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Abstract

Multi-dimensional data stream compression for embedded systems

BO LI

The rise of embedded systems and wireless technologies led to the emergence of

the Internet of Things (IoT). Connected objects in IoT communicate with each other

by transferring data streams over the network. For instance, in Wireless Sensor Net-

works (WSNs), sensor-equipped devices use sensors to capture properties, such as

temperature or accelerometer, and send 1D or nD data streams to a host system.

Power consumption is a critical problem for connected objects that have to work for

a long time without being recharged, as it greatly affects their lifetime and usability.

Data summarization is key for energy-constrained connected devices, as transmitting

fewer data can reduce energy usage during transmission. Data compression, in par-

ticular, can compress the data stream while preserving information to a great extent.

Many compression methods have been proposed in previous research. However, most

of them are either not applicable to connected objects, due to resource limitation, or

only handle one-dimensional streams while data acquired in connected objects are of-

ten multi-dimensional. Lightweight Temporal Compression (LTC) is among the lossy

stream compression methods that provide the highest compression rate for the lowest

CPU and memory consumption. In this thesis, we investigate the extension of LTC

to multi-dimensional streams. First, we provide a formulation of the algorithm in an

arbitrary vectorial space of dimension n. Then, we implement the algorithm for the

infinity and Euclidean norms, in spaces of dimension 2D+t and 3D+t. We evaluate

our implementation on 3D acceleration streams of human activities, on Neblina, a

module integrating multiple sensors developed by our partner Motsai. Results show

that the 3D implementation of LTC can save up to 20% in energy consumption for

slow-paced activities, with a memory usage of about 100 B. Finally, we compare

our method with polynomial regression compression methods in different dimensions.

Our results show that our extension of LTC gives a higher compression ratio than the

polynomial regression method, while using less memory and CPU.
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Chapter 1

Introduction

1.1 Context

With the recent technological advances of the Internet of Things (IoT) applications,

the number of connected devices will reach 75 billion by 20251. So far, the IoT

has been involved in many fields such as medical care, military, sports and industrial

manufacturing [7, 23, 12]. Systems embedded in connected objects provide processing

power and the ability to execute specific tasks or applications. In industrial domains,

connected objects are often used for capturing properties such as temperature, and

receiving signals or data from other devices. In domestic domains, many household

products are expected to provide functions that could make human activities more

convenient and improve the quality of life. For example, people can remotely control

household equipment with smart electronics and embedded systems. To deploy IoT-

based products and services, many IoT technologies have been utilized [25]:

• Radio Frequency Identification (RFID): identifies objects automatically and

captures data using radio transmission, a tag and a reader.

• Wireless Sensor Networks (WSNs): measure, monitor and record the physical

or environmental conditions.

• Middleware: makes communication and input/output between software appli-

cations easier for software developers.

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
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• Cloud computing: provides a infrastructure to handle and process the massive

amounts of data generated by IoT.

The most typical networks of connected objects are Wireless Sensor Networks. It

consists of autonomous sensor-equipped devices to monitor and sense the physical

or environmental variables of our world [25, 28]. WSNs can be deployed with RFID

systems to obtain more accurate measures, for instance, temperature, movements, and

location [25, 5]. Sensor devices are connected by low energy wireless networks such

as Bluetooth Low Energy (BLE)2 and IEEE 802.15.4 3, and they send the streaming

data to sink sensor nodes or heavier clients.

Streaming data is produced by connected objects in the IoT and transferred over

the network. Different from an offline data-set, a data stream is a data model in

which large volumes of data arrive continuously and cannot be saved completely [35].

Data points in a data stream can only be received in order, and it is impossible to

randomly access the data [35].

With the rise of data science, data becomes increasingly important as it can

provide knowledge and information after filtering and learning. Data streams are

an important way to collect data and thus enable data science. The large volume and

rapid velocity of data streams require that systems handle or save streaming data in

a timely manner. We may lose the opportunity to process the data at all, if we do

not do it in real time. This requirement creates algorithmic challenges, related to the

restriction of memory and computing power in connected objects [35]. Some previous

research has reviewed problems in streaming data analysis, such as finding frequent

elements, estimating quantiles, or detecting patterns in data stream [21].

In general, there are two different types of sensor streams: (1) one-dimensional

stream, for instance, temperature, humidity, and pressure, and (2) multi-dimensional

streams, for instance 3D streams such as accelerometer, gyroscope, and magnetome-

ter. One-dimensional streams are quite common in our daily life, and much research

has been targeting them [22, 36, 52]. In contrast, multi-dimensional streams have not

been widely studied in the literature, although they are equally popular.

In the field of IoT networks, power consumption is among the biggest challenges

targeting connected objects, particularly in industrial domains, where several sensing

2https://web.archive.org/web/20170310111443/https://www.bluetooth.com/

what-is-bluetooth-technology/how-it-works/low-energy
3http://www.ieee802.org/15/pub/TG4.html
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systems are commonly launched in the field to run for days or even weeks without

being recharged. Typically, such devices use sensors to capture properties such as

temperature or motion, and stream them to a host system over a radio transmis-

sion protocol such as Bluetooth Low Energy (BLE). With the increasing computing

requirements of embedded systems, connected objects that have a small battery ca-

pacity cannot operate for a long time while transmitting data. To extend the lifetime

of objects without decreasing computing power, system designers aim to reduce the

rate of data transmission as much as possible, as radio transmission is a power-hungry

operation.

1.2 Goal of the thesis

Reducing the rate of data transmission is a good way to decrease the power consump-

tion in connected objects. In this thesis, we intend to find a data summarization

method able to shorten the length of the transmitted stream while retaining the im-

portant information in it. Furthermore, the method has to deal with the limitations of

memory and processing power in connected objects and the multi-dimensional streams

from sensors. In other words, this method must be non-resource-intensive, and it has

to work for both one-dimensional and multi-dimensional streams. Summarization

can be considered as a transformation of the original data to smaller summaries or

patterns which contain as much information as possible. With data stream summa-

rization, we might reduce the rate of transmitted data. For instance, only one data

point will be transmitted rather than all data points, if all the elements in the stream

are identical.

Data compression is a data summarization technique representing the data stream

into a compacted version. Many data compression algorithms have been proposed for

text compression [45, 42] and image compression [46, 53], but most previous algo-

rithms are unable to fit into connected objects because of their limited computation

power and memory. In addition, the compression process also costs energy. Thus, we

also need to compare the energy cost of compression and the saved energy from reduc-

ing the rate of data transmitted. As more computation requires more energy [39], a

compression algorithm with low computational complexity is needed. Meanwhile, the

common way to handle multi-dimensional (n-dimensional) data streams is to compress

5



each dimension independently, which boils down to compressing n one-dimensional

data streams at the same time. But the parameters in multi-dimensional data points

are dependent on each other, we have to consider them as a whole and process them

together. Overall, we aim at finding a compression algorithm that adapts to multi-

dimensional data streams and requires low computational and time complexity to

reduce the size of transmitted data.

Lightweight Temporal Compression (LTC) [43] is one of stream compression method

which has been designed specifically for energy-constrained systems, initially sensor

networks. It approximates data points by a piece-wise linear function that guarantees

an upper bound on the reconstruction error, and a reduced memory footprint in O(1).

However, LTC has only been described for 1D streams, therefore, in this paper, we

extend LTC to dimension n.

