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ABSTRACT

Generation of Network Service Descriptors from Network Service
Requirements

Navid Nazarzadeoghaz, M.A.Sc.

Concordia University, 2019

Network Function Virtualization (NFV) is a new paradigm in Network Service (NS) pro-
visioning. European Telecommunications Standards Institute (ETSI) proposed and standard-
ized an architectural framework for NFV. By leveraging virtualization and Software-Defined
Networking (SDN) technologies, NFV decouples network functionality from hardware infra-
structure. This enables the automated provisioning of NSs and reduces the capital and opera-
tional costs for service operators. NFV Management and Orchestration (NFV-MANO) is a
functional block in the NFV framework, and it is responsible for the deployment and life-cycle
management of NSs. With NFV, the telecommunication industry is moving towards zero-
touch, i.e. automation of all the processes. In order to orchestrate and manage an NS, NFV-
MANO requires the NS’s deployment template. This template is referred to as NS Descriptor
(NSD) and contains all the details for deployment and orchestration of the NS. Designing such
a descriptor requires the design of the NS, which is actually out of the NFV scope. Tradition-
ally, service operators’ experts design NSs and NSDs. However, this design activity is time-

consuming and error-prone; moreover, it is not fitting the Telecom’s vision of zero-touch.

In this thesis, we will propose an approach to automate the process of NS and NSD design.
The approach starts from a set of requirements provided as Network Service Requirements
(NSReq). The NSReq describes the required network service at a high level of abstraction and

focuses on the functional, architectural, and non-functional characteristics. With the help of an

il



ontology representing the knowledge from Telecom standards and previous successful experi-
ences, we decompose the NSReq. We select the set of Virtual Network Functions (VNF) from
a catalog to design the NS. Considering all the levels of decomposition and the VNF’s depend-
encies captured from the ontology, we design all the possible forwarding graphs that can form
an NS. We design each forwarding graph through different steps at different abstraction levels,
i.e. functional, architectural, and VNF levels. According to each forwarding graph, we design
an NSD along with the traffic flows in the NS. We refine each NSD by dimensioning its VNFs
using the non-functional requirements in the NSReq. Accordingly, we refine the deployment
flavor of each NSD. We have developed a prototype tool as a proof of concept for our proposed

approach which we will discuss later in this thesis.
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Chapter 1

Introduction

In this chapter, we introduce the research domain, the motivations and the contributions

of this thesis.

1.1 Network Services and Network Function Virtualization

A Network Service (NS) is an interconnection of network functions to provide a desired
functionality/behavior [1, 2, 3]. Voice over IP and video telephony are examples of NSs. A
network function (NF) is a functional block with well-defined functionality and external inter-
faces [3]. Authentication server, firewall, and router are examples of NFs. The process of NS
design consists of selecting NFs and arranging them together to achieve a composite function-
ality/behavior. This process is complex and error-prone, as we should select the appropriate NFs

that can be interconnected and arranged according to the requirements.

In Telecom, traditionally, NSs are designed and deployed using physical NFs, i.e. NFs with
dedicated hardware. Nowadays, Telecom is moving towards virtualization [4], i.e. decoupling
services from hardware. European Telecommunications Standards Institute (ETSI) [5] consists

of many organizations. One of them is ETSI Network Function Virtualization (NFV) Industry



Specification Group (ISG) [6] which proposed and standardized a framework for the manage-
ment and orchestration of NSs using virtualization technology. They refer to this framework as
Network Function Virtualization [1, 7]. NFV decouples the NFs from the infrastructure by using
the NFs implemented as software and deploying them on the standard virtualized infrastructure
[8]. These NFs are called Virtual Network Functions (VNFs) [2]. NSs in the NFV framework
are mainly composed of VNFs and other NSs [9]. They can be partially composed of physical
NFs (PNFs) [3] as well [9]. NFV Management and Orchestration (NFV-MANO) [8] is a func-
tional block in the NFV framework, and it is responsible for the deployment and life-cycle man-

agement of NSs.

1.2 Thesis Motivations

NFV-MANO requires a descriptor for every element it manages and orchestrates, including
NSs [8]. A Network Service Descriptor (NSD) [8] is a template describing the characteristics of
an NS with respect to virtualization. An NSD defines the elements of the NS and specifies the
deployment requirements for the infrastructure [10, 9]. NFV-MANO uses the NSD of an NS for

its deployment and lifecycle management [8].

Operating and Business Support Systems (OSS/BSS) [1] is the division of an NS operator
that is responsible for NS and NSD design in addition to other management tasks. Usually, an
expert or a group of experts is responsible for the design of NSs and NSDs according to NS
requirements. This is done manually. As discussed earlier, NS design is a complex task. De-
signing an NSD manually is also a tedious and error-prone task since it requires the knowledge
of many details and the manipulation of many attributes. Automating the process of NS and

NSD design is highly desirable.



For a given network service requirement and a set of available NFs, there might be multiple
NS (and NSD) solutions. Among these solutions, one or some may be more efficient than others.
Exploring all solutions manually to find the most efficient one is complex. NS design automa-

tion enables this exploration and the possibility of optimization.

In this thesis, our goal is to propose a method to automatically design NSs and NSDs from
available VNFs starting from network service requirements. Our work was inspired by [11], in
which the authors have proposed a method for decomposing user requirements and designing
applications automatically from commercial off-the-shelf components. There are discrepancies
between these two works since they focus on different domains. In our work, for instance, we
need to design the traffic flows inside the network services which is an important aspect, and it

is not considered in [11].

1.3 Thesis Contributions

The contributions of this thesis are as follows:

1) A model-driven approach for the automated design of network services from high level net-
work service requirements. This method is based on a network service knowledge-base, re-
ferred to as ontology. The network functions of the network service are selected from the
available VNFs described in a VNF catalog — PNFs or nested network services are not sup-
ported. The method generates all the possible NSDs and conforms to the ETSI NFV stand-
ards [10, 9].

2) A model-driven method for the automated refinement of the generated NSDs according to
the non-functional requirements. In this method, we dimension the VNFs of the NSDs and
calculate the capacity of the links connecting them. Finally, we refine the NSDs’ deployment

flavors.



3) The definition of an ontology (knowledge-base) for designing network services, and a
method to enrich it based on new information provided in network service requirements,
and new VNFs added to the catalog.

4) A prototype tool for all the aforementioned methods. The tool is demonstrated with the

VOoLTE service [12] using IMS architecture [13] case study.

1.4 Thesis Organization

The thesis is composed of seven chapters. In Chapter 2, we provide the background on net-
work services, NFV framework, model-driven engineering, and we discuss related work. In
Chapter 3, we discuss the modeling framework on which our methods are based. It includes all
the metamodels we propose and the metamodels developed in the ETSI NFV standards [10, 9,
14]. In Chapter 4, we discuss our approach for the design of network services and NSDs with
respect to the required functionality and architectural constraints. In this chapter, we also discuss
the method for enriching the ontology. In Chapter 5, we describe the method for refining the
network service descriptors with respect to the non-functional requirements. In Chapter 6, we
present the prototype tool we developed along with the case study used to demonstrate its usage.

In Chapter 7, we conclude the thesis and discuss potential future work.



Chapter 2

Background and Related Work

In this chapter, we introduce the concept of network services and three well-known exam-
ples, IP Multimedia Subsystem (IMS) [13], Voice over IP (VoIP) [15], and Voice over LTE
(VoLTE) [12]. Moreover, we discuss NFV and its architecture [1] in more depth, and we briefly
introduce the Model Driven Development (MDD) paradigm [16]. Finally, we review the work

related to this thesis.

2.1 Network Services

A network service is a composition of network functions with a specific arrangement to
provide a composite functionality/behavior. An NS may be composed of other NSs referred to
as nested NSs. Such an NS is called composite NS [3]. An NS has specified traffic flows which
traverse the NFs from one endpoint to another. In other words, these traffic flows are end-to-
end inside the network service [17]. The environment can access a network service from its

endpoints. IMS [13], VoIP [15], and VoLTE [12] are three well-known network services.

2.1.1 1P Multimedia Subsystem (IMS)

Third Generation (3G) networks [18] goal was to merge the cellular networks with the In-

ternet [19]. Therefore, cellular network users can access the Internet and its services such as



VoIP and conferencing. IMS is an element in the 3G architecture which provides ubiquitous
cellular access to Internet services. IMS has three major contributions in 3G including guaran-

teed Quality of Service (QoS), flexible charging, and service integration [19].

Real-time multimedia services offered on the Internet follow the best-effort model, i.e. the
packets order, bandwidth, and delays are not guaranteed [19, 20]. IMS provides a predictable
user experience for such services by establishing synchronized sessions with QoS provisioning.
By using IMS, operators are able to use different charging models for different services, e.g.
flat-rate, time-based, and QoS-based. IMS defines standard interfaces that enable operators to
integrate their services with services from third-party operators. Therefore, they can provide

their users with new and multi-vendor services [19].

2.1.1.1 IMS Architecture
Third Generation Partnership Project (3GPP) [21] is a group that has standardized IMS. It

has proposed the IMS reference architecture in [13] which is showed in Figure 2.1.
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Figure 2.1 - IMS reference architecture (from 3GPP TS 23.228 [13])



The main functional blocks in this architecture are Home Subscriber Server (HSS), Call/Ses-
sion Control Function (CSCF), Application Server (AS), Media Resource Function (MRF), Me-

dia Gateway (MGW), and Media Gateway Control Function (MGCF).

HSS: It stores the users’ subscription information used to handle their multimedia sessions.
This information includes location information, authentication and authorization information,
user profile, etc. An IMS network may have more than one HSS according to the number of its
subscribers. In such a case, a Subscription Locator Function (SLF) is required to find the right

HSS for a user [19].

CSCF: It is the core function that processes the Session Initiation Protocol (SIP) [22] sig-
naling in the IMS network [19]. IMS uses this protocol to establish and manage multimedia
sessions over IP networks. CSCF has three different blocks including Proxy-CSCF (P-CSCF),

Interrogating-CSCF (I-CSCF), and Serving-CSCF (S-CSCF) [19].

P-CSCF is the first contact point between the terminal and the IMS network. The terminal
is where the User Equipment (UE) is connected to. It receives all the SIP requests from the
terminal. It forwards these requests and the generated responses towards the appropriate direc-
tion, i.e. towards the terminal or IMS network [19]. S-CSCF is the central node for the SIP
signaling. It is essentially a SIP server, meaning it responds to the SIP requests. It performs the
session control function, i.e. setting up and termination of sessions. It is the SIP registrar as well,
i.e. gives the users SIP address, and keeps the binding between their IP and SIP addresses [19].
I-CSCEF assigns an appropriate S-CSCF to a user according to the information it retrieves from

the HSS. It also forwards the SIP requests/responses to the assigned S-CSCF [23].

AS: It is the function that hosts and executes the SIP applications [19], e.g. Voice over IP,

conferencing, etc. It receives/sends SIP requests for its service from/to S-CSCF [23].



MREF: It provides functionalities for the media resources including mixing media streams,

transcode between different CODECs, obtain statistics and media analysis, etc. [19].

MGW: 1t is the interface of IMS to circuit-switched networks for the media stream. It sends
and receives the IMS media stream over the Real-Time Transport Protocol (RTP) [24]. It also
transcodes the stream when the IMS does not support the CODEC used by the circuit-switched

network [19].

MGCEF: It is responsible for the protocol conversion between the SIP and the call control

protocols in circuit-switched networks. It also controls the resources in the MGW [19].

2.1.2 Voice over IP (VoIP)
All the voice communication services using the Internet Protocol (IP) technology instead
of'the circuit-switched technology are referred to as VoIP. The functionalities in a VoIP network
are similar to the circuit-switched networks. They include Media Gateway and Media Gateway

Controller functions [15].

Media Gateway is an interface for the voice content transportation over the IP networks. It
is responsible for call originating, call detection, analog-to-digital voice conversion, and
CODEC functions. Media Gateways use RTP protocol. Media Gateway Controller is mostly
responsible for the call signaling coordination of the voice calls. It uses SIP or H.323 [25] pro-
tocols. A VolIP service can be realized using IMS, as IMS provides functionalities required for

VolIP services [15].

2.1.3 Voice over LTE (VoLTE)
Voice over LTE is a VoIP service based on Long Term Evolution (LTE) [26] technology.
LTE is based on IP networks and does not support the circuit-switching technology [12]. As

discussed earlier, VolIP partly uses circuit-switched networks. Therefore, to have voice and



video communication on LTE VoLTE service was developed. To develop VoLTE, IMS has
been adopted in the cellular networks to provide high-quality voice services. VOoLTE voice traf-
fic is delivered from the UE to the Internet through the gateways of Evolved Packet System

(EPS) [27]. VOoLTE signaling traffic is also delivered from the UE to IMS through EPS [12].

2.2 NFV Framework

2.2.1 Network Services in NFV: Concepts and Terminologies

An NS in the NFV framework is a composition of VNFs with specified or unspecified con-
nectivity. The NSs with specified connectivity has one or multiple forwarding graphs and pro-
vide certain functionality/behavior [1, 3, 9]. The NSs can be partially composed of PNFs and
have nested NSs as well. A VNF is a software implementation of an NF that can be deployed
on NFV infrastructure [3]. In an NS with specified connectivity, the VNFs are interconnected
with logical connections referred to as Virtual Links (VL). A VL defines the connectivity be-
tween connection points and the connectivity’s performance characteristics, e.g. bandwidth, la-

tency, etc. [3].

A VNF exposes one or multiple logical ports to communicate with other NFs or the envi-
ronment. These ports are referred to as VNF External Connection Points (VnfExtCp). VLs in-
terconnect VNFs through their VnfExtCp [2, 14]. A VNF is composed of components called
VNF components (VNFC) with specific connectivity [2]. The VNFCs in a VNF are intercon-
nected via VLs. The VLs connecting the VNFs are called Network Service Virtual links (NsV1)
and the ones connecting the VNFCs are called VNF Virtual Links (VnfV1) [10]. A VNFC has
one or multiple logical ports called VNFC Connection Points (VnfcCp). VnfVls connect the
VNFCs through their VnfcCps. A VnfExtCp exposes one or multiple VnfcCps in the VNF to

the outside [10].



VLs may have one of the three flow patterns including E-Line, E-LAN, and E-Tree. An E-
Line VL has only two connections, i.e. it can connect only two connection points
(VnfExtCp/VnfcCp). An E-LAN has more than two connections, and it provides a fully con-
nected mesh between all of its connections. An E-Tree VL has multiple connections, one as the
root and the rest as the leaves. The root communicates with the leaves, but the leaves cannot

communicate with each other [10, 28].

A forwarding graph in an NS in the NFV framework is referred to as VNF Forwarding Graph
(VNFFG). A VNFFG is a logical graph defining the connectivity between the NS network func-
tions, i.e. VNFs/PNFs/nested NSs, and the NS connection points [3, 1]. The main purpose of a
VNFFG is to define the traffic flows between the NFs and connection points [3]. An NS exposes
one or multiple VnfExtCps of its VNFs to the environment through logical ports referred to as
Service Access Points (SAP) [10]. The VNFFG specifies the NS traffic flows using Network
Forwarding Paths (NFP). An NFP is a sequence of VnfExtCps and SAPs through which the

packets traverse according to different routing policies [10, 9].

2.2.2 NFYV Architecture and Functional Blocks
In [1], ETSI NFV proposed the NFV architectural framework shown in Figure 2.2. It is
composed of four main modules including the NFV-MANO, VNFs and EMs, the NFV Infra-

structure (NFVI), and the OSS/BSS.
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Figure 2.2 - NFV reference architectural framework (from ETSI GS NFV 002 [1])

2.2.2.1 NFV Management and Orchestration (NFV-MANO)

NFV-MANO module is responsible for managing the infrastructure, allocating required re-

sources to the VNFs and NSs, and orchestrating them [8]. As it is shown on the right side of

Figure 2.2, it has three main functional blocks including NFV Orchestrator (NFVO), VNF Man-

ager (VNFM), and Virtualized Infrastructure Manager (VIM). In the following, we discuss the

non-exhaustive list of responsibilities for each of these blocks.

NFVO: According to [8], the responsibilities of NFVO go into two categories, including
NS lifecycle management, and NFVI resources orchestration. In the former category, NFVO
is responsible for on-boarding the NSs. This process includes verification of the integrity

and authenticity of the NS deployment template and its elements. In this category, NFVO is
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also responsible for the NS instantiation and lifecycle management, e.g. update, query, scal-
ing, performance monitoring, and termination. In the latter category, NFVO is responsible
for validating and authorizing the NFVI resource requests from the VNFM. It also manages
the policies for resource access control and allocation, placement optimization, etc.
VNFM: 1t is responsible for lifecycle management of one or multiple VNF instances. Each
VNF instance should be managed by one VNFM. VNF lifecycle management includes in-
stantiation, scaling, update and upgrade, and termination of the VNF [8].

VIM: 1t is responsible for managing the NFVI resources including computing, storage, and
network resources. It includes allocation, upgrade, release, and reclamation of these re-
sources, and also managing the association between the physical and virtual resources. Its
other responsibilities include virtual resources capacity management, software images man-
agement, supporting the VNFFG management, and collecting performance and fault infor-

mation [8].

In addition to these functional blocks, NFV-MANO includes NS and VNF catalogs, and

NFV instances and NFVI resources repositories. The first two catalogs are repositories for the

deployment template of on-boarded NSs and VNFs, respectively. NFV instances repository

keeps the information for all the VNF and NS instances. NFVI resources repository keeps the

information for the NFVI resources and their states, i.e. available, reserved, and allocated [8].

All or some of the NFV-MANO functional blocks have access to these repositories in order to

fulfill their tasks.

2.2.2.2 Operation Support System/Business Support System (0OSS/BSS)

OSS/BSS is a proprietary part of each network service operator. It provides functions for

supporting the operation and business of the operator, and therefore it is out of the NFV frame-

work scope [8]. However, in order to manage and orchestrate network services, NFV-MANO
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interacts and exchanges information with the OSS/BSS. This interaction is through the Os-Ma

interface which is defined in [8].

2.2.2.3 VNFs and Elements Managements (EM)

As shown in the middle of Figure 2.2, VNFs are on top of the virtual resources of the NFV
infrastructure. These VNFs, in addition to all other NSs’ elements are deployed on these re-
sources. Each VNF is associated with an Element Management (EM). An EM is responsible for
FCAPS management functionality for the VNF. It includes fault management, configuration,

accounting, collecting performance measurement results, and security management [8].

2.2.2.4 NFV Infrastructure (NFVI)

NFVI is the totality of the hardware and software components that create an environment
enabling the deployment, management, and execution of VNFs. The hardware components can
be at one point of presence (NFVI-PoP) or span across multiple NFVI-PoPs. NFVI has three

components, including hardware resources, virtualized resources, and the virtualization layer

[1].

Hardware resources: These are physical components that provide computing, storage, and
network. In NFVI, off-the-shelf computing hardware is used as computing resources. Storage
resources can be whether the storage of the servers or shared network-attached-storage (NAS).
Network resources are usually routers and links providing the switching function between the
computing and storage resources. The switching is whether inside an NFVI-PoP or between

multiple NFVI-PoPs [1].

Virtualization layer and virtualized resources: The virtualization layer abstracts the phys-

ical resources and provides virtualized resources for the VNF deployment. Therefore, it decou-
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ples the VNF software from the hardware resources and ensures a hardware independent lifecy-
cle management for the VNF. It provides virtual computing and storage resources in the form
of virtual machines (VM) [1]. Each VNFC is deployed only on one VM [2]. The virtualization
layer provides the virtual network resources in the form of virtualized network paths using tech-
nologies like VLAN, VPLS, etc. The virtualized network paths provide connectivity between

the VMs [1], and they realize the VLs.

2.2.3 NFYV Information Elements

NFV-MANO requires different information elements for NSs and their elements in order to
orchestrate and manage them. These information elements include deployment templates (de-
scriptors) and information of instances (records). A descriptor describes the requirements and
attributes for deployment and lifecycle management of an entity, e.g. a VNF or NS [8]. As
discussed earlier, descriptors of on-boarded VNFs and NSs are stored in the VNF and NS cata-
logs. In this thesis, descriptors are important artifacts as our proposed method requires them as
inputs and generates them as outputs. We will discuss different descriptors defined in the NFV

framework in details in Chapter 3. Figure 2.3 shows an overview of NSD.
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Figure 2.3 - NSD overview (from ETSI GS NFV-IFA 014 [9])




An instance record describes the characteristics of an instantiated entity, e.g. a VNF or NS
instance. It includes the instance allocated resources index, operational status, network config-
urations, e.g. I[P address, etc. [8]. In the NFV architecture, records are stored in the NFV instance

repository [8], and they are out of our scope.

2.3 Model Driven Development (MDD)

Model Driven Development is a development paradigm that uses models as the primary
artifacts of the process [29]. MDD relies on an architecture referred to as Model Driven Archi-
tecture (MDA) [16] defined by Object Management Group (OMG) [30]. A model represents an
abstraction of a system’s structure and/or behavior [31]. This abstraction eases the processing
and manipulation of the artifacts as the details are abstracted away. With MDD, models can be
transformed into other models for different purposes, such as implementation, validation, gen-
eration, etc. An MDD process consists of the models it is manipulating and the transformations

it is applying to these models.

2.3.1 Unified Modeling Language (UML)

Unified Modeling Language (UML) [32] is a widely used general-purpose modeling lan-
guage defined by the OMG. UML is a suit of notations. It enables designers to specify a system
using different diagram types [29], e.g. class diagram or activity diagram [33]. UML provides a
mechanism called profiling through which we can specialize UML to create a Domain-Specific
Modeling Language (DSML). A UML profile is a metamodel that extends the UML metamodel
using stereotypes, tagged values (attributes for stereotypes) and constraints [29]. There exist
many tools supporting UML. Papyrus [34] is a UML tool that provides most of the UML fea-
tures, including UML diagrams and UML profiling feature. We have used Papyrus in our pro-

totype tool for developing profiles according to our metamodels.
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2.3.2 Model Transformation

A model transformation can be Model-to-Model (M2M) or Model-to-Text (M2T). In the
former type, one or multiple source models are transformed into one or multiple target models.
In the latter, the output is a text string [29]. A model transformation is a mapping function from

the source model(s) to the target model(s)/text string [35].

ATLAS Transformation Language (ATL) [36] is a widely used M2M model transformation
language. It is a rule-based language and uses OCL [37] expressions and data types to define
the algorithms, but it is not limited to OCL. ATL is a hybrid language designed based on both
imperative and declarative programming paradigms [29]. An ATL transformation is composed
of one or multiple Rules and Helpers. Each Rule generates one or multiple elements in one
of the output models from elements in the input models. There are two types of Rules includ-
ing Matched Rules and Lazy Rules. The former type matches some specified elements
in a source model, and from them, generates a group of distinct elements for the target models.
Matched Rules are invoked declaratively. The latter type has the same functionality, but it
is invoked from other Rules imperatively. A Helper is a method that makes it possible to

factorize a piece of code and reuse it. He 1pers are written using OCL expressions [36].

2.4 Related Work

In the state of the art, different works in different domains are related to this thesis from
different aspects. However, to the best of our knowledge, there is no work that addresses the

requirement decomposition for the purpose of network service design in the context of NFV.

As discussed in Chapter 1, our work was inspired by [11]. In this work, authors propose a

model-driven method for designing highly available applications that satisfy the user require-
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ments. The designed applications are composed of Commercial-off-the-shelf (COTS) compo-
nents in the context of Service Availability Forum (SA Forum) [38] compliant middleware. This
method decomposes the user requirements to lower level requirements (referred to as configu-
ration requirements) using an ontology. The method selects the components satisfying the re-
quirements from a catalog. Our approach designs NSs in the NFV context. It requires the selec-
tion of VNFs but also the design of other NS constituents, especially the forwarding graphs,

which lead to designing the NS traffic flows. This aspect is not considered in [11].

The works in [39, 40] focus on web service composition. In [39], the authors propose a
formal meta-framework to compose web services according to functional requirements. It de-
composes complex requirements into Boolean combinations of atomic requirements expressed
in a certain formalism. It selects the web services that satisfy these atomic requirements. They
use available methods for this decomposition and selection. The meta-framework identifies the
composition of the selected web services by using satisfiability techniques and reusing the prior
composition results. In [40], the authors of [39] extend their meta-framework to take into ac-
count the non-functional requirements using formal methods. They analyze users’ preferences
over the non-functional requirements to find the optimal web service composition. This work
does not consider the dependencies and the flows in the composition. This work is applicable

for web services but not for the composition of VNFs.

Many works have been done on service composition and decomposition in the context of
service-oriented architecture (SOA) [41, 42, 43]. In [41], the authors propose a decomposition-
based method to compose services from components according to user requirements. This
method takes the QoS of the composed service into account according to its utility. The authors

have defined composition structures, by which they compose the services. The method derives
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the constraints of the components (for component selection) from the composite service con-
straint. Then, it computes the utility of the composed service according to the utility of the com-
ponents. This work considers the flow between the services according to the pre-defined struc-

tures.

In [42], the authors propose a method for service composition from atomic services using
genetic algorithms. The method uses path decomposition by adopting Case-Based Reasoning
and genetic algorithms. It adjusts the execution path and accordingly forms an execution plan
to meet the user requirements. The execution paths and plans are correspondents to forwarding
graphs at different levels of abstraction. This method designs the composite services to meet the

QoS requirements.

