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Abstract

Prediction of Fatigue on Rotating-Shift Workers

Anh Tuan Tran

Rotating shifts have become prevalent in many industries, leading to a growing concern about

the impact of fatigue on workers performance and safety. Thus, it is useful to develop a method

to predict the fatigue of workers with rotating shifts. This thesis aims at contributing to the

development of such method by building data-driven models to predict level of fatigue.

We use random forest classifier and random forest regressor to build two fatigue prediction

models. A third model is built by a combination of random forest classifier and regressor. Two

imbalanced datasets from different groups of workers in the same industry are used. We explore

two strategies to deal with imbalanced datasets: random over-sampling and class weights. We

select features with feature importance of random forest and discover that a set of 19 features,

selected from 38 original features, gives best performance.

We obtain good prediction accuracy on both datasets. The combined model reaches mean

absolute error of 0.93 and 0.83 on two datasets, on a 9-level scale of fatigue. In the area of high

level of fatigue, which in real work is of particular interest, our model can predict with average

85% confidence that the true level falls into ±1 range of prediction.

We conclude that fatigue can be predicted with high confidence, based on a dataset of sleep

patterns, work schedules and demographic data. Future work will focus on model generalization

to datasets from different industries or geographical areas; and the discovery of other sets of

features that give better prediction.
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Chapter 1

Introduction

Machine Learning has become increasingly popular in the last decade due to the availability of

massive data sources. In 1997, Deep Blue marked history with a win over chess champion Gary

Kasparov, the first time a software won over human in chess. In 2016, DeepMind’s AlphaGo

defeated world champion Lee Sedol in the game of Go, a game considered to be much more

complex than chess (Borowiec [2016]). AlphaGo owes its success to the availability of massive

datasets, in addition to machine learning algorithms. And yet, under just three years, AlphaGo

was thrashed by its enhanced version AlphaZero with a 0-to-100 loss.

In the field of medicine, machine learning has applications in many branches such as disease

diagnosis, drug development and treatment. Artificial Intelligence (AI) applications, a branch

of machine learning, are now used to analyze tests, X-Rays, CT (Computerized Tomography)

scans, data entry and other tasks. For instance, a company named Atomwise1 uses deep neural

networks to predict the possible effectiveness of new medicines, without the need for costly and

time-consuming physical synthesis and testing. U.K.-based startup Babylon provides online

doctor consultations and advices2 and claims to be able to analyze “hundreds of millions of

combinations of symptoms“ in real time and provide consultations.

1https://www.atomwise.com/
2https://www.babylonhealth.com/
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The application of AI has been introduced into the area of human factor research. The impact of

fatigue is one of the most concerned issues at workplace in modern society (Walker [2017]). Being

tired at work has been claimed to be as dangerous as consuming alcohol or drugs. Verster et al.

[2011] states that prolonged nocturnal driving can be as dangerous as alcohol-impaired driving.

The Transportation Safety Board of Canada (TSB) in 2018 releases Watchlist 2018 in which

it states that employee fatigue is a major safety hazard in all three modes of transportation,

namely aviation, rail and marine. Fatigue has been found to be a risk or contributing factor

in more than 90 TSB investigations since 1992, especially in a 24/7 industry where crews can

work long and irregular schedules (TSB [2018]).

1.1 Background and Motivation

Fatigue, as defined by the Canadian Centre for Occupational Health and Safety (CCOHS 3)

is the state of feeling very tired, weary or sleepy resulting from insufficient sleep, prolonged

mental or physical work, or extended periods of stress or anxiety. Fatigue at work has become

prevalent in our modern society due to the increased level of stress and prolonged work shifts.

Undetected fatigue at work can lead to degraded performance, errors, incidents and accidents

in operational settings (Belenky et al. [2014]). In some types of work, such as health care or

driving, fatigue can pose safety risks to the worker as well as other individuals. Early prediction

of fatigue is important for mitigation of fatigue-related risks.

Individual level of alertness is regulated by biological processes in a way that it reaches optimal

level during daytime schedule. In the case of rotating-shift workers, irregular work schedules

cause sleep disturbances and reduced level of performance (Wright et al. [2002]; Drake et al.

[2004]; Boivin et al. [2012]). Individuals performing shifts late at night or early in the morning

are particularly at risk of fatigue-related incidents and accidents at work (Folkard [1997]; Wong

et al. [2011]; Boivin and Boudreau [2014]).

3https://www.ccohs.ca/

2



Statistical models have long been applied in studies of fatigue in workplace (Ingre et al. [2014]).

A recent study by Ho et al. [2013] used statistical models to identify factors associated with work-

related fatigue among hospital workers in Taipei City. Another study by Cai et al. [2018] aimed

to investigate the prevalence of fatigue and determine factors associated with fatigue in female

medical personnel in 54 hospitals in Zhuhai, China. Furthermore, machine learning techniques

have been applied to tackle mental health problems. In the wake of machine learning success

in the last decade, numerous studies have tried to apply its techniques to fatigue prediction.

For example, Wang et al. [2014] used random forest to differentiate syndrome of chronic fatigue

(CF) in traditional Chinese medicine and found that random forest not only offer outstanding

performance but also provide valid confidence evaluation to differentiate the CF syndrome.

1.2 Goals and Contributions

This project was initiated by Dr D. B Boivin and data was collected by Dr Boivin’s team at the

Centre for study and treatment of circadian rhythms at the Douglas Mental Health University

Institute4, McGill University. Following an agreement between Drs Boivin and Jaumard-Glatard

from Concordia University, data were made available to the Concordia team and served as the

basis for this thesis. Drs D. B Boivin and P. Boudreau supervised the collection of the data sets

they provided to us. We will refer to Drs D. B Boivin and P. Boudreau as “the Douglas team“

in the remainder of this thesis.

The objective of this thesis is to design and develop data-driven models that can predict workers’

level of fatigue in the particular case of rotating schedules. Models take input parameters such

as sleep patterns and work schedules and predict the level of fatigue quantitatively. Models must

also be able to identify the factors leading to fatigue. Result interpretation is important as we

need to provide convincing justifications for the prediction. As the next step in this project, it

is planned to develop a software tool to help early detection of fatigue in industry with rotating

work shifts. Eventually, we expect this tool to contribute to the reduction of fatigue-related

risks at work.

4Douglas Mental Health University Institute, http://www.douglas.qc.ca/
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We analyze two datasets acquired by the Douglas team in a study of fatigue at work. The

Douglas team conducted a study on the impact of shift work on the level of fatigue. The study

was conducted in two groups of workers in the same industry, but in different geographical

areas. In the rest of this thesis, these two groups will be referred to as group 1 and group 2.

The outcome of the study is two datasets of raw data, named DS1 and DS2 after group 1 and

group 2 respectively. We then worked in collaboration with the Douglas team to define the

appropriate data format to use with the models. DS1 consists of 3,084 records from a group

of 26 workers. DS2 consists of 9,782 records from 50 workers. The datasets are of significant

sizes in the field of medicine. In addition, data were collected over a period of 28 to 35 days so

that each participant has been studied over a complete work cycle including morning, evening

and night shifts. The datasets have been curated by professional experts at the Douglas Mental

Health University Institute.

We approach the problem of predicting level of fatigue from the supervised classification and

regression points of view. Sleepiness has been measured by a 9-point subjective scale, the

Karolinska Sleepiness Scale (KSS) in this study, and can be predicted by supervised classifica-

tion. Regression will also be considered as the KSS values are ordinal. There are a number

of algorithms that can be considered for this problem, among which Support Vector Machine

(SVM), k-nearest Neighbors (kNN) and random forest. Among existing approaches, random

forest will be used as it provides simple yet efficient solutions for our supervised learning prob-

lem. Random forest is also able to justify the prediction and quantify the level of importance

of each input variable.

In this thesis work, we build three machine learning models to predict fatigue level of workers

with data provided by the Douglas team. The first two models take the classification and

regression approaches, using random forest classifier and regressor, respectively. The third

model combines random forest classifier and random forest regressor to leverage strengths of

both. With the third model, we are able to predict the level of fatigue with mean absolute error

of 0.83 on the nine-graded scale of fatigue (KSS) on DS2. In addition, we identified the three

most influential factors leading to the level of fatigue, i.e. the length of awake time, the sleep

duration in the last sleep and the time of day.

4



This work on prediction of fatigue on rotating-shift workers will be submitted for publication.

1.3 Thesis Plan

The thesis is organized in six chapters. Chapter 2 discusses the background in fatigue prediction

on rotating-shift workers. Chapter 3 describes data collection, their attributes, and the main

pre-processing steps. Chapter 4 discusses how we formulate the problem in the framework of

supervised classification, regression and a combination of both. Chapter 5 details the experi-

mental results obtained with the three modelling approaches. Finally, Chapter 6 reports our

conclusions and future work.
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Chapter 2

Background and Literature Review

Fatigue has been studied extensively in the field of medicine. A broad range of studies can

be found: from quantitative measurements of fatigue to assessment of fatigue predictors. We

first review fatigue, sleepiness and their measurements in Section 2.1. The studies of fatigue

and sleepiness prediction are then reviewed in Section 2.2. In addition, there are a lot of ML

algorithms that have been used in the field of medicine. In Section 2.3 supervised classification

and regression algorithms are discussed. Lastly, we review techniques to deal with imbalanced

datasets in Section 2.4.

2.1 KSS as Measurement of Fatigue

Sleepiness and fatigue are two interrelated, but distinct phenomena; observed in a number

of psychiatric, medical and primary sleep disorders (Shen et al. [2006]). Despite their different

implications in terms of diagnosis and treatment, these two terms are often used interchangeably,

or merged under the more general lay term of tired (Shen et al. [2006]).

Shen et al. [2006] also gives brief descriptions of sleepiness and fatigue as

Sleepiness is multidimensional and has many causes (multidetermined) and distin-

guished from fatigue by a presumed impairment of the normal arousal mechanism.

6



Despite its ubiquity, no clear consensus exits as yet as to what constitutes sleepiness.

Definitions of sleepiness, to date, are at best operational definitions, conceptualized

so as to produce specific assessment instruments. As a result, while a number of sub-

jective and objective measurement tools have been developed to measure sleepiness,

each only captures a limited aspect of an otherwise heterogeneous entity.

and

Fatigue is an equally complex phenomenon, its nature captured by a number of con-

ceptualizations and definitions. Measures of fatigue have remained subjective, with

a gold standard for its measurement remaining elusive. Despite a high prevalence

and high degree of morbidity, fatigue has remained a relatively under appreciated

symptom, from both a clinical and research point of view.

The KSS is frequently used for evaluating subjective sleepiness (Akerstedt and Gillberg [1990]).

Numerous studies have shown relatively high correlation between KSS and performance mea-

sures (Akerstedt et al. [2005], Gillberg et al. [1994], Hoddes et al. [1973]). Kaida et al. [2006]

concluded that KSS was closely related to waking electroencephalogram (EEG) and behavioral

variables, indicating a high validity in measuring sleepiness. An EEG is a recording of the elec-

trical signals of the brain and is used, among other things, to help diagnose epilepsy (waking

EEG) and sleep disorders (sleeping EEG) (Kaiser [2007]).

KSS is a 9-graded sleepiness scale, with the following values and descriptions

• 1. Extremely alert

• 2. Very alert

• 3. Alert

• 4. Rather alert

• 5. Neither alert nor sleepy

7



• 6. Some signs of sleepiness

• 7. Sleepy, but no difficulty remaining awake

• 8. Sleepy, some effort to keep alert

• 9. Extremely sleepy, fighting sleep

In this thesis work, we will use KSS as the output for both classification and regression. As

described Section 2.2, other measurement of fatigue were also collected during the study, among

them Samn-Perelli Fatigue Scale (Gawron [2016]). This can also be used as output for prediction

of fatigue.

2.2 Prediction of Fatigue

While fatigue has been the focus of numerous studies, very few of them have tried to predict it

quantitatively. One of the most comprehensive studies was conducted by a group of researchers

at The University of South Australia (Dorrian et al. [2011]). In this study, the group investigated

fatigue in a large sample of Australian Rail Industry Employees, taking into account work hours,

workload, and sleep. Ninety participants were included, from four companies, among them 85

were males and 5 were females, with the median age of 40.2 ± 8.6 years. Data acquisition

process was very close to the study we worked on. Objective measurements of activities and

sleep were recorded by wearable devices (Actiwatch1). Participants also completed the Samn-

Perelli Fatigue Scale (Gawron [2016]), which served as subjective measurement of fatigue, at

the beginning and end of shifts. The study did not attempt to predict the level of fatigue;

instead, it focused on analyzing the distribution of fatigue measurements (Samn-Perelli) and on

the relationship to fatigue predictors such as sleep loss, extended wakefulness, and longer work

hours. One notable conclusion of this study is that overall, analysis should be carried out on

particular levels of fatigue, not just the average. Another attempt to predict fatigue was carried

out by a group of interdisciplinary researchers from National University of Singapore (Shen et al.

