
Mitigating Turnover with Code Review Recommendation:
Balancing Expertise, Workload, and Knowledge

Distribution

Ehsan Mirsaeedi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

September 2019

c©Mirsaeedi, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/286778769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Seyyed Ehsan Edin Mirsaeedi Farahani

Entitled: Mitigating Turnover with Code Review Recommendation: Balancing

Expertise, Workload, and Knowledge Distribution

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Essam Mansour

Examiner
Dr. Emad Shihab

Examiner
Dr. Jinqiu Yang

Supervisor
Dr. Peter C. Rigby

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

September 2019
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Mitigating Turnover with Code Review Recommendation: Balancing Expertise,
Workload, and Knowledge Distribution

Seyyed Ehsan Edin Mirsaeedi Farahani

Developer turnover is inevitable on software projects and leads to knowledge loss, a reduc-

tion in productivity, and an increase in defects. Mitigation strategies to deal with turnover tend to

disrupt and increase workloads for developers. In this work, we suggest that through code review

recommendation we can distribute knowledge and mitigate turnover with minimal impact on the de-

velopment process. We evaluate review recommenders in the context of ensuring expertise during

review, Expertise, reducing the review workload of the core team, CoreWorkload, and reducing the

Files at Risk to turnover, FaR. We find that prior work that assigns reviewers based on file owner-

ship concentrates knowledge on a small group of core developers increasing risk of knowledge loss

from turnover by up to 65%. We propose learning and retention aware review recommenders that

when combined are effective at reducing the risk of turnover by -29% but they unacceptably reduce

the overall expertise during reviews by -26%. We develop the Sofia recommender that suggest

experts when none of the files under review are hoarded by developers, but distributes knowledge

when files are at risk. In this way, we are able to simultaneously increase expertise during review

with a ∆Expertise of 6%, with a negligible impact on workload of ∆CoreWorkload of 0.09%, and

reduce the files at risk by ∆FaR -28%. Sofia is integrated into GitHub pull requests allowing de-

velopers to select an appropriate expert or “learner” based on the context of the review. We release

the Sofia bot as well as the code and data for replication purposes.

iii

Acknowledgments

I would like to take this opportunity to show my gratitude towards the people who have played

an indispensable role in this memorable journey.

Foremost, I would like to express my sincere gratitude and respect towards my thesis supervisor,

Dr. Peter Rigby. This work would not have been possible without his guidance, support and en-

couragement. His undying patience and guidance have helped me in all phases of this journey, from

carrying out research to writing this thesis. Sincerely, I could not have asked for a better supervisor.

I would like to thank Concordia University for providing me with an opportunity to be a part of

it.

Last but not the least, I would like to thank my parents and my wife for their love and constant

support.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Survey of the Literature 5

2.1 Turnover . 5

2.1.1 Turnover Patterns . 6

2.1.2 Turnover Impact . 6

2.2 Code Ownership . 7

2.2.1 Measuring Code Ownership . 8

2.3 Expert recommenders . 9

2.4 Code Review . 11

2.4.1 Empirical studies on Code Review . 11

2.5 Reviewer Recommenders . 14

3 Background and Definitions 17

3.1 The Ownership Recommenders . 17

3.2 The cHRev Recommender . 18

3.3 The Turnover Mitigating Recommenders . 19

3.3.1 Distributing Knowledge . 19

3.3.2 Developer Retention . 20

v

3.3.3 Distribution and Retention Combined . 20

3.4 Simulation and Evaluation . 21

4 Project Selection and Data 25

4.1 Gathering Data . 26

5 Results 28

5.1 RQ1: Review and Turnover . 28

5.2 RQ2 Ownership . 30

5.3 RQ3 cHRev Recommender . 31

5.4 RQ4: Learning and Retention . 32

5.5 RQ5 Sofia . 37

5.6 The Sofia Bot on GitHub . 38

5.7 Threats to Validity . 41

6 Discussion, Literature, and Conclusion 42

6.1 Understanding Code Review Practice . 42

6.2 Turnover-Induced Knowledge Loss and Mitigation 43

6.3 Recommenders . 44

6.4 Concluding Remarks . 45

Appendix A Tools 48

A.1 RelationalGit . 48

A.1.1 Installation . 49

A.1.2 Configuration File . 50

A.1.3 Git Commands . 50

A.1.4 GitHub Commands . 53

A.1.5 Historical Simulations Command . 54

A.2 Sofia: GitHub Application . 56

A.2.1 Gathering Historical Data . 56

A.2.2 Ask for Recommendations . 56

vi

Bibliography 57

vii

List of Figures

Figure 5.1 A sample usage of Sofia for recommending reviewers 39

viii

List of Tables

Table 4.1 Systems under study . 26

Table 5.1 Impact of reviews on FaR . 30

Table 5.2 The average of outcome measures across the projects. 33

Table 5.3 Impact of reviewer recommenders on Expertise 36

Table 5.4 Impact of reviewer recommenders on CoreWorkload 36

Table 5.5 Impact of reviewer recommenders on FaR 36

Table 5.6 Prediction power of reviewer recommenders (MRR) 37

Table A.1 Arguments of get-git-commits-changes . 51

Table A.2 Arguments of periodize-git-commit . 51

Table A.3 Arguments of get-git-commit-blames-for-periods 52

Table A.4 Arguments of ignore-mega-commits . 53

Table A.5 Arguments of GitHub Commands . 53

ix

Chapter 1

Introduction

Turnover on software projects is frequent and inevitable and leads to the loss of knowledge

when developers leave a project [16, 78]. Turnover incurs substantial economic cost in recruiting

and training new employees [59, 64], it reduces the productivity of development teams [39, 59], it

leads to the loss of critical tacit knowledge [38, 58, 59], and has been shown to increase the number

of defects in a product and reduce overall product quality [30, 58, 59].

Recent works have tried to mitigate the adverse impact of turnover through increasing knowl-

edge retention by predicting leavers [16,25,45], planning for succession [58,63,78,86], document-

ing knowledge, and persisting knowledge on StackOverflow and other internal QA forums [63,70].

However, these mitigation practices often require organizational changes and additional developer

effort especially by those who are expert enough to answer questions and write documentation [70].

In this work, we show that code review can mitigate turnover risk because it naturally distributes

knowledge by exposing developers to new code during reviews. Prior work interviewed developers

and showed that code review is an opportunity for learning and it plays a vital role in distributing

knowledge [14,22,35,75,80,87]. Furthermore, studies have quantified the knowledge gained during

code review [73,80] and shown that developers review code in modules they have not modified [87].

In contrast to other turnover mitigation strategies, code review is a common and well-established

practice in teams that does not require teams and individuals to alter their current workflow.

In this work, we enhance code review’s inherent knowledge sharing potential by developing re-

view recommenders to distribute knowledge and use simulations to show that they mitigate turnover

1

risk. In contrast, existing review recommenders [15, 37, 40, 69, 89, 92, 94, 95] are solely focused on

finding expert reviewers and disregard the role of code review in distributing knowledge among de-

velopers. These recommenders result in expertise concentration because the evaluation benchmark

is how many of the actual developers who performed the review were recommended. Interviewed

developers state that these recommenders suggest obvious candidates and do not provide additional

value [42].

To evaluate recommenders from other perspectives, we introduce three outcome measures that

interviews with developers indicated as important aspects of code review [14, 35]: Expertise, Core-

Workload, and FaR. The first outcome ensures that expertise remains high for finding defects during

review. The second, ensures that the core developers are not unreasonably overworked due to al-

ways being the top recommendation. The third outcome measures the number of files that are at

risk to turnover, FaR, to ensure that knowledge is adequately distributed during review. We run

simulations on the historical reviews of five large projects to understand how recommenders affect

each outcome. For completeness, we also calculate Mean Reciprocal Rank, MRR, to understand

how well each recommender predicts the developers who actually performed the review.

Research Questions

RQ1, Review and Turnover: What is the reduction in files at risk to turnover when both

authors and reviewers are considered knowledgeable?

Recent studies have quantified knowledge loss from turnover on the basis of the commits that

each developer has authored [61, 78]. However, the knowledge transfer that occurs during code

review is widely documented with prior work showing that review promotes team awareness, trans-

parency, and shared code ownership [14, 75, 80, 87]. We modify the previous turnover measure to

consider both authors of code as well as reviewers to be knowledgeable and recalculate the num-

ber of files that are at risk, FaR. With only authors being considered knowledgeable on average

37% of the total files are at risk to turnover. When we consider both authors and reviewers to be

knowledgeable FaR drops to 15%. Code review naturally distributes knowledge.

RQ2, Ownership: Does recommending reviewers based on code ownership reduce the

2

number of files at risk to turnover?

Studies show that teams tend to assign reviews to the owners of files under review [35, 80] and

experts who have modified or reviewed the files in the past [15,42]. We implement simple ownership

recommenders that suggest reviewers based on the files that developers have modified or reviewed

in the past.

We show that assigning reviewers based on prior commits, AuthorshipRec, or prior reviews,

RevOwnRec, increases expertise by 11.29% and 15.17%, respectively, while increases turnover risk,

FaR, by 25.25% and 65.19%. We conclude that concentrating expertise on the top developers make

projects susceptible to knowledge loss from turnover.

RQ3, cHRev: Does a state-of-the-art recommender reduce the number of files at risk to

turnover?

We review the literature on review recommenders and find that most mine historical review

information. Unfortunately, we did not find working implementations or replication packages for

any of the existing recommenders. For comparison purposes, we re-implement cHRev which has

been shown to outperform other recommenders [95]. When re-evaluate cHRev on our outcome

measures, we find that like the ownership recommenders, cHRev increases the level of expertise by

11.11%, and has the added benefit of reducing CoreWorkload by -3.49%. Unfortunately, cHRev

concentrates knowledge and increases the risk of knowledge loss through turnover by 4.15%.

RQ4, Learning and Retention: Can we reduce the number of files at risk to turnover by

developing learning and retention aware review recommenders?

We propose two knowledge aware proxies for estimating knowledge distribution and retention.

LearnRec ensures that a developer who has not reviewed or modified all of the files currently under

review will be proposed. RetentionRec recommender ensures that non-transient developer who have

commitment to the project are recommended. Assigning learners through LearnRec substantially

reduces Expertise, -35.13%, but counter-intuitively it makes the project drastically more susceptible

to knowledge loss from turnover as less committed developers are recommended, ∆FaR of 63.04%.

Suggesting committed developers through RetentionRec is the most successful strategy in ensuring

experts, 16.59%, during review, but has the greatest increase in CoreWorkload, 29.42%.

RQ5, Sofia: Can we combine recommenders to balance Expertise, CoreWorkload, and

3

FaR? Each of the previous recommenders has a focus and cannot simultaneously balance the out-

comes. Our final recommender, Sofia, assigns either experts or learners based on the files under

review. It uses cHRev when the files under review are not at risk and uses TurnoverRec when few

developers know about the files under review. This multi focus strategy improves all outcomes

simultaneously. Sofia increases the level of expertise during review by 6.27%, while having a

minor impact of 0.09% on CoreWorkload and reduces turnover risk with a ∆FaR of -28.27%.

We integrated Sofia to make recommendations for GitHub pull requests and to recommend

both expert and “learning” developers. The Sofia source code [57] is publicly available along

with the data in a replication package [56]

This thesis is organized as follows. In Chapter 3, we provide the study background as well as

defining our measures, review recommender, scoring functions, and simulation methodology. In

Chapter 4, we describe the projects under study. In Chapter 5, we present results for each of our

research questions. In Chapter 5.6, we describe the Sofia bot which integrates into GitHub pull

request. In Chapter 5.7, we discuss threats to validity. In Chapters 6 and 6.4, we discuss our findings

in the context of the existing literature and conclude the thesis.

4

Chapter 2

Survey of the Literature

The goal of this thesis is to spread knowledge during code review to mitigate knowledge loss

from turnover through reviewer recommendation. Since a key objective of code review is to find

defects, we also need to ensure that experts who have authored and reviewed the files in the past are

recommended. We break our survey of the literature into five categories.

• Turnover

• Code Ownership

• Expert Recommenders

• Code Review

• Reviewer Recommender

2.1 Turnover

During the evolution of a project, the contributing team evolves as employees join, leave, or

change roles. Turnover refers to the phenomenon of continuous cycle of hiring and departing em-

ployees. Previous research has unveiled the impact of turnover on the productivity of teams and the

sustainability of companies and projects in a wide variety of industries. The most common perspec-

tive is that turnover of employees negatively impacts the performance of organizations [38]. Depar-

tures damage the established social network and work environment [26] and deprive the project of

5

leaver’s experience and knowledge [38, 90]. A contrasting perspective is that turnover is beneficial

for sustainability of projects by allowing removing negative or dissatisfied employees [43]. Further-

more, studies show that new employees bring novel ideas, knowledge, and experiences which helps

with renewing the knowledge base of team and preventing stagnation [84].

In software engineering field, turnover is perceived as on of the biggest source of risk by man-

agers [21]. Prior works have examined the reasons why developer leave, developed patterns of

turnover, and estimated the risk that projects face.

2.1.1 Turnover Patterns

Lambert et al. [44] find that workers with high job satisfaction are less likely to leave. For in-

stance, employees who were involved in the early stages of the project have have higher retention

rates and job satisfaction. These employees tend to have more flexibility in determining their or-

ganizational role [45, 81]. Martensen et al. [48] show that roles that fulfill the employees’ need for

creativity and innovation experience have lower turnover rates. Constantinou and Mens [25] attempt

to predict why developers leave a project. They find that developers who do not have strong techni-

cal and social activity intensity, as measured by commits and engagement in discussions, are more

likely to leave. Similarly, according to Sharma et al. [83] past activity, age, and size of a project as

well as developer tenure are important factors in predicting leavers.

2.1.2 Turnover Impact

The impact of turnover on software engineering projects has been the focus of prior studies.

A survey with practitioners show that controlling turnover is necessary for the success of indus-

trial projects [36]. On the contrary, Foucalt et al. [30] find that a high turnover rate in open source

systems does not negatively affect the success of projects while it may increase defects in mod-

ules. Mockus [59] finds that departures of developers increase the number of defects. However, he

also found that newcomers are not culprits the increased defects because they are not assigned to

important tasks.