In [43], the authors propose an ontology-based method that decomposes IT service pro-
cesses. They have proposed a structured description of services and service processes that
support this method. They have used “server deployment service” as a case study on IT services.
It is composed of lower level services including configuration requirements setup, server envi-
ronment setup, and system configuration setup. The definition of service in this work is different
from our definition, and it maps to NFV-MANO processes, to some extent. This work assists
service providers to manage their operational processes. This work does not decompose the

requirements, nor designs a service or a process.

The works proposed in [44, 45, 46] focus on different aspects of NFV including NSs and
service chaining. In [44], authors propose a semantic-based ontology for NSD according to the
ETSI NFV standard [8]. They define the relationships between the NSD parameters and con-
struct the ontology accordingly. They have used OWL as the language for constructing the on-
tology. The purpose of this work is data modeling for VNF management automation and NS

generation. However, this work does not propose any method for these activities.
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In [45], authors propose an algorithm to provide an efficient placement for a Network Ser-
vice Chaining (NSC) in the infrastructure. An NSC is composed of multiple NFs, and each NF
may have different decompositions. By considering different decompositions, the algorithm
maps the NFs to the components of the infrastructure. According to the characteristics of the
components, it selects the NF decompositions and realizes an efficient placement. This work

assumes the different decompositions are given and it does not decompose the service itself.

In [46], authors have proposed three different architectures for the deployment of IMS in an
NFV environment using VNFs. These architectures include typical, merged, and split IMS. Typ-
ical IMS complies with the 3GPP standard. Merged IMS combines the IMS blocks into one
VNF and deploys one instance for each user. Split IMS decomposes the IMS functionalities into
simpler functionalities realized by different VNFs. Furthermore, they propose a management
architecture to orchestrate the proposed architectures on top of the cloud infrastructure. We used
the merged IMS architecture proposed in this paper to enrich our case study discussed in Chap-

ter 6.
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Chapter 3

The Modeling Framework

In this chapter, we will introduce the modeling framework on which our approach for gen-
erating network service descriptors is based. This framework consists of a number of metamod-
els that we propose in addition to the metamodels defined by ETSI NFV. The metamodels we
propose are Network Service Requirement (NSReq), Network Function Ontology (NFO), VNF
Architecture Descriptor (VNFAD), VNF Catalog, Protocol Stack, and Solution Map (SM). The
rest of the metamodels are VNF Descriptor (VNFD), VNF Package Info, and NSD which ETSI

NFV has defined [9, 14, 8, 10]. Our metamodels are based on the UML language [33].

3.1 Network Service Requirements (NSReq)

A tenant expresses his/her requirements for a network service using an NSReq model. An
NSReq model describes a required network service at a high level of abstraction from functional,

architectural, and non-functional aspects.

The NSReq indicates the functionalities of the required network service. The NSReq can
constrain these functionalities to be realized only with specific architectures. It also specifies
the functionalities that the environment can access through service access points. The NSReq

can define the required QoS for the network service. All these characteristics can be modeled
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using four types of requirement elements defined in the NSReq metamodel. These elements are
Functional, Architectural, Service Access Point, and Non-functional Requirements (FR, AR,

SAPR, and NFR respectively). The NSReq metamodel is depicted in Figure 3.1.

<<Enumeration>> <<Enumeration>> <<Enumeration>>
Plane Role QoS Metrics
NSRe
0.1 i - Data - Server - Throughput
- author [I] - Control - Client - RequestsPerSecond
- date [1] - Input - MaximumConcurrentSessions
; - Output
______________________ 0.1 Requirement
RootA o RootF i ~
' HasArchConstraint \} | FHasSAPR * l SALREashER Non-Functional
; ———>  Service [&—> i
Architectural | & Functional | P z Requirement
=| Requirement [ Requirement i - - metric [1]
* * 3 Point - value [I]
- name [1] - name [] i Requirement _
: - request size [0..1]
® ¥ ;
T T 1 1 i — ;
DecomposedTo| Dependency  DecomposedTo Dependency Xor Exposed
Functionality I
R - functionality [I]
as - plane [I] NFRTarget
- role [1..¥]

Figure 3.1 - The NSReq metamodel

3.1.1 Functional Requirements (FR)

An FR element represents a required functionality in the required network service, specified
with a name. A functionality can be decomposed into multiple simpler functionalities. A tenant
can require a specific decomposition for a functionality using the DecomposedTo association of
the FR, as shown in the metamodel. Therefore, the NSReq structure is hierarchical for the func-
tional requirements. The root of this hierarchy defines the functionality of the required network
service at the highest level. This root is indicated by the RootF association in Figure 3.1. A
functionality can be dependent on other functionalities. It means the dependent functionality
requires those other functionalities in order to perform. The tenant can specify such a relation
in the required network service using the Dependency association of the FR element, as shown

in the metamodel.
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3.1.2 Architectural Requirements (AR)

An AR element represents a functional block in an architecture, specified with a name. We
refer to these blocks as architectural blocks, and they are realizations of one or multiple func-
tionalities. Generally, an AR is a constraint on one or multiple FRs. It means only the indicated
architectural block should realize those functionalities in the required network service. For ex-
ample, a tenant can constraint the required voice call functionality to be realized only by IMS
architecture. FRs are constrained by ARs using HasArchConstraint association in the meta-

model.

The architectural blocks can be composed of multiple simpler architectural blocks. A tenant
can require a specific decomposition for an AR using the AR’s DecomposedTo association in the
metamodel. The NSReq structure is hierarchical for ARs as well as the FRs. The children of a
required functionality inherit the architectural constraints on their parent, i.e. only the children
of the constraining AR should realize that functionality’s children. Architectural blocks may
depend on each other in order to function, and it shows the communication between them. The

tenant can require such a relation using the AR’s Dependency association in the metamodel.

There is a special case when the tenant requires an architecture with all its functionalities. In
such a case, there should be no required functionalities in the NSReq, and the ARs exist inde-

pendent of any functional requirements.

3.1.3 Service Access Point Requirements (SAPR)
A SAPR element indicates a required SAP in the required network service. The SAPR indi-
cates the functionalities exposed to the environment through the required SAP. The SAPR spec-

ifies the plane (data/control) and the role(s) (server, client, input, and output) of each function-
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ality exposed by the SAP — we will discuss these characteristics of exposed functionalities fur-
ther in Section 3.2.2. A tenant can specify each exposed functionality associated with a SAPR
using the Exposed Functionality element in the metamodel. The tenant might not have the
knowledge for the network service decomposition regarding the exposed functionalities. As a
result, these functionalities may or may not exist as an FR in the NSReq, and they are specified

only with a name in the Exposed Functionality elements.

3.1.4 Non-functional Requirements (NFR)

An NFR element defines the maximum required QoS of a functionality that the environment
receives from a SAP. The NFR indicates this functionality by an association with an Exposed
Functionality element, as shown in Figure 3.1. An NFR defines the required QoS with a metric
and its required value as shown in the metamodel. The metric can be throughput, requests per

second (RPS), or maximum concurrent sessions (MCS).

If the metric is RPS, the NFR should indicate the total request size using the Request Size
attribute. Multiplying the request size by the value results in the required throughput. In this
case, the NFR is composite as it is composed of two QoS requirements (RPS and throughput).
A functionality exposed by a SAP cannot associate with more than one NFR of each specific
metric, e.g. a functionality cannot have two different throughput NFRs. It also means a
functionality cannot associate with two NFRs of RPS and throughput simultaneously, as the

NFR of RPS metric conveys a throughput requirement as well.

Figure 3.2 depicts an NSReg example with the root FR (FR1) decomposed into three other
FRs (FR2, FR3, and FR4), in which FR2 and 3 are dependent on FR4. A SAPR with an NFR is
defined for each of FR2 and FR3. In this picture, modeling the SAPR elements and their relation

with NFRs are simplified to be easier to follow.
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SAPR2
Func.: F3
Plane: Control
Roles: Server, Input, Output

SAPRI
NFR2 Func.: F2
Metric: RPS Plane: Control
Value: 20 Roles: Server, Input, Qutput

Request Size: 10

NFRI
Metric: Throughput

Value: 600

Figure 3.2 — An example of NSReq model

3.2 Network Function Ontology (NFO)

An NFO model is a knowledge-base for designing network services. As discussed earlier,
the requirements that a tenant provides in an NSReq model are at a high level of abstraction.
Therefore, there is a gap between these requirements and the required NSD. We use the

knowledge accumulated in the NFO to fill this gap.

An NFO model has the information on functionalities, how they decompose to simpler func-
tionalities, and their dependencies. It has the information on what standard architectures and
implementations exist to realize these functionalities. The NFO describes these architectures’
decompositions to lower level blocks, their interfaces, and their dependencies. An expert may
develop an NFO model manually using the knowledge in the domain of different network ser-
vices. We will also propose an approach in Section 4.2.7 to automatically enrich the NFO to
some extent. The NFFO metamodel is depicted in Figure 3.3. It has three main elements including

Functionality, Architectural Block (AB), and SAP.
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Figure 3.3 - The NF Ontology metamodel

3.2.1 Functionalities

A Functionality element corresponds to a functionality that can be part of a network service.

It is specified with a name and may have multiple aliases. In an NFO model, each functionality

<<DataType>>

Context

- realizedBy [*]
- functionality [¥]
- archBlock [¥]

<<Enumeration>>

Plane

- Data
- Control

is unique, and may have the following relations with other functionalities.

Decomposition: A functionality can decompose to lower level functionalities. Therefore,
NFO has a hierarchical structure for functionalities. In the decomposition of a functionality, the
child functionalities can be mandatory or optional. The mandatory children form the core
composition of the functionality. A tenant can customize a functionality’s composition by se-

lecting its optional children. In an NFO model, we use the ComposedOf elements to specify the

decomposition of a Functionality, as shown in Figure 3.3.
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Specialization: Some functionalities are abstract, and there is no implementation for them.
Such functionalities can be specialized to more specific functionalities that have been imple-
mented. For instance, messaging functionality is abstract, and it is specialized to immediate
messaging and session-based messaging [23]. A tenant might require a general functionality
since he/she might not have enough knowledge regarding the functionalities. However, we can-
not use general functionalities in designing a network service. Instead of an abstract functional-

ity, we should use one or multiple of its specializing functionalities.

The idea of specialization of a functionality in our NFO comes from the feature modeling
domain [47]. The specialization can be exclusive or non-exclusive. In an exclusive specializa-
tion, only one of the special functionalities should be selected. In an NFO model, we use OR
and XOR elements to specialize a Functionality (for non-exclusive and exclusive respectively),

as shown in Figure 3.3.

Dependency: Functionalities can depend on each other. In a dependency relation, we refer
to the dependent functionality as the client and the other one as the supplier. The client and
supplier functionalities communicate according to the client-server architecture [20]. The client
functionality acts as the client and the supplier functionality acts as the server, i.e. the former
sends requests to the latter. The sequence of these dependencies implies the flows in the higher
level functionalities, and therefore in the network services. In an NFO model, we specify a de-
pendency relation between two Functionalities using a Functional Dependency element, as

shown in Figure 3.3.

Two functionalities may have a dependency relation only in the context of a parent or an
ancestor they have in common. L.e. such dependency exists between them only if they are in the
decomposition of that parent/ancestor — the ancestors of a functionality are the parents of that

functionality’s parents and the parents of the functionality’s ancestors which recursively reach
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the root. We define the context of a Functional Dependency in the NFO by the Context element,

as shown in Figure 3.3. For more details regarding the Context element refer to Section 3.2.4.

3.2.2 Architectural Blocks (AB)
An AB element in the NFO corresponds to an architectural block as defined in Section 3.1.2.
It is specified with a name, and it may have multiple aliases, similar to a Functionality. As
discussed earlier, an architectural block realizes one or multiple functionalities. For instance, S-
CSCF is an architectural block in the IMS architecture that realizes the registration and session
setup functionalities [13]. We use the RealizedBy association to define this relation between the
ABs and Functionalities in the NFO, as shown in Figure 3.3. An AB may have the following

relations and elements.

Decomposition: An architectural block can be decomposed into simpler architectural
blocks. Unlike a functionality, an architectural block can have alternative decompositions, some
of which can be based on a standard or just an implementation. For instance, an IMS architecture
can be decomposed according to the 3GPP standard [13]. We specify a decomposition of an 4B

by an ArchComposition element in the NFO, as shown in Figure 3.3.

Interface: An architectural block communicates with other architectural blocks through its
interfaces. An interface exposes one or multiple functionalities realized by the architectural
block on specific planes (data/control) to the outside world. A functionality may perform on
multiple planes. Different fractions of the functionality related to different planes can be ex-
posed through different interfaces. As an architectural block realizes a functionality, it also re-
alizes the children of that functionality. Therefore, an exposed functionality through an interface

can be either the functionality realized by the architectural block or one of its children. Each
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exposed functionality has specific roles (input, output, server, and client) while communicating

through a specific interface.

Input and output roles are defined in terms of the direction of the packet flows, and they are
complementary. These two roles can be defined on both data and control planes, as there can be
packet flows associated with both planes. Server and client roles are according to the client-
server architecture [20]. The exposed functionality which sends requests has the client role, and
the one that receives them has the server role. These two roles are also complementary, and they
are defined only on the control plane. Each exposed functionality uses a specific protocol for

communication through the interface.

As an example, Gm is one of the interfaces of P-CSCF architectural block in IMS architec-
ture [13]. It exposes registration and session setup functionalities on the control plane and uses
SIP protocol. User equipment sends requests to and receives responses from this interface.
Therefore, this interface has the roles of server, input, and output for both functionalities. We
specify each interface of an 4B by the Interface element, and each exposed functionality by the

Interface Functional Characteristic element in the NFO, as shown in Figure 3.3.

Dependency: Two architectural blocks may communicate differently in different contexts,
1.e. in different decompositions and/or while realizing different functionalities. In each commu-
nication between two architectural blocks, an exposed functionality from each of their interfaces
is involved. Each involved functionality has specific roles and uses a specific protocol in such
communication. These characteristics are a subset of the characteristics exposed by the inter-
face. The communication is also on a specific plane, which both involved interfaces should
support. We define the communication between two 4Bs in the NFO by the Architectural De-
pendency element. The characteristics of the functionalities involved in the communication are

indicated using 4ADep Interfaces element, as shown in Figure 3.3.
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We define the context in which a dependency relation exists by using the Context element.
A Context element may define one or many parents/ancestors that both ABs of a dependency
relation have in common. l.e. those 4ABs have that communication only if they are in the decom-
position of the indicated parents/ancestors. The Context element may also define RealizedBy
associations related to one or both 4Bs. It implies that those 4Bs have such communication only
if they realize the indicated Functionalities. For more details regarding the Context element refer

to Section 3.2.4.

3.2.3 Service Access Points (SAP)

A SAP element indicates an access point of a whole architecture. The environment com-
municates with an architecture (or a network service) through such access points. An access
point (service access point) exposes one or some of the architectural blocks’ interfaces to the
environment. The access point may expose all or a subset of these interfaces’ characteristics.

Therefore, the environment can access the exposed functionalities through such interfaces.

For instance, the Gm interface of P-CSCF block in IMS architecture is exposed to the envi-
ronment. The user equipment can communicate with P-CSCF through the access point associ-
ated with the Gm interface for registration and session setup [13]. We indicate the interfaces
and the subset of their characteristics exposed by a SAP using the SAP Interface and SAP Func-

tional Characteristic elements, respectively, as shown in Figure 3.3.

A SAP may have specific contexts, similar to Architectural Dependency as discussed earlier.
For instance, a S4P exposing an interface of an AB may exist only if the 4B is in a specific
decomposition. We define the context of a SAP using the Context element. It defines the par-
ent/ancestor(s) of the ABs associated with the SAP. For more details regarding the Context ele-

ment refer to Section 3.2.4.
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3.2.4 Context

As discussed in the previous subsections, the Confext element defines the context in which
the Functional Dependency, Architectural Dependency, and SAP elements exist. When the Con-
text is used for a Functional Dependency, only its ‘functionality’ attribute is applicable. When
it is used for an Architectural Dependency, its ‘realizedBy’ and ‘archBlock’ attributes are appli-

cable. When it is used for a SAP, only its ‘archBlock’ attribute is applicable.

The way we have defined the Context element is that there is a logical AND relationship
among its attributes. It means the context is valid only if all of the indicated elements by the
attributes exist. Also, there is a logical OR relationship among all the Context elements defined
for an element, i.e. that element exists if at least one of the contexts is valid. This way, defining

the context for an element is more flexible.

Figure 3.4 shows an example of an NFO model. In this example, we have omitted Interface,
ADep Interfaces, and SAP Interface elements. We are showing each SAP using a black dot con-

nected to an Architectural Block. The functionalities that each SAP exposes from its Architec-

tural Block is written on the edge that connects the SAP.

Figure 3.4 - An example of NFO model
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3.3 VNF information elements

A VNF has two main information elements used in this work including VNFD and VNFAD.
The VNFD describes the VNF from the virtualization perspective, i.e. describing its constituents
and the requirements for its deployment [14, 10]. In order to design network services out of
VNFs, we need the information of the VNFs application aspect, e.g. their functionalities and
application interfaces. Such information does not exist in the VNFD, and it is out of ETSINFV’s
scope. We have proposed a new information element for VNFs which include such information,
1.e. VNFAD. These two information elements along with other elements describing a VNF are

entailed by a VNF Package Info model that is defined and standardized by ETSI NFV [14, 10].

3.3.1 VNF Descriptor (VNFD)

A VNFD model is the deployment template of a VNF, and it describes the virtualization
characteristics of the VNF and its constituents. The VNF vendors provide the VNFDs, and the
NFVO uses them in order to orchestrate and manage the VNFs in the NFV framework. The
characteristics that a VNFD defines are the requirements that the NFVI should provide in order

to deploy the VNF. ETSI NFV has standardized this model in [14].

A VNFD model is composed of a descriptor for each of the VNF’s elements, e.g. VNFC,
VnfVl, and VnfExtCp. Their descriptors are called Virtual Deployment Unit (Vdu), VnfVI De-
scriptor (VnfVLD), and VufExtCp Descriptor (VnfExtCpd) respectively. In addition, the VNFD
model describes the VNF’s different compositions and non-functional characteristics using de-
ployment flavor elements. Figure 3.5 depicts a portion of the VNFD metamodel which is in our

scope. For the complete metamodel refer to [14].
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Figure 3.5 - The VNFD metamodel

3.3.1.1 Vdu

A Vdu element describes the deployment requirements of a VNFC, e.g. required CPU, RAM,
and storage. It describes the VnfcCps using VduCpd elements, as shown in Figure 3.5. A
VduCpd specifies the maximum bitrate that the connection point can provide. It defines the layer
protocols that the connection point uses for communication, e.g. IPv4, IPv6, Ethernet, etc. It
also describes the role of the connection point in the flow pattern of the VnfVl it is involved
with. For instance, it specifies whether a connection point’s role is root or leaf in an E-Tree flow

pattern.

3.3.1.2 VnfVLD
A VnfVLD element is the deployment template of a VnfV1 of the VNF. It indicates the flow

pattern of the virtual link, i.e. E-Line/E-LAN/E-Tree [28, 10], and the layer protocol it uses for
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communication, e.g. IPv4, IPv6, Ethernet, etc. The VnfVLD uses the ConnectivityType element

to provide this information, as shown in Figure 3.5.

By using deployment flavor elements (VnfVIDf), the VnfVLD describes different levels of
QoS that the virtual link provides. These deployment flavors define the required bitrate, latency,
jitter, and packet loss ratio of the VnfVI1. The QoS of the internal virtual links is out of our scope,

as we are interested in the QoS that the whole VNF exposed to the environment.

3.3.1.3 VnfExtCpd

A VnfExtCpd element describes a VnfExtCp. It indicates the connection point’s connectivity
to an internal connection point or an internal virtual link. This connectivity is to a virtual link
when the external connection point should connect to multiple internal connection points. The
VnfExtCpd defines the layer protocols that the connection point uses and its role in the flow

pattern, similar to the VduCpd, as discussed in Section 3.3.1.1.

3.3.14 VnfDf

A VnfDf element is a deployment flavor that describes how the VNF is composed of VNFCs
and the VNF’s non-functional characteristics. A VNF may have different deployment flavors.
Each flavor indicates a group of VNFCs that together realize the VNF. Therefore, different
flavors may define different sets of functionalities for the VNF. A VnfDf indicates the involve-
ment of a VNFC using a Vdu Profile element, as shown in Figure 3.5. In a deployment flavor,

each VNFC can have a number of instances within the range defined by its profile.

Since each VNFC in a deployment flavor has a range of the number of instances, each de-
ployment flavor defines a capacity range for the VNF. A deployment flavor defines multiple
instantiation levels in this capacity range. Each level defines the exact number of instances for

each VNFC involved in the flavor. A VNF is instantiated according to one of its instantiation
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levels of its selected deployment flavor. The VnfDf defines each instantiation level using an
Instantiation Level element, as shown in Figure 3.5. From each instantiation level, the VNF can

be scaled according to different scale levels.

A deployment flavor defines other VNF’s characteristics including affinity/anti-affinity rules
for the VNF’s elements, QoS of the internal virtual links, scaling aspects, etc. These character-

istics are out of our scope.

3.3.2 VNEF Architecture Descriptor (VNFAD)

A VNFAD describes the application aspect of a VNF — in this thesis it only provides the
portion required for the NS design. It specifies the VNF’s functionalities by specifying the ar-
chitectural blocks that the VNF is implemented based on. It specifies the VNFCs’ functionali-
ties, the VNF’s application interfaces, and the QoS provided through these interfaces. It defines
different flows inside the VNF related to different functionalities. Figure 3.6 depicts the VNFAD
metamodel that we propose. Among the VNFAD’s elements, the VNF Interface and Flow Trans-

Jformation require further discussions.
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Figure 3.6 - The VNFAD metamodel

3.3.2.1 VNF Interface

A VNF Interface element defines an application interface of the VNF exposed to the envi-

ronment. VNFCs expose these interfaces through their VnfcCps which are exposed through

VnfExtCps. A VNF’s interface is the realization of an interface of the architectural block that

the VNF implements. Similar to an architectural block’s interface, a VNF’s interface exposes

one or multiple functionalities (or their children) of the VNFC on specific planes. The exposed

functionalities have specific roles and use specific protocols in their communication through the

interface. A VNF interface specifies each of its exposed functionalities and its characteristics

using a Functional Characteristic element, as shown in Figure 3.6.
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We make the assumption that the VNF capacity is compartmentalized in the sense that each
VNF interface is associated with a portion of the VNF capacity. Each capacity portion is dedi-
cated to the functionalities exposed by the associated interface. These functionalities share this
portion of the VNF capacity, while exposed functionalities of other interfaces cannot access it.
The capacity portion associated with each interface results in a specific QoS exposed form that

interface.

We characterize this QoS by a value and a metric attribute. The metric can be throughput,
RPS, and MCS, same as the metrics for NFRs, as discussed in Section 3.1.4. A metric of an
interface might not be appropriate for all its exposed functionalities. For instance, electronic
mail functionality is not session based, and MCS metric is not appropriate to describe its QoS.
The ‘relatedMetric’ attribute in the Functional Characteristic element indicates the appropriate
metrics for the specified functionality. We define the QoS related to a VNF Interface element

by QoS Characteristic elements, as shown in Figure 3.6.

3.3.2.2 Flow Transformation
A Flow Transformation element defines a flow inside the VNF. We define such flow by the
source and the target interfaces, and the subset of their characteristics related to the flow (a

plane, functionality, and role for each interface).

The other characteristic of a flow is the transformation of its QoS from the source interface
to the target interface. We define this QoS transformation by defining the source and target
metrics and the ratio of the transformation. For instance, a VNF receives a flow at interface-1
with 1 request per second. The VNF sends out 10 units of throughput from its interface-2 per
each request. Therefore, the QoS transformation for such flow is RPS = Throughput with a
ratio of 10. The metric of an interface in the QoS transformation can be throughput if it has a

role of input or output in the flow. Similarly, for RPS and MCS metrics the interface should
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have a role of server or client. We define the QoS transformations of a flow by the QoS Ratio

elements, as shown in Figure 3.6.

3.3.3 VNF Package Info

A VNF Package Info model contains the VNF information elements that the VNF vendor
has provided. These elements include VNFD, VNFAD, Software Image Information, Artifact
Information, and other elements. Except for the VNFD and VNFAD, the rest of these elements
are out of our scope. After on-boarding a VNF, the NFVO creates its corresponding VNF Pack-

age Info and stores it in the VNF Catalog. Figure 3.7 depicts the VNF Package Info metamodel.
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- userDefinedData [] 0-1 | VnfArchitecture
RefersTo Descriptor
Contains
. Softwarelmagelnformation

VnfPackageSoftware Gt - version [1]

Imagelnformation [ @——> - containerFormat [1]
- diskFormat [1]

- minDisk [1]
- minRam [1]

Figure 3.7 - The VNF Package Info metamodel

VNFAD is our proposed information element, and it is not considered in the ETSI NFV’s
standard. Therefore, VNF Package Info element, which is in the standard, does not reference the
VNFAD. We have used the User Defined Data attribute in the VNF Package Info element, which

is a key-value pair, to keep this reference, as shown in Figure 3.7.
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3.4 VNF Catalog

The VNF Catalog is a collection of the VNF Package Info models of the on-boarded VNFs.
For generating NSDs, we can access the VNFDs and VNFADs through the VNF Package Info

models in the VNF Catalog. Figure 3.8 depicts the VNF Catalog metamodel.

