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ABSTRACT 
Generation of Network Service Descriptors from Network Service 

Requirements 

 

Navid Nazarzadeoghaz, M.A.Sc.  

Concordia University, 2019 

 

Network Function Virtualization (NFV) is a new paradigm in Network Service (NS) pro-

visioning. European Telecommunications Standards Institute (ETSI) proposed and standard-

ized an architectural framework for NFV. By leveraging virtualization and Software-Defined 

Networking (SDN) technologies, NFV decouples network functionality from hardware infra-

structure. This enables the automated provisioning of NSs and reduces the capital and opera-

tional costs for service operators. NFV Management and Orchestration (NFV-MANO) is a 

functional block in the NFV framework, and it is responsible for the deployment and life-cycle 

management of NSs. With NFV, the telecommunication industry is moving towards zero-

touch, i.e. automation of all the processes. In order to orchestrate and manage an NS, NFV-

MANO requires the NS’s deployment template. This template is referred to as NS Descriptor 

(NSD) and contains all the details for deployment and orchestration of the NS. Designing such 

a descriptor requires the design of the NS, which is actually out of the NFV scope. Tradition-

ally, service operators’ experts design NSs and NSDs. However, this design activity is time-

consuming and error-prone; moreover, it is not fitting the Telecom’s vision of zero-touch. 

In this thesis, we will propose an approach to automate the process of NS and NSD design. 

The approach starts from a set of requirements provided as Network Service Requirements 

(NSReq). The NSReq describes the required network service at a high level of abstraction and 

focuses on the functional, architectural, and non-functional characteristics. With the help of an 
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ontology representing the knowledge from Telecom standards and previous successful experi-

ences, we decompose the NSReq. We select the set of Virtual Network Functions (VNF) from 

a catalog to design the NS. Considering all the levels of decomposition and the VNF’s depend-

encies captured from the ontology, we design all the possible forwarding graphs that can form 

an NS. We design each forwarding graph through different steps at different abstraction levels, 

i.e. functional, architectural, and VNF levels. According to each forwarding graph, we design 

an NSD along with the traffic flows in the NS. We refine each NSD by dimensioning its VNFs 

using the non-functional requirements in the NSReq. Accordingly, we refine the deployment 

flavor of each NSD. We have developed a prototype tool as a proof of concept for our proposed 

approach which we will discuss later in this thesis. 
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The main functional blocks in this architecture are Home Subscriber Server (HSS), Call/Ses-

sion Control Function (CSCF), Application Server (AS), Media Resource Function (MRF), Me-

dia Gateway (MGW), and Media Gateway Control Function (MGCF). 

HSS: It stores the users’ subscription information used to handle their multimedia sessions. 

This information includes location information, authentication and authorization information, 

user profile, etc. An IMS network may have more than one HSS according to the number of its 

subscribers. In such a case, a Subscription Locator Function (SLF) is required to find the right 

HSS for a user [19]. 

CSCF: It is the core function that processes the Session Initiation Protocol (SIP) [22] sig-

naling in the IMS network [19]. IMS uses this protocol to establish and manage multimedia 

sessions over IP networks. CSCF has three different blocks including Proxy-CSCF (P-CSCF), 

Interrogating-CSCF (I-CSCF), and Serving-CSCF (S-CSCF) [19]. 

P-CSCF is the first contact point between the terminal and the IMS network. The terminal 

is where the User Equipment (UE) is connected to. It receives all the SIP requests from the 

terminal. It forwards these requests and the generated responses towards the appropriate direc-

tion, i.e. towards the terminal or IMS network [19]. S-CSCF is the central node for the SIP 

signaling. It is essentially a SIP server, meaning it responds to the SIP requests. It performs the 

session control function, i.e. setting up and termination of sessions. It is the SIP registrar as well, 

i.e. gives the users SIP address, and keeps the binding between their IP and SIP addresses [19]. 

I-CSCF assigns an appropriate S-CSCF to a user according to the information it retrieves from 

the HSS. It also forwards the SIP requests/responses to the assigned S-CSCF [23].  

AS: It is the function that hosts and executes the SIP applications [19], e.g. Voice over IP, 

conferencing, etc. It receives/sends SIP requests for its service from/to S-CSCF [23]. 
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ments. The designed applications are composed of Commercial-off-the-shelf (COTS) compo-

nents in the context of Service Availability Forum (SA Forum) [38] compliant middleware. This 

method decomposes the user requirements to lower level requirements (referred to as configu-

ration requirements) using an ontology. The method selects the components satisfying the re-

quirements from a catalog. Our approach designs NSs in the NFV context. It requires the selec-

tion of VNFs but also the design of other NS constituents, especially the forwarding graphs, 

which lead to designing the NS traffic flows. This aspect is not considered in [11]. 

The works in [39, 40] focus on web service composition. In [39], the authors propose a 

formal meta-framework to compose web services according to functional requirements. It de-

composes complex requirements into Boolean combinations of atomic requirements expressed 

in a certain formalism. It selects the web services that satisfy these atomic requirements. They 

use available methods for this decomposition and selection. The meta-framework identifies the 

composition of the selected web services by using satisfiability techniques and reusing the prior 

composition results. In [40], the authors of [39] extend their meta-framework to take into ac-

count the non-functional requirements using formal methods. They analyze users’ preferences 

over the non-functional requirements to find the optimal web service composition. This work 

does not consider the dependencies and the flows in the composition. This work is applicable 

for web services but not for the composition of VNFs. 

Many works have been done on service composition and decomposition in the context of 

service-oriented architecture (SOA) [41, 42, 43]. In [41], the authors propose a decomposition-

based method to compose services from components according to user requirements. This 

method takes the QoS of the composed service into account according to its utility. The authors 

have defined composition structures, by which they compose the services. The method derives 
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the constraints of the components (for component selection) from the composite service con-

straint. Then, it computes the utility of the composed service according to the utility of the com-

ponents. This work considers the flow between the services according to the pre-defined struc-

tures.  

In [42], the authors propose a method for service composition from atomic services using 

genetic algorithms. The method uses path decomposition by adopting Case-Based Reasoning 

and genetic algorithms. It adjusts the execution path and accordingly forms an execution plan 

to meet the user requirements. The execution paths and plans are correspondents to forwarding 

graphs at different levels of abstraction. This method designs the composite services to meet the 

QoS requirements.  

In [43], the authors propose an ontology-based method that decomposes IT service pro-

cesses. They have proposed a structured description of services and service processes that 

support this method. They have used “server deployment service” as a case study on IT services. 

It is composed of lower level services including configuration requirements setup, server envi-

ronment setup, and system configuration setup. The definition of service in this work is different 

from our definition, and it maps to NFV-MANO processes, to some extent. This work assists 

service providers to manage their operational processes. This work does not decompose the 

requirements, nor designs a service or a process.  

The works proposed in [44, 45, 46] focus on different aspects of NFV including NSs and 

service chaining. In [44], authors propose a semantic-based ontology for NSD according to the 

ETSI NFV standard [8]. They define the relationships between the NSD parameters and con-

struct the ontology accordingly. They have used OWL as the language for constructing the on-

tology. The purpose of this work is data modeling for VNF management automation and NS 

generation. However, this work does not propose any method for these activities.  
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In [45], authors propose an algorithm to provide an efficient placement for a Network Ser-

vice Chaining (NSC) in the infrastructure. An NSC is composed of multiple NFs, and each NF 

may have different decompositions. By considering different decompositions, the algorithm 

maps the NFs to the components of the infrastructure. According to the characteristics of the 

components, it selects the NF decompositions and realizes an efficient placement. This work 

assumes the different decompositions are given and it does not decompose the service itself. 

In [46], authors have proposed three different architectures for the deployment of IMS in an 

NFV environment using VNFs. These architectures include typical, merged, and split IMS. Typ-

ical IMS complies with the 3GPP standard. Merged IMS combines the IMS blocks into one 

VNF and deploys one instance for each user. Split IMS decomposes the IMS functionalities into 

simpler functionalities realized by different VNFs. Furthermore, they propose a management 

architecture to orchestrate the proposed architectures on top of the cloud infrastructure. We used 

the merged IMS architecture proposed in this paper to enrich our case study discussed in Chap-

ter 6.  



Network Service Requirements (NSReq) 









Network Function Ontology (NFO) 
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Specialization: Some functionalities are abstract, and there is no implementation for them. 

Such functionalities can be specialized to more specific functionalities that have been imple-

mented. For instance, messaging functionality is abstract, and it is specialized to immediate 

messaging and session-based messaging [23]. A tenant might require a general functionality 

since he/she might not have enough knowledge regarding the functionalities. However, we can-

not use general functionalities in designing a network service. Instead of an abstract functional-

ity, we should use one or multiple of its specializing functionalities.  

The idea of specialization of a functionality in our NFO comes from the feature modeling 

domain [47]. The specialization can be exclusive or non-exclusive. In an exclusive specializa-

tion, only one of the special functionalities should be selected. In an NFO model, we use OR 

and XOR elements to specialize a Functionality (for non-exclusive and exclusive respectively), 

as shown in Figure 3.3. 

