

Generation of Network Service Descriptors from Network Service
Requirements

Navid Nazarzadeoghaz

A Thesis

in the Department

of

Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical & Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

May 2019

© Navid Nazarzadeoghaz, 2019

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Navid Nazarzadeoghaz

Entitled: Generation of Network Service Descriptors from Network Service Requirements

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with respect
to originality and quality.

Signed by the final examining committee:

__ Chair

 Dr. Dongyu Qiu

__ Examiner, External
. Dr. Roch Glitho (CIISE) To the Program

__ Examiner
 Dr. Dongyu Qiu

__ Supervisor
 Dr. Ferhat Khendek

__ Co-Supervisor
 Dr. Maria Toeroe (Ericsson)

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

_______________ 2019___ __________________________________
 Dr. Amir Asif, Dean
 Gina Cody School of Engineering and
 Computer Science

iii

ABSTRACT
Generation of Network Service Descriptors from Network Service

Requirements

Navid Nazarzadeoghaz, M.A.Sc.

Concordia University, 2019

Network Function Virtualization (NFV) is a new paradigm in Network Service (NS) pro-

visioning. European Telecommunications Standards Institute (ETSI) proposed and standard-

ized an architectural framework for NFV. By leveraging virtualization and Software-Defined

Networking (SDN) technologies, NFV decouples network functionality from hardware infra-

structure. This enables the automated provisioning of NSs and reduces the capital and opera-

tional costs for service operators. NFV Management and Orchestration (NFV-MANO) is a

functional block in the NFV framework, and it is responsible for the deployment and life-cycle

management of NSs. With NFV, the telecommunication industry is moving towards zero-

touch, i.e. automation of all the processes. In order to orchestrate and manage an NS, NFV-

MANO requires the NS’s deployment template. This template is referred to as NS Descriptor

(NSD) and contains all the details for deployment and orchestration of the NS. Designing such

a descriptor requires the design of the NS, which is actually out of the NFV scope. Tradition-

ally, service operators’ experts design NSs and NSDs. However, this design activity is time-

consuming and error-prone; moreover, it is not fitting the Telecom’s vision of zero-touch.

In this thesis, we will propose an approach to automate the process of NS and NSD design.

The approach starts from a set of requirements provided as Network Service Requirements

(NSReq). The NSReq describes the required network service at a high level of abstraction and

focuses on the functional, architectural, and non-functional characteristics. With the help of an

iv

ontology representing the knowledge from Telecom standards and previous successful experi-

ences, we decompose the NSReq. We select the set of Virtual Network Functions (VNF) from

a catalog to design the NS. Considering all the levels of decomposition and the VNF’s depend-

encies captured from the ontology, we design all the possible forwarding graphs that can form

an NS. We design each forwarding graph through different steps at different abstraction levels,

i.e. functional, architectural, and VNF levels. According to each forwarding graph, we design

an NSD along with the traffic flows in the NS. We refine each NSD by dimensioning its VNFs

using the non-functional requirements in the NSReq. Accordingly, we refine the deployment

flavor of each NSD. We have developed a prototype tool as a proof of concept for our proposed

approach which we will discuss later in this thesis.

v

Acknowledgments

I would greatly thank Dr. Ferhat Khendek for granting me the opportunity to conduct aca-

demic research under his supervision. His knowledge, patience, and belief in me were the key

enablers for the accomplishment of this thesis.

I am truly grateful to Dr. Maria Toeroe (Ericsson Canada) for exposing me to her immense

and valuable knowledge. Without her support, guidance, and insight it was impossible for me

to be able to carry out this research and finish this thesis.

I would also thank all my colleagues at MAGIC, who were such magical friends and gave

me the courage to move forward in this challenging path.

At last, I thank my family, especially my beloved parents, from the bottom of my heart for

their endless love and immeasurable support in every situation and aspect.

This work has been conducted within the NSERC/Ericsson Industrial Research Chair in

Model-Based Software Management, which is supported by Natural Sciences and Engineering

Research Council of Canada (NSERC), Ericsson and Concordia University.

x

List of Figures

Figure 2.1 - IMS reference architecture (from 3GPP TS 23.228 [13]) 6

Figure 2.2 - NFV reference architectural framework (from ETSI GS NFV 002 [1]) 11

Figure 2.3 - NSD overview (from ETSI GS NFV-IFA 014 [9]) ... 14

Figure 3.1 - The NSReq metamodel .. 21

Figure 3.2 – An example of NSReq model .. 24

Figure 3.3 - The NF Ontology metamodel... 25

Figure 3.4 - An example of NFO model .. 30

Figure 3.5 - The VNFD metamodel ... 32

Figure 3.6 - The VNFAD metamodel .. 35

Figure 3.7 - The VNF Package Info metamodel .. 37

Figure 3.8 – The VNF Catalog metamodel .. 38

Figure 3.9 – The Protocol Stack metamodel .. 38

Figure 3.10 - The Solution Map metamodel .. 39

Figure 3.11 - The NSD metamodel .. 40

Figure 4.1 - The overall picture of the NSD generation process ... 45

Figure 4.2 - The steps of the NSD generation process and the information flow 46

Figure 4.3 – Overall view of decomposing the SM model .. 49

Figure 4.4 – An SM model example .. 73

Figure 4.5 – Pre-VNFFG example with further details ... 74

Figure 4.6 - NF Ontology updating case 1 example .. 79

Figure 4.7 - NF Ontology updating case 2 example .. 80

Figure 6.1 - A flowchart for the transformations in the prototype tool 97

Figure 6.2 - An example of an ATL lazy rule in the prototype ... 99

xi

Figure 6.3 - An example of an ATL helper in the prototype ... 99

Figure 6.4 - An example of a Main rule in the prototype .. 100

Figure 6.5 - An overview of the transformations’ structure in the prototype 101

Figure 6.6 – The NSReq model for the case study .. 103

Figure 6.7 – The NFO model for the case study (functional portion) 104

Figure 6.8 – The NFO model in the case study (architectural portion) 106

Figure 6.9 – The VNF Catalog model in the case study .. 107

Figure 6.10 – The P-CSCF VNFD model for the case study... 108

Figure 6.11 – The P-CSCF VNFAD model for the case study .. 109

Figure 6.12 – The P-CSCF VNF Package Info model in the case study 112

Figure 6.13 – The Protocol Stack model in the case study .. 112

Figure 6.14 – The SM1 generated from the Transformation 1 .. 113

Figure 6.15 - A portion of the SM2 generated from the Transformation 2 114

Figure 6.16 – The FGs portion of the SM3 generated in Transformation 3 117

Figure 6.17 – The NSD models generated in Transformation 4 .. 118

Figure 6.18 – The NSD model for the typical IMS composition form Transformation 4 120

Figure 6.19 - The Propagation Flows in the SM4 from Transformation 4 121

Figure 6.20 – A portion of the NsDf in the refined NSD from Transformation 6 126

xii

List of Tables

Table 4.1 - Propagation Flow design example ... 76

Table 5.1 - NFR propagation example ... 87

Table 5.2 - VNF dimensioning example .. 92

Table 6.1 - The details of the architectural dependencies in the NFO 107

Table 6.2 - The VNF Interface elements of the VNFs in the typical IMS composition 110

Table 6.3 - The Flow Transformation elements of the VNFs in the typical IMS composition

.. 111

Table 6.4 – The AFGs generated in Transformation 3 .. 115

Table 6.5 - Details of the Propagation Flows in the case study ... 122

Table 6.6 - Details of the NFR propagation in the case study ... 124

Table 6.7 - Details of dimensioning the VNFs in the case study ... 125

xiii

List of Acronyms

3G Third Generation
3GPP Third Generation Partnership Project
AB Architectural Block
ADep Architectural Dependency
AFG Architectural Forwarding Graph
AR Architectural Requirement
AS Application Server
ATL ATLAS Transformation Language
COTS Commercial-Off-The-Shelf
CPD Connection Point Descriptor
CSCF Call Session Control Function
DSML Domain-Specific Modeling Language
EM Element Management
EPS Evolved Packet System
ETSI European Telecommunications Standards Institute
FFG Functional Forwarding Graph
FR Functional Requirement
HSS Home Subscriber Server
I-CSCF Interrogating CSCF
IMS IP Multimedia Subsystem
IP Internet Protocol
ISC IMS Service Control
IU Instance Utilization
LTE Long-Term Evolution
M2M Model-To-Model
M2T Model-To-Text
MCS Maximum Concurrent Sessions
MDA Model-Driven Architecture
MDD Model-Driven Development
MGCF Media Gateway Control Function
MGW Media Gateway
MRF Media Resource Function
NAS Network Attached Storage
NF Network Function
NFO Network Function Ontology
NFP Network Forwarding Path
NFPD Network Forwarding Path Descriptor
NFR Non-Functional Requirement
NFV Network Function Virtualization
NFVI NFV Infrastructure
NFVI-PoP NFVI Point of Presence
NFV-MANO NFV Management and Orchestration
NFVO NFV Orchestrator

xiv

NS Network Service
NSC Network Service Chaining
NSD Network Service Descriptor
NSReq Network Service Requirement
NsVl Network Service Virtual Link
NsVLD Network Service Virtual Link Descriptor
OCL Object Constraint Language
OMG Object Management Group
OSS/BSS Operations Support System/Business Support System
P-CSCF Proxy CSCF
PNF Physical Network Function
QoS Quality of Service
QR QoS Requirement
RPS Request Per Second
RTP Real-Time Transport Protocol
SA Forum Service Availability Forum
SAP Service Access Point
SAPD Service Access Point Descriptor
SAPR Service Access Point Requirement
S-CSCF Serving CSCF
SIP Session Initiation Protocol
SLF Subscriber Location Function
SM Solution Map
SOA Service Oriented Architecture
UE User Equipment
UML Unified Modeling Language
Vdu Virtualization Deployment Unit
VduCpd Vdu Connection Point Descriptor
VIM Virtualized Infrastructure Manager
VL Virtual Link
VLD Virtual Link Descriptor
VM Virtual Machine
VNF Virtual Network Function
VNFAD VNF Architecture Descriptor
VNFC VNF Component
VNFD VNF Descriptor
VnfExtCp VNF External Connection Point
VNFFG VNF Forwarding Graph
VNFFGD VNFFG Descriptor
VNFM VNF Manager
VnfVl VNF Virtual Link
VoIP Voice Over IP
VoLTE Voice Over LTE

https://en.wikipedia.org/wiki/Operations_support_system
https://en.wikipedia.org/wiki/Business_support_system

Network Services and Network Function Virtualization

Thesis Motivations

Thesis Contributions

Thesis Organization

Network Services

7

The main functional blocks in this architecture are Home Subscriber Server (HSS), Call/Ses-

sion Control Function (CSCF), Application Server (AS), Media Resource Function (MRF), Me-

dia Gateway (MGW), and Media Gateway Control Function (MGCF).