Izquierdo et al. [39] propose a quantitative method for measuring the knowledge loss due to

developer turnover. They investigate the evolution of orphaned code lines authored by developers

6

who left the team. They show that while in some projects, developers maintain code introduced by

leavers, in others, they seek to remove the orphaned code.

Studies on Truck Factor quantify the severity of knowledge concentration by measuring turnover-

induced knowledge loss as the percentage of files without active owners [72, 96]. The truck factor

measures the worst case loss, not its likelihood. Rigby et al. [78] use a Monte Carlo simulation to

estimate the worst impact of knowledge loss and its likelihood. Using file abandonment, they quan-

tify the risk of developer turnover by adapting the Value at Risk from financial risk management and

calculate probability that a certain level of loss will be occurred, i.e. Knowledge at Risk. Through

historical simulation they find that projects are susceptible to turnover-induced losses that are more

than five times larger than the expected loss. The methodology of Rigby et al. in computing knowl-

edge loss have been replicated in other studies [61, 79].

To mitigate the impact of knowledge loss from turnover and promote knowledge sharing, proac-

tive knowledge exchange mechanisms have been suggested, such as using knowledge management

systems and succession planning [58, 63, 70]. For example, Rigby et al. [78] develop a succession

measure that ranks possible successors based on the number of files that they have authored that

have co-changed with abandoned files. Their approach can recommend correct successors 34% to

48% of the time. Mockus [58] propose different measures for investigating the impact of succes-

sion on organizations. Based on the chronology and traces of developer activities that are available

through the version control and organization directory systems, they show larger projects, over-

loaded mentors, and offshoring succession substantially reduce the productivity ratio.

2.2 Code Ownership

The research literature contains substantial works on understand and quantifying code own-

ership for both empirical understand of development as well as task and review recommenda-

tion [19, 31, 60, 62, 87].

As teams and codebases grow, a controversial question arises [34]: should each of the team

members own a specific part of the system? Or should the team collectively own everything? Code

ownership reflects the notion of responsibility. In other words, it indicates how many developers are

7

currently contributing to the code and whether there is a single individual who can be considered

the primary contributor.

The collective code ownership model has been advocated by the Agile community [17] where

schedules and responsibilities are set such that all developers have a chance to work across different

modules [62]. Advocates of the collective code ownership model claim that allowing developers

to work on any part of the code base 1) increases the agility and productivity of the team [2] 2)

increases the chance of catching defects because of the number of collaborators [71] 3) distributes

knowledge and reduces the truck factor.

In contrast to the belief of agile practitioners, several researches provide evidence suggesting

that having many distinct authors on code artifacts leads to unfocused and defect-prone contribu-

tions [20, 66].

2.2.1 Measuring Code Ownership

The existing literature uses expertise as a proxy for measuring ownership. Proposed code own-

ership heuristics are measured at different granularities. McDonald and Ackerman [49] find that

developers use previous experience as the primary criterion for determining experts. They report

that developers often look into the code change history to identify who has contributed to a par-

ticular file and assume the last person to make a change is most likely the expert. The “Line 10

Rule” and Git blame allow developers to determine the last developer that changed each file and

line, respectively [3].

Mockus and Herbsleb [60] measure expertise based on the number of tasks a developer has

completed. They define experience atoms to measure several types of expertise based on technology,

change type, and software version. They extract data from software management systems to identify

a developer’s work items. Then, by linking code artifacts to work items they calculate the type of

expertise a particular developer has about each part of the system.

Bird et al. [20] define ownership at the module level. The ownership of a module is assigned

based on the number of commits by a developer relative to the total number of commits made

to the module. Their assumption is that each exposure to a code artifact is a learning experience

and extends the developer’s knowledge and expertise. They consider a developer to be a major

8

contributor of a module if his or her ownership ratio is above 5%. Greiler et al. [35] uses the same

ownership definition as Bird et al. but at the level of files instead of large modules. They also change

the ownership threshold to 50%.

Rahman and Devanbu [68] measures ownership as the number of lines authored by a specific

developer. They define authorship ratio of developer a in buggy code b to be the number of lines

authored by a over the total number of lines of b. Similarly, Gibra et al. [32] define file ownership

as the percentage of lines owned by developers.

Schuler and Zimmermann [82] introduce usage expertise as number of commits with code that

use a particular module by calling its APIs. The intuition behind their work is that developers also

accumulate expertise by calling methods because they know when and how a method can be used.

There are other studies that go beyond code authorship in order to measure ownership. Fritz et al. [31]

estimate expertise using the Degree of Knowledge model which is built upon the authorship and the

interactions of developers with code elements. Their heuristic has four major components which

are first authorship, number of deliveries, acceptances, and developer interactions through an IDE.

Rigby and Bird [75] measure expertise of a developer by counting the number of files they

have modified or reviewed in the past. Thongtanunam et al. [87] report that in addition to authoring

changes, developers greatly contribute to the evolution of code artifacts by reviewing code. Drawing

on this idea, they adapt the popular commit-based code ownership heuristics of Bird et al. [20] to

be review aware. They define review specific ownership ratio of developer D in module M to be

the number of reviews D has done over the total review contributions made to M .

2.3 Expert recommenders

In the previous section, we gave the background on ownership. In this section, we discuss how

ownership and expertise can be used to recommend developers. Everyday a hundreds of new bugs

are submitted that need to be traiged and fixed quickly [91]. Finding relevant experts who have

enough knowledge and experience to effectively fix bugs and implement new features is difficult on

large teams. In OSS projects, bug report triagers are responsible for manually analyzing tasks and

bug reports to developers [49]. Manual diagnosis takes time and effort and the assignment is not

9

always precise because the root cause is not always clear to triagers. Expert recommenders have

been proposed in the literature to automatically assign bugs to experts [49].

McDonald and Ackerman [49] propose Expertise Recommender as a general software architec-

ture suitable to locating expertise in a range of different collaborative domains.

Mockus and Herbsleb [60] propose Expertise Browser (ExB) that uses data from issue manage-

ment systems to find people with desired expertise. Builting upon experience atoms, users of the

tool can see how expertise is distributed over the system. ExB facilitates finding developers with

either broad or specific expertise.

Anvik et al. [13] present a semi-automated approach to the assignment of a bug reports with a

precision between 50% and 64%. They train a supervised machine learning model using textual

information available from summary and description fields of existing bug reports.

Kagdi et al. [41] produced a tool called xFinder to recommend a ranked list of developers who

have sufficient expertise fix a bug or perform a development task. xFinder mines the information

available in version control systems to find the potential experts for a specific file or package using

the number of commits, recency, and workdays of developers. xFinder’s accuracy is between 43%

and 82%.

Wu et al. [91] present a two layer approach called DREX to recommend a group of developers

who may have potential expertise in resolving reported bugs. When a new bug report arrives, they

employ the K-Nearest-Neighbor search technique to find similar historical bug reports. They rank

candidates using the frequency of comments and social relationships in similar historical bugs.

Linares et al. [46] propose a technique that does not need to mine historical information of ver-

sion control and issue tracking systems. Using an information retrieval technique, they query the

codebase to locate the relevant files from the textual description of a bug report. Next, potential

candidates are ranked based on the number of relevant files they have authored. In this approach,

authors are found in the header of files instead of searching through commit history. They report

their approach is on a par with xFinder [41] and a previously ML technique published by An-

vick et al. [13].

Xia et al. [93] propose a composite method named DevRec to score candidates based on two

analyses. First, in the bug report analysis, it finds the most appropriate developers using a multi-label

10

ML-KNN technique which finds the K-nearest bug reports. Second, in developer analysis, it scores

developers of similar bug reports based on their distance to the newly submitted bug. Developer

distance is computed based on the characteristics of the bugs a developer has resolved. DevRec is

shown to outperform DREX by improving the average recall@5 and recall@10 scores by 165.38%

and 89.36%, respectively.

Shokripour et al. [85] provide a simple yet effective two-phase approach to recommend develop-

ers. They use textual information of code files, commit messages, comments, and previously fixed

bugs to construct an index mapping between nouns and files. When a new bug report is submitted,

possible affected files are located based on a simple term-weighting scheme and the previous devel-

opers are selected according to “Line-10 Rule”. They achieve an accuracy of 89.41% and 59.76%

when recommending five developers for the Eclipse and Mozilla projects, respectively.

2.4 Code Review

Code review is an effective quality assurance strategy that identifies defects [14, 27, 73, 75, 80]

and also spreads knowledge among the developers involved in a review [14,22,35,75,80]. Our goal

is to reduce turnover risk through review. In this section, we survey the code review literature.

Code review is a common quality assurance mechanism employed in both open source and in-

dustrial settings. The proliferation of code review tools such as Gerrit, CodeFlow, and GitHub have

strongly promoted the less formal modern code review [73, 75] which is a lightweight but efficient

replacement for formal software inspection meetings prescribed by Fagan [27]. The asynchronous

nature of modern code review forms an organic, developer driven, community-wide collaboration

mechanisms that is easily scalable in large distributed teams [77].

2.4.1 Empirical studies on Code Review

Formal software inspections formalized by Fagan [27] have been perceived as a valuable method

to improve the quality of industrial software projects. The formal inspection prescribe periodic

meetings where the manager is responsible for assigning experts to be involved in reviews and

participants are expected to study the change before gathering to discuss it. The single goal of

11

inspection meetings is to find defects. Software inspections effective in finding 60%-90% of defects,

as well as educating developers to avoid making same mistakes [29].

Porter et al. [67] create statistical models to understand the factors that effect the efficacy of code

review. They report that the expertise of participants along with the change size and meeting inter-

vals are an important predictor of review effectiveness. Their result show that two reviewers perform

as well as a larger group. Another study conducted by Perry et al. [65] state that synchronous meet-

ings are indeed unnecessary because meeting-less inspections discover the same number of defects.

Rigby et al. [76] report that code review in open source environments and formal inspection

meetings as envisioned by Fagan in 1976 [27] have little in common. Using the data gathered

from 25 successful open source projects, they create statistical models of review efficacy and found

that instead of having rigid and formal policies, open source review practices evolved organically

based on the needs of the team. Open source teams embrace code reviews that are conducted

asynchronously, empower experts, provide timely feedback on small changes, and give developers

enough autonomy to work on their area of expertise.

Rigby et al. [74] show that in successful open source projects code review is conducted early

and frequently by a small group of self-selected experts to ensure the quality proposed changes

which are small and independent. Interestingly, they observe that discussion are not necessarily

localized. In fact, a large proportion of the reviews discussed the abstract or global implications of

the contribution.

Rigby and Bird [75] report that despite differences among projects, many of the characteristics

of the review process have independently converged to similar values which may indicate general

principles of code review. For instance, having two reviewers is enough to find the optimal number

of defects, change size should be small, and reviews need to be done early and frequently. Also,

They identify a new trend in software teams moving toward employing a review tool instead of

email-based communications. Important to our research, they report the focal point of reviews is

shifting from a defect finding activity to a group problem solving activity in which the author and

reviewers discuss the code and design decisions in depth. This knowledge sharing practice is shown

to substantially increases the number of files that developers know about by 100%, 122%, 155%

in Bing, Office, and SQL, respectively. Another study conducted by Sadowski et al. [80] confirms

12

these convergent practices on Google projects. At Google, knowledge spreading is part of the educa-

tional motivation for code review. Furthermore, they show that the number of files developers learn

through reviews is close to the number of files they learn about through authorship. Furthermore,

the workload of expert reviewers and temporary absences are reported to be an ongoing concern at

Google.

Rigby and Storey [77] conduct a qualitative study to investigate the broadcast-based reviews

practiced in open source communities. Among their findings, they report that developers decide to

review a patch according to their area of expertise and their relation with the author of the change.

Bacchelli and Bird [14] study Microsoft developer and report that while finding defects and

improving code quality are the main motivation for code review, there are other side benefits such

as knowledge transfer, share code ownership, and team awareness. Distribution of knowledge helps

developers learn about different parts of the code and ensures that more than one person has exper-

tise.

Another large-scale study conducted by Greiler et al. [35] shows that authors of changes are

concerned with 1) getting feedback in timely manner 2) finding appropriate or willing reviewers.

On the other hand, reviewers state that it is hard to find time for performing requested reviews be-

cause understanding the change’s purpose and motivation is difficult and time-consuming. Similar

to the findings by Rigby and Bird [75] study participants explicitly recommended using two review-

ers. They suggest reviewers should be selected based on code expertise, ownership, or educational

purposes. They also note that feedback from experts can lead to delays from lack of availability and

also fewer fewer opportunities for knowledge dissemination. They conclude that requesting less

experienced reviewers can increase review speed and balance the teams workload.

Bosu et al. [23] find that reviewers who have changed or reviewed a file before provide more

useful feedback. In addition, they report that larger changes receive less comments that will be of

value to the author of the change. In another study, Bosu et al. [22] find that while open source

contributors see code review as an opportunity for impression formation, Microsoft developers con-

sider knowledge dissemination to be more important. Their survey results show that eliminating

functional defects is only the third most important reason for code reviews, after maintainability

and knowledge sharing. Reviewers state that the reputation of author and their relationship is an

13

important factor for accepting a review request. Moreover, reviewers prefer to review code changes

that are closely related to their areas of work or expertise in order to minimize review time.

2.5 Reviewer Recommenders

Identifying the right reviewers for a given change is a critical step in the code review pro-

cess [14, 27, 35]. Inappropriate selection of reviewers slows down the review process [89] or lower

the quality of inspection [14]. Reviewer recommenders consist of an algorithm that suggests the

optimal reviewers for a given change. The expertise of candidates with code under review is the

main proxy for estimating suitability, which is measured through analysis of developers prior code

changes and review participation. The performance of existing reviewer recommenders have been

measured by evaluating how accurate these approaches can produce recommendations that match

actual reviewers of historical reviews. This evaluation is based upon the assumption that actual

reviewers were among the best candidates to review a change [42].

An early recommender was proposed by Jeong et al. [40] to help authors of changes find best

reviewers. They build a Bayesian ML-Based recommendation model using a variety of features

such as file name, module name, file keywords, author, and bug priority. Their model achieves an

accuracy between 66%-70% in top 5 recommendations. A feature sensitivity analysis reveal that

the author of the patch and file names are the most dominant features in constructing the prediction

model.

