued drinking green tea, suggesting that 

there may be a genetic element in determining the susceptibility of an individual to 

green tea-induced liver injury.91 

A third example from 2017 involves a 50-year-old woman who presented at a 

hospital in the USA with abnormal liver parameters and symptoms of liver damage.82 

A liver biopsy demonstrated severe hepatic necrosis, however laboratory tests were 

negative for autoimmune hepatitis, hepatitis A, B, C and E, human immunodeficiency 

virus, herpes simplex virus, Wilson’s disease and a-1-antitrypsin deficiency.82 When 

questioned further by the medical practitioner, the patient disclosed that she had 

been consuming Vital Stem, an over-the-counter nutritional supplement containing 

GTE, for the last month.82 Having ruled out all other likely causes, it was determined 

that GTE was the ingredient most likely to be the cause of the observed acute liver 

injury.82 Following treatment with prednisone and cessation of Vital Stem 

supplementation, the patient’s condition improved over time.82 

In 2016 it was reported that a 26-year-old man from Western Australia presented 

with liver damage so severe that he was given two weeks to live without a 

transplant.45, 92 The ABC reported that the only compatible liver that became 

available during this time was infected with hepatitis B, thus, in order to survive the 
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man must now live the rest of his life with this disease.92 This is not the only instance 

in which GTE-induced hepatotoxicity has been reported in the media; in 2014 the 

BBC reported that when a 50-year-old man from England took GTE as part of an effort 

to lose weight, he was admitted to hospital approximately two to three months after 

commencing the supplementation and diagnosed with acute liver damage so severe 

he was given only days to live, thus also requiring a transplant.93 

Despite the differences between products consumed in the cases outlined, a process 

of elimination was employed by which GTE was determined to be the most probable 

cause in each.45, 82, 90-93 The idiosyncratic, acute onset characterised by a 

hepatocellular pattern of injury is typical of GTE-induced liver damage, and is 

observed repeatedly throughout the case reports in the literature.3, 4 It appears to be 

predominantly females who are affected and most, but not all, cases are associated 

with individuals endeavouring to lose weight.3, 4 

1.3.4.2 Mechanisms of GTE-induced hepatotoxicity 

GTE products may differ depending on the preparation procedure: aqueous extracts 

tend to contain predominantly hydrophilic components, whereas hydroalcoholic 

extracts contain both hydrophilic and hydrophobic compounds.94 Given that 

catechins are polar compounds, they are retained in both types of extract, however 

it has been found that they are present in higher concentrations in hydroalcoholic 

preparations.94 This could indicate that it is the catechins, particularly EGCG due to 

its abundance, that are responsible for GTE-induced liver damage.3 So far, the 

majority of research into GTE hepatotoxicity has been carried out using animal 
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models, predominantly with mice and rats, with many primarily focusing on EGCG.40, 

46, 95, 96 

It has been found that, at toxic doses, EGCG is metabolised to EGCG-2’’-cysteine and 

EGCG-2’-cysteine in mice.97 There is speculation that this may be due to EGCG being 

oxidised to a quinone or semiquinone, which goes on to react with the sulfhydryl 

group of cysteine and potentially other cysteine-containing molecules such as 

glutathione (GSH).97 

A 2006 study found that GTE-induced cytotoxicity is associated with GSH depletion 

and the formation of ROS, with GSH-depleted hepatocytes exhibiting greater 

susceptibility to EGCG toxicity.98 The same study also demonstrated that inhibition 

of NADPH:quinone oxidoreductase 1 (NQO1) is linked to increased ECG cytotoxicity 

and inhibition of COMT is associated with increased EGCG cytotoxicity and ROS 

formation.98 It has also been determined that polyphenols may have pro-oxidant 

properties, believed to be associated with the gallic acid component, with EGCG 

having been demonstrated to be the most cytotoxic and EC the least.98, 99 The 

production of ROS in response to EGCG and its metabolites has been suggested to 

lead to oxidative stress in liver cells, which may be responsible for the hepatocellular 

necrosis observed in certain individuals consuming GTE.3 Aside from ROS formation, 

collapse of the mitochondrial membrane and the subsequent dysfunction of 

hepatocyte mitochondria has also been suggested as a major mechanism of EGCG-

induced cytotoxicity.40 

GTE may also impact cellular respiration, with a 2015 study finding that EGCG reduces 

anaerobic glycolysis, glycolytic rate, glucose consumption and lactate production in 
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pancreatic carcinoma cells.100 This was followed by a 2016 study which reported 

similar findings using both in vitro and in vivo methods, with the results leading to 

the suggestion that EGCG promotes a shift from glycolysis in hepatocellular 

carcinoma cells by directly suppressing the activity of phosphofructokinase, and 

ultimately results in apoptosis due to metabolic stress.101  

In 2017, a number of biochemical changes were found to occur in rats following GTE 

treatment for one month, including increased levels of alanine aminotransferase, 

aspartate aminotransferase and malondialdehyde (MDA) and decreased GSH levels 

and hepatic catalase activity.46 Increased MDA and aminotransferases are indicative 

of oxidative stress and liver damage, respectively; decreased GSH levels and hepatic 

catalase activity, antioxidants involved in detoxifying ROS, likely exacerbate these 

hepatotoxic processes.46 The observations made in the histological examination 

were consistent with the biochemical results, demonstrating that GTE had induced 

moderate centrilobular hepatic necrosis with interstitial haemorrhage and 

infiltration of inflammatory cells; findings consistent with previous research into GTE 

toxicity using rat and mouse models.46, 102 

Whilst there is a clear link between GTE consumption and the subsequent 

development of liver damage in certain individuals, the causative compounds and 

mechanisms of injury remain speculative. GTE is composed of many potentially-

hepatotoxic compounds, and this is further complicated when the different 

metabolites formed from these constituents in vivo are considered.50, 51, 61 Given the 

accessibility and widespread use of GTE, a better understanding of how this 
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supplement induces hepatotoxicity is vital; metabolomics is one advanced technique 

which has shown promise in this field.5 

1.4 Analytical techniques 

1.4.1 Metabolomic analysis of hepatotoxicity 

Whilst traditional methods of toxicological analysis provide end-point results in 

assessing the toxicity of a given substance, they are unable to provide details on the 

mechanisms involved and any alterations in biochemical processes that occur.5 For 

example, a popular method of analysing in vitro toxicity involves the bioconversion 

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), resulting in 

the production of NADPH which yields a colour change proportionate to the number 

of viable cells, known as the MTT assay.5, 103, 104 This provides information on the 

effect a substance has on cell viability, but no details about the mechanisms involved 

in any changes observed.5, 103, 104 Through the use of ‘omics’ techniques, which 

generate complex data representing cellular changes in response to a given trigger, 

it is possible to hypothesise the mechanisms by which a substance induces toxicity in 

the cell.5, 105 Metabolomics, a technique that provides insights into the biochemical 

profile of an organism, is a novel method for analysing in vitro hepatotoxicity.5, 105 

Given that changes in small molecules at the biochemical level of an organism 

represent the most downstream response to a stimulus, the metabolomic fingerprint 

allows for characterisation of the mechanisms involved in the toxicity of a substance 

in addition to the overall toxicological outcome.105 

For the in vitro metabolomic analysis of hepatotoxicity, HepG2 cells are the most 

commonly used cell model, likely due to their low variability and ready availability; 
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the primary setback associated with this cell line is their limited biotransformation 

capacity.5 The typical exposure timeframe used in in vitro metabolomic studies is 24 

h, and it is generally accepted that using five or more replicates provides the most 

reliable results, however as little as three can be adequate.5 The most common 

method of metabolomic analysis is chromatography coupled to mass spectrometry 

(MS), a hyphenated technique that has broad metabolite coverage and is highly 

sensitive and versatile.5 

Whilst liquid chromatography-MS (LC-MS) has been the most commonly used 

method for the in vitro metabolomic analysis of cytotoxicity, gas chromatography-

MS (GC-MS) is also capable of providing highly reproducible data in this field.5, 106, 107 

In addition to this, the libraries available for the identification of compounds by GC-

MS are comprehensive and easier to navigate than those used for LC-MS.108 This 

results in the more efficient and straightforward analysis of data generated via GC-

MS than for that produced via LC-MS. 

1.4.2 Chromatography 

Chromatography is a separation technique in which a sample is added to a mobile 

phase that is then passed through a stationary phase, with different analytes within 

the sample eluting from the stationary phase at different rates.106, 107, 109 There are 

two main types chromatography: liquid and gas, named after the state of the mobile 

phase.106, 107, 109 

In gas chromatography (GC), the mobile phase is an inert gas, such as helium; the 

role of the carrier gas, or eluant, is to aid in the movement of analytes from the inlet, 

through the column containing the stationary phase and into the detector.107 In order 
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for GC analysis to be effective, sample molecules must be volatile and stable enough 

to withstand the high temperatures in the GC oven; to ensure this, samples can be 

derivatised prior to injection in order to enhance the volatility and thermal stability 

of the compounds.110 Examples of compounds which require derivatisation include 

amino acids, saccharides and drugs.110 

There are a number of different ways in which a sample can be introduced into the 

GC inlet, and the application determines which type is best suited.107 Typically, 

injection involves the vaporisation of the sample in the inlet into a stream of carrier 

gas. For split injection, only a portion of the sample/carrier gas mixture is directed 

onto the GC column and the rest is expelled (Figure 1.3a).107 Alternatively, during 

splitless injection, the splitter vent is closed and thus the entire sample is directed 

onto the column (Figure 1.3b).107 This allows for concentration of the sample on the 

column for a period of time before the splitter vent is opened and the majority of the 

solvent is purged.107 The inlet is kept at a high temperature to ensure instantaneous 

vaporisation of the sample as it is introduced.106 
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Figure 1.3. The fate of sample molecules following split (A) and splitless injection (B).106 During a split 

injection the split vent is open, resulting in only part of the mixture of sample and carrier gas being 

directed onto the column.106 Alternatively, the split vent is closed during a splitless injection.106 This 

results in the sample being concentrated on the column for a set period of time prior to the split 

vent being opened to purge the majority of the solvent.106 

 

  

A) B) 
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The column, found inside the GC oven, is where separation of the sample molecules 

takes place.106 The column is typically composed of polysiloxane with a 5% 

diphenyl/95% dimethylsiloxane (5MS) stationary phase adhered to the inside 

surface.107 Sample molecules are carried onto the column by the eluant and become 

delayed by the stationary phase.107 The temperature inside the GC oven is gradually 

increased (4-20°C/minute), thus, sample molecules elute from the stationary phase 

at different times, depending on their boiling points.107 

As with methods of sample introduction, there are a wide variety of detectors 

available for GC analysis which may be universal, such as the flame ionisation 

detector (FID), or selective, such as the thermionic specific detector.107 In an FID, the 

sample compounds combust as they pass through a hydrogen flame, generating ions 

and electrons that cause a current flow, producing a signal which is recorded as a 

peak on the chromatogram.107 

1.4.3 Mass spectrometry 

MS is a technique used to separate charged particles within a sample based on their 

mass-to-charge ratio (m/z).109, 111 In order for this to occur, sample molecules must 

carry a charge, thus prior to entering the mass analyser the sample passes through 

an ionisation source which ionises the particles via methods such as chemical (CI) or 

electron ionisation (EI).112 CI is considered a soft ionisation technique as particles 

leave the source charged but intact; EI is considered a hard ionisation technique as 

particles within the sample become fragmented during the process (Figure 1.4).112, 

113 
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In EI, electrons are released from a metal filament following sufficient electrical 

heating and accelerated to 70 eV through an electric field.112, 113 The electrons are 

attracted to an anode on the opposite side of the ionisation source, creating an 

electron beam that travels perpendicular to the sample path.113 As the sample is 

introduced into the ionisation source it passes through this electron beam and the 

electrons transfer some of their energy to the molecules, generating charged product 

ions mostly via electron ejection.112, 113 An excess internal energy of 6 eV in the 

sample molecules is sufficient to cause reproducible fragmentation; this 

fragmentation pattern can be beneficial in the identification of compounds.112, 113 

Once formed, the product ions leave the ionisation source and are directed into the 

mass analyser.113 
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Figure 1.4. Overview of electron ionisation; where “e-“ represents energised electrons, “N” represents 

neutral molecules and “+” represents charged molecules.109, 111 Samples must pass through an 

ionisation source to ensure the analyte particles carry a charge prior to entering the mass analyser.109, 

111 During electron ionisation, electrons are released from a metal filament, accelerated to 70 eV and 

attracted to an anode on the opposite size of the ionisation chamber, creating an electron beam that 

travels perpendicular to the sample path.109, 111 As the analyte vapour is introduced into the ionisation 

source, electrons transfer energy to the molecules as they pass through the electron beam, generating 

charged product ions.109, 111 These product ions then leave the ionisation source and directed onto the 

mass analyser.109, 111 
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The mass analyser is responsible for the separation of molecules according to their 

m/z. Here, product ions are held until the appropriate m/z is scanned, allowing them 

to move through to the ion detector and be recorded.109 There are a number of 

different mass spectrometers, which differ in their method of separation and 

robustness. Examples include single quadrupole (Q), ion trap, triple quadrupole 

(QQQ) and quadrupole time-of-flight (QTOF) mass analysers.111 

Prior to entering the high-vacuum environment of a Q analyser, product ions are 

condensed into a stream by a series of lenses which use varying voltages to draw out 

and direct the ion beam to the quadrupole .109 The Q analyser uses direct-current 

