
Towards the Use of the Readily Available Tests from the Release

Pipeline as Performance Tests. Are We There Yet?

Zishuo Ding

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

July 2019

© Zishuo Ding, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/286778783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Zishuo Ding

Entitled: Towards the Use of the Readily Available Tests from the Release

Pipeline as Performance Tests. Are We There Yet?

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Tse-Hsun Chen

Examiner
Dr. Juergen Rilling

Examiner
Dr. Jinqiu Yang

Supervisor
Dr. Weiyi Shang

Approved by
Dr Leila Kosseim, Graduate Program Director

29 July 2019
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Towards the Use of the Readily Available Tests from the Release Pipeline as

Performance Tests. Are We There Yet?

Zishuo Ding

Performance is one of the important aspects of software quality. In fact, performance issues exist

widely in software systems, and the process of fixing the performance issues is an essential step in the

release cycle of software systems. Although performance testing is widely adopted in practice, it is

still expensive and time-consuming. In particular, the performance testing is usually conducted after

the system is built in dedicated testing environment. The challenge of performance testing makes it

difficult to fit into the common DevOps process in software development. On the other hand, there

exists a large number of tests readily available, that are executed regularly within the release pipeline

during software development. In this paper, we perform an exploratory study to determine whether

such readily available tests are capable of serving as performance tests. In particular, we would

like to see whether the performance of these tests can demonstrate the performance improvements

obtained from fixing real-life performance issues. We collect 127 performance issues from Hadoop

and Cassandra, and evaluate the performance of the readily available tests from the commits before

and after the performance issue fixes. We find that most of the improvements from the fixes to

performance issues can be demonstrated using the readily available tests in the release pipeline.

However, only a very small portion of the tests can be used for demonstrating the improvements. By

manually examining the tests, we identify eight reasons that a test cannot demonstrate performance

improvement even though it covers the changed source code of the issue fix. Finally, we build random

classifiers determining the important metrics influencing the readily available tests (not) being able

to demonstrate performance improvements from issue fixes. We find that the test code itself and the

source code covered by the test are important factors, while the factors related to the code changes

in the performance issues fixes have a low importance. Practitioners should focus on designing and

improving the tests, instead of fine-tuning tests for different performance issues fixes. Our findings

can be used as a guideline for practitioners to reduce the amount of effort spent on leveraging and

designing tests that run in the release pipeline for performance assurance activities.

iii

Acknowledgement

First and foremost, I am profoundly grateful to my supervisor, Dr. Weiyi Shang, for his patient

guidance, encouragement, and contributive suggestions. My research would have been impossible to

complete without his aid and support, and I feel extremely lucky to have an intelligent and friendly

mentor who guides me in exploring innovative ideas and achieving research goals.

I would also like to show my sincere gratitude to my committee members, Dr. Juergen Rilling, and

Dr. Jinqiu Yang, for taking their precious time to consider my work and offer insightful comments.

Assistance provided by Jinfu Chen has been a great help in experiment setting and thesis writing.

I would like to send my appreciation to Dr. Weiyi Shang, Dr. Jinqiu Yang, and Dr. Tse-Hsun

Chen, from whom I’ve learned not only valuable knowledge but also the attitudes towards research,

which will benefit my entire academic life. Also, I want to thank all my fellow labmates for the

support and encouragement, also for the best moments we work and enjoy together.

iv

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 Related work 4

3 Case study setup 6

3.0.1 Subject systems . 6

3.0.2 Collecting performance issues . 7

3.0.3 Labeling performance issues with performance metrics 7

3.0.4 Evaluating the fixes of performance issue . 8

4 Case study results 10

5 Threats to validity 27

6 Conclusion 29

Bibliography 30

v

List of Figures

1 An overview of our case study setup and performance data collection. 6

2 The percentage of tests that can or cannot be used to demonstrate performance

improvement from issue fixes for each issue. 13

vi

List of Tables

1 An overview of our extracted metrics to build random forest classifiers. 18

2 An average of AUC, and AUC changes after removing some metrics. −, +, and 0

means there is a decrease, increase and no change of AUC. 23

3 Average rank of the top 3 influential metrics and the Spearman rank correlation

(ρ). Note: A + (or −) sign of ρ indicates a positive (or an inverse) relationship

of the metric with the likelihood that a functional being able to demonstrate the

performance improvements. The larger MDI that a metric has, the more influential

the metric is. 25

4 Average rank of the top 3 influential metrics and the Spearman rank correlation

(ρ). Note: A + (or −) sign of ρ indicates a positive (or an inverse) relationship

of the metric with the likelihood that a functional being able to demonstrate the

performance improvements. The larger MDI that a metric has, the more influential

the metric is. 26

vii

Chapter 1

Introduction

Performance is one of the most important aspects of software quality. Performance can directly

affect the user experience of large-scale systems, such as Amazon, Ebay, and Google [MHH13]. A

prior study finds that field issues reported in such systems are more associated with the performance

of the system, instead of functional issues [WV00].

Performance issues exist widely in software systems [Jin+12], and are difficult to avoid during

the software development processes [Nis+13]. These performance issues have various effects on

the system. Some lead to high resource (like CPU or memory) utilization, and some can cause

a long response time to user requests. An example performance issue excerpt from Hadoop issue

tracking system 1 describes that when NetworkTopology calls add() or remove(), it calls toString()

for LOG.debug() which requires extra resources. As indicated in the issue report, the toString()

method is used for logging messages, which can lead to the unnecessary slowdown of the operation

and extra resource utilization.

Performance testing is challenging. It is often an expensive and a time-consuming process [JH15;

Alg+16]. Performance tests often need to run with carefully designed sophisticated test plans, on

top of the support of special software (like JMeter [Apa]) and are executed for a long period of time

(days) [JH15]. On the other hand, such performance tests typically exercise the entire system as a

whole instead of an optimized “Targeted Therapy”. In particular, such long-running and un-targeted

performance testing is difficult to fit into the widely adopted DevOps process, when releases are

frequent and contain smaller changes between two releases.

On the other hand, there exists a large number of tests that are typically executed regularly

during every build in the release pipeline of software development [TS06]. For instance, in a recent

release of Cassandra, 564 tests are executed by default in a regular build process during the release
1https://issues.apache.org/jira/browse/HADOOP-14369

1

https://issues.apache.org/jira/browse/HADOOP-14369

pipeline; while 4,183 tests are executed in a recent release of Hadoop2. Prior studies find that such

tests are often complex, covering various scenarios of the usage of the software [Rei05; BGZ15;

Ath+14]. More importantly, these tests are readily available and are executed by default on a

regular basis.

Due to the expensive performance testing as well as the wide availability and maturity of tests that

run in the release pipeline, recent research has been advocating the use of such tests in performance

assurance activities[Hor+13; Hor+15; Ste+17; Bul+17]. However, there exists little knowledge

about to what extent can the tests in the release pipeline behave as a performance test. Therefore,

in this paper, we study the use of the readily available tests in the release pipeline of two open-source

projects, i.e., Hadoop and Cassandra, as performance tests. We identify 163 performance issues that

are fixed in the two subject systems and the snapshots of the source code before and after the fix of

each performance issue. By evaluating the performance of the tests with the snapshots of the source

code, we aim to answer the following research questions3:

RQ 1: Can the readily available tests from the release pipeline demonstrate performance improve-

ments from performance issues fixes?

Most of the performance improvements after an issue fix can be demonstrated by at least one

test. However, for each performance issue, only a very small (9.2% and 20.6%) portion of the

tests can demonstrate the performance improvement.

RQ 2: What are the reasons that some tests in the release pipeline cannot be used as performance

tests?

We identify eight reasons that a test from the release pipeline cannot demonstrate perfor-

mance improvement from a performance issue fix. The reasons can be used as a guideline for

practitioners to design micro-performance tests.

RQ 3: What are the important factors for a test to be useful as a performance test?

We build classifiers to model whether a test can demonstrate the performance improvement of

a particular performance issue. By exploring the important factors in our classifiers, we find

that the factors related to the test itself and the covered source code of the test are important

in the classifiers. On the other hand, the factors related to the code changes in the performance

issue fixes have a low importance. Our results imply that practitioners should spend effort

on designing and selecting the tests, while optimizing tests specially for different performance

issues may not be cost-effective in practice.
2https://github.com/apache/hadoop/releases/tag/rel/release-3.1.2
3The data from our study is shared at https://t.ly/kMDPJ

2

https://github.com/apache/hadoop/releases/tag/rel/release-3.1.2
https://t.ly/kMDPJ

Our findings demonstrate the capability and challenges of the readily available tests from the

release pipeline in performance assurance activities. Our paper calls for future research that assist

in designing and selecting tests that can be used in various (e.g., functional and non-functional)

scenarios for the development of software systems.

