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Abstract

A Context-Aware Architecture for Smart Applications with Enabled Adaptation and
Reasoning Capabilities

Zaki Chammaa

The term “smart city” refers to an instrumented, interconnected, and intelligent city built by lever-

aging Information and Communication Technologies (ICT). In such a city, a combination of em-

bedded hardware and software involving sensors, actuators, and a host of mobile devices and

wearables that are connected to the Internet of Things (IoT) networks will sense data in different

contexts and automatically drive desired adaptations through actuators. Through adaptations, city

planners, professionals, and researchers aim to optimize resource consumption and cost of pro-

viding services while improving the quality of life for the ever increasing urban population. To

fully realize this goal, a context-aware and data-centric inference is a necessity. A system is said

to be context-aware if it is able to adapt its operations to the current context without explicit user

intervention. This thesis proposes a generic context-aware system architecture for development of

smart city applications. The proposed architecture puts special emphasis on privacy and security,

incorporating mechanisms to protect the system and sensitive information at each layer of the ar-

chitecture. Furthermore, this architecture integrates with a reasoning component, whose inference

engine can be driven by logic or other formalisms. A prototype implementation and a case study

done in this thesis indicate the practical merits of the proposed architecture and provide a proof of

concept.
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Chapter 1

Introduction

All around the world, more people migrate from rural areas to cities in hopes of finding better jobs,

easier access to healthcare and an overall better quality of life. Consequently, cities are becoming

overpopulated. In the US, the percentage of individuals living in urban areas rose significantly

over the last two centuries, going from 5.1% in 1790 to over 75% in 1990 [ABD15], as shown in

Figure 1. The US is not the only country with a rise in urban population. In fact, 2008 was the

year where more than 50% of the world population (3.3 billion people) lived in cities. This number

is expected to go up to 70% in 2050 as per UN estimates [CBN11b]. As a consequence of this

migration, cities are consuming most of the energy (60%-80%) around the world, which results in

unprecedented increase in pollution levels [ABD15]. As more people continue to migrate from

rural areas to cities, government officials and city planners have to come up with efficient solutions

to deal with challenges such as traffic management and transportation systems, waste management,

healthcare, air pollution and overall energy consumption.

In response to this new phenomenon, researchers and professionals came up with the “smart

city” concept. The term “smart city” can have a wide range of interpretations, so defining it can

sometimes be a daunting task. The challenge in finding an exact definition for this concept is that

it spans multiple disciplines. Many researchers try to define what a smart city is with respect to

their area of research. When compiling the many definitions available in the literature, one can

start to see a pattern developing and one can begin to understand what a smart city is and what the

requirements are for a city to be considered smart.

Going back to its roots, the term “smart city” was first used in the 1990s. Back then, the interest

was to find ways to leverage Information and Communication Technologies (ICTs) to make a city

smart [AANC+12]. Since then, many researchers and professionals have enriched the definition

of smart cities, some distancing themselves from the technological aspects and focusing more on

the social and urban aspect of it. In [NP11], the authors have tried to define what a smart city

is by examining the "meaning of smartness" in the context of urban living. When comparing the

1



Figure 1: Percentage of US population living in urban areas 1790-1990 [CBN11a]

words “smart” and “intelligent”, they found that the latter is usually restricted to having a quick

mind and being responsive to feedback, whereas the former implies being intelligent and adapting

to dynamically changing situations.

In [HEH+10], the authors define “smart city” as an “instrumented, interconnected and in-

telligent city.” The term “instrumented” refers to “leveraging sensors, wearables, and other such

devices to gather live real-world data and integrate them for future adaptations”. The term “inter-

connected” refers to “the ability of having the gathered data available to city services through local

and cyber networks”. The term “intelligent” refers to “the ability to perform complex analytics on

the gathered data in order to make informed decisions and provide timely services”.

From a technological point of view, ICT plays an important role in the critical infrastructure

components and services of a city [WSB+10]. ICT enables these services to have sufficient intel-

ligence to adapt to users’ constant demands [KK08]. A prime example of ICT role in smart city

design is in the construction of “smart buildings” [GDB+13]. Smart building design integrates

one or more wireless sensor network with actuators in different levels and locations of the building
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in order to sense, monitor and regulate elements such as temperature, humidity and lighting under

varying contextual constraints.

Another definition given in [CBN11b] states that a city is smart when investments in human

and social capital and traditional (transport) and modern (ICT) communication infrastructure fuel

sustainable economic growth and a high quality of life, with a wise management of natural re-

sources through participatory governance. Furthermore, it is specified in [Che10] that smart cities

take advantage of communications and sensor capabilities sewn into the cities’ infrastructures to

optimize electrical, transportation, and other logistical operations supporting daily life, thereby

improving the quality of life for everyone.

From the many perspectives presented above, one can see that smart cities need to leverage

sensors, actuators, and a host of mobile devices to sense live data and adapt to changes in the en-

vironment through actuators. As illustrated in Figure 2, smart city projects span across multiple

application domains, some of which may need to collaborate in achieving the common goal of

improving various aspects of the city as well as providing a better quality of life to its citizens. In-

teraction between devices are context-dependent, and collaboration between applications must be

based on reasoning and adaptation. Motivated by this, in this thesis we pin the concept of smart-

ness on context-awareness and reasoning, because adaptation is part of context-aware reactions.

Cloud, Internet of Things (IoT), 
 Smart Devices, RFIDs and Sensors 

 
 
 
 
 
 
 
 
 
 

....E-Services 
 
 
 

Smart Traffic 
Management 

 

Health
Systems 

 
 
 

Transport
System 

 
 

Water Level
Monitoring 

 
 

Figure 2: Smart City Applications
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1.1 Context-Awareness and Reasoning

Now that the concept of “smart cities” has been explained, we describe the notions of context-

awareness and reasoning in this section.

A system is said to be context-aware if it is able to adapt its operations to the current context

without explicit user intervention, thereby increasing usability and effectiveness by taking envi-

ronmental context into account [BDR07]. Research into context-aware systems has progressed

significantly over the last few years, and this is due in part to advances in mobile computing and

Internet of Things (IoT). The design and development of reliable context-aware systems is crucial

to emerging smart city applications. The following are examples of different applications that use

context-awareness.

• Smart homes and buildings: The type of data collected in buildings varies greatly depending

on the type and application of the building, but generally includes security, sound, motion,

video, temperature, humidity, smoke and gas concentrations, and electrical consumption.

This data can improve response times to emergencies since decisions can be derived and sent

to first responders in a timely manner. The data can also help monitor and optimize energy

consumption by turning off lights and HVAC systems in areas where no one is present.

• Mobile applications: Mobile devices come equipped with many sensors such as location

sensor, proximity sensor, ambient light sensor, and temperature sensor. It is important that

programs and services react specifically to their current location, time and other environment

attributes and adapt their behaviour according to the changing circumstances as context in-

formation changes rapidly in mobile computing [BDR07].

• Critical systems: Critical systems are highly reliable systems that have very low tolerance

for failure. Having an effective context-aware system that can adapt and react in time is of

the utmost importance for such systems since failures may have catastrophic consequences

such as massive security breaches, loss of business or even death.

An important aspect of context-aware systems is reasoning. In this thesis, context reasoning

is the process of deriving new facts based on existing facts, context information, and adaptation

rules. This is an important feature of context-aware architectures for smart city applications since

it supports the creation of new adaptations. The adaptation capability is crucial for smart systems

in order to generate proper reactions that would directly affect the environment. In our proposed

architecture, context reasoning will occur after context instances are built based on the sensor

readings obtained from the environment. The design in our work is not tightly coupled to any one

specific method of inference, allowing any rigorous methodology for context reasoning within the

inference engine.
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1.2 Thesis Contributions

The main contributions of this thesis are: (1) defining a set of comprehensive requirements to gov-

ern the design and implementation of a Wireless Sensor Network in smart city applications, (2)

introducing a robust and generic architecture to support context-aware systems that incorporates

privacy and security at every layer, (3) interfacing the proposed architecture with an inference en-

gine, and (4) developing a running prototype system that shows the practical merits of the proposed

architecture for smart city applications.