VNFCatalog
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VNF ! VnfPkglnfo RefersTo |
— o —
ArchitectureDesc (On-boarded) VNFD

Figure 3.8 — The VNF Catalog metamodel

3.5 Protocol Stack

The Protocol Stack model shows which protocol in any layer of TCP/IP protocol stack [48]
serves other protocols in the higher layer. We use this information to check whether the proto-
cols of different VNFs are compatible for communication. An expert should create and update

this model manually. We have proposed the metamodel shown in Figure 3.9 for the Protocol

Stack.

IsServedBy

#*

Protocol

- networkLayer *

Figure 3.9 — The Protocol Stack metamodel

3.6 Solution Map (SM)

A Solution Map (SM) model captures the information processed throughout the NSD gener-

ation process. It captures the information from the input models, i.e. NSReq, NFO, and VNF
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Catalog, and their relations. As a result, an important portion of the SM metamodel is a combi-

nation of the aforementioned input metamodels.

SM model, also, captures the information on the forwarding graphs designed in the NSD
generation process. These forwarding graphs are Functional, Architectural, and Pre-VNF For-
warding Graphs (FFG, AFG, and Pre-VNFFG respectively), and we will discuss them further
in Chapter 4. Figure 3.10 depicts the SM metamodel, in which the elements from the NSRegq
model are in cream, from the NFO are in blue, from the VNF Catalog are in orange, and for-
warding graph elements are in green. In addition, the SM model contains other elements related

to the NSD refinement process — discussed in Chapter 5 — which are shown in gray.
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Figure 3.10 - The Solution Map metamodel
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3.7 Network Service Descriptor (NSD)

An NSD model is the deployment template of a network service. It describes the virtualiza-

tion aspect of the network service and its constituents. The characteristics that the NSD defines

are requirements that the infrastructure should provide for the network service, e.g. the VMs’

capacity and the virtual networks QoS.

An NSD consists of the descriptor of the network service elements, including VNFDs, NsVL

Descriptors (NsVLD), SAP Descriptor (SAPD), and VNFFG Descriptor (VNFFGD). In addi-

tion, the NSD describes the composition and non-functional characteristics of the network ser-

vice using deployment flavor elements. Figure 3.11 shows a portion of the NSD metamodel

which is in our scope. For the complete metamodel refer to [9].

. , . NsDf NsD . SAPD
NsScalingAspect - < K 1.
- nsDfld [1] <@ -nsdid[1] @—> _ ynfExtCpd [0..1]
- defaultNsLevel [0..1] - designer [I] - layerProtocol [1..¥]
- nsdName [1]
References f 0.1
|
References ConnectsTo
LX), * * * 0.1
* |
VnfProfile i ;
NSLevel e E— VNFD NsVirtualLinkDesc
- nsVirtualLinkConnectivity [1..%] - . '
1 - vnfDf [1] HasConstituentg I.* ° VIrtuaIL'I:_nl_(E)?rSCId [Il]
- instantiationLevel [¥] * * ~senesaany Type ]
- minlnstances [1] VNFEGD j\ | 0 |
- maxInstances [1]
- vafigdid [1] % HasConstituent
* \l/* Refer’ences$ I i i
VIToLevelMapping VnfToLevelMapping L. %
CpdPool NFPD
- bitrateRequirements [1] - numberOfinstances [1]
- vIProfile [1] - vnfProfile [1] - cpdPoolld [1] =nfpidid [1]
- vnfExtCpd [¥] - nfpRule [0..1] |
* - sapd [*] - anExtEpd [
NsVirtualLink NsVIProfile ~sapd [ NsVIDf
Connectivitiy _ - Latency [0..1]
- minBitrateRequirements [I] | * References || -Jitter [0..1]
- virtualLinkProfile [1] - maxBitRaterequirements [1] - packet loss [0..1]
- vnfExtCpd [1..¥] p Y
& Sapd [0" I] numeration
LinkBitrateRequirement ElowFattern ConnectivityType
- Li
- root [1] R I"’II:.:h - layerProtocol [1..#]
- leaf [0..1] «Tres - flowPattern [0..1]

Figure 3.11 - The NSD metamodel
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3.7.1 NsVLD
An NsVLD element is the deployment template of an NsV1. It defines the flow pattern of the
virtual link (E-Line/E-LAN/E-Tree) and the layer protocol required for its communication, e.g.
IPv4, IPv6, Ethernet, etc. The NsVLD uses a Connectivity Type element to define these charac-
teristics, as shown in Figure 3.11. The connectivity of a virtual link to VNFs is defined by the

VNF Profile element.

The NsVLD defines the QoS characteristics of the virtual link including latency, jitter and
packet loss ratio. A virtual link may have different levels of QoS to be used in different cases.
The NsVLD defines each QoS level using an NsVL Deployment Flavor (NsVIDf) element, as
shown in Figure 3.11. The aforementioned QoS characteristics of virtual links are out of our

scope. The throughput characteristic of a virtual link is described by the NsVL Profile element.

3.7.2 SAPD
A SAPD element describes the virtualization aspect of a SAP in the network service. It in-
dicates the layer protocol required for its communication, e.g. [Pv4, IPv6, Ethernet, etc., and its
connectivity to VNFs in the network service. As discussed earlier, a SAP connects to VNFs
through their external connection points. Connectivity of a SAP to a single connection point is
direct, and to multiple connection points is through an NsVI. The S4PD element defines this

connectivity by referencing the corresponding VnfExtCpd or NsVLD, as shown in Figure 3.11.

3.7.3 VNFFGD
A VNFFGD element defines a VNFFG in the network service by indicating the VNFFG’s
constituents. As discussed earlier, a VNFFG is composed of a group of NFPs, and the VNFs,
NsVls, and SAPs involved in those NFPs. The VNFFGD references the descriptors of the con-

stituent VNFs and NsVls directly. It references the descriptors of the VnfExtCps and SAPs
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forming the NFPs using CpdPool elements, one CpdPool per VNF and one for all the SAPs, as

shown in Figure 3.11.

The VNFFGD defines each NFP by defining an NFP Descriptor element (NFPD). An
NFPD indicates the constituent connection points of the NFP by referencing their descriptors.
It also defines the source and destination IP addresses and port ranges using ‘nfpRule’ attribute,
as shown in Figure 3.11. Assigning the IP addresses and the port ranges is out of our scope since

it is a matter of network service configuration.

3.7.4 NsDf

An NsDf element is a deployment flavor that specifies a composition, capacity, scalability,

and affinity/anti-affinity rules for the network service.

Composition: An NsDf indicates a group of VNFs referenced by the NSD to realize the
network service. Different flavors in a network service may indicate different sets of VNFs, and
therefore different functionalities for the network service. An NsDf indicates each VNF by a
VNF Profile element. Different sets of VNFs may require different connectivity. Therefore, the
NsDf indicates a group of NsVls for the VNF’s connectivity. These virtual links should be from
the ones that NSD references. The NsDf indicates each NsVI using an NsV/ Profile element, as
shown in Figure 3.11. The connectivity between the VNFs and virtual links are specified by the

VNF Profile elements using the NS Virtual Link Connectivity elements, as shown in Figure 3.11.

Capacity: Each deployment flavor indicates a capacity range for the network service by
defining a capacity range for the VNFs and NsVls in their profiles. Each VNF Profile specifies
a deployment flavor, an instantiation level, and a range for the number of instances for the VNF.

Each NsVL Profile specifies a deployment flavor and a bitrate requirement range for the root
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and the leaf of the virtual link. The definition for the root and the leaf bitrate requirements for

virtual links with different flow patterns are different [10]:

e E-Line: The root bitrate requirement is equal to the bitrate of the line. The leaf bitrate
requirement is not applicable, as E-Line has no leaf connection.

e E-LAN: The root bitrate requirement is equal to the aggregate capacity of the LAN. The
standards today do not support multiple bitrate requirements for the leaf connections.
Therefore, the leaf bitrate requirement is equal to the maximum bitrate among all of the
virtual link’s connections.

e E-Tree: The root bitrate requirement is equal to the virtual link’s root bitrate. The leaf
bitrate requirement is equal to the maximum bitrate among the virtual link’s leaves (for

the same reason as the E-LAN leaf bitrate requirement).

The NsDf defines multiple capacity levels in the capacity range defined for the network
service. Each level specifies an exact number of instances for each VNF and the exact bitrate
requirement for each NsVI. These values should be in the ranges defined by the profiles. The
network service is instantiated according to one of these levels, and it can be scaled from one
level to another. An NsDf defines each level using an NS Level element. The NS Level specifies
the VNFs’ and NsVIs’ capacities using VafToLevelMapping and VirtualLinkToLevelMapping

elements respectively, as shown in Figure 3.11.

The network service’s scalability and the affinity/anti-affinity rules defined by the deploy-

ment flavor are out of our scope.
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Chapter 4

Derivation of Network Service De-
scriptor from Functional and Archi-
tectural Requirements

In this chapter, we present our approach for the generation of NSD from NSReq taking into
account the functional and architectural requirements only. The refinement of this approach to
take into account the non-functional requirements is described in the next chapter. Our approach
generates multiple NSDs which we refer to as generic NSDs as they are not tailored to specific
QoS. In addition, our approach enriches the NFO based on new information obtained from the

NSReq or the VNF Catalog.

4.1 Overall approach

As discussed in Section 3.1, the NSReq model that a tenant provides generally represents
high level requirements. Therefore, there is a gap between these requirements and the targeted
NSD. To fill this gap, we decompose the NSReq recursively with the help of the NFO. To do so,
we map the NSReq’s requirements to the NFO elements. Then, we add the decomposition of the
matched elements from the NFO to the SM. This way, we decompose these requirements to

lower level requirements. According to these low level requirements, we are able to select the
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set of VNFs from the VNF Catalog. Different combinations of VNFs from this set can realize
the required network service. We capture each of these combinations and their VNFs’ connec-
tivity. Each combination forms a forwarding graph which is the main element of a network
service. From each forwarding graph, we generate a generic NSD element. Finally, we may

enrich the NFO according to new information obtained from the NSReqg model.

In this document, we use the term “mapping” for a specific operation between models or
elements of the models. By mapping two elements we mean matching their attributes’ values in
order to realize if the two elements match. By mapping two models we mean mapping a group
or all of their elements. The result of mapping two models can be the decomposition or selection

of' some elements depending on the models. Figure 4.1 shows the overall picture of the approach.
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Figure 4.1 - The overall picture of the NSD generation process

The input of this approach is the NSReq, NFO, VNF Catalog, and Protocol Stack models.

Our approach for NSD generation from NSReq consists of six steps:

e Step 1 — Initialization of the SM model
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e Step 2 — Decomposing the SM model

e Step 3 — Selecting the VNF's

e Step 4 — Generating the forwarding graphs
e Step 5 — Generating generic NSDs

e Step 6 — Updating the NFO

Figure 4.2 shows the input/output models of each of these steps.
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Figure 4.2 - The steps of the NSD generation process and the information flow

4.2 Steps of the Approach

In this section, we will discuss each step of the approach in details.

4.2.1 Step 1 — Initialization of the SM model
Throughout the whole NSD Generation process, we use an SM model to capture all the in-
formation needed from each input model. It simplifies the manipulation of the required
information and therefore simplifies the method. The NSReq model is the starting point of the
process. In the first step, we initialize an SM model from the NSReq. For this, we transform all

the NSReq elements into their corresponding SM elements.
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Functional and Architectural Requirements: In the next step (Step 2), we map the func-
tional and architectural requirements in the NSReq to the functionalities and architectural blocks
in the NFO, respectively. To simplify this mapping, in this first step, we transform the FR and
AR elements in the NSReq into the Functionality and AB elements in the SM, respectively. For
each FR, we transform its decomposition and dependency relations into ComposedOf and Func-
tional Dependency associations in the SM, respectively. For each AR, we transform its depend-
ency relations into Architectural Dependency associations in the SM. For the whole decompo-
sition of each AR, we create an Arch Composition element in the SM. Then, we associate it with

the ABs in the SM that correspond to that AR and its children.

Service Access Point Requirements: In the next step (Step 2), we map the service access
point requirements from the NSReq to the service access points in the NFO. Therefore, in this
first step, we transform each SAPR element into a SAP element in the SM. The SAP Functional
Characteristic elements of a SAP in the NFO are the corresponding elements of the Accessed
Functionality elements in the NSReq. These two elements provide the same information about
the SAPs and SAPRs, respectively, as shown in the NSReq and NFO metamodels. Therefore, we
transform each of the former elements to the latter in the SM model. Then, we associate each
created SAP Functional Characteristic with its corresponding SAP in the SM according to the
SAPRs. We use the TempRef associations for this association, as shown in the SM metamodel.
It is a temporary association, and in Step 2, we replace it by SAP Interface elements after real-

1zing the interfaces that each SAP in the SM should expose according to the NFO.

Non-functional Requirements: NFRs are out of the scope of the NFO. Therefore, we trans-
form the NFRs of the NSReq into the same elements in the SM, i.e. NFR elements, so we can
use them for dimensioning — discussed in Chapter 5. We associate each transformed NFR with

its corresponding SAP Functional Characteristic element in the SM.
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Tagging the elements: In different steps of the approach, we will add different elements to
the SM from different sources. The original source of the SM elements and their matching status
affect the way we process them. Therefore, we need such information on each SM element. At
different steps, we tag these elements according to their condition using their ‘matchingTag’
attribute — this attribute is an enumeration type (‘MatchingTag’). These elements include func-
tionalities, their decomposition and dependencies, architectural blocks and their dependencies,
and SAP functional characteristics, as shown in the SM metamodel. We use three tags including
‘matched’, ‘unmatched’, and ‘from ontology’. If we add a new element from the NSReq to the
SM we tag it as ‘unmatched’. When we match an SM’s ‘unmatched’ element to an NFO’s ele-
ment we change its tag to ‘matched’. If we add an element from the NFO to the SM, we tag it
as ‘from ontology’. At Step 1 (Initialization of the SM model), we tag all the elements that we
create in the SM as ‘unmatched'. An ‘unmatched’ element at this step means it is originally from
the NSReq, and it is not mapped to the NFO elements. The NFR elements are exempt from

tagging, as their only source is the NSReq, and we do not map them to elements of other models.

4.2.2 Step 2 — Decomposing the SM model
According to Section 4.2.1, at this point, the SM contains only the requirements provided in
the NSReq. In this step, we map the SM elements to their corresponding elements in the NFO to
find their matching elements. Then, we decompose/enrich each matched element in the SM ac-
cording to its matched element in the NFO. This helps us to fill the gap between the requirements

and the desired NSD, as discussed earlier.

The functional requirements in the NSReq are the main requirements that describe the re-
quired network service. In order to map the SM elements, we traverse the functional hierarchy
in the SM. From each traversed functionality, we traverse its related architectural blocks. We

map each traversed element with an ‘unmatched’ tag to their corresponding NFO elements.
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Traversing the SM hierarchies is a one-time procedure, and we call it SM Traversal. Every time
we match an element in the SM Traversal procedure, we capture its related elements into the
SM using specific procedures. These procedures are called Functional Capturing and Architec-
tural Capturing respectively for functionalities and architectural blocks. In these procedures,
we may add new functionalities and/or architectural blocks into the SM. Every time we add a
functionality or architectural block, we run the appropriate capturing procedure for it. Therefore,
these capturing procedures are run recursively, and they capture all the NFO sub-trees related

to the NSReq into the SM. Figure 4.3 shows an overview of Step 2.

SM
Traversal

Recursive If matched

- ™\
Functional

Capturing
J

in relation

Recursive  Realizing
ABs

Architectural
Capturing

Figure 4.3 — Overall view of decomposing the SM model

The required SAPs and their characteristics are defined in the NSReq, and we have captured
them in the SM. In standard architectures, not all of the interfaces matching the required S4Ps
characteristics are exposed to the environment. Therefore, we map all the SAPs in the SM to the
NFO SAPs in order to find the interfaces they should expose. We do so in a one-time procedure
referred to as SAP Capturing. This procedure is done after traversing the SM hierarchies com-

pletely.
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4.2.2.1 SM Traversal

SM Traversal procedure is composed of two sub-procedures, main sub-procedure and spe-
cial sub-procedure. The main sub-procedure is run in all NSReq cases. The special sub-proce-
dure is run for the NSReq special cases, i.e. NSReq without FR. According to Section 3.1.2, in
such cases, all the functionalities that the required architectural blocks realize in the NFO are

required. Therefore, the special sub-procedure takes into account these functionalities.

Main sub-procedure: In this procedure, we traverse the whole hierarchy of functionalities
in the SM using a breadth-first traversal. For each traversed functionality with the ‘unmatched’
tag, we traverse the functionality hierarchy of the NFO to find the matching functionality. As
discussed earlier, we specify a functionality with its name and aliases. Therefore, two function-
alities match if they have the same name or at least one of their aliases matches the name or an
alias of the other. If there is a match, we tag the SM’s functionality as ‘matched’, and we run the
Functional Capturing procedure for it. All the SM’s functionalities that were not matched in this
procedure remain with the ‘unmatched’ tag. This means we do not have information on these

functionalities in the NFO.

Special sub-procedure: For an NSReq with the special case, we need to add all the func-
tionalities realized by the required architectural blocks to the SM. For such an NSRegq, at the
beginning of the SM Traversal procedure, we traverse the SM’s architectural hierarchy. For each
architectural block, we traverse the NFO’s architectural hierarchy to find the matching architec-
tural block. Architectural blocks match to each other in the same way as the functionalities
match, i.e. by names or aliases. For each matched architectural block, we add all the function-
alities that it realizes in the NFO into the SM. We tag each added functionality as ‘unmatched’

and associate it with the architectural block using a ‘Realized By’ association in the SM. After
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traversing the SM’s architectural hierarchy, all the required functionalities exist in the SM. So,

we run the main sub-procedure of SM Traversal, i.e. traversing the SM’s functional hierarchy.

4.2.2.2 Functional Capturing

In this procedure, we capture all the relations and elements related to a matched function-
ality in the NFO that are relevant to our requirements. Then, we add them to the SM if they do
not already exist there. These relations include the relations to parents, dependency, decompo-

sition, specialization, and realization relations.

We start with capturing the relation to the parents, as we need these relations for checking
the context of the dependency relations. In capturing the realization relations, we add the archi-
tectural blocks. Capturing the realization relations before the decomposition relations build the
architectural hierarchy top-down. This simplifies the Architectural Capturing procedure com-
pared to building this hierarchy bottom-up. Functional Capturing procedure has four main
steps:

e Step 1 — Setting the Parents

e Step 2 — Capturing the Realization Relations

e Step 3 — Capturing the Dependency Relations
e Step 4 — Capturing the Decomposition/Specialization Relations

Step 1 — Setting the Parents: As discussed earlier, in SM Traversal procedure we traverse
the functionalities top-down. Therefore, all the parents of the functionality that are relevant to
the functional requirements have been added to the SM before this step. In this step, we only set

the functionality’s relations to its parents in the SM, and we do not add other parents.

At first, we check whether the parent(s) of the functionality in the NFO exits in the SM.

For each of the existing parents in the SM, we create a ‘Composed Of relation between the
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functionality and the parent, if such relation does not already exist. Then we tag this relation as

‘from ontology’. If such relation already exists with ‘unmatched’ tag we change it to ‘matched’.

Step 2 — Capturing the Realization Relations: In this step, we capture the architectural blocks
that realize the functionality according to its architectural constraints. First, we capture all the
architectural blocks through the ‘Realized By’ associations of the functionality in the NFO.
Then we check them against the functionality’s architectural constraints. As discussed in Sec-
tion 4.2.1, we had transformed the ARs in the NSReq into AB elements in the SM with the ‘un-
matched’ tag. Therefore, these 4Bs are the architectural constraints for their associated func-

tionalities in the SM.

If each captured architectural block already exists in the SM with an ‘unmatched’ tag and
associated with the functionality, it means it complies with the constraints. We run the Archi-
tectural Capturing procedure for it, and we change its tag to ‘matched’. If a captured architec-
tural block does not exist in the SM, we check it against the functionality’s parents’/ancestors’
constraints. According to Section 3.2.2, if the architectural block in the NFO is the child of the
architectural blocks specified by these constraints, it complies with the constraints. We add it to
the SM, run the Architectural Capturing procedure for it and tag it as ‘from ontology’. Then, we

create a ‘Realized By’ association between the functionality and this architectural block.

Step 3 — Capturing the Dependency Relations: In this step, we capture the functionality’s
dependency relations in the NFFO with a valid context. For each dependency, first, we check
whether it already exists in the SM. If it exists and it is tagged as ‘unmatched’, we change its tag

to ‘matched’.

If the dependency does not exist in the SM, we check whether its context is valid in the SM

— refer to Sections 3.2.1 and 3.2.4. If the context is valid we should add the dependency to the
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SM. The pre-condition for this is that the dependency’s supplier functionality should exist in the
SM, and it should have been mapped to NFO functionalities. If it exists with an ‘unmatched’
tag, it means it has not been mapped to the NFO elements. We run the Functional Capturing
procedure for it, and change its tag to ‘matched’. If it does not exist in the SM, we add it and run
the Functional Capturing procedure for it. Then we tag it as ‘from ontology’. After the pre-

condition is met, we add the dependency to the SM and tag it as ‘from ontology’.

Step 4 - Capturing the Decomposition/Specialization Relations: In this step, we capture the
decomposition and specialization relations of the functionality form the NFO. For the decom-
position relations, we only take the mandatory ones into consideration. The optional decompo-
sitions should have been required in the NSReq, and we take them into account in the SM Tra-
versal procedure. We check whether each mandatory decomposition and specialization relation
of the functionality in the NFO exists in the SM with the ‘unmatched’ tag. If yes, we change

its tag to ‘matched’.

If not, first, we check whether the child functionality in this relationship exists in the SM. If
it exists with the ‘unmatched’ tag, we run the Functional Capturing procedure for it, and we
change its tag to ‘matched’. If the child functionality does not exist in the SM we add it; we run
the Functional Capturing procedure for it, and we tag it as ‘from ontology’. Then, we add the

decomposition relation to the SM, and we tag it as ‘from ontology’.

4.2.2.3 Architectural Capturing
In this procedure, we capture the relations of an architectural block in the NFO that are
relevant to our requirements. Then, we add them to the SM if they do not already exist there.

These relations include the relations to the parents and the dependency relations.

53



We add the architectural blocks into the SM through the functionalities’ realization relations
in the Functional Capturing procedure. Also, in this procedure, we set the architectural blocks’
relations with their parents. Therefore, the decomposition of each architectural block is captured
into the SM indirectly, and we do not need to capture the decomposition relations. We start this
procedure by setting the relationship with parents, as we need to check these relations for vali-
dating the dependencies’ contexts. Architectural Capturing procedure has three steps:

e Step 1 — Setting the Parents

e Step 2 — Capturing the Interfaces
e Step 3 — Capturing the Dependency Relations

Step 1 — Setting the Parents: In this step, we set the architectural block’s relations with its
parents in the SM according to the NFO. An architectural block is in relation with its parents
through Architectural Composition elements, as shown in the NFO and SM metamodels. For
each parent of the architectural block in the NFO that also exists in the SM, we capture its
Architectural Composition elements that are associated with the architectural block. For each
captured Architectural Composition that also exists in the SM, we associate the architectural
block with it in the SM, if it is not already associated. If the captured Architectural Composition
does not exist in the SM, we add it to the SM, and we associate the architectural block and the

parent to it.

Step 2 — Capturing Interfaces: In this step, we capture the architectural block’s interfaces.

We add all the architectural block’s Interface elements from the NFO into the SM.

Step 3 — Capturing the Dependency Relations: In this step, we capture the dependency rela-
tions related to the architectural block in the NFO with a valid context. For each dependency
that the architectural block is associated with, whether it is the dependency’s client or supplier,

we need to capture the dependency. For such a dependency, we check the dependency’s contexts
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validity — refer to Sections 3.2.2 and 3.2.4. For each dependency with a valid context, we check

whether it exists in the SM. If it exists with an ‘unmatched’ tag we change its tag to ‘matched’.

If it does not, the pre-condition for adding it into the SM is that both of its client and supplier
ABs should exist in the SM. If the architectural block on the other side of the dependency exists
in the SM with an ‘unmatched’ tag, we run the Architectural Capturing procedure for it and
change its tag to ‘matched’. If the pre-condition is met, we add the dependency and tag it as
‘from ontology’. In either case (the dependency already existed or we just added it), we need to
enrich the dependency by its characteristics specified in the NFO. Therefore, we add the de-
pendency’s ADep Interfaces elements from the NFO into the SM in association with the depend-

ency.

4.2.2.4 SAP Capturing

As discussed earlier, one of the goals of this procedure is to add the information about the
interfaces exposed by the SAPs from the NFO to the SM. First, we map the SM SAPs to the NFO
SAPs to find their match and set their exposed interfaces accordingly. The other goal is to project
the SAPs in the SM to all the functional levels so we can use them, later in Section 4.2.5, for all

the designed NSDs.