HSS: It stores the users’ subscription information used to handle their multimedia sessions.

This information includes location information, authentication and authorization information,

user profile, etc. An IMS network may have more than one HSS according to the number of its

subscribers. In such a case, a Subscription Locator Function (SLF) is required to find the right

HSS for a user [19].

CSCF: It is the core function that processes the Session Initiation Protocol (SIP) [22] sig-

naling in the IMS network [19]. IMS uses this protocol to establish and manage multimedia

sessions over IP networks. CSCF has three different blocks including Proxy-CSCF (P-CSCF),

Interrogating-CSCF (I-CSCF), and Serving-CSCF (S-CSCF) [19].

P-CSCF is the first contact point between the terminal and the IMS network. The terminal

is where the User Equipment (UE) is connected to. It receives all the SIP requests from the

terminal. It forwards these requests and the generated responses towards the appropriate direc-

tion, i.e. towards the terminal or IMS network [19]. S-CSCF is the central node for the SIP

signaling. It is essentially a SIP server, meaning it responds to the SIP requests. It performs the

session control function, i.e. setting up and termination of sessions. It is the SIP registrar as well,

i.e. gives the users SIP address, and keeps the binding between their IP and SIP addresses [19].

I-CSCF assigns an appropriate S-CSCF to a user according to the information it retrieves from

the HSS. It also forwards the SIP requests/responses to the assigned S-CSCF [23].

AS: It is the function that hosts and executes the SIP applications [19], e.g. Voice over IP,

conferencing, etc. It receives/sends SIP requests for its service from/to S-CSCF [23].

NFV Framework

Model Driven Development (MDD)

Rules Helper Rule

Rules

Matched Rules Lazy Rules

Matched Rules

Rules Helper

Helper

Related Work

17

ments. The designed applications are composed of Commercial-off-the-shelf (COTS) compo-

nents in the context of Service Availability Forum (SA Forum) [38] compliant middleware. This

method decomposes the user requirements to lower level requirements (referred to as configu-

ration requirements) using an ontology. The method selects the components satisfying the re-

quirements from a catalog. Our approach designs NSs in the NFV context. It requires the selec-

tion of VNFs but also the design of other NS constituents, especially the forwarding graphs,

which lead to designing the NS traffic flows. This aspect is not considered in [11].

The works in [39, 40] focus on web service composition. In [39], the authors propose a

formal meta-framework to compose web services according to functional requirements. It de-

composes complex requirements into Boolean combinations of atomic requirements expressed

in a certain formalism. It selects the web services that satisfy these atomic requirements. They

use available methods for this decomposition and selection. The meta-framework identifies the

composition of the selected web services by using satisfiability techniques and reusing the prior

composition results. In [40], the authors of [39] extend their meta-framework to take into ac-

count the non-functional requirements using formal methods. They analyze users’ preferences

over the non-functional requirements to find the optimal web service composition. This work

does not consider the dependencies and the flows in the composition. This work is applicable

for web services but not for the composition of VNFs.

Many works have been done on service composition and decomposition in the context of

service-oriented architecture (SOA) [41, 42, 43]. In [41], the authors propose a decomposition-

based method to compose services from components according to user requirements. This

method takes the QoS of the composed service into account according to its utility. The authors

have defined composition structures, by which they compose the services. The method derives

18

the constraints of the components (for component selection) from the composite service con-

straint. Then, it computes the utility of the composed service according to the utility of the com-

ponents. This work considers the flow between the services according to the pre-defined struc-

tures.

In [42], the authors propose a method for service composition from atomic services using

genetic algorithms. The method uses path decomposition by adopting Case-Based Reasoning

and genetic algorithms. It adjusts the execution path and accordingly forms an execution plan

to meet the user requirements. The execution paths and plans are correspondents to forwarding

graphs at different levels of abstraction. This method designs the composite services to meet the

QoS requirements.

In [43], the authors propose an ontology-based method that decomposes IT service pro-

cesses. They have proposed a structured description of services and service processes that

support this method. They have used “server deployment service” as a case study on IT services.

It is composed of lower level services including configuration requirements setup, server envi-

ronment setup, and system configuration setup. The definition of service in this work is different

from our definition, and it maps to NFV-MANO processes, to some extent. This work assists

service providers to manage their operational processes. This work does not decompose the

requirements, nor designs a service or a process.

The works proposed in [44, 45, 46] focus on different aspects of NFV including NSs and

service chaining. In [44], authors propose a semantic-based ontology for NSD according to the

ETSI NFV standard [8]. They define the relationships between the NSD parameters and con-

struct the ontology accordingly. They have used OWL as the language for constructing the on-

tology. The purpose of this work is data modeling for VNF management automation and NS

generation. However, this work does not propose any method for these activities.

19

In [45], authors propose an algorithm to provide an efficient placement for a Network Ser-

vice Chaining (NSC) in the infrastructure. An NSC is composed of multiple NFs, and each NF

may have different decompositions. By considering different decompositions, the algorithm

maps the NFs to the components of the infrastructure. According to the characteristics of the

components, it selects the NF decompositions and realizes an efficient placement. This work

assumes the different decompositions are given and it does not decompose the service itself.

In [46], authors have proposed three different architectures for the deployment of IMS in an

NFV environment using VNFs. These architectures include typical, merged, and split IMS. Typ-

ical IMS complies with the 3GPP standard. Merged IMS combines the IMS blocks into one

VNF and deploys one instance for each user. Split IMS decomposes the IMS functionalities into

simpler functionalities realized by different VNFs. Furthermore, they propose a management

architecture to orchestrate the proposed architectures on top of the cloud infrastructure. We used

the merged IMS architecture proposed in this paper to enrich our case study discussed in Chap-

ter 6.

Network Service Requirements (NSReq)

Network Function Ontology (NFO)

26

Specialization: Some functionalities are abstract, and there is no implementation for them.

Such functionalities can be specialized to more specific functionalities that have been imple-

mented. For instance, messaging functionality is abstract, and it is specialized to immediate

messaging and session-based messaging [23]. A tenant might require a general functionality

since he/she might not have enough knowledge regarding the functionalities. However, we can-

not use general functionalities in designing a network service. Instead of an abstract functional-

ity, we should use one or multiple of its specializing functionalities.

The idea of specialization of a functionality in our NFO comes from the feature modeling

domain [47]. The specialization can be exclusive or non-exclusive. In an exclusive specializa-

tion, only one of the special functionalities should be selected. In an NFO model, we use OR

and XOR elements to specialize a Functionality (for non-exclusive and exclusive respectively),

as shown in Figure 3.3.

Dependency: Functionalities can depend on each other. In a dependency relation, we refer

to the dependent functionality as the client and the other one as the supplier. The client and

supplier functionalities communicate according to the client-server architecture [20]. The client

functionality acts as the client and the supplier functionality acts as the server, i.e. the former

sends requests to the latter. The sequence of these dependencies implies the flows in the higher

level functionalities, and therefore in the network services. In an NFO model, we specify a de-

pendency relation between two Functionalities using a Functional Dependency element, as

shown in Figure 3.3.

Two functionalities may have a dependency relation only in the context of a parent or an

ancestor they have in common. I.e. such dependency exists between them only if they are in the

decomposition of that parent/ancestor – the ancestors of a functionality are the parents of that

functionality’s parents and the parents of the functionality’s ancestors which recursively reach

28

exposed functionality has specific roles (input, output, server, and client) while communicating

through a specific interface.

Input and output roles are defined in terms of the direction of the packet flows, and they are

complementary. These two roles can be defined on both data and control planes, as there can be

packet flows associated with both planes. Server and client roles are according to the client-

server architecture [20]. The exposed functionality which sends requests has the client role, and

the one that receives them has the server role. These two roles are also complementary, and they

are defined only on the control plane. Each exposed functionality uses a specific protocol for

communication through the interface.

As an example, Gm is one of the interfaces of P-CSCF architectural block in IMS architec-

ture [13]. It exposes registration and session setup functionalities on the control plane and uses

SIP protocol. User equipment sends requests to and receives responses from this interface.

Therefore, this interface has the roles of server, input, and output for both functionalities. We

specify each interface of an AB by the Interface element, and each exposed functionality by the

Interface Functional Characteristic element in the NFO, as shown in Figure 3.3.

Dependency: Two architectural blocks may communicate differently in different contexts,

i.e. in different decompositions and/or while realizing different functionalities. In each commu-

nication between two architectural blocks, an exposed functionality from each of their interfaces

is involved. Each involved functionality has specific roles and uses a specific protocol in such

communication. These characteristics are a subset of the characteristics exposed by the inter-

face. The communication is also on a specific plane, which both involved interfaces should

support. We define the communication between two ABs in the NFO by the Architectural De-

pendency element. The characteristics of the functionalities involved in the communication are

indicated using ADep Interfaces element, as shown in Figure 3.3.