1.3 Thesis Outline

The rest of the thesis is organized as follows. The requirements for an intelligent wireless sensor

network will be discussed in Chapter 2. In Chapter 3, we discuss some definitions of context,

present the problem studied in this thesis, and review relevant context-aware architectures in the

literature. Chapter 4 presents our context-aware architecture and compares it to those reviewed in

Chapter 3. A detailed design will be presented in Chapter 5, and each component in the architec-

ture will be described in more detail. Chapter 6 provides implementation details on the prototype

system developed in this thesis. A case study on “Smart Room Configuration Control” is presented

in Chapter 7, along with possible extensions to show the practical merits of the proposed archi-

tecture. Concluding remarks and a brief discussion on future work and challenges are provided in

Chapter 8.
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Chapter 2

A Background of Wireless Sensor Networks
for Smart City Applications

In this chapter, we review the current status of sensor network technology for management of smart

buildings. The goal is to identify the essential sensor types, and their fault tolerance, privacy and

security requirements which need to be considered in the design of smart city applications such as

smart buildings.

According to [Tra16], a smart building is a structure that uses sensors and actuators in order

to collect data and manage it according to a set of rules and policies defined and required by the

building management. The sensors and actuators in the building form a complex ecosystem of

interconnected devices that belong to different groups such as external sensors, wearable sensors

and indoor monitoring sensors. These sensors help in gathering useful data and activities from

inside and outside the building. Within each group of sensors mentioned, there are different types

of sensors. For instance, the indoor sensors group has motion detectors, light sensors, floor sensors,

door sensors, humidity sensor, thermometers and window sensors. As for the wearable sensors

group, it includes, for instance, smartphones and smart watches, and the external sensors group

includes cameras and environmental sensors. When these sensors are networked it will enable the

building to be smart, in the sense that it can automatically and effectively monitor the interior and

exterior of the building continuously and prepare for appropriate reactions to meet the situations

that can arise in all contexts.

To make the most out of the information provided through the sensors and to exploit it for

best performance, one must organize and deploy these devices strategically throughout the envi-

ronment. A solution that can be used in such a scenario is a Wireless Sensor Network. A Wireless

Sensor Network (WSN) is a group of wirelessly connected nodes that sense data from their en-

vironment and transmit it to a sink node where it is aggregated and made available for further
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processing. These nodes are generally equipped with a processor, a transceiver, a sensing unit

and a power unit [OH13]. The main advantages of using WSNs is that they are (1) scalable, (2)

capable of withstanding extreme weather conditions, and (3) suitable for remote locations such as

mountains, oceans, and rural regions [HAAK+17].

2.1 Requirements

Deploying a WSN in a smart city application generally requires extensive design and planning in

choosing the right sensor types and in constructing an efficient WSN. To ensure robustness and

reliability of the WSN that is being deployed, the following requirements must be met.

2.1.1 Fault Tolerance

In order to be considered fault tolerant, the sensor network must be robust against node failure

[PSC09]. In other words, the WSN should be able to perform its tasks as expected even when there

are node failures. There are different reasons why sensor nodes may fail, and these include: lack

of power, physical damage, hardware issues or environmental disruption [BTR15].

The goal of fault detection is to verify that the services being provided are functioning properly,

and in some cases to predict if they will continue to function properly in the near future [BTR15].

In general, nodes in WSNs are prone to failures because of the reasons stated above, and this is

why robust fault detection and recovery algorithms are absolutely necessary. This is particularly

important for commercial buildings as so many day-to-day activities heavily depend on it. For

instance, if the motion sensor that controls the lights in a particular room stops working and the

lights stay on unnecessarily, it would result in increased energy costs. In more serious cases, if a

camera or an electronic lock becomes defective, it can lead to a security breach that could result in

unauthorized access to restricted areas of the building.

There are different methods to detect node failures in a WSN. In [BTR15], the authors propose

three ways to detect faults in the network. The first method to determine if there are node failures

is through self-diagnosis, where a node would use the measurements of accelerometers to decide

if there is a problem that could potentially result in hardware malfunction. An example of self-

diagnosis is when the sensor hardware allows monitoring of the battery voltage. In this scenario,

the battery life (time of failure) can be estimated by monitoring the discharge rate of the battery,

allowing the replacement of the battery in a timely fashion to avoid any interruptions. The second

method used in node failure detection is called group detection, which assumes that sensors from

the same region have similar values. Therefore, measurements from neighbours of a node are taken

and the result is used to calculate the probability that the node is faulty. The third fault detection
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method proposed in [BTR15] is called hierarchical detection, which uses a detection tree in order

to make the fault detection method scalable. The fault detection results at a node are forwarded to

the parent nodes, which aggregate the results from all the child nodes and forward them to the sink

node. Although this method works well with any network size, it consumes more resources from

the network.

There are different solutions to ensure that WSNs remain functional in the event of node fail-

ures. For instance, in [BTR15], they propose two recovery techniques to ensure fault tolerance.

Active replication is a popular solution that can be used in cases where many nodes provide the

same functionality. An example of that is a scenario where environmental data sensors are de-

ployed throughout a city, and nodes are placed in each district. If the data of neighbouring districts

is aggregated at the base station, node failures will not affect much the aggregated data, hence al-

lowing the system to remain functional. The second method is called passive replication, in which

the requests are sent to the primary replica for processing. Three steps are required for the passive

replica method: fault detection, primary selection, and service distribution.

In the case of a commercial smart building, it is very important to have a good fault tolerance

mechanism in place. Generally, the size of the network can be estimated before deployment and is

unlikely to change much afterwards. For this reason, scalability of the fault tolerance mechanism

is not necessary. For this particular application, a mix of self-diagnosis and group detection can be

used to identify failures in the network. Generally, a sensor within a smart building uses electricity

rather than battery as it uses power from the building itself. Therefore, hardware and software

failures would be the most common reasons for failure in this application. For cases where the

sensor stops working completely, a "heartbeat" can be sent to the base station from each sensor, and

when the base station stops receiving a heartbeat from a particular sensor, it detects that this sensor

has stopped working. For the case where the sensor still works but not as expected, a correlation

between the data sent by similar neighbour sensors can be computed to determine validity of each

sensor in that group. By combining the above two methods, one can try to minimize the risk of

undetected faults in the network.

As for the recovery mechanism, several solutions can be used in smart buildings depending on

the sensors, their locations, and their importance. For instance, a thermometer in an employee’s

office would not be treated the same way as an electronic lock guarding a restricted area. For this

reason, a scale of importance should be implemented and each sensor should be assigned a number

that determines its importance. For less critical sensors, active replication can be used, and data

from similar neighbouring sensors can be aggregated to estimate the missing data from the faulty

sensor node. However, for more critical sensors, there should be some sort of redundancy such as a

back-up sensor ready to take its place. The back-up sensor can either be an idle sensor on stand-by

or an existing sensor in the network that can perform the tasks of the faulty sensor until it is fixed
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and back in-use.

2.1.2 Privacy

According to the International Association of Privacy Professionals (IAPP), information privacy is

the right of an individual in having some control over how her personal information is collected

and used. Often, people think that privacy and security are the same thing. While the two concepts

share some aspects, they are different. Data privacy is focused on the use and governance of

personal data, with guidelines involving the definition of policies to ensure that users’ personal

information is being collected, used and shared in appropriate ways. Security on the other hand

focuses more on protecting data from malicious attacks and the exploitation of stolen data for

profit. While security is an important element in data protection, it is not enough in general for

addressing privacy concerns [oPP]. However, for a system to be considered “privacy-preserving”,

the security and safety mechanisms in the system must fulfill the privacy requirements of all the

actors in the system [PAW17].

Privacy is an important feature when it comes to WSNs in smart buildings because of the

nature of the information collected and stored by the sensors. This information includes, but is not

restricted to, user identities, user locations, user activities and interactions with other users. The

collection of such information may sometimes be essential to ensure convenience and security, but

it also raises some privacy concerns for users of the building. For instance, Wi-Fi connections are

usually monitored and information relating to that connection is logged. This information includes

the device’s MAC address, the connection access point as well as the time stamp. Such information

can be used to detect the actual location of a user [PDY+17]. Privacy policies must be put in place

to avoid unauthorized access to data and restrict access and use of the device to authorized users

only.