In our experiments, we test compression methods in Motsai’s Neblina module,

a system with a Nordic Semiconductor nRF52832 micro-controller, 64 KB of RAM,

and Bluetooth Low Energy connectivity. Neblina has a 3D accelerometer, a 3D gy-

roscope, a 3D magnetometer, and environmental sensors for humidity, temperature,

and pressure. The platform is equipped with sensor fusion algorithms for 3D orienta-

tion tracking and a machine learning engine for complex motion analysis and motion

pattern recognition [41].

1.3 Outline and contributions

The contributions of this thesis are the following:

1. Formalize the description of original LTC algorithm.

2. Propose an algebraic formulation of n-dimensional LTC algorithm, and also

introduce an norm-independent expression according to the formulation.

3. Implement LTC n-dimension for Infinity and Euclidean norms.

4. Validate the behavior of LTC n-dimension.

5. Measure the impact of LTC n-dimension on energy consumption.

6. Compare LTC n-dimension with Polynomial regression compression method.

6



Our implementation of LTC n-dimension is available as free software in https://

github.com/big-data-lab-team/stream-summarization under MIT license, and

it has already been implemented into Motsai’s Neblina module4 during my internship

at Motsai from September 2018 to December 2018. Moreover, the extension of LTC is

included in a data stream algorithm library named “OrpailleCC” available at https:

//github.com/big-data-lab-team/OrpailleCC and currently under review in the

Journal of Open-Source Software.

In the rest of this thesis, Chapter 2 provides some background on stream summa-

rization, lossless compression, and lossy compression methods. Chapter 3 formalizes

the description of the LTC algorithm initially proposed in [43] and presents our norm-

independent extension to dimension n and its implementation. Chapter 4 reports on

experiments to validate our implementation, evaluates the impact of n-dimensional

LTC on energy consumption of connected objects, and compares n-dimensional LTC

with polynomial regression compression method.

The contents of Chapter 3 and Section 4.1 in Chapter 4 are included in our

paper “A multi-dimensional extension of the Lightweight Temporal Compression

method” [27], published in the 3rd Workshop on Real-time and Stream Analytics

in Big Data & Stream Data Management, co-located with the IEEE Big Data con-

ference 2018.

4https://motsai.com/products/neblina
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Chapter 2

Related Work

2.1 Introduction

Streaming data has become increasingly important since the rise of the Internet of

Things. Devices in the IoT communicate using streaming data, transmitted at high

speed and short intervals, which may never be reviewed if the system does not pro-

cess or store it immediately. To decrease the amount of data transmitted, stream

summarization is useful and effective. Summarization can be considered as a process

to discover a compressed description of the original data-set with the lowest possible

information loss [8].

Some stream summarization techniques are used for data reduction. For instance,

Sampling techniques, including uniform random sampling [51, 3], Reservoir sam-

pling [50, 1] and weighted sampling [10, 14], capture a sub-sample of the data stream

to represents the entire stream. Filtering techniques reduce the number of items in

the stream: Bloom filter [6] and Cuckoo filter [15] are well-known methods and have

been applied in many fields. In addition, to answer queries over a data stream, com-

puting approximate result is more suitable for any queries than the exact solution [21].

Previous research has provided some synopsis constructions for summarization. His-

togram techniques [21, 2] that give a distribution of items in the stream. Sketch

techniques are able to solve some specific problem, for instance, Flajolet and Martin

Sketch (FM-Sketch) [16, 17] can solve the problem of finding the number of distinct

elements, Alon-Matias-Szegedy Sketch (AMS Sketch) [4] is able to estimate the sec-

ond frequency moment, and Count-Min Sketch [11, 17] can calculate the quantiles
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and find frequent items. Moreover, many summarization methods apply Sliding win-

dow [13] technique which maintains a window that moves with new data coming. It

ensures that the methods always use fresh data for analysis and statistics by keeping

the most recent items of the stream or all items within a specific time period in given

bound memory [26]. However, many summarization techniques only focus on specific

problems and might eliminate most or partial data information. In some case, the

integrity of data information and accuracy of query answers are required, thus we

need a summarization technique which can both reduce the size of the stream and

keep integral data information. Data compression is such a technique that meets the

above conditions.

Data compression is a technique to reduce the number of bits required to represent

a data set. It is also considered as a summarization technique that can give a compact

version of the entire original data [19]. Data compression is categorized into lossless

and lossy compression:

• Lossless compression methods remove statistical redundancy and the original

data can be retrieved through decompression without any information loss [19].

• Lossy compression methods omit some information in the original data, but

ensure that the reconstructed data has certain accuracy. For lossy compression,

there is a trade-off between reconstruction accuracy and additional gains in

terms of compression ratio [57].

In our case, the compression technique is the best choice of data summarization to

reduce the rate of radio transmission, because losing any data points after reducing

data stream is undesired, and compression guarantees the integrity of data stream.

In other words, we can obtain the original data stream through the decompression

process, thus no data points will be lost.

Most of the lossless compression methods belong to entropy or dictionary coding.

Their main idea is to represent the new data points based on the “statistical model”

or “dictionary”, generated according to the data points we have seen. In general, the

“statistical model” and “dictionary” help us to map the data points into bit sequences,

thus compressing the data set. Huffman coding [20] and arithmetic coding [24] are

the primary and classical entropy coding methods. Lossless Entropy Compression

(LEC) algorithm [31] is a approximated version of exponential-Golomb code [49]. In
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[31], LEC is utilized for compressing temperature and humidity streams by using a

very small dictionary whose size is determined by the number of bits after Analog-to-

Digital Converter (ADC) [31, 32]. The Sequential Lossless Entropy Compression (S-

LEC) [28] algorithm is an extension and improvement of LEC algorithm. It exploits

the positional relationship of groups of adjacent residues, in order to increase the

compression ratio.

In dictionary-based lossless compression algorithms, Lempel-Ziv-77 (LZ77) [54]

and Lempel-Ziv-78 (LZ78) [55] are well-known algorithms, where LZ77 maintains

a sliding window as a dictionary during compression. There are several variations

of LZ77 and LZ78, for instance, Lempel-Ziv-Welch (LZW) [40], Lempel-Ziv-Storer-

Szymanski (LZSS) [48], Lempel-Ziv-Oberhumer (LZO) [33] etc. In order to suit these

algorithms to connected objects and data streams, many improvements were pro-

posed, such as Accelerometer-Lempel-Ziv-Storer-Szymanski (Accelerometer-LZSS, A-

LZSS) [39] which combines LZSS and Huffman coding to compress accelerometer data,

and Sensor-Lempel-Ziv-Welch (Sensor-LZW, S-LZW) [40], an algorithm which adapts

LZW to sensor nodes.

Lossy compression methods are particularly suitable for sensor data streams, be-

cause measured sensor data intrinsically involves noise and measurement errors, which

can be treated as a configurable tolerance for a lossy compression algorithm [27].

Thus, in this thesis, we only focus on lossy compression methods.

Resource-intensive lossy compression algorithms such as the ones based on poly-

nomial interpolation, discrete cosine and Fourier transforms, or auto-regression meth-

ods [30] are not well-suited for connected objects, due to the limited memory available

on these systems (typically a few KB), and the energy consumption associated with

CPU usage [27]. Instead, compression algorithms need to find a trade-off between

reducing network communications and increasing memory and CPU usage. As dis-

cussed in [57], linear compression methods provide a very good compromise between

these two factors, leading to substantial energy reduction [27]. In this chapter, we

will review several lossy compression methods in Section 2.2.