VNF information elements

VNF Catalog

Protocol Stack

Solution Map (SM)

39

Catalog, and their relations. As a result, an important portion of the SM metamodel is a combi-

nation of the aforementioned input metamodels.

SM model, also, captures the information on the forwarding graphs designed in the NSD

generation process. These forwarding graphs are Functional, Architectural, and Pre-VNF For-

warding Graphs (FFG, AFG, and Pre-VNFFG respectively), and we will discuss them further

in Chapter 4. Figure 3.10 depicts the SM metamodel, in which the elements from the NSReq

model are in cream, from the NFO are in blue, from the VNF Catalog are in orange, and for-

warding graph elements are in green. In addition, the SM model contains other elements related

to the NSD refinement process – discussed in Chapter 5 – which are shown in gray.

Figure 3.10 - The Solution Map metamodel

Network Service Descriptor (NSD)

43

and the leaf of the virtual link. The definition for the root and the leaf bitrate requirements for

virtual links with different flow patterns are different [10]:

 E-Line: The root bitrate requirement is equal to the bitrate of the line. The leaf bitrate

requirement is not applicable, as E-Line has no leaf connection.

 E-LAN: The root bitrate requirement is equal to the aggregate capacity of the LAN. The

standards today do not support multiple bitrate requirements for the leaf connections.

Therefore, the leaf bitrate requirement is equal to the maximum bitrate among all of the

virtual link’s connections.

 E-Tree: The root bitrate requirement is equal to the virtual link’s root bitrate. The leaf

bitrate requirement is equal to the maximum bitrate among the virtual link’s leaves (for

the same reason as the E-LAN leaf bitrate requirement).

The NsDf defines multiple capacity levels in the capacity range defined for the network

service. Each level specifies an exact number of instances for each VNF and the exact bitrate

requirement for each NsVl. These values should be in the ranges defined by the profiles. The

network service is instantiated according to one of these levels, and it can be scaled from one

level to another. An NsDf defines each level using an NS Level element. The NS Level specifies

the VNFs’ and NsVls’ capacities using VnfToLevelMapping and VirtualLinkToLevelMapping

elements respectively, as shown in Figure 3.11.

The network service’s scalability and the affinity/anti-affinity rules defined by the deploy-

ment flavor are out of our scope.

Overall approach

45

set of VNFs from the VNF Catalog. Different combinations of VNFs from this set can realize

the required network service. We capture each of these combinations and their VNFs’ connec-

tivity. Each combination forms a forwarding graph which is the main element of a network

service. From each forwarding graph, we generate a generic NSD element. Finally, we may

enrich the NFO according to new information obtained from the NSReq model.

In this document, we use the term “mapping” for a specific operation between models or

elements of the models. By mapping two elements we mean matching their attributes’ values in

order to realize if the two elements match. By mapping two models we mean mapping a group

or all of their elements. The result of mapping two models can be the decomposition or selection

of some elements depending on the models. Figure 4.1 shows the overall picture of the approach.

Figure 4.1 - The overall picture of the NSD generation process

The input of this approach is the NSReq, NFO, VNF Catalog, and Protocol Stack models.

Our approach for NSD generation from NSReq consists of six steps:

 Step 1 – Initialization of the SM model

Steps of the Approach

47

Functional and Architectural Requirements: In the next step (Step 2), we map the func-

tional and architectural requirements in the NSReq to the functionalities and architectural blocks

in the NFO, respectively. To simplify this mapping, in this first step, we transform the FR and

AR elements in the NSReq into the Functionality and AB elements in the SM, respectively. For

each FR, we transform its decomposition and dependency relations into ComposedOf and Func-

tional Dependency associations in the SM, respectively. For each AR, we transform its depend-

ency relations into Architectural Dependency associations in the SM. For the whole decompo-

sition of each AR, we create an Arch Composition element in the SM. Then, we associate it with

the ABs in the SM that correspond to that AR and its children.

Service Access Point Requirements: In the next step (Step 2), we map the service access

point requirements from the NSReq to the service access points in the NFO. Therefore, in this

first step, we transform each SAPR element into a SAP element in the SM. The SAP Functional

Characteristic elements of a SAP in the NFO are the corresponding elements of the Accessed

Functionality elements in the NSReq. These two elements provide the same information about

the SAPs and SAPRs, respectively, as shown in the NSReq and NFO metamodels. Therefore, we

transform each of the former elements to the latter in the SM model. Then, we associate each

created SAP Functional Characteristic with its corresponding SAP in the SM according to the

SAPRs. We use the TempRef associations for this association, as shown in the SM metamodel.

It is a temporary association, and in Step 2, we replace it by SAP Interface elements after real-

izing the interfaces that each SAP in the SM should expose according to the NFO.

Non-functional Requirements: NFRs are out of the scope of the NFO. Therefore, we trans-

form the NFRs of the NSReq into the same elements in the SM, i.e. NFR elements, so we can

use them for dimensioning – discussed in Chapter 5. We associate each transformed NFR with

its corresponding SAP Functional Characteristic element in the SM.

49

Traversing the SM hierarchies is a one-time procedure, and we call it SM Traversal. Every time

we match an element in the SM Traversal procedure, we capture its related elements into the

SM using specific procedures. These procedures are called Functional Capturing and Architec-

tural Capturing respectively for functionalities and architectural blocks. In these procedures,

we may add new functionalities and/or architectural blocks into the SM. Every time we add a

functionality or architectural block, we run the appropriate capturing procedure for it. Therefore,

these capturing procedures are run recursively, and they capture all the NFO sub-trees related

to the NSReq into the SM. Figure 4.3 shows an overview of Step 2.

Figure 4.3 – Overall view of decomposing the SM model

The required SAPs and their characteristics are defined in the NSReq, and we have captured

them in the SM. In standard architectures, not all of the interfaces matching the required SAPs

characteristics are exposed to the environment. Therefore, we map all the SAPs in the SM to the

NFO SAPs in order to find the interfaces they should expose. We do so in a one-time procedure

referred to as SAP Capturing. This procedure is done after traversing the SM hierarchies com-

pletely.

52

functionality and the parent, if such relation does not already exist. Then we tag this relation as

‘from ontology’. If such relation already exists with ‘unmatched’ tag we change it to ‘matched’.

Step 2 – Capturing the Realization Relations: In this step, we capture the architectural blocks

that realize the functionality according to its architectural constraints. First, we capture all the

architectural blocks through the ‘Realized By’ associations of the functionality in the NFO.

Then we check them against the functionality’s architectural constraints. As discussed in Sec-

tion 4.2.1, we had transformed the ARs in the NSReq into AB elements in the SM with the ‘un-

matched’ tag. Therefore, these ABs are the architectural constraints for their associated func-

tionalities in the SM.

If each captured architectural block already exists in the SM with an ‘unmatched’ tag and

associated with the functionality, it means it complies with the constraints. We run the Archi-

tectural Capturing procedure for it, and we change its tag to ‘matched’. If a captured architec-

tural block does not exist in the SM, we check it against the functionality’s parents’/ancestors’

constraints. According to Section 3.2.2, if the architectural block in the NFO is the child of the

architectural blocks specified by these constraints, it complies with the constraints. We add it to

the SM, run the Architectural Capturing procedure for it and tag it as ‘from ontology’. Then, we

create a ‘Realized By’ association between the functionality and this architectural block.

Step 3 – Capturing the Dependency Relations: In this step, we capture the functionality’s

dependency relations in the NFO with a valid context. For each dependency, first, we check

whether it already exists in the SM. If it exists and it is tagged as ‘unmatched’, we change its tag

to ‘matched’.

If the dependency does not exist in the SM, we check whether its context is valid in the SM

– refer to Sections 3.2.1 and 3.2.4. If the context is valid we should add the dependency to the

54

We add the architectural blocks into the SM through the functionalities’ realization relations

in the Functional Capturing procedure. Also, in this procedure, we set the architectural blocks’

relations with their parents. Therefore, the decomposition of each architectural block is captured

into the SM indirectly, and we do not need to capture the decomposition relations. We start this

procedure by setting the relationship with parents, as we need to check these relations for vali-

dating the dependencies’ contexts. Architectural Capturing procedure has three steps:

 Step 1 – Setting the Parents
 Step 2 – Capturing the Interfaces
 Step 3 – Capturing the Dependency Relations

Step 1 – Setting the Parents: In this step, we set the architectural block’s relations with its

parents in the SM according to the NFO. An architectural block is in relation with its parents

through Architectural Composition elements, as shown in the NFO and SM metamodels. For

each parent of the architectural block in the NFO that also exists in the SM, we capture its

Architectural Composition elements that are associated with the architectural block. For each

captured Architectural Composition that also exists in the SM, we associate the architectural

block with it in the SM, if it is not already associated. If the captured Architectural Composition

does not exist in the SM, we add it to the SM, and we associate the architectural block and the

parent to it.

Step 2 – Capturing Interfaces: In this step, we capture the architectural block’s interfaces.

We add all the architectural block’s Interface elements from the NFO into the SM.

Step 3 – Capturing the Dependency Relations: In this step, we capture the dependency rela-

tions related to the architectural block in the NFO with a valid context. For each dependency

that the architectural block is associated with, whether it is the dependency’s client or supplier,

we need to capture the dependency. For such a dependency, we check the dependency’s contexts

56

are the same, and the roles of the one from the NFO includes all the roles of the one from the

SM. If there are any matches, we change the tag of the SAP Functional Characteristic element

in the SM to ‘matched’.

For each match, we add the associated SAP Interface element from the NFO into the SM.

We associate it with the matching SAP and SAP Functional Characteristic in the SM. Then, we

associate the SAP with the architectural block that has the interface referenced by the SAP In-

terface element. Each SAP in the SM should have a matching interface for each of its SAP Func-

tional Characteristic elements. If all the SAP Functional Characteristic elements of a SAP in

the SM are tagged as ‘matched’ we tag the SAP as ‘matched’ as well.