Setting the SAPs exposed interfaces: In this part of the SAP Capturing procedure, we map
each SAP in the SM to a group of the SAPs in the NFO. The SAPs in this group should have a
valid context in the SM — see Sections 3.2.3 and 3.2.4 — and should be associated with the archi-
tectural blocks that also exist in the SM. We only consider these S4Ps for mapping as the rest
of the SAPs in the NFO are irrelevant to our requirements. We match the SAPs according to
their exposed functionalities, i.e. their SAP Functional Characteristic elements. We map each
of the SAP Functional Characteristic elements of the SM’s SAPs to the same elements of the

captured NFO SAPs in the group. These two elements match if their functionalities and planes
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are the same, and the roles of the one from the NFO includes all the roles of the one from the
SM. If there are any matches, we change the tag of the SAP Functional Characteristic element

in the SM to ‘matched’.

For each match, we add the associated SAP Interface element from the NFO into the SM.
We associate it with the matching SAP and SAP Functional Characteristic in the SM. Then, we
associate the SAP with the architectural block that has the interface referenced by the SAP In-
terface element. Each S4P in the SM should have a matching interface for each of its SAP Func-
tional Characteristic elements. If all the SAP Functional Characteristic elements of a SAP in

the SM are tagged as ‘matched’ we tag the SAP as ‘matched’ as well.

For the SAP Functional Characteristic elements in the SM that have remained ‘unmatched’,
there is no information in the NFO. For each of them, we set all the interfaces in the SM that
match its characteristics as its exposed interfaces. An interface matches a SAP Functional Char-
acteristic element if both have the same plane and functionality, and the interface’s roles include
all the SAP Functional Characteristic’s roles. For each matched interface, we create a SAP In-
terface element that references the interface. We associate it with the matched SAP Functional
Characteristic and its related SAP. Then we change the tag of the matched SAP Functional

Characteristic, and if applicable the tag of the SAP, to ‘matched’.

SAP Projection: The VNFs that we use to generate generic NSDs may realize functionali-
ties at any level in the functional hierarchy. Therefore, the functionalities that a VNF exposes
through its interfaces also can be at any level. However, at this point, the S4Ps in the SM expose
functionalities at specific levels that are not necessarily the same level as the VNFs’ functional-
ities levels. As a result, we should design the S4Ps in a way that we can use them for the VNFs
with functionalities at any level. To achieve that, we project all the SAPs to all the functional

levels in the SM.
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In SAP Projection, we consider all the SAPs in the SM with the ‘matched’ tag. For each
functionality that these SAPs expose, all of its parent and ancestors that are single-flow should
be exposed by that SAP as well — single-flow functionalities are discussed in Section 4.2.5.5.
This projects the SAP to the higher levels of functionality in the SM. We should project the SAP
to the lower levels of functionality as well. The child of a functionality that has no incoming
dependency is at the beginning of the dependency chain. Therefore, such functionality sends
requests to other functionalities in the decomposition. Therefore, if the environment needs to
communicate with the functionalities at this functional level, it should communicate with this
functionality. Thus, the SAPs should expose the children and the grandchildren with no
incoming dependency of their exposed functionalities as well. The grandchildren of a

functionality are the children of the functionality’s children which recursively goes to the leaves.

Accordingly, we create a SAP Functional Characteristic element for each of the aforemen-
tioned parents, ancestors, and children functionalities. These are the projected SAP Functional
Characteristic elements. The plane and the roles of these projected elements are the same as the
plane and the roles of their originating SAP Functional Characteristics. We associate the pro-
jected SAP Functional Characteristics with their corresponding SAPs in the SM using the Tem-

pRef association, as shown in the SM metamodel.

4.2.3 Step 3 — Selecting the VNFs
In this step, we select the set of VNFs from the VNF Catalog which contains the VNF Pack-
age Info elements. As discussed earlier, the VNFs are the implementations of the architectural
blocks. Therefore, we select the VNFs that match the architectural blocks in the SM. The ‘Im-
plemented Arch. Block’ attribute of the VNFAD element of a VNF specifies the architectural
blocks it realizes, as discussed in Section 3.3.2. Therefore, an 4B element in the SM matches a

VNF when its name or one of its aliases matches this attribute of the VNF.
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We check all the VNFs in the VNF Catalog against each AB element in the SM. The VNFs
that match one or more 4Bs in the SM belong to the set of selected VNFs for NSD design. We
add the VNF Package Info element of each of these VNFs into the SM if it is not already there.

We associate each added VNF Package Info element with all of its matching 4Bs in the SM.

4.2.4 Step 4 — Generation of forwarding graphs
In this step, we generate all the forwarding graphs that realize the required network service.
To do so, first, we capture all the combinations of the functionalities that realize the functional
aspects of the network service. Accordingly, we capture all the combinations of the architectural
blocks that realize the network service. Then, we generate all the forwarding graphs composed

of VNFs accordingly.

A combination of the SM functionalities that all together compose the root functionality of
the SM represents the functional aspect of the required network service. We call such a
combination an FF'G. The root functionality in the SM hierarchy is also an FF'G. A parent and
its child cannot exist in the same FFG, as it is redundant. In an FFG, we can substitute a func-
tionality with all of its children or grandchildren at any level, and it results in another FFG. We

consider this combinatorial aspect to generate all the FFGs from the SM hierarchy.

A combination of the architectural blocks that realize all the functionalities in an FFG realize
the required network service. We call this combination an AF'G. In an AF'G, the sequence of the
architectural blocks is according to their dependencies in the SM. This sequence defines the
VNFs’ connectivity in the forwarding graph later on. We generate all the possible AFGs from
each of the generated FFGs. Multiple architectural blocks may realize a functionality in the
FFG, and it results in multiple AFGs. We consider this combinatorial aspect to generate all the

possible AFGs.
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We generate a forwarding graph by substituting an AF'G’s architectural blocks with the VNFs
realizing them. Such forwarding graphs specify the VNFs’ connectivity according to the AFG’s
sequence. Therefore, we can generate an NSD and its VNFFGDs from each forwarding graph.
We call such forwarding graph a Pre-VNFFG, as it does not specify the virtual links yet. Mul-
tiple VNFs may realize an architectural block in the AFG, and it results in multiple Pre-
VNFFGs. By considering this combinatorial aspect we generate all the possible Pre-VNFFGs

from each AFG.

As an example, in an SM model, the root functionality is decomposed to two other function-
alities. Three different architectural blocks realize each of these functionalities, and two differ-
ent VNFs realize each architectural block. Therefore, we can generate two FFGs for the required
network service — one FFG is composed of the root, and the other is composed of the root’s
decomposition. We can generate three 4F'Gs from the first FFG and nine AFGs from the second
FFG. We can generate two Pre-VNFFGs from each AFG of the first FF'G and four Pre-VNFFGs

from each AFG of the second FFG. In total, we can generate 42 Pre-VNFFGs.

FFG generation: This is a recursive process. We invoke each recursive step for a
functionality in the SM hierarchy, and we call this functionality the sub-root. The goal of each
recursive step is to find the FFGs in the sub-tree of the sub-root. We call these FFGs partial
FFG. The combination of functionalities in each partial FFG composes the sub-root function-
ality. The initial recursive step starts from the SM root functionality. As discussed earlier, the
combination of the functionalities in an FFG composes the root functionality. Therefore, the
result of the whole recursive process is the set of all the FFGs in the SM. Each recursive step,
at first, invokes a recursive step for each of the sub-root’s children. In the end, it returns all the

partial FFGs of the sub-root.
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The only partial FFG of a leaf functionality is itself. Therefore, when the sub-root is a leaf
functionality, the recursive step returns only one partial FFG which is the sub-root. When the
sub-root is a non-leaf functionality, each partial FFG is the concatenation of a partial FFG of
each of the sub-root’s children. Therefore, all these combinations in addition to the sub-root

itself (as a partial FFG) are the result of each recursive step.

In the SM, there might be some functionalities for which there is no VNF to realize them. We
exclude the FFGs that contain such functionalities as we cannot generate any Pre-VNFFG from
them later on. For each of the remaining FFGs, we generate an FFG element in the SM that

references the Functionality elements accordingly.

AFG generation: In this process, we generate an AFG by substituting each functionality in
an FFG with one or a group of architectural blocks realizing that functionality in the SM. This
(these) architectural block(s) should directly realize the functionality, i.e. being in a ‘Realized
By’ association with the functionality. A group of architectural blocks realizes a functionality
directly when they are in a chain of dependencies. All the dependencies in this chain have the
same context. This context is the ‘Realized By’ association between the functionality and the

architectural block at the beginning of this chain.

We run this process for each generated F/F'G, and we generate all possible AFGs by consid-
ering the combinatorial aspect. For each AFG we generate an AFG element in the SM for it.
Then, we reference all the architectural blocks in the AFG element accordingly. We preserve
the information of the mapping between the architectural blocks and the FFG’s functionalities
in the AFG, as we need it later on. We reference all the dependencies between the architectural
blocks in the AF'G with a valid context in the AFG. In an AFG, a context is valid only if its
specified ‘Realized By’ association exists in the AFG. It means the architectural block and the

functionality in this association have a mapping in the AFG.
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Earlier, we have projected the SAPs to all functional levels in the SM. In each AFG, architec-
tural blocks expose functionalities at specific levels, and S4Ps expose them by their SAP Func-
tional Characteristic elements. Therefore, in the AFG, we reference the SAP Functional Char-

acteristic elements that are related to the 4F'G’s architectural blocks by their interfaces.

In AFG generation form an FFG, we consider all the combinations of architectural blocks
that realize the FFG’s functionalities. In some of these combinations, there are architectural
blocks from different architectural compositions. Therefore, there is no information regarding
the dependencies between these architectural blocks. We refer to such AFGs as incomplete. We
infer the missing dependencies in such AFGs in a process called AFG Completion. In this pro-

cess, we may complete some of these AFGs, and we exclude the remaining incomplete ones.

AFG Completion: As discussed earlier, each incomplete AFG is composed of portions
of different architectural compositions. Each of these architectural compositions has some
architectural blocks that are not involved in the AFG. The dependencies between these ar-

chitectural blocks and the ones involved in the AFG are missing in the AFG.

If two dependencies have the same client and supplier functionalities in their ADep In-
terface elements they match the same functional dependency. We call such dependencies
equivalent, and their client and supplier architectural blocks equivalent as well. Two equiv-

alent dependencies are not in the same architectural composition.

In an AF'G, each missing dependency has an equivalent dependency which is also miss-
ing in that AFG. We need to create one dependency for each pair of equivalent missing
dependencies in an AF'G. In order to create such a dependency, the ADep Interfaces elements
of both missing dependencies should match. They match if they have the same plane, client

and supplier functionalities, roles and protocols. If so, we create a dependency between the
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two missing dependencies’ client and supplier architectural blocks that are involved in the
AFG. As discussed earlier, only one of the two clients and one of the two suppliers are
involved in the AFG for each missing dependency. The created dependency is only for this
AFG, therefore, we keep a reference from the dependency to the AF'G. If the ADep Interfaces
elements of a pair of missing dependencies do not match, we do not create any dependency.

Therefore, the AFG remains incomplete.

Pre-VNFFG generation: Pre-VNFFG generation is similar to AF'G generation. We gener-
ate a Pre-VNFFG by substituting each architectural block in an AFG with a VNF realizing the
architectural block in the SM. We run this process for each of the generated AFGs. A combina-
tion of VNFs realizing each AF'G’s architectural block forms a Pre-VNFFG. We create a Pre-
VNFFG element in the SM for each of these combinations. We keep a reference in the Pre-
VNFFG element to the VNF Package Info elements of the VNFs in the combination. We also
keep the information on the mapping between the VNFs and the architectural blocks in the Pre-
VNFFG element, as we need it in the next step. To access the related dependencies and SAPs

we use the references in the AFG, and we do not reference them in the Pre-VNFFG.

4.2.5 Step 5 — Generation of Network Service Descriptors
In this step, we generate a generic NSD model from each of the Pre-VNFFGs in the SM. In
each NSD model, we add the VNFDs, and we create the VLD, SAPD, VNFFGD, and NS De-

ployment Flavor elements. In the SM, we use an SmNsd element to keep a reference between a

Pre-VNFFG and its NSD.
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4.2.5.1 Adding the VNFDs
We reference each VNFD of the Pre-VNFFG in the NSD — VNFDs are entailed by the VNF
Package Info elements in the Pre-VNFFG. Then, we create a VNF Profile element for each

referenced VNFD - We will use VNF Profiles for the VNFs’ connectivity and dimensioning.

4.2.5.2 Creating the VLDs
Virtual links in the network service connect VNFs to other VNFs or to SAPs. We design the
VLs of the former and the latter case according to the architectural dependencies and the SAP

elements in the AFG respectively.

According to Section 3.2.2, an architectural dependency may have multiple ADep Interfaces
elements. By these elements, the dependency specifies multiple interfaces of its client and sup-
plier architectural blocks for their communication. We call the VNFs corresponding to the client
and supplier ABs the client and supplier VNFs of the dependency respectively. Therefore, the
architectural dependency specifies the interfaces of these VNFs as well. Similarly, a SAP in the
SM specifies one or multiple interfaces of its related architectural blocks and their corresponding
VNFs too. Each VNF interface is exposed by a VnfExtCp. In order to design the VLs and gen-
erate their VLDs, we should figure out the VnfExtCps corresponding to the architectural de-

pendencies and the SAPs.

Creating the VLDs for VNFs communication: As discussed earlier, we find the VnfExtCps
corresponding to each architectural dependency in the Pre-VNFFG. To do so, we find the inter-
faces of the client and supplier VNFs that match the specified interfaces for the architectural
blocks. These interfaces match if they have the same name and matching Functional Charac-
teristic elements (all their attributes should match). The VnfExtCps associated with the matched

VNF interfaces — according to the VNFAD — are the VnfExtCps related to the dependency.
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For the dependencies with related VnfExtCps in common, there should be an E-LAN virtual
link in the network service to connect their VnfExtCps. For the rest of the dependencies which
have two related VnfExtCps, an E-Line virtual link should connect them. For creating the VLDs,
first, we group the dependencies according to their related VnfExtCps in common. Consider
each dependency as a node in a graph. Consider each related VnfExtCp that is common between
two dependencies as an edge between the two nodes (those dependencies). Each connected
graph [49] inside this graph defines a group of dependencies that have related VnfExtCps in
common. No two dependencies in different groups have related VnfExtCps in common. We

connect the VnfExtCps in each group with one virtual link.

We should check the compatibility of the protocols of the interfaces that communicate with
each other according to the dependencies. Therefore, we check the compatibility of the protocols
specified by each ADep Interfaces element for the source and the target interfaces. If the proto-
col of the source and the target interfaces are the same, they are compatible. Also, if two proto-
cols are in the IsServedBy association directly or through other protocols in the Protocol Stack
model, they are compatible. For each group, if all the interfaces in communication have com-
patible protocols, we create a VLD element. If not, we do not create the VLD, as some interfaces
in the group cannot communicate. Therefore, we dismiss this NSD. If the number of VnfExtCps
in the group is more than two we set the virtual link’s flow pattern to E-LAN, otherwise we set
the flow pattern to E-Line. We specify the flow pattern of a virtual link using the VLD’s ‘Con-

nectivityType’ attribute as shown in the VNFD metamodel.

The layer protocols of a virtual link should be the same as the layer protocols of all the
VnfExtCps it connects to. Therefore, we set the layer protocols of each VLD according to its
VnfExtCps’ layer protocols. For each VLD we create an NsVIDf and an NsVI Profile element,

and we keep a reference to the NsVIDf in the VLD and the NsVI Profile. We need these two
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elements for the purpose of the VNFs and virtual links connectivity. To set this connectivity,
for each VNFD that has at least a VafExtCpd associated with a VLD we create an NsVirtual-
LinkConnectivity element. We reference the VnfExtCpds and the NfVI Profile of the VLD in this

element. We reference this element in the VNF Profile of the VNFD.

We create the VLDs for the second case (connection between the SAPs and the VNFs) while

creating the SAPD elements. We will discuss it in the following section.

4.2.5.3 Creating the SAPDs

In this sub-step, we create a SAPD element for each SAP in the SM. For each SAP, first, we
realize its related VnfExtCps according to the interfaces that the SAP specifies. A SAP specifies
the interfaces by its SAP Functional Characteristic elements. Some of these elements of each
SAP are related to the AFG, and therefore to the NSD. For each SAP, we find the interfaces of
the VNFs in the Pre-VNFFG that match the interfaces specified by the SAP Functional Char-
acteristic elements in the AFG. The SAP should connect to the VnfExtCps associated with these
VNF interfaces. Mapping a VNF interface to an architectural block interface was discussed in

Section 4.2.5.2.

For each SAP in the SM, we create a SAPD element in the NSD. If there is one VnfExtCp that
the SAP relates to, we reference its VufExtCpd directly by the SAPD. If there are multiple
VnfExtCps, the SAP should connect to them by a virtual link. Therefore, we create a VLD as
discussed below. The layer protocols of the SAPD should be the same as the layer protocols of

all the VnfExtCps it connects to. Therefore, we set each SAPDs’ layer protocols accordingly.

Creating the VLDs for VNFs and SAPs communication: First, we create a VLD element.
If there is one VnfExtCp related to the SAP we set the VLD’s flow pattern as E-Line since the

other connection of the virtual link is the SAP. If there are more than one related VnfExtCps we
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set the flow pattern to £E-LAN. Same as the first case of VLD creation, we create an NsVIDf, an
NsVIProfile, and a NsVirtualLinkConnectivity element for the VLD. We add their references in
the same way as discussed in the first case as well. In addition, we reference the SAPD in the

NsVirtualLinkConnectivity element too.

4.2.5.4 Creating the VNFFGDs

In this step, we generate the VNFFGDs for the NSD according to the Pre-VNFFG. We create
one VNFFGD for each plane, as we want to keep the planes separate from each other. Each
VNFFGD references the VNFDs and their VnfExtCpds, VLDs, and SAPDs which are involved
in the plane of the VNFFGD. To create the VNFFGDs we group these elements based on their
planes, and we create one VNFFGD element according to each group. These elements can be

redundant in different groups, as they may involve in different planes.

We distinguish the VLDs’ and SAPDs’ planes according to the VNF interfaces’ planes they
are related to, as discussed in Sections 4.2.5.2 and 4.2.5.3. We distinguish the VnfExtCpds’
planes based on the VNF interfaces they expose in the network service. A VafExtCpd may ex-
pose other VNF interfaces that are not involved in the network service, and they are not consid-
ered. A VNF interface is involved in the network service if it is involved in a communication,
i.e. related to a VLD or a SAPD. We distinguish the VNFDs’ planes also according to their

interfaces involved in the network service.

From each created VNFFGD element, we reference the VNFDs and VLDs in each group.
Then, for each VNFD in the group, we create a CpdPool element for the VNFFGD that refer-
ences all the VNFD’s VnfExtCpds in the group. We also create a CpdPool that references all the
SAPDs in the group. We create the NFPDs for the VNFFGD based on the flows in the network

service, as discussed in the following section.
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4.2.5.5 Creating the NFPDs

As discussed in Section 2.2.1, each NFP is a sequence of VnfExtCps in a VNFFG that de-
fines a path for specific packet flows. We define different paths based on the flows for different
functionalities in the network service. We call these flows the Propagation Flows, and we de-

sign the NFPs based on them.

Propagation Flow: A Propagation Flow is a sequence of VNF interfaces through which
the packet flow related to a functionality on a specific plane propagates in the network service,
and interacts with the environment. We define the Propagation Flow based on this functionality
on the specific plane. A Propagation Flow may involve other functionalities depending on their
dependencies to this functionality. A flow starts from a VNF interface that exposes the flow’s
functionality on the flow’s plane. Since the flow interacts with the environment, a SAP should
expose this interface to the environment. We call such interface the flow’s starting interface. We
determine the rest of the interface sequence of the flow according to the VNFs’ dependencies
and the flows inside the VNFs. We may use the term ‘flow’ instead of ‘Propagation Flow’ in

this document for simplicity.

Single-flow functionality: A single-flow functionality is a functionality which in its de-
composition, there is only one functionality that defines a flow per plane. As a result, a single-
flow functionality is only composed of other single-flow functionalities. The functionalities that
VNF interfaces expose are only single-flow. Therefore, the functionalities that SAPs expose are
only single-flow as well. As a result, we define a flow only based on a single-flow functionality.
Also, we conclude that the functionalities that a SAPR exposes in the NSReq are only single-

flow.

In the SM example depicted in Figure 4.4, the F2 and F3 are single-flow since SAPRI and

SAPR?2 exposes them respectively. Therefore, their children are also single-flow, i.e. F5, F6,
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F7,and F§. On the other hand, F/ is not single-flow since it has two functionalities that define

flows in its decomposition, as they are exposed by SA4Ps.

Propagation Flow design: To design the flows in the network service, first we determine
the functionalities on different planes in the FFG that are exposed by a SAP. Then, we determine
the starting interface and the interface sequence of each potential flow accordingly. An interface
may appear in different points of a flow’s sequence. Each time an interface appears in the flow
a subset of its characteristics (functionalities, planes, and roles) is related to the flow. By map-
ping these characteristics to the ADep Interfaces elements in the AFG and VNF’s Flow Trans-

formation elements of the VNFADs in the Pre-VNFFG we can determine the flow’s sequence.

Determining the functionality and the plane of the flow: As discussed earlier, each func-
tionality on a specific plane that a SAP in the AFG exposes defines a flow in the network service.
The information on which functionalities a SAP exposes exists in the SAP Functional Charac-
teristic elements as shown in NFO and SM metamodels. Therefore, we create a Propagation
Flow element in the SM for each of these functionalities on the specified planes. We reference

the functionality, the plane, and the SAP in the Propagation Flow element.

In the next sub-steps, each time we determine the appearance of an interface in the flow’s
sequence we create an Smlinterface element in the SM. We associate it with the Propagation
Flow element. We set its attributes according to the subset of the interface’s characteristics re-
lated to the flow (functionality, plane, and roles). Finally, we reference the source that we deter-
mined this appearance based on, i.e. the Flow Transformation or the ADep Interfaces element.

For details of the Propagation Flow and the Smlnterface elements in the SM refer to Figure 3.10.

Finding the starting interface of the flow: The VNF interface that is exposed by the SAP

related to the flow and has the same functionality and plane as the flow is the flow’s starting
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interface. The direction of the flows in a VNF defined by the Flow Transformation elements is
always from the server/input interface to the client/output interface, i.e. the source interface is
server/input, and the target interface is client/output. If the starting interface of a flow in the NS
has the server and/or the input roles the flow is in the direction of the Flow Transformations.
Otherwise, the flow is in the opposite direction of the Flow Transformations. We call this back-
ward propagation. We avoid designing flows in backward propagation to avoid complexity.
Therefore, if a starting interface has both server/input and client/output roles, we design the flow
based on the server/input roles. If the starting interface has only the client and/or output roles,

we inevitably design the flow in backward propagation.

In some cases, more than one SAP may expose a functionality on a specific plane but with
different roles. In such a case, there is more than one candidate interface to select from as the
flow’s starting interface. Among them, we select the interface with the server and/or input roles

in order to avoid backward propagation.

Finding the interfaces sequence of the flow: We call the interface which a flow enters a
VNF through an entry interface. We call the interface which a flow exits a VNF through an exit
interface. Therefore, in a flow, there is always an exit interface after an entry interface and vice

versa. The starting interface of the flow is always an entry interface.

Each time we determine the appearance of an interface in the flow we call it the current
interface, including the starting interface. We find the next interfaces in the sequence according
to the current interface by using two different procedures. If the current interface is an entry
interface we use the ‘Finding the next exit interface’ procedure to find the next interface(s). If
it is an exit interface, we use the ‘Finding the next entry interface’ procedure. Since the flow’s

starting interface is always an entry interface we start with the former procedure.
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Finding the next exit interface: The next exit interface(s) is (are) in the same VNF as
the current interface. The Flow Transformation elements of a VNF determine the flows
inside the VNF. Therefore, we find the next exit interface(s) using the current VNF’s Flow
Transformations that are related to the flow. A Flow Transformation related to the flow
should determine the current interface as one of its interfaces (source/target). In addition,
the characteristics (functionality, plane, and roles) it defines for the current interface
should match the subset of the current interface’s characteristics related to the flow. All
the interfaces on the other side (target/source) of the related Flow Transformations are the
next exit interfaces. For instance, if the current interface in a related Flow Transformation
is the source interface, the interface on the other side is the target interface. Therefore, the

target interface is the next exit interface.

The characteristics that each related Flow Transformation defines for the next exit in-
terfaces are their subset of characteristics related to the flow. We will use them to find the

next entry interface(s) in the ‘Finding the next entry interface’ procedure.

Special cases: In some cases, the entry and the exit interfaces of a VNF in a flow are
the same. If there are multiple dependencies associated with such an interface, there will
be two cases for finding the next entry interfaces. The first case is if the interface has the
server and input roles on entry and has the output role on exit. This means that the VNF is
responding to the incoming packet flow. Therefore, we need to design the flow in a way
that it goes back towards the path it had come to the current VNF. It means we should use
the same architectural dependency that we used for the incoming direction on the outgoing
direction of the flow (in ‘Finding the next entry interface’ procedure). The second case is
if the interface has the server and client roles on the entry and exit respectively. This means

the outgoing flow is a request to another interface with a server role. Therefore, in such a

70



case, we should avoid the architectural dependency used in the incoming direction for the

outgoing direction.