10



2.2 Lossy Compression

In this thesis, we only focus on the lossy compression method, because the mea-

sured sensor data intrinsically involves noise and measurement errors, which can be

treated as a configurable tolerance for a lossy compression algorithm. Meanwhile,

we sometimes prefer to sacrifice certain accuracy of reconstructed data for a better

compression ratio. In our case, Neblina has limited memory, and in order to save

more energy, we prefer a compression method with low computational complexity so

that the energy cost of the compression process is not high. In this section, we list

several lossy compression methods for streaming data.

2.2.1 Lightweight Temporal Compression Algorithm

The Lightweight Temporal Compression (LTC) [43] algorithm approximates the data

stream by a piece-wise linear function of time, with an error bounded by parameter ε.

The LTC algorithm maintains two lines, the high line, and the low line defined by

(1) the latest transmitted point and (2) the high point (high line) and the low point

(low line). When a point (ti, xi) is received, the high line is updated as follows: if

xi+ε is below the high line then the high line is updated to the line defined by the last

transmitted point and (ti, xi + ε); otherwise, the high line is not updated. Likewise,

the low line is updated from xi − ε. Therefore, any line located between the high

line and the low line approximates the data points received since the last transmitted

point with an error bounded by ε [43]. We assume that the points on the high line

are (ti, hpi), and the points on low line are (ti, lpi), where hpi and lpi are the value of

high line and low line at corresponding time ti. The point (ti−1,
hp(i−1)+lp(i−1)

2
) shall be

transmitted if the received point meets the condition: xi + ε < lpi or xi − ε > hpi. A

example is presented in Figure 1. From Figure 1b, high line and low line are created

and updated when we receive point at time t2 and t3, but the condition x4 + ε < lp4

is met when point (t4, x4) come and we transmit point (t3,
hp3+lp3

2
).

2.2.2 Piece-wise Linear Approximation with Minimum num-

ber of Line Segments Algorithm

Similar to LTC, Piece-wise Linear Approximation with Minimum number of Line

Segments (PLAMLis) [29] represents the original stream through a sequence of line

11



Value

Time
1 2 3 4

ε

high line

low line

(a) Create high line and low line

Value

Time
1 2 3 4

(b) Update high line and low line

Value

Time
1 2 3 4

(c) Transmit data point

Figure 1: Lightweight temporal compression example
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segments. The main idea of this algorithm is to find the minimum number of line

segments to approximate the time series so that the amount of data transferred is

reduced. Therefore, compressing stream is considered to be the problem “to rep-

resent stream data over a time window using a minimum number of segments”.

PLAMLis gives a greedy algorithm solution. Assume the input stream data points

X = {x1, ..., xW} are received over a time window of size W . Firstly, for each data

points xi, i ∈ {1, ...,W}, a longest segment Si from point xi to point xj (j > i) is built

within the error bound. Thereby for the data points in the window, a sequence of

longest segments S = S1, ..., SW is obtained. Secondly, to pick the minimum number

of subsets of S for representing original stream X, a greedy algorithm is used to select

the segment Sk (k ∈ �1,W �) which covers the largest number of data points xi in X

at each time, then remove it from S and add it into a result sequence until all data

points in X are covered [29]. The result sequence is the result of compression [56, 57].

2.2.3 Enhanced Piece-wise Linear Approximation with Min-

imum number of Line Segments Algorithm

Enhanced Piece-wise Linear Approximation with Minimum number of Line Segments

(Enhanced PLAMLis) [37] solves the problem “to represent stream data over a time

window through using minimum number of segments” with a top-down recursive

segmentation algorithm which has a smaller computational cost than PLAMLis [37,

57]. Assume W data points xi in the time window, the segment S(1,W ) with end points

x1 and xW is created, then we have to check whether the maximum error is within

error tolerance ε. If the maximum error is bigger than ε, the segment is split into two

shorter segments S(1,k) and S(k,W ) in data point xk, 1 < k < W . This procedure is

applied recursively on each segment until the maximum error of all segments is within

the error tolerance [37, 57].

2.2.4 Polynomial Regression

Different from piece-wise linear approximations, Polynomial Regression [57] gives a

higher order p � 1 approximation of the data points by using standard regression

methods based on least squares fitting [38]. The approximation is a sequence of
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curves (order = p) rather than linear segments. The algorithm starts with collect-

ing p + 1 samples {x1, ..., xp+1} to obtain the coefficients of first p-order polynomial

function. Upon receiving one sample xp+1+i at each time, where xp+1+i indicates the

(p + 1 + i)th sample (i > 0) in this approximation cycle, the best-fitting polynomial

coefficients are re-computed with {x1, ..., xp+1+i} and the algorithm checks whether

the new polynomial approximates the data points within the desired error tolerance.

If not, the coefficients of the previous regression are transmitted and a new approxi-

mation starts at the current sample [57].

During the compression process, all the points between transmissions need to

be kept in memory, and the least squares fitting required larger computational cost

than piece-wise linear approximations. However, polynomial regression gives better

performance in terms of Root-Mean-Square Error (RMSE) between reconstructed

data and original data. It means that the result from the regression method is closer

to original data than result from the piece-wise linear approximation method [57].

2.2.5 Adaptive Auto-Regression Moving-Average technique

Adaptive Auto-Regression Moving-Average (A-ARMA) [30] is an improved version

of Auto-Regression Moving-Average (ARMA). ARMA model is formed by combining

AR and MA model, and it is usually used as a tool to predict future values over time

series data [9]. The ARMA model ARMA(p, q) contains p AR terms and q MA terms.

It is defined as:

Xt =

p∑
i=1

aiXt−i + Zt +

q∑
i=1

βiZt−i (2.1)

The equation is reproduced from [9]. a1, ..., ap and β1, ..., βq are parameters of AR

model and MA model respectively, Zt−q, ..., Zt are white noise (is usually understood

as residuals of the previous forecasts, Zt = Xt −Xt−1) [9].

Similar to the ARMA model, A-ARMA is also composed of two terms, AR term

and MA term, respectively predicting data value using p(q) prior values or errors. To

deal with the limit of computational complexity, A-ARMA adopts low-order ARMA

with sliding window model [30]. The main idea of A-ARMA is maintaining and

updating a ARMA model in memory based on sliding window.

Let’s assume W is a sliding window with W window size, therr is the minimum

error tolerance on Root-Mean-Square Error (RMSE) and S means the length of each
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movement of sliding window. The adapted algorithm of A-ARMA is given in Al-

gorithm 1. model(p,q) is the parameters of ARMA(p, q) model, obtained through

function build ARMA(). Function go forward() makes the sliding window W to

move S length (read S data samples), and function tail(S) returns S samples at

the end of the window. RMSE is calculated by function compute error().

The first W data points are used to initialize the ARMA model, and to compare

the RMSE between the original and predicted subsequent S data by moving sliding

window S length each time. If the RMSE is larger than therr, the saved ARMA model

is remodeled with the current samples in sliding window [30]. In the decompression

process, the stream data are predicted based on the parameters transmitted.