1http://www.actigraphy.com/solutions/actiwatch/actiwatch2.html
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[2008]). The study approaches the problem from classification point of view, using support

vector-machines (SVM) (Vapnik [1998]). Ten subjects underwent 25-hour sleep deprivation

experiments with Electroencephalography (EEG) (Kaiser [2007]) monitoring. EEG data were

segmented into 3-second long epochs and manually classified into 5 mental-fatigue levels, based

on subjects performance on an auditory vigilance task (AVT) (Pang et al. [2005]). AVT sessions

were performed once an hour during the 25-hour experimental period and the results were used

to manually annotate the subject into 5 levels of mental fatigue. The experiments were strictly

controlled: participants stayed in a temperature-controlled room, no stimulants were allowed

and only non-strenuous physical activities were allowed. The study reports good results of

87.2% classification accuracy. It is worth noting that input data were EEG signals; sleep and

work were not taken into account. Limitation of EEG-based prediction of fatigue is clear: EEG

is expensive and not easily available.

Another popular model for prediction of sleepiness is the Three Process Model (TPM). The

TPM models sleep propensity using time awake (the homeostatic process, called process S),

the time of day (or the circadian system, the circadian process, process C) and sleep inertia

function (process W). Ingre et al. [2014] extends the model with small modification to predict

sleepiness level of airline crews. They collected sleep and sleepiness data from 136 aircrews in

a real life situation by means of an application running on a handheld touch screen computer

device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of

complexity of model equations and data. Inputs from three processes were used to calculate

an alertness score, which in turn, is used to predict KSS level using linear regression. Multiple

models were analyzed and the best performances (model 6d) were reported to produce residual

error standard deviation of 1.362 .

2.3 Supervised Classification and Regression

Supervised learning is a machine learning task that learns a function to map an input to an

output. The function is inferred from historical labeled data consisting a set of training examples

(Mohri et al. [2012]). Inferred function can then be applied to unseen examples, called test

9



examples, to predict the output. Supervised learning can be broadly divided into two categories:

classification and regression. In classification, the output is a set of discrete values, i.e, the

test example is classified into one of the possible classes. In regression, the output is real

valued. In classification, popular algorithms are k-nearest neighbors (kNN) (Altman [1992]),

support vector-machines (SVM) (Vapnik [1998]) and random forest (Breiman [2001]). While

these algorithms are popular for classification, all of them can also perform regression.

kNN is based on a distance function that calculates the distance between two examples in

the input feature space. kNN classifies test examples by the popular votes from its k nearest

neighbors. Test examples are assigned to the class most common in their k nearest neighbors. In

regression, the output value is simply the average of the outputs of its k nearest neighbors. kNN

has become popular due to its simplicity: one has not much to do other than selecting k and

finding an appropriate distance function. Yet, kNN has a few limitations, most notably poor

run-time performance and sensitivity to redundant features. The kNN algorithm calculates the

distances between the test examples and every single data points in the training set; consequently

it suffers from poor performance when the dataset is large. kNN is sensitive to redundant

features because, in distance calculation, it treats every feature in the input feature space

equally. One of the most successful applications of kNN is in recommender systems (Bobadilla

et al. [2013]).

In classification, SVM algorithms separate the training dataset by constructing a hyperplane or

a set of hyperplanes in the input feature space. A hyperplane is calculated so that it has largest

distance to the nearest training data points of any class. It happens often in real world that

data are not linearly separable, i.e., we cannot find a linear function of the input feature that

separates the dataset. The input feature space can then be mapped to a higher dimensional

space through a kernel function (Scholkopf and Smola [2001]). This is one of the most important

advantages of SVM over other algorithms; it gives the flexibility in choosing the form of feature

transformation by different kernel functions. One major disadvantage of SVM is the lack of

transparency of the results (Auria and Moro [2008]). In other words, results cannot be easily

explained or justified. Most successful applications of SVM are in text categorization (Sebastiani
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[2002]; Joachims [1998]; Sun et al. [2002]), image classification (Tarabalka et al. [2010]; Lin et al.

[2011]) and bioinformatics (Byvatov and Schneider [2003]; Bhasin and Raghava [2004]).

Random forest is a popular ensemble method for predictive models. The ensemble is built on

individual predictors (in this case, decision trees) to form a more powerful model. The decision

trees are built randomly from a subset of training examples and therefore are independent of

each other. Once training is done, the forest can be used as classification or regression model.

In classification, each predictor produces class probabilities of the test example being in each

class. The probabilities are then averaged over the entire forest and the class label with highest

average probability is the predicted label of the example. In regression, the output value is the

average of output values produced by individual predictors. Random forest is popular for being

unbiased and providing an easy interpretation of results. One drawback of random forest is the

computational complexity if training data is large. Random forest has successful applications

in a broad range of topics, from genetics (Goldstein et al. [2010]), remote sensing (Belgiu and

Drgu [2016]), to medial diagnosis (Yang et al. [2009]).

In this thesis work, we choose random forest for both classification and regression tasks for

two reasons. First, the results are explainable. It is worth noting that one of the objectives

in this study is to identify and explain factors leading to fatigue. Secondly, random forest is

robust to over-fitting. This is important because the datasets, as described in Chapter 3, are

relatively small from the machine learning point of view. Lastly, random forest provides feature

importance which is useful for interpretation of results. The drawback of random forest in this

study is minimal because, as noted above, the datasets are relatively small.

2.4 Learning from Imbalanced Datasets

Imbalanced datasets refer to the datasets with very different numbers of samples in each class.

In some cases, least-populated class has much smaller number of samples compared to most-

populated class. From the regression point of view, it can be seen as dataset with skewed

distribution of output values. Learning from imbalanced datasets is practical because in the
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real world, more often than not, we have imbalanced datasets. Examples of imbalanced datasets

are: i) credit card transactions where a very small fraction of them are fraudulent, the rest are

normal; ii) medical images where a small fraction of them contains tumours , and iii) set of

emails where, sadly, most of them are spams. This poses a difficulty for learning algorithms, as

they will be biased towards the majority group Krawczyk [2016]. In this section, we review two

of the most frequently used techniques to deal with imbalanced datasets: resampling and class

weights.

2.4.1 Re-sampling

Re-sampling is a general term referring to the changes in distribution of output values in a

dataset. It can refer to over-sampling, under-sampling or a combination of both. In over-

sampling, new data points of the minority class or classes are added to the dataset. In under-

sampling, data points from majority class or classes are removed from dataset. The combination,

sometimes called mix sampling or mix-ratio sampling (Bae et al. [2010]), performs both under-

and over-sampling.

Under-sampling

Under-sampling is a popular technique to deal with the analysis of imbalanced datasets. It

uses only a subset of majority class or classes (Liu et al. [2009]). Existing approaches to under-

sampling are random, distance-based and cluster-based. Simplest method is random under-

sampling where samples from majority class are sampled randomly and combined with samples

from minority class to form a balanced training set.

Chyi [2003] proposes a distance-based under-sampling method where samples of the majority

class are chosen based on their distances to all samples of the minority class. The choice can

be made on four modes: nearest, farthest, average nearest and average farthest. Mani and

Zhang [2003] also take the distance-based approach and propose four methods. “Nearmiss-1”

selects samples from majority class with smallest average distance to three nearest samples of

minority; “Nearmiss-2” selects samples from majority class with smallest average distance to
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three farthest samples of minority; “NearMiss-3” selects a given number of the closest majority

class samples for each minority class sample and Most distant selects the majority class samples

with largest average distances to the three closest minority class samples.

Liu et al. [2009] took a different approach and proposed two algorithms: an EasyEnsemble

which samples several subsets from the majority class, trains a learner using each of them, and

combines the outputs of those learners; and BalanceCascade trains the learners sequentially,

where in each step, the majority class examples that are correctly classified by the current

trained learners are removed from further consideration.

Cluster-based under-sampling is a method proposed in Yen and Lee [2009]. The method first

clusters the dataset into a number of clusters, then selects a suitable number of samples of the

majority class from each cluster based on the ratio between minority and majority classes in

that cluster.

Over-sampling

Over-sampling is another technique to deal with imbalanced datasets where new examples are

added to the dataset. Similar to under-sampling, common approaches to over-sampling are

random and distance-based. Simplest method is random over-sampling where samples from

minority class are duplicated randomly and combined with samples from majority class to form

a balanced training set.

SMOTE (Synthetic Minority Over-sampling Technique) (Chawla et al. [2002]) is one of the most

popular method of over-sampling. SMOTE generates new examples of the minority class based

on existing ones. The minority class is over-sampled by taking each minority class sample and

introducing synthetic examples along the line segments joining any/all of the k minority class

nearest neighbors (Chawla et al. [2002]). Due to success of SMOTE, a number of SMOTE-based

methods have been proposed such as Borderline-SMOTE (Han et al. [2005]) and Kernel-based

SMOTE (Mathew et al. [2015]).

Barua et al. [2014] introduced a new method, called Majority Weighted Minority Oversampling

TEchnique (MWMOTE). MWMOTE first identifies the hard-to-learn informative minority class
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samples and assigns them weights according to their euclidean distance from the nearest majority

class samples (Barua et al. [2014]). It then generates the synthetic samples from the weighted

informative minority class samples using a clustering approach (Barua et al. [2014]).

2.4.2 Class Weights

Weighting or class weights is an algorithm-level method for dealing with imbalanced datasets

(Kotsiantis et al. [2006]). The idea is to compensate for the imbalance in the training set without

actually altering the class distribution (Barandela et al. [2003]). A weighted distance function

is used in Barandela et al. [2003] for kNN algorithm, which gives higher weight to samples

of majority class. In this way, distances from new test examples to the samples of majority

class are much higher than to samples of minority class. This produces a tendency for the new

samples to find their nearest neighbors among the minority-class examples.

Weighting can also be done with random forest. Since random forest classifier tends to be

biased towards the majority class, we can give higher weights to examples of minority class

Chen et al. [2004]. Class weights are used in building the forests (via building decision trees)

in calculation of splitting criterion (Gini or entropy). After a decision tree is built, in each

leaf node prediction is based on a weighted probability, i.e., number of samples in each class

multiplied by class weight divided by weighted sum. The final prediction of the forest is the

average of all individual trees in it. In this way, one can manipulate class weights to obtain

desired results from random forest.

In this chapter, we discussed the problem background and solutions suggested in the literature.

We discussed different machine learning algorithms that we will use to build data models for

fatigue prediction. We also discussed the techniques to deal with imbalanced datasets. In

the next two chapters we discuss the datasets and the implementation of models for fatigue

prediction.
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Chapter 3

Datasets Acquisition and

Preprocessing

This chapter describes the acquisition of the datasets and how they were pre-processed. We first

describe the data acquisition process and pre-processing of raw data, which was conducted by

the research of the Douglas team. We also define the record format to be used in the classifier

and regressor, based on the availability of KSS values. Finally, we present the data inclusion

and exclusion criteria, as well as the method used to manage missing data.

3.1 Data Acquisition Process

The study was conducted on two groups of workers in the same industry but in different geo-

graphical area. In group 1, a total of 26 workers participated in the study. 18 of them were

male and 8 were female. They were 30.75 years of age in average, with the youngest at 23.65

and oldest at 40.88 years of age, respectively. In group 2, 50 workers participated, among them

38 males and 12 females. They were at 32.7 years of age on average, with the youngest one at

24.37 and the oldest one at 49.13 years of age. For confidentiality reasons, results will not be

provided by subgroups of age and sex.
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Before the start of the study, the demographic variables presented in Table 3.1 were collected.

A number of variables were removed from the list due to feature selection or impracticality.

Table 3.1 Demographic variables

No Name Description Type Note

1 age Age of the participant Numerical

2 sex M: male, F: female Categorical Removed by feature selection

3 month Month of study (weighted average of study period) Numerical
Removed due to impracticality

(i.e., not available on test samples)

4 ho chronotype Horne-Ostberg’s Morningness-Eveningness Score Numerical

5 ISI Insomnia Severity Index (Smith and Wegener [2003]) Numerical

6 ESS Epworth Sleepiness Scale Numerical Removed by feature selection

7 average sleep hours Average sleep hours of participant, in rest days Numerical

8 average energy drink Average number of energy drinks per day Numerical
Removed due to impracticality

(i.e., not available on test samples)

9 average alcohol Average number of alcohol consumption per day Numerical
Removed due to impracticality

(i.e., not available on test samples)

10 average cigarette Average number of cigarettes per day Numerical
Removed due to impracticality

(i.e., not available on test samples)

Each worker was studied during a complete work cycle comprising 28 or 35 days. This work cycle

was their habitual work schedule and included day, evening and night shifts alternating with

rest days. Workers were requested to maintained their usual sleep-wake behaviours throughout

the study period.

The data were collected using three different tools, as described below.