Finding the next entry interface: The next entry interface(s) is (are) in the VNFs as-
sociated with the dependencies that are associated with the current interface. We find the
next entry interface(s) according to the ADep Interfaces elements that are related to the
flow. The related ADep Interfaces elements are the ones in which the characteristics (func-
tionality, plane, and roles) defined for the current interface match the current interface’s
characteristics related to the flow. If the current interface fits into the two special cases
discussed previously, we should consider the guidelines mentioned for each case to find
the related ADep Interfaces. The interfaces on the other side of the related ADep Interfaces
elements are the next entry interfaces. The characteristics specified for each in these 4ADep
Interfaces elements are their subset of characteristics related to the flow. We use these

characteristics, except the roles, to find the next exit interfaces.

An ADep Interfaces element may specify multiple roles for the interfaces on both sides
(source and target). Therefore these interfaces may have input and output and/or client and
server roles. As discussed before, the server/client pattern indicates the direction of the

flow. Therefore, having multiple roles for both sides in an architectural dependency results
in flows in both directions. In order to find the next entry interface, and in general to define
a flow, we should take only one direction. Among the next entry interfaces’ roles defined
by the ADep Interfaces elements, we should select only the roles that are complementary
of the current interface’s roles — as discussed before, server and input roles are comple-

mentary of client and output roles respectively, and vice versa.

Creating NFPDs from Propagation Flows: As discussed earlier, a flow is a sequence of

VNF interfaces, and an NFP is a sequence of VnfExtCps. A VnfExtCp exposes one or many
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VNF interfaces. Therefore, we derive the sequences of VnfExtCps, i.e. NFPs, from the se-
quences of interfaces (flows) by substituting each interface in a flow with its associated
VnfExtCp. It is possible that we derive identical NFPs from multiple flows, as a VnfExtCp may
expose multiple VNF interfaces. Therefore, among the derived NFPs, we exclude the redundant

NFPs from the set of the results.

For each remaining NFP, we create an NFPD element in the NSD. We reference the related
VnfExtCpds by the NFPD. The VNFFG which has a flow also has the NFP derived from the

flow. Therefore, we reference each NFPD by its associated VNFFGD.

4.2.5.6 Creating the NS Deployment Flavor

As discussed in Section 3.7.4, an NsDf element indicates the non-functional characteristics
of the network service including QoS and scalability. It also specifies the composition and the
connectivity inside the network service through the VNF and NsVI Profile elements. Therefore,
we create an NsDf element for the NSD. We reference all the VNF and NsVI Profile elements
that we have created in the previous sub-steps by this NsDf. We will enrich this NsDf by adding

the QoS characteristics of the network service later on in Chapter 5.
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4.2.6 An example of NSD generation
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Figure 4.4 — An SM model example

Figure 4.4 shows an SM example, which is the result of the first four steps of the NSD gen-
eration process. This example is based on the NSReq and the NFO model examples in Figure 3.2
and Figure 3.4 respectively. In Step 2, FR2 and FR3 in the NSReq match with F2 and F3 in the
NFO, respectively. Then, we decomposed F2 and F3 further according to the NFO. We have
added the architectural blocks realizing the functionalities, and their SAPs according to the
SAPRs. In the result of the SAP Projection process, we have associated the SAPs to other inter-

faces of the architectural blocks at other levels.

In Step 3, we have captured the VNFs which realize the architectural blocks in the SM
model. In Step 4, we captured five potential FFGs including {F1}, {F2, F3, F4}, {F5, F6, F3,
F4}y, {F2, F7,F8, F4}, and {F5, F6, F7, F8, F4}. The captured VNFs only realize F5, F6, F7,
F8, and F4. Therefore, the only remaining FF'G is the last one. There is a one-to-one realization
relation between the architectural blocks and the functionalities in the SM. Therefore, the po-
tential AF'G's are similar to the FFGs. The only remaining AFG is {AB5, AB6, AB7, ABS, AB4}.

Therefore, the only Pre-VNFFG is {VNF1, VNF2, VNF3}.
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Figure 4.5 — Pre-VNFFG example with further details

Figure 4.5 shows a more detailed view of the Pre-VNFFG generated from the SM model in
Figure 4.4. It shows the VNFs’ dependencies with their ADep Interfaces elements and the S4Ps
with their SAP Functional Characteristic elements. For each VNF, its VNFCs and Interface
elements are shown. Each VNF interface has a Functional Characteristic and two QoS Char-
acteristic elements. For example, the Interface 1 in the VNF1 provides access to the control
plane of functionality F'5, and it has server, input and output roles for that functionality. Its QoS

Characteristics are 300 units of throughput and 10 RPS.

In this Pre-VNFFG, the ADep Interfaces elements of each dependency are shown on top of
it. For instance, the ADep Interfaces of the dependency at the top shows that the dependency is

on the control plane. It shows VNF1 communicates through its Interface 2 with the roles of

74



client, input, and output for functionality F6. VNF3 also communicates through its Interface 1

with the roles of server, input, and output for functionality F4.

From Step 5 (NSD generation), we just discuss the Propagation Flow design example, since

the rest of it is mostly about creating different elements and setting their attributes in the NSD.

Example of the Propagation Flow design: In the SM shown in Figure 4.4, there are two
SAPs each of which exposes one functionality on the control plane. Therefore, we design two
Propagation Flows including flow1 for SAP1 and flow2 for SAP2. The functionality of the flow]
and 2 are F5 and F7 respectively. The plane of both flows is control. SAPI exposes the VNF1-
Interfacel since their functionality, plane, and roles match, and therefore, the starting interface
for flowl is VNF1-Interfacel. The starting interface for flow2 is VNF2-Interfacel since it

matches the SAP2.

The sequence of flow] starts from VNF1-Interfacel. VNF1’s Flow Transformations match-
ing this Interface for this flow are number / and 2. Therefore, the next exit interface is VNF1-
Interface2 with functionality F6, control plane, and client and output roles. We did not select
the Flow Transformation3 since the role of VNFI1-Interfacel in it is output, but the roles of
VNF1-Interfacel as the starting interface are server and input. The next entry interface based
on the dependency related to VNF1-Interface2 is the VNF3-Interfacel with functionality F4,
control plane, and server and input roles. The roles of this interface are complementary roles of
the previous interface, i.e. client and output. For the next exit interface in VNF3, we select the
Flow Transformationsl and 2, as they match the current interface’s characteristics (£4, control
plane, server and input roles). Accordingly, the next exit interface is VNF3-Interfacel with the
role of output. At this point, the current interface and the next exit interface are the same, and
there are more than one dependencies associated with this interface. Therefore, we are facing

the aforementioned special case for finding the next entry interface. This interface has the server
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role on the entry and the output role on the exit. Therefore, for finding the next entry interface
we should use the same dependency as the one used in the incoming direction towards VNF3-
Interfacel. From this point, the flow is the response going back towards the same path as in-
coming. The next entry interface is VNF 1-Interface2 with the role of input. For finding the next
exit interface, we select the Flow Transformation3 in VNF1. The next exit interface is VNF1-

Interfacel with the output role. This is the end of the flow as it reaches the SAP.

We have designed the Propagation Flow2 in a similar way. Table 4.1 shows the results of

designing both Propagation Flows in this example in details.

1 (Starting P 3 4
Interface)

VNF1- VNF1- VNF3- VNF3- VNF1- VINF1-
Interfacel Interface? Interfacel Interfacel Interface2 Interfacel
Func.: F5 Func.: F6 Func.: F4 Fine: A Func.: F6 Func.: FS
Plane: Control Plane: Control Plane: Control
: Plane: Control Plane: Control Plane: Control

Roles: Server, Roles: Client, Roles: Server, Kolos: Outost Rolee Trat Roles: Outiout
Input Output Input s Outp PP s Outp
VNE2- VINE2- VNEF3- VNE3- VINF2- VINF2-
Interfacel Interface?2 Interfacel Interfacel Interface2 Interfacel
Reng: D7 unci: o8 Banc: Func.: F4 Func.: F8 Func.: F7
Plane: Control Plane: Control Plane: Control
Roles: Server. Roles: Client Roles: Server Plane: Control Plane: Control Plane: Control

. : 5 : : ’ Roles: Output Roles: Tnput Roles: Output

Input

Output

Input

Table 4.1 - Propagation Flow design example

4.2.7 Update of the Network Function Ontology
We can update the NFO by the previous successful experiences or based on new standards
and architectures in the telecom domain. We update the NFO within or outside of the NSD
generation process. Within the process, we update the NFO at Step 6 of the NSD generation
process under specific conditions. Updating the NFO, in this case, is done automatically. Out-
side of the process, we may update the NFO automatically, or an expert may do it manually

depending on different conditions.
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4.2.7.1 Update within the NSD generation process (Step 6)

In this step, we update the NFO according to the new information that a tenant proposes in
the NSReq. An ‘unmatched’ element in the SM does not exist in the NFO. Therefore, the NSReq
has new information when we have ‘unmatched’ elements in the SM. The main condition for
updating the NFO is the successful generation of at least one generic NSD at Step 5. This implies
that the new information in the NSReq is reusable. Therefore, we can update the NFO accord-

ingly. In this step, we update the NFO in two cases:

e Case 1: In this case, a functionality named A and its children in the SM are tagged as
‘matched’ or ‘from ontology’, and some of its ComposedOf associations are tagged as
‘unmatched’ . It implies that all these functionalities (the functionality A and its children)
exist in the NFO. However, the tenant has required functionalities as part of the func-
tionality A’s decomposition which is not in its decomposition in the NFO. This is new
information on functionality A that the tenant has proposed. Two subcases may happen
in which we may update the NFO.

e Case 1.1: In this case, the whole core decomposition of the functionality A in
the NFO exists in the SM with ‘matched’ tag. It implies that the tenant has re-
quired the core decomposition of functionality A, in addition to new functional-
ities in A’s decomposition. We take the updating action as discussed below.

e Case 1.2: In this case, a part of the core decomposition of the functionality A in
the NFO is tagged as ‘from ontology’, not ‘matched’, in the SM. It implies that
the tenant has not required the whole core decomposition of functionality A. In
such a case, we consider the possibility of the tenant’s mistake in naming the
functional requirement A or its children in the NSReq. Therefore, before updat-

ing, we ask the tenant to validate the NSReq. In this way, we ensure that we do
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not update the NFO based on a faulty NSReq. After the validation, we take the

update action as discussed below.
Update action: The tenant cannot alter the core decomposition of a functionality in the
NFO, as this information is established in the NFO. Therefore, we only add the required
additional children for functionality A as its optional children in the NFO. To do so, we
add the ‘unmatched’ ComposedOf associations of functionality A in the SM to the NFO.
Then, we add the dependencies of these additional children from the SM to the NFO, if
they do not already exist there. These dependencies are only defined in functionality A’s

decomposition. Therefore, we set their contexts as functionality A in the NFO.

Figure 4.6 shows an example of NFO at the top left, and three different SMs origi-
nated from three different NSReq models at the right and the bottom. All three SMs fit
in Case 1 of the NFO update, since 4, B, C, Y and Z functionalities are ‘matched’. The
core decomposition of 4 in the NFO (B and C) exists in SM1. Therefore, there is no
possibility of the tenant’s mistake in this example, and it fits Case 1.1. In SM2 and SM3,
however, 4’s core decomposition does not exist exactly as it is in the NFO. Therefore,
before the updating action, we ask the tenant to validate the NSReq. The updating action
in all three cases is adding Y as an optional child for the 4. In SM1 and SM2, we add the
Y’s dependency to the NFO with the context of functionality 4. In SM3, we also add Z
as the optional child of functionality 4. Then, we add its dependency to Y with the con-

text of functionality 4.
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Figure 4.6 - NF Ontology updating case 1 example

e Case 2: In this case, a functionality named X is ‘unmatched’ but all of its children are
‘matched’ in the SM. Since functionality X is ‘unmatched’ all of its ComposedOf asso-
ciations are ‘umnmatched’ as well. Two subcases may happen with different update ac-
tions.

e Case 2.1: In this subcase, the decomposition of functionality X does not exactly
match any decomposition in the NFO. It implies that the tenant has proposed a

new functionality with its decomposition in the NSReq.

Update action: As the update action for Case 2.1, we create a new functionality
in the NFO named X with the same decomposition as functionality X in the SM.
Our assumption is that the whole decomposition that the tenant has proposed for
functionality X is the core decomposition. Therefore, we define all of its Com-
posedOf associations as mandatory. We add all the dependencies defined be-
tween the children of functionality X into the NFFO. We specify their contexts as

functionality X.
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e Case 2.2: In this subcase, the decomposition of functionality X is a subset of one
of the functionalities’ decompositions in the NFO. Also, it has the whole core
decomposition of that functionality. This implies that functionality X’s name is

a new name (alias) for that functionality in the NFO.

Update action: As the update action for Case 2.2, we add functionality X’s name

to the aliases of that functionality in the NFO.

Figure 4.7 shows four different SM examples. We consider the same NFO as shown
in Figure 4.6 as the NFO for these examples. These four SM instances fit in Case 2, as
functionality X is ‘unmatched’, and its children in all the examples are ‘matched’ includ-
ing B, C, Y, and Z. The first three SM instances fit into case 2.1. Therefore, for each of
these SMs, we add the functionality X into the NFFO with the same decomposition and
dependencies. SM4 fits into subcase 2.2, as its decomposition is exactly the same as
functionality 4’s core decomposition in the NFO. In this case, we add X as an alias for

functionality 4 in the NFO.

<unmatched> <unmatched>

<unmatched>, <unmatched=>

<unmatched>

SM 4

<unmatched=>

SM 2

Figure 4.7 - NF Ontology updating case 2 example
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4.2.7.2

Update Independent of the NSD generation process

This kind of NFO update may take place anytime independently of the NSD generation

process. It consists of two different cases:

Case 1 (Automatic): This case of NFO update is done automatically as soon as a VNF,
1.e. a VNF Package Info model, is added to the VNF Catalog. First, we check whether
there are any architectural blocks in the NFO that match this VNF. If not, we create a
functionality element and an architectural block element realizing that functionality,
both with the same name as the VNF’s ‘implementedArchBlock’ attribute. This way we
can reuse this VNF to compose network services using the NFO. For each of the VNF’s
interfaces — defined in its VNFAD — we create an Interface element and its related Inter-
face Functional Characteristic elements for the created architectural block.

Case 2 (Manual): This case of NFO update is done manually by an expert. The expert
can add new functionalities, architectural blocks and their interfaces, decompositions,
and dependencies, and SAPs with their related elements. In addition, the expert may
modify the existing elements and their attributes in the NFO as well. The expert does the
modifications manually through an interface depending on how the models are imple-
mented. For instance, if the models are UML files, they can be modified using UML

editors.

4.3 Limitations

Our proposed method does not support designing multi-domain network services. For ex-

ample,

we cannot generate an NSD for an IMS service with home and visited network domains.

We are only able to design each domain in a separate NSD. A multiple-domain network service

requires having multiple VNF instances of the same VNFD with different roles, e.g. two P-
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CSCF VNFs (same type), one for the home and the other for the visited network domain. This

is not supported by our method.

Our method does not validate the consistency of the NSReq. We assume the NSRegq is con-
sistent and has no conflicting requirements. If there are conflicting requirements in an NSReq,
there is no guarantee about the validity of the network services generated from such require-

ments.

Our method is limited to using only VNFs as network functions in the network service. PNFs

and nested network services are not taken into account for the design of the network service.

There are three flow patterns for the virtual links including E-Line, E-LAN, and E-Tree [28],
as discussed in Section 2.2.1. Our method does not support the E-Tree flow pattern for the vir-
tual links. To include it specific information should be provided by the architectural dependen-

cies for the E-Tree flow pattern.
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Chapter 5

Network Service Descriptor Refine-
ment (w.r.t Non-functional Require-
ments)

In this chapter, we describe our approach for tailoring a generic NSD based on the NFRs
included in the NSReq. The approach enriches the generic NSD’s deployment flavor and its
elements. As a result, the network service will be capable of providing the required QoS range,

from the minimum to the maximum as indicated by the NFRs.

5.1 Overall approach

The NFRs indicate QoS requirements only for the functionalities exposed by the SAPs, as
discussed in Section 3.1.4. However, we need to dimension the whole network service. There-
fore, we propagate the NFRs in the network service using the Propagation Flows that we gen-
erated in Section 4.2.5.5. By propagating the NFRs, we calculate the QoS requirements for all
the VNFs. We dimension the VNFs based on their QoS requirements. To tailor a generic NSD,
we need to tailor its VNFs by dimensioning them, and selecting a deployment flavor for each,
and calculate the virtual links’ capacity. For each VNF, we select a deployment flavor according

to the VNF’s dimensioning and some other criteria that we define. We calculate the capacity of
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the virtual links and tailor their deployment flavors according to the VNFs’ dimensioning. Even-
tually, we tailor the network service deployment flavor according to the VNFs’ and the virtual

links’ deployment flavors.

This process takes a generic NSD and its corresponding SM model as inputs. We need the
SMmodel, as it has the NFRs and architectural information of the network service. The approach
consists of three steps:

1- Propagating the NFRs

2- Dimensioning the VNFs
3- Tailoring the NS Deployment Flavors

In the following section, we will discuss the details of each step.

5.2 Steps of the Approach

5.2.1 Propagating the NFRs
In this step, we propagate the NFRs through the Propagation Flows designed for the network
service. As discussed in Section 3.3.2.1, each VNF interface exposes a specific QoS for all of
its exposed functionalities to outside. A Propagation Flow consists of VNF interfaces. By prop-
agating the NFRs through each flow, we calculate the required QoS from each interface involved
in the flow. According to the QoS requirements (QR) for each interface, we calculate its total

instance utilization (IU), and this is the goal of this step.

In each flow, we calculate the ORs for each appearance of an interface (Sminterface) in the
flow’s sequence. A OR for an Sminterface is a transformation of one of the ORs of the previous
Sminterface in the flow. We start these transformations from the NFRs related to the flow. Orig-
inally, each flow is designed based on an Exposed Functionality element of a SAP. Each NFR

associates with an Exposed Functionality of a SAPR as well. Therefore, each NFR relates to a
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flow based on this association. In a OR transformation, we may change its value and/or metric
for creating a new QR. For each new OR, we create a OR element in the SM associated with its
Sminterface, and we reference its source, i.e. a Flow Transformation element or an NFR. De-
pending on the Sminterface being an entry or exit interface the procedure of calculating its ORs

differs.

5.2.1.1 Calculating the QRs for an entry interface

In a flow’s sequence, an entry interface and its previous exit interface are related through a
dependency, as discussed in Section 4.2.5.5. The starting interface of the flow is an exception,
as it is directly connected to the SAP. In the network service, there is only a virtual link between
an entry interface and its previous exit interface. As discussed in Section 3.7.1, the QoS char-
acteristics of virtual links like delay and jitter are out of our scope, and we neglect them in
dimensioning the network service. Therefore, nothing changes the QoS characteristics of the
packet flows between such interfaces. As a result, the ORs of each entry interface is exactly the

same as the ORs of its previous exit interface in the sequence.

The ORs of the flow’s starting interface are the ones defined by the NFRs related to the flow.
As discussed in Section 3.1.4, the composite NFRs have an extra QR of throughput as well as

their RPS QR. Its value is the multiplication of the NFR’s ‘value’ by the NFR’s ‘request size’.

5.2.1.2 Calculating the QRs for an exit interface

In designing a flow, we discover each exit interface based on one or multiple Flow Trans-
Jformations related to the previous entry interface, as discussed in Section 4.2.5.5. Such Flow
Transformations specify the transformation of QoS characteristics of packet flows between
these two interfaces by QoS Ratio elements. Therefore, we derive the ORs for each exit interface
by transforming the ORs of the previous entry interface according to the QoS Ratio elements of

those Flow Transformations.
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Among these QoS Ratio elements, only some are related to each QR of the previous entry
interface. If the metric that a QoS Ratio specifies for the entry interface is the same as the OR’s
metric, the QoS Ratio is related to the OR. We transform each OR of the previous entry interface
using each of its related QoS Ratios. Therefore, we generate one QR for each related QoS Ratio.
The metric of the new QR is the same as the metric that the QoS Ratio defines for the exit
interface. The value of the new QR is equal to the multiplication of the previous OR’s value by
the QoS Ratio’s ratio. If the flow is backward propagation, we multiply the value by 1/ratio, as

we are propagating in the opposite direction of the Flow Transformation.

5.2.1.3 Calculating the total 1U for the interfaces

A OR defined for an Sminterface specifies a load on the interface. Therefore, each OR results
in an instance utilization for its interface, and we call it metric.IU. We calculate a metric.IU by
dividing the OR’s value by the value of the interface’s QoS Characteristic with the same metric
as the OR. The QR is not relevant to its interface if the interface has no QoS Characteristic with

the same metric as the QR. Therefore, we dismiss such OR.

Different ORs for an Sminterface describe the same load with different metrics on the inter-
face in one of its appearances in the flow. The maximum among the metric.IUs of an
Sminterface is the instance utilization for that Sminterface (i.e. a specific appearance of the
interface in the flow). The total load on an interface in the whole network service (i.e. the load
from all the flows involving the interface) is equal to the summation of the loads of all of its
appearances in all flows. Therefore, the total instance utilization of an interface is equal to the
summation of the maximum metric.IU of all of its related Sminterfaces in all flows. We refer to
it as the total.IU. We calculate the total.IU for all the interfaces involved in at least one flow in

the network service.
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Table 5.1 shows the ORs and the metric.IUs for each appearance of the interfaces in the
flows in the example discussed in Section 4.2.6. According to this table, the total.IU for VNF1-
Interfacel, VNF1-Interface2, VNF2-Interfacel, VNF2-Interface2, and VNF3-Interfacel are

equal t0 9.2, 8, 15.25, 11.5 and 6.8, respectively.

1 (Starting 2 (exit) 3 (entry) 4 (exit) 5 (entry) 6 (exit)
Interface)

VNF1- VNF1- VNE3- VNE3- VNF1- VNF1-
Interfacel Interface2 Interfacel Interfacel Interface2 Interfacel
QR1: QRI1: QRI: QR1: ORI: QR1:

Throughput — 600

Throughput — 720
(by Flow Trans. 2)

Throughput — 720

Throughput — 2160
(by Flow Trans. 2)

Throughput — 2160

Throughput — 2160
(by Flow Trans. 3)

metric.JU 1; metrie.JU 1; metric.JU 1z metrie.JU 13 metric.JU 1z metric.JU 13
600/300 720/360 720/600 = 2160/600 =@ 2160360 2160/300 =®
VNEF2- VINE2- VNE3- VNE3- VNE2- VNE2-
Interfacel Interface2 Interfacel Interfacel Interface2 Interfacel
. QR1: . QR1: . QR1:
RQPRSL 20 RPS —20 RQPR51 20 Throughput — 900 TQ,hlfl e g Throughput — 900
a (by Flow Trans. 1) - (by Flow Trans. 1) ouchput = (by Flow Trans. 3)
QR2: QR2: QR2:
QR2: QR2: QR2:
Throughput — 300 Throughput — 900 Throughput — 900
Throughput — 200 (by Flow Trans. 2) Throughput — 300 (by Flow Trans. 2) Throughput — 900 (by Flow Trans. 3)
metric,JU 1: metric,JU 1: metric. I 1: metrie.JU 1 metric.IU 1 metric.IU 1:
20/5 20/5 20/40 = @ 2900/600 200/120 200/80
metric.JU 2: metrieJU 2: metric.JU 2: metrie.JU 2: metric.JU 2: metric.IU 2:
200/80=2.5 300/120=2.5 300/600 = 0.5 900/600 = 1.5 900/120=17.5 900/80 =11.25

Table 5.1 - NFR propagation example

5.2.2 Dimensioning the VNFs
In this step, we dimension all the VNFs in the network service according to the instance
utilization of their interfaces. As discussed in Section 3.3.2.1, a VNF interface exposes a portion
of its related VNFC’s QoS capacity. Therefore, we can dimension a VNFC according to the
instance utilization of its interfaces. The QoS capacity of a VNFC is, in fact, a portion of the
VNF’s QoS capacity. Therefore, by dimensioning the VNFCs of a VNF we can select a suitable

deployment flavor for the VNF, and dimension it.
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5.2.2.1 Dimensioning a VNFC

To dimension a VNFC we calculate its required number of instances, and we call it
VNFC.RI. As discussed in Section 3.3.2.1, we assume that the VNFC’s QoS capacity is com-
partmentalized between its VNF interfaces. Therefore, the capacity portion accessed through an
interface is separate from the others. This means one instance of a VNFC can provide the QoS
exposed by all of its interfaces simultaneously. If the number of instances of a VNFC is equal
to the maximum of the instance utilization of its interfaces, it is certain that the ORs of all of its
interfaces are fulfilled. Therefore, the VNFC.RI is equal to the ceiling of the maximum total.IU

of the VNFC’s interfaces, as shown in Equation 1.
VNFC.RI = [max{i € VNFC s interfaces involved in at least a flow | total. IUL-}] (1)

In the example discussed in Section 4.2.6, in VNF1, VNFCI1 has the interfacel, and VNFC2
has the interface2. The total.IU for interface 1 and 2 are 9.2 and 8 respectively, as discussed in
the previous step. Therefore, VNFC.RI for the VNFCI1 and 2 are 10 and 8 respectively. For
VNF2, in a similar way, interface 1 and 2 have the total.IUs of 15.25 and 11.5, therefore
VNFC.RI for VNFC1 and 2 are 16 and 12, respectively. In VNF3, the total.IU for the interfacel

is 6.8, therefore the VNFC.RI for its VNFC1 is 7.