Dependency: Functionalities can depend on each other. In a dependency relation, we refer 

to the dependent functionality as the client and the other one as the supplier. The client and 

supplier functionalities communicate according to the client-server architecture [20]. The client 

functionality acts as the client and the supplier functionality acts as the server, i.e. the former 

sends requests to the latter. The sequence of these dependencies implies the flows in the higher 

level functionalities, and therefore in the network services. In an NFO model, we specify a de-

pendency relation between two Functionalities using a Functional Dependency element, as 

shown in Figure 3.3. 

Two functionalities may have a dependency relation only in the context of a parent or an 

ancestor they have in common. I.e. such dependency exists between them only if they are in the 

decomposition of that parent/ancestor – the ancestors of a functionality are the parents of that 

functionality’s parents and the parents of the functionality’s ancestors which recursively reach 
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exposed functionality has specific roles (input, output, server, and client) while communicating 

through a specific interface.  

Input and output roles are defined in terms of the direction of the packet flows, and they are 

complementary. These two roles can be defined on both data and control planes, as there can be 

packet flows associated with both planes. Server and client roles are according to the client-

server architecture [20]. The exposed functionality which sends requests has the client role, and 

the one that receives them has the server role. These two roles are also complementary, and they 

are defined only on the control plane. Each exposed functionality uses a specific protocol for 

communication through the interface. 

As an example, Gm is one of the interfaces of P-CSCF architectural block in IMS architec-

ture [13]. It exposes registration and session setup functionalities on the control plane and uses 

SIP protocol. User equipment sends requests to and receives responses from this interface. 

Therefore, this interface has the roles of server, input, and output for both functionalities. We 

specify each interface of an AB by the Interface element, and each exposed functionality by the 

Interface Functional Characteristic element in the NFO, as shown in Figure 3.3. 

Dependency: Two architectural blocks may communicate differently in different contexts, 

i.e. in different decompositions and/or while realizing different functionalities. In each commu-

nication between two architectural blocks, an exposed functionality from each of their interfaces 

is involved. Each involved functionality has specific roles and uses a specific protocol in such 

communication. These characteristics are a subset of the characteristics exposed by the inter-

face. The communication is also on a specific plane, which both involved interfaces should 

support. We define the communication between two ABs in the NFO by the Architectural De-

pendency element. The characteristics of the functionalities involved in the communication are 

indicated using ADep Interfaces element, as shown in Figure 3.3.  







VNF information elements 
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Catalog, and their relations. As a result, an important portion of the SM metamodel is a combi-

nation of the aforementioned input metamodels.  

SM model, also, captures the information on the forwarding graphs designed in the NSD 

generation process. These forwarding graphs are Functional, Architectural, and Pre-VNF For-

warding Graphs (FFG, AFG, and Pre-VNFFG respectively), and we will discuss them further 

in Chapter 4. Figure 3.10 depicts the SM metamodel, in which the elements from the NSReq 

model are in cream, from the NFO are in blue, from the VNF Catalog are in orange, and for-

warding graph elements are in green. In addition, the SM model contains other elements related 

to the NSD refinement process – discussed in Chapter 5 – which are shown in gray. 

 

Figure 3.10 - The Solution Map metamodel 



Network Service Descriptor (NSD) 
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and the leaf of the virtual link. The definition for the root and the leaf bitrate requirements for 

virtual links with different flow patterns are different [10]: 

 E-Line: The root bitrate requirement is equal to the bitrate of the line. The leaf bitrate 

requirement is not applicable, as E-Line has no leaf connection. 

 E-LAN: The root bitrate requirement is equal to the aggregate capacity of the LAN. The 

standards today do not support multiple bitrate requirements for the leaf connections. 

Therefore, the leaf bitrate requirement is equal to the maximum bitrate among all of the 

virtual link’s connections. 

 E-Tree: The root bitrate requirement is equal to the virtual link’s root bitrate. The leaf 

bitrate requirement is equal to the maximum bitrate among the virtual link’s leaves (for 

the same reason as the E-LAN leaf bitrate requirement). 

The NsDf defines multiple capacity levels in the capacity range defined for the network 

service. Each level specifies an exact number of instances for each VNF and the exact bitrate 

requirement for each NsVl. These values should be in the ranges defined by the profiles. The 

network service is instantiated according to one of these levels, and it can be scaled from one 

level to another. An NsDf defines each level using an NS Level element. The NS Level specifies 

the VNFs’ and NsVls’ capacities using VnfToLevelMapping and VirtualLinkToLevelMapping 

elements respectively, as shown in Figure 3.11. 

The network service’s scalability and the affinity/anti-affinity rules defined by the deploy-

ment flavor are out of our scope.  



Overall approach 
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set of VNFs from the VNF Catalog. Different combinations of VNFs from this set can realize 

the required network service. We capture each of these combinations and their VNFs’ connec-

tivity. Each combination forms a forwarding graph which is the main element of a network 

service. From each forwarding graph, we generate a generic NSD element. Finally, we may 

enrich the NFO according to new information obtained from the NSReq model.  

In this document, we use the term “mapping” for a specific operation between models or 

elements of the models. By mapping two elements we mean matching their attributes’ values in 

order to realize if the two elements match. By mapping two models we mean mapping a group 

or all of their elements. The result of mapping two models can be the decomposition or selection 

of some elements depending on the models. Figure 4.1 shows the overall picture of the approach. 

 

Figure 4.1 - The overall picture of the NSD generation process 

The input of this approach is the NSReq, NFO, VNF Catalog, and Protocol Stack models. 

Our approach for NSD generation from NSReq consists of six steps: 

 Step 1 – Initialization of the SM model 



Steps of the Approach 
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Functional and Architectural Requirements: In the next step (Step 2), we map the func-

tional and architectural requirements in the NSReq to the functionalities and architectural blocks 

in the NFO, respectively. To simplify this mapping, in this first step, we transform the FR and 

AR elements in the NSReq into the Functionality and AB elements in the SM, respectively. For 

each FR, we transform its decomposition and dependency relations into ComposedOf and Func-

tional Dependency associations in the SM, respectively. For each AR, we transform its depend-

ency relations into Architectural Dependency associations in the SM. For the whole decompo-

sition of each AR, we create an Arch Composition element in the SM. Then, we associate it with 

the ABs in the SM that correspond to that AR and its children.  

Service Access Point Requirements: In the next step (Step 2), we map the service access 

point requirements from the NSReq to the service access points in the NFO. Therefore, in this 

first step, we transform each SAPR element into a SAP element in the SM. The SAP Functional 

Characteristic elements of a SAP in the NFO are the corresponding elements of the Accessed 

Functionality elements in the NSReq. These two elements provide the same information about 

the SAPs and SAPRs, respectively, as shown in the NSReq and NFO metamodels. Therefore, we 

transform each of the former elements to the latter in the SM model. Then, we associate each 

created SAP Functional Characteristic with its corresponding SAP in the SM according to the 

SAPRs. We use the TempRef associations for this association, as shown in the SM metamodel. 

It is a temporary association, and in Step 2, we replace it by SAP Interface elements after real-

izing the interfaces that each SAP in the SM should expose according to the NFO. 

Non-functional Requirements: NFRs are out of the scope of the NFO. Therefore, we trans-

form the NFRs of the NSReq into the same elements in the SM, i.e. NFR elements, so we can 

use them for dimensioning – discussed in Chapter 5. We associate each transformed NFR with 

its corresponding SAP Functional Characteristic element in the SM. 





49 
 

Traversing the SM hierarchies is a one-time procedure, and we call it SM Traversal. Every time 

we match an element in the SM Traversal procedure, we capture its related elements into the 

SM using specific procedures. These procedures are called Functional Capturing and Architec-

tural Capturing respectively for functionalities and architectural blocks. In these procedures, 

we may add new functionalities and/or architectural blocks into the SM. Every time we add a 

functionality or architectural block, we run the appropriate capturing procedure for it. Therefore, 

these capturing procedures are run recursively, and they capture all the NFO sub-trees related 

to the NSReq into the SM. Figure 4.3 shows an overview of Step 2. 

 

Figure 4.3 – Overall view of decomposing the SM model 

The required SAPs and their characteristics are defined in the NSReq, and we have captured 

them in the SM. In standard architectures, not all of the interfaces matching the required SAPs 

characteristics are exposed to the environment. Therefore, we map all the SAPs in the SM to the 

NFO SAPs in order to find the interfaces they should expose. We do so in a one-time procedure 

referred to as SAP Capturing. This procedure is done after traversing the SM hierarchies com-

pletely. 
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functionality and the parent, if such relation does not already exist. Then we tag this relation as 

‘from ontology’. If such relation already exists with ‘unmatched’ tag we change it to ‘matched’. 

Step 2 – Capturing the Realization Relations: In this step, we capture the architectural blocks 

that realize the functionality according to its architectural constraints. First, we capture all the 

architectural blocks through the ‘Realized By’ associations of the functionality in the NFO. 