Balachandran [15] proposes a reviewer recommender tool called ReviewBot which finds rele-

vant experts based on the lines of code they have reviewed in the past. For each modified line in a

new review request, ReviewBot assigns a score to previous review requests which changed that line.

Then the score is propagated to all developers involved in reviews. A decay factor is incorporated to

reduce the influence of older review requests. The top 5 accuracy of ReviewBot is between 80.85%

and 92.31%.

Thongtanunam et al. [89] propose a file location-based recommender called RevFinder based on

the assumption that files and folders with similar paths are maintained by a similar set of developers.

When a new review requests arrives, they calculate how its file paths are similar to previously

14

reviewed files paths. Using four different string comparison techniques, RevFinder assigns a score

to participants of previous review requests. RevFinder has a top 10 accuracy of 79%.

Xia et al. [92] propose a hybrid approach called TIE which extends RevFinder by constructing a

text mining model that is trained using the textual content of the description field of review requests.

TIE achieves average top 5 and top 10 of 79% and 85%, respectively.

Yu et al. [94] present a reviewer recommender which suggests reviewers based on their social

relations. The intuition behind their work is that developers who share common interests have more

commenting interactions together. By mining historical comments, they construct a weighted graph

called Comment Network (CN) to model social relations. They find that the CN based model per-

forms as well as the file location based approach which achieves a precision and recall of 26.5% and

77% of recall for top 10 recommendation. However, a mixed approach of CN model and ML-based

bug triaging model can achieve 33.8% of precision and 79.0% of recall at top 10 recommendation.

Lipcak and Rossi [47] conduct a large-scale study to compare the performance of RevFinder [89]

and the Bayesian based recommender devised by Jeong et al. [40]. Their result reveals that no al-

gorithm can outperform the other one for all 51 studied projects.

Zanjani et al. [95] propose cHRev which uses the frequency and recency of reviews along with

the number of work days as three metrics for ranking expert reviewers. They consider the number

of comments a reviewer has made to a file as a proxy for their expertise about that file. To measure

effort, they count the number of work days that a developer has devoted to reviewing a file. They

also give recent reviews a higher weight. According to their results, cHRev outperforms RevFinder

and ReviewBot in terms of recall and precision. cHRev achieves a precision between 29% and 41%

and a recall between 67% and 87% for top 5 recommendation. Moreover, they find that inclusion of

authorship expertise in reviewer recommender model may adversely affect the precision and recall

values.

Kovalenco et al. [42] conduct a series of interviews and surveys at Microsoft and Jetbrains to

understand if reviewer recommenders help in practice. They find that although recommendations

are perceived as relevant, they rarely provide value to developers, i.e. the recommended reviewers

are obvious. They argue that recommenders should consider a broader set of metrics. For in-

stance, reviewer recommenders could optimize for other goals such as distributing knowledge by

15

not solely focusing on experts, but also by recommending less experienced people. Similarly, Sad-

owski et al. [80] reports that Detecting the right reviewer is not problematic in practice at Google

because ownership is strong in Google’s code base.

In the next chapter we build upon the measures discussed in the literature to develop a review

recommender that is both developer expertise, developer workload, and turnover aware.

16

Chapter 3

Background and Definitions

In this section we introduce the background on ownership, review recommenders, and knowl-

edge loss and show the manner in which each has been quantified in the past. We will subsequently

use these measures as the basis on which to expand reviewer recommendation in a scoring function

that will also be knowledge aware.

3.1 The Ownership Recommenders

The influence of code ownership on code quality has been extensively investigated in the lit-

erature [19, 20, 30, 68, 87]. Ownership is a human factor that helps with finding knowledgeable

developers that can be accountable for a particular part of code or task [60]. Developer Recom-

menders use ownership to automatically assign tasks to experts [41]. Researchers have used a wide

range of granularity, from lines [31,32,68] to modules [19,20], to estimate ownership of developers.

Studies on code review find that code owners are usually selected to review changes [14, 35, 80]. In

this work we develop two simple scoring functions for review recommendation based on ownership.

AuthorshipRec. Bird et al. [19, 20] defines the code ownership for a developer in a module as

the ratio of commits the developer has made relative to the total commits made to that component.

Our AuthorshipRec scores a developer, D, as a candidate reviewer based on the number of commits

he or she has made to the files under review, R, divided by the total number of commits made to

these files.

17

AuthorshipRec(D,R) =
CommitsForFilesUnderReview(D,R)∑Devs
d CommitsForFilesUnderReview(d,R)

(1)

RevOwnRec. Thongtanunam et al. [87] devise a review aware ownership metric based on the

files that a developer has reviewed. Intuitively, reviewers who have reviewed the changed files or

modules in the past, will be good candidate reviewers. To recommend reviewers, we score the

number of times a candidate has reviewed the files in the past divided by the total number of times

the files have been reviewed.

RevOwnRec(D,R) =
ReviewsOfFilesUnderReview(D,R)∑Devs
d ReviewsOfFilesUnderReview(d,R)

(2)

3.2 The cHRev Recommender

There is a large literature on review recommendation [15,37,69,89,92,94,95]. We note that we

did not find a replication package or recommender implementation for any of these works [47]. We

only re-implement cHRev [95] because it includes a wide range of factors in its recommendation

and has a higher accuracy than the other review recommenders such as RevFinder [89].

cHRev scores candidate reviewers by the expertise, frequency, and recency of their past reviews.

First, cHRev takes the number of comments made by a candidate on a file as a proxy for expertise.

Second, cHRev considers the number of work days a developer has worked on a file as a proxy for

measuring effort. Third, cHRev weights recent reviews more highly.

cHRev defines the xFactor(D,F) as the measure of the expertise for a developer D on a file

F . Cf , Wf , and Tf respectively show the number of review comments contributed by D for F ,

the number of work days D has dedicated on contributing comments on F , and the last day that D

worked on F . To provide a denominator, Cf ′ ,Wf ′ , and Tf ′ indicate the total number of comments

made on F , the total number of work days spent on commenting on F , and the time of the most

recent comment on F , respectively.

xFactor(D,F) =
Cf

Cf ′
+

Wf

Wf ′
+

1

|Tf − Tf ′ |+ 1
(3)

18

To compute the score of a candidate reviewer for a given code review, they sum up the xFactor(D,F)

that the candidate, D, has on the files in the change, F .

3.3 The Turnover Mitigating Recommenders

The focus of existing recommenders on experts disregards the other benefits of code review

such as knowledge sharing. Rigby and Bird [75] report that code review increases the number of

files developers see by between 100% and 150%. In this work, we speculate that code review can

be effective in mitigating the turnover-induced knowledge loss. Based upon this idea, we design

reviewer recommenders that either distribute or retain knowledge.

3.3.1 Distributing Knowledge

We then define a candidate’s knowledge of review request as the number of files under review

that a candidate has modified or reviewed in the past divided by the total number of files under

review.

ReviewerKnows(D,R) =
NumCommitOrReviewedFiles(D,R)

NumFilesUnderReview(R)
(4)

Equation 4, assigns developers with knowledge of the code under review and ensures expert

opinions but concentrates the knowledge of these files exacerbating the risk from turnover.

LearnRec. To distribute knowledge among the developers, we inverse the ReviewerKnows(D,R)

function to understand how many new files a developer will gain knowledge of if he or she is as-

signed the review. We limit the recommender to only display candidates that know about at least

one file under review. We then score the remaining reviewers using the LearnRec recommender to

maximize learning through the scoring function:

LearnRec(D,R) = 1− Knowledge(D,R) (5)

19

3.3.2 Developer Retention

Developers who have made substantial recent contributions to a project have demonstrated a

high degree of commitment to the project [25, 83]. In contrast, assigning a review to a developer

who is transient and will likely leave the project is antithetical to the goal of retaining project knowl-

edge. We define commitment and contribution consistency measures to recommend reviewers with

a high potential of remaining on the project, i.e. high retention potential. In contrast to the previous

measures which are at the pull request or review level, the retention is done at a project-wide level.

ContributionRatio. We measure the contribution of potential of a developer, D, by the number

of reviews and commits he or she has made in the last year divided by all the commits and reviews

on the project.

ContributionRatio365(D) =
TotalCommitReview365(D)∑Devs
d TotalCommitReview365(d)

(6)

ConsistencyRatio. It is common for developers to make substantial contributions to a feature

and leave the project after the feature is complete. To avoid assigning reviews to transient develop-

ers, we define the ConsistencyRatio364(D) as the proportion of months a developer has been active

in the last year.

ConsistencyRatio365(D) =
ActiveMonths365(D)

12
(7)

RetentionRec. We develop RetentionRec that suggests reviewers who who are unlikely to leave

the project. The scoring function for a candidate review, D is

RetentionRec(D) = ConsistencyRatio365(D) ∗ ContributionRatio365(D) (8)

3.3.3 Distribution and Retention Combined

TurnoverRec. To ensure that knowledge is distributed among developers who are likely to

remain on the project, we define the TurnoverRec recommender scoring function for a developer

and review as

20

TurnoverRec(D,R) = LearnRec(D,R) ∗ RetentionRec(D) (9)

Sofia: TurnoverRec and cHRev Combined When the files under review have many de-

velopers who know about them, it is best to suggest an expert. In contrast, when the number of

knowledgeable developers is low, knowledge should be distributed among the development team.

Our final recommender, Sofia, combines the cHRev, which is designed to find recent experts and

TurnoverRec, which is defined to distribute knowledge among developers who have high retention

potential. Given the function Knowledgeable(f) that returns the set of developers who have mod-

ified or reviewed file f , Sofia(D,R) selects either a cHRev(D,R) score or a TurnoverRec(D,R)

score as defined in the cases below:


cHRev(D,R), if |Knowledgeable(f)| ≤ d, any f | f ∈ R

TurnoverRec(D,R), otherwise
(10)

We consider files that have no knowledgeable developers or that are hoarded by a single de-

veloper to be at risk. As result, we consider a review that has a file with 0, 1, or 2 knowledgeable

developers to have a potential for knowledge loss from turnover and so distribute knowledge and

set d = 2.

3.4 Simulation and Evaluation

To evaluate reviewer recommenders, prior works made recommendations for each exiting re-

view and compared their result against the actual reviewers who performed the review [15, 37, 69,

89,92,94,95]. To compare with the actual reviewers, we use the Mean Reciprocal Rank (MRR) and

evaluate each recommender. MRR is the average of the inverse rank of the highest ranked correct

recommendation. For example, if a correct recommendation is on average the third recommenda-

tion, the score would be 1/3.

A criticism of prior works can be found in Kovalenco et al.’s [42] interviews with developers

21

who state that the recommenders rarely provide additional value because they suggest obvious ex-

pert candidate reviewers. This problem is inherent in the outcome measure, which assumes that

the actual reviewers were the best, i.e. “correct” reviewers. Kovalenco et al. [42] suggests that we

need to account for other perspectives and outcomes beyond simply attempting to predict the actual

reviewers.

To evaluate the impact of reviewer recommendation on diverse outcomes, we perform simula-

tions. Simulation requires us to replace the actual reviewer with a recommended reviewer and to

evaluate the outcomes over a period of time. The simulation involves sequentially making recom-

mendations for each review on a project. To train each recommender, we use the entire history prior

to the the review. The recommenders consider the files under review and according to the formulas

defined in Sections 3.1, 3.2, and 3.3, they randomly replace one of the actual reviewers with the top

recommended reviewer. For example, if DevA actually reviewed the files, but is replaced with top

recommended DevB, then the knowledge from the review will be attributed to DevB, not DevA, for

future recommendation and for outcome measurement. We only randomly replace one developer to

avoid disrupting the peer review process and because Kovalenco et al. [42] showed that developers

usually already know at least one expert review candidate.

To evaluate how each recommender changes the project, we measure three outcomes: the de-

gree of reviewer Expertise, reviewer CoreWorkload, and the number of files at risk to turnover,

FaR. These measures incorporate the reasons interviewed developers conduct review [14, 35]. We

measure the change in the outcomes over the standard quarterly period [61, 78]. Each measure is

calculated as a percentage change relative to the actual reviewers who performed the review. For ex-

ample, if a recommender replaces an expert reviewer with a non-expert “learner,” we would expect

the measures to report a percentage decrease in expertise and a percentage increase in the knowledge

distribution of the development team. We define each outcome measure below.

Expertise. Having high expertise ensures having high quality code review [14, 23, 28]. We

measure the Expertise for a review as the proportion of files under review that the selected reviewers

have modified or reviewed in the past, i.e. the union of the files that the reviewers know about. We

sum the expertise across the reviews per quarter, Q.

22

Expertise(Q) =

Reviews(Q)∑
R

FilesReviewersKnow(R)
FilesUnderReview(R)

(11)

CoreWorkload. To ensure high retention potential of reviewed files, a naive recommender could

suggest only core developers who are both experts and are committed to the project. Such a recom-

mender would lead to a drastic increase in the core developer workload. To measure the workload,

we find the 10 reviewers who have performed the most reviews in a quarter, Top10Reviewers(Q),

and sum the total number of reviews that this top 10 group performed:

CoreWorkload(Q) =

Top10Reviewers(Q)∑
D

NumReviews(D,Q) (12)

FaR. We need to quantify the project’s exposure to turnover from knowledge loss. Building on

Rigby et al.’s [78] definition of knowledge loss we define the quarterly Files at Risk, FaR, as the

number of files that are known by zero or one active developers. Given the function ActiveDevs(Q, f)

that returns the set of developers who have modified or reviewed the file, f , and have not left the

project at the end of the quarter, Q, we define FaR(Q):

FaR(Q) = { f | f ∈ Files , |ActiveDevs(Q, f)| ≤ 1} (13)

The raw outcome measures do not facilitate easy interpretation or comparison. We report the

percentage change for a recommender relative to the actual reviewers.

We use the Equations 14,15, and 16 to report the percentage change of Expertise, CoreWorkload,

and FaR, respectively.