For the SAP Functional Characteristic elements in the SM that have remained ‘unmatched’,

there is no information in the NFO. For each of them, we set all the interfaces in the SM that

match its characteristics as its exposed interfaces. An interface matches a SAP Functional Char-

acteristic element if both have the same plane and functionality, and the interface’s roles include

all the SAP Functional Characteristic’s roles. For each matched interface, we create a SAP In-

terface element that references the interface. We associate it with the matched SAP Functional

Characteristic and its related SAP. Then we change the tag of the matched SAP Functional

Characteristic, and if applicable the tag of the SAP, to ‘matched’.

SAP Projection: The VNFs that we use to generate generic NSDs may realize functionali-

ties at any level in the functional hierarchy. Therefore, the functionalities that a VNF exposes

through its interfaces also can be at any level. However, at this point, the SAPs in the SM expose

functionalities at specific levels that are not necessarily the same level as the VNFs’ functional-

ities levels. As a result, we should design the SAPs in a way that we can use them for the VNFs

with functionalities at any level. To achieve that, we project all the SAPs to all the functional

levels in the SM.

59

We generate a forwarding graph by substituting an AFG’s architectural blocks with the VNFs

realizing them. Such forwarding graphs specify the VNFs’ connectivity according to the AFG’s

sequence. Therefore, we can generate an NSD and its VNFFGDs from each forwarding graph.

We call such forwarding graph a Pre-VNFFG, as it does not specify the virtual links yet. Mul-

tiple VNFs may realize an architectural block in the AFG, and it results in multiple Pre-

VNFFGs. By considering this combinatorial aspect we generate all the possible Pre-VNFFGs

from each AFG.

As an example, in an SM model, the root functionality is decomposed to two other function-

alities. Three different architectural blocks realize each of these functionalities, and two differ-

ent VNFs realize each architectural block. Therefore, we can generate two FFGs for the required

network service – one FFG is composed of the root, and the other is composed of the root’s

decomposition. We can generate three AFGs from the first FFG and nine AFGs from the second

FFG. We can generate two Pre-VNFFGs from each AFG of the first FFG and four Pre-VNFFGs

from each AFG of the second FFG. In total, we can generate 42 Pre-VNFFGs.

FFG generation: This is a recursive process. We invoke each recursive step for a

functionality in the SM hierarchy, and we call this functionality the sub-root. The goal of each

recursive step is to find the FFGs in the sub-tree of the sub-root. We call these FFGs partial

FFG. The combination of functionalities in each partial FFG composes the sub-root function-

ality. The initial recursive step starts from the SM root functionality. As discussed earlier, the

combination of the functionalities in an FFG composes the root functionality. Therefore, the

result of the whole recursive process is the set of all the FFGs in the SM. Each recursive step,

at first, invokes a recursive step for each of the sub-root’s children. In the end, it returns all the

partial FFGs of the sub-root.

60

The only partial FFG of a leaf functionality is itself. Therefore, when the sub-root is a leaf

functionality, the recursive step returns only one partial FFG which is the sub-root. When the

sub-root is a non-leaf functionality, each partial FFG is the concatenation of a partial FFG of

each of the sub-root’s children. Therefore, all these combinations in addition to the sub-root

itself (as a partial FFG) are the result of each recursive step.

In the SM, there might be some functionalities for which there is no VNF to realize them. We

exclude the FFGs that contain such functionalities as we cannot generate any Pre-VNFFG from

them later on. For each of the remaining FFGs, we generate an FFG element in the SM that

references the Functionality elements accordingly.

AFG generation: In this process, we generate an AFG by substituting each functionality in

an FFG with one or a group of architectural blocks realizing that functionality in the SM. This

(these) architectural block(s) should directly realize the functionality, i.e. being in a ‘Realized

By’ association with the functionality. A group of architectural blocks realizes a functionality

directly when they are in a chain of dependencies. All the dependencies in this chain have the

same context. This context is the ‘Realized By’ association between the functionality and the

architectural block at the beginning of this chain.

We run this process for each generated FFG, and we generate all possible AFGs by consid-

ering the combinatorial aspect. For each AFG we generate an AFG element in the SM for it.

Then, we reference all the architectural blocks in the AFG element accordingly. We preserve

the information of the mapping between the architectural blocks and the FFG’s functionalities

in the AFG, as we need it later on. We reference all the dependencies between the architectural

blocks in the AFG with a valid context in the AFG. In an AFG, a context is valid only if its

specified ‘Realized By’ association exists in the AFG. It means the architectural block and the

functionality in this association have a mapping in the AFG.

61

Earlier, we have projected the SAPs to all functional levels in the SM. In each AFG, architec-

tural blocks expose functionalities at specific levels, and SAPs expose them by their SAP Func-

tional Characteristic elements. Therefore, in the AFG, we reference the SAP Functional Char-

acteristic elements that are related to the AFG’s architectural blocks by their interfaces.

In AFG generation form an FFG, we consider all the combinations of architectural blocks

that realize the FFG’s functionalities. In some of these combinations, there are architectural

blocks from different architectural compositions. Therefore, there is no information regarding

the dependencies between these architectural blocks. We refer to such AFGs as incomplete. We

infer the missing dependencies in such AFGs in a process called AFG Completion. In this pro-

cess, we may complete some of these AFGs, and we exclude the remaining incomplete ones.

AFG Completion: As discussed earlier, each incomplete AFG is composed of portions

of different architectural compositions. Each of these architectural compositions has some

architectural blocks that are not involved in the AFG. The dependencies between these ar-

chitectural blocks and the ones involved in the AFG are missing in the AFG.

If two dependencies have the same client and supplier functionalities in their ADep In-

terface elements they match the same functional dependency. We call such dependencies

equivalent, and their client and supplier architectural blocks equivalent as well. Two equiv-

alent dependencies are not in the same architectural composition.

In an AFG, each missing dependency has an equivalent dependency which is also miss-

ing in that AFG. We need to create one dependency for each pair of equivalent missing

dependencies in an AFG. In order to create such a dependency, the ADep Interfaces elements

of both missing dependencies should match. They match if they have the same plane, client

and supplier functionalities, roles and protocols. If so, we create a dependency between the

64

For the dependencies with related VnfExtCps in common, there should be an E-LAN virtual

link in the network service to connect their VnfExtCps. For the rest of the dependencies which

have two related VnfExtCps, an E-Line virtual link should connect them. For creating the VLDs,

first, we group the dependencies according to their related VnfExtCps in common. Consider

each dependency as a node in a graph. Consider each related VnfExtCp that is common between

two dependencies as an edge between the two nodes (those dependencies). Each connected

graph [49] inside this graph defines a group of dependencies that have related VnfExtCps in

common. No two dependencies in different groups have related VnfExtCps in common. We

connect the VnfExtCps in each group with one virtual link.

We should check the compatibility of the protocols of the interfaces that communicate with

each other according to the dependencies. Therefore, we check the compatibility of the protocols

specified by each ADep Interfaces element for the source and the target interfaces. If the proto-

col of the source and the target interfaces are the same, they are compatible. Also, if two proto-

cols are in the IsServedBy association directly or through other protocols in the Protocol Stack

model, they are compatible. For each group, if all the interfaces in communication have com-

patible protocols, we create a VLD element. If not, we do not create the VLD, as some interfaces

in the group cannot communicate. Therefore, we dismiss this NSD. If the number of VnfExtCps

in the group is more than two we set the virtual link’s flow pattern to E-LAN, otherwise we set

the flow pattern to E-Line. We specify the flow pattern of a virtual link using the VLD’s ‘Con-

nectivityType’ attribute as shown in the VNFD metamodel.

The layer protocols of a virtual link should be the same as the layer protocols of all the

VnfExtCps it connects to. Therefore, we set the layer protocols of each VLD according to its

VnfExtCps’ layer protocols. For each VLD we create an NsVlDf and an NsVl Profile element,

and we keep a reference to the NsVlDf in the VLD and the NsVl Profile. We need these two

68

F7, and F8. On the other hand, F1 is not single-flow since it has two functionalities that define

flows in its decomposition, as they are exposed by SAPs.

Propagation Flow design: To design the flows in the network service, first we determine

the functionalities on different planes in the FFG that are exposed by a SAP. Then, we determine

the starting interface and the interface sequence of each potential flow accordingly. An interface

may appear in different points of a flow’s sequence. Each time an interface appears in the flow

a subset of its characteristics (functionalities, planes, and roles) is related to the flow. By map-

ping these characteristics to the ADep Interfaces elements in the AFG and VNF’s Flow Trans-

formation elements of the VNFADs in the Pre-VNFFG we can determine the flow’s sequence.

Determining the functionality and the plane of the flow: As discussed earlier, each func-

tionality on a specific plane that a SAP in the AFG exposes defines a flow in the network service.

The information on which functionalities a SAP exposes exists in the SAP Functional Charac-

teristic elements as shown in NFO and SM metamodels. Therefore, we create a Propagation

Flow element in the SM for each of these functionalities on the specified planes. We reference

the functionality, the plane, and the SAP in the Propagation Flow element.

In the next sub-steps, each time we determine the appearance of an interface in the flow’s

sequence we create an SmInterface element in the SM. We associate it with the Propagation

Flow element. We set its attributes according to the subset of the interface’s characteristics re-

lated to the flow (functionality, plane, and roles). Finally, we reference the source that we deter-

mined this appearance based on, i.e. the Flow Transformation or the ADep Interfaces element.

For details of the Propagation Flow and the SmInterface elements in the SM refer to Figure 3.10.

Finding the starting interface of the flow: The VNF interface that is exposed by the SAP

related to the flow and has the same functionality and plane as the flow is the flow’s starting

69

interface. The direction of the flows in a VNF defined by the Flow Transformation elements is

always from the server/input interface to the client/output interface, i.e. the source interface is

server/input, and the target interface is client/output. If the starting interface of a flow in the NS

has the server and/or the input roles the flow is in the direction of the Flow Transformations.