First, each participant was equipped with an Actiwatch1, which was advised to be worn around-

the-clock, to collect objective measurements on their sleep-wake cycles and light exposure. Ac-

tiwatches measure physical activity and light exposure as time series. A hierarchical approach,

similar to that described in Patel et al. [2015], was used by the Douglas team to determine

bedtimes and wake times of each participant (time in bed). Then, the algorithm described in

Oakley [1997] and Kosmadopoulos et al. [2014] was used to determine objective sleep parameters

during each sleep period.

Sleep parameters derived from actiwatch recordings are presented in Table 3.2.

1Actiwatch Spectrum, Philips/Respironics, OR, US
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Table 3.2 Actiwatch variables

No Name Description Type

1 AW Bedtime Bed time, as detected by the Actiwatch Numerical

2 AW Waketime Wake time, as detected by the Actiwatch Numerical

3 AW TIB Actiwatch: time in bed (time from bedtime to getting out of bed) Numerical

4 AW TST
Actiwatch: total sleep time (from sleep onset to final

awakening-wakefulness during that interval)
Numerical

5 AW SOL Actiwatch: Time the participant fall asleep (decimal) Numerical

6 AW Snooze Actiwatch: Time from final awakening to getting out of bed Numerical

7 AW SETIB Actiwatch: Sleep efficiency based on time in bed (TST/TIB) Numerical

8 AW SETST
Actiwatch: Sleep efficiency based on total sleep period

(TST/SP)
Numerical

Second, participants were requested to complete questionnaires, using a smartphone, approxi-

mately 5 times per day:

• Q1: wake time

• Q2: start of shift

• Q3: middle of shift

• Q4: end of shift

• Q5: bed time

On rest days, work-related questionnaires were replaced with questionnaires done at a specific

time of day:

• Q2: at approximately 2 hours after wake time

• Q3: at approximately 8 hours after wake time

• Q4: at approximately 2 hours before bedtime
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All questionnaires included questions about the participant’s vigilance (visual analogue scale

from 1 to 100), mood (visual analogue scale from 1 to 100), fatigue (Samn-Perelli Scale) and

sleepiness (KSS) levels. Each questionnaire also included additional questions depending on

time of administration. Q1 included sleep-related questions: bed time, wake time, time to fall

asleep, total sleep time, sleep quality and sleep disturbances. Q4 included questions about the

shift start and end time (if any), how many extra hours of work, how mentally and physically

demanding were their tasks, the impact of weather condition, the level of effort put in the task,

levels of irritability, how many nodding-offs did they have, the level of appetite, whether they

had meal and whether it was a full meal. Q5 included questions about the level of irritability,

number of cigarettes, number of energy drinks and number of alcoholic beverages that the

participant had since last main sleep period.

Some participants of DS2 (n=50) were also requested to fill out questionnaires at meal times.

In Table 3.3, a comprehensive list of variables is presented.
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Table 3.3 Variables from questionnaires

No Name Description Type Note

1 form start time Time stamp of the questionnaire Date

2 samn perelli Samn-Perelli Fatigue Scale Categorical Output

3 KSS Karolinska Sleepiness Scale Categorical Output

4 VigilanceVas Subjective vigilance Numerical
From 0=very sleepy

to 100=very alert

5 HumeurVas Subjective mood Numerical
From 0=very bad

to 100=very good

6 AS HeureCouche dec Bed time Numerical Time of day

7 AS HeureLeve dec Wake time Numerical Time of day

8 AS HeuresSommeil dec Number of sleep hours Numerical Time of day

9 AS MinutesEndormir Time to fall asleep (in minute) Numerical

10 AS QualiteSommeilVas Sleep quality Numerical
From 0=very bad

to 100=very good

11 conditionclimvas Weather condition during work shift Numerical
From 0= very bad

to 100 = very good

12 nasa exigencemental The level of mental demand of the task Numerical
From 0=very low

to 100 = very high

13 nasa exigencephysique The level of physical demand of the task Numerical
From 0=very low

to 100 = very high

14 NASA ExigenceTemporelle The pace of the task Numerical
From 0=very low

to 100=very high

15 NASA Performance
The level of success in accomplishing

what they were asked to do
Numerical

From 0=very low

to 100=very high

16 NASA Effort The effort to accomplish their level of performance Numerical
From 0=very low

to 100=very high

17 NASA Frustration
The level of being insecure, discouraged, irritated,

stressed and annoyed
Numerical

From 0=very low

to 100=very high

18 heuresupp Number of overtime work hours Numerical

19 appetit The appetite of participant Numerical
From 0=really low

to 100=really high

20 hv nb cigarettes Number of cigarettes since the last main sleep Numerical

21 hv nb boissons energie Number of energy drinks since the last main sleep Numerical

22 hv nb boissons alcohol Number of alcoholic drinks since the last main sleep Numerical

23 perioderepas If they had a break to eat today Categorical 1=Yes, 2=No

24 repasouinon If they ate during your work shift today Categorical 1=Yes, 2=No

25 repascomplet If it was a full meal (as opposed to snacks) Cagetorical 1=Yes, 2=No

26 irritabilite The level of irritability Numerical
From 0=very low

to 100=very high
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Finally, participants were asked to perform a Psychomotor Vigilance Task (PVT) on the smart-

phone. We used a 5-minute test validated by Lamond et al. [2008] that repeatedly presents a

visual cue at pseudo-random intervals ranging from 2s to 10s. At each cue presentation, the

participant simply touched the screen as quickly as possible, clear the stimulus and start the

next trial. Output of a PVT session is presented in Table 3.4.

Table 3.4 PVT session variables

No Name Description Type Note

1 PVT Derange If the participant was disturbed in the PVT session Categorical Yes/No

2 meanReactionTime Mean reaction time (in milliseconds) Numerical

3 meanResponseSpeed Mean reaction speed Numerical

4 medianReactionTime Median reaction time (RT, in 1/ms) Numerical

5 medianResponseSpeed Median response speed Numerical

6 meanTop10PercentResponseSpeed Mean of top 10 percent response speed Numerical

7 meanBottom10PercentResponseSpeed Mean of bottom 10 percent response speed Numerical

8 minorLapses Number of misses (RT>500ms) Numerical

9 totalReactions Total number of reactions Numerical

10 validReactions Total number of valid reactions Numerical

11 falseStarts Number of false starts (RT <200ms) Numerical

As described above, different variables can be used as indicator of fatigue. They can be divided

into two groups: subjective and objective variables. In the subjective group, we collected

KSS, Samn-Perelli Fatigue Scale and vigilance levels. In the objective group, we collected

measurements from PVT sessions.

In this thesis, we choose to use KSS for three reasons. Firstly, all of those scales have been

proposed as measures of fatigue (Gander et al. [2015]). Under the ICAO definition of fatigue,

sleepiness can be considered one manifestation of fatigue-related impairment (Gander et al.

[2015]). With increasing time awake, sleepiness and fatigue increase and PVT response rates

slow. Sleep restriction also increases sleepiness (Akerstedt and Gillberg [1990]; Kaida et al.

[2006]) and postsleep fatigue ratings (Ferguson et al. [2012]), and slows PVT response speeds

(Belenky et al. [2003]; Van Dongen et al. [2003]). Thus, in the laboratory, these measures

reliably reflect the physiological changes that cause fatiguerelated impairment (Gander et al.

[2015]). Ingre et al. [2006] also showed that subjective sleepiness measured with the KSS was
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strongly related to accident risk. Secondly, in this study the participant took PVT sessions only

at the beginning and end of shift. As a result, the number of records with available PVT is

much smaller than those with KSS available. A very small dataset would make it very difficult

to build an ML model. Thirdly, PVT is much more difficult and expensive to include in a study

than subjective measures. Therefore, successful prediction models based on subjective measures

may simplify future studies.

3.2 Record Definition

After the acquisition process by the Douglas team, we received initial data in the following

formats:

• The daily log containing data collected through the smartphone for all participants as

described in Section 3.1

• The validated sleep schedule of all participants

• The validated work schedule of all participants

• Demographic information about all participants

In order to use the data in the model, we need to incorporate the data into a single structured

type of records. As we try to predict the level of fatigue based on the work scheduling and

sleep-wake pattern, it is reasonable to define a record that:

• is based on the events at which KSS was taken

• has variables to reflect the previous work shifts and sleep-wake pattern

• has variables to reflect the demographic factors of the participant

We then define record structure to use in the model with variables described in Table 3.5. The

calculations of cumulative variables are described in Sub-section 3.4.1. Note that all sleep
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variables are calculated from the Actiwatch data, not from the self-assessment data (question-

naires).

Table 3.5: Variable list

No Name Description Type

1 questionnaireno

Type of record:

1: wake up

2: start of shift

3: middle of shift (also meal time in group 2)

4: end of shift

5: sleep

Categorical

2 time of day Decimal reprentation of time of day, 0.00 to 23.99 Numerical

3 day of year Day of year (1-366) Numerical

4 consecutive
Number of consecutive days that the worker

had been doing the same shift type
Numerical

5 time awake
Length of time, in hours, since awakening

of the last main sleep (i.e., excluding naps)
Numerical

6 time awake less nap
Length of time, in hours, since awakening of the last

main sleep, less total sleep time of naps taken in between
Numerical

7 time since start of shift

Length of time since the start of work shift

- 0: for start of shift record

- actual duration: for middle of shift and end of shift records

- missing: for other types of records

Numerical

8 time in bed Total time in bed, from bed time to rise time Numerical

9 sleep time Total sleep time Numerical

10 sleep onset latency Duration between bed time and actual time of falling sleep Numerical

11 total sleep time Time between sleep onset to final awakening Numerical

12 snooze Duration between final awakening and rise time Numerical

13 sleep time 24h Total time slept in the last 24 hours Numerical

14 sleep time 48h Total time slept in the last 48 hours Numerical

15 sleep time 72h Total time slept in the last 72 hours Numerical

16 sleep time 7d Total time slept in the last 7 days Numerical

17 sleep time night Total time slept at night* in the last sleep Numerical

18 sleep time night 24h Duration of work at night** during the previous work shift Numerical

19 sleep time night 48h Total time slept at night* in the last 48 hours Numerical

20 sleep time night 72h Total time slept at night* in the last 72 hours Numerical

21 sleep time night 7d Total time slept at night* in the last 7 days Numerical

22 work duration Duration of the previous work shift Numerical

23 work duration 24h Cumulative duration of work time in the last 24 hours Numerical

24 work duration 48h Cumulative duration of work time in the last 48 hours Numerical

25 work duration 72h Cumulative duration of work time in the last 72 hours Numerical
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Table 3.5: Variable list

No Name Description Type

26 work duration 7d Cumulative duration of work time in the last 7 days Numerical

27 work duration night Duration of the previous work shift at night** Numerical

28 work duration night 24h Cumulative duration of work time at night** in the last 24 hours Numerical

29 work duration night 48h Cumulative duration of work time at night** in the last 48 hours Numerical

30 work duration night 72h Cumulative duration of work time at night** in the last 72 hours Numerical

31 work duration night 7d Cumulative duration of work time at night** in the last 7 days Numerical

32 time since end of shift Length of time, in hours, since the end of the previous work shift Numerical

33 ho chronotype Horne-Ostberg’s Morningness-Eveningness Score Numerical

34 ISI Insomnia Severity Index (Smith and Wegener [2003]) Numerical

35 average sleep hours Average total sleep time of the participant during rest days Numerical

36 age Age of the participant Numerical

* night, when it comes to sleep

is defined as between 22:00 to 08:00 of the next day

** night, when it comes to working

is defined as between 00:00 to 05:00

3.3 Data Cleaning

There were two phases of cleaning the datasets: first, from raw data to intermediate data;

second, from intermediate data to the model input. This process applied for both datasets.

In a joint effort between the Douglas and Concordia team, the “daily log” described in Section

3.1 was further cleaned to meet ML constraints. First, we discussed and validated the records

by the criteria described in Table 3.6.
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Table 3.6 Validation of records

No Record type Criteria for data exclusion Action

1 wake up (Q1)
timestamp does not fall into a range of ± 1 hour

of bed time of the validated sleep schedule
Remove

2 sleep (Q5)
timestamp does not fall into a range of ± 1 hour

of rise time of the validated sleep schedule
Remove

3 start of shift (Q2)
timestamp does not fall into a range of ± 1 hour

of work in as described by the validated work schedule
Remove

4 end of shift (Q4)
timestamp does not fall into a range of ± 1 hour

of end of work as described by the validated work schedule
Remove

In addition to the above criteria, the Douglas team, based on their field expertise, decided to

bring back records that fall into one of the following categories:

• At the study start, the first wake up questionnaire filled by each participant. They must

have been removed by rule number 1 in Table 3.6 since the presumed sleep was not tracked.

• The start of shift questionnaires which were filled after rise time but more than 1 hour

before work in, since there is minimal chance of “future recall bias”. 23 records were

brought back under this process, with 1 in DS1 and 22 in DS2.