Algorithm 1 A-ARMA algorithm, adapted from [30]

1: Input

2: stream Data stream received

3: W Sliding window

4: therr Threshold of error tolerance on root-mean-square error

5: S Length of sliding window move

6: p Order of AR term

7: q Order of MA term

8: Output

9: model(p,q) Parameters of ARMA(p, q) model

10: Read stream till W is full � Get first W data from stream

11: model(p,q) = build ARMA(W .samples, p, q) � Build ARMA model

12: while stream is not empty do

13: W .go forward(S) � Moving sliding window forward S length

14: samples = W .tail(S)

15: RMSE = compute error(samples, model(p,q).predict())

16: if RMSE > therr then

17: model(p,q) = build ARMA(W .samples, p, q)

18: return model(p,q)

19: else

20: return null � No transmitted data, model does not change

21: end if

22: end while
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2.2.6 Modified Adaptive Auto-Regression

Modified Adaptive Auto-Regression (MA-AR) is a modified version of A-ARMA,

proposed by Zordan et al. [56]. In the A-ARMA algorithm, the ARMA model is

built or updated over fixed window of W samples. It might cause bad performance to

predict next S samples with the trained ARMA model over a fixed window, especially

in highly noisy environments [56]. Assuming the prediction cycle means a process to

find a AR model which represents as much original data as possible within error

tolerance. The MA-AR algorithm uses a p-order AR model for each prediction cycle

instead of sliding window, and controls the absolute error on each data rather than

RMSE of S continuous data. Assume M (n,i) indicates the AR model built according

to data {xn, ..., xn+p−1+i}, where i > 0, and x̂n+p−1+i indicates the predicted data,

then for each prediction cycle, MA-AR works as follows:

1. Collect first p samples in sensor node and send them to client side.

2. Collect one sample xn+p−1+i at a time, i > 0, to build p-order AR model M (n,i).

3. Predict xn+p−1+j where j ∈ {1, ..., i} using M (n,i).

4. Check whether error |x̂n+p−1+j − xn+p−1+j| is larger than error tolerance ε.

• If |x̂n+p−1+j − xn+p−1+j| � ε, the model is kept. Repeat from step 2.

• Else the last model M (n,i−1) is encoded and transmitted, and new predict

cycle is started from xn+p−1+i.

The main idea of this algorithm is continuous estimations of the AR parameters. AR

model is redefined only according to the last coming sample, so the computational

cost is minimized and the parameters of the model can be computed through least

squares minimization [56].

2.2.7 Comparison of compression algorithms

In [57], authors compare the performance of mentioned compression methods. They

analyzed the performance in terms of compression ratio and energy consumption

in the compression process for MA-AR (p=2, 4), Polynomial Regression (p=2, 4),
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PLAMLis, Enhanced PLAMLis and LTC. Regarding compression ratio, all the meth-

ods perform badly for small data sets, but as the data set size increases, the com-

pression ratios of these methods increase until reaching their asymptote at 98%, 96%,

94%, and 90% respectively. In their experiment, polynomial regression gives the best

compression ratio around 98%; and PLAMLis which reaches 96% compression ratio

is the second-best; next, LTC and Enhanced PLAMLis have the same performance,

providing 94% compression ratio, when the length of data is large; finally, MA-AR

method has the worst compression ratio at 90%. In terms of energy consumption for

compression, Polynomial Regression requires the most processing energy, MA-AR and

PLAMLis also need significant processing energy. LTC uses less energy for compres-

sion, because LTC only compares the high point and low point with the data point

received, and the computational complexity of each comparison process is constant.

2.3 Conclusion

In this chapter, general lossless and lossy compression methods were presented. The

LTC compression method fully meets our requirements because of its low computa-

tional O(n) and space complexity O(1). However, a problem is that LTC compression

method has only been described for 1D streams, while streams acquired by connected

objects, such as acceleration or gyroscopic data, are often multi-dimensional [27]. In

the next chapter, we extend LTC to dimension n and give implementation and a

norm-independent expression of it. In Chapter 4, we test LTC n-dimension method

on 3D acceleration streams.
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Chapter 3

Extension of LTC to Dimension n

and Implementation

In this chapter we introduce notations to describe LTC formally, we provide a norm-

independent formulation of LTC in dimension n, and we describe its implementation.

By n we refer to the dimension of the data points xi. To handle time, LTC actually

operates in dimension n+ 1.

3.1 Preliminary comments

We note that the formulation of LTC in [43] relies on the intersection of convex cones

in dimension n+1. For n = 1, it corresponds to the intersection of triangles, which can

efficiently be computed by maintaining boundary lines, as detailed in Section 2.2.1. In

higher dimension, however, cone intersections are not so straightforward to compute,

due to the fact that the intersection between cones may not be a cone.

To address this issue, we formulate LTC as an intersection test between n-balls,

that is, segments for n = 1, disks for n = 2, etc. N-balls are defined from the norm

used in the vector space of data points. For n = 1, the choice of the norm does not

really matter, as all p-norms and the infinity norm are identical. In dimension n,

however, norm selection will be critical.
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3.2 Algebraic formulation of LTC

3.2.1 Definitions

The algorithm receives a stream of data points xi at times ti (i ∈ N), and it transmits

a stream of data points ξi at times τi (i ∈ N). To simplify the notations, we assume

that:

∀k ∈ N, ∃!i ∈ N τk = ti (3.2)

That is, transmission times coincide with reception times. We define the shifted

received points as follows:

∀k ∈ N , ∀j ∈ N
∗, (uk

j , y
k
j ) = (ti+j, xi+j), (3.3)

where i is such that ti = τk and:

∀k ∈ N, (uk
0, y

k
0) = (τk, ξk). (3.4)

This definition is such that ykj is the jth data point received after the kth transmis-

sion and uk
j is the corresponding time-stamp. Figure 2 illustrates the notations and

algorithm.

Using these notations and details in Section 2.2.1, the original LTC algorithm can

be written as in Algorithm 2. For readability, we assume that access to data points

is blocking, i.e., the program will wait until the points are available. We also assume

that the content of variable tr is transmitted after each assignment of this variable.

Function line, omitted for brevity, returns the ordinate at abscissa x (1st argument)

of the line defined by the points in its 2nd and 3rd arguments.
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Figure 2: Illustration of the LTC algorithm. Blue dots are received points, red dots

are transmitted points. Dashed lines represent the high and low lines when a point

is transmitted.

According to equations (3.3) and (3.4), let (uk
0, y

k
0) ∈ R

n+1 be the latest transmit-

ted point. For convenience, all the subsequent points will be expressed in the orthog-

onal space with origin (τk, ξk) through equation (3.4). We denote by (vj, zj)j∈�0,m�

such points:

∀j ≤ m, (vj, zj) = (uk
j − τk, y

k
j − ξk) (3.5)

Let Bj be the ball of Rn of centre v1
vj
zj and radius v1

vj
ε:

Bj =

{
z ∈ R

n,

∥∥∥∥z − v1
vj
zj

∥∥∥∥ ≤ v1
vj
ε

}
(3.6)

Note that v1 is defined as soon as one point is received after the last transmission.

3.2.2 LTC property

We define the LTC property as follows:

∃z ∈ R
n, ∀j ∈ �1,m�,

∥∥∥∥vjv1 z − zj

∥∥∥∥ ≤ ε. (3.7)
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Algorithm 2 Original LTC algorithm, adapted from [43].