∆Expertise(Q) = (
SimulatedExpertise(Q)

ActualExpertise(Q)
− 1) ∗ 100 (14)

∆CoreWorkload(Q) = (
SimulatedCoreWorkload(Q)

ActualCoreWorkload(Q)
− 1) ∗ 100 (15)

∆FaR(Q) = (
SimulatedFaR(Q)

ActualFaR(Q)
− 1) ∗ 100 (16)

23

The simulation results for an ideal reviewer recommender increases Expertise during review

with a positive percentage change in ∆Expertise, reduces CoreWorkload with a negative percentage

change in ∆CoreWorkload, and reduces the number of files at risk, FaR, with a negative percentage

change in ∆FaR.

24

Chapter 4

Project Selection and Data

We explicitly select well-established large projects with many completed code reviews. On

smaller projects, reviewer recommendation is less meaningful as the potential set of reviews is

small and the developers are often aware of the entire team. To select projects, we first query the

GitHub torrent dataset to find projects with more than 10K pull requests [33,52]. We then apply the

following manual selection criteria:

(1) We need existing reviews, so 25% or more of the commits must be reviewed.

(2) We need to simulate across time, so the project must be 4 or more years old.

(3) We need diverse knowledge and modules, so we ensure there are at least 10K files.

Five projects met our selection criteria. Of these projects, CoreFX, CoreCLR, and Roslyn are led

by industry but are available under an open source license and are developed in the open on GitHub.

Rust and Kubernetes are community driven OSS projects. Table 4.1, provides the summary statistics

including the number of files, pull requests, and commits. Our replication package contains a link

to the project data [56].

We briefly describe each of the selected projects.

Rust is a general purpose programming language which is syntactically similar to C++. In

contrast to C++, Rust provides memory management and garbage collection. Rust is developed by

The Rust Project [10].

25

Table 4.1: Size of projects under study. We explicitly select for large, long-lived projects.
Name Total Files Reviewed PRs Years Developers
CoreFX 16,015 13,499 5 985
CoreCLR 15,199 10,250 4 698
Roslyn 12,313 8,646 5 469
Rust 12,472 17,499 9 2,720
Kubernetes 12,792 32,400 5 2,617

CoreCLR is the .NET platform execution engine and runs across hardware architectures. It

provides a wide range of capabilities such as garbage collection, compilation to machine code, and

low-level types. All the .NET languages are built on top of the CoreCLR engine and run inside its

execution context. CoreCLR development is led by Microsoft [5].

CoreFX provides the core functionalities for .NET based languages including Collections, File

System, and Networking. CoreFX development is led by Microsoft [6].

Roslyn is a compiler platform for C# and Visual Basic. In contrast to black-box traditional com-

pilers, Roslyn exposes a rich set of APIs for doing static code analysis and building code analyzers.

Roslyn development is led by Microsoft [9].

Kubernetes is an open-source container-orchestration platform. It facilitates automatic man-

agement, deployment, and scaling of microservices. Kubernetes developed is led by the Cloud

Native Computing Foundation [7].

4.1 Gathering Data

We gather authorship commit data from git and review data from GitHub. We clone the repos-

itories to extract all commits and corresponding changes. On GitHub, reviews are conducted in

pull-requests that allow the authors and reviewers to discuss each change [34]. In this study, we

consider an individual to be a reviewer of a pull-request if he or she writes a review comment on

a file, asks for further changes from the author, or approves/rejects the pull request. To gather and

clean the required data, we developed a post-processing pipeline which we make publicly avail-

able [56].

Unifying Developer Names. When a developer makes commits using his or her GitHub user-

name we can link this with the email address they use in the git commit. In some cases, the author

26

commits without using a GitHub username and we use a name unifying approach that employs

edit distances to match the git email names with GitHub usernames. This approach is similar to

Bird’s [18] and Canfora’s [24].

Leavers. Robillard et al. [79] shows that using the last commit as an indicator for departure

of developers draws some risks. Based on this finding, at the end of each quarter, we consider the

knowledge of a developer to be inaccessible if he or she has no contribution in the subsequent four

quarters. We exclude the last quarter of projects from analysis to ensure that we do not mistakenly

label a developer as a leaver if they have gone on vacation for a month more.

Excluding mega commits. Rigby et al. [78] argue that commits with hundreds of file changes

are too large to be fully comprehended by the author. In manual analysis of mega commits and re-

view requests, we find that they tend to be superficial changes including renaming a folder, renaming

a function throughout the source code, changing commented trademarks of files, or importing a large

chunk of code from a different source control system to git. We do not associate any knowledge to

the author or reviewer of changes with 100 or more files.

In this work, we limit our study of knowledge to code files, including .cs, .java, and .scala. Our

replication package contains the full list of file types [56]. We also exclude changes made by bots,

review comments that are made after the code has been merged, unmerged pull-requests, and files

that were committed without review.

27

Chapter 5

Results

In this Chapter, we discuss the results for our research questions relating to (1) an empirical

study of knowledge distribution during review, (2) recommendations based on ownership, (3) rec-

ommendations based on the state-of-the-art, cHRev, (4) learning and retention aware recommenders,

and (5) Sofia which combines the best recommenders. We make three notes: First, we note that

RQ1 does not involve simulation and is an empirical result based on the actual reviews and com-

mits. Second, we note that the MRR outcomes does not involve simulation and instead reports

how accurately the recommender predicts the actual reviewers. Third, simulations are run for each

recommender and we note the changes in ∆Expertise, ∆CoreWorkload, and ∆FaR as a percent-

age difference relative to the actual values for each project. Table 5.2 shows the average for each

outcome across all projects.

There is a table for each outcome: Table 5.3 shows ∆Expertise, Table 5.4 shows ∆CoreWorkload,

Table 5.5 shows ∆FaR, and Table 5.6 shows MRR. Table 5.2 shows the average for each outcome

across all projects.

5.1 RQ1: Review and Turnover

What is the reduction in files at risk to turnover when both authors and reviewers are considered

knowledgeable? Recent studies have quantified knowledge loss from turnover on the basis of the

commits that each developer has made [61,78]. The assumption in these works, is that knowledge is

28

only attained through writing code. However, the knowledge transfer that occurs during code review

is widely documented with prior work showing that review promotes team awareness, transparency,

and shared code ownership [14,75,80,87]. Rigby and Bird [75] quantified the additional knowledge

attained during review and reported that code review exposes developers to between 100% and

150% more files than they edit. Thongtanunam et al. [87] added that developers who have not made

any changes to a module contributed by reviewing 21% to 39% of the code changes in the module.

In this section, we consider both authors of code as well as reviewers to be knowledgeable and

calculate the number of files that are at risk when turnover occurs.

To assess the extent that the project is at risk to knowledge loss from turnover, we measure FaR,

see Equation 13, which measures the number of files that have zero or one active developers at the

end of each quarter. To mirror prior works, we calculate the FaRauthor which only considers authors

to be knowledgeable [61, 78]. We then calculate FaR, which considers both authors and reviewers

as knowledgeable.

Table 5.1 reports the proportion of files at risk relative to the total files on the project. The

median raw value per quarter of FaRauthor is 7,899, 3,749, 5,780, 3,134, and 5,598 files for CoreFX,

CoreCLR, Roslyn, Rust, and Kubernetes, respectively. As a percentage of the codebase, between

24% and 49% of the files are at risk of abandonment. In contrast, when both the author and the

reviewer are considered knowledgeable, the median raw value per quarter of FaR is 2,243, 2,117,

2,070, 2,059, 2,087, respectively. As a percentage of the codebase, between 14% and 16% of the

files are at risk of abandonment. As a percentage increase in files at risk for FaR relative to FaRauthor

we see that 69.10%, 45.27%, 61.90%, 28.44%, and 65.27% fewer files are at risk of abandonment

for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes, respectively. We conclude that considering

reviewers to be knowledgeable of the files they review drastically reduces FaR and gives a clearer

picture of the risk a project is at to turnover than prior works that only considered authors to be

knowledgeable [61, 78].

When only authors are considered knowledgeable an average of 37.74% of files are at risk

to turnover. When reviewers are also considered knowledgeable the FaR average is 15.20%.

There is substantial knowledge distribution during code review.

29

Table 5.1: The proportion of total files that are at risk to turnover. When only authors are consid-
ered knowledgeable the proportion of files at risk is drastically higher than when both authors and
reviewers are considered knowledgeable.

FaR CoreFX CoreCLR Roslyn Rust Kubernetes Avg
Author 48.23% 24.66% 46.94% 25.12% 43.76% 37.74%
Auth & Rev 12.44% 13.92% 16.81% 16.50% 16.31% 15.20%

5.2 RQ2 Ownership

Does recommending reviewers based on code ownership reduce the number of files at risk

to turnover?

Studies show that teams tend to assign reviews to the owners of files under review [35, 80] and

experts who have modified or reviewed the files in the past [15, 42]. In this research question, we

run simulations to show how recommending reviewers based on ownership affects project outcome

measures.

AuthorshipRec. Prior works have adapted developer task recommenders [41, 49, 60] that use

historical authorship data to recommend reviewers [37,95]. We partially reproduce these authorship

recommendations by using the scoring function defined in Equation 1. We use the simulation

method described in Section 3.4 and evaluate the impact of AuthorshipRec on MRR, ∆Expertise,

∆CoreWorkload, and ∆FaR. The average values are shown in Table 5.2.

AuthorshipRec is successful in predicting the reviewers who actually performed the review with

an MRR of 0.59, 0.54, 0.48, 0.44, and 0.41 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.49. This implies that on average the actual reviewer

is ranked 2.04.

From the simulations, we see that assigning reviewers based on their commit ownership, i.e.

authorship, increases the Expertise in reviews by 7.26%, 5.97%, 19.57%, 10.89%, and 12.77%,

respectively, with an average of 11.29% across the projects. The CoreWorkload increases for Rust

by 7.50%, while it is reduced by -11.30%, -4.74%, -6.91%, and -2.95% for the other projects, with

an average of -3.68%. Although Expertise is high for each review, FaR has risen across all projects

by 28.05%, 12.00%, 36.23%, 33.51%, and 14.48%, with an average of 25.25%.

Developers who have authored the files under review are clearly experts. However, suggesting

30

past authors as reviewers concentrates the knowledge of these files and puts the project at greater

risk to turnover as non-authors are not suggested as reviewers.

RevOwnRec. The majority of review recommenders have used historical review data, i.e. who

has reviewed which files or modules in the past, to recommend reviewers [15,40,89,92,94]. We par-

tially reproduce these review ownership results by using the scoring function defined in Equation 2.

We use the simulation methodology and outcome measures as described above.

RevOwnRec is slightly less successful at predicting the reviewers who actually performed the

review with an MRR of 0.53, 0.50, 0.42, 0.46, and 0.37 for CoreFX, CoreCLR, Roslyn, Rust, and

Kubernetes, respectively. The average across all projects is 0.45. which means the actual reviewer

rank is averaged to 2.22.

From the simulations, we see that assigning reviewers based on the files they have reviewed in

the past increases review Expertise by 12.99%, 10.14%, 22.12%, 13.33%, and 17.31% respectively,

with an average of 15.17% across projects. These individuals tend to be top reviewers and we see a

corresponding increase in CoreWorkload of 11.81%, 21.62%, 10.97%, 16.14%, and 40.93%, with

an average of 20.29%. Despite the high utilization of expert reviewers, this recommender has the

largest increase in files at risk with ∆FaR values of 9.29%, 51.24%, 159.42%, 105.98%, and 0.04%,

with an average of 65.19%.

Recommending reviewers based on the files they have reviewed in the past ensures expertise

during review (average increase of 15.17%), but increases the workload of the top reviewers

by on average 20.29% and differ from the set of actual reviewers with an average MRR

of 0.45. Concentrating expertise on the top developers substantially increases the risk of

knowledge loss when turnover occurs on average by 65.19%.

5.3 RQ3 cHRev Recommender

Does a state-of-the-art recommender reduce the number of files at risk to turnover?

cHRev builds upon prior work that leverages information in past reviews [41], but also accounts

for the number of days a candidate reviewer has worked on a file, and the recency of this work

31

(See Section 3.2 for further details). cHRev has been show to outperform the other review-based

recommenders, including RevFinder [87]. In this research question, we re-implement this state-of-

the-art recommender and re-evaluate it. We use the simulation method described in Section 3.4 and

evaluate the impact of cHRev on MRR, ∆Expertise, ∆CoreWorkload, and ∆FaR.

In the original cHRev paper, the authors report an average MRR of .67 across four projects [95].

On our projects, cHRev has an MRR of 0.64, 0.59, 0.49, 0.50, and 0.42, for CoreFX, CoreCLR,

Roslyn, Rust, and Kubernetes, respectively. The average is 0.52. This implies that on average the

actual reviewer is ranked 1.92. Although the MRR is lower in our reproduction than in the original

study, we note that for MRR cHRev outperforms all of the other recommenders we consider.

From the simulations, we see that like the ownership recommenders, cHRev increases the Ex-

pertise in reviews by 9.84%, 7.27%, 16.45%, 8.22%, and 13.81%, respectively, with an average of

11.11% across projects. However, unlike RevOwnRec, it reduces the load on top reviewers. The

corresponding values for ∆CoreWorkload are -5.93%, -2.35%, -0.51%, -2.19%, and -6.47% with

an average of -3.49%. cHRev concentrates knowledge and increases the project’s risk to turnover

with a FaR increase of 6.46%, 13.85%, 4.43%, 10.28% in CoreFX, CoreCLR, Roslyn, and Rust,

respectively and for Kubernetes the ∆FaR is reduced at -14.24%. The average of ∆FaR across all

projects is 4.15%.

cHRev remains accurate in suggesting actual reviewers with an MRR of 0.52. It increases

the degree of Expertise during review by 11.11%, while reducing the CoreWorkload on the

top reviewers by -3.49%. However, the risk of turnover increases with an average ∆FaR of

4.15%.

5.4 RQ4: Learning and Retention

Can we reduce the number of files at risk to turnover by developing learning and retention

aware review recommenders?

The previous research questions have demonstrated that existing review recommenders concen-

trate knowledge on experts increasing the risk of knowledge loss from turnover. Furthermore, in

32

Table 5.2: The average of outcome measures across the projects. MRR is shown for replication
purposes. Individual project outcomes are discussed in the paper text. The ideal recommender in-
creases expertise (positive ∆Expertise), reduces workload (negative ∆CoreWorkload), and reduces
files at risk to turnover (negative ∆FaR).