5.2.2.2 Dimensioning a VNF

As discussed before, each Instantiation Level of a VNF specifies the number of instances of
each VNFC in the VNF at the instantiation time. In order to fulfill the required number of in-
stances of VNFCs of a VNF, we can use any of the VNF’s Instantiation Levels with a specific
number of VNF instances. We consider each of these combinations as a solution for dimension-
ing the VNF. In each solution, we refer to the required number of instances as VNF.RIi.. To

dimension a VNF, first, we calculate the VNF.RIy for all the Instantiation Levels, i.e. calculate
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all the solutions. Depending on specific criteria that we will define later one of these solutions
is more suitable than the rest. Based on the criteria we select one solution in each VafDf, and

then we select one VnfDf as the final solution.

Number of VNF instances for an Instantiation Level: For an Instantiation Level, we com-
pare the required number of instances for each VNFC with its number of instances that the level
specifies in the related Vdu Level. Accordingly, we calculate the required number of the VNF
instances for the Instantiation Level only based on the VNFC. We refer to it as the VNF.RIynrc.
The VNF.RIvnrc is equal to the ceiling of the division of the VNFC.RI by the Vdu Level, as

shown in Equation 2.

Each VNF.RlIynrc fulfills the required number of instances of that specific VNFC in the
Instantiation Level. Therefore, the maximum of all the VNF.RIynrcs fulfills the required num-
ber of instances for all the VNF’s dimensioned VNFCs in the Instantiation Level. That is the
required number of instances of the VNF in the Instantiation Level, i.e. VNF.RIy, as shown in

Equation 3.

VNFC.RI

VNF.Rlynpe = [Vdu level @)

VNF.RI;;, = max{i € all of the VNF'sdimensioned VNFCs | VNF.RIyypci} 3)

Selecting the desirable solution: After having all the solutions, we select one of them, 1.e.
an Instantiation Level with its VNF.RIi., according to the criteria we define. Our criteria include
‘Flexible scaling’ and ‘VNFCs’ failure impact’. The VNFs with more flexibility in scaling and

less impacted by their VNFCs’ failure are desirable. We prioritize the first criterion.
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Flexible scaling criterion: In the NFV framework today, all instances of a VNF in a given
role are instantiated using the same VnfDf and Instantiation Level. The traffic among these in-
stances is typically load-balanced. Therefore, all these instances should have the same capacity,
and if we scale one we should scale all other instances as well. As a result, increasing the number
of VNF instances decreases the scaling flexibility, since its granularity of scaling decreases. For
instance, scaling a VNF instance to the next step results in adding 3 VNFC instances. If we have
two instances for the VNF, scaling it to the next step adds a total number of 6 VNFC instances,
and it is less granular. Hence, according to this criterion, we prefer a VNF with smaller VNF.RL

This results in selecting deployment flavors that provide more capacity for a single instance.

VNFC’s failure impact criterion: The failure impact of a VNFC is related to its capacity.
The less capacity a VNFC has, the less impact its failure has on the VNF and the network ser-
vice. Therefore, to dimension a VNF the solution with the least capacity for the VNFCs is de-

sirable according to this criterion.

Instantiation Level selection in a VnfDf: As discussed earlier, we prioritize the first
criterion over the second one. Therefore, in each VnfDf, we select the Instantiation Level
with the minimum VNF.RIy as the desirable solution. If there are multiple Instantiation
Levels with the minimum VNF.RI1 in the same VnfDf, the ones with a bigger total number
of VNFC instances provide unnecessary resources. Thus, we select the one with the least
total number of VNFC instances as the solution in the VnfDf. The selected Instantiation
Level in each VnfDf 1s the largest level that fulfills the NFRs by providing the least unnec-

€ssary resources.

VnfDf selection: Among the VnfDfs we select one as the final solution for dimension-
ing the VNF. For this selection, we consider the first criterion. Therefore, we select the

VnfDf that its selected Instantiation Level has the minimum VNF.RI.. If there are multiple
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VnfDfs with the minimum VNF.RIi for their selected Instantiation Levels, we consider
the second criterion for selection. The selected solutions in each VnfDf has the minimum
extra VNFC instances, and they all fulfill the NFRs. Therefore, all these solutions provide
approximately the same QoS capacity. Thus, the solution with the more total number of
VNFC instances has VNFCs with less capacity. According to the second criterion, we

select the solution with the most total number of VNFC instances.

Dimensioning the VNFs without QoS requirement: As discussed in Section 4.2.5.5, we
design the flows based on the S4Ps, and we define the S4Ps according to the SAPRs which the
tenant defines. It implies that the tenant has the knowledge about the packet flows in the network
service to some extent. We assume that the tenant defines the SAPRs and NFRs in a way that all
the VNFs are involved in at least one flow, and they are dimensioned to this point. If a VNF is
not dimensioned, it implies that the VNF is not involved in any flow and/or there is no QoS
requirement for it. We dimension each of these VNFs to its default values, i.e. we select its

default VnfDf and Instantiation Level with the VNF.RI equal to 1.

Table 5.2 shows the VnfDfs of the VNFs in the example of Section 4.2.6 and the results of
dimensioning them. Each row of the table for a VNF shows a solution for dimensioning the
VNF. The solutions with a solid or dashed circle are the candidate solutions in each VaufDf. The

ones with a solid circle are the final solutions for dimensioning each VNF.
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Table 5.2 - VNF dimensioning example

5.2.3 Tailoring the NS Deployment Flavor
In this step, we tailor the NsDf of the generic NSD, according to the NFRs. In order to tailor
the NsDf, we tailor the VNF and NsVL Profiles, and we generate all the NS Levels according to

the dimensioning of the VNFs.

5.2.3.1 Tailoring the VNF Profiles

The VNF Profile’s attributes that are in our scope include the reference to the VnfDf and the
Instantiation Level, and the minimum and the maximum number of instances for the VNF. NFV-
MANO instantiates each VNF based on its referenced Instantiation Level. We want to instanti-
ate the VNFs with their average Instantiation Level. To select the average Instantiation Level
for each VNF, we sort all of its Instantiation Levels. The Instantiation Level in the middle of
the minimum and the selected Instantiation Level is the average, and we reference it in the VNF

Profile. We set the minimum number of instances for each VNF to 1, as a VNF cannot have less
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than 1 instance in the network service. We set the maximum to the VNF.RIi. of the selected

solution, as it specifies the maximum capacity a VNF can have to fulfill the NFRs.

5.2.3.2 Tailoring the NsVI Profiles
In order to tailor the NsVI Profile’s, we should calculate the minimum and the maximum

bitrate requirements of the virtual link.

Virtual link bitrate requirement: The connection of a VNF instance to a virtual link is
through a VnfExtCp as discussed earlier. The VnfExtCp is also connected to one or many in-
stances of a VNFC through their VnfcCps. Different instances of the same VNFC type have the
same QoS characteristics including their VnfcCps bitrate requirement. Therefore, the bitrate
requirement of a virtual link’s connection is equal to the VnfcCp bitrate requirement multiplied
by the number of VNFC instances. The bitrate requirement of a VnfcCp is provided in its de-

scriptor (VduCpd) in the VNFD, as shown in VNFD metamodel.

The bitrate requirement of a virtual link has two attributes including the root and the leaf
bitrate requirements, and both are numerical. The root and the leaf bitrate requirements for dif-
ferent virtual link types are different, and [9] has defined them — in this work we only generate

E-Line and E-LAN virtual links, therefore we will not discuss E-Tree bitrate requirement.

E-Line virtual link bitrate requirement: As discussed in Section 2.2.1, an E-Line virtual
link has only two connections. Thus, the number of instances of both VNFs connected to it
can be only one. The root bitrate requirement of an E-Line virtual link is equal to the bitrate
of the line. The line bitrate is the summation of the bitrate requirements of the two connec-
tions. Equation 4 shows the root bitrate requirement calculation. The leaf bitrate requirement

1s not applicable for the E-Line virtual links.
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E — Line Root Bitrate Requirement = Y c poth of connected VNF types Vdul Level; x
VduCp Bitrate Requirement; 4)

E-LAN virtual link bitrate requirement: An E-LAN virtual link has more than two con-
nections to the VNFs. Each connection is a leaf, and the root is the aggregate capacity of the
LAN. The root bitrate requirement is equal to the summation of the bitrate requirements of
all the leaves. Equation 5 shows the root bitrate requirement calculation in which K is the
number of instances for each VNF type connected to the E-LAN.

E — LAN Root Bitrate Requirement = Y.; c aii of connected VNF types Ki * Vdul Level; *
VduCp Bitrate Requirement; (%)

The NFV framework at this point does not support different leaf bitrate requirements for
a virtual link [9]. Therefore, the leaf bitrate requirement of an E-LAN is equal to the maxi-
mum bitrate requirement among all of its connections. Equation 6 shows the E-LAN leaf
bitrate requirement calculation.

E — LAN Leaf Bitrate Requirement = max{i €
all of connected VNF types | Vdu Level; * VduCp Bitrate Requirement;} (6)

A virtual link has the minimum bitrate requirement if each of its connected VNFs has 1
instance, and they are instantiated using their smallest /nstantiation Levels. Similarly, it has the
maximum bitrate requirement if each connected VNF has the number of instances equal to its
VNF.RIiL and they are instantiated using their selected Instantiation Level. To calculate the
minimum and maximum bitrate requirements, we consider the ‘Vdu Level’ parameter in the
equations according to the minimum and the selected Instantiation Levels, respectively. The
number of VNF instances only affects the E-LAN root bitrate requirement, i.e. ‘K’ parameter in
the equation. For the minimum and the maximum bitrate requirements, we consider ‘K’ equal

to 1 and the VNF.RIL for each VNF type, respectively.
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5.2.3.3 NS Levels Generation

We generate all the possible NS Levels according to the VNFs dimensioning, so the network
service can be scaled in the range of the required QoS. The network service provides the mini-
mum and the maximum QoS when each VNF has the number of instances equal to 1 and the
VNF Rl respectively. We create an NS Level for the NsDf for each combination of the VNFs’

number of instances in this range.

The main elements of an NS Level are VnfToLevelMapping and VirtualLinkToLevel Map-
ping, as discussed in Section 3.7.4. For each NS Level, we create one VnfToLevel Mapping for
each VNF and one VirtualLinkToLevel Mapping for each virtual link. For each VnfToLevel Map-
ping, we set the number of instances equal to the VNF’s number of instances in that NS Level,
and we reference the VNF Profile of the VNF. For each VirtualLinkToLevelMapping, we refer-

ence the NsVI Profile of the virtual link, and we create a LinkBitrateRequirement element.

We calculate a virtual link’s bitrate requirement in an NS Level using the same equations as
the bitrate requirement of its NsV/ Profile. As discussed earlier, each NS Level specifies the
VNFs’ number of instances. Therefore, the ‘K’ parameter for the E-LAN root bitrate requirement

(Equation 5) is equal to the number of instances defined by NS Level.

5.3 Limitations

In our approach, we generate the NS Levels exhaustively and not based on the scaling poli-
cies. Therefore, some of them are not useful at runtime. According to the scaling rules, only the

ones that are used for scaling the network service should remain in the NSD.

Our approach does not target the best NSD among the generated ones. All the generated
NSDs fulfill the functional, architectural, and non-functional requirements. However, their non-

functional characteristics are different, and some may be more efficient than others.
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Chapter 6

Prototype Tool

We have developed a prototype tool for implementing our approach. In this chapter, we will
discuss the architecture of the prototype we developed and its application to a case study. We
developed the prototype using a model-driven approach. As model transformation language, we
selected ATL [36]. ATL is simple, and it is flexible with both imperative and declarative pro-
gramming paradigms. We have developed the models and metamodels introduced in Chapter 3

using Papyrus tool [34].

6.1 Prototype architecture

Our approach captures the information from different input models into the SM model in-
crementally and manipulates it to fulfill its goal. Each input model in our approach conveys
different information that affects the approach differently. In order to simplify our approach, we
have separated it into different steps according to the input models, as discussed in Chapter 4
and 5. We have developed our prototype tool according to these steps to reduce its complexity

and ease the debugging.

Our prototype tool consists of six ATL transformations, each transformation implements

one of the steps of the approach. We execute these transformations sequentially. However, there
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are two exceptions. Step 3, as discussed in Section 4.2.3, is a simple step. It gets the SM and
VNF Catalog models as inputs and outputs the refined SM. Step 4, as discussed in Section 4.2.4,
gets the SM model from Step 3 and Protocol Stack model as inputs. It only refines the SM model
and outputs it. The difference between the inputs and outputs of these two steps is not signifi-
cant. To simplify the implementation, we have combined these two steps in one transformation.
Step 5 and 6, have the same inputs and different outputs, and these steps do not affect each other.
Therefore, they can get executed in parallel. Figure 6.1 shows the flow diagram of the prototype

with the inputs and outputs of the model transformations.

NSReq . :tepl - Initialize Solution SM L
ap il

En

Step2 - Map NF Ontology SM 2

NF
Ontology

VNF . Step3 - Select VNFD
Catalog || .. ° Step4 - Generate FGs

Step5 - Generate NSDs

NF Ontology
(Updated)

T5: Stepé - Update Ontology

Refined
NSDs

T6: NSD Refinement

SMs

O

Figure 6.1 - A flowchart for the transformations in the prototype tool
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6.1.1 Transformation structure

The nature of each step of our approach is sequential, i.e. handling the details in the right
order is crucial. For instance, at Step 2, we traverse each functionality in the SM through its
realization relations first. If we traverse it through its decomposition relations before the other
relations it has a different outcome, and it is not desirable for us. Therefore, it is important to
implement the transformations in an imperative manner. In the ATL language, a 1azy rule
is called from other rules [36]. Therefore, we can execute the 1azy rules sequentially. The
do section of a rule is also the imperative block that we can use to call the helpersand lazy

rules in the desirable order.

In our prototype, all the transformations have a similar structure which is the result of the
ATL language structure and limitations, as we will discuss in Section 6.1.2. In each transfor-
mation, we need to create the elements of the output model(s) in the right order. Therefore, we
have defined a 1azy rule for each of these elements. For instance, to create the VNF Profiles
in an NSD model we have defined the CreateVnfProfile lazy rule in Transformation

4, as shown in Figure 6.2.
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lazy rule CreateVnfProfile({
from
s : OclAny,

packageName: String

to
tp: NSD!VnfProfile(
base Class <- t,
vnfProfileld <- 'VnfProfile-'+s.base Class.name
) r
t: NSD!Class (
name <- 'VnfProfile - ' + s.base Class.name,
package <- thisModule.getPackageOUT (packageName)
)
do{

tp.Vnfd.add(s) ;
}

Figure 6.2 - An example of an ATL lazy rule in the prototype

For each function that can be implemented declaratively, we have defined a helper. For
instance, in many transformations, we need to calculate the Cartesian product of two sequences
that contain other sequences. We have definedthemultiplySeqgs (Segl, Seg2) helper

for this function, as shown in Figure 6.3.

--Multiplies two sequences of sequences.

helper def: multiplySeqs (Seql: Sequence (Sequence (OclAny)), Seq2
Sequence (Sequence (OclAny))) : Sequence (Sequence (OclAny)) =
if Seql.isEmpty() then Seq2
else if Seqg?.isFmpty() then Seqgl
else
Seql->»iterate(e; accl : Sequence (Sequence (OclAny)) =
Sequence{} | accl.union (Seqg2 ->
iterate (f; acc?2 : Sequence (Sequence (OclAny)) =
Sequence{} | acc2->including(e.union(f))))
)
endif
endif;

Figure 6.3 - An example of an ATL helper in the prototype
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rule Main {
from
s: SM!Model

to
t: SM!Model (
name <- 'SM'

)y

t2: SM!Class(
name <- 'VnfdOnboardedPackages',
package <- t

)y

tp2: SM!VnfdOnboardedPackages (
base_Class <- t2

)

do{
t.applyProfile (SM!Profile.alllInstancesFrom('SM"')->first());

e T e U e e e -<<Map Functionality & ABs to VNF Catalogue>>~~~~~~-~

for(e in SM!Functionality.allInstancesFrom('OUT').union( SM!ArchBlock.allInstanc
for(f in VNFCatalogue!VnfCatalogue.allInstancesFrom('IN1').first().VnfPackag

if (f.userDefinedData->select(m | m.valueType = #REFERENCE and m.key = '
first () .valueVnfArchitecturalDesc.functionality -> exists( z |
)
e.vnfd.add (f.vnfd) ;
thisModule.getOnboardedPackages () .packages.add(£f);
e.isVnfMapped <- true;
if ( e.oclType() = SM!ArchBlock ) {
for(g in e.getABFsOUT()) {
g.isVnfMapped <- true;
}

Figure 6.4 - An example of a Main rule in the prototype

In each transformation, we have defined a matched rule that is called automatically at
the beginning of the transformation, and we refer to it as the Main rule. We create the output
model(s) using the to section of the Main rule, and we use its do section as the main func-
tion. We implement the algorithms of the approach’s step(s) in this section by calling the he 1 p-
ersand lazy rules imperatively, and using the basic imperative commands, e.g. 1 f, and
for. Figure 6.4 shows a portion of the Main rule of Transformation 3. Figure 6.5 shows an

overview of the structure of our transformations.
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ATL Transformation

ATL Header

Main rule:
from Input Models
to Output Models
do Calling the Helpers and
Lazy Rules

Figure 6.5 - An overview of the transformations’ structure in the prototype

6.1.2 Challenges in using the ATL language

We have faced two major challenges with the usage of the ATL language.

1))

2)

The main focus of the ATL language is on the declarative programming paradigm. Many
of the ATL features are not developed for imperative blocks. For instance, we can only
define the ATL helpers declaratively. We cannot implement the imperative functions
using the he 1 pers. Therefore, we should implement them in the do section of the rules,
and we cannot reuse them. In addition, defining local variables in the imperative blocks
is not possible. Therefore, in the do sections, we are not able to store a value to reuse it.
We should recalculate it each time we need it which is inefficient.

In each transformation, we refine the input SM model, and we output it. Therefore, the
input SM should be copied in the output SM, and our refinement should be added to it.
The ATL language does not handle such a case by default. It has a special mode called
Refining mode in which it overwrites the changes in the input model. As of yet, the

Refining mode does not support the imperative blocks of the ATL language, i.e. do
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sections and lazy rules. Therefore, we cannot use this mode to create the output
SMs. In each transformation, we create a new SM model. At the beginning of the trans-
formation, we copy each element of the input SM in it, and then we manipulate it

throughout the transformation. This solution is inefficient.

6.2 Case study: VOLTE service using IMS architecture

As a case study, we use the VoLTE [12] service using IMS [13] architecture. We use VoLTE
since it is a popular service today. We also use the IMS since it is a complex architecture with
many features and extensive documentation. By investigating the IMS we were inspired to add
multiple features to our method, so it can handle such complexities. These features include the
Context element and the characteristics of the SAP and Interface elements. It also helped us to

grasp the possible complexities of the packet flows in the network services.

6.2.1 NSReq

In the NSReq of our case study, the tenant requires a VOLTE service with registration and
voice call functionalities. He/she requires different service access points to expose these func-
tionalities on different planes. One SAP should expose the registration and voice call on the
control plane, and another S4P should expose the voice call on the data plane. According to the
NFRs, the tenant requires 60 requests per second with the maximum request size of five units
for the voice call functionality on the control plane. For the voice call on data plane, he/she
requires 6000 units of throughput. For the registration on the control plane, he/she requires 50
requests per second with the maximum request size of three units. Figure 6.6 shows the NSReq
model of our use case using Papyrus tool. In this NSReq model, we have simplified the Exposed

Functionality elements to the associations between the SAPRs and the FRs.
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«NonFunctionalRequirement»
«NonFunctignalRequirement» E; NFR3
| NFR1 «NonFunctionalRequirement»
«NonFunctionalRequirement» metric=T
metric_zRPS «NSReg» value=6000
value=50 =] NSReq1 plane=DATA
plane=CONTROL requestSize=0
requestSize=3 functionalrequirement=VoiceCal
functionalrequirement=Register

«ServiceAccessPointRequirement» «FunctionalRequirement;

E SAPR1_reg_vc ¢ E] Voica@verliE «ServiceAccessPointRequirement»
= SAPR2_vc_d

«NonFunctionalRequirement»
=/ NFR2

«NonFunctionalReqguirement»
metric=RPS
value=60
plane=CONTROL
requestSize=5 L=l«FunctionalRequirement> «FunctionalRequirements» <

functionalrequirement=VoiceCal ] Register i VoiceCall

A

Figure 6.6 — The NSReq model for the case study

6.2.2 NF Ontology

The NFO model in our case study contains high level functionalities including VoLTE,
IPTV, Online gaming, etc. However, our focus is on the VoLTE functionality. In this model,
the VOLTE is composed of five lower level functionalities. Among them, voice call, user info
storage, authentication, and registration are mandatory, and messaging is optional. Voice call
and messaging functionalities depend on authentication. These two dependencies have the con-
text of VOoLTE functionality, i.e. these dependencies exist in the VOLTE decomposition. Au-
thentication depends on registration and user info storage, and registration depends on user info
storage. All these dependencies have no context, i.e. they exist regardless of the decomposition
they are in. Figure 6.7 shows a portion of our case study NF'O model in Papyrus tool that focuses
on the VoLTE functionality. The numbers shown on the realization relations refer to the same

relations in the other portion of the NFO model in Figure 6.8.
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«Context»
= cntx_Voip

_«Context»
= entx_Iptv

«Functionality»
= VoLTE

__________________________________

__________________________________

«Functionality»
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__«Functionality»
= UserinfoStoragg

«Cor
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«Functionality»
= IPTV

«Functi
= Onlin

«Functionality»
! VoiceCall

Figure 6.7 — The NFO model for the case study (functional portion)

«Functionality» «Functi
— Messaging | Vide
:

On the architectural side of the NFO model, we have the IMS architectural block with two

compositions, as shown in Figure 6.8. The one on the right is the typical IMS composition which

1s a simplified version of the standard IMS [13]. It is composed of AS, HSS, P-CSCF, I-CSCF,

and S-CSCF as introduced in the Background.

The AS realizes the messaging and voice call functionalities, and it exposes the IMS stand-

ard interfaces including ISC and Mb [13]. The MRFP module exposes the Mb interface accord-

ing to [13], but for simplification, the AS exposes this interface in our NFO. The ISC interface

exposes the voice call and messaging functionalities on the control plane, and the Mb exposes

them on the data plane. The HSS realizes the user info storage functionality. It exposes this

functionality on the control plane through Cx interface. The S-CSCEF realizes the authentication

and registration functionalities and exposes them on the control plane through the Mw interface.
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It exposes the ISC interface to communicate with the AS for these functionalities. It also exposes
the Cx interface to communicate with the HSS in order to store and retrieve the user information.
[-CSCF and P-CSCEF also expose the Mw interface to communicate with each other and S-CSCF
for the registration functionality. P-CSCF exposes the Gm as a service access point for the IMS,

and the users connect to it for registration and requesting voice calls.

According to the architectural dependencies shown in Figure 6.8, S-CSCF communicates
with AS for the voice call functionality. It communicates with HSS for user info storage. It also
communicates with [-CSCF and P-CSCF for registration and voice call. -CSCF communicates
with the P-CSCF for registration. P-CSCF associates with one SAP for receiving the registration
and voice call requests on the control plane through its Gm interface. AS also associates with
one SAP for the voice call on the data plane through its Mb interface. The users connect to this
SAP to exchange their voice call content. Table 6.1 shows the dependencies in the typical IMS

composition and the details of their ADep Interfaces elements.

The IMS composition on the left side of Figure 6.8 is called merged IMS, as the CSCFs are
merged into one architectural block called Core IMS. The other architectural blocks in this com-
position are IMS Locator, DB, and AS. It is a simplified version of the merged IMS architecture
proposed in [46]. The Core IMS architectural block realizes the registration and authorization
functionalities. IMS Locator manages the assignment of the users to Core IMS instances and
routing their requests to their corresponding Core IMS. The DB is a proprietary database for
user info storage. AS is the same architectural block as discussed in the previous composition
with the same functionalities and interfaces. Core IMS exposes two proprietary interfaces which
we refer to as X1 and X2. X1 is for communication with the IMS Locator regarding the regis-
tration and voice call functionalities. X2 is for communicating with the DB regarding the user

info storage. The DB exposes the X2 and Cx interfaces, to communicate with the Core IMS and
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also the S-CSCF. The IMS Locator exposes IMS standard interfaces including the Gm and the

ISC in addition to the X1 interface.