In [PDY+17], the authors describe two sets of rules that govern smart building management

systems (BMS). The first set of rules includes building policies, which are requirements that ensure

that the building functions properly from a management point of view. For example, the BMS may

store the identities and locations of all residents, and the special needs of physically challenged

elders to prepare for emergency evacuation. Another example of a building policy is to require that

the residents present some identification to access common areas and rooms in the building. These

policies will be used to enforce proper installation and functionality of the sensors deployed in the

building. This means that residents in the building are willing to share a minimum amount of their

personal information with the management, while the management assures the residents to keep

that information secure.

The second set of rules presented in [PDY+17] is concerned with user preferences. These
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rules ensure that users have some measure of control over their private information. For instance,

a user may specify that their information must not be shared with anyone outside the building

management. Another user may allow their activity data to be shared with a third-party, as long as

their personal information is removed from the data. Additionally, users should know exactly how

their data is handled by the BMS. They should also be allowed to modify their preferences at any

time. For example, a resident may not want another resident to know the apartment in which she

lives, the rent she pays, and her personal phone number. However, a resident may allow her name

to be displayed on the occupants list at the building entrance, which is associated with a button that

is linked to her TV screen. Thus, unintrusively the resident gets the right to know who is asking

her permission to visit her in the building, while the visitor will have the limited privilege to share

a code to the apartment.

In the architecture presented in this thesis, the data collected is made available to the residents

of the building so that they can view what information is being collected by the sensors. Users

should be able to specify what information is collected by sensors, so long as it does not pose any

safety or security threats to the building. In the case that a specific type of information is required

by the BMS, the user should be made aware that this information will be collected. However, the

user should still have some control over how this information is used or shared, and should be

allowed to refuse sharing of this information with anyone outside of building management.

As technology becomes cheaper and more compact, privacy concerns will become even more

important as it will be extremely easy for an individual or an organization to spy on people. Tech-

nology alone will not be able to solve privacy problems. In fact, social awareness and new laws and

regulations are extremely important to ensure a certain level of privacy in WSNs [PSW04]. Gov-

ernments should issue privacy policies and regulations in order to minimize such behaviour, and

people found guilty of breaking these regulations should be prosecuted. Furthermore, transparency

from organizations (building management in this case) will increase the public trust in pervasive

computing and allow growth of such technology. Only by following these guidelines will we get

closer to achieving harmony between the public and the fast evolving technology.

2.1.3 Security

Wireless network security consists of designing and implementing solutions to protect systems and

information within a network. The implemented measures are there to protect both hardware and

software from attacks. Furthermore, network security also ensures proper access control inside

and outside the network. A good security strategy for WSNs ensures protection against a variety

of internal, external, and system threats. Examples of internal threats include, for instance, weak

access control, privilege abuse, and data exfiltration. Types of external threats include Denial-
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of-Service (DOS), eavesdropping, data breaches, and malware. Finally, the list of system threats

includes hardware failure, software failure, and power failure.

WSNs present interesting security challenges because node failures are fairly common in

WSNs, and these failures become vulnerabilities that can be used by a malicious individual. For

this reason, security is an important requirement in WSN systems because of possible conse-

quences faced in case of a compromise. For example, if an attacker performs a DOS attack on

a portion of the network, all the sensors in an area would either stop working or become extremely

slow. A situation like this would allow an intruder to enter the building area without being noticed.

This can have very negative consequences as the intruder can steal, vandalize, or hurt someone. In

order to maximize security in a system, it must be integrated in each component of that system.

Failing to do so would result in non-secure components that can become points of vulnerability

and attack to the system [PSW04]. In the case of a WSN, every sensor node should be secure

to prevent unauthorized access and malicious attacks that would compromise the entire system

[AHSC12].

In order for a network to be considered secure, security properties such as access control,

confidentiality, data integrity and availability must be incorporated at each node. These properties

are described in more details in the following subsections.

Access Control

Access control is an important security requirement for WSNs because it ensures protection of

sensitive data from unauthorized access. The basic idea of access control is to put in place mech-

anisms that allow access to resources only with correct credentials and refuse access otherwise.

In this thesis, we will be using a context-aware role-based access control (CA-RBAC), which is a

variant of the role-based access control (RBAC) model.

The main idea of the RBAC model is that each role has a set of associated permissions, and any

user associated with that role will have those permissions. Accordingly, if a role is removed from

a user, that user will lose all the permissions associated with that role. Also, if the permissions are

modified on the role itself, it will affect every user attached to that role. This method of access

control is very useful for WSNs because of its simplicity, but it has some limitations since it can

only allow or deny access to a resource. For the WSN presented in this thesis, we may need more

flexibility for access control.

Context-aware Role-based Access Control (CA-RBAC) model is discussed in [GMW10b, APW17].

In this method, context is combined with the RBAC model in order to control access to resources

in the network. The goal of this model is to enrich the RBAC model by making it context-aware.

This way, access to a resource is not limited to allowing or denying access to it, and may be differ-
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ent depending on the changing context. In [GMW10a], the authors argue that the RBAC model is

not good enough to provide a complete access control solution for WSN. They define three context

situations that can affect access control decisions in the CA-RBAC model, namely critical, emer-

gency, and normal. In our example of the smart commercial building, access to camera footage

in normal context is only granted to members of building management with a high clearance. If a

suspicious individual enters the building and the context changes to critical, then access to camera

footage can also be granted to the authorities to ensure safety of the individuals inside the building.

The incorporation of context to the RBAC model will make it more flexible, and will ensure that

the right access is given depending on the situation.

Confidentiality

Data confidentiality ensures that information is only accessed by authorized users. One method

of achieving this is through access control, which has been discussed in the previous subsection.

Another method that is used to ensure confidentiality in WSNs is encryption. There are two types

of encryption: asymmetric and symmetric. In asymmetric encryption, two keys are used, one for

encryption and one for decryption. In this type of encryption, a unique private key can decrypt a

message encrypted using the corresponding public key [MCM14]. As for symmetric encryption,

only one secret key is used for both encryption and decryption when there is a communication

between two entities, with the key being known only to those two entities [MCM14].

When these two methods are compared in the scope of WSNs, symmetric encryption is usually

the one that is more suitable for devices like sensor nodes because of its low overhead [MCM14].

Generally, asymmetric encryption is not suitable for WSNs because of the big size of the code,

message and data, the long processing time, and the high power consumption [MCM14]. In this

thesis, we will use the access control algorithm presented in the previous subsection in order to

ensure confidentiality.

Data Integrity

Data integrity is the process of ensuring that data is unchanged by either an attacker or by uninten-

tional damage and that compromised data is detected by the system. In this thesis, data integrity

will be ensured using the access control method mentioned above. Basically, the data will be

protected from damage by the access control policies defined in the system.

Availability

Although fault tolerance ensures that nodes in a WSN are available at all times, there are attacks

such as Denial-of-Service that can target nodes in a network and make them unavailable for long
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periods of time if no measures are put in place to detect and prevent such attacks. A very popular

solution that is used against these attacks is intrusion detection. This method will be used in

the WSN proposed in this thesis along with the fault tolerance methods described in a previous

subsection to ensure the availability of the nodes at all times.

Generally, intrusion detection systems have two components to detect intrusions and attacks.

The first component performs signature based intrusion detection, using a compiled database of

known threats on WSNs to detect attacks. This method is very effective against known attacks,

but will generally not detect zero-day threats. The second component performs a behaviour based

intrusion detection. In order to do so, a training period ranging from a few days to a few weeks

is necessary. During that period, the intrusion detection system learns the normal behaviour of

the network and builds a model using a machine learning algorithm. After the training period is

complete, all the incoming and internal traffic in the WSN is compared to the normal behaviour

of the network, and alerts are raised when suspicious activities are detected. The training of the

model needs to be performed on a regular interval in order to account for changes in the network.

In this thesis, we only use the signature based method because the behaviour based method

requires the design and implementation of an efficient machine learning algorithm, which is out

of the scope of this work. Furthermore, behaviour based models are computationally expensive to

build and optimize.