Recommender Average Across Projects
MRR ∆Expertise ∆CoreWorkload ∆FaR

AuthorshipRec 0.49 11.29% -3.68% 25.25%
RevOwnRec 0.45 15.17% 20.29% 65.19%
cHRev 0.52 11.11% -3.49% 4.15%
LearnRec 0.12 -35.13 -39.51% 63.04%
RetentionRec 0.39 16.59% 29.42% -15.91%
TurnoverRec 0.19 -26.55% 1.07% -29.54%
Sofia 0.43 6.27% 0.09% -28.27%

two large industrial settings, Kovalenco et al. [42] interviewed developers and found that suggest-

ing prior review experts tends to recommend reviewers that are obvious to the author of the change.

They state that making obvious recommendations leads to a lack of use of recommenders. They en-

vision a new research path for next generation of recommenders that go beyond suggesting experts.

In this research question, we investigate how we can mitigate turnover-induced loss and disseminate

knowledge using learning and retention measures.

LearnRec. Without review recommenders, development teams naturally distribute knowledge

during review by assigning reviewers who would benefit by learning about the files under review [14,

22, 80]. Building on this idea, in Section 3.3.1, we defined a scoring function that determines how

many files a candidate reviewer will learn about. We ensure that the candidate knows at least one

of the files that is under review. In this way, we spread knowledge, but ensure that the reviewer has

some relevant knowledge. We use the simulation method described in Section 3.4 and evaluate the

impact of LearnRec on MRR, ∆Expertise, ∆CoreWorkload, and ∆FaR with the average outcomes

shown in Table 5.2.

LearnRec does a poor job of predicting the reviewers who actually performed the review with

an MRR of 0.18, 0.14, 0.12, 0.11, and 0.09 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.12. This implies that on average the actual reviewer

is ranked 8.33. However, the goal of this recommender was to ensure that developers learn and this

shows that it suggests unexpected reviewers.

From the simulations, we see a substantial decrease in Expertise: -34.91%, -32.76%, -24.35%,

33

-50.34%, and -33.33%, respectively, with an average of -35.13% across all projects. The Core-

Workload is drastically reduced as fewer expert reviewers are assigned reviews: -38.07%, -38.53%,

-35.68%, -49.86%, and -35.45%, with an average of -39.51%. The goal of this measure is to dis-

tribute knowledge and reduce turnover. Counter-intuitively we see an increase in the files at risk

with ∆FaR values of 16.26%, 22.31%, 119.32%, 108.72%, 48.61% with an average of 63.04%. By

selecting non-experts, LearnRec recommends transient developers who have less commitment to

the project.

The recommendations substantially differ from actual reviewers, MRR 0.12. LearnRec sub-

stantially reduces Expertise, -35.13%, but suggests learners reducing the CoreWorkload by

-39.51%. Counter-intuitively it makes the project drastically more susceptible to knowl-

edge loss from turnover because it assigns reviews to learners who are less committed to the

project, ∆FaR of 63.04%.

RetentionRec. Assigning reviews to transient developers may distribute knowledge, but does

not reduce turnover. In Section 3.3.2, we define a measure that captures how frequently developers

contribute to the project and the number of months in the last year that they are active. We ensure

that the candidate knows at least one of the files that is under review. Our goal is to assign reviews

to committed developers. We use the same simulation methodology and outcome measures.

RetentionRec does similarly to RevOwnRec at predicting the reviewers who actually performed

the review with an MRR of 0.57, 0.44, 0.31, 0.42, and 0.25 for CoreFX, CoreCLR, Roslyn, Rust,

and Kubernetes, respectively. The average across all projects is 0.39. This implies that on average

the actual reviewer is ranked 2.56.

From the simulations, we see an increase in Expertise of 13.84%, 10.94%, 24.80%, 24.13%,

and 19.24%, respectively, with an average of 16.59%. These percentages are highest for any rec-

ommender outperforming ownership recommenders at ensuring expertise during review. We see a

corresponding increase in CoreWorkload of 23.03%, 35.34%, 20.73%, 20.18%, and 47.82% with an

average of 29.42%. However, unlike the ownership and cHRev recommenders, we see a reduction

in the files at risk with ∆FaR values of -28.45%, -4.60%, -22.73%, -7.33%, and -16.47% with an

average of -15.91%. Clearly RetentionRec selects committed developers who are unlikely to leave

34

the project.

RetentionRec is the most successful in ensuring experts, 16.59%, during review, while reduc-

ing the risk of knowledge loss from turnover, -15.91%. However, by focusing on the most

committed developers it also has the greatest increase in CoreWorkload, 29.42%. The MRR

of 0.39 indicates that the actual reviewers are more diverse than the recommendations.

TurnoverRec. We showed that distributing knowledge through LearnRec does not alleviate

knowledge loss and RetentionRec increases the CoreWorkload. We combine these approaches to

distribute knowledge but to distribute it among individuals who have a higher retention potential.

Through Equation 9, we defined TurnoverRec that multiplies the learning measure by the retention

measure. Again we ensure that each candidate knows about at least one file. We use the same

simulation methodology and outcomes.

TurnoverRec does a poor job of predicting the reviewers who actually performed the review with

an MRR of 0.29, 0.20, 0.18, 0.19, and 0.12 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.19. This implies that on average the actual reviewer

is ranked 5.26.

From the simulations, we see that similar to LearnRec recommender, the Expertise has de-

creased by -27.41%, -24.91%, -14.05%, -34.22%, and -25.93%, respectively, with an average of

-26.55%. However, in terms of CoreWorkload there is only a slight increase of 5.98%, 5.52%, and

0.50% in CoreFX, CoreCLR, and Kubernetes and a reduction in Roslyn and Rust by -0.12% and

-6.52% with an average of 1.07%. The files at risk are reduced with a ∆FaR of -34.95%, -14.20%,

-41.70%, -24.32%, and -32.53% with an average of -29.54%.

TurnoverRec combines learning and retention recommenders and has the greatest reduction

in turnover risk, ∆FaR-29.54. However, there is a substantial cost in the reduction of Ex-

pertise, -26.55%, and a minor increase in CoreWorkload, 1.07. The low MRR value of 0.19

indicates that developers naturally focus on reviewers with greater expertise than Turnover-

Rec.

35

Table 5.3: Change in Expertise. Compared to the reviewers who actually performed the review, a
positive values indicate an increase in expertise with the recommended reviewers.

Recommender ∆Expertise
CoreFX CoreCLR Roslyn Rust Kubernetes

AuthorshipRec 7.26% 5.97% 19.57% 10.89% 12.77%
RevOwnRec 12.99% 10.14% 22.12% 13.33% 17.31%

cHRev 9.84% 7.27% 16.45% 8.22% 13.81%
LearnRec -34.91% -32.76% -24.35% -50.34% -33.33%

RetentionRec 13.84% 10.94% 24.80% 14.13% 19.24%
TurnoverRec -27.41% -24.91% -14.05% -34.22% -25.93%
Sofia 4.69% 3.23% 8.04% 5.82% 9.58%

Table 5.4: Change in CoreWorkload. Compared to the reviewers who actually performed the re-
view, a negative value is an improvement and indicates that the recommended reviewers reduce the
workload on the core team.

Recommender ∆CoreWorkload
CoreFX CoreCLR Roslyn Rust Kubernetes

AuthorshipRec -11.30% -4.74% -6.91% 7.50% -2.95%
RevOwnRec 11.81% 21.62% 10.97% 16.14% 40.93%
cHRev -5.93% -2.35% -0.51% -2.19% -6.47%
LearnRec -38.07% -38.53% -35.68% -49.86% -35.45%
RetentionRec 23.03% 35.34% 20.73% 20.18% 47.82%
TurnoverRec 5.98% 5.52% -0.12% -6.52% 0.50%
Sofia -0.27% -5.89% 5.09% 0.43% 1.12%

Table 5.5: Change in FaR. Compared to the reviewers who actually performed the review, a negative
value is an improvement and indicates that the recommended reviewers reduce the number of files
at risk.

Recommender ∆FaR
CoreFX CoreCLR Roslyn Rust Kubernetes

AuthorshipRec 28.05% 12.00% 36.23% 35.51% 14.48%
RevOwnRec 9.29% 51.24% 159.42% 105.98% 0.04%
cHRev 6.46% 13.85% 4.43% 10.28% -14.24%
LearnRec 16.26% 22.31% 119.32% 108.72% 48.61%
RetentionRec -28.45% -4.60% -22.73% -7.33% -16.47%
TurnoverRec -34.95% -14.20% -41.70% -24.32% -32.53%
Sofia -34.46% -12.42% -41.56% -19.92% -33.02%

36

Table 5.6: Mean Reciprocal Rank, MRR, for each recommender. An MRR of 1/3 indicates that on
average the third ranked recommended reviewer actually performed the review.

Recommender CoreFX CoreCLR Roslyn Rust Kubernetes
AuthorshipRec 0.59 0.54 0.48 0.44 0.41
RevOwnRec 0.53 0.50 0.42 0.46 0.37
cHRev 0.64 0.59 0.49 0.50 0.42
LearnRec 0.18 0.14 0.12 0.11 0.09
RetentionRec 0.57 0.44 0.31 0.42 0.25
TurnoverRec 0.29 0.20 0.18 0.19 0.12
Sofia 0.54 0.48 0.39 0.39 0.36

5.5 RQ5 Sofia

Can we combine recommenders to balance Expertise, CoreWorkload, and FaR?

Not all reviews contain files that are at risk of abandonment. As a result, we do not need

to distribute knowledge on these files because there is already a sufficient number of developers

to mitigate knowledge loss from developer turnover. In Equation 10, we define Sofia that dis-

tributes knowledge during review using TurnoverRec when there are files at risk of abandonment.

In contrast, when all the files have active developers, Sofia uses the cHRev scoring function to

suggest recent experts. Of the 13,690, 10,256, 10,388, 17,810, and 32,260 reviewed pull request on

CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes around 1/4, 25.18%, 26.13%, 29.82%, 29.41%,

and 17.17%, contain files at risk. The remaining pull requests use cHRev recommendations to en-

sure concentrated expertise. We use the simulation method described in Section 3.4 and evaluate

the impact of Sofia on MRR, ∆Expertise, ∆CoreWorkload, and ∆FaR with average outcomes

shown in Table 5.2.

Sofia does a good job of predicting the reviewers who actually performed the review with

an MRR of 0.54, 0.48, 0.39, 0.39, and 0.36 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.43. This implies that on average the actual reviewer

is ranked 2.32.

From the simulations, we see that by only distributing knowledge when files are at risk and

otherwise suggesting experts, Sofia inherits the best characteristics of TurnoverRec and cHRev.

The Expertise goes up by 4.69%, 3.32%, 8.04%, 5.82%, and 9.58%, respectively, with an average

of 6.27%. In terms of CoreWorkload, we see a reduction of -0.27% and -5.89% in CoreFX and

37

CoreCLR, an increase in Roslyn of 5.09% and a slight increase of 0.43% and 1.12% for Rust and

Kubernetes. The average of ∆CoreWorkload is minor at 0.09%. Sofia distributes knowledge

to developers who have a high retention potential and reduces the risk of turnover as measured

by a decrease in ∆FaR of -34.46%, 12.42%, -41.56%, -19.92%, and -33.02%, with an average of

-28.27%.

The Sofia recommender distributes knowledge when there are files under review that are

at risk of abandonment and suggests experts when all files already have multiple knowledge-

able developers. This strategy allows us to increase the level of Expertise during review,

6.27%, while having a minor impact on CoreWorkload, 0.09%, and substantially reducing

the number of files at risk by -28.27%. Sofia also does a reasonable job of predicting the

actual reviewers with an MRR of 0.43.

5.6 The Sofia Bot on GitHub

Code review is known to have multiple purpose and outcomes from finding defects to distribut-

ing knowledge [14,22,35,75,80]. Our tool design allows developers to make an informed selection

balancing the need for experts and learners. We created a GitHub application [57] that will recom-

mend reviewers based on the combination of cHRev with TurnoverRec as the Sofia bot. Feedback

from developers showed that the rationale behind a review recommendation is required [42]. For

the Sofia bot we display simplified measures to complement a developer’s intuition and domain

expertise on who should review the pull request.

Implementation. The Sofia repository with the source code and the straightforward instal-

lation instructions are publicly available [4]. Once installed Sofia processes the entire history of

the project to be able to recommend reviewers. Sofia uses GitHub webhooks to scan submitted

commits and reviewed pull requests to keep recommendations up-to-date. Sofia can operate in

two modes: fully automated or list candidates. In the fully automated mode, for each pull request,

Sofia assigns the top scoring candidate to perform the review.

In Figure 5.1 Sofia displays a list of candidates when the pull request is created or when the

Sofia suggest command is issued (Box A in figure). The Sofia bot displays the ranked list of

38

Figure 5.1: An example of Sofia recommending both learners and experts for the CoreFX project.

39

potential reviewers (Box B). In Box C in the figure, the author can select the person with the highest

expertise. Or if learning is more important they can select the developer who would learn about

the most files (Box D). The author can also issue the Sofia suggest learners or Sofia

suggest experts if he or she is only interested in a particular type of candidate.

To help with tool adoption, the displayed measures are designed to be quick and easy to interpret

by pull request authors and are major simplifications of the scoring functions defined in Section 3.3.

The ownership dimension maps to the “Files Authored” and the “Files Reviewed” fields which are

simplified to show the proportion of files under review that the candidate has authored or reviewed

in the past, respectively. Learning maps to the “New Files” field which is simplified to the number

of files that the candidate would learn about, i.e. they have not modified or reviewed. Retention

potential maps to the “Active Months” field which is simplified to the proportion of months that the

developer has been active in the previous year.

The goal of our tool is to compliment a developer’s intuition. For example, if a developer

feels that high expertise is required, he or she might choose the top candidate in Figure 5.1 Box C,

“stephentoub,” who has in the past modified 3/4 of the files under review, has reviewed all of the

files under review, and has been active in 5 months in the last year. Sofia will warn developers

that in a review there is at least one file at risk (top of Box B). The developer may then select the

best “learner” review candidate from Box D, “danmosemsft.” Although he has never modified the

files under review, he has reviewed 2 of 4 and has also been been active in 5 of the last 12 months.