According to the architectural dependencies shown in Figure 6.8, the IMS Locator com-

municates with the Core IMS for registration and voice call on the control plane. It also com-

municates with the AS for voice call on the control plane. Core IMS communicates with the DB

for the user info storage. A SAP is associated with the IMS Locator through its Gm interface,

and it exposes the registration and voice call on the control plane.
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The NFO model in the case study (architectural portion)
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No Plane S Source Source Target Target Target
’ Interface Func. Protocol Interface Roles Protocol

LCSCE Server. Client.
l;- s CF_ 1 Control ~ [CSCF: Mw Registration  Input, SIP PCSCF: Mw Registration  Input, SIP
Output Output
Server, Server,
S-CSCF- : - Client, ; : Client,
P-CSCT 2 Control ~ SCSCF: Mw Voice Call Tnpul, SIP PCSCF: Mw Voice Call Tt SIP
Output Output
e Server, Client,
I_- me CF_ 3 Control ~ SCSCF: Mw Registration  Input, SIP ICSCF: Mw Registration ~ Input, SIP
Output Output
S-CSCF Cent User Info S
: 4 Control ~ SCSCF: Cx Registration  Input, Diameter HSS: Cx Input, Diameter
-HSS Storage
Output Output
- Server. SIP Client,
Seson 2 Control  AS: ISC Voice Call Input, SCSCF: ISC Voice Call Input, SIP
Output Output

Table 6.1 - The details of the architectural dependencies in the NFO

6.2.3 VNF Catalog
Our VNF Catalog model contains the VNF Package Info elements of all the VNFs that our
NFO model is based on. These VNFs include the AS, HSS, S-CSCF, I-CSCF, P-CSCF, Core

IMS, IMS Locator, and DB. Figure 6.9 shows our VNF Catalog model in Papyrus tool.

«VnfCatalogue=
= VNFCatalog
=\nfCatalogue=

lastUpdateDate

VnfPackageResources=[AS_OnbPack, OnboardedPck_HSS,
OnbeoardedPck_ICSCF, OnboardedPck_PCSCF,
OnboardedPclk_SCSCF, CorelMS_OnbPack, DB_OnbPack,
IMSLocator_OnbPack]

Figure 6.9 — The VNF Catalog model in the case study

6.2.3.1 VNFD
In our approach, the most important information of a VNF is the information from its

VNFAD and VnfDfs. As a result, all of our VNFDs have a simple and similar structure. Each
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VNF has only one Vdu, except the AS which has two Vdus, one for the data, and one for the
control plane. In each VNF, there is a VduCpd and a VnfExtCpd element for each VNF Interface.
For simplification, we have considered the bitrate requirement of each VduCpd same as the
throughput of the VNF interface it exposes. Each VNF has two VafDfs that each has two Instan-
tiation Levels. The number of instances of the Vdu in the Instantiation Levels from the smallest
to the largest is 1 to 4 respectively. Figure 6.10 shows the P-CSCF VNFD in Papyrus tool as an

example of our VNFDs.

«VnfExtCpd» «Vnfd» <V/nfExtCpd»
£ extcPD1_Mw H pescr £ extcPD2_Gm
«Vdu»

E vdu_CoreP

«NMduC pd »

«Vdude»
£ vducpD1_Mw

E] vducpp2_Gm

«VnfDf»
El vnipf2

«<\/nfDf»
=l vnfpfi

«InstantiationLevel» | |<InstantiationLevel» «InstantiationLevel» ||«InstantiationLevel»

] insLvi4 E InsLvi3 = InsLvi2 ] Instl1
«Vdulevel» «Vdulevel» <\Vdulevels «Vdulevels
g vdulvi4 E vdulvl3 E vdulvl2 E vdulLvl1
«\/dulLevel=» «\/duLevel» <vdul evels <\dulLevel»

vduld=vdu_CoreP
numberOfinstances=4

vduld=vdu_CoreP
numberOfinstances=3

vduld=vdu_CoreP
numberOfinstances=2

vduld=vdu CoreP
numberOfinstances=1

Figure 6.10 — The P-CSCF VNFD model for the case study

6.2.3.2 VNFAD
In our case study, each VNFAD has one VNF Interface element for each of the interfaces of

its corresponding VNF, as discussed in Section 6.2.3.1. Each VNFAD has one or multiple Flow
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Transformation elements as well. Figure 6.11 shows the P-CSCF VNFAD in Papyrus tool as an
example of our VNFADs. Table 6.2 shows the details of the VNF Interface elements of the VNFs
in the typical IMS composition. Table 6.3 shows the details of the Flow Transformation ele-
ments of these VNFs. The results of the Propagation Flow design and dimensioning the VNFs

in Transformation 4 and 5 in our case study is according to the information in these tables.

<FlowTransformation» «FlowTransformations| |«FlowTransformations» «FlowTransformation=
— FT4_P_reg_Mw-Gm = FT2_P reg Gm-Mw| |= FT1_P_req_Gm-Mw =i FT3_P_vc_Gm-Mw
R Rl «PerformanceRatio» «PerformanceRatio «PerformanceRatio
] PertRatiod —! PerfRatio2 = PerfRatio1 = PerfRatio3
I «\VnfArchitecturalDescs ExtCpArchitectural...
i E.x:t_cgigprlt;ﬁtﬂﬂ” £ PCSCF_AD - extCPAD2_Gm
«Standard=
= 3GPP
IntCpArchitectur... -
Cf; VguCPAD‘I M «<VduArchitecturalDesc= «IntCpArchitectur..
= = CoreVdu_AD = vduCPAD2_Gm

v

_«Vnfinterface»
— Interface1_Mw_P «Vnflnterfaces
;- Interface2_Gm_P

«PerformanceCharacteristics

“F%.CETOL:‘E"ITUMP\LE” =1 pCharl_Mw «PerformanceCharacteristic»
= #e «FunctionalTuple= = PChar1_Gm
«PerformanceCharacteristic» = FTup1_Gm
<Functional Tuple» = PChar2_Mw <PerformanceCharacteristic»
= PChar2_Gm

E FTup2_Mw

«FunctionalTuple=
= FTup2 Gm | |«PerformanceCharacteristic»
= PChar3_Gm

«PerformanceCharacteristics
= PChar3_Mw

Figure 6.11 — The P-CSCF VNFAD model for the case study
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Functional
Characteristic

Server, Input,

QoS

Characteristic

Interface

Registration ~ Control Ot Throu. 100
Mw
Voice Call Control ~ Server: Client RPS 30
Input, Output
P-CSCF
e N Client, Input, .
Registration Control Throu. 100
= Output
Gm _
Voice Call Control Server, Chiont RPS 30
Input, Output
Registration Control ~ SSIVer: Clie Throu. 100
= Input, Output
I-CSCF Mw
RPS 20
S i Server, Client i
Registration ~ Control Input, Output Throu. 300
Mw
L _ Server, Client
Voice Call Control Tngat: Ot RPS 40
Registration ~ Control Shem’ g Throu. 600
utput
S-CSCF Cx
RPS 50
Voice Call Control sheat, Throu. 300
Output
ISC
RPS 50
Use‘r T Control Server, Input, Throu. 250
Storage Output
HSS Cx
RPS 70
Voice Call Control “enver, et Throu. 200
Input, Output
ISC
AS RPS 20
Mb Voice Call Data Input. Output Throu. 5000

Table 6.2 - The VNF Interface elements of the VNFs in the typical IMS composition
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Flow Transformation QoS Ratio
Source Source Target Target
Interface Func. Role Func. Role

1 Control  Gm -> Mw Registration  Server Registration ~ Client RPS -» RPS 1
2 Control  Gm -> Mw Registration  Input Registration ~ Output Thro->Thro 1
P-CSCF
3 Control ~ Gm -> Mw Voice Call Server Voice Call Client Thro->Thro 1
4 Control ~ Mw -> Gm Registration  Input Registration ~ Output Thro->Thro 1
3 Control ~ Mw -> Mw Registration Server Registration ~ Client RPS -» RPS 1
I-CSCF
6 Control ~ Mw -> Mw Registration  Input Registration ~ Output Thro->Thro 1
7 Control ~ Mw = ISC Voice Call Server Voice Call Client Thro->Thro 1
8 Control  Mw ->Cx Registration  Server Registration ~ Client RPS -= RPS 2
S-CSCF
9 Control ~ Mw -> Cx Registration  Input Registration ~ Output Thro -> Thro 2
10 Control ~ Mw -> Mw Registration  Server Registration ~ Output RPS->Thro 0.1
11 Control  Cx ->Cx Lee Juto Server Iecieto Output RPS -=> Thro 3
Storage Storage
HSS
12 Control  Cx->Cx ISJSBI Info Input User Info Output Thro -> Thro 1
torage Storage
AS 13 Data Mb -> Mb Voice Call Input Voice Call Output Thro-=Thro 1

Table 6.3 - The Flow Transformation elements of the VNFs in the typical IMS composition

6.2.3.3 VNF Package Info

In our VNF Package Info models, we have defined only the VNF Package Info and its User
Defined Data elements, as these are the only elements in our scope. In the former element, we
reference the VNFD element, and in the latter, we reference the VNFAD element. Figure 6.12

shows the P-CSCF VNF Package Info as an example.
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«OnboardedVnfPkginfo=
£ OnboardedPck_PCSCF
«OnboardedVnfPkginfo=
onboardedVnfPkginfold
vnfProvider
vnfProductName
vnfSoftwareVersion
vnfdVersion
checksum=0
operationalState=ENABLED
usageState=IN_USE
deletionPending=false
userDefinedData=[Archinfo_Ref]
vnfpackagesoftwareimageinformation=[]
vnfpackageartifactinformation=[]

«KeyValuePairs
=] Archinfo_Ref
«KeyWaluePair=
key=ArchitecturalDesc
valueType=REFERENCE
valueString
valuelnteger=0
valueBoolean=false
valueVnfArchitecturalDesc=PCSCF_AD

Figure 6.12 — The P-CSCF VNF Package Info model in the case study

6.2.4 Protocol Stack

Figure 6.13 shows our Protocol Stack model in Papyrus tool.

_«Protocol= «Protocol» =Protocols P -
| Diameter = SIP =HTTP 1 RTSP
P, <Protocol» «Protocol» ul:.'-r.otocoln
networkLayer=4 networkLayer=4 networkLayer=4 networkLayer=4
protocol=[TCP, SCTP] protocol =[TCP, UDP] protocol=[TCP, UDP] protocol=[UDP]
«Protocols «Protocol» «Protocols
= scTP = TCP Eupp
«Protocol» «Protocole «Protocol=
networkLayer=3 networkLayer=3 networkLayer=3
protocol=[IPv4, IPv6] protocol=[IPv6, IPv4] protocol=[IPv4, IPv6]
«Protocol= «Protocol=
H ipva E ipve
«Protocols «Protocol=
networkl ayer=2 networklayer=2
protocol=[] protocol=[]

Figure 6.13 — The Protocol Stack model in the case study

6.2.5 Results of the NSD generation and refinement process
In this section, we will discuss the results of each transformation in our case study. The

output of all the transformations is UML files that contain the desired output models.
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6.2.5.1 Transformation 1 (Initializing the SM model)

The input of the Transformation 1 is the NSReq model discussed in Section 6.2.1. The result
of this transformation is an SM model that contains all the NSReg elements transformed into
corresponding SM elements, according to Section 4.2.1. We refer to it as SM1. SM1 contains the
VoLTE Functionality element decomposed to voice call and registration Functionality ele-
ments. It also has all the SAPRs and the NFRs of the NSReq model. Figure 6.14 shows SMI in

the UML file resulted from Transformation 1.

4 |§J platfc:rrn:freaaurce;MadeIaﬁlMSBaaedExampIe,-’nuthM1.urnl|
4 <Model> Sk
H < <Functionality>> <Class> VolLTE
= < <Functionality>> <Class> VoiceCall
& < <Functionality>> <Class> Register
» /" <eComposedOf=> <Association> voip_reg

/" <<«ComposedOf=> <Associations voip_vc
= <<SAPR=>> <Class> SAPR1_reg_vc_c
i/ «<SAPRProvideFs> > <Association> sapri_prov_ve c
E < <MonFunctionalRequirement>» «Class> MFRZ
-/ «<SAPRProvideF>> <Association= sapri_prov_reg
H < <NonFunctionalRequirement> > <Class> NFR1
B <<SAPR>> <Class> SAPR2_vc_d
=/ < <SAPRProvideFs> <Associations sapr2_prov_vc_d
E < <MonFunctionalRequirement>» «<Class> NFR3

=F

- . <Profile Application> SM

Figure 6.14 — The SM1 generated from the Transformation 1

6.2.5.2 Transformation 2 (Decomposing the SM model)

The inputs of the Transformation 2 are the NFO model, as discussed in Section 6.2.2, and
the SM1. This transformation results in a new SM model that we refer to as SM2. It contains the
VoLTE, registration, and voice call functionalities from SMI. The authentication and the user
info storage functionalities are in the VOLTE core decomposition in the NFO. Therefore, they

have been added to the VoLTE decomposition in SM2. The dependencies of the aforementioned
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functionalities also have been added to the SM2 from the NFO. The Functionality elements like
IPTV, messaging, and video streaming have not been added as they are not relevant to the re-

quirements.

In the NFO, all the architectural blocks in both of the IMS compositions realize at least one
functionality that is in SM2. Therefore, the IMS architectural block and both of its compositions
with all of their elements have been added to SM2. These elements include all the architectural
blocks, their dependencies and ADep Interfaces elements, and their Interfaces and SAPs as
shown in Figure 6.7. Figure 6.15 shows a portion of SM2 in the UML file resulted from

Transformation 2.

4 |@ platform:,fresource,fModeIstMSBasedExampIefouthM&uml| E «<Interfacelnfo>> <Class> 515C
4 = «<Model= SM = < <FunctionalTuple= > <Class> S_ISC_FT1_vc
= < <Functionality>> <Class> VolLTE H «<Interfacelnfo=> <Class> 5_Cx
H < <Functionality>»> <Class» Register H <<FunctionalTuple>> <Class> 5_Cx_FT1_reg
>/ «<ComposedOfs > <Associations FDecVolTERegister H <<archBlocks> <Class> PCSCF
= < «<Functionality=> > <Class» UserinfoStorage El «<interfacelnfos > <Class> P_hw
>/ «<FunctionalDependency=> <Association> FDepRegisterUserinfoStoragd H <<FunctionalTuple>» <Class> P_iw_FT1_reg
>/ <<ComposedOfs > <Associations= FDecVolTEUserinfoStorage = < <FunctionalTuple= > <Class> P_Mw_FT2_vc
E <=ArchBlock=> <Class> HSS | «<Interfacelnfo>> <Class> P_Gm
E «<Interfacelnfos> <Class> H_Cx E <<FunctionalTuple= > <Class> P_Gm_FT1_reg
= «<FunctionalTuple> > «Class> H_Cx_FT1_UI 5 < <FunctionalTuple>> <Class> P_Gm_FT2_vc
H <<archBlock>> <Class> DB - /" <<ArchitecturalDependency> > <Associations ADep_5-P
H «<Interfacelnfo>> <Class> DB_X2 £ «<Contexts> «Class> cntx-R_Reg
H <<FunctionalTuple>> <Class> DB_X2_FT1_UI E <<RealizedBy>> <Class> Register-5CSCF
H <«Interfaceinfo>> <Class> DB_Cx H < <ADepinterfaceRequirements > <Class> S-P_vc
Q < <FunctionalTuple= = <Class> DB_Cx_FT1_UI Q < <ArchBlock> > <Class»> |CSCF
= < <ArchBlocks> «Class> SCSCF El «<interfacelnfos > <Class> [_Ww
& «<Interfacelnfo>> <Class> 5_Mw E <<FunctionalTuple= > <Class> |_Mw_FT1_reg
Q < <FunctionalTuple= > <Class> 5_Ww_FT1_reg Q < <|nterfacelnfo= = <Class> |_Cx
Q < <FunctionalTuple> > <Class> 5_Mw_FT2_vc = < <FunctionalTuple> > <Class> |_Cx_FT1_reg
/< <ArchitecturalDependency= > <Association> ADep_|-P

Figure 6.15 - A portion of the SM2 generated from the Transformation 2

6.2.5.3 Transformation 3 (Selecting the VNF's and Generating the FGs)
The input models of the Transformation 3 are the VNF Catalog, as discussed in Sec-

tion 6.2.3, and the SM2. This transformation results in an SAM model that we refer to as SM3.
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Each VNF in the VNF Catalog matches with an architectural block in the SM3. Therefore, all

the VNFs have been added into the SM3 from the VNF Catalog in this step.

Potentially, we can design two FFGs from the SM3. One is composed of the VoLTE func-
tionality, and the other is composed of the functionalities in the VOLTE’s decomposition. No
VNEF realizes the IMS architectural block in the SM3, thus, no VNF realizes the VoLTE func-
tionality either. Therefore, the first FF'G has been dismissed. From the second FFG, eight AFGs
have been generated. They are based on all the combinations of the architectural blocks in the
SM3 that realize the FF'G’s functionalities. Table 4 shows the generated 4F'Gs and the mapping

between their architectural blocks and the FFG’s functionalities.

Registration Authentication ser o Voice Call
_ Storage

P-CSCF P-CSCF
1 I-CSCF I-CSCF HSS AS
S-CSCF S-CSCF
P-CSCF
2 I-CSCF fﬁgiﬁi o HSS AS
S-CSCF
P-CSCF P-CSCF
3 I-CSCF I-CSCF DB AS
S-CSCF S-CSCF
P-CSCF
4 I-CSCF fh‘;;e]{ﬁi or DB AS
S-CSCF
_ P-CSCF
5 f&‘;iﬁi - I-CSCF HSS AS
S-CSCF
Core IMS Core IMS
& IMS Locator IMS Locator HSS o
_ P-CSCF
7 f&giﬁi or I-CSCF DB AS
S-CSCF
3 Core IMS Core IMS DB AS

IMS Locator IMS Locator

Table 6.4 — The AFGs generated in Transformation 3
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All the generated AFGs except the AFG1 and § are incomplete, as their architectural blocks
are from different IMS compositions. The P/I/S-CSCF and the HSS have no interface that
matches the interfaces of the IMS Locator and the Core IMS. Among the incomplete AFGs, the
AFG2,4, 5, 6, and 7 have architectural blocks from both of these groups. The AFG Completion
procedure is not able to create the missing architectural dependencies for these AFGs due to the
lack of matching interfaces. Therefore, they remain incomplete. All the architectural blocks in
the AFG3 are from the typical IMS composition except the DB. DB exposes the Cx interface
through which it can communicate with the S-CSCF. Therefore, the AFG Completion procedure
is able to create the missing dependency between the DB and the S-CSCF. The complete AFGs

generated in this transformation are AFG1, 3, and §.

One Pre-VNFFG has been generated for each of these 4FGs since there is a one-to-one
mapping between the VNFs and the architectural blocks in the SM3. Figure 6.16 shows a portion
of the SM3 in the UML file resulted from Transformation 3. This portion is related to the gen-

erated FGs.
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E f<FFG>> <Class> FFG 1)

E E<AFG>> <Class> AFG 1-FFG 1]

El <<ABFTie»» «<Class> AB-F-Tie AFG 1-FFG 1 SCSCF-Register

E <<ABFTie»> <Class> AB-F-Tie AFG 1-FFG 1 HS5-UserinfoStorage
E << ABFTie>> <Class> AB-F-Tie AFG 1-FFG 1 SCSCF-Authentication
E <<ABFTies» «Class» AB-F-Tie AFG 1-FFG 1 AS-VoiceCall

El <<ACFFGTies> <Class> AC-F-Tie AFG 1-FFG 1-IMS-AC2

E < <ACFFGTie=> <Class> AC-F-Tie AFG 1-FFG 1-IMS-AC1
Hl<<AFG=> <Class» AFG 2-FFG 1 ]

E <<ABFTies» «Class> AB-F-Tie AFG 2-FFG 1 SCSCF-Register

H <<ABFTie>> <Class> AB-F-Tie AFG 2-FFG 1 HS5-Userinfostorage
E] < <ABFTie»> <Class> AB-F-Tie AFG 2-FFG 1 CorelMS-Authentication
El <<ABFTies» «Class> AB-F-Tie AFG 2-FFG 1 AS-VoiceCall

E < <ACFFGTies>> <Class> AC-F-Tie AFG 2-FFG 1-IMS5-AC2

E << ACFFGTie>> <Class> AC-F-Tie AFG 2-FFG 1-IMS-AC1
Els<AFG>> <Class> AFG 3-FFG 1 ]

H <<ABFTie>> <Class> AB-F-Tie AFG 3-FFG 1 SCSCF-Register

E <<ABFTie»» «<Class> AB-F-Tie AFG 3-FFG 1 DEB-UserinfosStorage
E] <<ABFTie»> <Class» AB-F-Tie AFG 3-FFG 1 SCSCF-Authentication
E << ABFTie=> <Class> AB-F-Tie AFG 3-FFG 1 AS-VoiceCall

Q << ACFFGTie= > «<Class> AC-F-Tie AFG 3-FFG 1-IMS-AC2

E <<ACFFGTies> <Class> AC-F-Tie AFG 3-FFG 1-IMS-ACT
E[<<AFG>> <Class> AFG 4-FFG 1]

H <<ABFTie»> <Class> AB-F-Tie AFG 4-FFG 1 SCSCF-Register

El <<ABFTies» «Class> AB-F-Tie AFG 4-FFG 1 DB-Userinfostorage
E] <<ABFTie»> <Class> AB-F-Tie AFG 4-FFG 1 CorelMS-Authentication

El<<PreVNFFG>> <Class> PreVNFFG 1-AFG 1-FFG 1 I

] «<ABFTie>> «Class> AB-F-Tie AFG 4-FFG 1 AS-VoiceCall

] < <ACFFGTie» » <Class> AC-F-Tie AFG 4-FFG 1-IMS-AC2

E < <ACFFGTie» > <Class> AC-F-Tie AFG 4-FFG 1-IMS-AC1
H[z=4FG>> «Class» AFG 5-FFG 1]

] < <ABFTie>> «Class> AB-F-Tie AFG 5-FFG 1 CorelM5-Register
E <<ABFTie»> <Class> AB-F-Tie AFG 5-FFG 1 HSS-UserinfoStorage
E << ABFTie= > <Class> AB-F-Tie AFG 53-FFG 1 SCSCF-Authentication
=] ««aBFTies» «Class> AB-F-Tie AFG 5-FFG 1 AS-VoiceCall

] < <ACFFGTies » <Class> AC-F-Tie AFG 5-FFG 1-IMS-ACT

E < <ACFFGTie>> <Class> AC-F-Tie AFG 5-FFG 1-IMS-AC2
H[c=AFG>> «Class» AFG 6-FFG 1]

=] «<ABFTie>> «Class> AB-F-Tie AFG 6-FFG 1 CorelM5-Register
E <<ABFTie»> <Class> AB-F-Tie AFG 6-FFG 1 HSS-UserinfoStorage
] < <ABFTie»» <Class> AB-F-Tie AFG 6-FFG 1 CorelMs-Authentication
] «<ABFTie»» «Class> AB-F-Tie AFG 6-FFG 1 AS-VoiceCall

=] «<ACFFGTies » «Class> AC-F-Tie AFG 6-FFG 1-IMS-ACT

] < <ACFFGTie» > <Class> AC-F-Tie AFG 6-FFG 1-IMS-AC2
E[<<AFG> > <Class> AFG 7-FFG 1]

] <<ABFTie>» <Class> AB-F-Tie AFG 7-FFG 1 CorelMS-Register
=] < <ABFTie>> «Class> AB-F-Tie AFG 7-FFG 1 DB-UserinfoStarage
] < <ABFTie=» <Class> AB-F-Tie AFG 7-FFG 1 SCSCF-Authentication
E < <ABFTie=> <Class> AB-F-Tie AFG 7-FFG 1 AS-VoiceCall

Q << ACFFGTie= = <Class> AC-F-Tie AFG 7-FFG 1-IMS-ACT

=] <« <ACFFGTies » <Class> AC-F-Tie AFG 7-FFG 1-IMS-AC2
CElE=4FG>> «Class> AFG 8-FFG D

= < <VNFDABTIE> »
B <<VNFDABTie>»
E] < <wNFDABTIES >
£ < <WNFDABTIE> >
= < <VNFDABTIe> »

<Class> VNFD-AB-Tie PreVNFFG 1-AFG 1-FFG 1 SCSCF-SCSCF
<Class> VINFD-AB-Tie PreVNFFG 1-AFG 1-FFG 1 HS5-HSS
<Class> VNFD-AB-Tie PreVNFFG 1-AFG 1-FFG 1 AS-AS
<Class> VINFD-AB-Tie PreVINFFG 1-AFG 1-FFG 1 PCSCF-PCSCF
<Class> VNFD-AB-Tie PreVINFFG 1-AFG 1-FFG 1 ICSCF-ICSCF

QlccpreVNFFG» <(Class> PreVMNFFG 1-AFG 3-FFG 1 |

E < <WNFDABTIE> >
£ < <WNFDABTIE> >
E < <VNFDABTIE> »
B <<VNFDABTie>»
£ < <WNFDABTIES =

<Class> VNFD-AB-Tie PreVNFFG 1-AFG 3-FFG 1 SCSCF-SCSCF
<Class> VINFD-AB-Tie PreVINFFG 1-AFG 3-FFG 1 DB-DB
<Class> VNFD-AB-Tie PreVINFFG 1-AFG 3-FFG 1 AS-AS
<Class> VNFD-AB-Tie PreVNFFG 1-AFG 3-FFG 1 PCSCF-PCSCF
<Class=> VNFD-AB-Tie PreVINFFG 1-AFG 3-FFG 1 ICSCF-ICSCF

EI'{{PHEVNFFG}} <Class» PreWMNFFG 1-AFG 8-FFG 1 I

& <<VMNFDABTies »
] < <WNFDABTIES >
£ < <WNFDABTIE> >
= < <VNFDABTIE> »

<(Class> VMNFD-AB-Tie PreVNFFG 1-AFG 8-FFG 1 CorelMS-CorelMS
<Class> VMFD-AB-Tie PreVMFFG 1-AFG 8-FFG 1 DBE-DB

=Class> VMFD-AB-Tie PreVMFFG 1-AFG 8-FFG 1 AS-AS

<Class» VMNFD-AB-Tie PreVNFFG 1-AFG B-FFG 1 IMSLocator-IMSLocator

Figure 6.16 — The FGs portion of the SM3 generated in Transformation 3

6.2.5.4 Transformation 4 (Generating the generic NSDs)

The input models of the Transformation 4 are the SM3 and the Protocol Stack model, as

discussed in Section 6.2.4. This transformation results in two UML files. One contains the gen-

erated generic NSDs, and the other is an SM model that we refer to as SM4. For each of the Pre-

117



VNFFGs in the SM3 one generic NSD model has been generated. Figure 6.17 shows the UML

file containing these three NSD models.

s |#| platform:/resource/Models/IMSBasedExample/out/NSDs.uml |
Q <Class> Main TEMP

- B2 <Model> NSD: VolTE (From : PreVNFFG 1-AFG 1-FFG 1)

y <Model= MSD: VolTE (From : PreVNFFG 1-AFG 3-FFG 1)

’ <Model= MSD: VolTE (From : PreVNFFG 1-AFG 8-FFG 1)
- & platform:/resource/Profiles/NsdGenProfiles/NSD.profile.uml
» #] platform:/resource/Profiles/OpenModelProfile/OpenModel_Profile.profile.um
- & platform:/resource/Profiles/NsdGenProfiles/VNFD.profile.uml
» )] filey/C:/Users/Mavid workspace/%58%205VMN2.0%20%50,/MN5DGeneration/Profiles/NsdGenProfiles,WVNFD. profile.uml

#] platform:/resource/Profiles/NsdGenProfiles/Types.profile.uml

Figure 6.17 — The NSD models generated in Transformation 4

As an example, Figure 6.18 shows the NSDI model that is originated from the AFGI ac-
cording to the typical IMS composition. According to the architectural dependencies in the typ-
ical IMS, three VLDs have been generated. They exist at the top of the figure along with their
Connectivity Type elements. One of the VLDs is an E-LAN type that connects the P/I/S-CSCF
VNFs through their Mw interfaces. The other VLDs are E-Line type, and they connect the S-

CSCF VNF to the HSS and the AS VNFs through their Cx and ISC interfaces, respectively.