Then we check them against the functionality’s architectural constraints. As discussed in Sec-

tion 4.2.1, we had transformed the ARs in the NSReq into AB elements in the SM with the ‘un-

matched’ tag. Therefore, these ABs are the architectural constraints for their associated func-

tionalities in the SM. 

If each captured architectural block already exists in the SM with an ‘unmatched’ tag and 

associated with the functionality, it means it complies with the constraints. We run the Archi-

tectural Capturing procedure for it, and we change its tag to ‘matched’. If a captured architec-

tural block does not exist in the SM, we check it against the functionality’s parents’/ancestors’ 

constraints. According to Section 3.2.2, if the architectural block in the NFO is the child of the 

architectural blocks specified by these constraints, it complies with the constraints. We add it to 

the SM, run the Architectural Capturing procedure for it and tag it as ‘from ontology’. Then, we 

create a ‘Realized By’ association between the functionality and this architectural block. 

Step 3 – Capturing the Dependency Relations: In this step, we capture the functionality’s 

dependency relations in the NFO with a valid context. For each dependency, first, we check 

whether it already exists in the SM. If it exists and it is tagged as ‘unmatched’, we change its tag 

to ‘matched’.  

If the dependency does not exist in the SM, we check whether its context is valid in the SM 

– refer to Sections 3.2.1 and 3.2.4. If the context is valid we should add the dependency to the 
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We add the architectural blocks into the SM through the functionalities’ realization relations 

in the Functional Capturing procedure. Also, in this procedure, we set the architectural blocks’ 

relations with their parents. Therefore, the decomposition of each architectural block is captured 

into the SM indirectly, and we do not need to capture the decomposition relations. We start this 

procedure by setting the relationship with parents, as we need to check these relations for vali-

dating the dependencies’ contexts. Architectural Capturing procedure has three steps: 

 Step 1 – Setting the Parents 
 Step 2 – Capturing the Interfaces 
 Step 3 – Capturing the Dependency Relations 

Step 1 – Setting the Parents: In this step, we set the architectural block’s relations with its 

parents in the SM according to the NFO. An architectural block is in relation with its parents 

through Architectural Composition elements, as shown in the NFO and SM metamodels. For 

each parent of the architectural block in the NFO that also exists in the SM, we capture its 

Architectural Composition elements that are associated with the architectural block. For each 

captured Architectural Composition that also exists in the SM, we associate the architectural 

block with it in the SM, if it is not already associated. If the captured Architectural Composition 

does not exist in the SM, we add it to the SM, and we associate the architectural block and the 

parent to it. 

Step 2 – Capturing Interfaces: In this step, we capture the architectural block’s interfaces. 

We add all the architectural block’s Interface elements from the NFO into the SM.  

Step 3 – Capturing the Dependency Relations: In this step, we capture the dependency rela-

tions related to the architectural block in the NFO with a valid context. For each dependency 

that the architectural block is associated with, whether it is the dependency’s client or supplier, 

we need to capture the dependency. For such a dependency, we check the dependency’s contexts 
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are the same, and the roles of the one from the NFO includes all the roles of the one from the 

SM. If there are any matches, we change the tag of the SAP Functional Characteristic element 

in the SM to ‘matched’.  

For each match, we add the associated SAP Interface element from the NFO into the SM. 

We associate it with the matching SAP and SAP Functional Characteristic in the SM. Then, we 

associate the SAP with the architectural block that has the interface referenced by the SAP In-

terface element. Each SAP in the SM should have a matching interface for each of its SAP Func-

tional Characteristic elements. If all the SAP Functional Characteristic elements of a SAP in 

the SM are tagged as ‘matched’ we tag the SAP as ‘matched’ as well. 

For the SAP Functional Characteristic elements in the SM that have remained ‘unmatched’, 

there is no information in the NFO. For each of them, we set all the interfaces in the SM that 

match its characteristics as its exposed interfaces. An interface matches a SAP Functional Char-

acteristic element if both have the same plane and functionality, and the interface’s roles include 

all the SAP Functional Characteristic’s roles. For each matched interface, we create a SAP In-

terface element that references the interface. We associate it with the matched SAP Functional 

Characteristic and its related SAP. Then we change the tag of the matched SAP Functional 

Characteristic, and if applicable the tag of the SAP, to ‘matched’. 

SAP Projection: The VNFs that we use to generate generic NSDs may realize functionali-

ties at any level in the functional hierarchy. Therefore, the functionalities that a VNF exposes 

through its interfaces also can be at any level. However, at this point, the SAPs in the SM expose 

functionalities at specific levels that are not necessarily the same level as the VNFs’ functional-

ities levels. As a result, we should design the SAPs in a way that we can use them for the VNFs 

with functionalities at any level. To achieve that, we project all the SAPs to all the functional 

levels in the SM. 
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We generate a forwarding graph by substituting an AFG’s architectural blocks with the VNFs 

realizing them. Such forwarding graphs specify the VNFs’ connectivity according to the AFG’s 

sequence. Therefore, we can generate an NSD and its VNFFGDs from each forwarding graph. 

We call such forwarding graph a Pre-VNFFG, as it does not specify the virtual links yet. Mul-

tiple VNFs may realize an architectural block in the AFG, and it results in multiple Pre-

VNFFGs. By considering this combinatorial aspect we generate all the possible Pre-VNFFGs 

from each AFG. 

As an example, in an SM model, the root functionality is decomposed to two other function-

alities. Three different architectural blocks realize each of these functionalities, and two differ-

ent VNFs realize each architectural block. Therefore, we can generate two FFGs for the required 

network service – one FFG is composed of the root, and the other is composed of the root’s 

decomposition. We can generate three AFGs from the first FFG and nine AFGs from the second 

FFG. We can generate two Pre-VNFFGs from each AFG of the first FFG and four Pre-VNFFGs 

from each AFG of the second FFG. In total, we can generate 42 Pre-VNFFGs. 

FFG generation: This is a recursive process. We invoke each recursive step for a 

functionality in the SM hierarchy, and we call this functionality the sub-root. The goal of each 

recursive step is to find the FFGs in the sub-tree of the sub-root. We call these FFGs partial 

FFG. The combination of functionalities in each partial FFG composes the sub-root function-

ality. The initial recursive step starts from the SM root functionality. As discussed earlier, the 

combination of the functionalities in an FFG composes the root functionality. Therefore, the 

result of the whole recursive process is the set of all the FFGs in the SM. Each recursive step, 

at first, invokes a recursive step for each of the sub-root’s children. In the end, it returns all the 

partial FFGs of the sub-root. 
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The only partial FFG of a leaf functionality is itself. Therefore, when the sub-root is a leaf 

functionality, the recursive step returns only one partial FFG which is the sub-root. When the 

sub-root is a non-leaf functionality, each partial FFG is the concatenation of a partial FFG of 

each of the sub-root’s children. Therefore, all these combinations in addition to the sub-root 

itself (as a partial FFG) are the result of each recursive step. 

In the SM, there might be some functionalities for which there is no VNF to realize them. We 

exclude the FFGs that contain such functionalities as we cannot generate any Pre-VNFFG from 

them later on. For each of the remaining FFGs, we generate an FFG element in the SM that 

references the Functionality elements accordingly. 

AFG generation: In this process, we generate an AFG by substituting each functionality in 

an FFG with one or a group of architectural blocks realizing that functionality in the SM. This 

(these) architectural block(s) should directly realize the functionality, i.e. being in a ‘Realized 

By’ association with the functionality. A group of architectural blocks realizes a functionality 

directly when they are in a chain of dependencies. All the dependencies in this chain have the 

same context. This context is the ‘Realized By’ association between the functionality and the 

architectural block at the beginning of this chain. 

We run this process for each generated FFG, and we generate all possible AFGs by consid-

ering the combinatorial aspect. For each AFG we generate an AFG element in the SM for it. 

Then, we reference all the architectural blocks in the AFG element accordingly. We preserve 

the information of the mapping between the architectural blocks and the FFG’s functionalities 

in the AFG, as we need it later on. We reference all the dependencies between the architectural 

blocks in the AFG with a valid context in the AFG. In an AFG, a context is valid only if its 

specified ‘Realized By’ association exists in the AFG. It means the architectural block and the 

functionality in this association have a mapping in the AFG. 
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Earlier, we have projected the SAPs to all functional levels in the SM. In each AFG, architec-

tural blocks expose functionalities at specific levels, and SAPs expose them by their SAP Func-

tional Characteristic elements. Therefore, in the AFG, we reference the SAP Functional Char-

acteristic elements that are related to the AFG’s architectural blocks by their interfaces. 

In AFG generation form an FFG, we consider all the combinations of architectural blocks 

that realize the FFG’s functionalities. In some of these combinations, there are architectural 

blocks from different architectural compositions. Therefore, there is no information regarding 

the dependencies between these architectural blocks. We refer to such AFGs as incomplete. We 

infer the missing dependencies in such AFGs in a process called AFG Completion. In this pro-

cess, we may complete some of these AFGs, and we exclude the remaining incomplete ones. 

AFG Completion: As discussed earlier, each incomplete AFG is composed of portions 

of different architectural compositions. Each of these architectural compositions has some 

architectural blocks that are not involved in the AFG. The dependencies between these ar-

chitectural blocks and the ones involved in the AFG are missing in the AFG.  