(DC) and radiofrequency (RF) fields to individually screen the various m/z in a given 

sample.109, 111 The quadrupole itself consists of four longitudinally parallel quartz rods 

clamped in a pair of ceramic collars, with a hyperbolic cross-section between 

diagonally-opposed rods that is crucial for the operation of the mass analyser (Figure 

1.5).109 The DC and RF signals are applied across the rods, with adjacent rods having 

opposite charges.109, 111 Each set of DC and RF voltages is specific for ions of a 

particular m/z, which then follow a stable path through the centre of the quadrupole 

to the detector; all other ions of different m/z collide with the rods and cannot 

traverse the length of the quadrupole.109, 111 Typically, minimum and maximum m/z 

are established prior to analysis, and the entire mass spectrum within this range is 

scanned by changing the voltages applied to the rods.111
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Figure 1.5. Overview of a single quadrupole mass analyser.111, 112 A series of focusing lenses direct the sample ions to the quadrupole mass analyser, which consists 

of four longitudinally parallel rods and has a hyperbolic cross-section between the diagonally opposing rods that is crucial for its operation.111, 112 The mass analyser 

uses oscillating direct-current (DC) and radiofrequency (RF fields to individually screen the various mass to charge ratios (m/z) in a given sample.111, 112 Each set of 

DC and RF frequencies are specific to ions of a particular m/z, resulting in only one m/z species being able to follow a stable trajectory through the quadrupole at 

a given point in time.111, 112 Mismatched m/z species collide with the rods and are unable to traverse the length of the quadrupole.111, 112 



 35 

 
A variation of the quadrupole mass analyser is the QQQ, which comprises three 

consecutive quadrupoles: the first (Q1) is used to select for a precursor m/z 

corresponding to the ion of interest, the second (Q2) uses a collision gas such as argon 

to dissociate that species into fragments, and the third (Q3) scans a pre-set m/z range 

to produce a product ion spectrum (Figure 1.6).112 QQQ is a form of tandem mass 

spectrometry (MS/MS), however it can also operate in full scan mode, in which Q1 

scans the sample and the subsequent quadrupoles merely direct the ions to the 

detector.112 A voltage gradient lines the QQQ, generating a negative bias in order to 

draw positive ions into the analyser and through to the detector.111 
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Figure 1.6. Overview of a triple quadrupole mass analyser.111, 112 The triple quadrupole is a variation of the quadrupole mass analyser which comprises three 

consecutive quadrupoles (Q1, Q2 and Q3) and can function as a form of tandem mas spectrometry or set to full scan mode.111, 112 For tandem mass spectrometry, 

Q1 is used to select for a precursor mass-to-charge ratio (m/z) corresponding to the sample ion of interest, which then pass into Q2 where a collision gas is 

introduced that dissociates the sample ions into fragments.111, 112 Finally, the resulting product ions enter Q3 where they are scanned over a m/z range to produce 

a product ion spectrum.111, 112 When set to full scan mode, Q1 scans the sample over a pre-set m/z range and the subsequent quadrupoles simply direct the sample 

ions to the detector.111, 112
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1.5 Concluding statements and aims 

Due to the complex composition of GTE, toxicological assays are unable to provide 

sufficient information in regards to which components may be responsible for the 

hepatotoxicity certain individuals experience in response to this supplement, nor do 

they aid in establishing the mechanisms by which the toxic compounds act. Currently, 

the role metabolites of GTE play in the development of hepatotoxicity in certain 

individuals is also poorly understood. By using untargeted metabolomic analysis, it 

will be possible to characterise the metabolites of GTE, as well as identify any 

biochemical changes in hepatocytes following exposure to these compounds. If 

cytotoxicity occurs, the biochemical changes observed could provide valuable insight 

into the mechanisms of toxicity associated with GTE consumption. Identifying these 

pathways will enable future studies to further identify which metabolites, if any, 

contribute to the manifestation of liver damage in certain individuals following 

consumption of GTE.  
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The primary aim of this study is to identify the biochemical changes in liver cells 

caused by exposure to GTE and its metabolites. This will be done by: 

 

• Exposing HepG2 cells to GTE, paracetamol and isolated catechins for 

24 h and analysing cell viability with the MTT cytotoxicity assay. 

 

• Metabolising GTE with S9 human liver fraction and characterising the 

resulting metabolites using untargeted GC-MS analysis. 

 

• Exposing HepG2 cells to GTE and its metabolites for 24 h and 

harvesting cells post-exposure to identify biochemical changes that 

have occurred via untargeted GC-MS analysis. 

 

• Exposing HepG2 cells to GTE and paracetamol for 24 h and harvesting 

cells post-exposure to identify biochemical changes that have 

occurred via untargeted GC-MS analysis. 
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2. Materials and methods 

2.1 Green tea extract and chemicals 

Green tea extract (GTE) was purchased online in powdered form. The catechin 

standards catechin hydrate (CH), epicatechin (EC), epigallocatechin (EGC) and 

epigallocatechin-3-gallate (EGCG) were purchased from Sigma-Aldrich (Sydney, 

Australia) at the highest available purity, as were glutathione (GSH), paracetamol 

(APAP), 3’-phosphoadenosine-5’-phosphosulfate (PAPS), magnesium chloride 

(MgCl2), reduced nicotinamide adenine dinucleotide phosphate (NADPH), phosphate 

buffered saline (PBS), S9 pooled human liver fraction and uridine 5’-

diphosphoglucuronic acid (UDPGA). Dulbecco’s Modified Eagle Medium (DMEM), L-

glutamine, heptane, methoxyamine hydrochloride, n-alkanes (C10, C12, C15, C19, C22, 

C28, C32 and C36), n-methyl-n-(trimethylsilyl) trifluoroacetamide (MSTFA), 

penicillin/streptomycin solution, 0.25% trypsin-ethylenediaminetetraacetic acid 

(EDTA) solution and pyridine were also purchased in the purest forms available from 

Sigma-Aldrich. Carbon dioxide (CO2) and helium were sourced from BOC (Sydney, 

Australia). Foetal calf serum (FCS), used to supplement the cell culture medium, was 

sourced from Serana (Bunbury, Australia). Methanol (> 99.9%), LC-MS grade 

acetonitrile (99.9%) and LC-MS grade water were sourced from Fisher Scientific (Fair 

Lawn, USA). Dimethyl sulfoxide (DMSO) was purchased from VWR Chemicals 

(Pennsylvania, USA). Corning Costar 6- and 96-well plates were sourced from Sigma-

Aldrich. 
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2.2 Cell preparation 

2.2.1 Cell culture 

HepG2 human hepatocarcinoma cells were purchased through Sigma-Aldrich from 

the European Collection of Cell Cultures. HepG2 cells were cultured in 75 cm2 flasks 

with Dulbecco’s Modified Eagle Medium (DMEM) which was supplemented with 1% 

L-glutamine, 1% penicillin and streptomycin and 10% FCS. Cells were incubated at 

37°C and 5% CO2 in a humidified Thermo Scientific Heraeus BB15 Function Line 

incubator and the medium was changed every 48 h. All cell culture work was carried 

out in an aseptic environment with equipment and surfaces being treated with 

ethanol and UV light. Cultures were grown to 80-90% confluence prior before being 

passaged or used for experimentation. The passaging of cells involved removal of the 

media, followed by the addition of 5 mL of PBS to wash the cells. PBS was removed 

and 2 mL of 0.25% trypsin-EDTA solution was added to dislodge the cells from the 

flask. Cells were incubated with the trypsin solution for 5 min, after which they were 

dislodged by gently tapping the flask. To inactivate the trypsin, 8 mL of fresh 

supplemented DMEM was added, in which the cells were resuspended until evenly 

distributed. For each new flask, 1 mL of this cell suspension was aliquoted and made 

up to 10 ml with fresh supplemented DMEM in order to yield a 1:10 passage. 

Passages 30, 31, 34 and. 36 were used in this study. 

An Olympus IMT-2 inverted microscope (Tokyo, Japan) was used to check the cells 

approximately every 48 h. To compare differences in growth and morphology of 

treated cells to untreated controls, cell photographs were taken using an Olympus 
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CKX41 microscope linked to a Moticam 2300 camera (Motic Instruments Inc., Hong 

Kong) using Motic Images Plus v2.0. 

2.2.2 Cell counts 

Cell counts were carried out to determine the concentration of cells; these were 

performed using the Trypan blue exclusion method both manually and using a 

NanoEnTek EVE automatic cell counter (Seoul, Korea). Non-viable cells take up the 

Trypan blue dye due to a loss of membrane integrity and thus have a blue 

appearance; viable cells appear white as they do not take up the dye.114 In addition 

to providing the concentration of total, live and dead cells, the EVE automatic cell 

counter also determines percentage cell viability. To perform a cell count using a 6-

well plate, the medium was removed from each counting well and replaced with 1 

mL of PBS to wash the cells. This PBS was subsequently removed and the wash step 

was repeated. Cells were then pre-treated with 500 µL of 0.25% trypsin-EDTA 

solution for 10 s, following which the trypsin was removed and 500 µL of fresh trypsin 

was added to the well and distributed evenly across the cells. The plate was then 

incubated at 37°C and 5% CO2 for 5-8 min to encourage trypsin activity. Once the 

cells were dislodged from the bottom surface of the well, 1.5 mL of fresh medium 

was added to neutralise the trypsin and cells were resuspended by pipetting until 

evenly distributed. 100 µL of this cell suspension was transferred into a new 

microcentrifuge tube and mixed with an equal volume of 0.4% Trypan blue. The 

concentration of cells was calculated by adding 10 µL of this cell suspension/Trypan 

blue solution to an EVE cell counting slide for analysis with the EVE automatic cell 

counter and a Hausser Scientific Bright-Line Haemocytometer for manual cell counts. 
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Cell counts determined manually were found to be more accurate for high cell 

concentrations and thus were used to determine the volume required for seeding 6- 

and 96-well plates. Cells were counted using the centre square, subdivided into 4 x 4 

smaller squares, with cells bordering the left and upper sides included, and those on 

the lower and right borders excluded. Counts were used to determine the 

concentration as cells/mL. Conversely, cell counts obtained using the EVE automated 

cell counter were found to be more reliable at determining lower cell concentrations, 

so were therefore used for well counts following cell exposures. Despite their 

difference in use, both methods were performed for every cell count in order to 

validate any changes observed in cell number. 

2.3 GTE effect on cell viability 

2.3.1 Extraction of GTE 

GTE, CH, EC, EGC, EGCG and APAP were extracted in serum-free DMEM. These 

solutions were then diluted with additional serum-free DMEM to obtain the 

concentrations outlined in the following section. 

2.3.2 MTT cytotoxicity assay 

At confluence, HepG2 cells at passage 34 were seeded at a density of 1.2 x 105 

cells/well in six 96-well plates with supplemented DMEM added to a total volume of 

200 µL, with the wells around the perimeter of each plate being excluded, along with 

wells B2-G2 and B11-G11. The plate allocated to the APAP treatment group received 

100 µL of DMEM + rifampicin prepared as outlined in section 2.4.1 to stimulate 

CYP450 activity. Finally, all empty wells around the perimeter of the plates received 

200 µL of DMEM in order to limit the possibility of edge effect impacting the sample 
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wells. All six plates were subsequently incubated at 37°C and 5% CO2 for 48 h to settle 

and adhere to the bottom surface of the wells. At the conclusion of the incubation 

period, spent medium was removed from the wells containing cells and replaced with 

100 µL of treated serum-free DMEM, with each concentration prepared in 12 

replicates. Each plate was allocated one of the following treatments: GTE, CH, EC, 

EGC, EGCG or APAP. Table 2.1 shows the concentrations used for each treatment 

type and their corresponding well numbers. 

 

Table 2.1 Concentrations of catechins (µM), GTE (mg/mL) and APAP (mM) and corresponding well 

designations used for the analysis of HepG2 cell viability with the MTT cytotoxicity assay.  

Concentration 

 B3-G3 

B4-G4 

B5-G5 

B6-G6 

B7-G7 

B8-G8 

B9-G9 

B10-G10 

CH 0 25 50 100 

EC 0 25 50 100 

EGC 0 25 50 100 

EGCG 0 25 50 100 

GTE 0 0.1 0.5 1.0 

APAP 0 7.5 15 30 

 

Following cell treatment and a 24-h exposure period, cell viability was measured 

using the Promega CellTiter 96 Non-Radioactive Cell Proliferation Assay. This 

colorimetric assay provides a measure of cell viability by the addition of a dye 

solution containing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) to culture wells which viable cells reduce, forming an insoluble blue formazan 
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product.103, 104 The subsequent addition of a solubilising stop solution containing an 

organic solvent, which stops the conversion of the tetrazolium salt and solubilises 

the formazan product, creates an evenly coloured solution of which the absorbance 

may be measured to determine cell viability.103, 104 The colour intensity is 

proportional to the number of live cells, with a decrease in absorbance 

corresponding to a decrease in cell viability.103, 104 

15 µL of Promega dye solution was added to each well and plates were subsequently 

returned to the incubator for 4 h. Following incubation, 100 µL of Promega 

solubilisation solution/stop mix was added to each well and plates were left 

overnight at room temperature in a humid environment. A Tecan Spark 10M 96-well 

plate reader (Männedorf, Switzerland) was used to measure absorbance, with the 

device set to shake the plates for 5 s prior to reading in order to form an evenly 

coloured solution. The absorbance was read at 570 nm for each well, with the 

reference wavelength set to 660 nm to reduce background interference caused by 

inconsistencies such as cell debris or fingerprints. An overview of the procedure 

followed to prepare for and carry out the MTT assays is depicted in Figure 2.1. 