Finally, “hughbe” has both expertise and would also learn about new files. He has authored 2 of 4 of

the files under review, reviewed 1 of the files, and would learn about 2 new files. He has also been

active 5 of the last 12 months. Sofia makes recommendations, but provides a simple rationale for

each review candidate allowing the developer to select the best reviewer given their intuition and

the review context.

40

5.7 Threats to Validity

Generalizability. We selected large and successful open source software projects that were led

by either industry or a community. On smaller projects, there is no need for reviewer recommenda-

tion because the list of candidates is small and obvious to all developers. Future work is necessary

to validate our results in other development contexts.

Construct Validity. Following prior works on review recommendation [89,95], ownership [31,

35, 75], and turnover [61, 78], we use the source code file as the unit of knowledge. Knowledge

is contained in other documents and at other unit levels. We leave these investigations to future

work. We have also provided formulas for each of our measures and scoring functions to facilitate

replication.

The knowledge acquired by a reviewer will be different from the knowledge of the author. The

author will usually know more of the details, while an expert reviewer may know more about other

modules and dependencies. In this work, we consider both authors and reviewers to be knowledge-

able and able to work on the files when turnover occurs. Future work is required to understand the

different types of knowledge that authors and reviewers have.

Replication and Reproducability. Existing recommenders including ReviewBot [15], RevFinder [87],

and cHRev [95] do not provide a replication package or source code for their recommenders. As a

result, we re-implemented cHRev for comparison because it outperform other state-of-the-art rec-

ommenders. We also implemented simple authorship and ownership recommenders. Comparing

each recommender with existing baseline recommenders reduces the threat of internal validity. We

make all of our code, data, and GitHub Sofia bot available for future researchers as well as for

use on software projects [56].

41

Chapter 6

Discussion, Literature, and Conclusion

We position our findings in the research literature. We discuss how we advance our under-

standing of code review practice, mitigation of turnover risk through FaR, and evaluate reviewer

recommender systems on diverse outcome measures.

6.1 Understanding Code Review Practice

Fagan [28] introduced software inspections in 1976 with a detailed experiment that conclusively

showed that inspection found defects earlier in the design process and that unreviewed design arti-

facts lead to defects that slipped through to latter stages increased overall effort. In the subsequent

40 years, code review has been extensively studied. Early works focused on examining the pro-

cess [27, 28]. However, Porter et al. [67] demonstrated that process was much less of a factor than

ensuring expertise during review. Current code review practice favors a lightweight process that

focuses on expert discussion of changes to the system [14,22,23,75,77] that still improves software

quality [50, 76]. We show that RetentionRec has the highest ∆Expertise among all expert recom-

menders with an average of 16.59%. RevOwnRec and AuthorshipRec that focus on ownership have

an average of 15.17% and 11.29%, respectively. We also found that focusing on learners will reduce

Expertise by up to -26.55%.

Recent works that interview reviewers, find that experts tend to be overloaded with their re-

view workloads [35,80] and that it is often difficult to find an available expert reviewer [35,77,89].

42

Moreover, it has shown that high overall workload could lead to poor review participation [88]

and requesting feedback from experts can lead to delays from lack of availability and also fewer

opportunities for knowledge dissemination [35]. We show that the relationship between Exper-

tise and CoreWorkload is not straightforward. For instance, cHRev and AuthorshipRec improve

the Expertise while at the same time reduce the CoreWorkload by -3.49% and -3.68% on average,

respectively. On the other hand, TurnoverRec drastically reduces Expertise by -26.55% while in-

creases the CoreWorkload by 1.07% and Sofia improves the Expertise with a negligible change

of 0.09% in CoreWorkload.

6.2 Turnover-Induced Knowledge Loss and Mitigation

Turnover deprives the project of the leaver’s experience and knowledge [38, 90] and has been

shown to increase the number of defects [59]. Previous research has quantified the knowledge loss

from turnover and shown that projects with very high turnover are susceptible to as much as five

times the expected loss [61, 78]. However, these works considered authorship as the only way of

gaining knowledge about files.

In contrast with prior work, we include the knowledge gained from conducting reviews into the

turnover risk calculations because interviews with developers show that code review is an opportu-

nity for learning and it plays a vital role in distributing knowledge [14, 22, 35, 75, 80]. Two separate

studies quantified the knowledge gained during code review and showed that at both Google [80] and

Microsoft [75] code review doubles the number of files that developers know. Furthermore, Thong-

tanunam et al. [87] showed that reviewers of modules are often not authors of the module [87]. In

Section 5.1, our empirical results show that review naturally reduces turnover risk. We show that

when only authors are considered knowledgeable an average of 37% of the total files are at risk.

When both authors and reviewers are considered knowledgeable the average FaR is 15%. This

reduction in far shows that substantial knowledge is attained during code review.

In this work, we design recommenders that explicitly distribute knowledge by suggesting re-

viewers who would learn about the files under review. We show that by distributing knowledge

among developers who have a higher retention potential, there is a FaR reduction of -29.54% and

43

-28.27% for TurnoverRec and Sofia, which outperforms cHRev which increases FaR by 4.15%.

The advantage of using code review in mitigating knowledge loss is that it adds little additional effort

because code review is already a common practice on software teams. In contrast, prior works on

turnover mitigation suggest increasing documentation with blogs, formalizing the process of docu-

menting bugs in issue trackers, and participating in StackOverflow and internal QA forums [63,70].

Each strategy requires additional developer effort especially for developers who are expert enough

to answer questions and write documentation.

6.3 Recommenders

Identifying the right reviewers for a given change is a challenging and critical step in the code

review process [14,15,28,35,89,95]. Inappropriate selection of reviewers can slow down the review

process [89] or lower the quality of inspection [14, 23]. The research on reviewer recommenders

focus on the problem of automatically assigning review requests to the expert developers who are

most likely to provide better feedback [15, 37, 40, 89, 92, 94, 95].

Advanced recommenders have been proposed which are built upon machine learning [40], text

mining [92], and social relation graphs [94]. However, these papers do not provide public imple-

mentation of their recommenders. Re-implementing and testing these recommenders against our

outcome measures is beyond the scope we set for this paper. We hope future work will examine

these recommenders, and we release all our code and data to facilitate replication and advancement

of review recommenders [55, 56].

The existing recommenders have been evaluated using accuracy metrics such as Top-K and MRR

that measure how accurately the recommendations match the actual developers that were involved

in a review. This evaluation is based upon the assumption that actual reviewers were among the best

candidates to review a change [42]. However, it is reported that the focus on accuracy rarely provides

additional value for developers because the recommendations are obvious [42]. Furthermore, in

teams with strong code ownership, finding relevant experts is not problematic [80]. For replication

completeness we calculated MRR. Our results confirm Kovalenco et al.’s findings that a broader

perspective is needed when evaluating recommenders. We showed that recommenders with similar

44

MRR values may have entirely different impact on Expertise, CoreWorkload, and FaR. For instance,

RevOwnRec and RetentionRec have a difference of 0.06 in MRR while the difference between their

∆FaR is 81.10%. LearnRec and TurnoverRec have a difference of 0.07 in MRR while the difference

between their ∆CoreWorkload and ∆FaR is 40.58% and 92.58%.

6.4 Concluding Remarks

In this study, we provide a novel evaluation framework for reviewer recommenders based their

impact on Expertise, CoreWorkload, and Files at Risk to turnover (FaR). We show that selecting

reviewers solely based on ownership, expertise, or learning proxy measures does not balance all

three outcomes and leads to a knowledge concentration, low knowledge retention, or low expertise.

The outcome of this work is Sofia that combines the state-of-the-art expert recommender,

cHRev, with the learning and retention recommender, TurnoverRec. This bi-functional recom-

mender adapts itself to the context of the review. It distributes knowledge when there are files

under review that are at risk to turnover, but otherwise suggests experts. Through simulation we

show that Sofia is the only recommender that balances the three outcomes simultaneously. This

strategy allows us to increase the level of Expertise during review by 6.27%, while having a minor

impact on workload, ∆CoreWorkload 0.09%, and reducing the number of files at risk with a ∆FaR

of -28.27%.

We release Sofia bot as an open source software that fully integrates with GitHub pull re-

quests and provides reviewer recommendations. The recommendations complement a developer’s

intuition and experience by providing simple rationale for each review candidate, such as showing

how active a candidate has been, how many files he or she would learn about if they performed

the review, and how many of the files under review they have modified or reviewed in the past. To

the best of our knowledge, existing reviewer recommenders including Microsoft’s CodeFlow [75]

and Google’s Gerrit [80] do not explicitly recommend reviewers based on distributing knowledge

to reduce turnover. Future work is necessary to fully evaluate Sofia in practice.

In answering our research questions we make 8 contributions.

First, prior works assume that the developer who actually performed the review are the best

45

candidates and report Top-K and MRR style outcomes. We question the validity of this approach

as prior works have shown that surveyed developers feel recommendations are obvious and not

useful [42]. In contrast, we introduce the outcome measures of Expertise, CoreWorkload, and FaR,

which allow us to determine the change in expertise, workload, and the number of files that are

at risk. These outcomes account for factors beyond the normal “find the best” expert evaluation.

Section 3 provides the formal definition for each measure.

Second, we remove the assumptions of turnover research that only authors of code are knowl-

edgeable [61, 78]. In Section 5.1, we empirically showed that When only authors are considered

knowledgeable an average of 37.74% of files are at risk to turnover. When reviewers are also consid-

ered knowledgeable the FaR average is 15.20%. There is substantial knowledge distribution during

code review.

Third, we examine the impact of recommending reviewers with high authorship and review

ownership of the files under review. In Section 5.2, we show that recommending reviewers based

on the files they have reviewed in the past ensures expertise during review (average increase of

15.17%), but increases the workload of the top reviewers by on average 20.29% and differ from the

set of actual reviewers with an average MRR of .45. Concentrating expertise on the top developers

substantially increases the risk of knowledge loss when turnover occurs on average by 65.19%.

Fourth, we re-implement and re-evaluate the state-of-the-art review recommender, cHRev [95].

In Section 5.3, we find that cHRev remains accurate in suggesting actual reviewers with an MRR of

0.52. It increases the degree of Expertise during review by 11.11%, while reducing the CoreWork-

load on the top reviewers by -3.49%. However, the risk of turnover increases with an average ∆FaR

of 4.15%.

Fifth, we make recommendations that focus on spreading knowledge. In Section 5.4 we find

that recommendations of LearnRec substantially differ from actual reviewers, MRR 0.12. LearnRec

substantially reduces Expertise, -35.13%, but suggests learners reducing the CoreWorkload by -

39.51%. Counter-intuitively it makes the project drastically more susceptible to knowledge loss

from turnover because it assigns reviews to learners who are less committed to the project, ∆FaR

of 63.04%.

Sixth, we make recommendations based on the retention potential of each candidate reviewer. In

46

Section 5.4, we show that RetentionRec is the most successful in ensuring experts, 16.59%, during

review, while reducing the risk of knowledge loss from turnover, -15.91%. However, by focusing

on the most committed developers it also has the greatest increase in CoreWorkload, 29.42%. The

MRR of .39 indicates that the actual reviewers are more diverse than the recommendations.

Seventh, we introduce the Sofia review recommender in Section 5.5, The Sofia recom-

mender distributes knowledge when there are files under review that are at risk of abandonment

and suggests experts when all files already have multiple knowledgeable developers. This strategy

allows us to increase the level of Expertise during review, 6.27%, while having a minor impact on

CoreWorkload, 0.09%, and substantially reducing the number of files at risk by -28.27%. Sofia

also does a reasonable job of predicting the actual reviewers with an MRR of .43.

Eighth, we implement Sofia into GitHub pull request. Sofia makes ranks candidates and

complements developer experience and intuition by displaying simple measures, including how

many files the candidate is familiar with, how many new files he or she will learn about, and how

active the developer has been in the last year.

We have shown that existing reviewer recommenders tend to concentrate knowledge on experts.

This concentration of knowledge exacerbates turnover risk. We evaluate review recommenders with

three criteria Expertise, CoreWorkload, and FaR. These outcomes provide a nuanced view and the

potential to expand what is considered a valuable review recommendation. We hope that future

work will replicate our study and that software teams will use our code review recommendations to

reduce their exposure to knowledge loss from turnover.

47

Appendix A

Tools

In this study, we implemented two tools named RelationalGit and Sofia, respectively. At the

time of writing this theses, RelationalGit has been downloaded more than 7,700 times.

It is worth to note that apart from RelationalGit and Sofia, we have developed two other open

source libraries named Octokit.Extensions [53] and Octokit.Bot [54] which have been downloaded

more than 3000 times. Octokit.Extensions [51] makes gathering huge amount of information from

GitHub possible by extending the popular Octokit.net library to mitigate the GitHub throttling policy

and transient HTTP related errors. Octokit.Bot [8] is an application framework helps with creating

GitHub Apps using C# and ASP.NET Core. This library takes care of lots of boiler plate code and

lets you focus on nothing except your domain.

A.1 RelationalGit

RelationalGit [55, 56] gathers code changes and review histories of software projects. It mines

git data structure to extract commits, blames, changes, and developers of a codebase. Using GitHub

APIs, it collects pull requests and all related data such as files, reviewers, and comments.

Beside being a data extraction tool, RelationalGit consists of a historical simulation functional-

ity. Through simulations, one can understand how using different reviewer recommendation strate-

gies affects project’s knowledge distribution, workload of developers, and expertise of reviews.

48

A.1.1 Installation

RelationalGit is a cross platform dotnet tool application written using C# and .NET Core. Users

can install RelationalGit through command-line interface such as bash, cmd, or PowerShell.

.NET Core

.NET Core is a prerequisite for installing RelationalGit. You can install .NET Core Runtime

from https://dotnet.microsoft.com/. After installation run the dotnet version through command-line

to make sure the framework is installed.

PowerShell Core

PowerShell Core is a cross platform command-line interface. Behind the scenes, RelationalGit

uses PowerShell Core to call git APIs for extracting blames. You can install PowerShell Core from

here [11].