If two dependencies have the same client and supplier functionalities in their ADep In-

terface elements they match the same functional dependency. We call such dependencies 

equivalent, and their client and supplier architectural blocks equivalent as well. Two equiv-

alent dependencies are not in the same architectural composition.  

In an AFG, each missing dependency has an equivalent dependency which is also miss-

ing in that AFG. We need to create one dependency for each pair of equivalent missing 

dependencies in an AFG. In order to create such a dependency, the ADep Interfaces elements 

of both missing dependencies should match. They match if they have the same plane, client 

and supplier functionalities, roles and protocols. If so, we create a dependency between the 
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For the dependencies with related VnfExtCps in common, there should be an E-LAN virtual 

link in the network service to connect their VnfExtCps. For the rest of the dependencies which 

have two related VnfExtCps, an E-Line virtual link should connect them. For creating the VLDs, 

first, we group the dependencies according to their related VnfExtCps in common. Consider 

each dependency as a node in a graph. Consider each related VnfExtCp that is common between 

two dependencies as an edge between the two nodes (those dependencies). Each connected 

graph [49] inside this graph defines a group of dependencies that have related VnfExtCps in 

common. No two dependencies in different groups have related VnfExtCps in common. We 

connect the VnfExtCps in each group with one virtual link.  

We should check the compatibility of the protocols of the interfaces that communicate with 

each other according to the dependencies. Therefore, we check the compatibility of the protocols 

specified by each ADep Interfaces element for the source and the target interfaces. If the proto-

col of the source and the target interfaces are the same, they are compatible. Also, if two proto-

cols are in the IsServedBy association directly or through other protocols in the Protocol Stack 

model, they are compatible. For each group, if all the interfaces in communication have com-

patible protocols, we create a VLD element. If not, we do not create the VLD, as some interfaces 

in the group cannot communicate. Therefore, we dismiss this NSD. If the number of VnfExtCps 

in the group is more than two we set the virtual link’s flow pattern to E-LAN, otherwise we set 

the flow pattern to E-Line. We specify the flow pattern of a virtual link using the VLD’s ‘Con-

nectivityType’ attribute as shown in the VNFD metamodel. 

The layer protocols of a virtual link should be the same as the layer protocols of all the 

VnfExtCps it connects to. Therefore, we set the layer protocols of each VLD according to its 

VnfExtCps’ layer protocols. For each VLD we create an NsVlDf and an NsVl Profile element, 

and we keep a reference to the NsVlDf in the VLD and the NsVl Profile. We need these two 
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F7, and F8. On the other hand, F1 is not single-flow since it has two functionalities that define 

flows in its decomposition, as they are exposed by SAPs. 

Propagation Flow design: To design the flows in the network service, first we determine 

the functionalities on different planes in the FFG that are exposed by a SAP. Then, we determine 

the starting interface and the interface sequence of each potential flow accordingly. An interface 

may appear in different points of a flow’s sequence. Each time an interface appears in the flow 

a subset of its characteristics (functionalities, planes, and roles) is related to the flow. By map-

ping these characteristics to the ADep Interfaces elements in the AFG and VNF’s Flow Trans-

formation elements of the VNFADs in the Pre-VNFFG we can determine the flow’s sequence. 

Determining the functionality and the plane of the flow: As discussed earlier, each func-

tionality on a specific plane that a SAP in the AFG exposes defines a flow in the network service. 

The information on which functionalities a SAP exposes exists in the SAP Functional Charac-

teristic elements as shown in NFO and SM metamodels. Therefore, we create a Propagation 

Flow element in the SM for each of these functionalities on the specified planes. We reference 

the functionality, the plane, and the SAP in the Propagation Flow element.  

In the next sub-steps, each time we determine the appearance of an interface in the flow’s 

sequence we create an SmInterface element in the SM. We associate it with the Propagation 

Flow element. We set its attributes according to the subset of the interface’s characteristics re-

lated to the flow (functionality, plane, and roles). Finally, we reference the source that we deter-

mined this appearance based on, i.e. the Flow Transformation or the ADep Interfaces element. 

For details of the Propagation Flow and the SmInterface elements in the SM refer to Figure 3.10. 

Finding the starting interface of the flow: The VNF interface that is exposed by the SAP 

related to the flow and has the same functionality and plane as the flow is the flow’s starting 



69 
 

interface. The direction of the flows in a VNF defined by the Flow Transformation elements is 

always from the server/input interface to the client/output interface, i.e. the source interface is 

server/input, and the target interface is client/output. If the starting interface of a flow in the NS 

has the server and/or the input roles the flow is in the direction of the Flow Transformations. 

Otherwise, the flow is in the opposite direction of the Flow Transformations. We call this back-

ward propagation. We avoid designing flows in backward propagation to avoid complexity. 

Therefore, if a starting interface has both server/input and client/output roles, we design the flow 

based on the server/input roles. If the starting interface has only the client and/or output roles, 

we inevitably design the flow in backward propagation.  

In some cases, more than one SAP may expose a functionality on a specific plane but with 

different roles. In such a case, there is more than one candidate interface to select from as the 

flow’s starting interface. Among them, we select the interface with the server and/or input roles 

in order to avoid backward propagation. 

Finding the interfaces sequence of the flow: We call the interface which a flow enters a 

VNF through an entry interface. We call the interface which a flow exits a VNF through an exit 

interface. Therefore, in a flow, there is always an exit interface after an entry interface and vice 

versa. The starting interface of the flow is always an entry interface. 

Each time we determine the appearance of an interface in the flow we call it the current 

interface, including the starting interface. We find the next interfaces in the sequence according 

to the current interface by using two different procedures. If the current interface is an entry 

interface we use the ‘Finding the next exit interface’ procedure to find the next interface(s). If 

it is an exit interface, we use the ‘Finding the next entry interface’ procedure. Since the flow’s 

starting interface is always an entry interface we start with the former procedure. 
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Finding the next exit interface: The next exit interface(s) is (are) in the same VNF as 

the current interface. The Flow Transformation elements of a VNF determine the flows 

inside the VNF. Therefore, we find the next exit interface(s) using the current VNF’s Flow 

Transformations that are related to the flow. A Flow Transformation related to the flow 

should determine the current interface as one of its interfaces (source/target). In addition, 

the characteristics (functionality, plane, and roles) it defines for the current interface 

should match the subset of the current interface’s characteristics related to the flow. All 

the interfaces on the other side (target/source) of the related Flow Transformations are the 

next exit interfaces. For instance, if the current interface in a related Flow Transformation 

is the source interface, the interface on the other side is the target interface. Therefore, the 

target interface is the next exit interface.  

The characteristics that each related Flow Transformation defines for the next exit in-

terfaces are their subset of characteristics related to the flow. We will use them to find the 

next entry interface(s) in the ‘Finding the next entry interface’ procedure. 

Special cases: In some cases, the entry and the exit interfaces of a VNF in a flow are 

the same. If there are multiple dependencies associated with such an interface, there will 

be two cases for finding the next entry interfaces. The first case is if the interface has the 

server and input roles on entry and has the output role on exit. This means that the VNF is 

responding to the incoming packet flow. Therefore, we need to design the flow in a way 

that it goes back towards the path it had come to the current VNF. It means we should use 

the same architectural dependency that we used for the incoming direction on the outgoing 

direction of the flow (in ‘Finding the next entry interface’ procedure). The second case is 

if the interface has the server and client roles on the entry and exit respectively. This means 

the outgoing flow is a request to another interface with a server role. Therefore, in such a 
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case, we should avoid the architectural dependency used in the incoming direction for the 

outgoing direction. 

Finding the next entry interface: The next entry interface(s) is (are) in the VNFs as-

sociated with the dependencies that are associated with the current interface. We find the 

next entry interface(s) according to the ADep Interfaces elements that are related to the 

flow. The related ADep Interfaces elements are the ones in which the characteristics (func-

tionality, plane, and roles) defined for the current interface match the current interface’s 

characteristics related to the flow. If the current interface fits into the two special cases 

discussed previously, we should consider the guidelines mentioned for each case to find 

the related ADep Interfaces. The interfaces on the other side of the related ADep Interfaces 

elements are the next entry interfaces. The characteristics specified for each in these ADep 

Interfaces elements are their subset of characteristics related to the flow. We use these 

characteristics, except the roles, to find the next exit interfaces.  

An ADep Interfaces element may specify multiple roles for the interfaces on both sides 

(source and target). Therefore these interfaces may have input and output and/or client and 

server roles. As discussed before, the server/client pattern indicates the direction of the 

flow. Therefore, having multiple roles for both sides in an architectural dependency results 

in flows in both directions. In order to find the next entry interface, and in general to define 

a flow, we should take only one direction. Among the next entry interfaces’ roles defined 

by the ADep Interfaces elements, we should select only the roles that are complementary 

of the current interface’s roles – as discussed before, server and input roles are comple-

mentary of client and output roles respectively, and vice versa. 