1: Input

2: (uk
j , y

k
j ) Received data stream

3: ε Error bound

4: Output

5: tr Transmitted points

6: tr = (u0
0, y

0
0) � Last transmitted point

7: k = 0 ; j = 1

8: (lp, hp) = (y01 − ε, y01 + ε) � Low and high points

9: while True do � Process received points as they come

10: j += 1

11: new lp = max(ykj − ε, line(uk
j , tr, (u

k
j−1, lp)))

12: new hp = min(ykj + ε, line(uk
j , tr, (u

k
j−1, hp)))

13: if new lp ≤ new hp then � Keep compressing

14: (lp, hp) = (new lp, new hp)

15: else

16: tr = (uk
j−1, (lp+ hp)/2) � Transmit point

17: k += 1

18: j = 1

19: (lp, hp) = (ykj − ε, ykj + ε)

20: end if

21: end while
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The original LTC algorithm ensures that the LTC property is verified between each

transmissions. Indeed, all the data points z such that (v1, z) is between the high line

and the low line verify the property. Line 13 in Algorithm 2 guarantees that such a

point exists.

The LTC property can be re-written as follows:

∃z ∈ R
n, ∀j ∈ �1,m�,

∥∥∥∥z − v1
vj
zj

∥∥∥∥ ≤ v1
vj
ε (3.8)

that is:
m⋂
j=1

Bj �= Ø (3.9)

Note that (Bj)j∈�1,m� is a sequence of n-balls of strictly decreasing radius, since vj >

v1. The LTC algorithm generalized to dimension n tests that the LTC property

in Equation 3.9 is verified after each reception of a data point. It is written in

Algorithm 3.

Algorithm 3 Generalized LTC.
1: Input

2: (uk
j , y

k
j ) Received data stream

3: ε Error bound

4: Output

5: tr Transmitted points

6: tr = (τ, ξ) = (u0
0, y

0
0) � Last transmitted point

7: k = 0 ; j = 0

8: while True do

9: j += 1

10: (vj, zj) = (uk
j − τ, ykj − ξ)

11: if
⋂j

l=1 Bl = Ø then

12: Pick z in
⋂j−1

l=1 Bl � Transmit point

13: tr = (τ , ξ) = (uk
j−1, z)

14: k += 1

15: j = 1

16: end if

17: end while
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3.3 Intersections of n-balls

Although Algorithm 3 looks simple, one should not overlook the fact that there is

no good general algorithm to test whether a set of n-balls intersect. The best gen-

eral algorithm we could find so far relies on Helly’s theorem which is formulated as

follows [18]:

Theorem. Let {Xi}i∈�1,m� be a collection of convex subsets of Rn. If the intersection

of every n + 1 subsets is non-empty, then the whole collection has an non-empty

intersection.

This theorem leads to an algorithm of complexity
(

m
n+1

)
which is not usable in

resource-constrained environments such as connected objects.

The only feasible algorithm that we found is norm-specific. It maintains a repre-

sentation of the intersection
⋂m

j=1 Bj that is updated at every iteration. The inter-

section tests can then be done in constant time. According to Equation (3.8) and

Equation (3.9), the n-dimensional LTC algorithm can be used in all norms, such as

Manhattan norm, Euclidean norm and Infinity norm. However, updating the rep-

resentation of the intersection may be costly depending on the norm used. For the

Infinity norm and Manhattan norm, the representation is a rectangular cuboid (hor-

izontal or tilted) which is straightforward to update by intersecting with an n-ball.

For the Euclidean norm, the representation is an arbitrary volume, which is more

costly to maintain.

3.4 Effect of the norm

As mentioned before, norm selection in R
n results in different representations of in-

tersection and has a critical impact on the compression error and ratio. To appreciate

this effect, let us compare the Infinity norm and the Euclidean norm in dimension

2. By comparing the unit disk to a square of side 2, we obtain that the compression

ratio of a random stream would be 4
π
times larger with the infinity norm than with

the Euclidean norm (see Figure 3). In 3D, this ratio would be 6
π
. Unsurprisingly, the

infinity norm is more tolerant than the Euclidean norm.

It should also be noted that using the infinity norm in R
n boils down to the use

of the 1D LTC algorithm independently in each dimension, since a data point will be

23



Figure 3: Comparison of compression ratio between Infinity norm and Euclidean

norm in 2D

transmitted as soon as the linear approximation doesn’t hold in any of the dimensions.

For the other norms such as Euclidean norm and Manhattan norm, however, the

multidimensional and multiple unidimensional versions are different: the multiple

unidimensional version behaves as the infinity norm, but the multidimensional version

is more stringent, leading to a reduced compression rate and error.

To choose between the multidimensional implementation and multiple unidimen-

sional ones, we recommend to check whether the desired error bound is expressed

independently for every sensor, or as an aggregate error between them. The mul-

tidimensional version is more appropriate for multidimensional sensors, for instance

3D accelerometers or 3D gyroscopes, and the multiple unidimensional version is more

suitable for multiple independent sensors, for instance a temperature and a pressure

sensor.

To compare the impact of norm selection on the compression error and ratio, in this

thesis, we implement LTC in n dimensions with the Infinity norm and Euclidean norm

corresponding to multiple unidimensional and multidimensional version respectively.

3.5 Implementation of LTC n-dimension

To implement LTC in n dimensions with the infinity norm, we maintain a cuboid

representation of ∩j
l=1Bl across the iterations of the while loop in Algorithm 3. The

implementation works with constant memory and requires limited CPU time.
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With the Euclidean norm, the intersection test is more complex. We keep in

memory a growing set S of n-balls and the bounding box B which represents an

approximate range of their intersection. We define B as follows:

B =

j−1⋂
l=1

box(Bl)

Where box() is a function that returns the bounding box of an n-ball. Then, when

a new point arrives, we consider the associated n-ball Bj and our intersection test

works as in Algorithm 4. Firstly, we check the intersection between box(Bj) and B

(Algorithm 4, line 11). To restrict memory usage, B only covers a set S of n-balls

were the size of S is limited to Ls. Secondly, for each Bi in S, we check the intersection

between Bi and Bj (line 14). In addition Bi will be removed if it includes Bj, because

if Bj has intersection with n-balls in S then a bigger n-ball which contains Bj must

also have intersection. Finally, we search a point in intersection of all n-balls in S,

using plane sweep [44, 47] and bisection initialized by the bounds of B. Function

find bisection(S, B) (see Algorithm 5) and recursive(S, L, R, N, Xn) (see

Algorithm 6) show how it works.

In function find bisection(S, B), we selected dimension of n-balls as n used at

the beginning of bisection, also computed minimum/maximum value of bounding box

B at the nth dimension, which corresponds to left and right in bisection method. The

return object Xn represents a n-dimensional point in the intersection of all n-balls

in S. It would be returned if we have True result from function recursive(S, L,

R, N, Xn). Xn is initialized and put into function recursive(S, L, R, N, Xn),

because it is necessary to update the values (see Algorithm 6 line 26) of Xn during

the recursive process. In line 27 of Algorithm 6, it happens in case of left > right,

which means:

mid
⋂

(min id ∩max id) = Ø

In Algorithm 4 line 14 and 15, it is guaranteed that any two n-balls in S has

intersection. Therefore, any point in the intersection of min id and max id, could

be used for determining the direction of bisection. In our implementation, we select

a point in connection of these two n-ball’s center, which also locates in intersecting

object (line/chord when order=2, plane/circle when order=3). Figure 4 shows the

point we selected in 2D.
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Figure 4: The point selected to determine the direction