The MTT assay was repeated for the GTE treatment using cells at passage 36, with 

spent medium removed from wells and replaced with fresh serum-free DMEM prior 

to the addition of the dye solution. Additionally, six control wells were prepared by 

adding 100 µL serum-free DMEM to wells B2-G2, which did not contain cells, 

followed by the addition of 15 µL dye solution and incubation for the same 4 h period 

as the sample wells. 100 µL solubilisation solution/stop mix was then added to all six 

wells, which were also left overnight at room temperature. The absorbance of the 
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cell-free controls was read at 570 nm, with the mean subsequently calculated and 

subtracted from the values obtained for the sample wells in order to remove 

background absorbance caused by components in the medium and Promega 

solutions. 
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Figure 2.1. Overview of the workflow followed for the analysis of HepG2 cell viability using the MTT 

cytotoxicity assay. Created with BioRender.com.  
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2.4 Hepatotoxicity of GTE constituents and metabolites 

2.4.1 Metabolism of GTE 

GTE was metabolised using pooled human liver S9 fraction, which contains Phase I 

and Phase II enzymes, following the method outlined by Richardson et al.115 NADPH 

was used as a cofactor to activate Phase I metabolism and GSH, UDPGA and PAPS 

were used to stimulate Phase II enzymes. Individual stock solutions of NADPH, GSH, 

UDPGA and PAPS were prepared at concentrations of 34, 31, 13 and 1.6 mg/mL, 

respectively.115 These cofactor solutions were mixed in a 1:1:1:1 ratio to yield a 

solution with final concentrations of 0.85, 0.78, 0.33 and 0.04 mg/mL, respectively.115 

GTE was extracted with sterile water at a concentration of 100 mg/mL. 

PBS was prepared as a solution containing 2 mM MgCl2; the PBS maintains the 

reaction pH at 7.4 and the magnesium ions stimulate cytochrome P450 (CYP450) 

activity.115 140 µL of the 2 mM MgCl2/PBS solution was then aliquoted into 1.5 mL 

tubes, followed by the addition 20 µL of S9 liver fraction and 20 µL of GTE 

extraction.115, 116 In total, 15 replicates were prepared and preincubated at 37°C for 

5 min. Reactions were initiated by the addition of 20 µL of the cofactor mixture, 

yielding a final reaction volume of 200 µL and a GTE concentration of 10 mg/mL.115 

Samples were subsequently incubated at 37°C for 60 min, after which they were put 

on ice to quench the reactions. All samples were centrifuged for 10 min at 4.0 x 103 

rcf to remove the proteins, with centrifugation being carried out at 4°C in order to 

provide further quenching of metabolic reactions. Supernatant containing the GTE 

metabolites from each tube was subsequently pooled in a new 10 mL tube and stored 

at -80°C until required for cell exposures. 
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2.4.2 Cell treatment 

At confluence, HepG2 cells at passage 30 were seeded at a density of 1.0 x 106 

cells/well in 6-well plates with supplemented DMEM added to reach a total volume 

of 2 mL. The plates were subsequently incubated at 37°C and 5% CO2 for 48 h to allow 

cells to settle and adhere to the bottom surface of the wells. 

Six plates were prepared for the exposures: 2 x GTE metabolites (GTEM), 2 x 

unmetabolised GTE (GTE) and 2 x controls. The GTE metabolites produced in section 

2.4.1 were used to treat the cells in the GTEM plates. GTE was extracted with sterile 

PBS at a concentration of 10 mg/mL to treat the GTE plates. 

Following the 48-h incubation period, spent medium was removed from all wells and 

replaced with 1.8 ml serum-free DMEM. 200 µL of the appropriate treatment (GTEM 

or GTE) was then added to each well. The final concentration of GTE metabolites in 

the GTEM plates was equivalent to 1 mg/mL unmetabolised GTE. The GTE plates 

contained a final GTE concentration of 1 mg/mL, as this concentration was recently 

shown to induce significant toxicity in HepG2 cells.117 Cells in the control plates 

received 200 µL of sterile PBS. Plates were then returned to the incubator for a 24-h 

exposure period. 

At the conclusion of the exposure period, all 6-well plates were put on ice. A counting 

well was set aside on each plate to determine cell viability following the exposures, 

yielding 2 replicates of each sample type for cell counts, which were performed as 

outlined in section 2.2.2. The cells from the remaining 5 wells were harvested using 

a rubber cell scraper into 500 µL methanol containing 13C6-sorbitol internal standard 

at a concentration of 2.6 µg/mL. The contents of each well were transferred into 1.5 
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mL microcentrifuge tubes and put on ice in preparation for extraction of small 

molecule metabolites. In total, this yielded 10 replicates of each sample type for 

analysis via gas chromatography-mass spectrometry (GC-MS). 

An additional two plates were prepared in order to be pooled and used as quality 

controls (QCs) for GC-MS analysis. QC plates were seeded in the same manner as the 

sample plates and incubated at 37°C and 5% CO2 for 48 h. At the conclusion of this 

incubation period, cells were harvested from all wells as outlined above. 

2.4.3 Extraction of small molecule metabolites 

In order to release the small molecule metabolites for GC-MS analysis, it is essential 

to lyse the cell membrane and isolate them from the cellular material.118 Metabolites 

were extracted with a Bertin Technologies Precellys 24 Lysis and Homogenisation 

tissue lyser (Aix-en-Provence, France) at 6500 rpm for 2 x 20 s. The tubes were then 

centrifuged at 16.1 x 104 rcf for 5 min in an Eppendorf 5415R centrifuge (Sydney, 

Australia) to remove the cellular material, leaving the small molecule metabolites in 

the supernatant. 300 µL of supernatant from each sample was then transferred into 

new microcentrifuge tubes. Supernatant obtained from the QC samples was pooled 

in a 10 mL centrifuge tube prior to being aliquoted into new microcentrifuge tubes 

in 300 µL aliquots. All tubes were then spun in an Eppendorf Concentrator Plus rotary 

vacuum concentrator (Sydney, Australia) on the V-AL setting to remove the solvent. 

2.4.4 Metabolomic analysis 

2.4.4.1 Derivatisation 

Derivatisation was performed to chemically transform the compounds in the samples 

in order to ensure they were thermally stable and sufficiently volatile, thus increasing 
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the number of compounds able to be detected via GC-MS analysis.118 Methoxyamine 

hydrochloride was dissolved in pyridine at a concentration of 20 mg/mL, and 20 µL 

of this solution was added to each dried sample. Samples were incubated at 30 °C 

using an Eppendorf Thermomixer Comfort (North Ryde, Australia) with agitation at 

1200 rpm for 90 min. Methoxyamine prepares the compounds for derivatisation by 

reacting with their carbonyl groups to form oxime derivatives that stabilise the 

compounds for derivatisation with MSTFA.110 Following incubation, 40 µL of MSTFA 

was added to each tube and the samples were incubated at 37°C with agitation at 

300 rpm for 30 min. During this incubation period, the MSTFA adds silyl groups to 

functional groups on the compounds in each sample, yielding a trimethylsilyl 

derivative.110 Due to the nature of these reactions, multiple derivatisation products 

for a given compound are possible.110 50 µL of each sample was transferred to 2 mL 

brown glass GC vials with 100 µL inserts. 5 µL of n-alkanes in heptane was added to 

each sample and the vials were capped. All sample vials were then loaded onto the 

GC-MS and left to react for 1 h prior to analysis. 

2.4.4.2 Instrumentation 

A Shimadzu GC-2010 Plus gas chromatograph coupled to a Shimadzu GCMS-QP2010 

single quadrupole mass analyser was used to perform untargeted metabolomic 

analysis following derivatisation. Samples were injected via a Shimadzu AOC-20i Auto 

Injector following 5 pre-injection methanol wash steps. The needle was rinsed with 

sample once prior to the 1 µL injection of the sample in splitless mode. This was 

followed by 5 post-injection wash steps with methanol. The temperature of the GC 

inlet was set to 250°C and lined with an SGE inlet liner (Trajan Scientific and Medical, 
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Melbourne, Australia). The carrier gas used was high purity helium, which was set to 

a total flow rate of 1 mL/min with the retention time locked to elute the C19 n-alkane 

at 30.34 min. The GC column was an Agilent VF-5MS column (length 39.5 m + 10 m 

EZ-Guard; internal diameter 0.25 mm; film thickness 0.25 µm). Initial oven 

temperature was set to 70°C and held for 1 min between samples to stabilise, then 

programmed to increase at a rate of 1°C/min for the first 6 min, after which this 

increased to 5.63°C/min until the final temperature of 330°C was reached and held 

for 10 min to allow time for the remaining analytes to elute from the column. The 

GC-MS interface was maintained at a temperature of 300°C and, following an 8-min 

solvent delay, eluting analytes entered the ionisation source which was set to 250°C. 

Within the ion source, analytes were ionised via electron ionisation with electrons 

energised to 70 eV. The quadrupole mass analyser had a scan range of m/z 50-1000 

and a scan rate of 10 scans/s. 

2.4.4.3 Data analysis 

GC-MS data was imported to AnalyzerPro v5.5.1 (SpectralWorks, Runcorn UK) and 

deconvoluted. The mass spectrum and retention index of individual spectra were 

searched and matched against the National Institute of Standards and Technology 

(NIST) Mass Spectral Library v2.3 to putatively identify unknown metabolites. Three 

match criteria were set for metabolite identification: 1) forward match score ≥650, 

2) reverse match score ≥650, and 3) probability ≥20%.119 To be considered a match, 

a given metabolite must have met a minimum of 2 of these 3 criteria. 

Raw data was exported to Microsoft Office Excel 2016 and normalised to the 13C6-

sorbitol internal standard and the average cell count for each sample type. 
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Compounds that were present in <70% of all samples were excluded from further 

analysis. The remaining normalised data was then imported to The Unscrambler X 

v10.3 (CAMO Software, Oslo, Norway) and transformed logarithmically using the 

formula x = log (x + 1). Unsupervised analysis was carried out using principal 

component analysis (PCA), followed by partial least squares – discriminant analysis 

(PLS-DA) as a form of supervised analysis to identify variation between the sample 

groups. PLS-DA X-loadings were used to identify which metabolites most contributed 

to the variance observed between sample groups, using a threshold of +/- 0.05. 

IBM SPSS Statistics v24 was used to carry out statistical analysis on the data which, 

following a test for normality, was determined to be non-parametric. The Mann-

Whitney U test was used as a non-parametric equivalent to an independent t test for 

comparing results from the MTT assays. For analysing the GC-MS results obtained 

from cell exposures, the Kruskal-Wallis test was used as a one-way ANOVA to 

establish whether the metabolites differed significantly between the samples, and 

the pairwise output from this test was used to determine whether there was a 

significant difference between the overall metabolite profiles of the sample 

groups.120 A significance level of 5% was used for each test, along with a confidence 

interval of 95%.120 

Once the data analysis was complete, the metabolites were then mapped to 

biochemical pathways using the HMDB, SMPDB, MetaboAnalyst and KEGG databases 

in an effort to interpret the biological relevance of the observed changes in the 

treated cells.121-124 
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Figure 2.2. Overview of workflow followed for the analysis of hepatotoxicity following cell exposure 

to 1 mg/mL of GTE or GTE metabolites using GC-MS. Created with BioRender.com. 

 

2.4.5 Characterisation of GTE metabolites 

GTE was extracted with LC-MS grade water at two concentrations: 10 and 50 mg/mL. 

Isolated CH, EC, EGC and EGCG standards were individually prepared in LC-MS grade 

methanol, each at a concentration of 1 mg/mL. 
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GTE was metabolised in the same manner as outlined in section 2.4.1, except 

reactions were quenched by adding 200 µL of ice cold 50:50 methanol/acetonitrile 

to each tube.115 Catechin standards were also metabolised following the procedure 

in section 2.4.1, with the only difference being that 20 µL of a given standard was 

added instead of GTE. In total, 10 replicates were prepared for each of the two GTE 

concentrations and 3 replicates for each of the four catechin standards. The final 

reaction concentrations were 1 and 5 mg/mL for GTE and 0.1 mg/ml for each of the 

catechin standards. As in section 2.4.1, all GTE samples were centrifuged 

immediately after the reactions were quenched to remove the precipitated proteins, 

however the catechin samples were instead centrifuged following derivatisation. 

Supernatant was transferred into new microcentrifuge tubes, with samples kept 

separate. These tubes were then spun in an Eppendorf Concentrator Plus rotary 

vacuum concentrator on the V-AQ setting to evaporate the solvent. 