Creating NFPDs from Propagation Flows: As discussed earlier, a flow is a sequence of 

VNF interfaces, and an NFP is a sequence of VnfExtCps. A VnfExtCp exposes one or many 
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Figure 4.5 – Pre-VNFFG example with further details 

 

Figure 4.5 shows a more detailed view of the Pre-VNFFG generated from the SM model in 

Figure 4.4. It shows the VNFs’ dependencies with their ADep Interfaces elements and the SAPs 

with their SAP Functional Characteristic elements. For each VNF, its VNFCs and Interface 

elements are shown. Each VNF interface has a Functional Characteristic and two QoS Char-

acteristic elements. For example, the Interface 1 in the VNF1 provides access to the control 

plane of functionality F5, and it has server, input and output roles for that functionality. Its QoS 

Characteristics are 300 units of throughput and 10 RPS. 

In this Pre-VNFFG, the ADep Interfaces elements of each dependency are shown on top of 

it. For instance, the ADep Interfaces of the dependency at the top shows that the dependency is 

on the control plane. It shows VNF1 communicates through its Interface 2 with the roles of 
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client, input, and output for functionality F6. VNF3 also communicates through its Interface 1 

with the roles of server, input, and output for functionality F4. 

From Step 5 (NSD generation), we just discuss the Propagation Flow design example, since 

the rest of it is mostly about creating different elements and setting their attributes in the NSD. 

Example of the Propagation Flow design: In the SM shown in Figure 4.4, there are two 

SAPs each of which exposes one functionality on the control plane. Therefore, we design two 

Propagation Flows including flow1 for SAP1 and flow2 for SAP2. The functionality of the flow1 

and 2 are F5 and F7 respectively. The plane of both flows is control. SAP1 exposes the VNF1-

Interface1 since their functionality, plane, and roles match, and therefore, the starting interface 

for flow1 is VNF1-Interface1. The starting interface for flow2 is VNF2-Interface1 since it 

matches the SAP2. 

The sequence of flow1 starts from VNF1-Interface1. VNF1’s Flow Transformations match-

ing this Interface for this flow are number 1 and 2. Therefore, the next exit interface is VNF1-

Interface2 with functionality F6, control plane, and client and output roles. We did not select 

the Flow Transformation3 since the role of VNF1-Interface1 in it is output, but the roles of 

VNF1-Interface1 as the starting interface are server and input. The next entry interface based 

on the dependency related to VNF1-Interface2 is the VNF3-Interface1 with functionality F4, 

control plane, and server and input roles. The roles of this interface are complementary roles of 

the previous interface, i.e. client and output. For the next exit interface in VNF3, we select the 

Flow Transformations1 and 2, as they match the current interface’s characteristics (F4, control 

plane, server and input roles). Accordingly, the next exit interface is VNF3-Interface1 with the 

role of output. At this point, the current interface and the next exit interface are the same, and 

there are more than one dependencies associated with this interface. Therefore, we are facing 

the aforementioned special case for finding the next entry interface. This interface has the server 
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not update the NFO based on a faulty NSReq. After the validation, we take the 

update action as discussed below. 

Update action: The tenant cannot alter the core decomposition of a functionality in the 

NFO, as this information is established in the NFO. Therefore, we only add the required 

additional children for functionality A as its optional children in the NFO. To do so, we 

add the ‘unmatched’ ComposedOf associations of functionality A in the SM to the NFO. 

Then, we add the dependencies of these additional children from the SM to the NFO, if 

they do not already exist there. These dependencies are only defined in functionality A’s 

decomposition. Therefore, we set their contexts as functionality A in the NFO. 

Figure 4.6 shows an example of NFO at the top left, and three different SMs origi-

nated from three different NSReq models at the right and the bottom. All three SMs fit 

in Case 1 of the NFO update, since A, B, C, Y and Z functionalities are ‘matched’. The 

core decomposition of A in the NFO (B and C) exists in SM1. Therefore, there is no 

possibility of the tenant’s mistake in this example, and it fits Case 1.1. In SM2 and SM3, 

however, A’s core decomposition does not exist exactly as it is in the NFO. Therefore, 

before the updating action, we ask the tenant to validate the NSReq. The updating action 

in all three cases is adding Y as an optional child for the A. In SM1 and SM2, we add the 

Y’s dependency to the NFO with the context of functionality A. In SM3, we also add Z 

as the optional child of functionality A. Then, we add its dependency to Y with the con-

text of functionality A. 
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Figure 4.6 - NF Ontology updating case 1 example 

 Case 2: In this case, a functionality named X is ‘unmatched’ but all of its children are 

‘matched’ in the SM. Since functionality X is ‘unmatched’ all of its ComposedOf asso-

ciations are ‘unmatched’ as well. Two subcases may happen with different update ac-

tions. 

 Case 2.1: In this subcase, the decomposition of functionality X does not exactly 

match any decomposition in the NFO. It implies that the tenant has proposed a 

new functionality with its decomposition in the NSReq.  

Update action: As the update action for Case 2.1, we create a new functionality 

in the NFO named X with the same decomposition as functionality X in the SM. 

Our assumption is that the whole decomposition that the tenant has proposed for 

functionality X is the core decomposition. Therefore, we define all of its Com-

posedOf associations as mandatory. We add all the dependencies defined be-

tween the children of functionality X into the NFO. We specify their contexts as 

functionality X. 
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 Case 2.2: In this subcase, the decomposition of functionality X is a subset of one 

of the functionalities’ decompositions in the NFO. Also, it has the whole core 

decomposition of that functionality. This implies that functionality X’s name is 

a new name (alias) for that functionality in the NFO. 

Update action: As the update action for Case 2.2, we add functionality X’s name 

to the aliases of that functionality in the NFO. 

Figure 4.7 shows four different SM examples. We consider the same NFO as shown 

in Figure 4.6 as the NFO for these examples. These four SM instances fit in Case 2, as 

functionality X is ‘unmatched’, and its children in all the examples are ‘matched’ includ-

ing B, C, Y, and Z. The first three SM instances fit into case 2.1. Therefore, for each of 

these SMs, we add the functionality X into the NFO with the same decomposition and 

dependencies. SM4 fits into subcase 2.2, as its decomposition is exactly the same as 

functionality A’s core decomposition in the NFO. In this case, we add X as an alias for 

functionality A in the NFO. 

 

Figure 4.7 - NF Ontology updating case 2 example 



Limitations 
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CSCF VNFs (same type), one for the home and the other for the visited network domain. This 

is not supported by our method. 

Our method does not validate the consistency of the NSReq. We assume the NSReq is con-

sistent and has no conflicting requirements. If there are conflicting requirements in an NSReq, 

there is no guarantee about the validity of the network services generated from such require-

ments.  

Our method is limited to using only VNFs as network functions in the network service. PNFs 

and nested network services are not taken into account for the design of the network service. 

There are three flow patterns for the virtual links including E-Line, E-LAN, and E-Tree [28], 

as discussed in Section 2.2.1. Our method does not support the E-Tree flow pattern for the vir-

tual links. To include it specific information should be provided by the architectural dependen-

cies for the E-Tree flow pattern.  



Overall approach  



Steps of the Approach 
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all the solutions. Depending on specific criteria that we will define later one of these solutions 

is more suitable than the rest. Based on the criteria we select one solution in each VnfDf, and 

then we select one VnfDf as the final solution. 

Number of VNF instances for an Instantiation Level: For an Instantiation Level, we com-

pare the required number of instances for each VNFC with its number of instances that the level 

specifies in the related Vdu Level. Accordingly, we calculate the required number of the VNF 

instances for the Instantiation Level only based on the VNFC. We refer to it as the VNF.RIVNFC. 

The VNF.RIVNFC is equal to the ceiling of the division of the VNFC.RI by the Vdu Level, as 

shown in Equation 2. 

Each VNF.RIVNFC fulfills the required number of instances of that specific VNFC in the 

Instantiation Level. Therefore, the maximum of all the VNF.RIVNFCs fulfills the required num-

ber of instances for all the VNF’s dimensioned VNFCs in the Instantiation Level. That is the 

required number of instances of the VNF in the Instantiation Level, i.e. VNF.RIIL, as shown in 

Equation 3. 

𝑉𝑁𝐹. 𝑅𝐼𝑉𝑁𝐹𝐶 = ⌈
𝑉𝑁𝐹𝐶.𝑅𝐼

𝑉𝑑𝑢 𝑙𝑒𝑣𝑒𝑙
⌉                                                                                                                    (2) 

𝑉𝑁𝐹. 𝑅𝐼𝐼𝐿 = 𝑚𝑎𝑥{𝑖 ∈ 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑁𝐹′𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑉𝑁𝐹𝐶𝑠 | 𝑉𝑁𝐹. 𝑅𝐼𝑉𝑁𝐹𝐶𝑖}                   (3) 

Selecting the desirable solution: After having all the solutions, we select one of them, i.e. 

an Instantiation Level with its VNF.RIIL, according to the criteria we define. Our criteria include 

‘Flexible scaling’ and ‘VNFCs’ failure impact’. The VNFs with more flexibility in scaling and 

less impacted by their VNFCs’ failure are desirable. We prioritize the first criterion. 
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Flexible scaling criterion: In the NFV framework today, all instances of a VNF in a given 

role are instantiated using the same VnfDf and Instantiation Level. The traffic among these in-

stances is typically load-balanced. Therefore, all these instances should have the same capacity, 

and if we scale one we should scale all other instances as well. As a result, increasing the number 

of VNF instances decreases the scaling flexibility, since its granularity of scaling decreases. For 

instance, scaling a VNF instance to the next step results in adding 3 VNFC instances. If we have 

two instances for the VNF, scaling it to the next step adds a total number of 6 VNFC instances, 

and it is less granular. Hence, according to this criterion, we prefer a VNF with smaller VNF.RI. 