According to our implementation for Euclidean norm, if the Ls is undefined

(Ls is infinity), the operations in Algorithm 4 and Algorithm 5 before the func-

tion recursive() need O(n) complexity. In the recursive() function, the bisec-

tion from line 12 to line 32 in Algorithm 6 needs O(log 2ε), because the left and

right are initialized from the bounding box B, where |left − right| � 2ε. More-

over, computing left and right which used for next dimension in recursive()

function needs O(n). Thereby, when the data stream is two-dimensional, the time

complexity of LTC n-dimension for Euclidean norm is O(n) + O(log 2ε) × O(n) =

O(n × log 2ε), where n is the number of the data points we seen so far. In the

same way, if we process 3-dimensional stream with our algorithm with Euclidean

norm, it needs extra O(n × log 2ε) time in recursion, the total time complexity is

O(n)+O(log 2ε)×(O(n)+O(log 2ε)×O(n)) = O(n×(log 2ε)2). Finally, our implemen-

tation for Euclidean norm gives O(n× (log 2ε)d−1) time complexity for d-dimensional

data stream.
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Algorithm 4 Intersection test for Euclidean n-balls.
1: Input

2: S Set of intersecting n-balls

3: B Bounding box of the intersection of n-balls in S

4: Bj New n-ball to check

5: Ls The maximum length of S

6: Output

7: S Updated set of intersecting n-balls

8: B Updated bounding box

9: T True if all the n-balls in S and Bj intersect

10: x Point inside intersection. It might be Null

11: if S.length � Ls ‖ box(Bj) ∩B = Ø then � N-ball is outside bounding box

12: return (S, B, False, Null)

13: end if

14: if ∃ Bi ∈ S s.t. Bj ∩ Bi = Ø then

15: return (S, B, False, Null) � Some n-balls don’t intersect

16: end if

17: if ∃ Bi ∈ S s.t. Bj ⊂ Bi then � Remove inclusions

18: Remove Bi from S.

19: end if

20: B = box(Bj)
⋂

B

21: S = S
⋃ {Bj}

22: x = find bisection(S, B) � This can take some time

23: if x == Null then

24: return (S, B, False, Null)

25: else

26: return (S, B, True, x)

27: end if
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Algorithm 5 Function find bisection(S, B)

1: Input

2: S Set of n-balls

3: B Bounding box of the intersection of n-balls in S

4: Output

5: Xn N-dimensional point in all n-balls in S, Xn = (x1, ..., xn)

6: n = dimension of n-balls

7: left = min value(B, n) � Minimum value of B along nth dimension

8: right = max value(B, n) � Maximum value of B along nth dimension

9: Xn = Null

10: if recursive(S, left, right, n, Xn) then

11: return Xn

12: else

13: return Null

14: end if

3.6 Conclusion

In this chapter, we provided a formulation for the original LTC algorithm and a

pseudo-code with our notation and definitions. To generalize LTC to dimension n,

the LTC property has been re-written in Section 3.2.2. According to Section 3.4, we

know that the n-dimensional LTC might get different results when different norms

are used. With the Euclidean norm, it is more difficult to check the intersection

and record this intersection in memory. We introduce the method of combination

of plane sweep and bisection for intersection test in Euclidean norm, but it spends

more processing time and costs more memory to record a sequence of n-balls than

the method for the Infinity norm. In next chapter, we will evaluate the performance

of n-dimensional LTC on accelerometer data for human activities.

28



Algorithm 6 Function recursive(S, L, R, N, Xn)

1: Input

2: S Set of n-balls

3: L Min value used in bisection

4: R Max value used in bisection

5: N The N th dimension, N ∈ {1...n}
6: Xn N-dimensional point which records point of intersection, Xn = (x1, ..., xn)

7: Output

8: T True if a point is found by using bisection

9: if N == 1 then

10: Xn.xN = L+R
2

; return True

11: end if

12: while L < R do

13: mid = L+R
2

; surface = {xN ...xn}
14: left = -∞; right = +∞
15: for all Bi ∈ S do

16: min = min value(Bi ∩ surface, N-1)

17: max = max value(Bi ∩ surface, N-1)

18: if left < min then

19: left = min; min id = Bi

20: end if

21: if right > max then

22: right = max; max id = Bi

23: end if

24: end for

25: if left � right then

26: Xn.xN = mid; return recursive(S, left, right, N − 1, Xn)

27: else if ∀ P (Point) ∈ (min id ∩max id) s.t. P.xN < mid then

28: R = mid

29: else

30: L = mid

31: end if

32: end while

33: return False
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Chapter 4

Experiments and Results

In the experiments, we first evaluate the LTC n-dimension with biceps curls data-

set, and test the effect on energy consumption when it is used in Neblina. Then we

compare LTC n-dimension and polynomial regression compression method in terms of

the compression ratio in different dimensions. In order to restrict the memory usage

of LTC n-dimension for the Euclidean norm, all the experiments in this chapter define

that the maximum number Ls of n-balls saved in memory is 200.

The code and data-set used in experiments are provided on https://github.

com/big-data-lab-team/stream-summarization.

4.1 Evaluation of LTC n-dimension

We conducted two experiments using Motsai’s Neblina module, a system with a

Nordic Semiconductor nRF52832 micro-controller, 64 KB of RAM, and Bluetooth

Low Energy connectivity. Neblina has a 3D accelerometer, a 3D gyroscope, a 3D

magnetometer, and environmental sensors for humidity, temperature and pressure.

The platform is equipped with sensor fusion algorithms for 3D orientation tracking

and a machine learning engine for complex motion analysis and motion pattern recog-

nition [41]. Neblina has a battery of 100mAh; at 200 Hz, its average consumption is

2.52 mA when using accelerometer and gyroscope sensors but without radio transmis-

sion, and 3.47 mA with radio transmission, leading to an autonomy of 39.7 h without

transmission and 28.8 h with transmission.
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Figure 5: Time-series used in validation

4.1.1 Experiment 1: validation

We validated the behavior of our LTC extension on a PC using data acquired with

Neblina. We collected two 3D accelerometer time-series, a short one and a longer

one, acquired on two different subjects performing biceps curl, with a 50 Hz sampling

rate (see Figure 5). In both cases, the subject was wearing Neblina on their wrist.

It should be noted that the longest time-series also has a higher amplitude, perhaps

due to differences between subjects.

We compressed the time-series with various values of ε, using our 2D (x and y)

and 3D (x, y and z) implementations of LTC. On Neblina, the raw uncalibrated

accelerometer data corresponds to errors around 20 mg (1 g is 9.8 m/s2). We used

a laptop computer with 16 GB of RAM, an Intel i5-3210M CPU @ 2.50GHz × 4,

and Linux Fedora 27. We measured memory consumption using Valgrind’s massif

tool [34], and processing time using gettimeofday() from the GNU C Library.

Results are reported in Table 1. As expected, the compression ratio increases with

ε, and the maximum measured error remains lower than ε in all cases. The maximum

is reached most of the time on these time-series.

Infinity vs Euclidean norms The average ratio between the compression ratios

obtained with the infinity and Euclidean norms is 1.03 for 2D data, and 1.06 for 3D
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Figure 6: Time-series used for measuring energy savings

data. These ratios are lower than the theoretical values of 4
π
in 2D and 6

π
in 3D,

which are obtained for random-uniform signals. Unsurprisingly, the infinity norm

surpasses the Euclidean norm in terms of resource consumption. Memory-wise, the

infinity norm requires a constant amount of 80 B, used to store the intersection of

n-balls. The Euclidean norm, however, uses up to 4.7 KB of memory for the Long

time-series in 3D with ε=48.8 mg. More importantly, the amount of required memory

increases for longer time-series, and it also increases with larger values of ε. Similar

observations are made for the processing time, with values ranging from 0.4 ms for

the simplest time-series and smallest ε, to 41.3 ms for the most complex time-series

and largest ε.