Otherwise, the flow is in the opposite direction of the Flow Transformations. We call this back-

ward propagation. We avoid designing flows in backward propagation to avoid complexity.

Therefore, if a starting interface has both server/input and client/output roles, we design the flow

based on the server/input roles. If the starting interface has only the client and/or output roles,

we inevitably design the flow in backward propagation.

In some cases, more than one SAP may expose a functionality on a specific plane but with

different roles. In such a case, there is more than one candidate interface to select from as the

flow’s starting interface. Among them, we select the interface with the server and/or input roles

in order to avoid backward propagation.

Finding the interfaces sequence of the flow: We call the interface which a flow enters a

VNF through an entry interface. We call the interface which a flow exits a VNF through an exit

interface. Therefore, in a flow, there is always an exit interface after an entry interface and vice

versa. The starting interface of the flow is always an entry interface.

Each time we determine the appearance of an interface in the flow we call it the current

interface, including the starting interface. We find the next interfaces in the sequence according

to the current interface by using two different procedures. If the current interface is an entry

interface we use the ‘Finding the next exit interface’ procedure to find the next interface(s). If

it is an exit interface, we use the ‘Finding the next entry interface’ procedure. Since the flow’s

starting interface is always an entry interface we start with the former procedure.

70

Finding the next exit interface: The next exit interface(s) is (are) in the same VNF as

the current interface. The Flow Transformation elements of a VNF determine the flows

inside the VNF. Therefore, we find the next exit interface(s) using the current VNF’s Flow

Transformations that are related to the flow. A Flow Transformation related to the flow

should determine the current interface as one of its interfaces (source/target). In addition,

the characteristics (functionality, plane, and roles) it defines for the current interface

should match the subset of the current interface’s characteristics related to the flow. All

the interfaces on the other side (target/source) of the related Flow Transformations are the

next exit interfaces. For instance, if the current interface in a related Flow Transformation

is the source interface, the interface on the other side is the target interface. Therefore, the

target interface is the next exit interface.

The characteristics that each related Flow Transformation defines for the next exit in-

terfaces are their subset of characteristics related to the flow. We will use them to find the

next entry interface(s) in the ‘Finding the next entry interface’ procedure.

Special cases: In some cases, the entry and the exit interfaces of a VNF in a flow are

the same. If there are multiple dependencies associated with such an interface, there will

be two cases for finding the next entry interfaces. The first case is if the interface has the

server and input roles on entry and has the output role on exit. This means that the VNF is

responding to the incoming packet flow. Therefore, we need to design the flow in a way

that it goes back towards the path it had come to the current VNF. It means we should use

the same architectural dependency that we used for the incoming direction on the outgoing

direction of the flow (in ‘Finding the next entry interface’ procedure). The second case is

if the interface has the server and client roles on the entry and exit respectively. This means

the outgoing flow is a request to another interface with a server role. Therefore, in such a

71

case, we should avoid the architectural dependency used in the incoming direction for the

outgoing direction.

Finding the next entry interface: The next entry interface(s) is (are) in the VNFs as-

sociated with the dependencies that are associated with the current interface. We find the

next entry interface(s) according to the ADep Interfaces elements that are related to the

flow. The related ADep Interfaces elements are the ones in which the characteristics (func-

tionality, plane, and roles) defined for the current interface match the current interface’s

characteristics related to the flow. If the current interface fits into the two special cases

discussed previously, we should consider the guidelines mentioned for each case to find

the related ADep Interfaces. The interfaces on the other side of the related ADep Interfaces

elements are the next entry interfaces. The characteristics specified for each in these ADep

Interfaces elements are their subset of characteristics related to the flow. We use these

characteristics, except the roles, to find the next exit interfaces.

An ADep Interfaces element may specify multiple roles for the interfaces on both sides

(source and target). Therefore these interfaces may have input and output and/or client and

server roles. As discussed before, the server/client pattern indicates the direction of the

flow. Therefore, having multiple roles for both sides in an architectural dependency results

in flows in both directions. In order to find the next entry interface, and in general to define

a flow, we should take only one direction. Among the next entry interfaces’ roles defined

by the ADep Interfaces elements, we should select only the roles that are complementary

of the current interface’s roles – as discussed before, server and input roles are comple-

mentary of client and output roles respectively, and vice versa.

Creating NFPDs from Propagation Flows: As discussed earlier, a flow is a sequence of

VNF interfaces, and an NFP is a sequence of VnfExtCps. A VnfExtCp exposes one or many

74

Figure 4.5 – Pre-VNFFG example with further details

Figure 4.5 shows a more detailed view of the Pre-VNFFG generated from the SM model in

Figure 4.4. It shows the VNFs’ dependencies with their ADep Interfaces elements and the SAPs

with their SAP Functional Characteristic elements. For each VNF, its VNFCs and Interface

elements are shown. Each VNF interface has a Functional Characteristic and two QoS Char-

acteristic elements. For example, the Interface 1 in the VNF1 provides access to the control

plane of functionality F5, and it has server, input and output roles for that functionality. Its QoS

Characteristics are 300 units of throughput and 10 RPS.

In this Pre-VNFFG, the ADep Interfaces elements of each dependency are shown on top of

it. For instance, the ADep Interfaces of the dependency at the top shows that the dependency is

on the control plane. It shows VNF1 communicates through its Interface 2 with the roles of

75

client, input, and output for functionality F6. VNF3 also communicates through its Interface 1

with the roles of server, input, and output for functionality F4.

From Step 5 (NSD generation), we just discuss the Propagation Flow design example, since

the rest of it is mostly about creating different elements and setting their attributes in the NSD.

Example of the Propagation Flow design: In the SM shown in Figure 4.4, there are two

SAPs each of which exposes one functionality on the control plane. Therefore, we design two

Propagation Flows including flow1 for SAP1 and flow2 for SAP2. The functionality of the flow1

and 2 are F5 and F7 respectively. The plane of both flows is control. SAP1 exposes the VNF1-

Interface1 since their functionality, plane, and roles match, and therefore, the starting interface

for flow1 is VNF1-Interface1. The starting interface for flow2 is VNF2-Interface1 since it

matches the SAP2.

The sequence of flow1 starts from VNF1-Interface1. VNF1’s Flow Transformations match-

ing this Interface for this flow are number 1 and 2. Therefore, the next exit interface is VNF1-

Interface2 with functionality F6, control plane, and client and output roles. We did not select

the Flow Transformation3 since the role of VNF1-Interface1 in it is output, but the roles of

VNF1-Interface1 as the starting interface are server and input. The next entry interface based

on the dependency related to VNF1-Interface2 is the VNF3-Interface1 with functionality F4,

control plane, and server and input roles. The roles of this interface are complementary roles of

the previous interface, i.e. client and output. For the next exit interface in VNF3, we select the

Flow Transformations1 and 2, as they match the current interface’s characteristics (F4, control

plane, server and input roles). Accordingly, the next exit interface is VNF3-Interface1 with the

role of output. At this point, the current interface and the next exit interface are the same, and

there are more than one dependencies associated with this interface. Therefore, we are facing

the aforementioned special case for finding the next entry interface. This interface has the server

78

not update the NFO based on a faulty NSReq. After the validation, we take the

update action as discussed below.

Update action: The tenant cannot alter the core decomposition of a functionality in the

NFO, as this information is established in the NFO. Therefore, we only add the required

additional children for functionality A as its optional children in the NFO. To do so, we

add the ‘unmatched’ ComposedOf associations of functionality A in the SM to the NFO.

Then, we add the dependencies of these additional children from the SM to the NFO, if

they do not already exist there. These dependencies are only defined in functionality A’s

decomposition. Therefore, we set their contexts as functionality A in the NFO.

Figure 4.6 shows an example of NFO at the top left, and three different SMs origi-

nated from three different NSReq models at the right and the bottom. All three SMs fit

in Case 1 of the NFO update, since A, B, C, Y and Z functionalities are ‘matched’. The

core decomposition of A in the NFO (B and C) exists in SM1. Therefore, there is no

possibility of the tenant’s mistake in this example, and it fits Case 1.1. In SM2 and SM3,

however, A’s core decomposition does not exist exactly as it is in the NFO. Therefore,

before the updating action, we ask the tenant to validate the NSReq. The updating action

in all three cases is adding Y as an optional child for the A. In SM1 and SM2, we add the

Y’s dependency to the NFO with the context of functionality A. In SM3, we also add Z

as the optional child of functionality A. Then, we add its dependency to Y with the con-

text of functionality A.

79

Figure 4.6 - NF Ontology updating case 1 example

 Case 2: In this case, a functionality named X is ‘unmatched’ but all of its children are

‘matched’ in the SM. Since functionality X is ‘unmatched’ all of its ComposedOf asso-

ciations are ‘unmatched’ as well. Two subcases may happen with different update ac-

tions.

 Case 2.1: In this subcase, the decomposition of functionality X does not exactly

match any decomposition in the NFO. It implies that the tenant has proposed a

new functionality with its decomposition in the NSReq.

Update action: As the update action for Case 2.1, we create a new functionality

in the NFO named X with the same decomposition as functionality X in the SM.

Our assumption is that the whole decomposition that the tenant has proposed for

functionality X is the core decomposition. Therefore, we define all of its Com-

posedOf associations as mandatory. We add all the dependencies defined be-

tween the children of functionality X into the NFO. We specify their contexts as

functionality X.

80

 Case 2.2: In this subcase, the decomposition of functionality X is a subset of one

of the functionalities’ decompositions in the NFO. Also, it has the whole core

decomposition of that functionality. This implies that functionality X’s name is

a new name (alias) for that functionality in the NFO.

Update action: As the update action for Case 2.2, we add functionality X’s name

to the aliases of that functionality in the NFO.