This results in selecting deployment flavors that provide more capacity for a single instance. 

VNFC’s failure impact criterion: The failure impact of a VNFC is related to its capacity. 

The less capacity a VNFC has, the less impact its failure has on the VNF and the network ser-

vice. Therefore, to dimension a VNF the solution with the least capacity for the VNFCs is de-

sirable according to this criterion. 

Instantiation Level selection in a VnfDf: As discussed earlier, we prioritize the first 

criterion over the second one. Therefore, in each VnfDf, we select the Instantiation Level 

with the minimum VNF.RIIL as the desirable solution. If there are multiple Instantiation 

Levels with the minimum VNF.RIIL in the same VnfDf, the ones with a bigger total number 

of VNFC instances provide unnecessary resources. Thus, we select the one with the least 

total number of VNFC instances as the solution in the VnfDf. The selected Instantiation 

Level in each VnfDf is the largest level that fulfills the NFRs by providing the least unnec-

essary resources. 

VnfDf selection: Among the VnfDfs we select one as the final solution for dimension-

ing the VNF. For this selection, we consider the first criterion. Therefore, we select the 

VnfDf that its selected Instantiation Level has the minimum VNF.RIIL. If there are multiple 
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VnfDfs with the minimum VNF.RIIL for their selected Instantiation Levels, we consider 

the second criterion for selection. The selected solutions in each VnfDf has the minimum 

extra VNFC instances, and they all fulfill the NFRs. Therefore, all these solutions provide 

approximately the same QoS capacity. Thus, the solution with the more total number of 

VNFC instances has VNFCs with less capacity. According to the second criterion, we 

select the solution with the most total number of VNFC instances. 

Dimensioning the VNFs without QoS requirement: As discussed in Section 4.2.5.5, we 

design the flows based on the SAPs, and we define the SAPs according to the SAPRs which the 

tenant defines. It implies that the tenant has the knowledge about the packet flows in the network 

service to some extent. We assume that the tenant defines the SAPRs and NFRs in a way that all 

the VNFs are involved in at least one flow, and they are dimensioned to this point. If a VNF is 

not dimensioned, it implies that the VNF is not involved in any flow and/or there is no QoS 

requirement for it. We dimension each of these VNFs to its default values, i.e. we select its 

default VnfDf and Instantiation Level with the VNF.RI equal to 1. 

Table 5.2 shows the VnfDfs of the VNFs in the example of Section 4.2.6 and the results of 

dimensioning them. Each row of the table for a VNF shows a solution for dimensioning the 

VNF. The solutions with a solid or dashed circle are the candidate solutions in each VnfDf. The 

ones with a solid circle are the final solutions for dimensioning each VNF. 
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 𝐸 − 𝐿𝑖𝑛𝑒 𝑅𝑜𝑜𝑡 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = ∑ 𝑉𝑑𝑢𝑙 𝐿𝑒𝑣𝑒𝑙𝑖 ∗𝑖 ∈ 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠

𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖                                                                                                        (4)                                                                                              

E-LAN virtual link bitrate requirement: An E-LAN virtual link has more than two con-

nections to the VNFs. Each connection is a leaf, and the root is the aggregate capacity of the 

LAN. The root bitrate requirement is equal to the summation of the bitrate requirements of 

all the leaves. Equation 5 shows the root bitrate requirement calculation in which K is the 

number of instances for each VNF type connected to the E-LAN.  

 𝐸 − 𝐿𝐴𝑁 𝑅𝑜𝑜𝑡 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = ∑ 𝐾𝑖 ∗ 𝑉𝑑𝑢𝑙 𝐿𝑒𝑣𝑒𝑙𝑖 ∗𝑖 ∈ 𝑎𝑙𝑙 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠

𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖                                                                                                        (5) 

The NFV framework at this point does not support different leaf bitrate requirements for 

a virtual link [9]. Therefore, the leaf bitrate requirement of an E-LAN is equal to the maxi-

mum bitrate requirement among all of its connections. Equation 6 shows the E-LAN leaf 

bitrate requirement calculation. 

𝐸 − 𝐿𝐴𝑁 𝐿𝑒𝑎𝑓 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑚𝑎𝑥{𝑖 ∈

𝑎𝑙𝑙 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒𝑠 | 𝑉𝑑𝑢 𝐿𝑒𝑣𝑒𝑙𝑖 ∗ 𝑉𝑑𝑢𝐶𝑝 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖}                   (6)                                                                  

A virtual link has the minimum bitrate requirement if each of its connected VNFs has 1 

instance, and they are instantiated using their smallest Instantiation Levels. Similarly, it has the 

maximum bitrate requirement if each connected VNF has the number of instances equal to its 

VNF.RIIL and they are instantiated using their selected Instantiation Level. To calculate the 

minimum and maximum bitrate requirements, we consider the ‘Vdu Level’ parameter in the 

equations according to the minimum and the selected Instantiation Levels, respectively. The 

number of VNF instances only affects the E-LAN root bitrate requirement, i.e. ‘K’ parameter in 

the equation. For the minimum and the maximum bitrate requirements, we consider ‘K’ equal 

to 1 and the VNF.RIIL for each VNF type, respectively. 
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are two exceptions. Step 3, as discussed in Section 4.2.3, is a simple step. It gets the SM and 

VNF Catalog models as inputs and outputs the refined SM. Step 4, as discussed in Section 4.2.4, 

gets the SM model from Step 3 and Protocol Stack model as inputs. It only refines the SM model 

and outputs it. The difference between the inputs and outputs of these two steps is not signifi-

cant. To simplify the implementation, we have combined these two steps in one transformation. 

Step 5 and 6, have the same inputs and different outputs, and these steps do not affect each other. 

Therefore, they can get executed in parallel. Figure 6.1 shows the flow diagram of the prototype 

with the inputs and outputs of the model transformations. 

 

Figure 6.1 - A flowchart for the transformations in the prototype tool 



lazy rule

lazy rule

do helper lazy 

rule

lazy rule

CreateVnfProfile lazy rule
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Figure 6.2 - An example of an ATL lazy rule in the prototype 

For each function that can be implemented declaratively, we have defined a helper. For 

instance, in many transformations, we need to calculate the Cartesian product of two sequences 

that contain other sequences. We have defined the multiplySeqs(Seq1, Seq2) helper 

for this function, as shown in Figure 6.3. 

 

 

Figure 6.3 - An example of an ATL helper in the prototype 
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Figure 6.4 - An example of a Main rule in the prototype 

In each transformation, we have defined a matched rule that is called automatically at 

the beginning of the transformation, and we refer to it as the Main rule. We create the output 

model(s) using the to section of the Main rule, and we use its do section as the main func-

tion. We implement the algorithms of the approach’s step(s) in this section by calling the help-

ers and lazy rules imperatively, and using the basic imperative commands, e.g. if, and 

for. Figure 6.4 shows a portion of the Main rule of Transformation 3. Figure 6.5 shows an 

overview of the structure of our transformations. 



helper

helper do

do

do



lazy rule

Case study: VoLTE service using IMS architecture 
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Figure 6.7 – The NFO model for the case study (functional portion) 

On the architectural side of the NFO model, we have the IMS architectural block with two 

compositions, as shown in Figure 6.8. The one on the right is the typical IMS composition which 

is a simplified version of the standard IMS [13]. It is composed of AS, HSS, P-CSCF, I-CSCF, 

and S-CSCF as introduced in the Background.  

The AS realizes the messaging and voice call functionalities, and it exposes the IMS stand-

ard interfaces including ISC and Mb [13]. The MRFP module exposes the Mb interface accord-

ing to [13], but for simplification, the AS exposes this interface in our NFO. The ISC interface 

exposes the voice call and messaging functionalities on the control plane, and the Mb exposes 

them on the data plane. The HSS realizes the user info storage functionality. It exposes this 

functionality on the control plane through Cx interface. The S-CSCF realizes the authentication 

and registration functionalities and exposes them on the control plane through the Mw interface. 
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It exposes the ISC interface to communicate with the AS for these functionalities. It also exposes 

the Cx interface to communicate with the HSS in order to store and retrieve the user information. 

I-CSCF and P-CSCF also expose the Mw interface to communicate with each other and S-CSCF 

for the registration functionality. P-CSCF exposes the Gm as a service access point for the IMS, 

and the users connect to it for registration and requesting voice calls. 