Two sets of controls were also prepared for this analysis: unmetabolised GTE extracts 

at two concentrations (0.1 and 0.5 mg/mL) and S9 reaction blanks. GTE was extracted 

with LC-MS grade water and 300 µL was aliquoted into new tubes in 3 replicates of 

each concentration. 10 replicates of S9 reaction blanks were prepared in the 

sequence outlined in section 2.4.1 and contained all constituents used for the 

metabolism except for the extracts of GTE or catechin standards. All controls were 

spun in an Eppendorf Concentrator Plus rotary vacuum concentrator on the V-AQ 

setting until the solvent was removed. 
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2.4.5.1 Metabolomic analysis 

All samples were derivatised following the procedure outlined in section 2.4.4.1 and 

GC-MS analysis was carried out using a Shimadzu GC-2010 Plus gas chromatograph 

coupled to a Shimadzu GCMS-QP2010 single quadrupole mass analyser with the 

parameters outlined in section 2.4.4.2, however the S9 controls and metabolised GTE 

samples were analysed in split mode with a split ratio of 20:1, due to their high 

concentrations. The GTE controls and metabolised catechin standards were 

subsequently analysed in splitless mode to account for their lower concentrations. 

GC-MS data was imported to AnalyzerPro v5.5.1 and deconvoluted. Raw peak areas 

for the identified compounds were exported as an Excel spreadsheet. The matrix was 

assessed manually and all components identified in the S9 and GTE controls, 

including catechins, were removed in order to isolate the GTE metabolites. Following 

this, compounds were retained if they were present in ≥70% of all samples to ensure 

reproducibility. In order to identify unknown metabolites, the spectra were matched 

to the National Institute of Standards and Technology (NIST) 2005 Mass Spectral 

library using the same criteria as outlined in section 2.4.4.3. Additionally, data 

obtained from the metabolised catechin standards were matched to the compounds 

in the metabolised GTE samples to tentatively confirm the presence of catechin 

metabolites. 
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Figure 2.3. Overview of GTE metabolite preparation and characterisation using GC-MS analysis. 

Created with BioRender.com.  
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2.5 GTE and paracetamol-induced hepatotoxicity 

2.5.1 Rifampicin-induced CYP450 activity 

It has been demonstrated that rifampicin can induce CYP450 activity in HepG2 

cells.125 A 10 mM stock solution containing rifampicin dissolved in DMSO was diluted 

1:5 with PBS to yield a 2 mM working solution, which was subsequently filtered using 

a 0.2 µm filter to ensure sterility. 909 µL of this working solution was diluted in 49.091 

mL of supplemented DMEM containing 10% FCS, yielding a 36 µM DMEM + rifampicin 

solution for cell exposures.  

2.5.2 Cell treatment 

At confluence, HepG2 cells at passage 31 were seeded at a density of 1.0 x 106 

cells/well in 6-well plates with 1 mL DMEM + rifampicin and topped up with 

additional supplemented DMEM to reach a total volume of 2 mL/well. A total of 10 

plates were seeded and then incubated at 37°C and 5% CO2 for 48 h to allow cells to 

settle and adhere to the bottom surface of the wells. Following this incubation 

period, spent medium was removed from the wells and the treatment solutions were 

added to the appropriate plates as follows: 2 mL of serum-free DMEM containing 15 

mM APAP was added to the paracetamol (APAP) plates, 2 mL of serum-free DMEM 

containing 15 mM APAP and 1 mg/ml GTE was added to the APAP/GTE plates and 2 

mL of serum-free DMEM containing 1 mg/mL GTE was added to the GTE plates. These 

concentrations were chosen as 15 mM APAP has been demonstrated to reduce 

HepG2 cell viability by approximately 20%, and 1 mg/mL GTE was consistent with 

other exposure concentrations used in this project.26 Two plates were allocated to 

each treatment type and two were allocated to controls, in which the spent DMEM 
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+ rifampicin was replaced with fresh serum-free DMEM. These eight plates were then 

incubated at 37°C and 5% CO2 for 24 h. The remaining two plates were harvested at 

the conclusion of the initial 48 h incubation period in order to be pooled and used 

QCs for GC-MS analysis. 

At the conclusion of the exposure period, all 6-well plates were put on ice. A counting 

well was set aside on each plate to determine cell viability following exposure, 

yielding 2 replicates of each sample type for cell counts which were carried out 

following the method outlined in section 2.2.2. A rubber cell scraper was used to 

harvest the cells from the remaining 5 wells into 500 µL methanol containing 13C6-

sorbitol internal standard at a concentration of 2.6 µg/mL. The contents of each well 

were transferred into 1.5 mL microcentrifuge tubes and the small molecule 

metabolites were extracted following the procedure outlined in section 2.4.3. This 

yielded a total of 10 replicates of each sample type for GC-MS analysis. 

2.5.3 Metabolomic analysis 

Samples were derivatised following the procedure outlined in section 2.4.4.1, GC-MS 

analysis was carried out using a Shimadzu GC-2010 Plus gas chromatograph coupled 

to a Shimadzu GCMS-QP2010 single quadrupole mass analyser with the parameters 

outlined in section 2.4.4.2 and the data was analysed following the procedure 

outlined in section 2.4.4.3.  
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Figure 2.4. Overview of workflow followed to determine effect of GTE on paracetamol-induced 

hepatotoxicity using GC-MS analysis. Created with BioRender.com.  
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3. Results and discussion 

3.1 MTT cytotoxicity assay 

A decrease in cell viability was observed as paracetamol concentration increased 

(Figure 3.1). Cells treated with 15 and 30 mM APAP had lower mean absorbance than 

was observed in untreated cells, demonstrating a 12.92% (±	13.29%) and 19.1% 

(±	23.67) decrease, respectively. These results suggest a decrease in cell viability as 

APAP concentration was increased. An ED50 was unable to be calculated as it was not 

possible to determine the maximal response from the concentrations used in this 

study. Untreated controls had a relative standard deviation (RSD) of 17.08%, 

compared to 19.30%, 13.29% and 23.67% observed within the 7.5, 15 and 30 mM 

treatment groups. An RSD of <20% is generally an acceptable level of variation, and 

thus results within this range were considered reliable; only the 30 mM APAP sample 

group exceeded this limit. No significant difference in cell viability was observed 

between any of the treatment concentrations compared to untreated controls 

(p>.05).  
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Figure 3.1. Change in HepG2 cell viability following exposure to 0, 7.5, 15 and 30 mM APAP as 

measured by MTT assay (n = 12 for each concentration). Error bars indicate relative standard 

deviation.  

 

Absorbance appeared to increase with EGCG concentration, with 100 µM EGCG 

being 76.78% (±	13.05) higher than untreated controls (Figure 3.2). This pattern was 

also observed to varying degrees with the other catechins analysed, with the increase 

in mean absorbance most pronounced in cells treated with CH and EGCG. The least 

change was observed in cells treated with EGC, with 100 µM of this catechin having 

an absorbance that was 11.52% (±	18.69) higher than untreated controls. The 

majority of samples had an RSD <20%, except cells treated with 25 µM EGCG 

(26.61%) and untreated cells in the CH MTT assay (28.04%). 

The results for the catechin MTT assays are suspected to be abnormal as it was 

expected that cell viability, and therefore absorbance, would decrease as catechin 
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concentration increased. Spent DMEM and HepG2 cells had a dark brown 

appearance following catechin exposure, thus it is possible that this pigment may 

have interfered with the absorbance measurements obtained for the catechin 

exposures. 

 

 

Figure 3.2. Change in HepG2 cell viability following exposure to 0, 25, 50 and 100 µM EGCG, EGC, EC 

or CH as measured by MTT assay (n = 12 for each concentration). Error bars indicate relative standard 

deviation. 
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the conclusion of the exposure period; it is therefore likely that the absorbance 

values obtained here were also inaccurate. The RSD for untreated controls (20.31%) 

was higher than those observed in all three GTE treatment groups, with 0.1, 0.5 and 

1.0 mg/mL samples having 12.92%, 13.18% and 1.86% RSD, respectively. It is worth 

noting that due to the intensity of the colour change observed in 1 mg/mL GTE 

treatment wells, the plate reader was only able to record absorbance values for 3 of 

the 12 samples. This may explain the low RSD obtained for this treatment 

concentration compared to the others tested in this assay. 

 

 

Figure 3.3. Change in HepG2 cell viability following exposure to 0, 0.1, 0.5 and 1.0 mg/mL GTE as 

measured by MTT assay (n = 12 for each concentration except 1 mg/mL, for which n = 3). Error bars 

indicate relative standard deviation. 
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The GTE MTT assay was repeated with the same concentrations, however spent 

medium was replaced with fresh serum-free DMEM prior to the addition of the dye 

solution in an effort to limit background interference. A decrease in the overall trend 

was observed, although absorbance still appeared to increase with increasing GTE 

concentration, with cells exposed to 1 mg/mL GTE having an absorbance 25.43% 

(±	7.55) higher than that observed in untreated cells (Figure 3.4). This difference was 

markedly less than the increase of 118.01% observed between the same sample 

types in the original GTE MTT assay, and similar reductions were observed across the 

other GTE concentrations, suggesting that replacement of treated medium with fresh 

DMEM helped to reduce background absorbance. This assay had less variation within 

the untreated controls, 0.1 and 0.5 mg/mL sample groups than in the first GTE MTT 

assay, with RSDs of 5.23, 6.30 and 4.76%, respectively. Cells treated with 1 mg/mL 

GTE demonstrated greater variance compared to the first GTE MTT assay, although 

still within the acceptable range, with an RSD of 7.55%. The 0.5 and 1.0 mg/mL GTE 

had a mean absorbance significantly lower than the same concentrations in the 

original GTE MTT assay (p<.001). 
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Figure 3.4. Change in HepG2 cell viability measured by MTT assay following exposure to 0, 0.1, 0.5 and 

1.0 mg/mL GTE with spent medium replaced prior to addition of MTT dye solution (n = 12 for each 

concentration). Error bars indicate relative standard deviation. *Mean absorbance differed 

significantly compared to that recorded for the same treatment concentration in the first GTE MTT 

assay, as determined by the Mann-Whitney U test (p<.05). 
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Further development of this assay is required, and absorbance should be read from 

a set of control wells prepared at the same GTE concentrations, with the addition of 

solubilisation solution/stop mix but without the addition of dye solution. The 

purpose of including the solubilisation solution/stop mix is to retain the lysis and 

solubilisation step so the absorbance of the dark pigment may be properly measured. 

The mean of the absorbance values obtained from these controls could then be 

calculated and subtracted from the mean absorbance values obtained from sample 

plates that have been treated with dye solution. This would reduce interference from 

the brown pigmentation observed in HepG2 cells, providing more accurate 

measurements and potentially demonstrating the expected decrease in cell viability 

with increasing GTE concentration. 

3.2 Hepatotoxicity of GTE and its metabolites 

3.2.1 Cell density 

Microscopic examination of the cells post-exposure showed approximately 80% 

confluence across the bottom of the wells in the control samples (Figure 3.5). In 

comparison, approximately 50-60% confluence was observed in the wells containing 

the GTE- and GTE metabolite (GTEM)-treated samples. It was difficult to distinguish 

any difference between the cell number and viability of GTE- and GTEM-treated cells 

by microscopy alone. In both treatments the medium changed from pink to brown 

and the cells also took on a darker appearance, as observed in section 3.1.  
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Figure 3.5. Light microscope images at 100x magnification comparing untreated HepG2 cells (A) with 

those exposed to 1 mg/mL GTE (B) or 1 mg/mL GTEM (C) for 24 h. 
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The mean HepG2 cell concentration in untreated controls was 1.06 x 106 cells/mL 

(±	4.77 x 105), more than twice that observed in the treatment groups (Figure 3.6). 

Untreated cells had an RSD of 44.92%; this variation is likely explained by the loss of 

a large number of cells from one well during the PBS wash step, thus, the 

concentration of control cells is expected to have been higher than the mean 

described here. Given that only two wells were used for determining post-exposure 

cell concentration, with two cell counts from each, a higher number of wells should 

be used in future in order to more accurately determine a concentration of untreated 

cells. At the conclusion of the 24-h incubation period, GTE-treated samples had the 

lowest mean cell concentration at 3.75 x 105 cells/mL (±	7.07 x 104), whilst a mean 

of 4.40 x 105 cells/mL (±	1.34 x 105) was observed in the GTEM-treated samples. 

Greater variation was observed in the GTEM treatment group, which had an RSD of 

30.53%, compared to GTE-treated cells (18.86% RSD). Given that the GTEM-treated 

cells had an RSD >20%, the mean cell concentration determined for this treatment 

group is potentially unreliable. As with the untreated controls, it is possible that 

increasing the number of wells used for cell counts may aid in the reduction of 

variation within the GTEM treatment group. 

The decrease in mean cell concentration observed in the treatment groups may be 

indicative of hepatotoxicity, as these results are consistent with previous findings 

that high-doses of GTE elicit cytotoxicity in hepatocytes.95 Given that the degree of 

GTE metabolism was not determined prior to treating cells with GTEM, it is difficult 

to establish whether it was the metabolites or unaltered GTE constituents 

responsible for the cytotoxicity observed in GTEM-treated cells. Given that Phase II 

metabolism tends to render compounds relatively inert for excretion, the reduced 
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toxicity observed in GTEM-treated cells in comparison to the GTE treatment group 

may be due to a decreased concentration of toxic precursors.18, 19 

HepG2 cells were difficult to trypsinise post-exposure to GTE and GTEM, potentially 

due to a reaction between the GTE and the well coating. This resulted in only 80-90% 

of the cells being successfully resuspended, thus the cell concentrations determined 

for these treatments may be underestimated. 