Lastly, variables were examined for their missing values and records with those missing values

were removed as described in Table 3.7

Table 3.7 Removal of missing values

No Criteria
# records

Action Description
DS1 DS2

1 KSS is missing 9 39 Remove KSS is the label

2 time awake less nap is missing 42 249 Remove Indicates missing of sleep schedule

3 sleep time 24h is missing 74 274 Remove Indicates missing of sleep schedule

4 time in bed is missing 0 36 Remove Indicates missing of sleep schedule

5 sleep time 48h is missing 102 0 Remove Unreported sleep time/bad sleep schedule
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After this process, we had 2,838 records in DS1 and 9,243 records in DS2.

3.3.1 Detection and Management of Inconsistencies

In this phase, we try to detect and manage inconsistencies in the datasets. Inconsistencies may

occur in two cases:

• One participant gives very different KSS values in a relatively short period of time

• A work-related event (questionnaires Q2, Q3 or Q4) was reported inside a sleep period.

In both cases, we examined all records and found out that sometime participants who forgot to

fill out one questionnaire, tried to fill it out at the time of a subsequent one by “recalling” how

they felt. For example, they forgot to fill mid of shift (Q3) and at the time of end of shift (Q4)

they tried to fill both Q3 and Q4 by “recalling” what they felt at the time of Q3. It is worth

noting that in assessing KSS, the participants were specifically asked how they felt at the time

of questionnaire completion. Yet, the model will treat Q3 as an ordinary record because the

timestamp is the time it was taken. When this situation occurs, records representing Q3 and

Q4 have almost identical variables, yet possibly very different KSS. This clearly confuses the

model and decreases its performance. As a consequence, it is safe to remove records representing

events that were reported at a time they were not supposed to be.

3.3.2 Management of Missing Data and Undefined Values

Missing data can occur when one or more sleep-related events were not recorded. This mainly

happened as a result of Actiwatch removal or malfunction. Indeed, without the activity data, we

were not able to assess the sleep-wake state of the participant. When the participant forgot to

report a sleep period, we had no way to evaluate if he/she slept or not. If it happens, the records

related to those events (Q1: wake-up; Q5: bed-time) were lost. We did not try to recover these

records because we have no information to guess. As mentioned in 3.4.1, there are other records

that are affected by the missing of sleep events. Records close in time with the missing data
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will have their sleep-related variables affected: time in bed, sleep time, time awake less nap,

sleep time 24h, sleep time 48h, sleep time 72h, sleep time 7d. In these records, missing values

are called undefined values.

The undefined values need to be filled before we can use the algorithms (random forest classifier

and random forest regressor) as they do not support null values out-of-the-box. We tried to

replace those missing values with either a fixed value or with the mean value of the variable.

A complete list of variables and corresponding replacements of missing values is presented in

Table 3.8.

Table 3.8 Replacements of missing values

Variable
Missing value

replacement
Description

time since start of shift -9999

Normal value range is 0-16.

Higher value means longer time on duty.

-9999 indicates ’not during a workshift’

time since end of shift 9999 Normal value range is 0-240

other variables mean value

3.4 Feature Engineering

Feature engineering involves two processes: feature extraction and feature selection which will

be discussed in details in the next subsections.

For the feature extraction process, we worked in close collaboration with the Douglas team in

an effort to incorporate their expertise in fatigue assessment into the dataset. The output of

this process is a new cumulative set of features calculated based on the existing features. In

feature selection, we try to remove irrelevant or redundant features in order to get a simpler

model and better performance.
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3.4.1 Feature Extraction

Capturing the effects of sleep-wake schedule

In this process, we created a set of new features to reflect the cumulative nature of certain

process, namely sleep loss. First, in order to capture the long-term effect of sleep loss, we

introduced the following variables

• sleep time 24h: the total time slept in the last 24 hours

• sleep time 48h: the total time slept in the last 48 hours

• sleep time 72h: the total time slept in the last 72 hours

• sleep time 7d : the total time slept in the last 7 days

In case of missing information to calculate these new features, for example, during the first day

of the study, they were marked as undefined.

Capturing the effects of disruption of circadian system

In addition, in order to capture a possible cumulative circadian disruption effect, we introduce

the following features:

• sleep time night : total sleep time at night* in the last sleep period

• sleep time night 24h: total sleep time at night* in the last 24 hours

• sleep time night 48h: total sleep time at night* in the last 48 hours

• sleep time night 72h: total sleep time at night* in the last 72 hours

• sleep time night 7d : total sleep time at night* in the last 7 days

∗ where night, when it comes to sleep, is defined as the period between 22:00 and 08:00 of the

next day. In case of inadequate information to calculate these variables, for example in the first

day of the study, they will be marked undefined.
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Capturing the effects of prolonged cumulative work time

In order to capture the effect of work shift duration and timing, we introduce the following

variables

• work duration 24h: cumulative duration of work time in the last 24 hours

• work duration 48h: cumulative duration of work time in the last 48 hours

• work duration 72h: cumulative duration of work time in the last 72 hours

• work duration 7d : cumulative duration of work time in the last 7 days

• work duration night 24h: cumulative duration of work time at night** in the last 24 hours

• work duration night 48h: cumulative duration of work time at night** in the last 48 hours

• work duration night 72h: cumulative duration of work time at night** in the last 72 hours

• work duration night 7d : cumulative duration of work time at night** in the last 7 days

∗∗ where night, when it comes to work time, is defined as the period between 00:00 and 05:00.

Timestamp Extraction and Transformation

In the original data, one particularly important feature is the record timestamp which is the

time the event took place. It carries within a single variable multiple valuable information: the

time of day, the day of the week, and the day of the year. The time of day clearly has impact on

a worker’s performance. One might expect that the day of year contribute to the performance

as well, as it reflects the surrounding environmental conditions. Thus we extract two variables

from record timestamp:

• time of day : the numerical value representing time of day, ranging from 0 to 23.99 inclu-

sively.

• day of year : the numbered day of the year, ranging from 1 to 366 inclusively.
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Furthermore, we want the model to take into account the fact that these are cyclical variables,

meaning that the variables repeat themselves cycles after cycles. For examples, day of year runs

from 1 to 365 (366 on leap year) and goes back to 1 after. We then expect that day 1 and day

365 are actually as close as day 1 and day 2. In order to mimic the cyclical characteristic of

these variables, we transform their values with cyclical functions, such as sine and cosine.

Thus we transform these variables into

time of day sine = sin(time of day ∗ 2π/24)

time of day cosine = cos(time of day ∗ 2π/24)

day of year sine = sin(day of year ∗ 2π/366)

day of year cosine = cos(day of year ∗ 2π/366)

The transformed variables are now cyclical.

3.4.2 Feature Selection

Feature selection serves two purposes: simplifying the model and enhancing its performance.

First, there might be features in the datasets that are either irrelevant or redundant. Irrelevant

features are those that do not provide any information to the algorithms while redundant fea-

tures convey the same information as other features. It is clear that removal of such features lead

to simpler models and faster training time. The results are therefore easier to interpret, since

the algorithm is built with reduced feature sets and they are all relevant. It is worth noting that

the aim of the models is not only to predict the level of fatigue but also to provide convincing

justifications. Secondly, by removing redundant or irrelevant features we expect improvement

in performance. As explained in 4.1.1, random forest builds predictors (i.e., decision trees) by

selecting a feature out of a subset of feature set to split the current subset of data on. As we

remove irrelevant features, we reduce the noise within the dataset and thus reduce variance.

This effectively prevents over-fitting of the model and gives more generalization.
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In this project, we use feature importance rankings from random forest to do feature selection.

Starting with the original feature set in Table 3.5, we iteratively train random forest with the

dataset and remove feature with least importance.

3.5 Overview of the Datasets

After pre-processing, DS1 and DS2 both have 38 features (i.e, input variables) and one output.

The feature selection process described above results in 19 features which we will report and

compare in Chapter 5. DS1 has 2,838 records and DS2 has 9,243 records. The number of

records in each label (KSS value) is reported in Table 3.9.

Table 3.9 Label distribution of datasets

KSS
DS1 DS2

No. of records % No. of records %

1 45 1.59 183 1.98

2 394 13.88 893 9.66

3 604 21.28 1,754 18.98

4 549 19.34 1,713 18.53

5 441 15.54 1,654 17.89

6 365 12.86 1,215 13.15

7 203 7.15 838 9.07

8 201 7.08 817 8.84

9 36 1.27 176 1.9

Total 2,838 100 9,243 100
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Chapter 4

Fatigue Prediction as a Supervised

Classification and Regression

Problem

In this chapter, we present the adaptation of our problem into a classification task, a regression

task and finally, a combination of both classification and regression. This chapter is organized

in five sections. Section 4.1 presents decision trees and the process of building them. Section

4.2 follows with presentation of random forest. Sections 4.3 and 4.4 discuss classification and

regression. In each of these sections we present a problem statement, followed by the algorithm

and finally techniques to deal with imbalance datasets. In Section 4.5, we present a model by

the combination of a classification and a regression model.

4.1 Decision Trees

Decision Tree is a supervised machine learning algorithm that infers decision rules by splitting

the training data based on the features. A decision tree is constructed as a tree where internal
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nodes represent a test on one feature of the dataset; branches form the decision path and leaf

nodes contain smallest unsplittable subsets that will be used to calculate class probabilities.

In this thesis work, we use the implementation of decision tree and random forest in scikit-

learn (Pedregosa et al. [2011]) which are based on Classification And Regression Tree (CART)

described in Breiman [2017]. In the next sub section, we summarize the procedure to construct

a decision from Breiman [2017].

4.1.1 Constructing a Decision Tree

A CART is constructed in a top-down manner. Given training vectors xi ∈ Rn, i = 1, ..., l and a

label vector yi ∈ Rl, a decision tree recursively partitions the space such that the samples with

the same labels are grouped together. Let Q be the data set at node m. For each candidate

split θ = (j, tm) consisting of a feature j and threshold tm, partition the data into two subsets

Qleft(θ) and Qright(θ) such that:

Qleft(θ) = {(x, y)|xj ≤ tm}

Qright(θ) = Q \Qleft(θ)

where Nm = |Q| is the number of examples in training data Q at node m.

The impurity at m is computed as

G(Q, θ) =
|Qleft|
Nm

H(Qleft(θ)) +
|Qright|
Nm

H(Qright(θ))

using an impurity function H(Q) depending on whether the task is classification or regression.

Impurity functions are described below.

Select the parameters that minimizes the impurity

θ∗ = argmin
θ

G(Q, θ)
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Recursively run the procedure for two subsets Qleft(θ
∗) and Qright(θ

∗) until one of the stopping

condition is reached:

• Maximum depth is reached

• Nm ≤ minsamples

• Nm = 1

Prediction process

After a decision tree is built, it predicts label of a test example x with the following procedure:

1. Starting from root node, apply the criteria of the node on example x, i.e., test if xj ≤ tm

where m is the current node that splits on feature j and threshold tm.

2. If xj ≤ tm, go to the left child of current node, else go to the right child.

3. Repeat two above steps until a terminal node (i.e., a leaf) is reached.

4. Calculate class probabilities, assuming m this the terminal node, Nmc, Nm are the number

of examples of class c and total number of examples in node m respectively

Pc(x) =
Nmc

Nm
(4.1)

Impurity function for classification task

If the target is a classification with output taking values 0, 1, ..., k− 1, for node m, representing

a region Rm with Nm observations, let:

pmk =
1

Nm

∑
xi∈Rm

I(yi = k)

be the proportion of class k observations in node m.

Then the impurity measurement can either be:
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• Gini:

H(Xm) =
∑
k

pmk(1− pmk)

• Entropy:

H(Xm) = −
∑
k

pmklog(pmk)

where Xm is the training data in node m.

Impurity function for regression task

If the target is a continuous value, then for node m, representing a region Rm with Nm obser-

vations, common criteria to minimize as for determining locations for future splits are Mean

Squared Error, which minimizes the L2 error using mean values at terminal nodes, and Mean

Absolute Error, which minimizes the L1 error using median values at terminal nodes.

Mean Squared Error:

ym =
1

Nm

∑
i∈Nm

yi

H(Xm) =
1

Nm

∑
i∈Nm

(yi − ym)2

Mean Absolute Error:

ym =
1

Nm

∑
i∈Nm

yi

H(Xm) =
1

Nm

∑
i∈Nm

|yi − ym|

where Xm is the training data in node m.

4.1.2 Feature Importance

Feature importance in a decision tree is calculated as the decrease in node impurity, weighted

by the probability of reaching that node. The probability of a node is simply the number of
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samples in that node divided by total number of samples. In scikit-learn, the impurity function

used to calculate node importance is gini.

Formally, the importance of node m is defined as

NIm = wm ∗H(Xm)− wleft ∗H(Xm(left))− wright ∗H(Xm(right))

where wm, wleft, wright are probabilities of nodes m, left child of m and right child of m, respec-

tively.

Let F be the set of features of the training set. Let N be the set of all nodes and Nf ⊆ N be

the set of nodes that splits on feature f .