Database

RelationalGit stores data in a relational database to make further analysis easier. As of now,

the only supported database is Microsoft SQL Server. Microsoft SQL Server is a cross platform

database which is free for academic purposes and can handle large amounts of data.

The recommended way for installing Microsoft SQL Server is to install its docker image [12]

on your system which makes installation as easy as executing a single line of code.

dotnet tool

To install RelationalGit, you just need to run the following command.

dotnet tool install –global RelationalGit.

Previous versions are available at https://www.nuget.org/packages/RelationalGit.

49

A.1.2 Configuration File

RelationalGit uses a JSON configuration file to read the connection string and required param-

eters of commands. By default, RelationalGit reads a file named relationalgit.json located in user’s

document folder.

(1) ConnectionStrings. Has a child element called RelationalGit which holds the connection

string value required for connecting to the database.

(2) Mining. Consists of several child elements that are required for execution of commands. We

explain each parameter at following sections where we explain each command individually.

If you will to use a different location for the configuration file, you have to explicitly pass its

location using the –conf-path parameter.

dotnet-rgit –cmd NAME OF COMMAND –conf-path ”C:/Users/Administrator/Desktop/relationalgit.json”

A.1.3 Git Commands

Once you have installed RelationalGit, there are variety of commands at your disposal to extract

data from a repository you have cloned.

get-git-commits

Extracts the commits from the repository referenced by the RepositoryPath parameter in the

configuration file or the repo-path argument. It populates the Commits and CommitRelationships

tables.

dotnet-rgit –cmd get-git-commits –repo-path ”PATH TO REPO”

get-git-commits-changes

Description. Extracts the commits from the repository.

Database. It populates the CommitChanges table of the database.

Arguments. The repository path and the name of the branch is required. This command gets

changes of commits accessible from the branch.

50

Table A.1: Arguments of get-git-commits-changes
Repository Path Branch

Configuration File RepositoryPath GitBranch
Command Arg repo-path git-branch

Sample.

dotnet-rgit –cmd get-git-commits-changes –repo-path ”PATH TO REPO” –git-branch master

alias-git-names

Description. Normalizes the name of authors based on their name, email address, and GitHub

login.

Database. It populates the AliasedDeveloperNames table of the database.

Sample.

dotnet-rgit –cmd alias-git-names

periodize-git-commit

Description. Breaks the project’s history into periods.

Database. It populates the Periods table of the database.

Arguments. The period type and period length are required. As of now, the only supported

period type is month.

Table A.2: Arguments of periodize-git-commit
Period Type Period Length

Configuration File PeriodType PeriodLength
Command Arg period-type period-length

Sample. Break the project history into quarters.

dotnet-rgit –cmd periodize-git-commit –period-type month –period-length 3

get-git-commit-blames-for-periods

Description. Extracts files and blames of the last commit of each period.

Database. It populates the CommittedBlob and CommitBlobBlames tables.

51

Arguments. The required arguments are repository path, branch, extensions of files, period Ids,

excluded paths, and whether to do blaming operation.

Table A.3: Arguments of get-git-commit-blames-for-periods
Repository Path Branch Extensions Periods Exclusions Blaming

Configuration File RepositoryPath GitBranch Extensions BlamePeriods ExcludedBlamePaths ExtractBlames
Command Arg repo-path git-branch extensions blame-periods exclude-blame-path extract-blames

Sample. Extract blames of .cs and .java files for all periods.

dotnet-rgit –cmd get-git-commit-blames-for-periods –repo-path PATH To REPO –git-branch

master –extensions .cs .java –extract-blames true

Sample. Extract blames of .cs and .java files for period 1 and 2.

dotnet-rgit –cmd get-git-commit-blames-for-periods –repo-path PATH To REPO –git-branch

master –extensions .cs .java –extract-blames true –blame-periods 1 2

Sample. Extract blames of .cs and .java files all periods. Exclude files located at lib and third-

party folders.

dotnet-rgit –cmd get-git-commit-blames-for-periods –repo-path PATH To REPO –git-branch

master –extensions .cs .java –extract-blames true –exclude-blame-path ”*/lib/*” ”*/thirdparty/*”

apply-git-aliased

Description. Assigns authors’ unique name to commits, blobs and blames. You need to execute

alias-git-names before running this command.

Database. It updates Commits, CommittedBlob, and CommitBlobBlames tables.

Sample.

dotnet-rgit –cmd apply-git-aliased

ignore-mega-commits

Description. turn on the ignore flag of mega commits and their associated blames. Also, com-

mits and blames authored by mega developers are marked as ignored.

Database. It updates Commits, CommittedBlob, and CommitBlobBlames tables.

Arguments. The size of mega commits and the list of mega developers are required.

52

Table A.4: Arguments of ignore-mega-commits
Mega Commit Size Mega Developer

Configuration File MegaCommitSize MegaDevelopers
Command Arg mega-commit-size mega-devs

Sample. Ignore commits which contain more than 100 changes or are authored by dotnet-bot

and botbot developers.

dotnet-rgit –cmd ignore-mega-commits –mega-devs dotnet-bot botbot –mega-commit-size 100

A.1.4 GitHub Commands

GitHub Commands gather review related data from GitHub. These commands all require the

same set of arguments which are GitHub owner, Repository Name, Access Token, and Branch

Name.

By default, GitHub restricts API calls to 60 requests per hour. This limit will be 5000 requests

per hour if you obtain a personal access token [1].

Table A.5: Arguments of GitHub Commands
Owner Repository Token Branch

Configuration File GitHubOwner GitHubRepo GitHubToken GitBranch
Command Arg github-owner github-repo github-token git-branch

get-github-pullrequests

Description. retrieves the list of all pull requests.

Database. It populates the PullRequests table.

Sample.

dotnet-rgit –cmd get-github-pullrequests

get-github-pullrequest-reviewers

Description. Gets the list of reviewers assigned to pull requests.

Database. It populates the PullRequestReviewers table.

Sample.

dotnet-rgit –cmd get-github-pullrequest-reviewers

53

get-github-pullrequest-reviewer-comments

Description. retrieves the list of inline comments made on pull requests.

Database. It populates the PullRequestReviewerComments table.

Sample.

dotnet-rgit –cmd get-github-pullrequest-reviewer-comments

get-pullrequest-issue-comments

Description. retrieve the list of comments made on the discussion thread of pull requests.

Database. It populates the IssueComments table.

Sample.

dotnet-rgit –cmd get-pullrequest-issue-comments

get-github-pullrequests-files

Description. retrieves the files of pull requests.

Database. It populates the PullRequestFiles table.

Sample.

dotnet-rgit –cmd get-github-pullrequests-files

map-git-github-names

Description. links GitHub logins to the corresponding normalized unique author names.

Database. It populates the GitHubGitUsers table.

Sample.

dotnet-rgit –cmd map-git-github-names

A.1.5 Historical Simulations Command

Through historical simulations, we can evaluate the effectiveness of different approaches to

reviewer recommendation. In these simulation, we change the actual reviewers of pull requests

54

with recommendations generated by a given recommender. After simulation, we can query the

database to see how expertise, workload, and knowledge distribution change.

We have implemented 9 different recommenders in RelationalGit which are:

(1) nothing. Returns no recommendations. Using this recommender we can understand how

having no reviewers affect projects.

(2) reviewers-actual. Does not change the actual reviewers. Using this recommender we can

understand the actual expertise, workload, and knowledge distribution of projects.

(3) bird. Is an implementation of the state-of-the-art reviewer recommender called cHRev [95]

(4) commit. Recommends reviewers based on their commit ownership.

(5) review. Recommends reviewers based on their review ownership.

(6) persist. Recommends reviewers based on the likelihood of their retention.

(7) spreading. Recommends reviewers who no less that others about files under change.

(8) persist-spreading. Recommends reviewers based on the combination of spreading and re-

tention factors.

(9) sofia. Recommends reviewers based on the combination of cHRev and persist-spreading

algorithms.

The arguments required for the simulation commands are:

(1) First Period. Indicates the first period that the simulation change historical reviews. For

example, if first periods is 5, then reviews conducted before period 5 will not be changed.

(2) Size of Mega Pull Requests. Is a threshold value which tell the simulator to ignore mega

size pull requests.

(3) Reviewer Replacement Strategy. Specifies how to replace actual reviewers with recom-

mended ones.

55

(4) Recommender Algorithm. Specifies the recommender algorithm for generating reviewer

recommendations.

The following sample command does the historical simulation started from the first periods, uses

the Sofia recommender, ignores pull requests with more than 100 files. As for the replacement

strategy 1) it does not add a reviewer to pull requests with no reviewers 2) for other pull requests

randomly replaces one of the actual reviewers with the top candidate.

dotnet-rgit –cmd compute-loss –simulation-first-period 1 –mega-pr-size 100 –save-strategy sofia

–pullRequests-reviewer-selection ”0:nothing-nothing,-:replacerandom-1”

A.2 Sofia: GitHub Application

We implemented a Sofia reviewer recommender as a free GitHub Application [57] that can

be installed on GitHub repositories [4]. Users can ask Sofia to suggest experts, learners, or both.

A.2.1 Gathering Historical Data

Once the application is installed on the repository, you need to ask Sofia to gather all historical

commits and reviews. This information is required for building a knowledge model which represent

who knows about which file. To initiate a scanning process, user has to open an issue with its body

filled with Sofia scan branch master command.

This operation takes around 3 hours for large repositories. After gathering historical informa-

tion, Sofia keeps its knowledge model up to date by listening to commit and reviews event sent

through GitHub webhooks.

A.2.2 Ask for Recommendations

Users can ask Sofia to return a list of reviewer candidates according to expertise or learning

opportunities.

To ask for expert reviewers, you need to issue ”Sofia suggest experts” command by making

a new comment on the pull request discussion thread.

56

To spread knowledge and promote learning opportunities, you need to issue ”Sofia suggest

learners” command by making a new comment on the pull request discussion thread.

By issuing ”Sofia suggest” command, Sofia returns both of experts and learners. It also

inform user if any of the files have less than 3 knowledgeable developers.

57

Bibliography

[1] Creating a personal access token for the command line. https:

//help.github.com/en/enterprise/2.17/user/articles/

creating-a-personal-access-token-for-the-command-line. [Online;

accessed 11-August-2019].

[2] Fowler: Code ownership. https://martinfowler.com/bliki/CodeOwnership.

html. [Online; accessed 11-August-2019].

[3] Git blame. https://git-scm.com/docs/git-blame. [Online; accessed 11-August-

2019].

[4] Github app: Sofiarec. https://github.com/apps/sofiarec. [Online; accessed 11-

August-2019].

[5] Github coreclr. https://github.com/dotnet/coreclr. [Online; accessed 11-

August-2019].

[6] Github corefx. https://github.com/dotnet/corefx. [Online; accessed 11-

August-2019].

[7] Github kuberenetes. https://github.com/kubernetes/kubernetes. [Online;

accessed 11-August-2019].

[8] Github: Octokit.bot. https://github.com/mirsaeedi/octokit.net.bot. [On-

line; accessed 11-August-2019].

58

https://help.github.com/en/enterprise/2.17/user/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/enterprise/2.17/user/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/enterprise/2.17/user/articles/creating-a-personal-access-token-for-the-command-line
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/bliki/CodeOwnership.html
https://git-scm.com/docs/git-blame
https://github.com/apps/sofiarec
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/kubernetes/kubernetes
https://github.com/mirsaeedi/octokit.net.bot

[9] Github roslyn. https://github.com/dotnet/roslyn. [Online; accessed 11-August-

2019].

[10] Github rust. https://github.com/rust-lang/rust. [Online; accessed 11-August-

2019].

[11] Installing various versions of powershell. https://docs.microsoft.com/

en-us/powershell/scripting/install/installing-powershell?view=

powershell-6. [Online; accessed 11-August-2019].

[12] Quickstart: Run sql server container images with docker. https://docs.microsoft.

com/en-us/sql/linux/quickstart-install-connect-docker?view=

sql-server-2017&pivots=cs1-bash. [Online; accessed 11-August-2019].

[13] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proceedings of the 28th

international conference on Software engineering, pages 361–370. ACM, 2006.

[14] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code review. In

Proceedings of the 2013 international conference on software engineering, pages 712–721.

IEEE Press, 2013.

[15] V. Balachandran. Reducing human effort and improving quality in peer code reviews using

automatic static analysis and reviewer recommendation. In Proceedings of the 2013 Interna-

tional Conference on Software Engineering, pages 931–940. IEEE Press, 2013.

[16] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li. Who will leave the company?: a large-scale

industry study of developer turnover by mining monthly work report. In 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR), pages 170–181. IEEE,

2017.

[17] K. Beck and C. Andres. Extreme programming explained: Embrace change. 2-nd edition.

Addison-IIll-iesley Professional, Zttlld, 2005.

59

https://github.com/dotnet/roslyn
https://github.com/rust-lang/rust
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-6
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-2017&pivots=cs1-bash
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-2017&pivots=cs1-bash
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-2017&pivots=cs1-bash

[18] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-

works. In Proceedings of the 2006 international workshop on Mining software repositories,

pages 137–143. ACM, 2006.

[19] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. An analysis of the effect of

code ownership on software quality across windows, eclipse, and firefox. Technical report,

University of California, 2010.

[20] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t touch my code!: examining

the effects of ownership on software quality. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering, pages

4–14. ACM, 2011.

[21] B. W. Boehm and T. DeMarco. Software risk management. IEEE software, (3):17–19, 1997.

[22] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley. Process aspects and social dy-

namics of contemporary code review: Insights from open source development and industrial

practice at microsoft. IEEE Transactions on Software Engineering, 43(1):56–75, 2016.

[23] A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code reviews: An empirical study

at microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,

pages 146–156. IEEE, 2015.

[24] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. Who is going to mentor newcomers

in open source projects? In Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering, page 44. ACM, 2012.

[25] E. Constantinou and T. Mens. An empirical comparison of developer retention in the rubygems

and npm software ecosystems. Innovations in Systems and Software Engineering, 13(2-

3):101–115, 2017.

[26] G. G. Dess and J. D. Shaw. Voluntary turnover, social capital, and organizational performance.