 

 

Figure 3.6. HepG2 cell concentration following exposure to 1 mg/mL GTE or 1 mg/mL GTEM for 24 h 

compared to untreated controls (n = 2 for each sample group). Error bars indicate standard deviation. 
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3.2.2 Metabolomic analysis 

The PCA scores plot generated to compare the three sample groups demonstrated a 

difference between GTE and GTEM-treated samples compared to untreated controls 

(Figure 3.7a). Principal component 1 (PC-1) explained 19% of the observed variance, 

whilst 17% was explained by principal component 2 (PC-2). Variance between the 

GTE- and GTEM-treated cells was unable to be determined from the PCA scores plots 

comparing these two sample groups (3.7b). 
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Figure 3.7. PCA scores plots using the first two principal components for comparisons of HepG2 cell 

metabolite profiles following treatment with serum-free DMEM containing 1 mg/mL GTE (green) or 1 

mg/mL GTEM (red) and untreated controls (blue), as measured by GC-MS analysis (n = 10 for each 

sample group). A difference in metabolite profile was observed between untreated cells compared to 

both treatment groups (A). A difference between GTE-treated cells and the GTEM treatment groups 

was unable to be determined via PCA (B). 
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A difference in metabolite profile was observed in the PLS-DA scores plot comparing 

the GTE and GTEM treatment groups (Figure 3.8). This difference was primarily 

explained by factor-1, with 10% and 71% of the observed variance explained. 

 

 

 

Figure 3.8. PLS-DA scores plot using the first two principal components (factors) for comparison of 

HepG2 cell metabolite profiles following exposure to 1 mg/mL GTE (green) or 1 mg/mL GTEM (red) 

for 24 h, as measured by GC-MS analysis (n = 10 for each sample group). Using PLS-DA, a difference 

was distinguished between the metabolite profiles of GTE-treated cells compared to the GTEM 

treatment group. 

 

Using PLS-DA X-loadings and a threshold of +/- 0.05, 42 compounds contributing 

most to the variance observed between sample groups were identified (Figure S1). 

22 of these were putatively identified after meeting at least 2 of the 3 match criteria 

outlined in section 2.4.4.3 when compared to the NIST library. Following the removal 

of compounds deemed likely to be solvent-derived, 18 metabolites remained. 

Comparing these 18 metabolites, a significant difference was observed between the 
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profiles of untreated controls compared to GTE-treated cells (p<.001), and also 

between the controls and GTEM treatment group (p=.001) (Figure S2). The 

metabolite profile of GTE-treated cells was not found to significantly differ from that 

of the GTEM treatment group (p=.446). Of the 18 metabolites, 15 demonstrated a 

positive fold-change (>1.0) in mean peak area size in both treatment types compared 

to those derived from control samples (Table 3.1). A negative fold-change (<1.0) was 

observed in the remaining 3. All metabolites were found to differ significantly 

between sample groups, with the exception of D-phenylalanine, serine and L-

glutamine. 

Gallic acid, 9-octadecanoic acid, an unidentified short-chain fatty acid, palmitic acid, 

citric acid and 5,8,11-eicosatrienoic acid demonstrated changes >10-fold in both 

treatment types, listed here in decreasing magnitude of change observed in GTE-

treated cells. Palmitelaidic acid and an unidentified piperidine derivative had a 

change >10-fold in GTE-treated samples only; neither of these metabolites were 

identified as contributing substantially to the variance observed between GTEM 

samples and untreated controls. L-5-oxoproline had a change >10-fold in GTEM-

treated samples and also contributed to the difference in metabolite profile 

observed between GTE-treated cells and controls. Only 3 metabolites demonstrated 

a negative fold-change, all of which were amino acids: L-glutamine (GTEM: 0.93), L-

glutamic acid (GTE: 0.52) and glycine (GTE: 0.40, GTEM: 0.47). Of the amino acids, 

carbohydrates and fatty acids, the greatest fold-changes were observed in L-5-

oxoproline (GTE: 8.47, GTEM: 10.38), myo-inositol (GTE: 5.35, GTEM: 7.91) and 9-

octadecanoic acid (GTE: 32.05, GTEM: 21.30), respectively.  
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Table 3.1. Fold change observed in metabolites of HepG2 cells post-exposure to 1 mg/mL GTE or 1 

mg/mL GTEM compared to untreated controls, as measured by GC-MS analysis (n = 10 for each sample 

group). Changes were primarily observed in amino acids and fatty acids. Green arrows indicate a 

positive-fold change compared to untreated controls and red arrows indicate a negative fold-change. 

*Metabolite differed significantly between sample groups, as determined by the Kruskal-Wallis test 

(p<.05). 

Metabolite GTE GTEM 

Amino acids 

L-5-Oxoproline*  8.47  10.38 

L-Isoleucine*  4.95  5.03 

DL-Phenylalanine  2.96  3.93 

Serine -  1.14 

L-Glutamine - ¯ 0.93 

L-Glutamic acid* ¯ 0.52 - 

Glycine* ¯ 0.40 ¯ 0.47 

Carbohydrates 

Myo-Inositol*  5.35  7.91 

Unidentified carbohydrate* -  3.58 

Fatty acids 

9-Octadecanoic acid*  32.05  21.30 

Unidentified short-chain fatty acid*  27.57  28.72 

Palmitic acid*  23.02  18.70 

5,8,11-Eicosatrienoic acid*  16.65  15.23 

Palmitelaidic acid*  15.75 - 

Other metabolites 

Gallic acid*  52.58  54.88 

Citric acid*  16.76  26.22 

Unidentified piperidine derivative*  12.30 - 

Uracil*  6.25 - 
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L-5-oxoproline, a cyclised L-glutamic acid derivative also known as pyroglutamic acid, 

is an intermediate in the g-glutamyl cycle, the pathway in which glutathione is 

biosynthesised and metabolised.122, 124 Glutathione is a non-enzymatic free radical 

scavenger which can become depleted during oxidative stress; this may result in the 

accumulation of intermediates of the g-glutamyl cycle, including L-5-oxoproline.126 

Additionally, L-5-oxoproline can induce acidosis and other adverse health effects at 

sufficiently high concentrations.121 It is possible that the observed positive fold-

change in L-5-oxoproline is an indication that cells from both treatment groups were 

under oxidative stress.  

A negative fold-change was observed in glutamine, glutamic acid and glycine; this 

may indicate their consumption as an alternative energy source, potentially due to a 

fault in the glycolytic pathway.122 Conversely, the amino acids isoleucine, 

phenylalanine and glycine demonstrated a positive fold-change. This could be 

indicative of protein degradation or a malfunction in protein synthesis, either of 

which could cause an elevation of free amino acids within the cells. GTEM-treated 

cells demonstrated a positive fold-change in serine; it has previously been found that 

serine has an antioxidant function, therefore a positive fold-change in this amino acid 

could be due to its mobilisation in response to a pro-oxidant state within the cells.127  

An unidentified carbohydrate demonstrated a positive fold-change, which may be 

indicative of a malfunction in the glycolytic pathway that has potentially reduced 

cellular ability to use carbohydrates as an energy source.122 Alternatively, it could 

indicate that treated cells lost their capacity to convert non-glucose carbohydrates 

into glycolysis-compatible compounds. Either of these suggestions could explain the 
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requirement for alternative energy sources, such as amino acids, in order for cells to 

continue generating energy whilst bypassing glycolysis.  

A positive fold-change was also observed in myo-inositol, a key structural component 

of the inositol phosphate secondary messengers which are involved in a variety of 

cell signalling pathways.128, 129 Of note, inositol phosphate controls intracellular 

calcium ion (Ca2+) concentration; in hepatocytes, type I inositol 1,4,5-triphosphate 

receptor (InsP3 R-I)-mediated Ca2+ signalling is involved in triggering the early phase 

of liver regeneration.128 Additionally, it has been suggested that inositol-requiring 

enzyme-1a (IRE1a), an endoplasmic reticulum transmembrane protein, may also 

promote liver regeneration via regulation of the signal transducer and activator of 

transcription 3 (STAT3) pathway, which has a role in hepatocyte proliferation during 

the regenerative response.129 It is therefore possible that the positive fold-change 

observed in myo-inositol in cells treated with GTE or GTEM may be due to increased 

inositol requirement within the cells in an attempt to initiate regeneration in 

response to GTE- or GTEM-induced damage. 

Citric acid also demonstrated a positive fold-change in both treatment groups. 

Citrate, the species of citric acid present at a biological pH, is the first intermediate 

of the tricarboxylic acid (TCA) cycle; thus, an accumulation of citric acid may result 

from inadequate conversion of citrate to isocitrate in this pathway.121, 122, 124 Aside 

from a breakdown at this point potentially causing the build-up of citrate, it may also 

contribute to the energy demand driving the use of amino acids as an energy source. 

It is also worth noting that in healthy cells an excess of citrate can lead to the 

inhibition of phosphofructokinase, the enzyme which catalyses the rate-limiting 
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conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis.122 An 

accumulation of citric acid, therefore, may also be contributing to the shutdown of 

glycolysis, thus adding to the suspected cellular demand for non-carbohydrate 

energy sources that can bypass the glycolytic pathway.  

Another key observation was the positive fold-change in 9-octadecanoic acid, 

palmitic acid, 5,8,11-eicosatrienoic acid and an unidentified short-chain fatty acid in 

both treatment groups, as well as palmitelaidic acid in GTE-treated cells. Fatty acids 

are primary targets for free radical and singlet oxygen oxidations, which may result 

in the release of fatty acids into the cell and ultimately the disruption of cell 

membranes.130 It is therefore possible that the positive fold-change in fatty acids 

observed here may be due to membrane degradation as a result of oxidative stress.  

A positive fold-change was observed in the nucleobase uracil, which may be 

indicative of reduced RNA synthesis or increased pyrimidine degradation.122, 124 A 

reduction in RNA could lead to a decrease in protein synthesis, thus contributing to 

the positive fold-change observed in some amino acids. Alternatively, pyrimidine 

metabolism could indicate the degradation of DNA and RNA, which can also occur as 

a result of oxidative stress.122, 124 

Gallic acid demonstrated a large positive fold-change in both treatment types (>50), 

however given that this is not an endogenous compound, its contribution to the 

difference between treated cells and the controls is likely only due to cellular uptake 

of catechin gallates from the medium.121 The presence of gallic acid as its own entity 

could indicate its cleavage from catechin gallates within the cells although, given that 

HepG2 cells have little metabolic function, the extent to which this may have 
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occurred is questionable.5 At the very least, the positive fold-change in gallic acid 

within both treatment groups likely indicates that catechin gallates were being taken 

up by the cells.  

3.3 Identification of GTE metabolites  

620 compounds were identified following GC-MS analysis of the metabolised GTE 

samples. After removing the alkanes and components present in the S9 controls and 

unmetabolised GTE, 521 compounds remained. 17 of these were present in ≥70% of 

the metabolised GTE samples; therefore, these were regarded as having the highest 

probability of being GTE metabolites (Table 3.2). 10 of the 17 suspected GTE 

metabolites were also detected in the metabolised catechin samples (Table S1-S4). 

One compound found in the unmetabolised GTE was also found in 100% of the 

metabolised GTE samples (RT: 31.1217, base peak: 281). This compound was 

putatively identified as gallic acid after exceeding all 3 match criteria outlined in 

section 2.4.4.3 when compared to the NIST library, thus it was retained in the list of 

suspected GTE metabolites due to it being a known component of catechins such as 

EGCG and ECG.51 The remaining 17 compounds suspected to be GTE metabolites 

were unable to be positively identified without further experimentation and analysis.  
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Table 3.2. Suspected metabolites of GTE following metabolism with S9 human liver fraction and 

frequency of detection using GC-MS analysis. GTE was metabolised at two concentrations: 1 mg/mL 

and 5 mg/mL (n = 10 for each concentration) *Components also detected in metabolised standards of 

CH, EC, EGC and/or EGCG. 

Compound RT (min) Base Peak 
Detected in 

samples (%) 

17 11.6083 116 85 

28* 16.2233 116 80 

116 17.2000 117 75 

126* 18.3283 99 95 

182* 21.4600 71 70 

184* 21.8900 75 90 

192* 22.8067 174 90 

217* 27.5300 299 95 

220 27.9300 174 90 

257* 31.1217 281 100 

258* 31.2017 72 75 

261 31.7450 147 75 

312* 33.2900 217 100 

318 34.5083 299 90 

337* 36.5400 147 90 

339 37.8117 299 95 

353 41.2500 361 95 

 

3.4 The effect of GTE on paracetamol-induced hepatotoxicity 

3.4.1 Cell density 

HepG2 cells from control samples reached approximately 80% confluence by the 

conclusion of the exposure period and the cells appeared to be healthy (Figure 3.9). 
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Confluence of cells exposed to APAP was estimated to be 70-75% and the cells again 

had a healthy appearance, although were aggregated in smaller clusters than those 

observed in the controls. Confluence of both the GTE- and APAP/GTE-treated 

samples was approximately 50-60% and it was difficult to distinguish any obvious 

difference between these treatment groups via microscopy. Cells in the GTE and 

APAP/GTE sample groups also formed smaller aggregates, similar to those observed 

in the APAP-treated cells. Cells exposed to GTE or the combined treatment had a 

darker appearance than the untreated controls and APAP-treated cells, and a colour 

change in the medium from pink to brown was observed.  