Thesis organization. The rest of this thesis is organized as follows: Section 2 presents the

prior research that is related to this thesis. Section 3 presents our approach for collecting the

performance data from the readily available tests and manual labelling the tests with performance

metrics. Section 4 presents our three research questions and our results to answer the three research

questions. Section 5 presents the threats to the validity of our study. Finally, Section 6 concludes

this thesis.

3

Chapter 2

Related work

In this section, we discuss the prior research that is related to this paper.

Empirical studies on performance issues

Empirical studies are conducted in order to gain a deep understanding of the nature of perfor-

mance issues. Jin et al. [Jin+12] conducted an empirical study on 109 real-world performance issues

that are collected from five representative software projects. Zaman et al. [ZAH12] study a random

sample of 400 performance and non-performance issues from Mozilla Firefox and Google Chrome.

Huang et al. [Hua+14] study 100 randomly selected real-world performance regression issues from

three open source systems. Based on the study results, prior research found that that it is difficult

to reproduce performance issues and more time is spent on discussing performance issues than other

kinds of issues [ZAH12]. Therefore, automated approaches are designed in order to assist in de-

tecting performance issues [Jin+12] and prioritizing performance tests [Hua+14] based on the study

results. Prior research illustrates the importance of addressing performance issues in practice. Our

work can be adopted by practices in tandem with the prior research on the topic of performance

issues.

Performance issues detection

Prior research builds predictive models in order to predict performance issues [Lim+14; Xio+13].

Lim et al. [Lim+14] formulate the performance issue identification as a Hidden Markov Random Field

based clustering problem. Xiong et al. [Xio+13]leverage statistical models to model the system per-

formance in the cloud. Luo et al. [LPG16b] propose a recommendation system, called PerfImpact

to identify code changes that may potentially cause performance regressions. Such approaches are

applied with a new version of the software in order to detect performance issue. However, such

prior research on performance issue modeling depends on a large amount of performance data with

complex modeling techniques. Such approaches, although proven to be effective, are difficult to

4

adopt in practice [Bez+19], due to their extra overhead and the required resources. Moreover, such

approaches are often conducted at the last stage of the release. Leveraging these approaches to

detect every performance issue is difficult and impractical. Therefore, our findings in this paper may

complement existing approaches in order to detect performance issue fixes more frequently during

the rapid development processes.

Micro-scale performance tests

Extensive prior research has proposed automated techniques to design, execute and analyze

large-scale performance testing [JH15]. Due to the complexity and the resources needed for such

large-scale performance testing, in recent years, research has been conducted in order to study and

design performance testing in a small sizes (micro-scale performance test).

Leitner et al. [LB17] conduct a study on 111 open-source java projects to understand the state of

art of performance testing. Similarly, Stefan et al. [Ste+17] conduct a study on the practices of using

performance unit testing frameworks, including Caliper, ContiPerf, Japex, JMH, JunitPerf. Both

studies show that most of the performance tests are smoke tests and the projects often use JUnit

to test the performance combined with functional test; while only few open source projects use any

performance unit testing framework. These prior papers motivate our work in order to support a

more flexible and low-friction performance testing practice.

Approaches are designed to improve the existing micro-performance testing. Bulej et al. [Bul+17]

present a statistic approach to express performance requirements on unit testing. In addition, Horký

et al .[Hor+15] propose an approach to use performance unit tests to increase performance awareness.

The prior research on micro-performance testing motivates the need of knowing the effectiveness

of the readily available test in performance assurance scenarios. Our findings can complement prior

research in order to advance the practice of testing system performance in a targeted manner.

5

Chapter 3

Case study setup

In this section, we first present the subject systems of our study and the collection of performance

issues from the subject systems. Then we present our approach and experiment to collect perfor-

mance data and we also present the experimental environment. Figure 1 shows an overview of these

steps.

3.0.1 Subject systems

We base our study on two open-source projects, Hadoop and Cassandra. Hadoop is a distributed data

processing system. Cassandra is a free and open-source distributed NoSQL database management

system. We choose Hadoop and Cassandra since they are highly concerned with their performance

and have been studied in prior research in mining performance data [Sye+17; Che+14].

Subject systems

Collecting
performance

issues

Identifying the
issue fixing

commits
Identifying
associated

tests

Tests execution
&Performance
data collectionPerformance

issue fixing
commit

Issues reports

Labelling the
Performance issue with

performance metrics

Associated
tests

Labelled
performance

issue

Performance
data

Version
control

repository

 Issue
tracking
system

Commits before
performance
issue fixing

For each issue

Figure 1: An overview of our case study setup and performance data collection.

6

3.0.2 Collecting performance issues

We first collect the performance issues in the two subject systems. We follow an approach similar

to the one used in prior studies [ZAH12] for performance issues collection. In order to ensure that

there exists a performance improvement after the issue fixes, we only focus on the issue reports that

have the type Bug and are labeled as Resolved or Fixed.

We use keywords as the heuristics to identify performance issue reports. We start by using the

keywords that are used in prior research [ZAH12; Jin+12]. In order to avoid missing performance

issues, we expand our list of keywords by using word embedding. We adopt a word2vec model

trained over 15GB of textual data from Stack Overflow posts [ECS18] to identify the words that are

semantically related to the existing list of keywords. Examples of the uncommon words that related

to performance issues include “sluggish”, and “laggy”, which may not be used in previous research,

but can help collect performance issue reports.

By expanding the list of keywords, we gathered a total of 953 and 966 issue reports in Hadoop

and Cassandra, respectively. Intuitively, not all issue reports are indeed related to performance

issues. Therefore, two authors manually examine every issue report independently to confirm that

the issue report is related to a performance issue. The two authors achieve an agreement of 73.9%.

Afterwards, the two authors discuss each disagreement to reach consensus. When the consensus

cannot be reached, a third author examines the issue report and makes a final decision. Finally,

we collect 88 and 121 performance-related issue reports in Hadoop and Cassandra, respectively.

The amount of issue reports is comparable to prior study on performance issues [Jin+12; ZAH12;

Hua+14].

3.0.3 Labeling performance issues with performance metrics

Each performance issue has its corresponding performance metrics that can be measured and used to

demonstrate the symptom of the performance issue and the improvement after fixes. For example,

issue HADOOP-6502, has a description of “ . . . DistributedFileSystem#listStatus is very slow when

listing a directory with a size of 1300 . . . ”. Based on the description, we know that the performance

issue can be observed by measuring elapsed time of the execution and the elapsed time should

decrease after the issue is fixed. Two of the authors manually label all of the collected performance

issues with their corresponding performance metrics. In total, we identify five performance metrics

in our labeling of the performance issues in our subject systems, i.e., including elapsed time, CPU

usage, memory usage, I/O read and I/O write. For Hadoop, 70, 19, 17, 6, and 4 issues are labeled

with elapsed time, CPU usage, memory usage, I/O read and I/O write, respectively. 77, 32, 29, 33,

and 29 issues from Cassandra are labeled with elapsed time, CPU usage, memory usage, I/O read

7

and I/O write, respectively. Note that an issue report can have performance issues with multiple

performance metrics. The two authors have an agreement of 89.0% on the labeling and a similar

approach as the last step is followed when labeling disagreement occurs.

3.0.4 Evaluating the fixes of performance issue

In this subsection, we present how do we study the use of the readily available tests from the release

pipeline to evaluate performance. We first identify the performance issue fixing commits, in order

to identify the two snapshots of the source code, i.e., before and after fixing each performance issue.

We then present the selection and execution of the associated functional tests that cover the issue

fixing source code. Finally, we present the performance evaluation for each test in order to study

whether each test can demonstrate a performance improvement for the performance issue fixes.

Identifying performance issue fixing commits

We clone the git version control repositories of our subject systems, and use git log to extract all the

code commits together with the corresponding commit messages. The commit messages typically

contain an issue ID, indicating the issue that each commit addresses. With this information, we

collect all the associated commits for each collected performance issue.

We note that there may exist multiple commits for fixing one issue. One reason is that an issue

may be too complex to fix in one commit. Therefore, developers may divide the fix of an issue into

several commits. In addition, developers might have thought that the issue is fixed, while actually

is found not fixed, reopened [Xia+15] and fixed in a later commit. In these cases, we consider the

chronological last commits as the issue fixing commit. We also exclude the commits that do not

have any code changes. Finally, if an issue ID is not contained in any commit messages, we remove

the issue from our study.

After this step, we can collect two snapshots of source code for each performance issue, i.e., one

before issue fixing, and one after issue fixing. We checkout both snapshots of the source code for

each performance issue.

Executing associated tests

Both of our subject systems have a large number of tests that are available in the release pipeline. We

first search for all tests based on their build files. Hadoop has four different sub-modules. We select

the tests by each sub-module to minimize the large amount of irrelevant tests to save computational

resources. For Cassandra, we include all the retrieved tests.

Intuitively, not all tests execute the source code that is changed by the performance bug fixes.