The importance of feature f can then be defined as

FIf =

∑
i∈Nf

NIi∑
k∈N

NIk

Finally, normalized importance of feature f can be calculated as

NFIf =
FIf∑

i∈F
FIi

(4.2)

4.2 Random Forest

Random forest is an ensemble method that can be used for both classification and regression

task. Random forest builds a set of independent decision trees using various sub-samples of the

training set. The sub-samples are drawn from training data set using a re-sampling technique

called bootstrapping. With this technique, samples are randomly drawn from the original data

set with replacement. Note that the sub-samples have the exact same number of examples with

the original data set. The sub-samples are then used to build decision trees using a procedure

presented in sub section 4.1.1.
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4.2.1 Constructing a Random Forest

Constructing a random forest is simple once the decision trees are built. An algorithm for

building a random forest is presented in Algorithm 1. After a forest is built, classification

is made by taking averages of class probabilities over all decision trees, and class label whose

averaged probability is highest will be predicted as the label of the example. Regression output

is simply the average of output over all decision trees.

Algorithm 1 Random Forest for Regression or Classification (from Friedman et al. [2001])

Input:- D,N : training dataset and size; p: total number of features; B: number of trees;

n min: minimum number of samples in a node.

Output:- a set of B decision trees

1: for b ← 1 to B do

2: Draw a bootstrapped sample Z of size N from the training dataset D.

3: Grow a random-forest tree Tb from Z, by recursively repeating the following steps for

each terminal node of the tree, until the minimum node size n min is reached.

i. Select a random subset, m variables from p.

ii. Pick the best variable/split-point among the m. (Using Gini index or other methods).

iii. Split the node into two child nodes.

4: end for

return T = {Tb : b = 1, ..., B}

4.2.2 Feature Importance

In a random forest, importance of feature f is averaged over all individual decision trees in the

forest, as described in 4.1.2:

RFIf =

∑
t∈T

NFIft

|T |

where T is the set of trees in the random forest, NFIft is the normalized feature importance of

feature f in tree t, as calculated in 4.2.
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4.3 Classification

4.3.1 Problem Statement

The problem of Fatigue Prediction is written as follows: For a given labeled training dataset

with a number of features and one numerical output (KSS, ranging from 1 to 9), predict the

KSS of the new examples. This is a multi-class classification problem that we will solve using

random forest classifier.

The datasets, which are discussed in details in Chapter 3, contain records with input variables

and KSS value as output. KSS values are represented by integer numbers ranging from 1 to 9.

4.3.2 Random Forest Classifier

A random forest classifier is built with the algorithm described in Algorithm 1. In order to

predict the label of a test example, random forest calculates the averages of class probabilities

over all decision trees.

Let Tb (i) denote the predicted output of tree Tb for sample i. Let C be the set of possible classes

and P b
c (i) be the probability of sample i belongs to class c ∈ C, output by tree Tb. Prediction

of a new sample x is given as:

ĈB (x) = argmax
c

B∑
b=1

P b
c (x)

4.3.3 Data Imbalance

In classification task, popular techniques to deal with imbalanced data sets are re-sampling and

class weighting as discussed in Section 2.4. Re-sampling can refer to over- or under-sampling or

a combination of both. With under-sampling, examples of majority class or classes are removed

from the training data. With over-sampling, new examples are added to the minority class or

classes. In this thesis work, we use random over-sampling for two reasons: the datasets are
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relatively small and they have multiple class labels. As seen in 3.5, the least populated class

has very small number of examples, thus under-sampling would result in a very small dataset.

Class weight can also be used to deal with imbalanced datasets. One can try different sets of

class weight values to search for the best one. In this work, we use a balanced class weight.

Each class is given a weight which is inversely proportional to its frequency in the training data.

Now as class weights are introduced, within a decision tree the calculation of class probabilities

at a terminal node changes. Equation 4.1 in sub section 4.1.1 becomes

Pc(x) =
Nmcwc∑
c
Nmcwc

(4.3)

where wc is the weight of class c.

4.4 Regression

4.4.1 Problem Statement

The problem of Fatigue Prediction is written, from the regression point of view, as follows: For

a given training dataset with a number of features and one numerical output (KSS, ranging from

1 to 9), predict the KSS of the new examples. This is a regression task with that we will solve

using random forest regressor.

The datasets, which are discussed in details in Chapter 3, contain records with input variables

and KSS value as output. KSS values are represented by real number ranging from 1 to 9.

4.4.2 Random Forest Regressor

A random forest regressor predicts the output value simply as the averaged outputs of all trees.

Adapted to our problem, we take the output of random forest regressor and round it to the
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nearest integer. Using the same notation as in 4.3.2, prediction of a new sample x is given as:

f̂B (x) =

[
1

B

B∑
b=1

Tb (x)

]

where [r] denotes the nearest integer of a real value r.

4.4.3 Data Imbalance

With random forest regressor, we deal with imbalanced datasets in two ways: re-sampling

and sample weights. As discussed in 4.3.3, we used random over-sampling with random forest

regressor the same way as with random forest classifier. Unlike with random forest classifier

where we can give class weight to each class, with random forest regressor we give weights to

examples since there is no “class”. We give each example a weight inversely proportional to its

class frequency in the training set.

4.5 Combination of Classification and Regression

Random forest classifier, when trained with over-sampled training set, tends to increase the

overall error rate. Random forest regressor, on the other hand, minimizes overall error rate, i.e,

the root mean squared error (Chai and Draxler [2014]). Combination of a random forest classifier

and regressor results in a model with low error rate and better prediction of the minority class

or classes. In this work, we combine a forest classifier and a random forest regressor to form

a new model. Output of the combined model is the average of output random forest classifier

and real-valued output of random forest regressor, then rounded to the nearest integer.
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Chapter 5

Results

In this chapter, we present the numerical results obtained on the two datasets described in

Chapter 3, using random forest classifier, random forest regressor and a combination of both,

as described in Chapter 4. The chapter is organized as follows. First, in Section 5.1, we

discuss the different metrics that are used to evaluate the performance of the models. Results

of classification and regression are presented in Sections 5.2 and 5.3, respectively. Section 5.4

presents results derived from the combination of classification and regression models. In each

of these three sections, we first highlight the best results, and next present detailed analyses of

the various techniques applied, i.e., weighting and resampling. Each section is concluded with

a summary of the results provided by all the discussed techniques.

5.1 Performance Metrics

In a multi-class classification problem, we have a number of choices to evaluate the performance.

A summary of metrics for classification can be found in Sokolova and Lapalme [2009], among

them average accuracy, precision, recall and F-score. Metrics can be calculated in micro- or

macro-averaging way. In micro-averaging way, the metric is averaged over all test samples while

in macro-averaging, it is averaged within each class, and the class averages are then averaged. As

a result, macro-averaging treats all classes equally while micro-averaging favors bigger classes.
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As seen in Chapter 3, datasets are highly imbalanced as in the majority of time, people feel and

rate themselves more frequently as fit than as tired. Consequently, accuracy is not suitable for

our problem as it cannot show the performance for minority classes. In a binary classification

problem, the classifier is biased toward samples of the majority class and as a result, may predict

most test samples in the majority class (Kotsiantis et al. [2006]). In this way, it may obtain

very high accuracy, equal to the percentage of the majority class. Obviously, it is not a good

classifier as it fails to predict any samples of the minority class, which in many cases is the class

of interest. It is also clear that the issue extends to multi-class classification as well. In our

problem, the main objective is to predict fatigue cases, which accounts only for small portions

in the context of our datasets.

In addition, KSS values are not arbitrary. In fact, they are ordinal, meaning that the classifier

must predict the label as close as possible to the true value, if not exactly. For example, a

true KSS value of 8 is better to be predicted as 7 (the error is 1) than as 5 (the error is 3).

For this reason, precision and recall would not be sufficient as they differentiate matched to

unmatched predictions only (Carterette [2009]). F-score is clearly also not appropriate because

it is calculated based on precision and recall (Sokolova and Lapalme [2009]). Moreover, high

KSS values of 7, 8 and 9 are particularly interesting in a work environment (Geiger-Brown et al.

[2012]), as the ultimate goal is to identify the risks of fatigue in work shifts and potential factors

associated with risks (Di Milia et al. [2012]).

In a regression problem, we have a number of metrics to use such as mean absolute error

(MAE) and root mean squared error (RMSE). MAE, defined formally in 5.1.1, is the average of

absolute differences between predictions and target values. MAE and RMSE are both suitable

for regression. RMSE is more sensitive for large error and is used as objective function in

Random Forest. On the other hand, MAE is more interpretable and is used as one of the

metrics to evaluate our model’s performance.

In our specific problem, the MAE is not enough in an imbalanced dataset since large errors in

minority classes may have diminished effects to overall error. Because of these limitations to

MAE, we decided to define a new set of metrics that can show:
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• How close the predictions are to the true value, for each value of KSS.

• How close the true values are to the predicted value, for each value of KSS.

First we define a set of notations

T: set of test samples.

K: set of possible KSS values.

Ok ⊆ T, k ∈ K: sets of test samples whose true value is k.

Pk ⊆ T, k ∈ K: sets of test samples which are classified as k by the classifier.

P (t), t ∈ T : predicted value by the classifier for test sample t

O(t), t ∈ T : true value of test sample t.

We define two sets of metrics to evaluate the performance on each class and one combined metric

for the overall error.

5.1.1 Mean Absolute Error

We define the mean absolute error as mean of absolute different between the predicted class

and true class over the whole test set. Formally, MAE is defined as follows:

MAE =

∑
x∈T

|P (x)−O(x)|
|T |

5.1.2 Class Mean Absolute Error

The CMAE metrics are used to measure the ability of a model to predict label as close as possible

to true classes. Indeed, it calculates the residual for every data point, taking the absolute value

of each so that negative and positive residuals do not cancel out. CMAE is then the average of
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all these residuals. In other words, CMAE describes the typical magnitude of the residuals for

a given class.

The analytical expression is as follows:

CMAEk =

∑
x∈Ok

|P (x)−O(x)|

|Ok| k ∈ K.

5.1.3 Class Precision

The CP metrics are used to measure the average mean absolute error for a predicted value.

Formally, CP is defined as follows:

CPk =

∑
x∈Pk

|P (x)−O(x)|

|Pk| k ∈ K.

5.2 Classification Results

In this section, we present results of the classification task with two datasets and two techniques

to deal with imbalance datasets. Following the discussion in Chapter 4, we used random forest

implemented in scikit-learn Pedregosa et al. [2011] to perform classification. Hyper-parameters

were searched using grid-search with 10-fold cross-validation. The parameter grid is provided

in Table 5.1. In this grid, a list of possible values is provided for each parameter. The grid-

search procedure iterates over all possible combinations of parameter candidates provided by

the parameter grid and uses ten-fold cross-validation to evaluate the performance. With ten-

fold cross-validation, it first splits the dataset into ten different groups. Then, for each of ten

groups, it uses the group as the test set and the nine remaining ones as training set. After ten

validations, the scores are averaged and the parameter set with lowest score is selected.
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Table 5.1 Parameter grid of random forest

Parameter Value Description

criterion entropy,

gini

Criteria for splitting at each node, also called impurity. The library will

calculate both criteria and choose the best one.

min samples split 2, 5 If the number of samples in a node does not exceed this number, no splitting

will be considered (i.e., the node becomes a leaf)

class weight None,

balanced

Oversampling weight of classes. When set to balanced, each sample will be

given weights inversely proportional to its class’s frequency in the dataset.

The balanced option will be experimented separately in a section.

max depth 20, None Maximum depth of the tree. This range allows the training process to choose

between a number of possible maximum depths. This parameter is used to

prevent over-fitting of the tree.

min samples leaf 3 Minimum number of samples in a leaf

max leaf nodes 250 Maximum number of leaves in a tree

bootstrap True Allows the bootstrapping (bagging) technique in the forest.

oob score True Enables out-of-bag score, so that we can get the score after training.

n estimators 200 Number of estimators (trees) in the forest

max features auto Maximum number of features to consider for each node. ‘auto’ lets the forest

use default value, which is the square root of total number of features in the

training dataset.

5.2.1 Highlights

In this section, we highlight the most salient classification results for each dataset, in terms of

the errors on the predicted KSS. Random forest is used to build a KSS predictive model for

classification.

We present the results obtained with the 19 most relevant features selected by feature importance

ranking in random forest, as described in Section 3.4. Ten runs were conducted for each dataset

and performance metrics were averaged. Best results were obtained with DS2 with no class

weights nor re-sampling techniques (i.e., the original dataset). We present results with original
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dataset in this subsection, and then results with class weights and re-sampling in the next two

subsections.

The random forest classifier performs well on both datasets with MAE of 1.02 and 0.88 on DS1

and DS2, respectively. This means that, in general, the model predicts the KSS value with an

error of one unit or less. Since KSS is a subjective metric, the model presents promising overall

prediction.