According to the architectural dependencies shown in Figure 6.8, S-CSCF communicates 

with AS for the voice call functionality. It communicates with HSS for user info storage. It also 

communicates with I-CSCF and P-CSCF for registration and voice call. I-CSCF communicates 

with the P-CSCF for registration. P-CSCF associates with one SAP for receiving the registration 

and voice call requests on the control plane through its Gm interface. AS also associates with 

one SAP for the voice call on the data plane through its Mb interface. The users connect to this 

SAP to exchange their voice call content. Table 6.1 shows the dependencies in the typical IMS 

composition and the details of their ADep Interfaces elements. 

The IMS composition on the left side of Figure 6.8 is called merged IMS, as the CSCFs are 

merged into one architectural block called Core IMS. The other architectural blocks in this com-

position are IMS Locator, DB, and AS. It is a simplified version of the merged IMS architecture 

proposed in [46]. The Core IMS architectural block realizes the registration and authorization 

functionalities. IMS Locator manages the assignment of the users to Core IMS instances and 

routing their requests to their corresponding Core IMS. The DB is a proprietary database for 

user info storage. AS is the same architectural block as discussed in the previous composition 

with the same functionalities and interfaces. Core IMS exposes two proprietary interfaces which 

we refer to as X1 and X2. X1 is for communication with the IMS Locator regarding the regis-

tration and voice call functionalities. X2 is for communicating with the DB regarding the user 

info storage. The DB exposes the X2 and Cx interfaces, to communicate with the Core IMS and 
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also the S-CSCF. The IMS Locator exposes IMS standard interfaces including the Gm and the 

ISC in addition to the X1 interface. 

According to the architectural dependencies shown in Figure 6.8, the IMS Locator com-

municates with the Core IMS for registration and voice call on the control plane. It also com-

municates with the AS for voice call on the control plane. Core IMS communicates with the DB 

for the user info storage. A SAP is associated with the IMS Locator through its Gm interface, 

and it exposes the registration and voice call on the control plane. 

 

Figure 6.8 – The NFO model in the case study (architectural portion) 
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Transformation elements as well. Figure 6.11 shows the P-CSCF VNFAD in Papyrus tool as an 

example of our VNFADs. Table 6.2 shows the details of the VNF Interface elements of the VNFs 

in the typical IMS composition. Table 6.3 shows the details of the Flow Transformation ele-

ments of these VNFs. The results of the Propagation Flow design and dimensioning the VNFs 

in Transformation 4 and 5 in our case study is according to the information in these tables.  

 

Figure 6.11 – The P-CSCF VNFAD model for the case study 
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Table 6.2 - The VNF Interface elements of the VNFs in the typical IMS composition 
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Each VNF in the VNF Catalog matches with an architectural block in the SM3. Therefore, all 

the VNFs have been added into the SM3 from the VNF Catalog in this step.  

Potentially, we can design two FFGs from the SM3. One is composed of the VoLTE func-

tionality, and the other is composed of the functionalities in the VoLTE’s decomposition. No 

VNF realizes the IMS architectural block in the SM3, thus, no VNF realizes the VoLTE func-

tionality either. Therefore, the first FFG has been dismissed. From the second FFG, eight AFGs 

have been generated. They are based on all the combinations of the architectural blocks in the 

SM3 that realize the FFG’s functionalities. Table 4 shows the generated AFGs and the mapping 

between their architectural blocks and the FFG’s functionalities. 

 

Table 6.4 – The AFGs generated in Transformation 3 
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All the generated AFGs except the AFG1 and 8 are incomplete, as their architectural blocks 

are from different IMS compositions. The P/I/S-CSCF and the HSS have no interface that 

matches the interfaces of the IMS Locator and the Core IMS. Among the incomplete AFGs, the 

AFG2, 4, 5, 6, and 7 have architectural blocks from both of these groups. The AFG Completion 

procedure is not able to create the missing architectural dependencies for these AFGs due to the 

lack of matching interfaces. Therefore, they remain incomplete. All the architectural blocks in 

the AFG3 are from the typical IMS composition except the DB. DB exposes the Cx interface 

through which it can communicate with the S-CSCF. Therefore, the AFG Completion procedure 

is able to create the missing dependency between the DB and the S-CSCF. The complete AFGs 

generated in this transformation are AFG1, 3, and 8.  

One Pre-VNFFG has been generated for each of these AFGs since there is a one-to-one 

mapping between the VNFs and the architectural blocks in the SM3. Figure 6.16 shows a portion 

of the SM3 in the UML file resulted from Transformation 3. This portion is related to the gen-

erated FGs. 
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VNFFGs in the SM3 one generic NSD model has been generated. Figure 6.17 shows the UML 

file containing these three NSD models. 

 

Figure 6.17 – The NSD models generated in Transformation 4 

As an example, Figure 6.18 shows the NSD1 model that is originated from the AFG1 ac-

cording to the typical IMS composition. According to the architectural dependencies in the typ-

ical IMS, three VLDs have been generated. They exist at the top of the figure along with their 

Connectivity Type elements. One of the VLDs is an E-LAN type that connects the P/I/S-CSCF 

VNFs through their Mw interfaces. The other VLDs are E-Line type, and they connect the S-

CSCF VNF to the HSS and the AS VNFs through their Cx and ISC interfaces, respectively. 

Two VNFFGDs have been created, one for the data and the other for the control plane of the 

network service. In the control plane, VNFFGD two Propagation Flows have been designed, 

one for registration and the other for voice call functionalities on the control plane. These two 

functionalities are exposed by the SAP associated with the Gm interface of P-CSCF. P_Sap-Gm 

is the SAPD of this SAP as shown in Figure 6.18. In the registration flow, P-CSCF receives the 

registration requests from the users and sends them to the I-CSCF. I-CSCF finds the assigned 

S-CSCF to each user and routes the requests to these S-CSCFs. Each S-CSCF inquires the in-

formation of the users from the HSS for the authentication. After S-CSCF performs the regis-

tration functionality, it sends an acknowledgment message to the user through the incoming 
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route of the request. The voice call flow on the control plane in our case study is a simplified 

version of the session setup procedure in the IMS [13]. In this flow, the users send the voice call 

requests to P-CSCF. P-CSCF routes the requests to the S-CSCFs assigned to the users. Each S-

CSCF sends a request to the AS to setup up a connection for each requested call. 

In the data plane VNFFGD one Propagation Flow has been designed for the voice call func-

tionality on the data plane. This functionality is exposed by the SAP associated with the Mb 

interface of the AS. AS_Sap-Mb is the SAPD of this SAP as shown in Figure 6.18. In this flow, 

each user in the call sends the voice call content through this SAP to the Mb interface. AS sends 

the content to the other user through the same interface. 

One NFPD have been generated according to each of the aforementioned flows. These 

NFPDs include NFPD Register-CONTROL, NFPD VoiceCall-CONTROL, and NFPD Voice-

Call-DATA as shown in Figure 6.18. 
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Figure 6.18 – The NSD model for the typical IMS composition form Transformation 4 

Figure 6.19 shows the aforementioned flows generated in the SM4. 
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Figure 6.19 - The Propagation Flows in the SM4 from Transformation 4 

Table 6.5 shows the details of each Propagation Flow, i.e. the sequence of their interfaces, 

and the interfaces’ characteristics related to the flows. It also shows the source of finding each 

interface in the flow, i.e. the Flow Transformation or the ADep Interfaces elements. 
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Table 6.6 - Details of the NFR propagation in the case study 

Table 6.7 shows the details of dimensioning the VNFs in this case study according to the 

VNFC.RIs. Each row shows the result of dimensioning each VNF for the specified Instantiation 

Level, i.e. it shows the VNF.RIVNFCs and the VNF.RIIL. For each VNF, the selected Instantiation 

Level for each VnfDf, i.e. with the minimum VNF.RIIL is specified with a dashed or a solid 
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circle. The final solution for dimensioning each VNF, i.e. with the minimum VNF.RIIL is spec-

ified with a solid circle. Therefore, the required number of instances for the VNFs are P-CSCF: 

2, I-CSCF: 2, S-CSCF: 1, HSS: 1, AS: 1. 

 

Table 6.7 - Details of dimensioning the VNFs in the case study 

All the information presented in Tables 6.6 and 6.7 has been stored in the SM5. The VNF 

Profiles in the refined NSD model also have been enriched accordingly. The minimum and the 

maximum root bitrate requirements for the E-Line virtual link between the S-CSCF and AS are 

both equal to 900, according to Equation 4. Similarly, these parameters for the E-Line virtual 

link between the S-CSCF and HSS are both equal to 1800. For the E-LAN virtual link between 

the P/I/S-CSCF VNFs, the minimum leaf and root bitrate requirements are equal to 900 and 
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this thesis, one can devise a method to automatically generate such a configuration for the 

network service. 

 Our method does not check the consistency of the network service requirements, and we 

assume the given requirements are consistent. A method to check the consistency of the 

network service requirements can prevent generating faulty NSDs due to inconsistent re-

quirements. 

 Full validation of our method using real and industry level case studies is desirable.  