2.2 Summary

In this chapter, we introduced the requirements for the Wireless Sensor Network that will be used in

our smart city application. Features such as fault tolerance, privacy, and security were discussed,

and existing solutions were studied to address each of those features. In the next chapter, we

will present a literature review of existing context-aware architectures in order to subsequently

showcase our contributions.
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Chapter 3

Context-Aware Systems

In this chapter, context-aware systems will be discussed in more detail. In Section 3.1, different

perspectives of context notion are presented. The problem that is studied in this thesis is presented

in Section 3.2. We then review existing context-aware architectures in Section 3.3, and highlight

their advantages and disadvantages.

3.1 Definition of Context

The notion of “context” is crucial to describe, specify, and evaluate context-aware systems. For

this reason, many researchers [ADB+99, Dey01, Wan06] have attempted to provide a working

definition of context, even though it is a rich concept to define. The Oxford English Dictionary

defines context as "the circumstances that form the setting for an event, statement, or idea, and in

terms of which it can be fully understood." In this definition, circumstances can be information

such as the time of day, the day of week, the location or the weather outside. If we know that an

employee is at home at 2 AM on Tuesday, we may infer that this person is resting or sleeping.

On the other hand, if that individual is on the road at 7 AM on Wednesday, we may infer that this

person is on their way to work.

Context has been defined and used in different fields, including computer science. The authors

in [HNBR97] describe context as "the aspects of the current situation". This definition is a sim-

ple one, and basically states that context is any information found in a specific situation. Another

definition provided in [ADB+99] states that context is "any information that can be used to charac-

terize the situation of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applications themselves."

In this definition, the authors extend the definition of context by adding the interaction between

the user and the application. In fact, by considering only the information of all entities that are
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relevant to the interaction between the user and the application, one can get a much better picture

of the situation.

In the dataflow programming language Lucid [WA85], context cannot be defined although it

is inherently assumed. In order to improve the expressive power of Lucid and make it usable in

different context-aware applications, [Wan06] formalized context as a relation over “dimension,

tag” pairs and gave semantics for its use in intensional programming. Recently, [AAS18] has

given a comprehensive review of context literature to show the richness of context concept and

proposed a generic formal definition of it. Although many different researchers have used context

only with ad-hoc notations, we follow the notation introduced in [Wan06, AAS18] for smart city

applications because reasoned inference requires well-defined syntax and semantics for contexts.

3.2 Problem Statement

Over the last two decades, research in the area of context-aware computing has progressed sig-

nificantly. This research includes presentation of architectures and frameworks that define and

exploit contexts in different application systems. A context-aware system can be defined as a real-

time reactive system that senses its environment round the clock, adapting and reacting to changes

without explicit user intervention. Generally, context-aware systems leverage sensors deployed in

the environment to gather monitoring data. The data is then processed, which generates adapta-

tions and reactions that are sent to actuators, which in turn perform actions that directly affect the

environment.

While context-aware systems are important for smart city applications, their implementations

bring new research challenges. Often, context-aware systems are designed and implemented with

only one application in mind. The main advantage of this type of solution is that the architecture

will be specific to that particular application, which means it will not be usable for other applica-

tions. When discussing smart cities, the need for a generic architecture that can be used for multiple

applications becomes important. Having such an architecture would simplify the development and

maintenance of applications, enabling the advancement of smart cities. Furthermore, smart city

applications often generate a large amount of unstructured data from multiple sources. This brings

about challenges for efficient and scalable data acquisition, processing and storage because many

of these applications must react in real-time. Finally, many context-aware systems ignore the no-

tion of privacy and security. This is a weakness when dealing with contextual data in a smart city

application because a lot of useful information collected by sensors is sensitive by nature.

The next section will elaborate on existing context-aware framework solutions in order to mo-

tivate the context-aware architecture for smart city applications developed for this thesis.
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3.3 Context-Aware Framework Solutions

In this section, we review some published work related to solutions for context-aware computing

and systems. Each solution will be analyzed with respect to architecture, context model, method

of reasoning, security mechanisms and privacy policies.

3.3.1 Context-Awareness Sub-Structure (CASS)

The context-aware system [FC04], called Context-Awareness Sub-Structure (CASS), discusses a

centralized middleware aimed mainly at mobile applications. Figure 3 shows a high-level archi-

tecture of the CASS system. As can be seen from this figure, there are three main components

that make up the CASS architecture, namely a sensor node, the CASS middleware, and a hand-

held computing device. Here, sensor nodes are computers with one or more sensors attached to

them. These nodes sense and collect data from the environment and send it to the middleware.

The CASS middleware receives this data, stores the context, and uses the data to infer new infor-

mation. Finally, the hand-held computer is the device used to run applications that use the CASS

middleware.

Figure 3: CASS Architecture [FC04]
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The middleware is the main component of this architecture, and contains the following four

main classes: an Interpreter, a ContextRetriever, a RuleEngine, and a SensorListener. The Sen-

sorListener class listens for new data from sensors and stores them as context information in a

relational database. The ContextRetriever class fetches the stored context when it is needed. The

Interpreter class is used to transform data into a format expected by a class. Both the SensorLis-

tener and ContextRetriever classes can use the Interpreter class. The RuleEngine class is central

to the design of the CASS middleware. This class uses the rules in the knowledge base in col-

laboration with an inference engine to find a matching goal or goals when a change in context is

detected. In CASS, the knowledge base is separated from the inference engine for two reasons.

First, it makes it possible to represent knowledge in a natural way, making it easier for domain

experts to express rules. Second, this separation makes it simpler and more flexible to change the

knowledge base without affecting the inference engine.

In CASS, contexts are stored in a relational database, as the authors argue that such databases

are good for handling large volumes of data. Another advantage of storing context in a relational

database is that all data interactions will be made in the Structured Query Language (SQL), which

is the most widely used language to deal with relational data. While relational databases are robust

and mature, they do not perform as well with non-structured data. In smart city applications, the

number of sensors in the physical environment could vary from a few hundred to hundreds of

thousand sensors, making scalability of the database an important challenge. Furthermore, the

variety of the sensors deployed in such applications makes it hard to predict the structure of the

data. Therefore, using a relational database may not be suitable for a context-aware architecture in

a smart city application.

One of the shortcomings of the CASS architecture is that it does not address privacy and secu-

rity issues. This is an important aspect of context-aware systems in smart city applications which

needs to be looked into in order to protect personal and sensitive user information.

3.3.2 Context Broker Architecture (CoBrA)

Figure 4 shows the agent-based context-aware architecture [Che04], called Context Broker Ar-

chitecture (CoBrA). This architecture is aimed at "intelligent spaces", which are physical spaces

such as offices, bedrooms, and vehicles that contain devices that offer users pervasive computing

services [Che04]. As can be seen in Figure 4, the context broker is the heart of the CoBrA archi-

tecture, since it provides a centralized model of context for all components in the space, obtains

the context from the devices and agents, reasons over the acquired context, and protects privacy by

enforcing user defined policies.
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Figure 4: CoBrA Architecture [Che04]

The context broker contains four components, which are the context knowledge base, the con-

text reasoning engine, the context acquisition module, and the privacy management module. The

context knowledge base manages the storage of the knowledge within the context broker. This

knowledge includes the ontologies describing various types of contexts, the ontology instance data

of the acquired context, and the metadata for describing the storage structure of the represented

knowledge. The context reasoning engine is a logical inference engine for reasoning over the

acquired context. This engine interprets context based on the collected data, aggregating the con-

textual information from multiple sources using ontologies and domain heuristics and detecting

and resolving inconsistencies within the acquired information. The main purpose of the context

acquisition module is to obtain contextual information from sensors, agents, and the Web. It is

designed in a way to improve reusability of the context sensing procedures. This is achieved by

hiding the low-level context sensing implementations from the high-level functional components.

The privacy management module manages the users’ defined privacy policies and controls sharing

of their private information. It is responsible for enforcing these policies when the context broker

performs actions on user information.
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CoBrA uses the Web Ontology Language (OWL) for context modeling, context reasoning, and

knowledge sharing. The OWL language is a Semantic Web language that is used by computer

applications that need to process the content of information instead of just presenting information

to humans [MvH]. This language is a knowledge representation language for defining and instan-

tiating ontologies. An ontology is a formal explicit description of classes (concepts) in a domain

of discourse, with the properties of each class describing various features and attributes of the

class and providing role restrictions [NM01]. CoBrA uses its own OWL-based ontology approach

called COBRA-ONT. An example of this ontology can be seen in Figure 5.