We summarize the results obtained with the CMAE and CP metrics, for both datasets, in

Figure 5.1. In DS1, CP values were very high for classes 1 and 9. In DS2, CP values were

under 1.0 for most classes except class 6 and class 8. It means the classifier had great difficulty

predicting 1 and 9 correctly, most likely due to the small size of DS1. The CMAE values were

of the same order of magnitude for all classes on the DS2, but high on classes 1 and 9 of DS1.

On both datasets, CMAE values showed the same trend: lower values on classes 2, 3, 4 and 5;

high on classes 1 and 9 (i.e., rare classes).

Table 5.2 shows comparisons of metrics by classification model on two datasets and techniques

applied. The model had better metrics with DS2. With regards to the techniques applied, no

single technique had clear advantage over others. Best MAE was obtained by original and class

weights. Best average CMAE and average CP were obtained by and oversampling and original,

respectively. At the end, when it comes to choosing which techniques to apply, it depends on

which metrics are the most important ones.

Table 5.2 Metrics comparison, random forest classifier

No Metric
DS1 DS2

Original Balanced Sampling Original Balanced Sampling

1 Mean Absolute Error 1.02 1.02 1.04 0.88 0.88 0.90

2 Average CMAE 1.32 1.11 1.10 0.96 0.89 0.88

3 Average CP 1.32 1.12 1.18 0.81 0.91 0.96
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(a) DS1 (b) DS2

Figure 5.1: CMAE and CP values by random forest classifier, original datasets

5.2.2 Detailed Performance on Original Datasets

In this subsection, results of model with original data are presented. Distributions of the true

values are shown in Figures 5.2 and 5.3. In these figures, each column represents a possible

predicted KSS value and indicates the percentage of samples with its corresponding true value.

The data presented in each figure were normalized column-wise, i.e., numbers on each column

sum to 100%.

Performance on DS1

On DS1, best parameters found by grid-search are in Table 5.3(a). The only different hyper-

parameter found, compared to those with DS2 on Table 5.3(b), is max depth = 12. This is

expected as training size of DS1 is much smaller than that of DS2.
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Table 5.3 Best parameters of random forest classifier found by grid-search

(a) DS1

No Parameter Value

1 criterion entropy

2 min samples split 2

3 class weight None

4 max depth 12

5 min samples leaf 2

6 n estimators 200

7 max features auto

(b) DS2

No Parameter Value

1 criterion entropy

2 min samples split 2

3 class weight None

4 max depth None

5 min samples leaf 2

6 n estimators 200

7 max features auto

Figure 5.2 shows that the distributions of true values peak at predicted value, marked blue and

gradually decreases as true value moves away from predicted value. This pattern, however, has

exception on predicted values of class 9. All samples that classifier predicts as class 9 are of

true value 6 and 8. The rates of true values in range of pk ± 1 are also high for most classes.

84.5% of samples predicted as class 2 have true value in range of 2± 1 while those numbers for

class 3 and class 4 are 80.2% and 75.8% respectively. In the side of high predicted KSS values,

we have 63.3% and 80.2% for classes 6 and 7. Unlike on DS2, only 58% samples with predicted

KSS of 8 have true value in range of 8± 1 due to the fact that the classifier rarely predicts class

9. This is expected as the result of imbalanced dataset where class 9 represents only a very

small fraction of 1.59%.

One of the key objectives of the study is to identify potential factors leading to the fatigue, and

random forest provides a very useful tool for that purpose: the feature importance. Feature

importance given by random forest is shown on Table 5.4(a). As expected, the most influ-

ential factors to level of fatigue is time awake (time awake less nap). The second group of

factors, the sleep-related features, provides significant contribution to the prediction. Other

important variables include time of day (time of day sine and time of day cosine) and day of

year (day of year sine and day of year cosine). It is surprising to find out that variables in-

volving current work shift do not have much influence on the classifier. time since start of shift

and workduration stand at 17th and 15th places respectively with only around 3% importance.
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Figure 5.2: Normalized confusion matrix, original DS1

Demographic variables fairly contribute to the classification: age comes at 9th place while av-

erage sleep hours, ho chronotype and isi sequentially take places from 12th to 14th.

Performance on DS2

In DS2, the best parameters found by grid-search are reported in Table 5.3(b). After grid search,

the best parameters were used to refit the random forest to perform classification on the test

set, because they were found based on nine folds of the training set only.

Figure 5.3 shows the same patterns as with DS1. This confirms the good performance of the

model, with average CP values below 1. For a predicted KSS value pk, a majority of test

samples has true value in range of pk ± 1. Correctly classified samples are marked with blue

while samples with predicted value of range ±1 of true value are marked with green. In the area

of high predicted KSS (pk = 7, 8, 9), approximately 81.6% of samples predicted at 7 have true
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KSS in range 7± 1 while the percentages for 8 and 9 are 76.4% and 92.7% respectively. On the

other side of the KSS range, we have similar results with 80% and 78.5% for predicted KSS of

4 and 5 respectively. Lowest percentage are at predicted KSS of 6, with 70.9%, which suggests

that the KSS value of 6 is the border line between two areas: fresh (1 to 5) and tired (7 to 9).

For every predicted KSS value pk, the percentage of samples with true value tk decreases as

tk moves away from pk. The number of samples where |tk − pk| ≥ 3 are very small. In the

distribution of predicted value of 9, lowest true value is 5 with only 2.4%. For a predicted value

of 7 and 8, the true values can be as low as 2. This phenomenon, however, does not happen

very often as seen by the thinner tail of the plot of 7, 8, and 9. In the area of low predicted

KSS values (1,2 and 3), we also have very small percentages of high true values.

Figure 5.3: Normalized confusion matrix, original DS2

Feature importance given by random forest is shown on Table 5.4(b).
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Table 5.4 Ranking of feature importance by random forest, original datasets

(a) DS1

No Importance Feature

1 9.19% time awake less nap

2 7.34% time since end of shift

3 6.83% day of year sine

4 6.77% sleep time 72h

5 6.72% time of day sine

6 6.47% sleep time 24h

7 6.40% time in bed

8 6.28% sleep time 48h

9 6.10% age

10 6.00% day of year cosine

11 5.95% time of day cosine

12 5.58% average sleep hours

13 4.26% ho chronotype

14 3.78% questionnaireno

15 3.64% isi

16 3.62% time since start of shift

17 3.56% work duration

18 0.78% nap duration

19 0.73% time awake since last nap

(b) DS2

No Importance Feature

1 9.36% time awake less nap

2 6.90% time since end of shift

3 6.59% time of day cosine

4 6.55% day of year cosine

5 6.53% sleep time 72h

6 6.49% time in bed

7 6.46% day of year sine

8 6.45% sleep time 48h

9 6.45% time of day sine

10 6.38% sleep time 24h

11 5.30% age

12 4.96% average sleep hours

13 4.78% ho chronotype

14 4.59% isi

15 4.50% questionnaireno

16 3.16% work duration

17 2.85% time since start of shift

18 0.88% time awake since last nap

19 0.83% nap duration

We can see the top influential factors are time awake less nap and time of day (time of day sine

and time of day cosine). time since end of shift appears at 2nd place which suggests strong

effect of the previous work shift to level of fatigue. Other than that, there is no significant

difference in feature importance rankings compared to that of DS2.

It is worth noting that feature importance must be interpreted in presence of correlated fea-

tures. In the presence of one or more groups of correlated features, feature importance of each

individual feature tends to be shared with others from the same group, although not necessarily

evenly. One important implication is that just because a feature has low importance does not

mean that it is noisy (Genuer et al. [2010]).

5.2.3 Detailed Performance with Class Weights

In this section, the results are shown with models trained with class weights = balanced, meaning

that each sample in the training set is given a weight. The weights are inversely proportional

to the frequency of the label on the training set. Setting class weights to balanced helps reduce

error on minority class, particularly with imbalanced datasets. The classifier is now able to

50



predict all KSS values on both datasets. Both CMAE and CP metrics are more stable in DS2

than in DS1. This, in combination with results in previous section, shows that imbalance in

DS1 is more severe than in DS2. Overall, both models show better performance on lower KSS

values than the area of higher values. In particular, the model on DS1 has large errors in with

KSS of 8 and 9 while model with DS2 performs well.

(a) DS1 (b) DS2

Figure 5.4: CMAE and CP with balanced class weights

Performance on DS1

In this dataset, class weights help prediction of rare values, class 1 and 9. In Figure 5.4(a), CP

values of 8 and 9 are much higher than those of other classes. This is the expected effect of

setting balanced class weights to heavily imbalanced dataset. The same effect does not happen

with DS2, as samples of class 8 and class 9 are not rare.

Feature rankings (Table 5.5(a)) are similar to those of DS1 without weights, as well as those of

DS2 with balanced class weight. This suggests that class weighting has very little impact on
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Figure 5.5: Normalized confusion matrix, DS1, with balanced class weights

feature importance of random forest.

Performance on DS2

The results are similar to those of DS2 without class weights. In all predicted KSS values,

distribution of true values peak at predicted value as represented by blue segments on Figure

5.6. The rate of true values in range of pk ± 1, as represented by blue and green segments, are

very good for all classes. 80.2% of samples with predicted value of 1 have actual true value in

range 1 ± 1. Similar numbers are seen for classes 2, 3, 4 and 5 with minimum percentage of

80.3% (class 2) and maximum of 85.6% (class 3).

In the other side, high percentages of true values within range of pk ± 1 for all predicted

pk = 7, 8, 9 are seen. This is very promising, as we are trying to identify samples with high risk

of fatigue, we predict 9 (very tired) when 81.2% of them actually have true value of 8 or 9. The

numbers for predicted values 7 and 8 are also high, at 78.3% and 70.9% respectively.

52



Figure 5.6: Normalized confusion matrix, DS2, with balanced class weights

Similar to results on DS2 without class weights, the distributions have thin tails which means

that misclassification rate decrease rapidly as true value moves away from predicted value.

In the feature ranking (Table 5.5(b)), we see consistent rankings with those of results without

class weights. In comparison to 5.4(b), individual feature may have slight changes in terms of

ranking but the importance is more or less the same, with the difference of just fractions of a

percent.

5.2.4 Detailed Performance with Random Over-sampling

In this section, we present the results obtained with random over-sampling. With this technique,

we resample the minority classes in the training set with replacement so that all classes will

have equal number of samples. CMAE and CP plots (Figure 5.7) shows the effect of generating

samples to minority classes. For both datasets, the general trend is that we have lower CMAEs
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Table 5.5 Ranking of feature importance by random forest classifier, with balanced class weights

(a) DS1

No Importance Feature

1 9.00% time awake less nap

2 7.67% day of year sine

3 7.37% sleep time 72h

4 7.23% time since end of shift

5 6.80% time of day sine

6 6.63% sleep time 24h

7 6.30% time in bed

8 6.19% sleep time 48h

9 5.92% age

10 5.59% day of year cosine

11 5.43% time of day cosine

12 4.87% average sleep hours

13 4.12% questionnaireno

14 4.00% isi

15 3.91% time since start of shift

16 3.85% ho chronotype

17 3.34% work duration

18 1.05% time awake since last nap

19 0.71% nap duration

(b) DS2

No Importance Feature

1 9.61% time awake less nap

2 6.81% day of year cosine

3 6.52% day of year sine

4 6.48% time of day cosine

5 6.45% sleep time 24h

6 6.26% age

7 6.17% sleep time 72h

8 6.16% time in bed

9 6.14% sleep time 48h

10 6.09% time of day sine

11 6.08% time since end of shift

12 5.07% questionnaireno

13 5.04% average sleep hours

14 4.89% ho chronotype

15 4.79% isi

16 2.88% time since start of shift

17 2.83% work duration

18 0.90% time awake since last nap

19 0.84% nap duration

and higher CPs compared to results with original datasets. The results are expected as we

provide more samples to minority classes, the classifier is biased towards those classes. As a

result, it predicts more samples to be in those classes and increases the class precision values.

Performance on DS1

In this dataset, random oversampling helps prediction of rare values, class 1 and 9. This result,

expectedly, comes with a compromise: high CP values on oversampled classes.

In the feature ranking (Table 5.4(b)), as with DS2, we see almost identical rankings to those of

results with balanced class weights (Table 5.5(b)), both in terms of rankings and percentage.

Performance on DS2

The results are similar to those of DS2 presented previously. In all predicted KSS values,

distribution of true values peak at predicted value as represented by blue segments on Figure

5.9, except for class 9. The rate of true values in range of pk ± 1, as represented by blue and

green segments, are very similar to those with class weights. 76.6% of samples with predicted

value of 1 have actual true value in range 1±1. Similar numbers are seen for classes 2,3,4 and 5

with minimum percentage of 79.4% (class 2) and maximum of 85.7% (class 3). In the other side,

54



(a) DS1 (b) DS2

Figure 5.7: CMAE and CP with random oversampling

high percentages of true values within range of pk ± 1 for all predicted pk = 7, 8, 9 are seen. Of

all samples predicted 9 (very tired), 76.5% actually have true value of 8 or 9. Similar to results

on DS2 with class weights, the distributions have thin tails which means that misclassification

rate decrease rapidly as true value moves away from predicted value.