130 
 

8 Bibliography 

 

[1]  "Network Functions Virtualisation (NFV); Architectural Framework: ETSI GS NFV 

002 V1.2.1," 12 2014. [Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v0102

01p.pdf. 

[2]  "Network Functions Virtualisation (NFV); Virtual Network Functions Architecture: 

ETSI GS NFV-SWA 001 V1.1.1," 12 2014. [Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-

SWA001v010101p.pdf. 

[3]  "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV: 

ETSI GS NFV 003 V1.4.1," 08 2018. [Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.04.01_60/gs_NFV003v0104

01p.pdf. 

[4]  M.Pearce, S.Zeadally and R.Hunt, "Virtualization: Issues, Security Threats, and 

Solutions," ACM Computing Society, vol. 45, no. 2, 2013.  

[5]  "European Telecommunications Standards Institute (ETSI)," [Online]. Available: 

https://www.etsi.org/. 



131 
 

[6]  "Network Function Virtualization (NFV)," ETSI, [Online]. Available: 

https://www.etsi.org/technologies/nfv. 

[7]  "Network Functions Virtualisation (NFV); Use Cases: ETSI GS NFV 001," 10 2013. 

[Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v0101

01p.pdf. 

[8]  "Network Functions Virtualisation (NFV); Management and Orchestration: ETSI GS 

NFV-MAN 001 V1.1.1," 12 2014. [Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-

MAN001v010101p.pdf. 

[9]  "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; 

Network Service Templates Specification: ETSI GS NFV-IFA 014 V2.4.1," 02 2018. 

[Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/014/02.04.01_60/gs_NFV-IFA014v020401p.pdf. 

[10]  "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; 

Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.4.1," 02 2018. 

[Online]. Available: http://www.etsi.org/deliver/etsi_gr/NFV-

IFA/001_099/015/03.01.01_60/gr_NFV-IFA015v030101p0.zip. 

[11]  M. Abbasipour, M. Sackmann, F. Khendek and M. Toeroe, "A Model-Based Approach 

for User Requirements Decomposition and Component Selection," Formalisms for 

Reuse and Systems Integration, pp. 173-202, 2015.  



132 
 

[12]  J. Hyun, J. Li, C. Im, J.-H. Yoo and J. W.-K. Hong, "A VoLTE Traffic Classification 

Method in LTE Network," in The 16th Asia-Pacific Network Operations and 

Management Symposium, Hsinchu, 2014.  

[13]  "3rd Generation Partnership Project; Technical Specification Group Services and 

System Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 14): 3GPP TS 

23.228 V14.4.0," June 2017. [Online]. Available: 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specifi

cationId=821. 

[14]  "Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; 

VNF Descriptor and Packaging Specification: ETSI GS NFV-IFA 011 V2.4.1," 02 

2018. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/011/02.04.01_60/gs_NFV-IFA011v020401p.pdf. 

[15]  H. Wang and S. Rupp, "Skype VoIP service- architecture and comparison," in 

INFOTECH Seminar Advanced Communication Services (ACS), 2005.  

[16]  "MDA: Model Driven Architecture," Object Management Group (OMG), [Online]. 

Available: https://www.omg.org/mda/. [Accessed 26 February 2019]. 

[17]  S. Mustafiz, N. Nazarzadeoghaz, G. Dupont, F. Khendek and M. Toeroe, "A Model-

Driven Process Enactment Approach for Network Service Design," in International 

Conference on System Design Languages , Budapest, 2017.  



133 
 

[18]  "Cellular Standards for 3G: ITU's IMT-2000 Family," International Telecommunication 

Union (ITU), [Online]. Available: https://www.itu.int/osg/spu/imt-

2000/technology.html#Cellular%20Standards%20for%20the%20Third%20Generation. 

[19]  G. Camarillo and M. A. Garcia-Martin, The 3G IP multimedia subsystem (IMS): 

Merging the Internet and the Cellular Worlds, 2nd ed., West Sussex: Wiley, 2006.  

[20]  J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, Pearson, 

2012.  

[21]  "Third Generation Partnership Project (3GPP)," [Online]. Available: 

http://www.3gpp.org/. 

[22]  J. Rosenberg, H. Schulzrinne, G. Camarillo and A. Johnston, "SIP: Session Initiation 

Protocol," Internet Engineering Task Force (IETF), RFC 3261, June 2002. [Online]. 

Available: https://tools.ietf.org/html/rfc3261. 

[23]  M. Poikselkä, G. Mayer, H. Khartabil and A. Niemi, The IMS: IP Multimedia Concepts 

and Services in Mobile Domain, West Sussex: Wiley, 2004.  

[24]  H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, "RTP: A Transport Protocol 

for Real-Time Applications," Internet Engineering Task Force (IETF), RFC 3550, July 

2003. [Online]. Available: https://tools.ietf.org/html/rfc3550. 

[25]  O. Levin, "H.323 Uniform Resource Locator (URL) Scheme Registration," Internet 

Engineering Task Force (IETF), RFC 3508, April 2003. [Online]. Available: 

https://tools.ietf.org/html/rfc3508#ref-3. 



134 
 

[26]  3GPP, "Long Term Evolution (LTE)," [Online]. Available: 

http://www.3gpp.org/technologies/keywords-acronyms/98-lte. 

[27]  "The Evolved Packet Core," 3GPP, [Online]. Available: 

http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core. 

[28]  "Ethernet Services Definitions - Phase II - MEF 6.1," April 2008. [Online]. Available: 

https://mef.net/PDF_Documents/technical-specifications/MEF6-1.pdf. 

[29]  M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineering In 

Practice, 2nd ed., Morgan & Claypool, 2017.  

[30]  "Object Management Group (OMG)," [Online]. Available: https://www.omg.org/. 

[31]  T. Stahl and M. Völter, Model-Driven Software Development: Technology, 

Engineering, Management, West Sussex: Wiley, 2006.  

[32]  "Unified Modeling Language (OMG UML) Infrastructure, version 2.4.1," Object 

Management Group (OMG), 2011. [Online]. Available: 

https://www.omg.org/spec/UML/2.4.1/About-UML/. 

[33]  "OMG Unified Modeling language (OMG UML) Specification 2.4, Superstructure," 

2011. [Online]. Available: https://www.omg.org/spec/UML/2.4.1/About-UML/. 

[34]  "Papyrus Modeling Environment," 08 March 2017. [Online]. Available: 

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/neon/. 



135 
 

[35]  M. Abbasipour, "A Framework for Requirements Decomposition, SLA Management 

and Dynamic System Reconfiguration," PhD Thesis, Concordia University, 2018. 

[36]  "ATL/User Guide-The ATL Language," [Online]. Available: 

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language. [Accessed 11 July 

2018]. 

[37]  "Object Constraint Language (OCL), version 2.4," Object Management Group (OMG), 

Febdruary 2014. [Online]. Available: https://www.omg.org/spec/OCL/. 

[38]  "Service Availability Forum (SA Forum)," [Online]. Available: 

http://www.saforum.org/. 

[39]  Z. Oster, G. Santhanam and S. Basu, "Decomposing the Service Composition Problem," 

in 8th IEEE European Conference on Web Services, Ayia Napa, 2010.  

[40]  Z. Oster, G. Santhanam and S. Basu, "Identifying Optimal Composite Services by 

Decomposing the Service Composition Problem," in IEEE International Conference on 

Web Services, Washington, DC, 2011.  

[41]  S. Sun and J. Zhao, "A decomposition-based approach for service composition with 

global QoS guarantees," Information Sciences, vol. 199, pp. 138-153, 2012.  

[42]  Y. Liu, L. Wu and S. Liu, "A Novel QoS-Aware Service Composition Approach Based 

on Path Decomposition," in IEEE Asia-Pacific Services Computing Conference, Guilin, 

2012.  



136 
 

[43]  C. Bartsch, L. Shwartz, C. Ward, G. Grabarnik and M. J. Buco, "Decomposition of IT 

service processes and alternative service identification using ontologies," in IEEE 

Network Operations and Management Symposium, Salvador, Bahia, 2008.  

[44]  S. I. Kim and H. S. Kim, "Semantic Ontology-Based NFV Service Modeling," in 10th 

International Conference on Ubiquitous and Future Networks , Prague, 2018.  

[45]  S. Sahhaf, W. Tavernier, D. Colle and M. Pickavet, "Network service chaining with 

efficient network function mapping based on service decompositions," in 1st IEEE 

Conference on Network Softwarization (NetSoft), London, 2015.  

[46]  G. Carella, M. Corici, P. Crosta, P. Comi and T. M. Bohnert, "Cloudified IP Multimedia 

Subsystem (IMS) for Network Function Virtualization (NFV)-based architectures," in 

IEEE Symposium on Computers and Communications (ISCC), Funchal, 2014.  

[47]  D. Benavides, S. Segura and A. Ruiz-Cortés, "Automated analysis of feature models 20 

years later: A literature review," Information Systems, vol. 35, no. 6, pp. 615-636, 2010.  

[48]  A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental Concepts and 

Key Architectures, McGraw-Hill, 2004.  

[49]  R. Diestel, "The Basics," in Graph Theory, 5th ed., Springer, 2016, pp. 1-35. 

 

 