Hence, for each performance issue, we identify the tests that execute the source code that is changed

8

by the fixes (impacted tests) and the tests that do not (un-impacted tests). We leverage code

coverage tools to identify the executed lines in the source code for each test. Different code coverage

tools are used in the subject systems. In particular, Cobertura and JaCoCo are used for Cassandra.

Hadoop depends on Atlassian Clover to calculate code coverage. Since Atlassian Clover needs

licenses to execute, and all support was discontinued at April 11, 2018, we turn to OpenClover,

which is an open-sourced version of Atlassian Clover, to measure the code coverage in Hadoop. If a

test executes the added or modified lines in the source code between two versions (before and after

the performance issues fixes), we consider the test impacted. In addition, for deleted lines of code,

we consider a test covering the code if the test executes the lines before and after the deleted lines.

Afterwards, we run every test (both impacted and un-impacted) individually to evaluate per-

formance that is associated with each test. In particular, the tests for each performance issue are

executed one virtual machine with 8GB memory and 16 cores CPU hosted by Google Compute

Engine (GCE) 1. Each test is independently executed with 30 repetitions to minimize noise. Prior

research studies the use of cloud environment on performance evaluation and shows the successful

use of such a number of repetitions [LSL19]. Note that we also exclude the commits and the issues

where the project fails to build and run. In total, we spent more than 11,642 machine hours for

executing all the tests for the 127 performance issues in our subject systems.

Evaluating the performance of each test

To evaluate the performance that is associated with each test, we collect the five performance metrics,

including the elapsed time, CPU usage, memory usage, I/O read and I/O write, as the labeling of

performance issues. We use psutil (python system and process utilities) [Rod16] for monitoring the

CPU usage, memory usage, I/O read, and I/O write of the process that executes the tests. Psutil has

been used widely in prior research on software performance [CS17; Yao+18]. We use test summary

reports generated via Ant/Maven and Junit to measure the elapsed time of each test. After this

step, we have collected performance data for all the tests (both impacted and un-impacted) that

are associated with two versions of source code (before and after each performance issue fix) of each

performance issue. We then use this data to answer our research questions.

1https://cloud.google.com/compute/

9

https://cloud.google.com/compute/

Chapter 4

Case study results

In this section, we aim to answer the following research questions:

RQ1: Can the readily available tests from the release pipeline demonstrate

performance improvement from performance issues fixes?

Motivation

Performance issue reports are often used as a great source of knowledge in system performance as-

surance activities in prior research [Jin+12; Hua+14]. The certainty of having performance improve-

ment, the description of the report and the available patches makes performance issues great subject

for prior research software performance. This research question concerns whether the performance

of the readily available tests from the release pipeline can demonstrate performance improvement

from performance issue fixes. If not, the readily available tests would not be capable of serving as

performance tests for other performance assurance activities with even higher difficulty.

Approach

Analyzing performance evaluation results. For each test, we leverage statistical tests on

the performance evaluation results to determine whether the performance of the test has changed

after fixing the performance issue. In particular, for each performance issue, we first select only

the tests that are impacted by the performance issue fixes. Afterwards, we check the label of the

performance metrics (e.g., elapsed time) (see Section 3.0.3) that are associated with the symptoms of

the performance issues. We would like to determine whether the corresponding performance metrics

have different statistical significance values before and after the performance issues fixes.

Due to the non-normality of the performance data, we use Mann-Whitney U test, as does prior

work [Che+16; Zha+19]. Our null hypothesis and alternative hypothesis are given below,

10

H0 : The two performance result populations (i.e., test and control group – the same test before

and after performance issue fixes) are the equal.

H1 : The two compared tests do not have the same performance.

and we run the test at the 5% level of significance (i.e., α = 0.05). That is, if the P-value of the test

is not greater than 0.05 (i.e., P − value ≤ 0.05), we would reject the null hypothesis in favour of the

alternative hypothesis. In other words, there exists a statistically significant performance change

between the performance metrics, and the change is unlikely by chance.

However, a statistical significance test does not contain the information about the size of the

effect [Coe02], and when the performance data points under study are formed by a great number of

items, the statistically significant differences are more frequently observed [CSF12; LSL19]. There-

fore, we further adopt the effect size as a complement of the statistical significance test. Considering

the non-normality of our data points, we utilize Cliff’s Delta [Cli96], which does not require any

assumptions about the shape or spread of the two distributions [LSL19]. The effect size is assessed

using the thresholds provided in prior research [Rom+06],

Filtering false-positive results. To avoid the False Positives, and eliminate the influence of the

negligible or small changes of the performance, we only consider the performance changes that have

a large effect size. In short, if the performance metric of an impacted test is changed, in particular

improved (e.g., lower CPU usage), after the performance issue fixes, with statistically significant

difference and large effect size, and the performance metric is also labelled for the performance

issue, we consider the test to be capable of verifying the performance issues fixes.

In order to further avoid false positive results, we would like to understand the patterns of false-

positive results and use such patterns to filter out our data. In order to identify the most obvious

false-positives, we check the largest ten performance changes (in effect sizes, c.f., Section 4) in the

un-impacted tests (no modification committed on the source code covered by the tests) in each

subject system. We manual study on the possible causes of the false positive changes that reside in

the source code. We find two reasons: 1) some functional tests contain random operations, which

can lead to the unstable performance and 2) frequent I/O operations. Therefore, we do not consider

the results of a test if the test is corresponding to either of these two reasons.

Finally, we manually examine all the cases of each performance issue (c.f., Section 4) to ensure

that the tests indeed demonstrate a performance improvement after a performance issue fix.

Results

Most performance fixes’ improvement can be demonstrated by at least one readily

available test. We find that for 56 out of 60 of the performance issues in Hadoop and 46 out

11

of 67 performance issues in Cassandra, at least one test from the release pipeline can be used to

demonstrate performance improvement with all their associated performance metrics. In addition,

for seven additional performance issues in Cassandra, performance improvement with part of the

performance metrics can be demonstrated. For example, the commit #9afc209 fixes the issue

CASSANDRA-7401, which describes an endless loop in the source code. Based on the report, there

should be an improvement on both elapsed time and CPU usage from the issue fix. Among all

the impacted tests, elapsed time and CPU usage are indeed improved significantly with large effect

size in three tests. Such results show the potential capability of the readily available tests from the

release pipeline to serve as performance tests.

Only a small portion of the tests from the release pipeline can be used to demonstrate

performance improvements. Figure 2 shows the percentage of tests that can or cannot be used

to demonstrate the improvement from performance issues fixes. The results show that it would

be challenging for practitioner to directly use the readily available test in the release pipeline as

performance tests. In particular, on average, only 9.2% and 20.6% of the tests in Cassandra and

Hadoop, respectively, can demonstrate performance improvement fixes for all associated performance

metrics. 13.9% and 5.1% of the tests in Cassandra and Hadoop, respectively, can demonstrate

performance improvements with part of the associated performance metrics. On the other hand,

76.9% and 74.3% of the tests in Cassandra and Hadoop, respectively, cannot demonstrate any

performance improvement, even though these tests all executed the changed source code for the

issue fixes. For example, to fix issue CASSANDRA-3344, 25 tests are impacted by the code change;

while only two tests can demonstrate the performance improvement from the issue fix. Due to the

large number of total available tests in the release pipeline, practitioners may be overwhelmed by

the influx of performance results from the tests in the release pipeline and the difficulty of selecting

the useful ones.

On one hand, most of performance improvements from performance issue fixes can be

demonstrated using the readily available tests in the release pipeline. On the other hand,

it is challenging to use these tests in practice since only a very small portion of the tests

can demonstrate the improvements.

12

Figure 2: The percentage of tests that can or cannot be used to demonstrate performance improve-

ment from issue fixes for each issue.

RQ2: What are the reasons that some tests in the release pipeline cannot

be used as performance tests?

Motivation

In the last research question, we find that many of the readily available tests in the release pipeline

cannot demonstrate a performance improvement from the performance issue fixes, even though

the changed source code for the issue fixes is executed by these tests. Therefore, in this research

question, we would like to understand the reason that these tests cannot serve as performance tests.

The findings of this research question can assist practitioners in avoiding the use of certain tests in

performance assurance activities and in improving tests to serve as performance tests.

Approach

We follow a four-step open coding approach to analyze the reasons that can cause a test to not be

able to demonstrate performance improvements, even though the test is impacted by the issue fix.

Based on the results from RQ1, we collect all the impacted tests for the performance issues, i.e.,

the tests that cover the changed source code of the corresponding issue fix, but do not demonstrate

performance improvement on the performance metrics of the issue. Two authors independently

examine each test to uncover reasons of not being about to demonstrate performance improvements.

In particular, the authors examine the following information that is associated with each test: 1)

the performance issue report, which contains the high-level information for the issues’ description,

13

2) the test code, which contains the low-level information of the tests and the changed parts of the

committed files and 3) the source code covered by the test, which tells us which lines have been

executed by the tests.