In the feature importance rankings (Table 5.6(b)), we can see almost identical rankings to those

of results with balanced class weights (Table 5.5(b)), both in terms of rankings and percentage.

5.2.5 Concluding Remarks

In this section, we present results of the classification with two datasets and three techniques.

Best results were obtained with original DS2. Results with DS2 show that the model predicts

KSS values with error of ±1 unit, with around 80% confidence. In all experiments, the classifiers

consistently identify time awake less nap, time of day dec, sleep time 24h, time in bed, and age
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Figure 5.8: Normalized confusion matrix, DS1, with random oversampling

as the most influential features. The rankings of feature importance are robust to class weights

and sampling technique, but are dataset dependent.

The results from two datasets suggest that the size of the dataset played a very important role

in classification performance. Classification model trained with DS2 has better mean absolute

errors as well as average CMAEs and CPs. It is worth noting that training processes for two

datasets, including hyper-parameters search, are totally independent. Thus, it is expected that

even better results would be obtained with larger datasets, in particular the ones with larger

ratios of fatigued people.
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Figure 5.9: Normalized confusion matrix, DS2, with random oversampling

Table 5.6 Ranking of feature importance by random forest, with oversampling

(a) DS1

No Importance Feature

1 8.66% time awake less nap

2 7.93% day of year sine

3 7.72% sleep time 72h

4 6.98% time since end of shift

5 6.72% sleep time 24h

6 6.68% time of day sine

7 6.38% sleep time 48h

8 6.18% age

9 6.12% time in bed

10 5.58% time of day cosine

11 5.48% day of year cosine

12 4.99% average sleep hours

13 3.98% questionnaireno

14 3.86% ho chronotype

15 3.74% time since start of shift

16 3.49% isi

17 3.48% work duration

18 1.15% time awake since last nap

19 0.89% nap duration

(b) DS2

No Importance Feature

1 9.21% time awake less nap

2 6.84% day of year cosine

3 6.62% sleep time 24h

4 6.56% time of day cosine

5 6.52% time of day sine

6 6.36% time since end of shift

7 6.34% sleep time 72h

8 6.31% day of year sine

9 6.23% sleep time 48h

10 5.94% time in bed

11 5.75% age

12 5.16% questionnaireno

13 4.80% ho chronotype

14 4.78% average sleep hours

15 4.76% isi

16 3.01% work duration

17 2.83% time since start of shift

18 1.09% time awake since last nap

19 0.89% nap duration
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5.3 Regression Results

In this section, we present results of the regression task with two datasets and three techniques.

Following the discussion in Chapter 4, we used random forest implemented in scikit-learn (Pe-

dregosa et al. [2011]) to perform regression. Outputs of random forest regressor, which are of

real-valued type, are rounded to the nearest integer.

Hyper-parameters were searched the exact same way that we do in Chapter 5.2. The parameter

grid is provided in Table 5.1.

5.3.1 Highlights

In this section, we highlight the most salient results for each dataset, in terms of the errors on

the predicted. Random forest regressor was used to build a KSS predictive model for regression.

We present the results obtained with the 19 most relevant features selected by feature impor-

tance ranking in random forest, as described in Section 3.4. Ten runs were conducted for each

dataset and performance metrics were averaged. We present results with original datasets in

this subsection, and then results with class weights and re-sampling in the next two subsections.

The random forest regressor performs well on both datasets. On DS1, the model also scores

very close MAE for three scenarios: 0.93 with original and balanced class weight, and 0.96 with

over-sampling. On DS2, the model scores MAE of 0.86 for all three scenarios.

In terms of CMAE and CP metrics, models trained with original datasets produce low error in

the area of predicted KSS from 2 to 7 which is the area of majority classes. In other KSS values

of 1, 8 and 9, the regressors produce high error on both CMAE and CP. This is expected as the

regressor tends to bias towards majority classes. In particular, with DS2, the regressor cannot

even predict a sample at 1 and 9 as represented by CP values of 4. We present the results in

the following order: first with original datasets, followed by class weights and over-sampling.
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(a) DS1 (b) DS2

Figure 5.10: CMAE and CP by random forest regressor, original datasets

Table 5.7 Metrics comparison, random forest regressor

No Metric
DS1 DS2

Original Class weights Sampling Original Class weights Sampling

1 Mean Absolute Error 0.93 0.93 0.96 0.86 0.86 0.86

2 Average CMAE 1.23 1.23 1.18 1.04 1.03 0.98

3 Average CP 1.69 1.53 1.21 0.91 0.79 0.73

5.3.2 Detailed Performance with the Original Datasets

In this subsection, we present results obtained with original datasets, i.e., without class weights

or over-sampling.
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Performance on DS1

In this dataset, the regressor do not make any prediction of 1 or 9 due to the dearth of those labels

in training set. At other values, the regressor shows decent performance with approximately

70% of true values ranging in pk ± 1 for every predicted value pk of 5,6 and 7.

Performance on DS2

Similar to results of DS2 with random forest classifier, Figure 5.12 shows that the distributions

of true KSS values peak at the predicted KSS value, except for 9, as represented by the blue

segments on the diagonal. For a predicted KSS value pk, a majority of test samples has true

value in range of pk ± 1. Correctly classified samples are marked with blue while samples with

predicted value of range ±1 of true value are marked with green. In the area of high predicted

KSS (pk = 7, 8, 9), 82.1% of samples predicted at 7 have true KSS in range 7 ± 1 while the

percentages for 8 and 9 are 95% and 100% respectively. Again in this section, lowest percentage

are at predicted KSS of 6, with 71.9%, which suggests that the KSS value of 6 is on the border

line of fresh (1 to 5) and tired (7 to 9) area.

For every predicted KSS value pk, the percentage of samples with true value tk decreases as

tk moves away from pk. The number of samples where |tk − pk| ≥ 3 are very small. In the

distribution of predicted value of 9, lowest true value is 8 which means the model produces very

high confidence when it predicts a test sample to be 9. For a predicted value of 7 and 8, the

true values can be as low as 2 and 3 but such cases are extremely rare. For example, among

all samples predicted at 8, only very small number have true value of 5 (0.17%), 4 (0.33%) or 3

(0.33%). In the area of low predicted KSS values, we also have very small percentages of high

true values.

Feature importance given by random forest regressor is shown on Tables 5.8(a) and 5.8(b). In

both datasets, questionnaireno pops up at the first place. Other feature rankings are consistent

with what are given by random forest classifier presented in the previous section.
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Figure 5.11: Normalized confusion matrix, original DS1 with random forests regressor

5.3.3 Detailed Performance with Class Weights

In this section, the results are shown with models trained with class weights = balanced, meaning

that each sample in the training set is given a weight. The weights are inversely proportional

to the frequency of the label in the training set.

Overall, CMAE and CP values are low on predicted KSS values from 1 to 7 on both datasets

as shown on Figure 5.13. In the area of minority classes, high errors are seen on both classes.

Particularly, with DS1, the regressor cannot predict any sample of class 9, as represented by

high CP value of 4 at predicted KSS of 9 on Figure 5.13(a).

Performance on DS1

Similar to what we have seen with random forest classifier, the class weights cause extreme high
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Figure 5.12: Normalized confusion matrix, original DS2 with random forest regressor

error on rare values, particularly 9. Extremely high values on both CMAE and CP of Class

9 suggest that balanced class weights might not work well with extremely imbalanced dataset.

Ranking of feature importance in this dataset is almost identical to that of DS2. This suggests

that most influential factors are consistent on both datasets.

Performance on DS2

The results are similar to those of DS2 without class weights, except that we get better CP

values for predicted KSS of 8 and 9.

Similar to results on DS2 without class weights, the normalized confusion matrix (Figure 5.15)

has thin tails which means that misclassification rate decrease rapidly as true value moves away

from predicted value.

62



Table 5.8 Ranking of feature importance by random forest regressor, original datasets

(a) DS1

No Importance Feature

1 23.89% questionnaireno

2 8.48% age

3 8.47% time awake less nap

4 7.47% average sleep hours

5 6.77% time of day sine

6 5.28% sleep time 24h

7 5.08% time since end of shift

8 4.37% sleep time 72h

9 4.30% day of year cosine

10 4.29% day of year sine

11 4.27% time in bed

12 4.11% sleep time 48h

13 3.22% isi

14 2.82% time of day cosine

15 2.60% ho chronotype

16 1.86% time since start of shift

17 1.58% work duration

18 0.61% nap duration

19 0.55% time awake since last nap

(b) DS2

No Importance Feature

1 28.25% questionnaireno

2 11.98% time awake less nap

3 6.28% isi

4 6.06% time in bed

5 4.56% average sleep hours

6 4.55% age

7 4.51% time of day sine

8 4.10% day of year cosine

9 3.96% day of year sine

10 3.92% sleep time 72h

11 3.82% ho chronotype

12 3.73% sleep time 24h

13 3.64% time of day cosine

14 3.44% time since end of shift

15 3.27% sleep time 48h

16 1.57% time since start of shift

17 1.54% work duration

18 0.48% time awake since last nap

19 0.36% nap duration

In the feature ranking (Table 5.9(b)), we see consistent rankings with those of results without

class weights. In comparison to 5.8(b), individual feature may have slight changes in terms of

ranking but the importance is more or less the same, with the difference of just fractions of a

percent.

5.3.4 Detailed Performance with Random Over-sampling

In this section, results are shown on a model train with over-sampled training data. We used

random over-sampling to add samples of minor classes to training data so that we have a

balanced dataset.

Overall, over-sampling has almost the same effects as class weights. As shown on Figure 5.16,

on DS2, low CP values are obtained on class 8 and 9 without too much compromise on associated

CMAE values. On DS1, extremely high values of CP and CMAE of class 9 suggest that over-

sampling might not work well with extremely imbalanced dataset, as we have seen with class

weights.
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(a) DS1 (b) DS2

Figure 5.13: CMAE and CP by random forest regressor with balanced class weights

Performance on DS1

The normalized confusion matrix (Figure 5.17) shows the problematic area of predicted KSS

values 8 and 9. For samples predicted as 9, true values are as low as 4 and none is 9. This

confirms that over-sampling does not work well with extremely imbalanced dataset.

Performance on DS2

The results are similar to those of DS2 with class weights, except that we get better CP values

of class 8 and 9.

Similar to results on DS2 without class weights, the normalized confusion matrix (Figure 5.18)

has thin tails which means that misclassification rate decrease rapidly as true value moves away

from predicted value.
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Figure 5.14: Normalized confusion matrix, DS1 with balanced class weights

5.3.5 Concluding Remarks

In this section, we present results of the regression with two datasets and three techniques. All

techniques produce very close MAE. Class weights and over-sampling give much smaller CP

and CMAE values in the area of high KSS (KSS = 8, 9), with DS2. However, class weights

and over-sampling do not work well with DS1. These results suggest that class weights and

over-sampling can be considered to deal with imbalanced dataset, but might not work well with

extremely imbalanced ones.

In accordance with classification taks, these results shows that the model predicts KSS val-

ues with error of ±1 unit, with around 85% confidence. In all experiments, the classifiers

consistently identify questionnaireno, time awake less nap, time of day sine, time of day cosine,

sleep time 24h, time in bed, and age as the most influential features. The rankings of feature

importance are robust to class weights and sampling technique, but are dataset dependent.
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Figure 5.15: Normalized confusion matrix, DS2 with balanced class weights

Table 5.9 Ranking of feature importance by random forests regressor with balanced class
weights

(a) DS1

No Importance Feature

1 26.72% questionnaireno

2 11.49% time awake less nap

3 10.07% age

4 7.30% sleep time 24h

5 7.14% time of day sine

6 6.03% average sleep hours

7 3.99% sleep time 72h

8 3.85% day of year sine

9 3.35% isi

10 3.20% day of year cosine

11 3.04% time since end of shift

12 2.95% time in bed

13 2.78% time since start of shift

14 2.65% sleep time 48h

15 1.99% time of day cosine

16 1.75% ho chronotype

17 1.08% work duration

18 0.36% nap duration

19 0.28% time awake since last nap

(b) DS2

No Importance Feature

1 28.97% questionnaireno

2 20.82% time awake less nap

3 6.90% time of day sine

4 5.63% isi

5 5.45% time in bed

6 4.88% age

7 3.65% average sleep hours

8 3.00% day of year cosine

9 2.98% time of day cosine

10 2.82% sleep time 24h

11 2.56% ho chronotype

12 2.55% day of year sine

13 2.54% sleep time 72h

14 2.44% sleep time 48h

15 2.05% time since end of shift

16 1.12% time since start of shift

17 1.03% work duration

18 0.37% time awake since last nap

19 0.24% nap duration
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(a) DS1 (b) DS2

Figure 5.16: CMAE and CP by random forest regressor with over-sampling

5.4 Combination of Regression and Classification

In this section, we present the results of a model that combines both classification and regres-

sion as discussed in 4.5. As we have seen in Sections 5.2 and 5.3, each of them has unique

strengths and weaknesses. Random forest classifier, when trained with over-sampled dataset,

gives satisfying predictions of rare values (KSS=9 in our case). On the other hand, random

forest regressor generally gives lower mean absolute error, yet it does not predict rare values.