2D vs 3D For a given ε, the compression ratios are always higher in 2D than in

3D. It makes sense since the probability for the signal to deviate from a straight

line approximation is higher in 3D than it is in 2D. Besides, resource consumption is

higher in 3D than in 2D: for the infinity norm, 3D consumes 1.4 times more memory

than 2D (1.8 times on average for Euclidean norm), and the processing time is 1.35

longer (1.34 on average for Euclidean norm).
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Infinity Euclidean

ε (mg) 48.8 34.5 48.8 34.5

Max error (mg) 48.8 34.4 48.8 34.5

Compression ratio (%) 79.77 72.59 77.49 70.96

Peak memory (B) 80 80 688 688

Processing time (ms) 0.101 0.094 0.456 0.406

(a) Short biceps curl (2D)

Infinity Euclidean

ε (mg) 48.8 34.5 48.8 34.5

Max error (mg) 48.8 34.5 48.8 34.5

Compression ratio (%) 77.46 70.98 75.77 68.81

Peak memory (B) 80 80 2512 2608

Processing time (ms) 6.06 5.84 33.84 31.07

(b) Long biceps curl (2D)

Infinity Euclidean

ε (mg) 48.8 28.2 48.8 28.2

Max error (mg) 48.8 28.2 48.8 28.2

Compression ratio (%) 78.14 66.39 74.39 63.13

Peak memory (B) 112 112 1744 784

Processing time (ms) 0.147 0.134 0.731 0.514

(c) Short biceps curl (3D)

Infinity Euclidean

ε (mg) 48.8 28.2 48.8 28.2

Max error (mg) 48.8 28.2 48.8 28.2

Compression ratio (%) 71.23 58.11 67.35 53.24

Peak memory (B) 112 112 4752 3856

Processing time (ms) 7.87 7.22 41.29 39.04

(d) Long biceps curl (3D)

Table 1: Results of validation
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4.1.2 Experiment 2: impact on energy consumption

We acquired two 3D accelerometer time-series at 200 Hz for two activities: walking

and running (see Figure 6). In both cases, the subject was wearing Neblina on

their wrist as in Experiment 1. We collected 1,000 data points for each activity,

corresponding to 5 seconds of activity.

We measured energy consumption associated with the transmission of these time-

series by “replaying” the time-series after loading them as a byte array in Neblina.

We measured the current every 500 ms. We also measured the max and average

latency resulting from compression.

Results are reported in Table 2. For a given ε and norm, the compression ratio

is larger for walking than for running. The ratio of saved energy is relative to the

reference current of 3.47 mA measured when Neblina transmits data without com-

pression. In all cases, activating compression saves energy. The reduction in energy

consumption behaves as the compression ratio: it increases with ε, it is higher for the

infinity norm than for the Euclidean, and it is higher for the walking activity than for

running. For a realistic error of ε=9.8 mg, the ratio of saved energy with the infinity

norm is close to 20% for the walking activity, which is substantial. Latency is higher

for walking than for running, and it is also higher for the Euclidean norm than for the

infinity norm. In all cases, the latency remains lower than the 5-ms tolerable latency

at 200 Hz, which demonstrates the feasibility of 3D LTC compression.

4.2 Comparison with Polynomial Regression

From the previous experiments, we know that LTC has good performance on walking

and running accelerometer data sets. However as we have seen, the running data set

(Figure 6) looks like it is made of many high-degree polynomials. We wonder whether

high-degree regression compression method performs better with our accelerometer

data sets. In this section, we implement the Polynomial Regression compression

method mentioned in 2.2.4 and we compare it with LTC in different dimensions.
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Infinity Euclidean

ε (mg) 48.8 9.8 4.9 48.8 9.8 4.9

Max error (mg) 48.8 9.8 4.9 48.8 9.8 4.9

Compr. ratio (%) 88.9 66.4 45.5 87.6 63.3 37.2

Average (mA) 2.64 2.79 3.02 3.10 3.02 3.13

Saved energy (%) 23.9 19.7 13.0 10.7 13.0 9.7

Max latency (μs) 60 – – 1530 – –

Average latency (μs) 31 – – 145 – –

(a) Walking

Infinity Euclidean

ε (mg) 48.8 9.8 4.9 48.8 9.8 4.9

Max error (mg) 48.8 9.8 4.9 48.8 9.8 4.9

Compr. ratio (%) 68.6 25.5 9.5 64.4 19.8 5.7

Average (mA) 2.88 3.22 3.38 2.95 3.32 3.39

Saved energy (%) 17.0 7.2 2.5 14.9 4.3 2.2

Max latency (μs) 60 – – 840 – –

Average latency (μs) 30 – – 64 – –

(b) Running

Table 2: Results of energy savings
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4.2.1 Implementation of Polynomial Regression

We implemented polynomial regression method to compress 3D acceleration data (t,

a.x, a.y, a.z). In the implementation, we process polynomial regression compression

method on each accelerometer parameter. There are three polynomial functions be-

tween independent variables t (time-stamp) and dependent variables a.x, a.y or a.z

(e.g. t ∼ a.x). In other words, it means that three regression models shall be trans-

mitted to represent a curve in 3D space. For tolerance checking, we use the infinity

norm and Euclidean norm.

As we mentioned in Section 2.2.4, Mk
j means the jth polynomial regression model

after kth transmission, but to apply this method on the acceleration data which is

3-dimensional, we need three models for it, one for each parameter. Assuming Mxk
j ,

Mykj and Mzkj represent the regression model on each parameter x, y and z respec-

tively, Algorithm 7 shows how polynomial regression is applied on 3D acceleration

data. In line 13, the coefficients of three regression models of parameters x, y and

z are calculated, and each time a new point arrives they will be recalculated. The

function max residue() returns the maximum error between predicted data and orig-

inal data. If the maximum residue is larger than ε, then the last regression model

that meets error tolerance and the time-stamp of the last data are transmitted as the

compression result.

We use the implemented polynomial regression method on the previous walking

and running data sets. In the compression process, we need to keep in memory all

the data between two transmissions and update regression models each time a new

data point arrives.

4.2.2 Results

From Table 3a and Table 3b, we observe that LTC n-dimension gives better compres-

sion ratio than regression method on different dimensions, even though regression

method represents original data with fewer segments (curve segments). It is be-

cause polynomial regression method requires more bytes to transmit the coefficients

while LTC n-dimension just transmits a data point each time. In other words, we

need to represent each regression curves with (N + 1) ×M × 4 + 4 bytes, but each

straight line can be defined by two data points with 2 × (M × 2 + 4) bytes (2 bytes

for each parameter). Assume Polynomial regression and LTC n-dimension needs GP
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Algorithm 7 Polynomial Regression Algorithm for 3D Accelerometer data
1: Input

2: (χ, ti) Received data stream at time ti

3: ε Error bound

4: p The order of polynomial function

5: Output

6: tr Transmitted coefficients

7: S = Ø

8: k=0; j=0

9: while True do

10: S = S ∪ (χ, ti)

11: if S.length() � p+ 1 then

12: j += 1

13: (Mxk
j , Mykj , Mzkj ) = model(S, p) � Compute coefficients

14: if max residue(Mxk
j , Mykj , Mzkj , S) > ε then

15: tr = (Mxk
j−1, Mykj−1, Mzkj−1, ti−1)

16: k += 1; j = 0

17: S = χ

18: end if

19: end if

20: end while
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curves and GL lines respectively to represent original data set. Then we have to

transmit ((N + 1) × M × 4 + 4) × GP bytes by using polynomial regression, and

2 × (M × 2 + 4) × (GL − 1) bytes (GL − 1 data points) by using LTC n-dimension

because LTC n-dimension generates connected straight lines. In our case, the poly-

nomial regression method uses more bytes to represent original stream than LTC

n-dimension. In reality, the compression ratio of these two methods depends on the

data set, the polynomial regression method would give us higher compression ratio

than LTC n-dimension, if the regression model really fits our data set.