Step 1. The two authors independently generate categories of reasons that a test cannot demon-

strate performance improvements. In particular, each author iteratively investigates all the tests to

identify the reasons, until no more new reasons can be found. The outcome of the first step is the

different category of reasons by each of the two authors.

Step 2. Intuitively, the two authors would not generate identical categories. Hence, the two

authors meet and discuss their categories. The goal is to generate final categories of reasons that

both of the two authors agree on. The two authors discuss each of their generated categories of

reasons and reach consensus on the final categories.

Step 3. The two authors use the agreed categories from the second step. The two authors

independently put each test into one category.

Step 4. Finally, the two authors examine the results where the two authors do not agree. The

two authors discuss their rationale to try to reach consensus. If consensus cannot be made, a third

author will examine the corresponding test to make the final decision.

Results

We identify eight possible reasons that a test cannot be used to demonstrate perfor-

mance improvements. We discuss each reason in detail with examples in the rest of this RQ.

Too light workload (185 tests). We find that some performance issues can only be triggered

with a rather large data size. However, functional tests may not be written with such a large data

size as input, making it impossible to demonstrate the issue fixes. For example, the issue reported in

CASSANDRA-581, can be triggered with a very large number of sstables. It is fixed in the commit

#2b62df2. However, the impacted tests do not have a large enough amount of sstables as input to

reproduce the performance issue.

Not enough repetition (9 tests). Some performance issues have a rather small effect, while

becoming impactful with a large number of repetitions. For such performance issues, the tests often

can detect the performance improvement but only with a small or medium effect size, which are

not considered in our experiments to minimize noise. However, with more repetitions, the effect can

increase. For example, in the report of performance issue CASSANDRA-581, developers mention

that the method convertFromDiskFormat using split is slow only when being tested with more than

1,000 keys. Although a test RandomPartitionerTest covers the code changed by the issue fix, the

method convertFromDiskFormat is called only once in the test and the elapsed time is slightly

improved with a small effect size. Based on the description of the issue report, if there were more

14

repetitions around this method, the performance improvement would be demonstrated by the test.

Deadlock (2 tests). The dead lock related performance issues can only happen when given a

certain set of circumstances. For example, the commit #6158c64 fixed the deadlock issue in the

streaming code. With the description provided in the report, CASSANDRA-5699, we find that we

need a specific execution condition to trigger the deadlock.

Limited coverage of the performance related codes (24 tests). We notice that developers

may change a large amount of source code to fix performance issues, but the test only covers a small

portion of the committed changes. In this situation, the performance of the test can be misleading

since it does not tell the full picture of the issue fixes. For example, the commit #67ccdab fixed a

performance issue in the streaming code. By using the git diff command, we know that there are 10

files changed with 437 additions and 243 deletions. However, among these changes, only one line is

covered by the test SessionInfoTest. Moreover, the covered line is a refactoring operation (Rename

Variable), and the performance sensitive operations are never performed by the tests to demonstrate

the performance improvement.

Partial branch coverage (34 tests). If the performance issue is caused by the code inside the

if statement, and without the 100% coverage of the conditions, the code snippets cannot be tested,

and thus, the tests cannot demonstrate the fix to the performance issue. A representative example

can be found in the fixing process of issue CASSANDRA-3234. The performance issue is caused

by the echoedRow function, while this function cannot be invoked as it lies inside the if statement

without a 100% branch coverage.

Indirect performance influence (1 test). In this situation, the behavior of performance issue

related code is based on the return value of another function. Therefore, covering the fix locations

of the issue may not be useful to demonstrate the fix to the performance issue. For example, in

the fixing process of the issue CASSANDRA-8550, while benchmarking CQL3 secondary indexes,

developers noticed substantial performance degradation as the volume of indexed data increases.

The issue is caused by the page size selection, which is returned by another function. We notice that

the tests can cover the use of the return value while missing its caller. Therefore, the tests cannot

demonstrate the performance changes as expected.

Frequent access of external resources (31 tests). Frequent access operations of external

resources may introduce noise into the performance evaluation of the tests. We find tests that may

have 1) frequent I/O operations, including tables’ creation, deletion, update and data insertion and

selection, or 2) frequent memory operations, like the flush operations. For example, test DefsTest

covers the fix in commit #3ad3e73 for the issue CASSANDRA-3234. However, the test cannot

demonstrate the improvement due to the noise from its large number of flush operations.

Idle during execution (6 tests). Some tests may proactively wait for a period of time,

15

introducing an idle time that is much longer than the actual execution time, which reduces the

observed performance improvement after issue fixes. For example, in the commit #3ad3e73 that

fixes issue CASSANDRA-3234, test CleanupTest contains a 10-second Thread.sleep operation with

a total 11.685s elapsed test time. In this case, the elapsed time is dominated by the sleep time,

hiding the performance improvement after the issue fixes.

We identify eight possible reasons that a test in a release pipeline cannot serve as a perfor-

mance test. The reasons can be used as a guideline for practitioners to avoid and improve

the use of certain tests from the release pipeline.

RQ3: What are the important factors for a test to be useful as a perfor-

mance test

Motivation

Prior research has studied the use of micro-scale performance tests in performance evaluation [Hor+13;

Hor+15; Ste+17; Bul+17]. However, the findings in our prior research questions illustrate the chal-

lenges and show the reasons why we cannot directly adopt those tests in performance evaluation. On

the other hand, there exist tests from the release pipeline that successfully demonstrate performance

improvements. By understanding the characteristics of tests that are able to demonstrate perfor-

mance improvements, we may gain a better understanding of these tests and thus can provide more

general guidance to a developer for writing new tests that run in the release pipeline for performance

assurance activities.

Approach

To answer this research question, we adopt random forest, an ensemble learning method [Bre01a],

as it is one of the most used machine learning algorithms for its performance and has been adopted

in various software engineering research [TSH19]. We build a binary classifier to identify whether a

test can be used to demonstrate performance improvements.

Step 1: raw data collection

In RQ1, we have identified the impacted tests of each performance issue, and whether the test can

demonstrate performance improvements. However, the ability of a test to serve as a performance

test may vary among different performance metrics. For example, a test that can successfully

demonstrate memory usage improvement may not be able to show the improvements with elapsed

time. Therefore, in this step, we separate the data based on each performance metric, i.e., we build

16

one classifier for each performance metric. For example, to collect the raw data of elapse time for

project Cassandra, we first only take all the performance issues that are manually labelled with

elapsed time. Then we collect the impacted tests of each performance issue. For each impacted test,

we use the results shown in RQ1 to check if the test can demonstrate a performance improvement,

as the ground truth data for our classifier for elapsed time.

Step 2: metrics extraction

To build classifiers, we extract metrics for the raw data collected from the previous step. The

effectiveness of a test can be associated with many metrics. In this work, we extract metrics from

three aspects of the tests:

• test code, which contains the information about the test itself.

• source code covered by the test, where we can find the test coverage rate and the characteristics

of covered source code.

• source code impacted by the issue fix, which measures the characteristics of committed changes

of the source code while fixing the performance issue.

The intuition behind the selection of the three aspects is straightforward, as we are running the

test to evaluate the performance of the covered source code and the performance improvement from

issues fixes should be caused by the committed changes.

Inspired by the work on defect prediction [MW00; Kam+13; NB07; NBZ06], and the prior

findings on performance issues and performance regressions [CS17; Jin+12; Hua+14; Ala+17; SL17;

Cos+17], we extract metrics from each of the three aspects. Some metrics exists in multiple aspects.

The details of the metrics are shown in Table 1.

17

Table 1: An overview of our extracted metrics to build random forest classifiers.

T S F Category Metrics Level Description

• • •

Complexity and size

FanOut Method Number of unique methods that are called by the method mod-

ified during the commit.

• • • FanIn Method Number of unique methods that call the method modified during

the commit.

• • • CyclomaticComplexity Method McCabe Cyclomatic complexity of the method that is modified

during the commit.

• • • SLOC File Number of source code lines in the unit test.

• • • CodeElementsSize Method Code Elements Divided by Size

• Diffusion Entropy Commit Distribution of modified code across files in one commit

• • •
History

DeveloperCount Commit Number of developers that changed the modified code in one

commit

• • • TimeInterval File Average time interval between the last and the current change of

the file that is modified during the commit

• •
Human factor

DeveloperCommitCount File Average number of commits of the developers who modified the

file that is modified during the commit.

• • RecentDeveloperCommitCount File Average number of commits made in last 12 months of the devel-

opers who modified the file that is modified during the commit.

• • • Code elements Condition Method Number of modified condition statements of the method modified

during the commit.

18

Table 1 (Continued)

T S F Category Metrics Level Description

• • •

Code elements

Loop Method Number of modified loop statements of the method modified dur-

ing the commit.

• • • ExceptionHandling Method Number of modified try-catch statements of the method modified

during the commit.

• • • Synchronization Method Number of modified synchronization statements of the method

modified during the commit.