Figure 5: COBRA-ONT Example [Che04]

Because of the nature of the data found in pervasive computing, the context broker within the

CoBrA architecture has the responsibility to enforce policies to protect this sensitive information.

CoBrA adopts a policy-based approach to protect privacy. According to the author [Che04],

a policy is a set of rules that is specified by a user or a computing entity to restrict or guide

the execution of actions. For instance, a user may create a policy to not allow sharing of his

personal information. In CoBrA, policies are defined using the SOUPA policy ontology [CPFJ04].

The SOUPA ontology is a standard ontology for supporting pervasive and ubiquitous computing

applications.

Using the SOUPA policy ontology, vocabularies for privacy and security policies are defined.

These vocabularies are based on the Rei policy language [KFJ03]. With SOUPA, CoBrA enables

a user to control the type and amount of information that the context broker can share with other

agents. The author chose the SOUPA policy ontology because it supports policy reasoning using
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description logic. Even though the SOUPA policy ontology has many advantages, many trade-

offs in policy expressiveness arise. In fact, the ontology does not support the definition of logical

expressions in the form of variables and rule conditions, resulting in users not being able to define

conditional policy rules.

3.3.3 Context Toolkit

In [SDA99], the authors introduced a context toolkit that uses the concept of “context widget”,

based on GUI widgets. The authors justify this choice by arguing that GUI widgets have three main

benefits. First, these widgets hide specifics of physical interaction devices from the application

programmers. This way, those devices can change with minimal impact on applications. The

second benefit of GUI widgets is that they manage details of the interaction to provide applications

with relevant results of user actions. Finally, they provide reusable building blocks of presentation

to be defined only once. This means that these blocks can be reused, combined, and tailored for

use in many applications.

Similarly, a context widget is a software component that provides applications with access to

context information from their operating environment. Just as GUI widgets hide implementation

details and shield applications from the back-end, context widgets protect the application from

context acquisition concerns. Some of the advantages of context widgets described are as follows:

• Add a level of abstraction between the sensors and the application. In other words, the

application should not care if the presence of individuals in a physical space was detected by

a motion sensor, a camera, or a combination of both.

• Filter contextual information to provide applications with what they need. For instance, a

widget that tracks the location of a user within a building will only send context information

to the application if the user changes rooms or leaves the building. That way, the data sent

by the sensors can be reduced by a great amount, increasing the performance of the system

without affecting its accuracy.

• Provide reusable and customizable building blocks of context sensing. A widget that mon-

itors air quality can be used by many applications such as buildings, chemical plants, or

parks.

As shown in Figure 6, the Context Toolkit contains the components BaseObject, Widgets, Ser-

vices, Aggregators, Discoverer and Interpreter. The BaseObject class is a superclass which offers

generic communication abilities to ease communication between components and simplify their

creation. The Widget component is a reusable block that provides a level of abstraction between
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the sensors and the application by hiding how context information is collected by the sensors. The

Service component is a sub-component of Widget and it is responsible for dealing with actuators.

The Aggregator is responsible for composing context of particular entities by subscribing to rele-

vant widgets. As the name suggests, the Interpreter transforms raw collected context to something

more meaningful. Finally, the Discoverer detects the components that are interested in any given

context changes. In terms of context modeling, the Context Toolkit handles context in simple

attribute-value-tuples, which are encoded using XML for transmission. According to the authors

in [BDR07], the key-value model is the simplest method to represent context.

Figure 6: The Context Toolkit Architecture [SDA99]

In order to deal with the privacy issues found in context-aware systems, the Context Toolkit

introduces the concept of context ownership. In this model, the user is the owner of the sensed

context data relating to him, and has control over access to that context information. The com-

ponents involved in that access control process are the Mediated Widgets, Owner Permissions,

BaseObject and Authenticators. The role of the MediatedWidget component is to determine the

owner of the sensed data. The Owner Permission component uses stored situations to allow or
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deny permission queries that it receives. The stored situations include information such as autho-

rized users and time of access. The BaseObject class contains an identification mechanism so that

applications and components have to provide their identity when they initiate a request. The last

component used for this access control mechanism is the Authenticator. This component uses a

public-key infrastructure to validate the identity of the component sending the request.

3.3.4 Context-Aware Framework (CAF)

Figure 7 shows the architecture for the Context-Aware Framework (CAF) discussed in [Hna11].

This architecture contains four main modules, which are the Sensor Mechanism, Context Mecha-

nism, Adaptation Mechanism, and Reactivity Mechanism. The Sensor Mechanism is responsible

for receiving the collected sensor data, ensuring its validity and transforming it. Furthermore,

this module is also responsible for aggregating data from multiple sensors and sending the lat-

est contextual information to the Context Mechanism. The Context Mechanism is responsible for

defining context and context situation, translating contexts and situations from different context

theories and evaluating contexts and reasoning about situations. The Adaptation Mechanism is

responsible for analyzing the collected knowledge about the environment and triggering the appro-

priate reactions. Finally, the Reactivity Mechanism is responsible for sending the reactions to the

appropriate actuators.

Figure 7: The Context-Aware Framework (CAF) Architecture [Hna11]
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The concept of context situation introduced in their work represents semantic information

based on context atomic properties. A context situation is a custom state that occurs when some

predefined environment conditions are met. Situations are represented as expressions evaluated

against contexts. The context is represented as a set of key-value pairs, where the key is the dimen-

sion and the value is the tag. In the scope of CAF, a situation is a state of interest to an application.

For instance, Cold situation occurs when the temperature in degrees drops below a certain value.

As with the CASS architecture, CAF does not consider privacy and security issues. As men-

tioned above, these are important aspects of context-aware computing that should always be con-

sidered and incorporated in such systems because of the type of information processed. Further-

more, as can be seen in Figure 7, the author includes a data store in his architecture. The data store

includes information such as associations between sensors and dimensions, situation expressions,

associations between situations and adaptations, and associations between reactions and actuators.

There is no mention of which schema is used for this data or how the database is managed. In the

architecture proposed in this thesis, we define what type of information is stored in the data store

since it plays a crucial role in the development of smart city application systems.

3.3.5 Agent-Based Context-Aware Architecture for a Smart Living Room

In [MEeAT16], the authors propose a multi-agent software architecture for building a smart living

room. A smart living room is considered to be a smart space, which is “is able to acquire and apply

knowledge about its environment and adapt to its inhabitants in order to improve their experience

in that environment”. Smart spaces must be capable of changing their behaviour dynamically

based on users’ activities and the environment. The authors tackle in depth the context-awareness

aspect by focusing on context definition and modeling, and propose an architecture that contains

the essential modules needed in a smart space.

Multi-agent systems are comprised of components called agents that are able to interact, usu-

ally by passing messages. The authors argue that using a multi-agent system is beneficial for their

architecture because multi-agent systems offer a decentralized architecture while keeping the au-

tonomy and proactivity of agents. They claim that such characteristics enhance the architecture

modularity and fit requirements of appliances and equipment in smart spaces to provide adapted

services to inhabitants in a proactive manner according to the current context.

As shown in Figure 8, there are three groups of agents in this architecture, namely the sensor

multi-agent system, the core agent, and the actuator multi-agent system. The sensor central agent

embeds two modules. These modules perform (1) context gathering, which re-assembles all re-

ceived context data from sensor agents and builds the global current context vector, and (2) context

interpretation, which has the task of interpreting each raw context data into useful information. In
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this component of the architecture, there are some intelligent actions taken by the sensor central

agent, namely in the context interpretation activities. That being said, the authors don’t mention

how the context interpretation happens.

Figure 8: Agent-Based Architecture for the Smart Living Room [MEeAT16]

The second component is the core agent, which is the main component of the architecture. The

core agent ensures context-awareness in the architecture and includes two modules: (1) context

modeling and reasoning, and (2) context-aware services adaptation. Context modeling and reason-

ing are important aspects for achieving intelligence. The aim of context modeling is to provide an
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abstraction of context information from the technical details of context sensing that allows an easy

context management and more flexible sharing among devices and appliances.