Figure 4.7 shows four different SM examples. We consider the same NFO as shown

in Figure 4.6 as the NFO for these examples. These four SM instances fit in Case 2, as

functionality X is ‘unmatched’, and its children in all the examples are ‘matched’ includ-

ing B, C, Y, and Z. The first three SM instances fit into case 2.1. Therefore, for each of

these SMs, we add the functionality X into the NFO with the same decomposition and

dependencies. SM4 fits into subcase 2.2, as its decomposition is exactly the same as

functionality A’s core decomposition in the NFO. In this case, we add X as an alias for

functionality A in the NFO.

Figure 4.7 - NF Ontology updating case 2 example

Limitations

82

CSCF VNFs (same type), one for the home and the other for the visited network domain. This

is not supported by our method.

Our method does not validate the consistency of the NSReq. We assume the NSReq is con-

sistent and has no conflicting requirements. If there are conflicting requirements in an NSReq,

there is no guarantee about the validity of the network services generated from such require-

ments.

Our method is limited to using only VNFs as network functions in the network service. PNFs

and nested network services are not taken into account for the design of the network service.

There are three flow patterns for the virtual links including E-Line, E-LAN, and E-Tree [28],

as discussed in Section 2.2.1. Our method does not support the E-Tree flow pattern for the vir-

tual links. To include it specific information should be provided by the architectural dependen-

cies for the E-Tree flow pattern.

Overall approach

Steps of the Approach

89

all the solutions. Depending on specific criteria that we will define later one of these solutions

is more suitable than the rest. Based on the criteria we select one solution in each VnfDf, and

then we select one VnfDf as the final solution.

Number of VNF instances for an Instantiation Level: For an Instantiation Level, we com-

pare the required number of instances for each VNFC with its number of instances that the level

specifies in the related Vdu Level. Accordingly, we calculate the required number of the VNF

instances for the Instantiation Level only based on the VNFC. We refer to it as the VNF.RIVNFC.

The VNF.RIVNFC is equal to the ceiling of the division of the VNFC.RI by the Vdu Level, as

shown in Equation 2.

Each VNF.RIVNFC fulfills the required number of instances of that specific VNFC in the

Instantiation Level. Therefore, the maximum of all the VNF.RIVNFCs fulfills the required num-

ber of instances for all the VNF’s dimensioned VNFCs in the Instantiation Level. That is the

required number of instances of the VNF in the Instantiation Level, i.e. VNF.RIIL, as shown in

Equation 3.

𝑉𝑁𝐹. 𝑅𝐼𝑉𝑁𝐹𝐶 = ⌈
𝑉𝑁𝐹𝐶.𝑅𝐼

𝑉𝑑𝑢 𝑙𝑒𝑣𝑒𝑙
⌉ (2)

𝑉𝑁𝐹. 𝑅𝐼𝐼𝐿 = 𝑚𝑎𝑥{𝑖 ∈ 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑁𝐹′𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑉𝑁𝐹𝐶𝑠 | 𝑉𝑁𝐹. 𝑅𝐼𝑉𝑁𝐹𝐶𝑖} (3)

Selecting the desirable solution: After having all the solutions, we select one of them, i.e.

an Instantiation Level with its VNF.RIIL, according to the criteria we define. Our criteria include

‘Flexible scaling’ and ‘VNFCs’ failure impact’. The VNFs with more flexibility in scaling and

less impacted by their VNFCs’ failure are desirable. We prioritize the first criterion.

90

Flexible scaling criterion: In the NFV framework today, all instances of a VNF in a given

role are instantiated using the same VnfDf and Instantiation Level. The traffic among these in-

stances is typically load-balanced. Therefore, all these instances should have the same capacity,

and if we scale one we should scale all other instances as well. As a result, increasing the number

of VNF instances decreases the scaling flexibility, since its granularity of scaling decreases. For

instance, scaling a VNF instance to the next step results in adding 3 VNFC instances. If we have

two instances for the VNF, scaling it to the next step adds a total number of 6 VNFC instances,

and it is less granular. Hence, according to this criterion, we prefer a VNF with smaller VNF.RI.

This results in selecting deployment flavors that provide more capacity for a single instance.

VNFC’s failure impact criterion: The failure impact of a VNFC is related to its capacity.

The less capacity a VNFC has, the less impact its failure has on the VNF and the network ser-

vice. Therefore, to dimension a VNF the solution with the least capacity for the VNFCs is de-

sirable according to this criterion.

Instantiation Level selection in a VnfDf: As discussed earlier, we prioritize the first

criterion over the second one. Therefore, in each VnfDf, we select the Instantiation Level

with the minimum VNF.RIIL as the desirable solution. If there are multiple Instantiation

Levels with the minimum VNF.RIIL in the same VnfDf, the ones with a bigger total number

of VNFC instances provide unnecessary resources. Thus, we select the one with the least

total number of VNFC instances as the solution in the VnfDf. The selected Instantiation

Level in each VnfDf is the largest level that fulfills the NFRs by providing the least unnec-

essary resources.

VnfDf selection: Among the VnfDfs we select one as the final solution for dimension-

ing the VNF. For this selection, we consider the first criterion. Therefore, we select the

VnfDf that its selected Instantiation Level has the minimum VNF.RIIL. If there are multiple

91

VnfDfs with the minimum VNF.RIIL for their selected Instantiation Levels, we consider

the second criterion for selection. The selected solutions in each VnfDf has the minimum

extra VNFC instances, and they all fulfill the NFRs. Therefore, all these solutions provide

approximately the same QoS capacity. Thus, the solution with the more total number of

VNFC instances has VNFCs with less capacity. According to the second criterion, we

select the solution with the most total number of VNFC instances.

Dimensioning the VNFs without QoS requirement: As discussed in Section 4.2.5.5, we

design the flows based on the SAPs, and we define the SAPs according to the SAPRs which the

tenant defines. It implies that the tenant has the knowledge about the packet flows in the network

service to some extent. We assume that the tenant defines the SAPRs and NFRs in a way that all

the VNFs are involved in at least one flow, and they are dimensioned to this point. If a VNF is

not dimensioned, it implies that the VNF is not involved in any flow and/or there is no QoS

requirement for it. We dimension each of these VNFs to its default values, i.e. we select its

default VnfDf and Instantiation Level with the VNF.RI equal to 1.

Table 5.2 shows the VnfDfs of the VNFs in the example of Section 4.2.6 and the results of

dimensioning them. Each row of the table for a VNF shows a solution for dimensioning the

VNF. The solutions with a solid or dashed circle are the candidate solutions in each VnfDf. The

ones with a solid circle are the final solutions for dimensioning each VNF.

94

 𝐸 − 𝐿𝑖𝑛𝑒 𝑅𝑜𝑜𝑡 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = ∑ 𝑉𝑑𝑢𝑙 𝐿𝑒𝑣𝑒𝑙𝑖 ∗𝑖 ∈ 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠

𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖 (4)

E-LAN virtual link bitrate requirement: An E-LAN virtual link has more than two con-

nections to the VNFs. Each connection is a leaf, and the root is the aggregate capacity of the

LAN. The root bitrate requirement is equal to the summation of the bitrate requirements of

all the leaves. Equation 5 shows the root bitrate requirement calculation in which K is the

number of instances for each VNF type connected to the E-LAN.

 𝐸 − 𝐿𝐴𝑁 𝑅𝑜𝑜𝑡 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = ∑ 𝐾𝑖 ∗ 𝑉𝑑𝑢𝑙 𝐿𝑒𝑣𝑒𝑙𝑖 ∗𝑖 ∈ 𝑎𝑙𝑙 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠

𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖 (5)

The NFV framework at this point does not support different leaf bitrate requirements for

a virtual link [9]. Therefore, the leaf bitrate requirement of an E-LAN is equal to the maxi-

mum bitrate requirement among all of its connections. Equation 6 shows the E-LAN leaf

bitrate requirement calculation.

𝐸 − 𝐿𝐴𝑁 𝐿𝑒𝑎𝑓 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑚𝑎𝑥{𝑖 ∈

𝑎𝑙𝑙 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠 | 𝑉𝑑𝑢 𝐿𝑒𝑣𝑒𝑙𝑖 ∗ 𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖} (6)

A virtual link has the minimum bitrate requirement if each of its connected VNFs has 1

instance, and they are instantiated using their smallest Instantiation Levels. Similarly, it has the

maximum bitrate requirement if each connected VNF has the number of instances equal to its

VNF.RIIL and they are instantiated using their selected Instantiation Level. To calculate the

minimum and maximum bitrate requirements, we consider the ‘Vdu Level’ parameter in the

equations according to the minimum and the selected Instantiation Levels, respectively. The

number of VNF instances only affects the E-LAN root bitrate requirement, i.e. ‘K’ parameter in

the equation. For the minimum and the maximum bitrate requirements, we consider ‘K’ equal

to 1 and the VNF.RIIL for each VNF type, respectively.

Limitations

Prototype architecture

97

are two exceptions. Step 3, as discussed in Section 4.2.3, is a simple step. It gets the SM and

VNF Catalog models as inputs and outputs the refined SM. Step 4, as discussed in Section 4.2.4,

gets the SM model from Step 3 and Protocol Stack model as inputs. It only refines the SM model

and outputs it. The difference between the inputs and outputs of these two steps is not signifi-

cant. To simplify the implementation, we have combined these two steps in one transformation.

Step 5 and 6, have the same inputs and different outputs, and these steps do not affect each other.

Therefore, they can get executed in parallel. Figure 6.1 shows the flow diagram of the prototype

with the inputs and outputs of the model transformations.

Figure 6.1 - A flowchart for the transformations in the prototype tool

lazy rule

lazy rule

do helper lazy

rule

lazy rule

CreateVnfProfile lazy rule

99

Figure 6.2 - An example of an ATL lazy rule in the prototype

For each function that can be implemented declaratively, we have defined a helper. For

instance, in many transformations, we need to calculate the Cartesian product of two sequences

that contain other sequences. We have defined the multiplySeqs(Seq1, Seq2) helper

for this function, as shown in Figure 6.3.