• • • FinalStatic Method Number of modified final or static statements of the method mod-

ified during the commit.

• • • ExpensiveVariableParameter Method Number of modified expensive parameters/variables of the

method modified during the commit.

• • • ExternalCall Method Number of modified external function call of the method modified

during the commit.

• • • Control Method Number of modified control statements of the method modified

during the commit.

• •

Code Change

CodeChurn File Total sum of lines added into and deleted from the unit test

across all the commit history.

• • LineAdded File Total sum of lines added into the unit test across all the commit

history.

• • LineDeleted File Total sum of lines deleted from the unit test across all the commit

history.

• Coverage Criteria LineCoverage File Line coverage ratio of the unit test

19

Table 1 (Continued)

T S F Category Metrics Level Description

• Coverage Criteria BrahchCoverage File Branch coverage ratio of the unit test

Note: T, S and F in the heading are abbreviations for the three aspect of metrics: test code, source code covered by the test and source code

impacted by the issue fix. • means that the metric is calculated for the corresponding aspect.

20

Step 3: Training and testing random forest classifiers

In this step, we build random forest classifiers to model whether a test can demonstrate performance

improvement or not. In particular, we build five classifiers, each predicting for one performance

metric (i.e., elapsed time, CPU usage, memory usage, I/O read and I/O write). For each classifier,

we use a 10 × 10-fold cross-validation implementation scikit-learn 1 with random shuffle [Ped+11].

We fit a classifier on the training data, and use the validation data to test the classifier. For our

binary classification problem, we use the area under the receiver operating characteristic (ROC)

curve (AUC) as a performance measurement for the trained classifier [Bra97]. AUC ranges in value

from 0 to 1, showing the capacity of the classifier on distinguishing between classes. A higher AUC

means a better classifier at predicting. Finally, we have 10 × 10 models and corresponding AUC

values. In this study, we use the random forest implementation 2 and roc_auc_score 3 function

in scikit-learn [Ped+11] to train and evaluate our classifiers. Note that for I/O read of project

Hadoop, we only have 13 and 345 functional tests that can and cannot demonstrate performance

improvements. The dataset is small for training a classifier, resulting in the misleading conclusions.

Therefore, we do not train our classifier for I/O read with Hadoop.

Step 4: Determining importance of each group of metrics

In this step, we examine the importance of each group of metrics. In particular, we extract three

groups of metrics, i.e., fix impacted source code, test code, and test covered source code. We remove

each group of metrics from our data and rebuild the classifiers. Afterwards, we measure the AUC

values of each classifier and compare with the AUC values of the original classifiers with all metrics.

The more the AUC values decrease, the more important the group of metrics are.

Step 5: Determining the importance of each metric

To evaluate the importance of each metric on our random forest classifiers, we adopt the Mean

Decrease Impurity (MDI) (also called Gini importance) [Bre01b; Bre02]. In a tree algorithm, it

calculates each metrics importance as the sum over the number of splits that include the metric,

proportionally to the number of samples it splits. For our random forest, the importance is averaged

over all trees of the ensemble. We use the function feature_importances_ of the scikit-learn 4

[Ped+11] in Python to compute the metrics importance values.

After we repeat the 10-fold cross-validation for 10 times, each metric has 100 importance scores.

We then perform Scott-Knott Effect Size Difference (ESD) test [SK74] on the metrics importance.
1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#

sklearn.ensemble.RandomForestClassifier.feature_importances_

21

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_

The Scott-Knott ESD test uses hierarchical clustering analysis to partition different metrics into

distinct groups. With this analysis, each metric has a rank. In this study, we use the sk_esd

function of the ScottKnottESD package 5 in R [Tan+17].

Finally, to examine the direction of the relationship between each metric and the likelihood of

a test being successful on demonstrating performance improvements, we measure the correlation

between each metric and the targets/classes using a Spearman rank correlation (rho). A positive

Spearman rank correlation indicates that the metric shares a positive relationship with the likelihood

of a test being successful on demonstrating performance improvement, whereas a negative correlation

indicates an inverse relationship.

Results

Our random forest classifiers achieve high AUC values, considerably outperforming

a random classifier. For project Cassandra, Table 2 shows that, our random forest classifiers

achieve an average AUC of 0.86, 0.59, 0.69, 0.72, and 0.73 for elapsed time, CPU usage, memory

usage, I/O read and I/O write, respectively. Similarly, for project Hadoop, our classifiers achieve

an average AUC of 0.90, 0.68, 0.66, 0.79 for elapsed time, CPU usage, memory usage, and I/O

write, respectively. These results indicate that our random forest classifiers outperform random

classifiers when determine whether a test can be used for demonstrating performance improvement.

By analyzing the results, we find that the higher AUC value of elapsed time than the CPU usage,

Memory usage, I/O read and I/O write classifiers may be due to the larger number of functional

tests that can be used to demonstrate improvement in elapsed time over other performance metrics.

In addition, we find that the AUC values of all the classifiers are stable, especially the models from

the elapsed time. The stable AUC values of our classifiers suggest that our classifiers achieve stable

performance in determining the effectiveness of using these readily available tests in the release

pipeline in performance assurance activities.

The metrics extracted from the source code covered by the test play an important

role in the usefulness of a test. Table 2 shows that for Cassandra, the metrics from the source

code covered by the tests always have a strong influence on the AUC values among the classifiers

for all performance metrics. Table 3 and Table 4 present the top three most important metrics

to the classifiers. To have a better understanding of these metrics, we also present their metrics

importance measured using MDI, the direction (i.e., the sign of ρ) of the relationship between these

metrics and the likelihood of a test being successful on demonstrating performance improvements.

By examining Table 3, we find that for Cassandra, the metrics from the source code covered by the

test always have the largest MDI for all classifiers. The LineCoverage and BranchCoverage metrics
5https://github.com/klainfo/ScottKnottESD

22

https://github.com/klainfo/ScottKnottESD

Table 2: An average of AUC, and AUC changes after removing some metrics. −, +, and 0 means

there is a decrease, increase and no change of AUC.

All

Metrics

Metrics without

fix impacted

source code

Metrics without

test code

Metrics without

test covered

source code

C
as
sa
n
d
ra

AUC AUC Change AUC Change AUC Change

Elapsed time 0.86 0.79 -0.07 0.85 -0.01 0.8 -0.06
CPU uasge 0.59 0.58 -0.01 0.57 -0.02 0.56 -0.03
Memory usage 0.69 0.67 -0.02 0.67 -0.02 0.64 -0.05
I/O read 0.72 0.68 -0.04 0.68 -0.04 0.68 -0.04
I/O write 0.73 0.73 0 0.67 -0.06 0.7 -0.03

H
ad

oo
p Elapsed time 0.9 0.9 0 0.87 -0.03 0.86 -0.04

CPU uasge 0.68 0.68 0 0.59 -0.09 0.68 0
Memory usage 0.66 0.66 0 0.61 -0.05 0.67 0.01
I/O write 0.79 0.79 0 0.74 -0.05 0.8 0.01

lie in the top two ranks across all the classifiers. The results also show that these two metrics have

a positive impact on the unit usage, I/O read, and I/O write performance metrics. It indicates that

a test tends to successfully demonstrate a performance improvement from a performance issue fix,

if the test has a relatively higher line or branch coverage. These findings confirm the results in our

preliminary manual study in RQ2, i.e., the tests with a lower line or branch coverage have difficulty

triggering the performance issues, thus cannot demonstrate the improvement from the performance

issues fixes. This finding suggests the importance of coverage criteria in developing performance

tests.

The metrics of the test itself play an important role in the usefulness of a test. Shown in

Table 2, for Hadoop, the metrics related to the test code have a large influence on all the classifiers. By

examining the top three most important metrics to the classifiers (see Table 3 and Table 4), the Size

and Time Interval metrics from test code and are also important on whether a test can demonstrating

performance improvements. For project Cassandra, Table 3 shows that SLOC metric of the test

code ranks first in the I/O write classifier. This SLOC metric is also one of the top three important

metrics in the elapsed time, CPU usage, memory usage, and I/O read classifiers. The SLOC metric

has a positive impact in all the five performance metrics. It indicates that a test tends to successfully

demonstrate performance improvement, if it has a relatively higher source lines of code. Meanwhile,

for project Hadoop, the metric TimeInterval also lie in the top three most important metrics. The

negative sign indicates that if a test code is updated long time ago, it may be updated and result in

23

a low likelihood demonstrating the performance improvements. Finally, for Hadoop, the importance

of the metric RelativeExpensiveVariableParameter, from test code, indicates that a functional test

tends to successfully demonstrate the performance improvement from performance issues, especially

memory issues , if it has a relatively higher call of expensive variables in the test.