Two VNFFGDs have been created, one for the data and the other for the control plane of the
network service. In the control plane, VNFFGD two Propagation Flows have been designed,
one for registration and the other for voice call functionalities on the control plane. These two
functionalities are exposed by the SAP associated with the Gm interface of P-CSCF. P_Sap-Gm
is the SAPD of this SAP as shown in Figure 6.18. In the registration flow, P-CSCF receives the
registration requests from the users and sends them to the I-CSCF. I-CSCF finds the assigned
S-CSCF to each user and routes the requests to these S-CSCFs. Each S-CSCF inquires the in-
formation of the users from the HSS for the authentication. After S-CSCF performs the regis-

tration functionality, it sends an acknowledgment message to the user through the incoming
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route of the request. The voice call flow on the control plane in our case study is a simplified
version of the session setup procedure in the IMS [13]. In this flow, the users send the voice call
requests to P-CSCF. P-CSCF routes the requests to the S-CSCFs assigned to the users. Each S-

CSCF sends a request to the AS to setup up a connection for each requested call.

In the data plane VNFFGD one Propagation Flow has been designed for the voice call func-
tionality on the data plane. This functionality is exposed by the SAP associated with the Mb
interface of the AS. AS Sap-Mb is the SAPD of this SAP as shown in Figure 6.18. In this flow,
each user in the call sends the voice call content through this SAP to the Mb interface. AS sends

the content to the other user through the same interface.

One NFPD have been generated according to each of the aforementioned flows. These
NFPDs include NFPD Register-CONTROL, NFPD VoiceCall-CONTROL, and NFPD Voice-

Call-DATA as shown in Figure 6.18.
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4 = <Model= NSD: VoLTE (From : PreVMNFFG 1-AFG 1-FFG 1)
Q =<Msd>» <Class> MNSD: VoLTE (From : PreVMFFG 1-AFG 1-FFG 1)
& <<ConnectivityType>> <Class> MESH-SIP
E <<MNsvirtuallinkDesc» > <Class> Mw_Sequence {'{ADep_S5-P', 'ADep_S-I', 'ADep_|-P'}
& <<ConnectivityType>> <Class> LINE-Diameter
Q < =MsVirtuallinkDesc»» =Class» Cx_Sequence {'ADep_5-HSS%
& <<ConnectivityType>> <Class> LINE-SIP
Q < =MsVirtuallinkDesc»»> =Class» ISC_Sequence {'ADep_AS-5%
E <<5apd>> «<Class> P_Sap-Gm
E <<Sapds>> <Class> AS_Sap-Mb
& <<vnffgd>> <Class> Vnffgd DATA plane
E <<CpdPool>> <Class> CpPool-Sapds
H <<Nfpd>> <Class> NFPD VoiceCall-DATA
E <<vnffgd>> <Class»> Vnffgd CONTROL plane
& <<CpdPool>> <Class> CpPool-ICSCF
E <<CpdPool>> <Class> CpPool-SCSCF
& <<CpdPool>> <Class> CpPool-PCSCF
E <<CpdpPool>> <Class> CpPool-HSS
& <<CpdPool>> <Class> CpPool-AS
H <<CpdpPool>> <Class> CpPool-Sapds
H <<Nfpd>> <Class> NFPD VoiceCall-CONTROL
E <<Nfpds> <Class> NFPD Register-CONTROL
El «<MNsDf>» <Classs MsDf - NsDf - MSD: VoLTE (From : PreVNFEG 1-AFG 1-FFG 1)
El «<=VirtuallinkProfile> > <Class> VIProfile - Mw_Sequence {'ADep_S-P', 'A0ep_S-I', ‘ADep_-P?}
E < «virtualLinkProfiles > <Classs> VIProfile - Cx_Sequence {'ADep_S-HS5'
E «=VirtuallinkProfiles » <Class= VIProfile - ISC_Sequence [ADep_AS-5
E ««vnfProfiles > «Class> VnfProfile - SC5CF
= < <MsVirtuallinkConnectivity= = =Class> MSVLConn-VIProfile - Mw_Sequence {{ADep_5-P', 'ADep_S-I', 'ADep_|-P}-SCSCF
= < <hsVirtuallinkConnectivity= = =Class» MSWLConn-VIProfile - Cx_Sequence {'ADep_S-HS5}-5CSCF
= < «<MsVirtuallinkConnectivity= = =Class> MSVLConn-VIProfile - ISC_Sequence {'ADep_AS-S'}-SCSCF
E < <vnfProfiles > <Classs VnfProfile - H55
= < <MsVirtuallinkConnectivity= = =Class> MSVLConn-VIProfile - Cx_Sequence {'4Dep_S-H55'1-HSS
E < <vnfProfiles > <Class> VnfProfile - AS
= < <MsVirtuallinkConnectivity= = <Class> MSVLConn-VIProfile - ISC_Sequence {ADep_AS-5'}1-AS
E <<vnfProfile>» <Class> VnfProfile - PCSCF
= < <MsVirtuallinkConnectivity= = =Class> MSVLConn-VIProfile - Mw_Sequence {{ADep_5-P', 'ADep_S-I', "ADep_|-P}-PCSCF
E <<vnfProfile>> <Class> VnfProfile - ICSCF
= < «<MsVirtuallinkConnectivity= > <Class> MSVLConn-VIProfile - Mw_Sequence {ADep_5-P', 'ADep_S-I', "ADep_|-PY-ICSCF

Figure 6.18 — The NSD model for the typical IMS composition form Transformation 4

Figure 6.19 shows the aforementioned flows generated in the SM4.
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E <<PropagationFlow=> <Class> Propagation Flow VoiceCall-DATA
El «<smvnfinterfaces > <Class> Smint Interface2_Mb: 1

E < <smvnfinterface=> <Class> Smint Interface2_Mb: 2

E <<PropagationFlow=> <Class> Propagation Flow VoiceCall-CONTROL
E| < <smvnfinterface>> <Class> Smint Interface2_Gm_P: 1

El «<smvnfinterfaces » <Class» Smint Interface_Mw P: 2

E| < <smvnfinterface=> <Class> Smint Interfacel_Mw _5: 3

El < <smvnfinterfaces » <Class> Smint Interface3 5C_5: 4

E <<Smvnfinterface>> <Class> Smint Interface3_ISC_vc: 5

H <<PropagationFlows> <Class> Propagation Flow Register-CONTROL
E| < <smvnfinterface>> <Class> Smint Interface2_Gm_P: 1

El «<smvnfinterfaces » <Class» Smint Interface?_Mw P: 2

E < <smvnfinterface>> <Class> Smint Interface_Mw_I: 3

El < <smvnfinterfaces » <Class> Smint Interface? Mw |: 4

E| < <smvnfinterface=> <Class> Smint Interfacel_Mw 5: 5

E «<Smvnfinterface>> <Class> Smint Interfacel_Mw S: 6

E < <smvnfinterface>> <Class> Smint Interfacel_Mw | 7

E «<smvnfinterfaces » <Class> Smint Interface? Mw | 8

E| < <smvnfinterface=> <Class> Smint Interfacel_Mw _P;: &

E «<Smvnfinterfaces> <Class> Smint Interface2_Gm_P: 10

E < <smvnfinterface>> <Class> Smint Interface? Cx 5: 6

E < <«smvnfinterfaces » <Class> Smint Interfacel Cx H: 7

E| < <smvnfinterface>> <Class> Smint Interface_Cx H: 8

El < <smvnfinterfaces » <Class> Smint Interface2 Cx S: @

Figure 6.19 - The Propagation Flows in the SM4 from Transformation 4

Table 6.5 shows the details of each Propagation Flow, i.e. the sequence of their interfaces,
and the interfaces’ characteristics related to the flows. It also shows the source of finding each

interface in the flow, i.e. the Flow Transformation or the ADep Interfaces elements.
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Registration -
Control Plane

Voice Call -
Control Plane

Voice Call -
Data Plane

P-CSCF: Gm

Func.: Registra.
Plane: Control
Roles: Server,

P-CSCF: Mw

Func.: Registra.
Plane: Control
Roles: Client,
Output

I-CSCF: Mw

Func.: Registra.
Plane: Control
Roles: Server,

I-CSCE: Mw

Func.: Registra.
Plane: Control
Roles: Client,

S-CSCF: Mw

Fune.: Registra.
Plane: Control
Roles: Server,

. Input Output Input
Input Elewleamn.: 52 ADep. Int.: 1 Flow Tran.: 5.6 ADep. Int.: 3
S-CSCF: Mw I-CSCF: Mw I-CSCF: Mw P-CSCF: Mw P-CSCF: Gm
Fune.: Registra. Func.: Registra. Func.: Registra. Func.: Registra. Func.: Registra.

Plane: Control

Plane: Control

Plane: Control

Plane: Control

Plane: Control

Roles: Output Roles: Input Roles: Output Roles: Input Roles: Output
Flow Tran.: 10 ADep. Int.: 3 Flow Tran.: 5.6 ADep. Int.: 1 Flow Tran.: 4
S-CSCF: Cx HSS: Cx HSS: Cx S-CSCF: Cx
Fune.: Registra. Fune.: UlStorag Func.: UlStorag ¥ Rt
Plane: Control Plane: Control Plane: Control P;m':': Cegis la.
Roles: Client, Roles: Server, Roles: Output R,
Roles: Input
Output Input Flow Tran.: 11, ADEn Tres
Flow Tran.: 8.9  ADep. Int.: 4 12 €p- tnt-:
P-CSCF: Gm P-CSCF: Mw S-CSCF: Mw S-CSCF: ISC AS: ISC

Fune.: Voice C.
Plane: Control
Roles: Server,
Input

AS: Mb

Func.: Voice C.
Plane: Data
Roles: Input

Func.: Voice C.
Plane: Control
Roles: Client,
Output

Flow Tran.: 3

AS: Mb

Func.: Voice C.
Plane: Data
Roles: Output
Flow Tran.: 13

Func.: Voice C.
Plane: Control
Roles: Server,
Input

ADep. Int.: 2

Func.: Voice C.
Plane: Control
Roles: Client,
Output

Flow Tran.: 7

Funec.: Voice C.
Plane: Control
Roles: Server,
Input

ADep. Int.: 5

Table 6.5 - Details of the Propagation Flows in the case study

6.2.5.5 Transformation 5 (Updating the NFO)

In our case study, no NFO update happens.
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6.2.5.6 Transformation 6 (Refining the generic NSDs)

The input models of the Transformation 6 are the SAM4 and the UML file containing the NSD
models. This transformation results in a UML file containing the refined NSD models, and an
SM model that we refer to as SM5. The NFRI (50 RPS, max request size 3), as shown in Fig-
ure 6.6, relates to the first flow in Table 6.5, since both are for registration functionality on the
control plane. NFR2 (60 RPS, max request size 5) and NFR3 (6000 Throughput), also, relate to
the second and the third flow in Table 6.5. In this transformation, each of these NFRs has been

propagated through their related flows.

Table 6.6 shows the details of propagating the NFRs in this case study. It shows the ORs
calculated for each interfaces’ appearance in the flows and their metric.IU. The maximum met-
ric.IU for each appearance is specified by a circle. According to Section 5.2.1.3, the total.IU of
an interface is the summation of its maximum metric.IUs of each of its appearances in all the

flows. The total.IUs of the interfaces of each VNF in this case study are:

P-CSCF) Gm: 4.72, Mw: 4.72
I-CSCF) Mw: 5.05

S-CSCF) Mw: 2.26, Cx: 2.05, ISC: 1
HSS) Cx: 2.63

AS) ISC: 1.5, Mb: 2.4

As discussed in Section 5.2.2.1, the VNFC.RI for a VNFC is equal to the ceiling of the
maximum among its interfaces’ total.IUs. As discussed in Section 6.2.3.1, each VNF in this case
study has only one VNFC, except for the AS. The VNFC.RI for these VNFCs are: P-CSCF-
VNEFCI1: 5, I-CSCF-VNFCI: 6, S-CSCF-VNFC1: 3, HSS-VNFC1: 3, AS-VNFCI1 (ISC inter-

face): 2, AS-VNFC2 (Mb interface): 3.
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9 (entry) 10 (exit)

Registration -
Control Plane

Voice Call -
Control Plane

Voice Call -
Data Plane

P-CSCF: Gm

QR1: 50 RPS

QR2: 150 Thro.
metric.IU2: 1.5

P-CSCF: Mw

QR1: 50 RPS
(by Flow Trans. 1)
metric.IU1

QR2: 150 Throu.
(by Flow Trans. 2)
metric.IJU2: 1.5

I-CSCE: Mw

QR1: 50 RPS
metric.JU1

QR2: 150 Throu.
metric.IU2: 1.5

I-CSCF: Mw

QR1: 50 RPS
(by Flow Trans. 5)
metrie.JU1

QR2: 150 Throu.
(by Flow Trans. 6)
metric.IU2: 1.5

S-CSCF: Mw

QR1: 50 RPS
metric.IU1

QR2: 150 Throu.
metric.IU2: 0.5

S-CSCF: Mw I-CSCF: Mw I-CSCF: Mw P-CSCF: Mw P-CSCF: Gm
ki R1: 5 Thr R1: 5 Thr
(by Flow Tra.10)  QRI: 5 Thiois, Q1 o Thoon, QRI: 5 Thro QR1: 2 Thepn,
ctric.IUL: eteit IU1 (by Flow Tran. 6 metricTU1 (by Flow Trans. 4)
' : i metric.IL'l ’ metric.TU1
S-CSCF: Cx HSS: Cx HSS: Cx S-CSCF: Cx
QR1: 100 RPS QR1: 300 Throu.
(by Flow Tran. 8) QR1: 100 RPS (by Flow Tra. 11 QR1: 300 Throy.
} lpgfﬁs-_ftjl_@_ L) r_n_et_ri_c-_ﬂ_n y yn_et_ri_c-_ly A p_et_@c;y; -
QR2: 300 Throu. QR2: 300 Throu. QR2: 300 Throu. QR2: 300 Throu.
(by Flow Tran. 9) metric.IU2: 1.2 (by Flow Tra. 12) metric.IU2: 0.5
metric.IU2: 0.5 metric.JU2: 1.2
P-CSCF: Gm P-CSCF: Mw S-CSCE: Mw S-CSCF: ISC AS: ISC
QR1: 60 RPS )
metricIUL:2 QR1: 300 Throu. QR1: 300 Theou. QR1: 300 Throu. QRI: 300 Theay.
(by Flow Trans. 3) I (by Flow Trans. 7) P @
QR2: 300 Thigu. metric.IUl@ s R metric.IU1! sy L
metric.IU2
AS: Mb AS: Mb

QR1: 6000 =
metric.IU1

QR1: 6000 Thro.

(by Flow Tr: 3)
metric.JU1

Table 6.6 - Details of the NFR propagation in the case study

Table 6.7 shows the details of dimensioning the VNFs in this case study according to the
VNFC.RIs. Each row shows the result of dimensioning each VNF for the specified Instantiation
Level, i.e. it shows the VNF.RIynrcs and the VNF .RIi. For each VNF, the selected Instantiation

Level for each VnfDf, i.e. with the minimum VNF.RIy is specified with a dashed or a solid
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circle. The final solution for dimensioning each VNF, i.e. with the minimum VNF.RIy is spec-
ified with a solid circle. Therefore, the required number of instances for the VNFs are P-CSCF:

2, I-CSCF: 2, S-CSCF: 1, HSS: 1, AS: 1.

D i 1 oG 3 3 1 5 1 o 3 6

. —— ) e e e ) T

R R B 72 I T 772 I 7. T
Lvl 2 |___=_2___|\___= _____ =% |1

p s [ , B 3][ , s, Al 6]
Lvl 1 =1 =1 =1

f

A R E R A

Table 6.7 - Details of dimensioning the VNFs in the case study

All the information presented in Tables 6.6 and 6.7 has been stored in the SM5. The VNF
Profiles in the refined NSD model also have been enriched accordingly. The minimum and the
maximum root bitrate requirements for the E-Line virtual link between the S-CSCF and AS are
both equal to 900, according to Equation 4. Similarly, these parameters for the E-Line virtual
link between the S-CSCF and HSS are both equal to 1800. For the E-LAN virtual link between

the P/I/S-CSCF VNFs, the minimum leaf and root bitrate requirements are equal to 900 and
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1500 respectively, according to Equations 5 and 6. The maximum leaf and root bitrate require-
ments for this virtual link are also equal to 900 and 2100. The NsV! Profiles in the refined NSD
model have been enriched according to these bitrate requirements. Based on dimensioning the
VNFs, 4 NS Levels have been generated for the NSD. Figure 6.20 shows the last two generated

NS Levels along with their VafToLevelMapping and NsVIToLevelMapping elements.

£l <<MsLevels» «Class> Instantiation Lvl 2

H <<vnfToLevelMapping>> <Class> Vnf to Level Mapping - AS: 1

E <<vnfToLevelMapping>> <Class> ¥nf to Level Mapping - SCSCF: 1

E <<vnfTolevelMapping>> <Class> Vnf to Level Mapping - H55: 1

H <<vnfToLevelMapping>> <Class> Vnf to Level Mapping - PCSCF: 2

H <<vnfToLevelMapping>> <Class> vnf to Level Mapping - ICSCF: 1

E <<LinkBitrateRequirements>> <Class> BitrateReq-NS LEVEL for 2-1

H <<VirtuallinkToLevelMapping>> <Class= VL to Level Mapping - ISC_Sequence {'ADep_A5-5'}: 2-1
H <-<LinkBitrateRequirements>> <Class» BitrateReq-NS LEVEL for 2-2

E <<virtuallinkToLevelMapping>> <Class> VL to Level Mapping - Mw_Sequence {'ADep_S-P', 'ADep_S-I', 'ADep_I-P'}: 2-2
E <<LinkBitrateRequirements>> <Class> BitrateReq-NS LEVEL for 2-3

I < <\irtuallinkTolevelMapping == <Class= VL to Level Mapping - Cx_Sequence {&4Dep_S-H55'%: 2-3
El «<MsLevel>> <Class> Instantiation Lvl 3

E <<vnfTolevelMapping>> <Class> Vnf to Level Mapping - AS: 1

E <<vnfToLevelMapping=> <Class> Vnf to Level Mapping - SCSCF: 1

H <<VnfToLevelMapping=> <Class> Vnf to Level Mapping - HSS: 1

E <<vnfToLevelMapping>> <Class> Vnf to Level Mapping - PCSCF: 2

E <<vnfTolevelMapping>> <Class> Vnf to Level Mapping - ICSCF: 2

H < <LinkBitrateRequirements= = <Class» BitrateReq-MS LEVEL for 3-1

E <<virtuallinkToLevelMapping>> <Class> VL to Level Mapping - ISC_Sequence {'ADep_AS-5'}: 3-1
& <<LinkBitrateRequirements>> <Class» BitrateReq-NS LEVEL for 3-2

E <<virtuallinkToLevelMapping>> <Class> VL to Level Mapping - Mw_Sequence {'ADep_S-P', 'ADep_S-I', 'ADep_I-P'}: 3-2
H <<LinkBitrateRequirements>> <Class» BitrateReq-MNS LEVEL for 3-3

E <<VirtuallinkToLevelMapping>> <Class> VL to Level Mapping - Cx_Sequence [ADep_S-HSS}: 3-3

Figure 6.20 — A portion of the NsDf in the refined NSD from Transformation 6

6.3 Discussion

In this chapter, we presented the prototype tool for deriving the generic NSDs from an NSReq
and refining these NSDs according to the NFRs. We have developed this prototype in order to
demonstrate the feasibility and the application of our method to real case studies, e.g. VOLTE

using IMS architecture [13].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we proposed a model-driven approach to automatically design network ser-
vices and generate network service descriptors from high level network service requirements.
These requirements define at a high level of abstraction the required network services from the
functional, architectural, and QoS perspectives. The generated network service descriptors can
be used by the NFV-MANO to deploy and manage the network services. Our approach mainly

consists of two parts.

In the first part, we design network services according to the functional and architectural
requirements. Our method decomposes the high level requirements using an ontology. Accord-
ingly, it selects the suitable VNFs among the VNFs available in a catalog. The method defines
the flows and the forwarding graphs of the network services according to the dependencies be-
tween the VNFs. Based on the forwarding graphs, it generates an NSD model complying with

the ETSI NFV standards [9, 10] for each network service in the solution set.

In the second part, we refine the generated NSDs according to the NFRs in the network

service requirements. Therefore, these NSDs will be able to provide the range of QoS specified
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by the NFRs. This method propagates the NFRs through the flows of each network service and
the VNFs involved in the flows. It selects the suitable deployment flavor of each VNF and
dimensions it accordingly. It also calculates the required capacity for the virtual links connecting
the VNFs according to the VNFs dimensioning. Finally, the method tailors the deployment fla-

vor of each NSD accordingly.

During the NS design and NSD generation process, we also enrich automatically the ontol-
ogy. Taking into account new information provided in the network service requirements, our
method adds new functionalities and decompositions into the ontology. It may also add new
aliases to the existing functionalities. Note that the ontology may also be enriched based on new

VNFs added to the catalog.

As proof of concept, we developed a prototype tool and illustrated our approach with the

VoLTE service.

The NFV framework enables the automation of activities in network service orchestration
and management, e.g. on-boarding, deployment, lifecycle management, etc. All these activities
depend and come after network service design. Nowadays, experts in the OSS/BSS divisions
design network services manually. Our work fills the gap and fits very well in the big picture of

network automation. It is a step towards zero-touch in Telecommunications.

7.2 Potential Future Work

There are a few directions for further investigations in this research.

e The configuration of the application aspect of a network service is required before its in-
stantiation, e.g. the configuration required for a Firewall according to the policies, or con-
figuring a VoIP server to whether use SIP or H.323 protocol. This requires information about

the application aspect of the network service and it is out of the NFV scope. To complement
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this thesis, one can devise a method to automatically generate such a configuration for the
network service.

Our method does not check the consistency of the network service requirements, and we
assume the given requirements are consistent. A method to check the consistency of the
network service requirements can prevent generating faulty NSDs due to inconsistent re-
quirements.

Full validation of our method using real and industry level case studies is desirable.
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