 

 

 

A) B) 

50 µM 50 µM 

50 µM 50 µM 

C) D) 
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Figure 3.9. Light microscope images at 100x magnification comparing untreated HepG2 cells (A) with 

those exposed to 1 mg/mL GTE (B), 15 mM APAP and 1 mg/mL GTE (C) or 15 mM APAP (D) for 24 h. 

 

In the untreated controls, the mean HepG2 cell concentration was 1.13 x 106 cells/mL 

(±	6.68 x 105) (Figure 3.10). The RSD determined from the concentration of 

untreated cells was 59.27%, which may be due to loss of cells during the removal of 

spent medium or the PBS wash step prior to trypsinising; therefore, untreated cell 

concentration was likely to be higher than described here. As outlined in section 

3.2.1, only two wells were used for performing cell counts; future studies should 

include at least three wells in order to provide a more accurate estimate of untreated 

cell concentration. Of the sample groups, the APAP-treated cells appeared to retain 

the greatest viability with a mean cell concentration of 6.80 x 105 cells/mL (±	1.13 x 

105).  

Little difference was demonstrated between the GTE-treated cells and those exposed 

to a combination of APAP and GTE, with mean cell concentrations found to be 3.45 x 

105 (±	7.07 x 103) and 3.55 x 105 cells/mL (±	7.78 x 104), respectively. This may be 

due to the GTE concentration of 1 mg/mL being too high, thus resulting in the effects 

of high-dose GTE masking the effects of APAP and GTE in combination. Based on the 

cell counts, it was not possible to determine whether the effects observed in the 

APAP/GTE treatment group were from the combined treatment or predominantly 

due to the high GTE dose. If this test were to be repeated, a lower GTE concentration 

should be used in order to better elucidate whether GTE aids or exacerbates APAP-

induced hepatotoxicity. All treatment groups demonstrated relatively low variation, 
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with the lowest RSD observed in GTE-treated cells (2.05%), followed by the APAP 

(16.64%) and APAP/GTE (21.91%) treatment groups 

As was observed in section 3.2.1, HepG2 cells were difficult to trypsinise post-

exposure to GTE and the combined APAP/GTE treatment, believed to be due to the 

GTE reacting with the well coating. As a result, approximately 80-90% of the cells 

resuspended successfully, therefore the actual cell concentrations for these 

treatment groups were slightly higher than described here. 

 

 

Figure 3.10. HepG2 cell concentration following exposure to 15 mM APAP, a combination of 15 mM 

APAP and 1 mg/mL GTE or 1 mg/mL GTE for 24 h compared to untreated controls (n = 2 for each 

sample group). Error bars indicate standard deviation.  
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3.4.2 Metabolomic analysis 

PCA was used to compare the three treatment groups with untreated controls 

(Figure 3.11). Controls and APAP-treated cells demonstrated a difference in 

metabolite profile compared to the GTE- and APAP/GTE-treated cells, with 22% of 

the observed variance explained by PC-1 and 16% by PC-2. No variance between the 

GTE and APAP/GTE treatment groups was able to be determined from the PCA plots, 

nor between the controls and APAP-treated samples. 

 

 

Figure 3.11. PCA scores plot using the first two principal components for comparison of HepG2 cell 

metabolite profile of untreated controls (blue) to cells exposed to 1 mg/mL GTE (green), 15 mM 

APAP/1 mg/mL GTE (purple) or 15 mM APAP (red) for 24 h, as measured by GC-MS analysis (n = 10 for 

each sample group). A difference was observed between the metabolite profiles of untreated controls 

and APAP-treated cells compared to GTE and the combined APAP/GTE treatment groups. No 

difference was observed in the metabolite profile of untreated cells compared to APAP-treated cells 

via PCA, nor between the GTE-treated cells compared to the combined treatment group. 
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The PLS-DA scores plot comparing the GTE-treatment group with untreated cells 

showed a difference in metabolite profile, 24% and 75% of which was explained by 

factor-1 (Figure 3.12a). Additionally, a difference was observed between untreated 

cells and the combined treatment group across factor-1, with 15% and 71% of the 

variance explained (Figure 3.12b). Most notably, a difference in metabolite profile 

was observed when the untreated cells were compared with the APAP treatment 

group, which had been difficult to distinguish in the PCA scores plot (Figure 3.12c). 

The variance observed here was explained 15% and 71% by factor-1. 
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Figure 3.12. PLS-DA scores plots using the first two principal components (factors) for comparison of 

HepG2 cell metabolite profile in untreated controls (blue) to cells treated with: A) 1 mg/mL GTE 

(green), B) 15 mM APAP/1 mg/mL GTE (purple), and C) 15 mM APAP (red), as measured by GC-MS 

analysis (n = 10 for each sample group).  

A) 

B) 

C) 
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Two PLS-DA scores plots were produced comparing GTE-treated cells with the APAP 

and APAP/GTE treatment groups, with a difference in metabolite profile being 

observed in both. The difference observed between the GTE-treatment group and 

APAP-treated cells was 20% and 59% explained by factor-1 (Figure 3.13a). When 

comparing the GTE-treated cells with the combined treatment group, the difference 

observed was primarily across factor-1, with 26% and 46% of the variance explained 

(Figure 3.13b). 

Finally, an additional PLS-DA scores plot was constructed to compare APAP-treated 

cells with the combined treatment group. A difference in metabolite profile was 

again observed across factor-1, with 27% and 74% of the variance explained (Figure 

3.13c). 
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Figure 3.13. PLS-DA scores plots using the first two principal components (factors) for comparison of 

HepG2 cell metabolite profiles following treatment with: A) 1 mg/mL GTE (green) vs. 15 mM APAP 

(red), B) 1 mg/mL GTE vs. 15 mM APAP/1 mg/mL GTE (purple), and C) 15 mM APAP vs. 15 mM APAP/1 

mg/mL GTE, as measured by GC-MS analysis (n = 10 for each sample group).  

A) 

B) 

C) 
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The PLS-DA X-loadings were used with a threshold of +/- 0.05 to identify the 34 

compounds contributing most to the variance between the sample groups (Figure 

S3, S4). When compared to the NIST library, 22 of these compounds met at least 2 of 

the 3 criteria defined in section 2.3.4.3 and thus were putatively deemed a match. 

After removing the compounds that were likely to be solvent-derived, 17 metabolites 

remained. 

Based on these 17 metabolites, a significant difference was observed between the 

profiles of untreated controls compared to GTE-treated cells (p=.001), and also 

between the controls and combined treatment group (p<.001) (Figure S5). 

Additionally, the metabolite profile of APAP-treated cells differed significantly from 

the GTE and combined treatment groups (p=.006 and <.001, respectively). No 

significant difference was observed between the controls and APAP-treated cells 

(p=.540), nor between the GTE and APAP/GTE treatment groups (p=.117). 

Of these 17 metabolites, 10 demonstrated a positive fold-change in comparison to 

the same compounds from control samples and 5 had a negative fold-change (Table 

3.3). The remaining 2 metabolites had mixed fold-changes across the treatment 

groups, however both of these were positive in the GTE-treated cells. Alanine 

demonstrated a negative fold-change in the APAP/GTE and APAP treatment groups, 

whilst myo-inositol had a negative fold-change in the APAP/GTE-treated cells and a 

positive fold-change in the APAP sample group. Of the amino acids, carbohydrates 

and fatty acids, the largest fold-changes were observed in b-alanine (GTE: 21.97, 

GTE/APAP: 21.23, APAP: 9.32), D-mannose (GTE: 2.64) and stearic acid (GTE: 5.51, 
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GTE/APAP: 6.98), respectively. All metabolites were found to differ significantly 

between sample groups, with the exception of alanine. 
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Table 3.3. Fold change observed in metabolites of HepG2 cells post-exposure to 1 mg/mL GTE, a 

combination of 15 mM APAP/1 mg/mL GTE or 15 mM APAP compared to untreated controls (n = 10 

for each sample group). Changes were primarily observed in amino acids and fatty acids. Green arrows 

indicate a positive-fold change compared to untreated controls and red arrows indicate a negative 

fold-change. *Metabolite differed significantly between sample groups, as determined by the Kruskal-

Wallis test (p<.05). †NIST match only met 2 of 3 match criteria outlined in section 2.4.4.3. 

Metabolite GTE APAP/GTE APAP 

Amino acids 

b-Alanine*  21.97  21.23  9.32 

Alanine†  1.14 ¯ 0.60 ¯ 0.86 

L-Threonine* ¯ 0.67 ¯ 0.19 - 

Serine* ¯ 0.61 ¯ 0.30 - 

L-Glutamic acid* ¯ 0.47 ¯ 0.08 - 

L-Lysine* - ¯ 0.41 - 

L-Isoleucine* ¯ 0.30 ¯ 0.12 - 

Carbohydrates 

D-Mannose*†  2.64 - - 

Myo-inositol*  1.06 ¯ 0.53  6.39 

Fatty acids 

Unidentified short-chain fatty acid*†  9.60  10.48  1.74 

Stearic acid*  5.51  6.98 - 

Oleic acid*  5.10  7.13 - 

Palmitic acid*  4.84  7.02 - 

Arachidonic acid*  4.12  3.53  1.54 

Other 

Unidentified piperidine derivative*  9.16  8.64  2.04 

Pipecolic acid*  5.02  3.43  2.19 

Cholesterol*  3.39  3.03  1.62 
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A large positive fold-change was observed in b-alanine across all three treatment 

groups, most notably in the GTE- and APAP/GTE-treated cells (>20-fold). b-alanine is 

a non-proteinogenic amino acid that is commonly metabolised to aspartic acid under 

normal conditions.122 In circumstances of increased energy demand, b-alanine can 

be converted into alanine and malonate semialdehyde: alanine can then be 

converted into pyruvate and fed into the TCA cycle; malonate semialdehyde can be 

converted to malonate, followed by malonyl CoA which then contributes to fatty acid 

synthesis.122, 124 b-alanine is also the rate-limiting precursor to the reactive oxygen 

species (ROS) scavenger carnosine, and it can be produced as a result of catabolism 

of pyrimidine nucleotides such as cytosine and uracil, which may occur as a result of 

DNA or RNA degradation.122, 124, 131 The positive fold-change observed here most 

likely reflects b-alanine production via pyrimidine catabolism in response to 

increased cellular demand for carnosine or as a result of DNA and RNA degradation, 

either of which could due to oxidative stress. Some b-alanine present in the cells may 

have undergone conversion to alanine and malonate semialdehyde, which may 

explain the positive fold-change in alanine observed in the GTE-treated cells.  

The amino acids L-threonine, serine, L-glutamic acid and L-isoleucine demonstrated 

a negative fold-change in GTE- and APAP/GTE-treated cells, and alanine 

demonstrated a negative fold-change in the APAP/GTE- and APAP-treated cells. This 

negative fold-change in amino acids could reflect a demand for alternative energy 

sources within the cells due to carbohydrate depletion or malfunction of the 

glycolytic pathway.122 Alanine, threonine, serine, glutamine and glutamic acid can all 

be converted into pyruvate and fed directly into the TCA cycle, allowing oxidative 
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phosphorylation to continue whilst bypassing glycolysis.122, 124 Additionally, 

isoleucine can be converted into acetyl CoA and fed directly into the TCA cycle.122, 124 

Thus, a reduction in these amino acids likely indicates a cellular demand for non-

carbohydrate energy sources in order to continue producing ATP whilst bypassing 

glycolysis. A positive fold-change was observed in the carbohydrates D-mannose and 

myo-inositol, contributing to the theory that treated cells may have lost the ability to 

use carbohydrates as an energy source. Aside from its use as an energy source, serine 

has been demonstrated to have an antioxidant role, thus it is possible that a negative 

fold-change in this amino acid could be due to its consumption as a free radical 

scavenger.127 

A negative fold-change in L-lysine was observed in the combined treatment group, 

which can be converted into acetyl CoA via the saccharopine pathway to be utilised 

in the TCA cycle.122, 124 Thus, as with the other amino acids found to have a negative 

fold-change in treated cells, it is possible that L-lysine was being used as an 

alternative energy source by the cells. All three treatment groups demonstrated a 

positive fold-change in pipecolic acid, a metabolite of lysine, supporting the theory 

that lysine was being degraded in the cells.122  

As outlined previously, myo-inositol is an integral component of inositol phosphates, 

secondary messengers involved in cellular signal transduction.128, 129 For example, 

InsP3 RI-dependent Ca2+ signalling has been found to play a role in the early stages 

of liver regeneration and the IRE1a regulation of hepatocyte proliferation via control 

of STAT3; therefore, it is possible that the positive fold-change observed in the GTE 

and APAP treatment groups reflects hepatocyte regeneration in response to GTE-
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induced hepatotoxicity.128, 129 The APAP/GTE treatment group demonstrated a 

negative fold-change in this compound, which may indicate consumption or 

depletion of inositol within the cells due to increased cytotoxicity. 