The authors use ontology to model context, as illustrated in Figure 9. They give the following

justifications for using ontology:

• Ontology is a powerful representation model for knowledge sharing, reuse, and expression

of complex situations compared to other data modeling techniques.

• Ontology provides the possibility to perform logical reasoning. It permits the system to de-

duce relevant new contextual information that is not explicitly provided by sensors embedded

in the living room.

• Ontology reasoning permits the system to check context inconsistency and conflicts caused

by imperfect sensing of contextual information.

• Ontology reasoning allows the system to verify whether concepts are consistent.

• Ontology reasoning enables the system to find subsumption relationships between classes

and instances.

Figure 9: Ontology-Based Context Modeling [MEeAT16]
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Though the authors mention the advantages of using ontology to model and reason with con-

texts, they provide no proof for these claims. Once context has been modeled and reasoned

with, adaptations are generated based on the current context and the user preferences stored in

the database.

The process of generating adaptations is an important aspect of intelligence, though the use

case they provided is somewhat simplistic, described as follows. For each equipment, the user

should provide the preferred form of service according to some context values. For example, the

user could prefer to watch the news channel on his TV from 8 PM to 10 PM when he is alone.

The authors mention that they use machine learning to achieve the adaptation task, but they do not

provide any detail.

The final component is the actuator multi-agent system, which is composed of an actuator

central agent (server) and a set of agents (clients), where each equipment of the smart living room

is assigned to an agent. The actuator central agent contains a unique module, called command

signals, that receives the service configuration vector from the adaptation module of the core agent

and sends command signals to each equipment agent. This module stores the state of each actuator

in a vector so as to minimize the communication needed. This can be considered an intelligent

behaviour, since the module is optimizing its performance and preserving resources. Another

intelligent aspect of this module is the fact that the command signal translates the adaptations to

corresponding signals and chooses the appropriate devices to send those signals to. No details are

provided to describe how this is done.

In addition to the three groups of agents discussed above, there are two databases present in this

architecture, namely user’s preferences and knowledge base. For the user’s preferences database,

the authors mention that the user must fill out his/her preferences before smart living operation.

Although they provide examples of user preferences, they do not to mention which schema is used,

which database is used, and how the data is managed and by whom. As for the knowledge base

database, no details are provided in the paper, and it is mainly used as a black box.

Though the authors mention the possibility of having multiple users, there is no evidence in

their work to support this claim. For instance, the authors mention that the devices found in the

smart space should provide a set of services to the user or users in the smart space. However, they

have not explained in their architecture and case study how different users can specify different

preferences. In fact, it is assumed in the paper that preferences are from one user, while the other

users are treated as triggers for some device events.
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3.3.6 An Architecture for Interactive Context-Aware Applications

In [RSC07], the authors introduce a new architecture derived from the Model-View-Controller

paradigm [KP88] that models physical and logical context in the front-end, to help users bet-

ter understand application behaviour. They argue that by modeling context in the user interface,

developers can represent the application’s inferences visually for users.

In this architecture, the application domain is represented using a set of models. Some of

these models represent physical objects, while others represent abstract data structures that the

application uses. Using the MVC pattern as shown in Figure 10, the authors are able to represent

a model in multiple ways by attaching multiple views. There is no report on implementation of

these aspects in their work, but they say that it might be helpful for applications such as augmented

reality (AR) goggles and projectors.

Figure 10: MVC Architecture [RSC07]
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As shown in Figure 10, the architecture is designed in a way such that there is one controller

per model for each context in the application. These controllers encapsulate how the model reacts

to interaction in each context. The controllers are then attached to the corresponding context

components. The key is that each controller is only activated when its context becomes active.

Context handling is separated from interaction handling because many controllers are used. In

doing so, the controllers will not contain context evaluation code.

In the system proposed in their paper, as shown in Figure 11, users interact with the application

while performing their daily tasks. The application is responsive to the user’s context and interprets

all interactions against the current context. In other words, when a user changes context, the

application changes its frame of reference in order to interpret the user’s actions. There are two

types of interactions that a user can perform, namely implicit and explicit interactions. Implicit

interaction is an interaction not directly targeted at the application. For example, events detected

by sensors are considered to be implicit interactions because the user is not changing the context

directly. Explicit interactions happen when the user changes the context directly, with actions such

as setting up a connection or sending media.

Figure 11: Interaction Model [RSC07]

When discussing context definition and modeling, the authors mention that they have only mod-

eled the user context because according to them, real world objects don’t have context. They claim

that this is a phenomenological view of context. The phenomenological view emphasizes that peo-
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ple create and maintain context during interactions, while the more popular positivist/engineering

view is more concerned with representing context. In other words, the authors believe that humans

perceive context as a property of interaction, rather than of objects or people.

The authors argue that one of the main benefits of their architecture is that it attempts to make

the communication between the user and the application more intelligible. The authors present the

following points to show how their architecture improves the communication between users and

the application:

• The designer’s model is communicated: MVC helps designers elicit the model they are

using for the application by forcing them to specify the application using model objects.

Second, it helps them communicate the model by requiring that view objects remain faithful

representations of model objects at all times.

• Context is not a piece of information, but rather a frame of reference: In this architec-

ture, context is used to interpret interactions. Each time the context changes, the framework

switches the set of active controllers, whose function is to interpret user interaction.

• The current context is always visible: In the proposed framework, the controllers’ activation

and deactivation functions were designed to change the view when the context changes.

• The system state is always visible and instant feedback is always provided: All application

entities are represented as models. Because each model has a view, the system state is always

visible. Also, the system instantly updates the view as the system state changes.

As can be seen from the points above, the authors achieve their initial goal of improving the

communication between users and the application in context-aware applications. However, there

are several limitations in the proposed framework. The first limitation is that the system expects a

context component for each context-variable combination to determine the contextual state. This

can increase the number of context components exponentially as the number of context variables

grows. It is difficult to predetermine all contexts that might arise in smart city applications, and

we must have a way to model context dynamically. Another limitation is that it assumes only one

user interaction. This is actually a limitation of the interaction model as the authors have looked

at conversation as a one-to-one activity. This would not be realistic for smart city applications, in

which we deal with many users. Finally, the paper does not address privacy and security issues

found in context-aware systems. This is an important aspect of context-aware systems, particularly

in smart city applications because of the nature of the information processed.
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3.4 Summary

In this chapter, we reviewed the notion of context and context-aware computing. Then, the problem

that is central to this thesis was explained, motivating the need for a generic, scalable architecture

that takes into account privacy and security. Finally, a critical review of published work on context

modeling and context-aware architecture was given.
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Chapter 4

Context-Aware Architecture for Smart City
Development

The goal of this chapter is to present a context-aware architecture for development of smart cities.

The architecture has a number of components that interact through intelligent controllers which

ensure secure sharing of data while enforcing privacy. The functionality of each component in the

architecture is discussed in details, and its smart interactions with other components are explained.

The architecture is compared to the other architectures discussed in Chapter 3 to establish its

merits.

4.1 Proposed Architecture

In this section, our proposed architecture will be discussed in more details. The global architecture

will be presented first, followed by a more detailed view of each component. Privacy and security

issues and solutions will be discussed at each step of the architecture. Finally, we study and analyze

the various aspects of the proposed architecture.

From the definitions presented in Chapter 1, smartness in cities can be seen as leveraging

sensors and other input devices to gather live data pertaining to various applications, process it,

and react with the inferred actions through actuators. In a software architecture, these steps can be

divided into three logical steps, namely input, process, and output.