Figure 6.3 - An example of an ATL helper in the prototype

100

Figure 6.4 - An example of a Main rule in the prototype

In each transformation, we have defined a matched rule that is called automatically at

the beginning of the transformation, and we refer to it as the Main rule. We create the output

model(s) using the to section of the Main rule, and we use its do section as the main func-

tion. We implement the algorithms of the approach’s step(s) in this section by calling the help-

ers and lazy rules imperatively, and using the basic imperative commands, e.g. if, and

for. Figure 6.4 shows a portion of the Main rule of Transformation 3. Figure 6.5 shows an

overview of the structure of our transformations.

helper

helper do

do

do

lazy rule

Case study: VoLTE service using IMS architecture

104

Figure 6.7 – The NFO model for the case study (functional portion)

On the architectural side of the NFO model, we have the IMS architectural block with two

compositions, as shown in Figure 6.8. The one on the right is the typical IMS composition which

is a simplified version of the standard IMS [13]. It is composed of AS, HSS, P-CSCF, I-CSCF,

and S-CSCF as introduced in the Background.

The AS realizes the messaging and voice call functionalities, and it exposes the IMS stand-

ard interfaces including ISC and Mb [13]. The MRFP module exposes the Mb interface accord-

ing to [13], but for simplification, the AS exposes this interface in our NFO. The ISC interface

exposes the voice call and messaging functionalities on the control plane, and the Mb exposes

them on the data plane. The HSS realizes the user info storage functionality. It exposes this

functionality on the control plane through Cx interface. The S-CSCF realizes the authentication

and registration functionalities and exposes them on the control plane through the Mw interface.

105

It exposes the ISC interface to communicate with the AS for these functionalities. It also exposes

the Cx interface to communicate with the HSS in order to store and retrieve the user information.

I-CSCF and P-CSCF also expose the Mw interface to communicate with each other and S-CSCF

for the registration functionality. P-CSCF exposes the Gm as a service access point for the IMS,

and the users connect to it for registration and requesting voice calls.

According to the architectural dependencies shown in Figure 6.8, S-CSCF communicates

with AS for the voice call functionality. It communicates with HSS for user info storage. It also

communicates with I-CSCF and P-CSCF for registration and voice call. I-CSCF communicates

with the P-CSCF for registration. P-CSCF associates with one SAP for receiving the registration

and voice call requests on the control plane through its Gm interface. AS also associates with

one SAP for the voice call on the data plane through its Mb interface. The users connect to this

SAP to exchange their voice call content. Table 6.1 shows the dependencies in the typical IMS

composition and the details of their ADep Interfaces elements.

The IMS composition on the left side of Figure 6.8 is called merged IMS, as the CSCFs are

merged into one architectural block called Core IMS. The other architectural blocks in this com-

position are IMS Locator, DB, and AS. It is a simplified version of the merged IMS architecture

proposed in [46]. The Core IMS architectural block realizes the registration and authorization

functionalities. IMS Locator manages the assignment of the users to Core IMS instances and

routing their requests to their corresponding Core IMS. The DB is a proprietary database for

user info storage. AS is the same architectural block as discussed in the previous composition

with the same functionalities and interfaces. Core IMS exposes two proprietary interfaces which

we refer to as X1 and X2. X1 is for communication with the IMS Locator regarding the regis-

tration and voice call functionalities. X2 is for communicating with the DB regarding the user

info storage. The DB exposes the X2 and Cx interfaces, to communicate with the Core IMS and

106

also the S-CSCF. The IMS Locator exposes IMS standard interfaces including the Gm and the

ISC in addition to the X1 interface.

According to the architectural dependencies shown in Figure 6.8, the IMS Locator com-

municates with the Core IMS for registration and voice call on the control plane. It also com-

municates with the AS for voice call on the control plane. Core IMS communicates with the DB

for the user info storage. A SAP is associated with the IMS Locator through its Gm interface,

and it exposes the registration and voice call on the control plane.

Figure 6.8 – The NFO model in the case study (architectural portion)

109

Transformation elements as well. Figure 6.11 shows the P-CSCF VNFAD in Papyrus tool as an

example of our VNFADs. Table 6.2 shows the details of the VNF Interface elements of the VNFs

in the typical IMS composition. Table 6.3 shows the details of the Flow Transformation ele-

ments of these VNFs. The results of the Propagation Flow design and dimensioning the VNFs

in Transformation 4 and 5 in our case study is according to the information in these tables.

Figure 6.11 – The P-CSCF VNFAD model for the case study

110

Table 6.2 - The VNF Interface elements of the VNFs in the typical IMS composition

115

Each VNF in the VNF Catalog matches with an architectural block in the SM3. Therefore, all

the VNFs have been added into the SM3 from the VNF Catalog in this step.

Potentially, we can design two FFGs from the SM3. One is composed of the VoLTE func-

tionality, and the other is composed of the functionalities in the VoLTE’s decomposition. No

VNF realizes the IMS architectural block in the SM3, thus, no VNF realizes the VoLTE func-

tionality either. Therefore, the first FFG has been dismissed. From the second FFG, eight AFGs

have been generated. They are based on all the combinations of the architectural blocks in the

SM3 that realize the FFG’s functionalities. Table 4 shows the generated AFGs and the mapping

between their architectural blocks and the FFG’s functionalities.

Table 6.4 – The AFGs generated in Transformation 3

116

All the generated AFGs except the AFG1 and 8 are incomplete, as their architectural blocks

are from different IMS compositions. The P/I/S-CSCF and the HSS have no interface that

matches the interfaces of the IMS Locator and the Core IMS. Among the incomplete AFGs, the

AFG2, 4, 5, 6, and 7 have architectural blocks from both of these groups. The AFG Completion

procedure is not able to create the missing architectural dependencies for these AFGs due to the

lack of matching interfaces. Therefore, they remain incomplete. All the architectural blocks in

the AFG3 are from the typical IMS composition except the DB. DB exposes the Cx interface

through which it can communicate with the S-CSCF. Therefore, the AFG Completion procedure

is able to create the missing dependency between the DB and the S-CSCF. The complete AFGs

generated in this transformation are AFG1, 3, and 8.

One Pre-VNFFG has been generated for each of these AFGs since there is a one-to-one

mapping between the VNFs and the architectural blocks in the SM3. Figure 6.16 shows a portion

of the SM3 in the UML file resulted from Transformation 3. This portion is related to the gen-

erated FGs.

118

VNFFGs in the SM3 one generic NSD model has been generated. Figure 6.17 shows the UML

file containing these three NSD models.

Figure 6.17 – The NSD models generated in Transformation 4

As an example, Figure 6.18 shows the NSD1 model that is originated from the AFG1 ac-

cording to the typical IMS composition. According to the architectural dependencies in the typ-

ical IMS, three VLDs have been generated. They exist at the top of the figure along with their

Connectivity Type elements. One of the VLDs is an E-LAN type that connects the P/I/S-CSCF

VNFs through their Mw interfaces. The other VLDs are E-Line type, and they connect the S-

CSCF VNF to the HSS and the AS VNFs through their Cx and ISC interfaces, respectively.

Two VNFFGDs have been created, one for the data and the other for the control plane of the

network service. In the control plane, VNFFGD two Propagation Flows have been designed,

one for registration and the other for voice call functionalities on the control plane. These two

functionalities are exposed by the SAP associated with the Gm interface of P-CSCF. P_Sap-Gm

is the SAPD of this SAP as shown in Figure 6.18. In the registration flow, P-CSCF receives the

registration requests from the users and sends them to the I-CSCF. I-CSCF finds the assigned

S-CSCF to each user and routes the requests to these S-CSCFs. Each S-CSCF inquires the in-

formation of the users from the HSS for the authentication. After S-CSCF performs the regis-

tration functionality, it sends an acknowledgment message to the user through the incoming

119

route of the request. The voice call flow on the control plane in our case study is a simplified

version of the session setup procedure in the IMS [13]. In this flow, the users send the voice call

requests to P-CSCF. P-CSCF routes the requests to the S-CSCFs assigned to the users. Each S-

CSCF sends a request to the AS to setup up a connection for each requested call.

In the data plane VNFFGD one Propagation Flow has been designed for the voice call func-

tionality on the data plane. This functionality is exposed by the SAP associated with the Mb

interface of the AS. AS_Sap-Mb is the SAPD of this SAP as shown in Figure 6.18. In this flow,

each user in the call sends the voice call content through this SAP to the Mb interface. AS sends

the content to the other user through the same interface.

One NFPD have been generated according to each of the aforementioned flows. These

NFPDs include NFPD Register-CONTROL, NFPD VoiceCall-CONTROL, and NFPD Voice-

Call-DATA as shown in Figure 6.18.

120

Figure 6.18 – The NSD model for the typical IMS composition form Transformation 4

Figure 6.19 shows the aforementioned flows generated in the SM4.

121

Figure 6.19 - The Propagation Flows in the SM4 from Transformation 4

Table 6.5 shows the details of each Propagation Flow, i.e. the sequence of their interfaces,

and the interfaces’ characteristics related to the flows. It also shows the source of finding each

interface in the flow, i.e. the Flow Transformation or the ADep Interfaces elements.

124

Table 6.6 - Details of the NFR propagation in the case study

Table 6.7 shows the details of dimensioning the VNFs in this case study according to the

VNFC.RIs. Each row shows the result of dimensioning each VNF for the specified Instantiation

Level, i.e. it shows the VNF.RIVNFCs and the VNF.RIIL. For each VNF, the selected Instantiation

Level for each VnfDf, i.e. with the minimum VNF.RIIL is specified with a dashed or a solid

125

circle. The final solution for dimensioning each VNF, i.e. with the minimum VNF.RIIL is spec-

ified with a solid circle. Therefore, the required number of instances for the VNFs are P-CSCF:

2, I-CSCF: 2, S-CSCF: 1, HSS: 1, AS: 1.