The metrics of the changed source code by a performance issue fix do not often play

an important role in the usefulness of a test. We find that for Hadoop the average AUC our

random forest classifiers do not change when the metrics extracted from the fixes impacted source

code category (see Table 2). In addition, none of the metrics that are related to the changed source

code of the performance issues fixes are in the top three important metrics of the classifiers. These

findings suggest that developer can pay more attention to the test code and the source code covered

by the test. Some practitioners may like to fine tune the tests for every performance issue fix.

However, our results suggest that such fine-tuning may not be cost-effective since the characteristics

from the changed source code of a performance issue do not typically play an important role in

whether the test can demonstrate the performance improvement from performance issue fixes.

Metrics related to the test itself and the source code covered by the test are important in the

classifiers. On the other hand, the metrics related to the code changes in the performance

issues fixes have a low importance. Practitioners should focus on designing and improving

the tests, instead of optimizing tests for different performance issue fixes.

24

Table 3: Average rank of the top 3 influential metrics and the Spearman rank correlation (ρ). Note:

A + (or −) sign of ρ indicates a positive (or an inverse) relationship of the metric with the likelihood

that a functional being able to demonstrate the performance improvements. The larger MDI that a

metric has, the more influential the metric is.

Cassandra

Rank Aspect::Metrics MDI±SD ρ

Elapsed time

1 S::LineCoverage 0.068±0.001 +

2 S::BrahchCoverage 0.068±0.001 +

3 T::RelativeExceptionHandling 0.044±0.001 +

CPU usage

1 S::LineCoverage 0.059±0.002 +

2 S::BrahchCoverage 0.059±0.002 +

3 T::TimeInterval 0.046±0.002 +

Memory

1 S::BrahchCoverage 0.051±0.001 −
2 S::LineCoverage 0.051±0.001 −
3 T::TimeInterval 0.045±0.001 −

I/O read

1 S::BranchCoverage 0.060±0.001 +

2 S::LineCoverage 0.059±0.001 +

3 T::TimeInterval 0.048±0.001 +

I/O write

1 S::BrahchCoverage 0.049±0.002 +

S::LineCoverage 0.049±0.002 +

T::SLOC 0.049±0.002 +

2 T::RelativeExpensiveVariableParameter 0.040±0.001 −
3 T::TimeInterval 0.038±0.001 +

Note: T and S in the aspects are abbreviations for the two aspect of metrics: test code and source code

covered by the test.

25

Table 4: Average rank of the top 3 influential metrics and the Spearman rank correlation (ρ). Note:

A + (or −) sign of ρ indicates a positive (or an inverse) relationship of the metric with the likelihood

that a functional being able to demonstrate the performance improvements. The larger MDI that a

metric has, the more influential the metric is.

Hadoop

Rank Category::Metrics MDI±SD ρ

Elapsed time

1 S::LineAdded 0.038±0.001 +

2 S::TimeInterval 0.037±0.001 −
3 S::LineDeleted 0.033±0.001 +

CPU usage

1 T::TimeInterval 0.036±0.001 −
2 T::RelativeExceptionHandling 0.033±0.001 +

3 T:RelativeExpensiveVariableParameter 0.032±0.001 +

Memory

1 T::RelativeExpensiveVariableParameter 0.035±0.001 +

2 S::TimeInterval 0.034±0.001 −
3 T::TimeInterval 0.033±0.001 −

I/O write

1 S::LineAdded 0.040±0.002 +

2 T::TimeInterval 0.030±0.001 −
3 T::RelativeExpensiveVariableParameter 0.030±0.001 +

Note: T and S in the aspects are abbreviations for the two aspect of metrics: test code and source code

covered by the test.

26

Chapter 5

Threats to validity

This section discusses the threats to the validity of our study.

External validity. Due to the large amount of time and computing resources for execution to

identify performance regression and the code coverage of test, our evaluation is conducted on two

open-source software systems, i.e., Hadoop and Cassandra. Although our study only focuses on

127 performance issues, the scale of our study is comparable to prior research on performance

issues [Jin+12; ZAH12]. Our findings might not be generalizable to other systems. Future studies

can apply our approach on other systems, such as commercial closed source systems.

Internal validity. Our issue report selection in the JIRA tracking system may be biased by the

keyword definition. Although we use a manual identification process to verify whether the filtered

issue reports are related to performance, we may still miss performance issue that do not contain

any of our listed keywords. Our approach requires performance metrics to measure performance of

functional tests. In particular, we only study five performance metrics while there may be others if

other people study and label other performance issues. Future studies can include more performance

issues and metrics to complement the findings of our study. The manual labeling and manual study

results may be subjective to the two authors. More user studies and surveys on practitioners may

address this threat.

We use software metrics based on the findings from prior research and also extract new metrics

highly related to test. We choose our prediction model (Random Forest), based on its widespread

use in prior software engineering research [GMH15], and since it typically provides a high accuracy

in the modeling. There may exist other metrics and other machine learning models may be leveraged

in our study, which future research can explore and us to complement our findings.

Construct validity. There exist other performance assurance activities, such a performance re-

gression detection [LPG16a; HHF13]. Our study chose to use performance issues because of the

27

knowledge and quality of issue reports and the certainty in performance improvement. Future re-

search can complement our study by using readily available tests in other performance assurance

activities as performance tests.

There always exists noise when monitoring performance [Myt+09]. In order to minimize such

noise, for each functional test, we repeat the execution 30 times independently. Then we use a

statistically rigorous approach to measuring performance regressions. Further studies may opt to

increase the number of repeated executions to further minimize the threat based on their time

and resource budget. Our approach is based on the system performance that is recorded by Psu-

til [Che+16]. Further studies may evaluate our approach by varying such performance monitoring

tools, i.e., pidStat.

In our context, we evaluate the performance of tests in a Google Cloud Platform performance

evaluation environment. Although we minimize the noise in the environment to avoid bias, such

an environment is not exactly the same as in-field environment of the users. To minimize the

threat, we only consider the performance regressions that have large effect sizes. In addition, with

the advancing of DevOps, more operational data will become available for future mining software

repository research. Research based on field data from the real users can address this threat.

28

Chapter 6

Conclusion

In this thesis, we evaluate the performance of readily available tests in the release pipeline, and

then examine whether these tests can be used as performance tests, in particular, to demonstrate

the performance improvement from performance issues fixes. By performing an exploratory study

on a total of 127 performance issues in two open-source projects, i.e., Hadoop and Cassandra, we

find that most of improvements from performance issues can be demonstrated using the readily

available tests in the release pipeline. Moreover, through a manual study, we identify eight reasons

that may lead a test to not be able to demonstrate the performance improvements. Finally, we build

random forest classifiers to identify the most important metrics that influence the tests’ capability

on demonstrating performance improvements.

To summarize, this thesis makes the following contributions:

• To the best of our knowledge, our work is the first to study the use of readily available tests

in performance assurance activities.

• We uncover reasons why a functional test cannot be used as performance tests.

• We find that a test itself and the source code covered by the test are the important factors for

tests to be able to serve as performance tests.

Our findings shed light on the opportunities and challenges in leveraging the readily available tests

in performance assurance activities. Practitioners can use our uncovered reasons and factors as

guidelines to design and improve tests that run in the release pipeline for performance assurance

activities.

29

Bibliography

[Ala+17] Mohammad Mejbah Ul Alam et al. “SyncPerf: Categorizing, Detecting, and Diagnosing

Synchronization Performance Bugs”. In: Proceedings of the Twelfth European Confer-

ence on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017. Ed. by

Gustavo Alonso et al. ACM, 2017, pp. 298–313. doi: 10.1145/3064176.3064186.

[Alg+16] Hammam M. Alghmadi et al. “An Automated Approach for Recommending When to

Stop Performance Tests”. In: 2016 IEEE International Conference on Software Main-

tenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE

Computer Society, 2016, pp. 279–289. doi: 10.1109/ICSME.2016.46.

[Apa] Apache. Apache JMeter - Apache JMete. https://jmeter.apache.org/. (Accessed on

03/29/2019).

[Ath+14] Dimitrios Athanasiou et al. “Test Code Quality and Its Relation to Issue Handling

Performance”. In: IEEE Trans. Software Eng. 40.11 (2014), pp. 1100–1125. doi: 10.

1109/TSE.2014.2342227.

[Bez+19] Cor-Paul Bezemer et al. “How is Performance Addressed in DevOps?” In: Proceedings

of the 2019 ACM/SPEC International Conference on Performance Engineering. ICPE

’19. Mumbai, India: ACM, 2019, pp. 45–50. isbn: 978-1-4503-6239-9. doi: 10.1145/

3297663.3309672. url: http://doi.acm.org/10.1145/3297663.3309672.

[BGZ15] Moritz Beller et al. “How (Much) Do Developers Test?” In: 37th IEEE/ACM Inter-

national Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,

2015, Volume 2. Ed. by Antonia Bertolino et al. IEEE Computer Society, 2015, pp. 559–

562. doi: 10.1109/ICSE.2015.193.