A positive fold-change was observed in stearic acid, oleic acid and palmitic acid in 

GTE- and APAP/GTE-treated cells, along with arachidonic acid and an unidentified 

short-chain fatty acid in all treatment groups. Cholesterol also demonstrated a 

positive fold-change in cells from all treatment groups. As outlined previously, lipid 

peroxidation resulting in disruption to cell membranes can occur during oxidative 

stress, thus the positive fold-changes observed in cholesterol and fatty acids may be 

a result of membrane degradation.130 Additionally, it is possible that the positive fold-

change in arachidonic acid may in part be due to an inflammatory response occurring 

within the cells.121  
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4. General discussion 

4.1. GTE-induced oxidative stress 

This study has demonstrated that GTE induces hepatotoxicity in HepG2 cells, 

inducing a wide range of biochemical changes which ultimately led to a decrease in 

cell concentration. Cells treated with GTE, GTE metabolites (GTEM) or a combination 

of APAP and GTE all demonstrated a loss in cell viability and changes in key cellular 

components, such as amino acids, fatty acids and carbohydrates. Given that the rise 

in herbal complementary and alternative medicine (HCAM) usage is showing no signs 

of slowing and that GTE is already very popular, the findings are particularly 

concerning and further contribute to the growing body of research suggesting that 

GTE is capable of causing herb-induced liver injury (HILI).1, 81, 95, 98 

The biochemical changes observed in this study were suggestive of lipid peroxidation 

and membrane damage, pyrimidine and protein degradation, increased cellular 

requirement for non-carbohydrate energy sources and disruption to glycolysis and 

potentially the TCA cycle, of which the latter may have occurred as a result of 

mitochondrial dysfunction.121, 122, 124 The changes observed in b-alanine may also 

reflect an increase in demand for the ROS scavenger carnosine.122, 124, 131 Additionally, 

the changes observed in myo-inositol suggests that an increase in inositol signalling 

was occurring, potentially in an attempt to carry out cellular repair and 

regeneration.128, 129 These biochemical pathways are commonly disrupted during 

oxidative stress, suggesting that the hepatocytes entered a pro-oxidant state.132, 133 

These findings are consistent with previous studies which have implicated oxidative 

stress in GTE-induced hepatotoxicity.40, 46, 95, 98, 99 
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Oxidative stress is characterised by an imbalance between free radicals and the 

antioxidants within the cell, and is commonly implicated in cytotoxicity and other 

disease processes.133, 134 Free radicals, such as ROS and reactive nitrogen species 

(RNS), are pro-oxidant molecules which are highly reactive due to the presence of at 

least one unpaired electron.134 In healthy cells, free radicals can be produced 

endogenously as by-products of processes such as aerobic respiration and at low 

concentrations have a number of beneficial physiological roles.134 Antioxidants 

protect the cells by preventing or repairing free radical damage.133, 134 During 

oxidative stress there is an overproduction of ROS and RNS or a deficiency in cellular 

antioxidants (or both), resulting in the inability to sufficiently neutralise free radicals 

and ultimately leading to the oxidation of important cellular molecules, such as lipids, 

proteins and nucleic acids, as observed in this study.132-134 Eventually, when cellular 

damage is beyond repair, oxidative stress leads to cell death; this may explain the 

significant decrease in cell concentration observed in the GTE, GTEM and APAP/GTE 

treatment groups. Future studies should measure oxidative stress in GTE-treated 

HepG2 cells in order to confirm that this process was occurring in the cells analysed 

in this study. 

To further investigate the role of oxidative stress in GTE-induced hepatotoxicity, 

direct or indirect approaches could be used to measure oxidative stress in vitro using 

markers such as ROS, lipid peroxidation, antioxidants, damage to DNA or RNA and 

oxidation or nitration of proteins.132 An example of a direct method commonly used 

to assess oxidative stress is the dichlorodihydrofluorescein diacetate (DCFDA) assay, 

which can be used to measure ROS, such as hydrogen peroxide, in cells.133, 135 DCFDA 

passively diffuses into cells and is subsequently hydrolysed to DCFH, which then 
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reacts with ROS to produce DCF as a fluorescent product.133, 135 This can be measured 

using flow cytometry or a microplate reader, with the intensity of fluorescence giving 

an indication of ROS levels, and therefore oxidative stress, within cells.133, 135 The 

major limitation of using ROS as a measure of oxidative stress is their transient 

nature, which may hinder the accuracy and precision of the results; this can be 

overcome by analysing oxidative damage, such as protein carbonyl content or lipid 

peroxidation, as an indirect measure of oxidative stress.132, 133  

A wide range of assays have been developed for the analysis of oxidative damage; 

for example, the thiobarbituric acid-reactive substances (TBARS) assay is a popular 

approach used to measure lipid peroxidation via the use of malondialdehyde (MDA) 

as a marker.132, 133, 136 In this assay, a conjugate is formed between thiobarbituric acid 

and MDA, which can be separated from other thiobarbituric acid conjugates using 

techniques such as high performance liquid chromatography (HPLC) and measured 

using fluorescence with the result giving an indication of lipid peroxidation within the 

cell.133, 136 The positive fold-change in fatty acids observed in this study possibly 

indicates lipid peroxidation, thus it may be useful to couple the TBARS assay with the 

DCFDA assay to confirm that GTE, GTEM and APAP/GTE treatments induce oxidative 

stress in HepG2 cells, an approach that has previously been used to assess this 

mechanism in this cell line.137, 138 

The observed changes in amino acids and carbohydrates in the GTEM, APAP/GTE and 

both GTE treatment groups may also be indicative of a disruption in cellular 

respiration. Disruption to glycolysis in response to GTE has previously been described 

in the literature, with a 2016 paper suggesting that epigallocatechin-3-gallate (EGCG) 
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directly inhibits phosphofructokinase.100, 101 The change in citric acid, or citrate at 

biological pH, observed in the GTEM and first GTE treatment groups suggests a 

possible disruption in the TCA cycle, leading to the accumulation of this 

intermediate.121 This suggests that the mitochondria may have been affected in GTE- 

and GTEM-treated cells. Mitochondrial dysfunction is commonly implicated in 

oxidative stress, and it has previously been found that the mitochondria may be a 

target for GTE constituents such as EGCG, with the resulting mitochondrial 

dysfunction and elevated antioxidant response being suggested as possible 

contributors to GTE-induced hepatotoxicity.40 

To confirm whether mitochondrial damage occurred, an assay such as the cellular 

ATP glucose-galactose shift assay may be used.139 Despite the reported reduced 

galactose metabolism in HepG2 cells, recent modifications to this assay have 

enhanced its sensitivity and specificity, thus enhancing the reliability of its results.139 

Whilst assays tend to be the most commonly adopted approach to measuring 

oxidative stress and mitochondrial dysfunction, metabolomic analysis has 

demonstrated promise in recent years with the potential to provide more sensitive 

and specific results via the use of HPLC, LC-MS/MS and GC-MS.136, 140 The cellular 

disturbances suspected to occur in HepG2 cells following exposure to various 

treatments of GTE are summarised in Figure 4.1. 
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Figure 4.1. Summary of cellular disturbances suspected to occur during GTE-induced hepatotoxicity 

based on the data from this study. Created with BioRender.com. 

 

4.2 GTE metabolites 

Given that, aside from gallic acid, the suspected GTE metabolites were unable to be 

putatively identified in the timeframe of this study, further analysis is required to 

determine the identity of these compounds. A 2019 paper described the use of LC-
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MS and nuclear magnetic resonance (NMR) spectroscopy to characterise variations 

in metabolite profile amongst cranberry supplements, thus a method similar to this 

would be ideal for the isolation and identification of the compounds in metabolised 

GTE samples.141, 142 The extent to which GTE was metabolised by S9 human liver 

fraction in the 1-h reaction period used in this study was not determined. Given that 

NMR signal intensity is directly proportional to the concentration of a given 

metabolite, it is inherently quantitative and so could also be used to determine the 

extent of GTE metabolism based on concentration of unmetabolised GTE 

constituents prior to commencing the reaction compared to the amount remaining 

at its conclusion.142 The information obtained from these metabolomic analyses 

could subsequently be used to determine the likelihood of a given compound being 

a GTE metabolite. 

The upper m/z limit of 1000 of the instrument used in this study may have inhibited 

the detection of larger GTE metabolites. For example, EGCG has a m/z of 648, making 

it possible that conjugated metabolites of EGCG may have been too large to be 

detected, thus reducing the number of compounds identified in the metabolised GTE 

samples.143 If the GTE metabolites produced in this study were to be characterised 

using LC-MS and NMR, the potential for large EGCG metabolites should be 

considered and modifications made in order to obtain the most comprehensive 

results. 

Another limitation to this section of the study was that it is possible that the 

metabolism carried out using S9 human liver fraction was not a complete 

representation of the metabolic processes normally carried out in hepatocytes in 
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vivo. Additionally, GTE constituents such as catechins have been shown to undergo 

extensive microbial metabolism in the intestine prior to absorption.61 It has also been 

found that catechins may be metabolised via methylation and sulfation in 

enterocytes prior to being absorbed into the portal vein.59, 62 These microbial and 

intestinal GTE metabolites are inevitably different to those produced by hepatocytes, 

thus it is possible that these conjugations may have a different level of toxicity to 

those observed in this study.59, 61, 62 It is also possible that hepatocytes are 

predominantly exposed to microbial and intestinal metabolites of GTE, and not the 

unmetabolised constituents analysed in this study, therefore further analysis is 

required to examine the toxicity of these metabolites in an effort to more 

comprehensively understand the compounds to which hepatocytes are exposed in 

vivo following ingestion of GTE.  

4.3 Future considerations 

This project had a number of limitations that may have impacted the in vivo relevance 

of the results obtained and which should be considered in future studies. The doses 

used in this study were chosen after having been demonstrated to induce 

cytotoxicity and were therefore not necessarily pharmacologically relevant.26, 117 

Whilst this allowed for the assessment of which biochemical pathways may have 

been affected in hepatocytes during GTE-induced hepatotoxicity, it may not be 

completely demonstrative of what occurs in individuals who develop liver damage in 

response to this HCAM. The length of treatment must also be taken into account 

when considering dosage; due to the limited timeframe, this study focused on acute, 

high doses in order to elicit a timely toxic response. Future studies should use 
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pharmacological doses and chronic exposure periods in order to better represent the 

conditions under which cases of GTE-induced liver damage have manifested.3, 4 

Bioavailability must also be taken into consideration, given the low oral 

bioavailability previously demonstrated in GTE components such as catechins, 

particularly when consumed in a fed state.33 Additionally, microbial metabolism of 

catechins results in a variety of conjugations and thus may impact their overall 

bioavailability.61 It is therefore likely that the GTE components and metabolites to 

which cells were exposed in this study were not a complete representation of what 

they may come into contact with in vivo. 

Whilst analysing hepatocyte metabolism in vitro is achievable, it is not possible to 

completely assess the pharmacokinetics of GTE using this model. Understanding the 

absorption, distribution and excretion of GTE constituents and metabolites in 

addition to their metabolism will be paramount to understanding and predicting the 

risk of toxicity induced by GTE, or other herbal medicines, in certain individuals. 

In addition to the pharmacology of GTE and its constituents, there are other factors 

which may contribute to the toxicity observed in certain individuals which could not 

be sufficiently examined in the timeframe of this study. For example, it has been 

demonstrated that the contamination and adulteration of herbal supplements is not 

only possible, but rife among these products.12, 144 Given that in many instances of 

liver damage the GTE product consumed has not been available for testing, it is 

difficult to rule out contamination or adulteration of these products leading to the 

liver damage reported. Given that this study did not characterise the composition of 



 102 

the GTE product prior to cell exposures, contamination or adulteration cannot be 

ruled out as a possible contributor to the cytotoxicity observed. 

Genetic variation may also play a role in determining which individuals may be more 

predisposed to developing a liver injury when consuming GTE.34, 35, 86 For example, 

polymorphisms resulting in altered function or abundance of the enzymes 

responsible for the biotransformation of catechins may increase the likelihood of 

hepatotoxicity due to the potentially toxic accumulation of these compounds or the 

increased production of toxic metabolites.34 Additionally, changes in the proteins 

involved in Phase III detoxification could limit the clearance of catechins and 

metabolites from the liver, causing them to build up, potentially resulting in 

hepatotoxicity.24, 25 Future studies should examine whether any common genetic 

abnormalities are able to be identified amongst individuals who develop liver injury 

following supplementation with this HCAM. 