Table 6.7 - Details of dimensioning the VNFs in the case study

All the information presented in Tables 6.6 and 6.7 has been stored in the SM5. The VNF

Profiles in the refined NSD model also have been enriched accordingly. The minimum and the

maximum root bitrate requirements for the E-Line virtual link between the S-CSCF and AS are

both equal to 900, according to Equation 4. Similarly, these parameters for the E-Line virtual

link between the S-CSCF and HSS are both equal to 1800. For the E-LAN virtual link between

the P/I/S-CSCF VNFs, the minimum leaf and root bitrate requirements are equal to 900 and

Discussion

Conclusion

Potential Future Work

129

this thesis, one can devise a method to automatically generate such a configuration for the

network service.

 Our method does not check the consistency of the network service requirements, and we

assume the given requirements are consistent. A method to check the consistency of the

network service requirements can prevent generating faulty NSDs due to inconsistent re-

quirements.

 Full validation of our method using real and industry level case studies is desirable.

130

8 Bibliography

[1] "Network Functions Virtualisation (NFV); Architectural Framework: ETSI GS NFV

002 V1.2.1," 12 2014. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v0102

01p.pdf.

[2] "Network Functions Virtualisation (NFV); Virtual Network Functions Architecture:

ETSI GS NFV-SWA 001 V1.1.1," 12 2014. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-

SWA001v010101p.pdf.

[3] "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV:

ETSI GS NFV 003 V1.4.1," 08 2018. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.04.01_60/gs_NFV003v0104

01p.pdf.

[4] M.Pearce, S.Zeadally and R.Hunt, "Virtualization: Issues, Security Threats, and

Solutions," ACM Computing Society, vol. 45, no. 2, 2013.

[5] "European Telecommunications Standards Institute (ETSI)," [Online]. Available:

https://www.etsi.org/.

131

[6] "Network Function Virtualization (NFV)," ETSI, [Online]. Available:

https://www.etsi.org/technologies/nfv.

[7] "Network Functions Virtualisation (NFV); Use Cases: ETSI GS NFV 001," 10 2013.

[Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v0101

01p.pdf.

[8] "Network Functions Virtualisation (NFV); Management and Orchestration: ETSI GS

NFV-MAN 001 V1.1.1," 12 2014. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-

MAN001v010101p.pdf.

[9] "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration;

Network Service Templates Specification: ETSI GS NFV-IFA 014 V2.4.1," 02 2018.

[Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/014/02.04.01_60/gs_NFV-IFA014v020401p.pdf.

[10] "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration;

Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.4.1," 02 2018.

[Online]. Available: http://www.etsi.org/deliver/etsi_gr/NFV-

IFA/001_099/015/03.01.01_60/gr_NFV-IFA015v030101p0.zip.

[11] M. Abbasipour, M. Sackmann, F. Khendek and M. Toeroe, "A Model-Based Approach

for User Requirements Decomposition and Component Selection," Formalisms for

Reuse and Systems Integration, pp. 173-202, 2015.

132

[12] J. Hyun, J. Li, C. Im, J.-H. Yoo and J. W.-K. Hong, "A VoLTE Traffic Classification

Method in LTE Network," in The 16th Asia-Pacific Network Operations and

Management Symposium, Hsinchu, 2014.

[13] "3rd Generation Partnership Project; Technical Specification Group Services and

System Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 14): 3GPP TS

23.228 V14.4.0," June 2017. [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specifi

cationId=821.

[14] "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration;

VNF Descriptor and Packaging Specification: ETSI GS NFV-IFA 011 V2.4.1," 02

2018. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/011/02.04.01_60/gs_NFV-IFA011v020401p.pdf.

[15] H. Wang and S. Rupp, "Skype VoIP service- architecture and comparison," in

INFOTECH Seminar Advanced Communication Services (ACS), 2005.

[16] "MDA: Model Driven Architecture," Object Management Group (OMG), [Online].

Available: https://www.omg.org/mda/. [Accessed 26 February 2019].

[17] S. Mustafiz, N. Nazarzadeoghaz, G. Dupont, F. Khendek and M. Toeroe, "A Model-

Driven Process Enactment Approach for Network Service Design," in International

Conference on System Design Languages , Budapest, 2017.

133

[18] "Cellular Standards for 3G: ITU's IMT-2000 Family," International Telecommunication

Union (ITU), [Online]. Available: https://www.itu.int/osg/spu/imt-

2000/technology.html#Cellular%20Standards%20for%20the%20Third%20Generation.

[19] G. Camarillo and M. A. Garcia-Martin, The 3G IP multimedia subsystem (IMS):

Merging the Internet and the Cellular Worlds, 2nd ed., West Sussex: Wiley, 2006.

[20] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, Pearson,

2012.

[21] "Third Generation Partnership Project (3GPP)," [Online]. Available:

http://www.3gpp.org/.

[22] J. Rosenberg, H. Schulzrinne, G. Camarillo and A. Johnston, "SIP: Session Initiation

Protocol," Internet Engineering Task Force (IETF), RFC 3261, June 2002. [Online].

Available: https://tools.ietf.org/html/rfc3261.

[23] M. Poikselkä, G. Mayer, H. Khartabil and A. Niemi, The IMS: IP Multimedia Concepts

and Services in Mobile Domain, West Sussex: Wiley, 2004.

[24] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, "RTP: A Transport Protocol

for Real-Time Applications," Internet Engineering Task Force (IETF), RFC 3550, July

2003. [Online]. Available: https://tools.ietf.org/html/rfc3550.

[25] O. Levin, "H.323 Uniform Resource Locator (URL) Scheme Registration," Internet

Engineering Task Force (IETF), RFC 3508, April 2003. [Online]. Available:

https://tools.ietf.org/html/rfc3508#ref-3.

134

[26] 3GPP, "Long Term Evolution (LTE)," [Online]. Available:

http://www.3gpp.org/technologies/keywords-acronyms/98-lte.

[27] "The Evolved Packet Core," 3GPP, [Online]. Available:

http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core.

[28] "Ethernet Services Definitions - Phase II - MEF 6.1," April 2008. [Online]. Available:

https://mef.net/PDF_Documents/technical-specifications/MEF6-1.pdf.

[29] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineering In

Practice, 2nd ed., Morgan & Claypool, 2017.

[30] "Object Management Group (OMG)," [Online]. Available: https://www.omg.org/.

[31] T. Stahl and M. Völter, Model-Driven Software Development: Technology,

Engineering, Management, West Sussex: Wiley, 2006.

[32] "Unified Modeling Language (OMG UML) Infrastructure, version 2.4.1," Object

Management Group (OMG), 2011. [Online]. Available:

https://www.omg.org/spec/UML/2.4.1/About-UML/.

[33] "OMG Unified Modeling language (OMG UML) Specification 2.4, Superstructure,"

2011. [Online]. Available: https://www.omg.org/spec/UML/2.4.1/About-UML/.

[34] "Papyrus Modeling Environment," 08 March 2017. [Online]. Available:

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/neon/.

135

[35] M. Abbasipour, "A Framework for Requirements Decomposition, SLA Management

and Dynamic System Reconfiguration," PhD Thesis, Concordia University, 2018.

[36] "ATL/User Guide-The ATL Language," [Online]. Available:

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language. [Accessed 11 July

2018].

[37] "Object Constraint Language (OCL), version 2.4," Object Management Group (OMG),

Febdruary 2014. [Online]. Available: https://www.omg.org/spec/OCL/.

[38] "Service Availability Forum (SA Forum)," [Online]. Available:

http://www.saforum.org/.

[39] Z. Oster, G. Santhanam and S. Basu, "Decomposing the Service Composition Problem,"

in 8th IEEE European Conference on Web Services, Ayia Napa, 2010.

[40] Z. Oster, G. Santhanam and S. Basu, "Identifying Optimal Composite Services by

Decomposing the Service Composition Problem," in IEEE International Conference on

Web Services, Washington, DC, 2011.

[41] S. Sun and J. Zhao, "A decomposition-based approach for service composition with

global QoS guarantees," Information Sciences, vol. 199, pp. 138-153, 2012.

[42] Y. Liu, L. Wu and S. Liu, "A Novel QoS-Aware Service Composition Approach Based

on Path Decomposition," in IEEE Asia-Pacific Services Computing Conference, Guilin,

2012.

136

[43] C. Bartsch, L. Shwartz, C. Ward, G. Grabarnik and M. J. Buco, "Decomposition of IT

service processes and alternative service identification using ontologies," in IEEE

Network Operations and Management Symposium, Salvador, Bahia, 2008.

[44] S. I. Kim and H. S. Kim, "Semantic Ontology-Based NFV Service Modeling," in 10th

International Conference on Ubiquitous and Future Networks , Prague, 2018.

[45] S. Sahhaf, W. Tavernier, D. Colle and M. Pickavet, "Network service chaining with

efficient network function mapping based on service decompositions," in 1st IEEE

Conference on Network Softwarization (NetSoft), London, 2015.

[46] G. Carella, M. Corici, P. Crosta, P. Comi and T. M. Bohnert, "Cloudified IP Multimedia

Subsystem (IMS) for Network Function Virtualization (NFV)-based architectures," in

IEEE Symposium on Computers and Communications (ISCC), Funchal, 2014.

[47] D. Benavides, S. Segura and A. Ruiz-Cortés, "Automated analysis of feature models 20

years later: A literature review," Information Systems, vol. 35, no. 6, pp. 615-636, 2010.

[48] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental Concepts and

Key Architectures, McGraw-Hill, 2004.

[49] R. Diestel, "The Basics," in Graph Theory, 5th ed., Springer, 2016, pp. 1-35.