[Bra97] Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of

machine learning algorithms”. In: Pattern Recognition 30.7 (1997), pp. 1145–1159. doi:

10.1016/S0031-3203(96)00142-2.

30

https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1109/ICSME.2016.46
https://jmeter.apache.org/
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1145/3297663.3309672
https://doi.org/10.1145/3297663.3309672
http://doi.acm.org/10.1145/3297663.3309672
https://doi.org/10.1109/ICSE.2015.193
https://doi.org/10.1016/S0031-3203(96)00142-2

[Bre01a] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32. issn:

1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/10.1023/A:

1010933404324.

[Bre01b] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[Bre02] Leo Breiman. “Manual on setting up, using, and understanding random forests v3. 1”.

In: Statistics Department University of California Berkeley, CA, USA (2002).

[Bul+17] Lubomír Bulej et al. “Unit testing performance with Stochastic Performance Logic”. In:

Autom. Softw. Eng. 24.1 (2017), pp. 139–187. doi: 10.1007/s10515-015-0188-0. url:

https://doi.org/10.1007/s10515-015-0188-0.

[Che+14] Tse-Hsun Chen et al. “Detecting performance anti-patterns for applications developed

using object-relational mapping”. In: 36th International Conference on Software Engi-

neering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. 2014, pp. 1001–1012.

doi: 10.1145/2568225.2568259. url: https://doi.org/10.1145/2568225.2568259.

[Che+16] Tse-Hsun Chen et al. “CacheOptimizer: helping developers configure caching frame-

works for hibernate-based database-centric web applications”. In: Proceedings of the

24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 2016, pp. 666–677. doi:

10.1145/2950290.2950303. url: https://doi.org/10.1145/2950290.2950303.

[Cli96] Norman Cliff. “Ordinal methods for behavioral data analysis.” In: (1996).

[Coe02] Robert Coe. “It’s the effect size, stupid: What effect size is and why it is important”.

In: (2002).

[Cos+17] Diego Costa et al. “Empirical Study of Usage and Performance of Java Collections”.

In: Proceedings of the 8th ACM/SPEC on International Conference on Performance

Engineering, ICPE 2017, L’Aquila, Italy, April 22-26, 2017. Ed. by Walter Binder et

al. ACM, 2017, pp. 389–400. doi: 10.1145/3030207.3030221.

[CS17] Jinfu Chen and Weiyi Shang. “An Exploratory Study of Performance Regression In-

troducing Code Changes”. In: 2017 IEEE International Conference on Software Main-

tenance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017. 2017,

pp. 341–352. doi: 10.1109/ICSME.2017.13. url: https://doi.org/10.1109/ICSME.

2017.13.

[CSF12] Ruth Cano-Corres et al. “The effect size: beyond statistical significance”. In: EJIFCC

23.1 (2012), p. 19.

31

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10515-015-0188-0
https://doi.org/10.1007/s10515-015-0188-0
https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1145/2950290.2950303
https://doi.org/10.1145/2950290.2950303
https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1109/ICSME.2017.13
https://doi.org/10.1109/ICSME.2017.13
https://doi.org/10.1109/ICSME.2017.13

[ECS18] Vasiliki Efstathiou et al. “Word embeddings for the software engineering domain”. In:

Proceedings of the 15th International Conference on Mining Software Repositories, MSR

2018, Gothenburg, Sweden, May 28-29, 2018. Ed. by Andy Zaidman et al. ACM, 2018,

pp. 38–41. doi: 10.1145/3196398.3196448.

[GMH15] Baljinder Ghotra et al. “Revisiting the Impact of Classification Techniques on the Per-

formance of Defect Prediction Models”. In: Proceedings of the 37th International Con-

ference on Software Engineering - Volume 1. ICSE ’15. Florence, Italy: IEEE Press,

2015, pp. 789–800. isbn: 978-1-4799-1934-5. url: http://dl.acm.org/citation.cfm?

id=2818754.2818850.

[HHF13] Christoph Heger et al. “Automated Root Cause Isolation of Performance Regressions

During Software Development”. In: Proceedings of the 4th ACM/SPEC International

Conference on Performance Engineering. ICPE ’13. Prague, Czech Republic: ACM,

2013, pp. 27–38. isbn: 978-1-4503-1636-1. doi: 10.1145/2479871.2479879. url: http:

//doi.acm.org/10.1145/2479871.2479879.

[Hor+13] Vojtech Horký et al. “Performance Regression Unit Testing: A Case Study”. In: Com-

puter Performance Engineering - 10th European Workshop, EPEW 2013, Venice, Italy,

September 16-17, 2013. Proceedings. Ed. by Maria Simonetta Balsamo et al. Vol. 8168.

Lecture Notes in Computer Science. Springer, 2013, pp. 149–163. doi: 10.1007/978-

3-642-40725-3_12. url: https://doi.org/10.1007/978-3-642-40725-3%5C_12.

[Hor+15] Vojtech Horký et al. “Utilizing Performance Unit Tests To Increase Performance Aware-

ness”. In: Proceedings of the 6th ACM/SPEC International Conference on Performance

Engineering, Austin, TX, USA, January 31 - February 4, 2015. 2015, pp. 289–300. doi:

10.1145/2668930.2688051. url: https://doi.org/10.1145/2668930.2688051.

[Hua+14] Peng Huang et al. “Performance regression testing target prioritization via performance

risk analysis”. In: 36th International Conference on Software Engineering, ICSE ’14,

Hyderabad, India - May 31 - June 07, 2014. 2014, pp. 60–71. doi: 10.1145/2568225.

2568232. url: https://doi.org/10.1145/2568225.2568232.

[JH15] Zhen Ming Jiang and Ahmed E. Hassan. “A Survey on Load Testing of Large-Scale

Software Systems”. In: IEEE Trans. Software Eng. 41.11 (2015), pp. 1091–1118. doi:

10.1109/TSE.2015.2445340.

[Jin+12] Guoliang Jin et al. “Understanding and detecting real-world performance bugs”. In:

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’12, Beijing, China - June 11 - 16, 2012. 2012, pp. 77–88. doi: 10.1145/2254064.

2254075. url: https://doi.org/10.1145/2254064.2254075.

32

https://doi.org/10.1145/3196398.3196448
http://dl.acm.org/citation.cfm?id=2818754.2818850
http://dl.acm.org/citation.cfm?id=2818754.2818850
https://doi.org/10.1145/2479871.2479879
http://doi.acm.org/10.1145/2479871.2479879
http://doi.acm.org/10.1145/2479871.2479879
https://doi.org/10.1007/978-3-642-40725-3_12
https://doi.org/10.1007/978-3-642-40725-3_12
https://doi.org/10.1007/978-3-642-40725-3%5C_12
https://doi.org/10.1145/2668930.2688051
https://doi.org/10.1145/2668930.2688051
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075

[Kam+13] Yasutaka Kamei et al. “A Large-Scale Empirical Study of Just-in-Time Quality Assur-

ance”. In: IEEE Trans. Software Eng. 39.6 (2013), pp. 757–773. doi: 10.1109/TSE.

2012.70. url: https://doi.org/10.1109/TSE.2012.70.

[LB17] Philipp Leitner and Cor-Paul Bezemer. “An Exploratory Study of the State of Practice

of Performance Testing in Java-Based Open Source Projects”. In: Proceedings of the 8th

ACM/SPEC on International Conference on Performance Engineering, ICPE 2017,

L’Aquila, Italy, April 22-26, 2017. 2017, pp. 373–384. doi: 10.1145/3030207.3030213.

url: https://doi.org/10.1145/3030207.3030213.

[Lim+14] Meng-Hui Lim et al. “Identifying Recurrent and Unknown Performance Issues”. In:

2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China,

December 14-17, 2014. 2014, pp. 320–329. doi: 10.1109/ICDM.2014.96. url: https:

//doi.org/10.1109/ICDM.2014.96.

[LPG16a] Qi Luo et al. “Mining Performance Regression Inducing Code Changes in Evolving

Software”. In: Proceedings of the 13th International Conference on Mining Software

Repositories. MSR ’16. Austin, Texas: ACM, 2016, pp. 25–36. isbn: 978-1-4503-4186-8.

doi: 10.1145/2901739.2901765. url: http://doi.acm.org/10.1145/2901739.

2901765.

[LPG16b] Qi Luo et al. “Mining performance regression inducing code changes in evolving soft-

ware”. In: Proceedings of the 13th International Conference on Mining Software Reposi-

tories, MSR 2016, Austin, TX, USA, May 14-22, 2016. 2016, pp. 25–36. doi: 10.1145/

2901739.2901765. url: https://doi.org/10.1145/2901739.2901765.

[LSL19] Christoph Laaber et al. “Software Microbenchmarking in the Cloud. How Bad is it

Really?” In: Empirical Software Engineering (2019), pp. 1–46.