Co-medication with other herbal supplements or drugs could result in herb-herb or 

herb-drug interactions, which may contribute to certain individuals being more 

susceptible to developing GTE-induced liver damage.16, 17 In fact, a number of cases 

of liver damage in which GTE was identified as the most likely culprit have been in 

individuals using a supplement which contained GTE as one of many ingredients.4 It 

is possible that GTE could interact with other components present in these products 

to cause liver injury, and may not be as damaging when consumed in isolation at a 

safe dosage. Further research should be conducted in order to determine the 

composition of these products and whether the hepatotoxicity of these substances 

can really be narrowed down to a single component. 
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If this study were to be repeated, it may also be beneficial to use a different 

hepatocyte cell line, such as HepaRG. It is well established that HepG2 cell responses 

are not completely comparable to in vivo hepatocyte responses; for example, the 

diminished function of the CYP450 enzymes is a particular setback when assessing 

toxicity with this cell line.5 HepaRG cells are an immortalised cell line which have 

retained metabolic function, therefore these may be a better choice in future.5 

Additionally, using 3D cultures that include non-parenchymal liver cells may produce 

results more comparable to in vivo responses than the traditional 2D culture used in 

this study, given that they allow more complex cell-cell interactions.145 Of course, the 

gold standard would be to obtain primary human hepatocyte cultures, however this 

is unlikely to be an option until further evidence is gathered.5, 145 

A major challenge with GC-MS analysis is the formation of multiple derivatisation 

products. This makes it challenging to gain a complete understanding of a given 

metabolic profile due to the production of multiple results for the same compound. 

In this study, the method of overcoming this without further analysis was to select 

the result that appeared to contribute most to the variation between samples, and 

disregard the others. This is flawed and thus it would be more suitable to conduct 

further analysis using other forms of metabolomic analysis such as LC-MS and NMR 

spectroscopy, the complementarity of which was discussed in a 2018 systematic 

review.5  

4.4 Conclusion 

This study used in vitro techniques to analyse the hepatotoxicity of GTE and has 

demonstrated that this supplement is capable of causing HILI. Whilst this study only 
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analysed one GTE product available on the Australian market, it has highlighted the 

potential risk this supplement poses to consumer health. The results indicated that 

disruption to cellular respiration, proteins, nucleic acids and lipids were likely to have 

occurred in HepG2 cells following exposure to a range of GTE treatments, 

contributing to the growing body of evidence which suggests that GTE-induced 

hepatotoxicity occurs as a result of oxidative stress.40, 98, 99 Cells treated with 

metabolised GTE appeared to be less affected than those exposed to unmetabolised 

GTE, suggesting that the metabolism of GTE renders toxic parent compounds inert. 

In addition to determining the biochemical changes induced by GTE and the extent 

to which this is mediated by GTE metabolites, this study has also demonstrated that 

metabolomics is an effective and comprehensive tool for toxicological analysis. Using 

the method described in this study, it was possible to not only determine the end-

point toxicity but also provide insight into the mechanisms most likely driving the loss 

of cell viability observed in response to treatment with this herbal supplement. 

Metabolomics is therefore a valuable technique which should be incorporated into 

future studies investigating in vitro toxicology. 

This study focused on GTE, one of a number of HCAMs implicated in increasing cases 

of liver damage worldwide; particularly concerning given that consumers often 

purchase these herbal medicines in the belief that their natural origin is synonymous 

with them being safe. It is therefore imperative that appropriate steps are taken to 

ensure that the right measures are in place to prevent adverse reactions to HCAMs, 

such as the GTE-induced hepatotoxicity observed in this study, from continuing to 

contribute to morbidity and mortality in the Australian community.  
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6. Supplementary information 

 

 

 

Figure S1. X- and Y-loadings plot from which X-loadings were derived for analysis of metabolites 

contributing most to variance between untreated controls and GTE-treated cells (A), untreated 

controls and GTEM-treated cells (B), and GTE-treated and GTEM-treated cells (C), measured by GC-

MS.  

A) 

B) 

C) 
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Figure S2. Kruskal-Wallis pairwise comparisons of sample groups: 1) untreated controls, 2) 1 mg/mL 

GTE treatment group, and 3) 1 mg/mL GTEM treatment group. All sample groups were prepared in 10 

replicates. A significance difference was observed between the metabolite profile of untreated cells 

compared to GTE-treated cells, and also between the controls and GTEM treatment group (p<.05). 

The metabolite profile of GTE-treated cells was not found to differ significantly from that of the GTEM 

treatment group. 
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Table S1. Unidentified metabolites of purified catechin hydrate (CH) following metabolism with S9 

human liver fraction and GC-MS analysis (n = 3). CH concentration prior to initiation of metabolism 

was 1 mg/mL. *Components also detected in metabolised green tea extract. 

Compound RT (min) Base Peak Detected in samples (%) 

3* 16.2233 116 100 

4 16.3883 174 66.66667 

6 16.5867 299 33.33333 

7 16.6250 205 33.33333 

9 17.4483 174 66.66667 

11 18.1433 184 33.33333 

12* 18.3283 99 100 

16 20.0817 74 66.66667 

17 20.0883 234 33.33333 

18 20.5533 217 100 

19* 21.4600 71 100 

20* 21.8900 75 33.33333 

22 22.3300 102 100 

24 22.6917 156 33.33333 

25* 22.8067 174 33.33333 

26 22.9350 84 100 

28 23.3650 220 33.33333 

29 24.7500 246 66.66667 

30 24.9850 127 100 

31 25.5600 86 100 

33 25.8867 260 66.66667 

34 27.0767 272 100 
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35 27.1850 217 100 

37* 27.5300 299 100 

38* 29.3017 174 100 

39 29.5017 103 33.33333 

41 29.7600 147 100 

43 29.9700 205 100 

45 30.3067 147 66.66667 

47 30.5050 147 100 

48* 31.1217 281 33.33333 

49* 31.2017 72 100 

50 31.4733 204 100 

53 32.3000 204 33.33333 

54 32.7633 117 100 

55 33.1600 217 100 

56* 33.2900 217 33.33333 

57 33.6017 315 100 

59 34.7783 213 33.33333 

60 34.7867 213 33.33333 

62 35.4400 75 100 

63 35.5317 75 100 

66 38.9583 217 33.33333 

67 38.9667 217 66.66667 

69 43.0033 204 100 

71 43.6683 204 100 

76 44.6267 169 33.33333 
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80 49.9000 361 100 

81 51.5033 204 66.66667 

 

Table S2. Unidentified metabolites of purified epicatechin (EC) following metabolism with S9 human 

liver fraction and GC-MS analysis (n = 3). EC concentration prior to initiation of metabolism was 1 

mg/mL. *Components also detected in metabolised green tea extract. 

Compound RT (min) Base Peak Detected in samples (%) 

3* 16.2233 116 33.33333 

4 16.3883 174 66.66667 

5 16.5783 299 66.66667 

8 16.6400 299 66.66667 

9 17.4483 174 66.66667 

10 17.7583 147 33.33333 

11 18.1433 184 33.33333 

12* 18.3283 99 66.66667 

13 20.0233 127 33.33333 

17 20.0883 234 66.66667 

18 20.5533 217 100 

19* 21.4600 71 33.33333 

20* 21.8900 75 33.33333 

22 22.3300 102 66.66667 

26 22.9350 84 33.33333 

27 22.9833 239 33.33333 

29 24.7500 246 66.66667 

30 24.9850 127 66.66667 
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31 25.5600 86 66.66667 

33 25.8867 260 66.66667 

34 27.0767 272 66.66667 

35 27.1850 217 100 

36 27.3767 174 33.33333 

37* 27.5300 299 66.66667 

38* 29.3017 174 33.33333 

39 29.5017 103 66.66667 

41 29.7600 147 66.66667 

43 29.9700 205 100 

45 30.3067 147 100 

47 30.5050 147 100 

48* 31.1217 281 100 

49* 31.2017 72 66.66667 

50 31.4733 204 100 

52 32.1933 297 33.33333 

54 32.7633 117 100 

55 33.1600 217 66.66667 

56* 33.2900 217 33.33333 

57 33.6017 315 100 

58 33.6750 315 33.33333 

60 34.7867 213 33.33333 

62 35.4400 75 100 

63 35.5317 75 100 

64 35.9400 117 33.33333 
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65* 36.5400 147 33.33333 

66 38.9583 217 33.33333 

67 38.9667 217 33.33333 

69 43.0033 204 100 

70 43.0817 280 33.33333 

71 43.6683 204 100 

75 44.5950 169 33.33333 

80 49.9000 361 100 

81 51.5033 204 66.66667 

 

Table S3. Unidentified metabolites of purified epigallocatechin (EGC) following metabolism with S9 

human liver fraction and GC-MS analysis (n = 3). EGC concentration prior to initiation of metabolism 

was 1 mg/mL. *Components also detected in metabolised green tea extract. 

Compound RT (min) Base Peak Detected in samples (%) 

3* 16.2233 116 66.66667 

4 16.3883 174 66.66667 

6 16.5867 299 100 

9 17.4483 174 100 

12* 18.3283 99 66.66667 

14 20.0383 72 33.33333 

17 20.0883 234 66.66667 

18 20.5533 217 100 

19* 21.4600 71 100 

22 22.3300 102 100 

24 22.6917 156 33.33333 
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25* 22.8067 174 66.66667 

26 22.9350 84 66.66667 

28 23.3650 220 33.33333 

29 24.7500 246 100 

30 24.9850 127 100 

31 25.5600 86 100 

33 25.8867 260 100 

34 27.0767 272 100 

35 27.1850 217 100 

37* 27.5300 299 100 

38* 29.3017 174 33.33333 

39 29.5017 103 66.66667 

40 29.6867 103 33.33333 

41 29.7600 147 66.66667 

43 29.9700 205 100 

45 30.3067 147 66.66667 

47 30.5050 147 100 

48* 31.1217 281 66.66667 

49* 31.2017 72 100 

50 31.4733 204 100 

51 32.1900 297 33.33333 

54 32.7633 117 100 

55 33.1600 217 66.66667 

57 33.6017 315 100 

59 34.7783 213 33.33333 
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62 35.4400 75 66.66667 

63 35.5317 75 100 

66 38.9583 217 33.33333 

67 38.9667 217 33.33333 

68 40.6250 217 33.33333 

69 43.0033 204 100 

71 43.6683 204 100 

80 49.9000 361 100 

81 51.5033 204 100 

 

Table S4. Unidentified metabolites of purified epigallocatechin-3-gallate (EGCG) following metabolism 

with S9 human liver fraction and GC-MS analysis (n = 3). EGCG concentration prior to initiation of 

metabolism was 1 mg/mL. *Components also detected in metabolised green tea extract. 

Compound RT (min) Base Peak Detected in samples (%) 

3* 16.2233 116 66.66667 

4 16.3883 174 66.66667 

6 16.5867 299 33.33333 

8 16.6400 299 33.33333 

9 17.4483 174 66.66667 

12* 18.3283 99 33.33333 

15 20.0533 234 33.33333 

16 20.0817 74 33.33333 

17 20.0883 234 33.33333 

18 20.5533 217 100 

19* 21.4600 71 66.66667 
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20* 21.8900 75 33.33333 

22 22.3300 102 66.66667 

23 22.3533 84 33.33333 

24 22.6917 156 33.33333 

26 22.9350 84 33.33333 

27 22.9833 239 33.33333 

29 24.7500 246 66.66667 

30 24.9850 127 66.66667 

31 25.5600 86 66.66667 

32 25.8317 103 33.33333 

34 27.0767 272 66.66667 

35 27.1850 217 66.66667 

37* 27.5300 299 66.66667 

38* 29.3017 174 33.33333 

39 29.5017 103 66.66667 

41 29.7600 147 66.66667 

42 29.9050 204 33.33333 

43 29.9700 205 66.66667 

45 30.3067 147 66.66667 

46 30.3783 205 33.33333 

47 30.5050 147 66.66667 

48* 31.1217 281 66.66667 

49* 31.2017 72 66.66667 

50 31.4733 204 66.66667 

53 32.3000 204 33.33333 
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54 32.7633 117 66.66667 

55 33.1600 217 33.33333 

57 33.6017 315 66.66667 

59 34.7783 213 33.33333 

62 35.4400 75 33.33333 

63 35.5317 75 66.66667 

66 38.9583 217 66.66667 

69 43.0033 204 66.66667 

71 43.6683 204 66.66667 

80 49.9000 361 66.66667 

81 51.5033 204 33.33333 

83 54.6150 560 66.66667 

84 54.6417 560 33.33333 
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Figure S3. X- and Y-loadings plot from which X-loadings were derived for analysis of metabolites 

contributing most to variance between untreated HepG2 cells and A) GTE-treated cells, B) APAP/GTE-

treated cells, and C) APAP -treated cells, measured by GC-MS. 

  

A) 

B) 

C) 
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Figure S4. X- and Y-loadings plot from which X-loadings were derived for analysis of metabolites 

contributing most to variance between HepG2 cells treated with GTE vs APAP (A), GTE vs APAP/GTE 

(B), and APAP vs APAP/GTE (C), measured by GC-MS. 

  

A) 

B) 

C) 
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Figure S5. Kruskal-Wallis pairwise comparisons of sample groups: 1) untreated controls, 2) 1 mg/mL 

GTE-treated cells, 3) 15 mM APAP-treated cells, and 4) 15 mM APAP/1 mg/mL GTE combined 

treatment group. All sample groups were prepared in 10 replicates. A significant difference was 

observed between the metabolite profiles of untreated controls compared to both the GTE-treated 

cells and the combined treatment group (p<.05). The metabolite profile of APAP-treated cells differed 

significantly from the GTE and combined treatment groups. No significant difference was observed 

between the controls and APAP-treated cells, nor between the GTE and APAP/GTE treatment groups. 