In combination of the two models, we leverage the strengths while minimize the weaknesses

of both. We trained the combined model with random over-sampled training datasets. The

resulting model is good at predicting all values and keeps the mean absolute error low.
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Figure 5.17: Normalized confusion matrix, DS1 with over-sampling

5.4.1 Highlights

On DS1, the combined model performs better with MAE of 0.93, compared to 0.93 of random

forest regressor and 1.02 of random forest classifier. On DS2, it produces a MAE of 0.83 which

is slightly better than those of individual models (0.86 and 0.88 by random forest regressor and

random forest classifier, respectively). Figure 5.19 shows CMAE and CP values for the two

datasets. With the exception of CP value of class 9 on DS1, the combined model performs well

on both datasets. It produces low CP errors with minimal compromise on the CMAE.

5.4.2 Detailed Performance

Performance on DS1

Normalized confusion matrix of DS1 is shown on Figure 5.20. The combined model shows the

same characteristics on this dataset as it does on DS2, with lower performance. The distribution
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Figure 5.18: Normalized confusion matrix, DS2 with over-sampling

also peaks at predicted values, except for KSS value of class 9, but with lower percentages

compared to those on DS2. The percentages of true value ranging on pk±1 are also lower: they

range from low value of 50% at pk = 9 to a high of 91.2% at pk = 2, with the average of 67.4%.

Performance on DS2

The normalized confusion matrix of DS2 is shown in Figure 5.21. In all cases, distributions of

true values peak at the predicted value as represented by blue diagonal line. The percentage of

true values in the range pk ± 1 from predicted value pk are high. They lie from the minimum of

72.3% (around pk = 6) to maximal of 92.1% (around pk = 1) with the average of 84.6%. In the

area of particular interest, level of confidence around pk = 7, 8, 9 are at 78.6%, 83.9% and 86.5%

respectively. All distributions have thin tails which shows that the combined model makes less

error when the true value moves further away from the predicted value.
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(a) DS1 (b) DS2

Figure 5.19: CMAE and CP, combined model with random oversampling

5.4.3 Validation of Feature Selection

In this subsection, we compare results obtained with the original dataset of 38 features to the

ones obtained with the 19-feature in DS2. We used the combination model, as it is the one

providing the best results.

With 38 features the model has MAE of 0.98 compared to 0.83 with 19 features. This means

that feature selection has significantly improved overall prediction performance of the model.

Furthermore, CMAE values of two datasets are shown on Figure 5.22(a) and CP values are

shown on Figure 5.22(b). Overall, model with 19-feature DS2 has better CMAE values on all

predicted values of KSS. On the CP metrics, we observe the same results except for class 1. The

results suggest that by removing irrelevant and noisy features from the dataset, performance of

model can be improved significantly (Saeys et al. [2008];Chen and Lin [2006]).
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Figure 5.20: Normalized confusion matrix, DS1 with combination and random
oversampling

5.4.4 Impact of the Size of the Datasets

In this subsection, we present the results on DS1 in comparison with reduced DS2. We use

random under-sampling on original DS2 to reduce its size to 2,838 samples, the same as of DS1.

The model to use is the combination.

With reduced DS2, the model has MAE of 0.97, which is much higher than that of original DS2

(0.83) and is very close to that of DS1 (0.93). This clearly shows the decrease in performance

when the dataset is reduced. CMAE values of DS1 and reduced DS2 are shown on Figure

5.23(a) while CP values are shown on Figure 5.23(b).

It is clear from the two figures that the model produces the same effects on both datasets. It

has high CMAE values on rare classes of 1, 8 and 9. On the CP metrics, the model has low

71



Figure 5.21: Normalized confusion matrix, DS2 with combination and random
oversampling

CP values on rare classes on both datasets. The results on reduced DS2 suggest that size of

datasets play crucial role to the performance of the model.

5.4.5 Concluding Remarks

In this section, we propose an ensemble of random forest classifier and regressor to leverage

strengths while minimize weaknesses of them. The resulting combination has good MAE and

provides satisfying prediction of sample in minority class. This results suggest that in a prob-

lem with relatively small and imbalanced dataset, one may try to combine classification and

regression models to get a better performance.

Using the combination as the model, we presented the results of feature selection and comparison

of DS1 and reduced DS2. Two conclusions have been drawn from these results. First, proper
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(a) CMAE (b) CP

Figure 5.22: 19-feature and 38-feature DS2 by combination and random oversampling

selection of features can result in significant better performance. Second, the size of dataset

play crucial role in the model’s performance.
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(a) CMAE (b) CP

Figure 5.23: DS1 and reduced DS2 by combination and random oversampling
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Chapter 6

Conclusions and Future Work

In this thesis work, three machine learning models have been built for prediction of fatigue in

rotating shift workers. Fatigue was assessed as subjective levels of sleepiness based on KSS.

KSS has been proposed as measure of fatigue, as in Gander et al. [2015]. KSS-based datasets

are also larger as we collected them at least five times a day during the study, as opposed to

PVT sessions which were taken only at the beginning and end of shifts.

Good performance of the three models suggests that KSS can be predicted using machine learn-

ing. Random forest regressor tends to give slightly better MAE than random forest classifier,

regardless of the technique applied. This can be explained as random forest regressor minimizes

MAE while random forest classifier relies on impurity function when they consider splits at a

node. The difference in MAE between two models is not a direct result of the rounding of

regression output. A quick experiment show that similar results, in terms of MAE are obtained

if we do not round regressor’s output to the nearest integer.

In our third model, a combination of random forest classifier and regressor showed better perfor-

mance than both individual models. Two characteristics of the datasets may have contributed

to this result. Firstly, the datasets are highly imbalanced. This makes the random forest re-

gressor to favor majority classes in attempt to minimize MAE. As a result, regressor rarely

predicts minority classes. Random forest classifier, however, is able to predict minority classes.
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Combination of the two, therefore, is able to predict minority classes while keeping MAE low.

Secondly, the output variable is ordinal. If the output was not ordinal, we would not be able to

approach the problem from both classification and regression points of views and, consequently,

no combination would be possible. This suggests that in a highly imbalanced dataset with

ordinal output, one might expect a combination of a classifier and regressor to perform better

than a single model.

One of the most popular models for prediction of KSS is the three process model (TPM) such

as implemented by Ingre et al. [2014]. In this work, they used a modification of TPM to model

KSS of airline pilots. Their best model, named 6d, was reported to produce residual errors of

1.362. By comparison, our best model (combined model) was able to produce residual errors

of 1.243. Although these values were obtained on different datasets, this comparison reinforces

the conclusion that our models achieve good performance.

Dataset size plays a crucial role on model performance, especially in a field such as medicine

where datasets are quite small from a machine learning point of view. In our thesis work, a

bigger dataset yields better results on the same model than those of smaller one; yet, when

sub-sampled to the size of the smaller one, both showed similar results. Hence, we conclude

that our models could provide even better results on larger datasets.

As identified by feature importance rankings, a number of features consistently appeared as most

important: time awake less nap, time of day and sleep time 24h. This finding is consistent with

numerous studies such as Gillberg et al. [1994], Edwards et al. [2007] and Harrison et al. [2007].

One limitation of this interpretation is that feature importance rankings do not provide the

directions of correlation between a feature and output variable.

Rankings of feature importance, provided by random forest, should be interpreted with caution.

In the presence of correlated features, they will share the amount of importance (Genuer et al.

[2010]). In this thesis work, there are known correlated group of features: sleep time 24h,

sleep time 48h, sleep time 72h are clearly correlated. This suggests a way of interpretation:

cumulative number of sleep hours is very important to sleepiness. The work to identify less
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obvious correlated features can be done through medical expertise, or correlation measurements

such as Pearson correlation coefficient (Benesty et al. [2009]).

Models built with reduced feature set perform better than models with original feature set.

There are indeed irrelevant features in the dataset. In the presence of such features, random

forest may pick them as candidates for splitting with equal probabilities as other “good” features.

This leads to less predictive models as these splits do not gain enough information compared to

splits by other features. Random forest, therefore, benefits from the removal of such irrelevant

features. Nevertheless, this feature selection process is semi-automatic and does not guarantee

optimal selection. The feature selection is based on feature importance rankings and feature with

least importance is removed. The feature importance rankings from random forest, however,

can be misleading in presence of correlated features. Undetected correlation of features may

cause removal of important ones. This suggests that future studies on the same topic can choose

to focus on the most influential factors to fatigue in their data acquisition process.

In this study, datasets are highly imbalanced and pose difficulty for both classification and

regression approaches. We dealt with imbalanced dataset with two simple techniques: random

oversampling and class weights. The random oversampling is the simplest and naive way to do

oversampling. Although unreported in Chapter 5, we experimented with the more sophisticated

technique SMOTE. The results are comparable to those with oversampling and class weights.

One possible explanation for such results is that the datasets contains a noticeable level of noise

which may hinder SMOTE. At the end, we decided to continue with random oversampling for

its simplicity. In the future however, other re-sampling techniques could be experimented, for

example the one presented in Chen et al. [2004].

In this thesis, KSS was used as output for supervised machine learning models. Yet, in the

study, we have two more measurements that can be used as output variable: the subjective 7-

point Samn-Perelli Fatigue Scale and objective PVT mean reaction time. The Samn-Perelli was

collected exactly at the same time KSS was taken, so it would make the dataset almost the same

if it was chosen as output. Although unreported in Section 5, experiments using Samn-Perelli

as output showed comparable performances to those using KSS. MAE of the combination model
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with Samn-Perelli was 0.62 (out of 7) compared to 0.83 (out of 9) with KSS. CMAE and CP

values were also comparable. This shows that Samn-Perelli and KSS are both good candidate as

output for machine learning models. PVT mean reaction time is the objective measurement of

alertness and could be a good candidates for output of our models. One limitation, however, is

that PVT were taken only at beginnings and ends of shift. This makes the PVT-based datasets

much smaller than Samn-Perelli- or KSS-based ones. Given that the KSS-based datasets used

in this thesis are already quite small, PVT-based datasets are probably not sufficient to build

machine learning models. Nevertheless, we conducted a number of experiments using PVT

mean reaction time as output, using random forest regression. The results showed RMSE of

around 100 milliseconds (ms), out of the normal range of 200ms to 500ms. In the future, a

significantly larger datasets with PVT is needed to test if PVT should be used as output for

machine learning models.

In the future, the work of this thesis can be extended in a number of ways.

First, data pre-processing can be improved. A subjective measurement of fatigue is prone to

mislabeling in the first place. A worker may, intentionally or unintentionally, give incorrect

level of fatigue. If we see this phenomenon as label noise (i.e., the labels have been incorrectly

assigned on the training data), we can try to eliminate it by identifying and removing mislabeled

data (Frénay and Verleysen [2014]; Brodley and Friedl [1999]). A combination of output labels

can also be considered. Single label such as Samn-Perelli, KSS and PVT mean reaction time

can be noisy and a combination of them may help reduce the noise. However one problem with

this approach is interpretability. The combined label is new and unknown to the community,

thus it is difficult to evaluate and validate the performance of the models.

Second, other metrics to evaluate model performance can be developed. While CMAEs and

CPs are useful if we need to evaluate performance of models on a specific area of fatigue level,

it is also convenient to have one single performance metric. A single performance metric would

make model selection as well as parameters search much convenient. An example of a single

performance metric could be overall error rate weighted by each class. Other metrics on feature

importance ranking, rather than percentage, could also be developed.
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Third, we need to experiment the models on different datasets to test their generalization. The

datasets in this work come from the same industry, are in close geographical areas and have

similar demographic data.

Fourth, we can explore other sets of variables that can give comparable results. Other sets may

come from feature extraction (i.e., extract more features from existing ones) or, if available, from

new datasets with more features. Other output variables can also be considered, for example

the Samn-Perelli Fatigue Scale (Gawron [2016]) or other objective tests such as PVT.

Fifth, other machine learning algorithms can be experimented, for examples SVM and neural

networks. SVM is traditionally good for medical datasets. One limitation is that it does

not provide any insights on important features, thus feature selection can be difficult. Neural

networks have gain tremendous success in the last few year due to the availability of massive

datasets. It is also what hinders us from using neural networks as we do not, and practically

will not, have such massive datasets.

Lastly, we use these models to build a software interface to use in a real working environment.

This will contribute to early detection of fatigue at work and eventually to a safer working

environment. The software can also help get feedback from end-users on the performance of the

models. In this way, more data become available and the models in turn can be improved with

new data.
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