[MHH13] Haroon Malik et al. “Automatic detection of performance deviations in the load testing

of large scale systems”. In: 35th International Conference on Software Engineering, ICSE

’13, San Francisco, CA, USA, May 18-26, 2013. 2013, pp. 1012–1021. doi: 10.1109/

ICSE.2013.6606651. url: https://doi.org/10.1109/ICSE.2013.6606651.

[MW00] Audris Mockus and David M. Weiss. “Predicting risk of software changes”. In: Bell Labs

Technical Journal 5.2 (2000), pp. 169–180. doi: 10.1002/bltj.2229. url: https:

//doi.org/10.1002/bltj.2229.

[Myt+09] Todd Mytkowicz et al. “Producing wrong data without doing anything obviously wrong!”

In: Proceedings of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA,

33

https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1145/3030207.3030213
https://doi.org/10.1145/3030207.3030213
https://doi.org/10.1109/ICDM.2014.96
https://doi.org/10.1109/ICDM.2014.96
https://doi.org/10.1109/ICDM.2014.96
https://doi.org/10.1145/2901739.2901765
http://doi.acm.org/10.1145/2901739.2901765
http://doi.acm.org/10.1145/2901739.2901765
https://doi.org/10.1145/2901739.2901765
https://doi.org/10.1145/2901739.2901765
https://doi.org/10.1145/2901739.2901765
https://doi.org/10.1109/ICSE.2013.6606651
https://doi.org/10.1109/ICSE.2013.6606651
https://doi.org/10.1109/ICSE.2013.6606651
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1002/bltj.2229

March 7-11, 2009. 2009, pp. 265–276. doi: 10.1145/1508244.1508275. url: https:

//doi.org/10.1145/1508244.1508275.

[NB07] Nachiappan Nagappan and Thomas Ball. “Using Software Dependencies and Churn

Metrics to Predict Field Failures: An Empirical Case Study”. In: ESEM ’07: Proceed-

ings of the First International Symposium on Empirical Software Engineering and Mea-

surement. Washington, DC, USA: IEEE Computer Society, 2007, pp. 364–373. isbn:

0-7695-2886-4. doi: 10.1109/ESEM.2007.87.

[NBZ06] Nachiappan Nagappan et al. “Mining Metrics to Predict Component Failures”. In: ICSE

’06: Proceedings of the 28th International Conference on Software Engineering. Shang-

hai, China: ACM, 2006, pp. 452–461. isbn: 1-59593-375-1. doi: 10.1145/1134285.

1134349.

[Nis+13] Adrian Nistor et al. “Toddler: detecting performance problems via similar memory-

access patterns”. In: 35th International Conference on Software Engineering, ICSE ’13,

San Francisco, CA, USA, May 18-26, 2013. 2013, pp. 562–571. doi: 10.1109/ICSE.

2013.6606602. url: https://doi.org/10.1109/ICSE.2013.6606602.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine

Learning Research 12 (2011), pp. 2825–2830.

[Rei05] Stuart Reid. “The Art of Software Testing, Second edition. Glenford J. Myers. Revised

and updated by Tom Badgett and Todd M. Thomas, with Corey Sandler. John Wiley

and Sons, New Jersey, USA, 2004, ISBN 0-471-46912-2”. In: Softw. Test., Verif. Reliab.

15.2 (2005), pp. 136–137. doi: 10.1002/stvr.322.

[Rod16] Giampaolo Rodola. Psutil package: a cross-platform library for retrieving information on

running processes and system utilization. 2016. url: https://github.com/giampaolo/

psutil.

[Rom+06] Jeanine Romano et al. “Appropriate statistics for ordinal level data: Should we really

be using t-test and Cohen’sd for evaluating group differences on the NSSE and other

surveys”. In: annual meeting of the Florida Association of Institutional Research. 2006,

pp. 1–33.

[SK74] AJ Scott and M Knott. “A cluster analysis method for grouping means in the analysis

of variance”. In: Biometrics (1974), pp. 507–512.

[SL17] Linhai Song and Shan Lu. “Performance diagnosis for inefficient loops”. In: Proceed-

ings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos

Aires, Argentina, May 20-28, 2017. Ed. by Sebastián Uchitel et al. IEEE, 2017, pp. 370–

380. doi: 10.1109/ICSE.2017.41.

34

https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1109/ESEM.2007.87
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1109/ICSE.2013.6606602
https://doi.org/10.1109/ICSE.2013.6606602
https://doi.org/10.1109/ICSE.2013.6606602
https://doi.org/10.1002/stvr.322
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
https://doi.org/10.1109/ICSE.2017.41

[Ste+17] Petr Stefan et al. “Unit Testing Performance in Java Projects: Are We There Yet?”

In: Proceedings of the 8th ACM/SPEC on International Conference on Performance

Engineering, ICPE 2017, L’Aquila, Italy, April 22-26, 2017. 2017, pp. 401–412. doi:

10.1145/3030207.3030226. url: https://doi.org/10.1145/3030207.3030226.

[Sye+17] Mark D. Syer et al. “Continuous validation of performance test workloads”. In: Autom.

Softw. Eng. 24.1 (2017), pp. 189–231. doi: 10.1007/s10515-016-0196-8. url: https:

//doi.org/10.1007/s10515-016-0196-8.

[Tan+17] Chakkrit Tantithamthavorn et al. “An Empirical Comparison of Model Validation Tech-

niques for Defect Prediction Models”. In: IEEE Trans. Software Eng. 43.1 (2017), pp. 1–

18. doi: 10.1109/TSE.2016.2584050.

[TS06] Nikolai Tillmann and Wolfram Schulte. “Unit Tests Reloaded: Parameterized Unit Test-

ing with Symbolic Execution”. In: IEEE Software 23.4 (2006), pp. 38–47. doi: 10.1109/

MS.2006.117. url: https://doi.org/10.1109/MS.2006.117.

[TSH19] Patanamon Thongtanunam et al. “Will this clone be short-lived? Towards a better

understanding of the characteristics of short-lived clones”. In: Empirical Software Engi-

neering 24.2 (2019), pp. 937–972. doi: 10.1007/s10664-018-9645-2.

[WV00] Elaine J. Weyuker and Filippos I. Vokolos. “Experience with Performance Testing of

Software Systems: Issues, an Approach, and Case Study”. In: IEEE Trans. Software

Eng. 26.12 (2000), pp. 1147–1156. doi: 10.1109/32.888628. url: https://doi.org/

10.1109/32.888628.

[Xia+15] Xin Xia et al. “Automatic, high accuracy prediction of reopened bugs”. In: Autom.

Softw. Eng. 22.1 (2015), pp. 75–109. doi: 10.1007/s10515-014-0162-2.

[Xio+13] PengCheng Xiong et al. “vPerfGuard: an automated model-driven framework for ap-

plication performance diagnosis in consolidated cloud environments”. In: ACM/SPEC

International Conference on Performance Engineering, ICPE’13, Prague, Czech Re-

public - April 21 - 24, 2013. 2013, pp. 271–282. doi: 10.1145/2479871.2479909. url:

https://doi.org/10.1145/2479871.2479909.

[Yao+18] Kundi Yao et al. “Log4Perf: Suggesting Logging Locations for Web-based Systems’

Performance Monitoring”. In: Proceedings of the 2018 ACM/SPEC International Con-

ference on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018.

Ed. by Katinka Wolter et al. ACM, 2018, pp. 127–138. doi: 10.1145/3184407.3184416.

35

https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1007/s10515-016-0196-8
https://doi.org/10.1007/s10515-016-0196-8
https://doi.org/10.1007/s10515-016-0196-8
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1007/s10664-018-9645-2
https://doi.org/10.1109/32.888628
https://doi.org/10.1109/32.888628
https://doi.org/10.1109/32.888628
https://doi.org/10.1007/s10515-014-0162-2
https://doi.org/10.1145/2479871.2479909
https://doi.org/10.1145/2479871.2479909
https://doi.org/10.1145/3184407.3184416

[ZAH12] Shahed Zaman et al. “A qualitative study on performance bugs”. In: 9th IEEE Work-

ing Conference of Mining Software Repositories, MSR 2012, June 2-3, 2012, Zurich,

Switzerland. 2012, pp. 199–208. doi: 10.1109/MSR.2012.6224281. url: https://doi.

org/10.1109/MSR.2012.6224281.

[Zha+19] H. Zhang et al. “An Empirical Study of Obsolete Answers on Stack Overflow”. In: IEEE

Transactions on Software Engineering (2019), pp. 1–1. issn: 0098-5589. doi: 10.1109/

TSE.2019.2906315.

36

https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/TSE.2019.2906315
https://doi.org/10.1109/TSE.2019.2906315

	List of Figures
	List of Tables
	Introduction
	Related work
	Case study setup
	Subject systems
	Collecting performance issues
	Labeling performance issues with performance metrics
	Evaluating the fixes of performance issue

	Case study results
	Threats to validity
	Conclusion
	Bibliography