Academy of management review, 26(3):446–456, 2001.

60

[27] M. Fagan. Design and code inspections to reduce errors in program development. In Software

pioneers, pages 575–607. Springer, 2002.

[28] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program Development. IBM

Systems Journal, 15(3):182–211, 1976.

[29] M. E. Fagan. Advances in software inspections. In Pioneers and Their Contributions to

Software Engineering, pages 335–360. Springer, 2001.

[30] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri. Impact of developer

turnover on quality in open-source software. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, pages 829–841. ACM, 2015.

[31] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s activity indicate knowledge of code?

In Proceedings of the the 6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering, pages 341–

350. ACM, 2007.

[32] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive software evolution. In

Eighth International Workshop on Principles of Software Evolution (IWPSE’05), pages 113–

122. IEEE, 2005.

[33] G. Gousios. The ghtorent dataset and tool suite. In Proceedings of the 10th working conference

on mining software repositories, pages 233–236. IEEE Press, 2013.

[34] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based software

development model. In Proceedings of the 36th International Conference on Software Engi-

neering, pages 345–355. ACM, 2014.

[35] M. Greiler, C. Bird, M.-A. Storey, L. MacLeod, and J. Czerwonka. Code reviewing in the

trenches: Understanding challenges, best practices and tool needs. 2016.

61

[36] T. Hall, S. Beecham, J. Verner, and D. Wilson. The impact of staff turnover on software

projects: the importance of understanding what makes software practitioners tick. In Proceed-

ings of the 2008 ACM SIGMIS CPR conference on Computer personnel doctoral consortium

and research, pages 30–39. ACM, 2008.

[37] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn. Automatically recommending code

reviewers based on their expertise: An empirical comparison. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering, pages 99–110.

ACM, 2016.

[38] M. A. Huselid. The impact of human resource management practices on turnover, productivity,

and corporate financial performance. Academy of management journal, 38(3):635–672, 1995.

[39] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M. Gonzalez-Barahona. Using software

archaeology to measure knowledge loss in software projects due to developer turnover. In

2009 42nd Hawaii International Conference on System Sciences, pages 1–10. IEEE, 2009.

[40] G. Jeong, S. Kim, T. Zimmermann, and K. Yi. Improving code review by predicting reviewers

and acceptance of patches. Research on software analysis for error-free computing center

Tech-Memo (ROSAEC MEMO 2009-006), pages 1–18, 2009.

[41] H. Kagdi, M. Hammad, and J. I. Maletic. Who can help me with this source code change? In

2008 IEEE International Conference on Software Maintenance, pages 157–166. IEEE, 2008.

[42] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli. Does reviewer recommen-

dation help developers? IEEE Transactions on Software Engineering, 2018.

[43] D. Krackhardt and L. W. Porter. When friends leave: A structural analysis of the relationship

between turnover and stayers’ attitudes. Administrative science quarterly, pages 242–261,

1985.

[44] E. G. Lambert, N. L. Hogan, and S. M. Barton. The impact of job satisfaction on turnover

intent: a test of a structural measurement model using a national sample of workers. The

Social Science Journal, 38(2):233–250, 2001.

62

[45] B. Lin, G. Robles, and A. Serebrenik. Developer turnover in global, industrial open source

projects: Insights from applying survival analysis. In 2017 IEEE 12th International Confer-

ence on Global Software Engineering (ICGSE), pages 66–75. IEEE, 2017.

[46] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshyvanyk. Triaging

incoming change requests: Bug or commit history, or code authorship? In 2012 28th IEEE

International Conference on Software Maintenance (ICSM), pages 451–460. IEEE, 2012.

[47] J. Lipcak and B. Rossi. A large-scale study on source code reviewer recommendation. In 2018

44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),

pages 378–387. IEEE, 2018.

[48] A. Martensen, L. Grønholdt, et al. Internal marketing: a study of employee loyalty, its deter-

minants and consequences. Innovative Marketing, 2(4):92–116, 2006.

[49] D. W. McDonald and M. S. Ackerman. Expertise recommender: a flexible recommendation

system and architecture. In Proceedings of the 2000 ACM conference on Computer supported

cooperative work, pages 231–240. ACM, 2000.

[50] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An Empirical Study of the Impact

of Modern Code Review Practices on Software Quality. Empirical Software Engineering,

21(5):2146–2189, 2016.

[51] E. Mirsaeedi. Github: Octokit.extionsions. https://github.com/mirsaeedi/

octokit.net.extensions. [Online; accessed 11-August-2019].

[52] E. Mirsaeedi. Google bigquery for selecting projects. https:

//bigquery.cloud.google.com/savedquery/283702471694:

7738d44c7a02401e8137708e304c7da2. [Online; accessed 11-August-2019].

[53] E. Mirsaeedi. Nuget: Octokit.bot. https://www.nuget.org/packages/Octokit.

Extensions/. [Online; accessed 11-August-2019].

[54] E. Mirsaeedi. nuget: Octokit.extensions. https://www.nuget.org/packages/

Octokit.Bot. [Online; accessed 11-August-2019].

63

https://github.com/mirsaeedi/octokit.net.extensions
https://github.com/mirsaeedi/octokit.net.extensions
https://bigquery.cloud.google.com/savedquery/283702471694:7738d44c7a02401e8137708e304c7da2
https://bigquery.cloud.google.com/savedquery/283702471694:7738d44c7a02401e8137708e304c7da2
https://bigquery.cloud.google.com/savedquery/283702471694:7738d44c7a02401e8137708e304c7da2
https://www.nuget.org/packages/Octokit.Extensions/
https://www.nuget.org/packages/Octokit.Extensions/
https://www.nuget.org/packages/Octokit.Bot
https://www.nuget.org/packages/Octokit.Bot

[55] E. Mirsaeedi. Relationalgit - download. https://www.nuget.org/packages/

RelationalGit. [Online; accessed 11-August-2019].

[56] E. Mirsaeedi. Relationalgit - replication package. https://github.com/cesel/

relationalgit. [Online; accessed 11-August-2019].

[57] E. Mirsaeedi. Sofia. https://github.com/cesel/Sofia. [Online; accessed 11-

August-2019].

[58] A. Mockus. Succession: Measuring transfer of code and developer productivity. In Pro-

ceedings of the 31st International Conference on Software Engineering, pages 67–77. IEEE

Computer Society, 2009.

[59] A. Mockus. Organizational volatility and its effects on software defects. In Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of software engineering,

pages 117–126. ACM, 2010.

[60] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach to identifying

expertise. In Proceedings of the 24th International Conference on Software Engineering. ICSE

2002, pages 503–512. IEEE, 2002.

[61] M. Nassif and M. P. Robillard. Revisiting turnover-induced knowledge loss in software

projects. In 2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 261–272. IEEE, 2017.

[62] M. E. Nordberg. Managing code ownership. IEEE software, 20(2):26–33, 2003.

[63] L. G. Pee, A. Kankanhalli, G. W. Tan, and G. Tham. Mitigating the impact of member turnover

in information systems development projects. IEEE Transactions on Engineering Manage-

ment, 61(4):702–716, 2014.

[64] N. Pekala. Holding on to top talent. Journal of Property management, 66(5):22–22, 2001.

[65] D. E. Perry, A. Porter, M. W. Wade, L. G. Votta, and J. Perpich. Reducing inspection interval

in large-scale software development. IEEE Transactions on Software Engineering, 28(7):695–

705, 2002.

64

https://www.nuget.org/packages/RelationalGit
https://www.nuget.org/packages/RelationalGit
https://github.com/cesel/relationalgit
https://github.com/cesel/relationalgit
https://github.com/cesel/Sofia

[66] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict failures?

In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of soft-

ware engineering, pages 2–12. ACM, 2008.

[67] A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources of variation in soft-

ware inspections. ACM Transactions on Software Engineering and Methodology (TOSEM),

7(1):41–79, 1998.

[68] F. Rahman and P. Devanbu. Ownership, experience and defects: a fine-grained study of au-

thorship. In Proceedings of the 33rd International Conference on Software Engineering, pages

491–500. ACM, 2011.

[69] M. M. Rahman, C. K. Roy, and J. A. Collins. Correct: code reviewer recommendation in

github based on cross-project and technology experience. In 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering Companion (ICSE-C), pages 222–231. IEEE,

2016.

[70] M. Rashid, P. M. Clarke, and R. V. OConnor. Exploring knowledge loss in open source soft-

ware (oss) projects. In International conference on software process improvement and capa-

bility determination, pages 481–495. Springer, 2017.

[71] E. Raymond. The cathedral and the bazaar: Musings on linuxand open source by an accidental

revolutionary, 2002.

[72] F. Ricca, A. Marchetto, and M. Torchiano. On the difficulty of computing the truck factor. In

International Conference on Product Focused Software Process Improvement, pages 337–351.

Springer, 2011.

[73] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German. Contemporary peer review

in action: Lessons from open source development. IEEE software, 29(6):56–61, 2012.

[74] P. Rigby, D. German, and M.-A. Storey. Open source software peer review practices. In 2008

ACM/IEEE 30th International Conference on Software Engineering.

65

[75] P. C. Rigby and C. Bird. Convergent contemporary software peer review practices. In Proceed-

ings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 202–212.

ACM, 2013.

[76] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer review on open-source software

projects: Parameters, statistical models, and theory. ACM Transactions on Software Engineer-

ing and Methodology (TOSEM), 23(4):35, 2014.

[77] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review on open source

software projects. In 2011 33rd International Conference on Software Engineering (ICSE),

pages 541–550. IEEE, 2011.

[78] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus. Quantifying and mitigating turnover-

induced knowledge loss: Case studies of chrome and a project at avaya. In 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE), pages 1006–1016, May 2016.

[79] M. P. Robillard, M. Nassif, and S. McIntosh. Threats of aggregating software repository data.

In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),

pages 508–518. IEEE, 2018.

[80] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli. Modern code review:

a case study at google. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice, pages 181–190. ACM, 2018.

[81] A. Schilling, S. Laumer, and T. Weitzel. Who will remain? an evaluation of actual person-

job and person-team fit to predict developer retention in floss projects. In 2012 45th Hawaii

International Conference on System Sciences, pages 3446–3455. IEEE, 2012.

[82] D. Schuler and T. Zimmermann. Mining usage expertise from version archives. In Proceedings

of the 2008 international working conference on Mining software repositories, pages 121–124.

ACM, 2008.

66

[83] P. N. Sharma, J. Hulland, and S. Daniel. Examining turnover in open source software projects

using logistic hierarchical linear modeling approach. In IFIP International Conference on

Open Source Systems, pages 331–337. Springer, 2012.

[84] J. D. Shaw, N. Gupta, and J. E. Delery. Alternative conceptualizations of the relationship

between voluntary turnover and organizational performance. Academy of management journal,

48(1):50–68, 2005.

[85] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so complicated? simple term

filtering and weighting for location-based bug report assignment recommendation. In 2013

10th Working Conference on Mining Software Repositories (MSR), pages 2–11. IEEE, 2013.

[86] M. Stovel and N. Bontis. Voluntary turnover: knowledge management–friend or foe? Journal

of intellectual Capital, 3(3):303–322, 2002.

[87] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code ownership and its

relationship with software quality in the scope of modern code review. In Proceedings of the

38th international conference on software engineering, pages 1039–1050. ACM, 2016.

[88] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Review Participation in Modern

Code Review: An Empirical Study of the Android, Qt, and OpenStack Projects. Empirical

Software Engineering, 22(2):768–817, 2017.

[89] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i. Matsumoto.

Who should review my code? a file location-based code-reviewer recommendation approach

for modern code review. In 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), pages 141–150. IEEE, 2015.

[90] Z. Ton and R. S. Huckman. Managing the impact of employee turnover on performance: The

role of process conformance. Organization Science, 19(1):56–68, 2008.

[91] W. Wu, W. Zhang, Y. Yang, and Q. Wang. Drex: Developer recommendation with k-nearest-

neighbor search and expertise ranking. In 2011 18th Asia-Pacific Software Engineering Con-

ference, pages 389–396. IEEE, 2011.

67

[92] X. Xia, D. Lo, X. Wang, and X. Yang. Who should review this change?: Putting text and file

location analyses together for more accurate recommendations. In 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 261–270. IEEE, 2015.

[93] X. Xia, D. Lo, X. Wang, and B. Zhou. Accurate developer recommendation for bug resolution.

In 2013 20th Working Conference on Reverse Engineering (WCRE), pages 72–81. IEEE, 2013.

[94] Y. Yu, H. Wang, G. Yin, and T. Wang. Reviewer recommendation for pull-requests in github:

What can we learn from code review and bug assignment? Information and Software Tech-

nology, 74:204–218, 2016.

[95] M. B. Zanjani, H. Kagdi, and C. Bird. Automatically recommending peer reviewers in modern

code review. IEEE Trans. Softw. Eng., 42(6):530–543, June 2016.

[96] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schneider. Are developers

complying with the process: an xp study. In Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, page 14. ACM, 2010.

68

	List of Figures
	List of Tables
	Introduction
	Survey of the Literature
	Turnover
	Turnover Patterns
	Turnover Impact

	Code Ownership
	Measuring Code Ownership

	Expert recommenders
	Code Review
	Empirical studies on Code Review

	Reviewer Recommenders

	Background and Definitions
	The Ownership Recommenders
	The cHRev Recommender
	The Turnover Mitigating Recommenders
	Distributing Knowledge
	Developer Retention
	Distribution and Retention Combined

	Simulation and Evaluation

	Project Selection and Data
	Gathering Data

	Results
	RQ1: Review and Turnover
	RQ2 Ownership
	RQ3 cHRev Recommender
	RQ4: Learning and Retention
	RQ5 Sofia
	The Sofia Bot on GitHub
	Threats to Validity

	Discussion, Literature, and Conclusion
	Understanding Code Review Practice
	Turnover-Induced Knowledge Loss and Mitigation
	Recommenders
	Concluding Remarks

	Appendix Tools
	RelationalGit
	Installation
	Configuration File
	Git Commands
	GitHub Commands
	Historical Simulations Command

	Sofia: GitHub Application
	Gathering Historical Data
	Ask for Recommendations

	Bibliography