Figure 12 shows a high level view of the architecture of the context-aware system proposed in

this thesis. There are four components in this architecture, namely the sensor component, context

component, inference component, and adaptation component. In terms of smartness steps, the

sensor component can be placed in the "input" step, the context and inference components in the

"process" step, and the adaptation component in the "output" step. Furthermore, there are two data
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stores available. The general data store is used to store sensor and actuator information as well

as different policies. The type of information stored in the general data store must be general to

all applications, as the name suggests. The other data store is the application data store. It stores

facts, rules, and context information related to a specific application. Facts are generally static and

can include information such as user information, user preferences, and privacy policies. Rules

express predefined adaptation processes used together with context to determine the appropriate

adaptations. Finally, the context information stored in the application data store is a dynamic entity

which gets instantiated and affected by the data coming from the sensors and other input devices

in the environment.
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Figure 12: Context-Aware Architecture for Smart Cities
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The objective of the sensor component is to receive raw sensed data from the sensors deployed

in the environment, transform it, and store it in the application data store. This may trigger the

context component, which will receive the new data and validate it. It will then build a new

context instance and store it in the application data store. When a new context is stored, a trigger

is sent to the inference component, which then proceeds to fetch the facts, rules and context from

the data store, and runs the inference engine. The result of the inference engine is then sent to

the adaptation component, which in turn determines which actuators to interact with and sends the

appropriate command if a change in state is required.

The components in this architecture are designed to be as independent as possible from one

another and to be as generic as possible. The only component that depends on another is the

adaptation component, which depends on the inference component. Put together, this architec-

ture enables sensing data in real-time, building and validating context, inferring new knowledge,

and reacting on the environment through actuators. The subsequent sections will explain in more

details how each of these components functions and how the components interact with each other.

4.1.1 Sensor Component

The sensor component is the point of entry to the context-aware system and the "input" step in the

smartness steps. As shown in Figure 13, this component receives the sensor data collected directly

from the environment, processes and validates it using information and policies from the general

data store, and stores it in the application data store. This component is comprised of a controller, a

transformer, a validator, a data synchronizer, and a data store connector. The controller is the main

sub-component in this component. Its main objectives are to subscribe to sensor data streams, fetch

sensor information and policies from the general data store, call the transformer and the validator

for each sensor reading, use the data synchronizer to aggregate and normalize the readings, and call

the data store connector to write the new sensor data in the application data store. The controller

listens to the sensor data streams and is triggered whenever a new reading enters the stream. The

second sub-component is the transformer, which uses the stored sensor information and policies

to transform the data. For instance, a temperature sensor may have information related to its unit

and data range stored in the general data store. It could also have a policy which specifies its data

retention period. In this scenario, the transformer would check that the unit of the sensor matches

the unit specified for this application, and transforms the data if required.

The third sub-component is the validation unit, which ensures the validity of the data using the

information fetched from the general data store. Using the temperature sensor example, the role

of the validator is to check if the new reading is within the specified data range for that sensor. It

would also check to see if the data is still valid according to the data retention policy. If any of the
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Figure 13: Sensor Component

checks fails, then the new sensor reading is not stored in the application data store. This ensures

validity of the sensor data in the data store. Additional policies such as security and privacy policies

may be added in the data store to provide additional protection to the system. The fourth unit is

the data synchronizer, which aggregates data coming from sensors given a criteria such as type or

area. It also normalizes the data before it is stored in the application data store. The last unit in

the sensor component is the data store connector. This sub-component has specialized methods to
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connect to the defined data stores. It receives the data that is transformed and validated, reformats

it according to the data store used, and records it in the appropriate location.

In terms of privacy and security measures for this component, we use a role-based access

control mechanism (RBAC) to ensure that communication and access is only allowed with specific

entities in the system. For the sensor component, the controller will be granted access to receive

data from registered sensor devices in the environment, read sensor information from the general

data store, and write data to the sensor readings table in the application data store. It is important

to note that the controller is the only unit in the sensor component that is allowed to communicate

with other components in the architecture. Another method that could be implemented within

the sensor component is intrusion detection, which could prevent some of the common security

attacks such as a denial-of-service attack (DoS attack), malware, or SQL injection. We have not

considered intrusion detection in this thesis. All in all, setting up security measures helps ensure

that the communication between components is secure and the that user information stored in the

databases is safe.

Overall, the sensor component subscribes to sensor data streams, listens for new data in the

stream, transforms and validates the new data, synchronizes it, and stores it in the appropriate

location in the application data store. This component is designed in a way that allows the definition

of any type of sensor. This capability is needed because of the wide variety of sensors found in

smart cities. In this component, sensors share basic methods and actions, with the possibility of

defining more specialized methods if a sensor requires it.

4.1.2 Context Component

The second component in the proposed architecture is the context component. It is the first compo-

nent in the "process" step used to achieve smartness. As shown in Figure 14, this component listens

to changes in the sensor readings data in the application data store, and receives the processed sen-

sor readings as soon as they are added. It then determines whether to store the new sensor reading

as context in the application data store. If it decides to store it, it builds the context using syntax

policies stored in the general data store and stores the context instance in the application data store.

The sub-components in this component are the controller, context manager, context builder

and data store connector. The controller has a listener that monitors the sensor readings data in

the application data store. When new data is added, an event is sent to the controller, forcing it to

run and fetch the new data from the application data store. The controller then calls the context

manager and the context builder for the new readings. If the new context data has to be stored

in the application data store, the controller calls the data store connector to store it. The context

manager manages the incoming sensor readings as well as the stored context. This unit keeps the

35



Figure 14: Context Component

stored context data up to date, decides whether to store new data as context, requests new data if

needed, and removes old context instances based on data retention policies. The context manager

is important because it controls the context information for the application, thus controlling the

efficiency and accuracy of the system.

The context builder uses syntax policies stored in the general data store to ensure that the

context is built in a syntactically correct way. In this architecture, the context is defined using key-
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value pairs of dimensions and attributes. This unit is only called if the context manager decides

that the new sensor reading is to be stored as context in the application data store. Finally, the last

sub-component is the data store connector, which is the same one used in the sensor component.

This unit connects to the application data store and stores the new context data in the appropriate

location.

Similar to the sensor component, the context component uses a RBAC in order to control access

between the components. The controller is assigned a role which allows it to fetch context policies

from the general data store and write context instances in the context table in the application data

store. The controller is the only unit that is allowed to communicate with other entities in the

system.

In summary, the context component listens to changes in the sensor reading data store, receives

the new data when it enters the application data store, determines whether or not to store it as

context, ensures that the context data is valid and up to date, builds new context based on policies

stored in the general data store, and stores the new context information in the application data store.

4.1.3 Inference Component

The inference component shown in Figure 15 is the third component in the context-aware archi-

tecture and the second component in the "process" step. It is the main component for smartness of

the architecture as it receives context information based on sensor data from the application data

store and uses adaptation rules and facts stored in the application data store to produce adaptations.

This component contains a controller, an inference engine helper, and an inference engine. The

controller continuously listens to changes in the context information in the application data store.

Upon receiving an event indicating that one or more context instances have been added to the ap-

plication data store, the controller fetches the new context information. It then calls the inference

engine helper unit to prepare the input for the inference engine, which includes adaptation rules,

facts, and context instances. It then runs the inference engine and sends the inferred adaptations to

the adaptation component.

The inference engine helper’s main purpose is to prepare the context instances, adaptation

rules, and facts so that they meet the requirements of the inference engine. The first thing this sub-

component does is load the adaptation rules and facts for the current application. Then, it performs

necessary checks to ensure that the context instances, adaptation rules, and facts conform to the

requirements of the inference engine. These requirements may include syntactic conformance and

the ordering of the input given to the inference engine. For the scope of this thesis, it is assumed

that syntactic conformance is sufficient to run the inference engine. After all the requirements

mentioned above are satisfied, the inference engine helper indicates to the controller that it can
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Figure 15: Inference Component

run the inference engine with the input. The role of the inference engine is to infer new facts and

knowledge based on context information, stored policies, adaptation rules, and facts from the the

data stores. As soon as the inference engine completes its run, its output is formatted by the helper

in order to have a uniform format regardless of the inference engine. Finally, the formatted output is

sent to the adaptation component. Thus, the inference engine component in the architecture is quite
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generic, in the sense that it can be made to work for any rule-based inference engine. Consequently,

the architecture provides the flexibility for different designs to plug-in different inference engines

to achieve their goals.