Besides, similarly to Experiment 2 in Section 4.1.2, the compression ratio is higher

for the infinity norm than for the Euclidean and is higher for the walking data set

than for running data set. For the given degree of polynomial regression method,

the higher degree results in a smaller compression ratio for walking and running in

general, but the variations are slight. However, in Table 3a, when the dimension is

2 and 3, the 5-degree regression compresses more data than the 3-degree regression

method in walking data set for Infinity norm. In Table 3b, the 5-degree regression

method has a higher compression ratio than 3-degree regression for both norms when

dimension equals 1 and for infinity norm when dimension equals 2.

Polynomial regression method needs O(n) memory to save all the data points be-

tween two transmissions and long processing time to calculate coefficients and build

model when each new data point comes. Because we implemented polynomial regres-

sion method and LTC n-dimension in different platforms, the comparison of memory

usage and processing time between them cannot be measured.

4.3 Conclusion

This chapter demonstrated the effect of n-dimensional LTC. In the first section, we

compressed biceps curl, walking and running steam data in different dimensions by

using n-dimensional LTC. With error bound ε=48.8 mg, 3-dimensional LTC can com-

press at least 67% of original data stream. In section 4.1.2, we deployed LTC n-

dimension on Neblina to measure the impact on energy consumption. We processed

the experiment on Neblina with 3D accelerometer streams for walking and running

activities. According to the Table 2, LTC n-dimension can reduce data transmission

up to 88.9%, and help Neblina to save energy up to 23.9%, where the error bound
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LTC n-dimension Regression degree = 3 Regression degree = 5

Dimension Infinity Euclidean Infinity Euclidean Infinity Euclidean

1 90.1% 90.1% 89% 89% 88.96% 88.96%

2 89.6% 88.7% 83.35% 83.35% 83.55% 83.1%

3 88.9% 87.6% 80.24% 78.68% 80.8% 77.96%

(a) Comparison of compression ratios on Walking data set

LTC n-dimension Regression degree = 3 Regression degree = 5

Dimension Infinity Euclidean Infinity Euclidean Infinity Euclidean

1 74.7% 74.7% 70.7% 70.7% 71.1% 71.1%

2 70.6% 68.6% 58.3% 57.4% 58.4% 57.35%

3 68.6% 64.4% 51.1% 48% 50.2% 47.92%

(b) Comparison of compression ratios on Running data set

Table 3: Results of Comparison

ε=48.8 mg. These experiments and results show that n-dimensional LTC is feasible

on connected objects and it has good performance for compressing stream data to

reduce energy consumption of transmission in IoT networks.
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Chapter 5

Conclusion

5.1 Summary

IoT has been widely popularized in recent years and generates large amounts of

streaming data. However, hardware limitations of connected devices create challenges:

connected devices lack enough memory to store streaming data, micro-controllers can

hardly run methods that have high computational complexity, and battery-based

devices are limited in lifetime. Energy consumption is an urgent problem in IoT,

especially in battery-powered devices, as computing and network transmission drain

the battery quickly.

In this thesis, we aimed to find a summarization method which can be fitted in

connected objects and can process multi-dimensional streams to reduce the number of

data transmitted. Data compression is one of the techniques in data summarization,

representing original data by a compact version and keeping all information (lossless

compression) or retaining information at certain accuracy (lossy compression). We

introduced a few general compression methods in this thesis and we finally selected

the Lightweight Temporal Compression (LTC) algorithm. LTC is a lossy compression

method that approximates data streams by a piece-wise linear function of time. It

guarantees that the reconstruction error remains lower than a user-assigned error

bound ε.

However, the original LTC method was only available for 1D data streams. Thus,

we provided a formulation of LTC in dimension n, and the corresponding implemen-

tation. LTC can work with different norms in dimension n, but its compression result
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and costs depend on the norm used. In the experiments, we collected 2 biceps curl

data-sets of different sizes. By using these data sets, we validate the performance of

LTC n-dimension for Infinity and Euclidean norms in respect of compression ratio,

memory and processing time. Then, we implemented the LTC n-dimension algorithm

and deployed it on Neblina, the connected device platform developed by our Mot-

sai partner. To measure the compression ratio and energy consumption of LTC in

dimension n, we processed a experiment on Neblina with a dataset of human walk

and run. Results showed that our n-dimensional implementation of LTC works on

Neblina. By executing our method, Neblina can save at least 10% of energy when

the error bound ε is 48.8 mg. Additionally, we compared LTC in dimension n to

polynomial regression in different dimensions. We found that LTC in dimension n for

Infinity and Euclidean norms outperform polynomial regression method in terms of

compression ratio, regardless of the dimension or degree of regression. Our extension

of LTC in dimension n has been deployed in Motsai’s Neblina during my 4-month

internship from September to December 2018.

5.2 Limitations

The main limitation of our current LTC implementation in dimension n is memory

usage. Our formulation of LTC in dimension n boils down to an intersection test

between n-balls, however, with the Euclidean norm this test is difficult. The Helly’s

theorem is the best algorithm we could find for this purpose, but it is still too complex

for resource-constrained environments. We provided a method that utilizes plane

sweep and bisection to determine if a set of n-balls intersect.

Our method has a O(n × (log 2ε)d−1) time complexity, where n is the number of

data points we have seen so far since the last transmission, ε is the error tolerance

and d is the dimension of the stream, but it requires extra memory to save n-balls

between two transmissions. Even though we bound n to 200, it still costs 4.6 KB to

compress the long bicep curl data set in our first experiment (see Table 1d).

In addition, compressing data in connected devices causes transmission latency

since it needs processing time. In our case, we have to make sure the maximum latency

is smaller than the sampling rate of sensors, because the process of current data point

must be finished before receiving new data point. For instance, in Section 4.1.2, the
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sampling rate of accelerometer sensor is 200 Hz which means a new data point comes

each 5-ms, thus the maximum latency must lower than 5-ms. From Table 2, when

sampling rate is 200Hz, the latency with our method is lower than the 5-ms tolerable

latency. But LTC n-dimension for Euclidean norm cannot work in high sampling

rate, such as 800Hz, corresponding 1.25-ms tolerable latency.

A better algorithm would be needed to deal with the memory usage and processing

time of the intersection test with the Euclidean norm.

5.3 Future work

In our future work, we would like to find algorithms that have lower time and space

complexity to handle the intersection check. We will review other compression algo-

rithms, attempting to achieve more energy savings. Moreover, lossless algorithms are

necessary sometimes, typically in e-health applications. A framework which can sup-

port both efficient lossless and lossy algorithm and can work with the multi-dimension

stream is also one of the research direction in our future work.
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