In order to guarantee that the context-aware system functions at all times, there should be a

way for the inference component to request any missing information from other components. For

instance, if there is an adaptation rule in the application data store that requires temperature and

humidity readings, but the inference component only receives context information containing a

temperature reading, then this component must be able to communicate with the context compo-

nent and request the required information. The context manager within the context component

will then check to see if there is a valid humidity reading stored in the application data store. If the

information is available, the context component controller will send it to the inference component.

If it is not available, then the context component will request it from the sensor component, which

will then fetch it directly from the humidity sensor in the environment. Upon receiving the humid-

ity reading, the sensor component will then follow the regular steps of storing the reading in the

application data store, which will then be processed by the context component, and then stored as

context in the application data store. When this happens, the inference component will receive the

new context information that it needed.

The inference component is a key component in the architecture, and as such, proper security

measures need to be put in place to ensure its protection. In order to do so, a role must be assigned

to the inference component controller, granting it permissions to perform its tasks. These permis-

sions include reading adaptation rules, facts, and context instances from the application data store.

The facts include information such as static context instances, user information, user preferences,

and privacy policies. The user preferences and privacy policies can be used by the inference engine

in order to protect user data. The controller is also allowed to request additional context informa-

tion from the context component. However, it is not allowed to receive the information directly

from the context component as the context instances need to be stored in the application data store

first. After this is done, the controller can fetch the new context information with the permissions

granted to it. Finally, the controller is granted a permission that allows it to trigger the adaptation

component controller and send the new inferred data.

All in all, the main responsibilities of the inference component include continuously listening

for new context information from the application data store, loading the adaptation rules and facts

for the current application from the application data store, preparing the adaptation rules, facts, and

context instances to meet the syntactic requirements of the inference engine, running the inference

engine, and sending the new inferred knowledge to the adaptation component.
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4.1.4 Adaptation Component

The adaptation component shown in Figure 16 is the fourth and final component in the proposed

architecture, and it makes up the "output" step in the smartness steps. This component receives

a structure from the inference component that contains inferred adaptations as well as time and

location metadata. Using this information, the adaptation component determines which actuators

to communicate with, transforms the actions into actuator commands, and sends the commands

to the actuators. The sub-components included in this component are the controller, actuator, and

actuator connector. When the inference component executes, the inferred knowledge it generates

is sent to the adaptation component. The controller continuously listens for the arrival of new

inferred knowledge. As soon as it receives one, the actuator unit determines which actuators need

to be activated based on the metadata loaded by the controller from the general data store. This

metadata includes possible actions, location, and a mapping of actuator commands and actions.

After the actuator is selected, the actuator unit transforms the inferred action into a meaningful

actuator command using the metadata loaded from the general data store. Finally, the controller

uses the actuator connector to locate the appropriate actuators, connect to them, and send the

appropriate commands to them.

In order to better understand how the adaptation component works, Table 1 shows an example

of sensor reading ranges coming from a temperature sensor in a room along with the associated

statuses and actions. In our context-aware architecture, the information displayed below would be

considered static context information, and would be treated as facts. If the temperature sensor were

to send a reading indicating that the temperature is 19 ◦C, then this reading would be transformed

into a context instance by the context component and stored in the application data store. The

inference component would then run the inference engine. Using the information from Table

1 as well as some predefined adaptation rules, it would determine that the status of the room

is "cold" and the action required is "Start Heater". The inference component would then send

the action, the timestamp, and in some cases the location of the sensor to the controller of the

adaptation component. Each actuator would have its associated metadata stored in the general data

store. The metadata would include possible actions by the actuators, actuator command per action,

and actuator locations. Using this information, the actuator unit within the adaptation component

would determine which actuator to select, and the actuator connector would send it the appropriate

command.

As with the other components in this architecture, the adaptation component uses RBAC to

manage communication and access between components. The controller is the only unit that is

allowed to communicate with other components in the system, and as such, it is assigned a role

with limited permissions. This role has permissions that allow the controller to receive the inferred
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Figure 16: Adaptation Component

knowledge from the inference component, load actuator metadata from the general data store, and

communicate with the actuators that are registered for the specific application. The communication

between the controller and the actuators includes sending commands to the actuators and receiving

responses and actuator statuses from the actuators.
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Temperature (◦C) Status Action

Less than 20 Cold Start Heater
20-25 Normal Nothing
More than 25 Hot Start Cooler

Table 1: Temperature Adaptation Example

In summary, the adaptation component receives the inferred knowledge from the inference

component and determines the appropriate actuators and commands using the new knowledge and

the information stored in the general data store. Afterwards, it transforms the adaptation into an

actuator command using the information loaded from the general data store, and connects and

sends the command to the appropriate actuators.

4.1.5 Data Stores

In the context-aware architecture shown in Figure 12, there are two data stores available, namely

the general data store and the application data store. The general data store is used to store infor-

mation that can be used by more than one application. The information included in this data store

includes sensor and actuator metadata as well as policies that are not restricted to a single appli-

cation. The application data store is used to store data related to a specific application. It stores

facts, adaptation rules and context information related to that application. The adaptation rules in

the application data store are used together with context to determine the appropriate adaptations

and reactions to be taken on the environment. The context information stored in this data store is

always changing since it comes from the sensors and other input devices in the environment.

The facts stored in the application data store include information such as a user information,

user preferences, and privacy policies. As mentioned in Chapter 2 when discussing privacy of

Wireless Sensor Networks (WSNs), the same two sets of rules described can be used to provide

users within a smart city application with privacy. The first set of rules is application policies.

These policies are used to ensure that the application functions properly. For example, a home in-

trusion detection system that detects unwanted windows and doors openings may need to know the

number of residents in a home, whether or not the residents are at home, and contact information

to use in case of an intrusion. This type of information is required to ensure that the home intrusion

detection system functions properly. In order to protect this sensitive data, the second set of rules

is put in place. These rules are user preferences, which are policies chosen by the users to control

how their data is used. In the home intrusion detection system example, the resident may have a

policy that allows the system to share his information with the authorities in case of an intrusion,

but not in other cases. The two sets of policies described are stored in the application specific data
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store.

An additional action that can be taken in order to protect user data and ensure its confidential-

ity is to encrypt the data stores in the architecture. In Chapter 2, two encryption methods were

introduced, namely symmetric and asymmetric encryption. These two methods were discussed

in details, and the conclusion was that symmetric encryption is faster and more efficient since it

only uses one key to encrypt and decrypt the data. Asymmetric encryption is a more recent and

complex technique. It uses two keys: a public key to encrypt the data and a private key to decrypt

it. While this method is more secure, it is slower and more complex than symmetric encryption.

The symmetric encryption was chosen for WSNs in order to optimize resource utilization, whereas

asymmetric encryption is used to encrypt the data stores since there are more computing resources

available and the data stored are very sensitive.

Another method of ensuring data confidentiality is through access control. In this method,

various roles and permissions are created and assigned to the components in order to control the

access of the components in the architecture to the data stores. Minimal access is granted to the

components in order to ensure that they function properly without compromising the security of

the system. These two security methods help protect the user’s data and allow the application to

be compliant to various policies and regulations enforced by governments and users.

4.2 Analysis and Discussion

So far, we focused more on presenting the context-aware architecture developed in this thesis.

In this section, our architecture will be compared those presented in Chapter 3, and the merits

and contributions of our architecture will be discussed in more details. Table 2 compares the

architectures surveyed in Chapter 3 to the one proposed in this thesis.

4.2.1 Sensing

In [FC04], sensor nodes are used to gather data from multiple sensors in the environment. In

the architecture, the authors use a SensorListener class in order to get the data from the sensor

nodes. In [Che04], sensor data is fetched using the context acquisition module. The author defines

three types of context acquisition methods, namely directly from sensors, using a middleware

infrastructure, and from a context server. The authors in [SDA99] present context widgets in

order to handle different data sources. Using this method, they separate the context acquisition

concerns from the application since the widgets hide the complexity of fetching data from various

sensors. Additionally, since the widgets are encapsulated software software components, they can

easily be reused. In [Hna11], the author uses a sensor mechanism to connect to sensors, listen to
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Paper Sensing Context
Model

Context Processing Security and
Privacy

[FC04] Sensor listener Relational
data model

CASS Inference
engine & relational
knowledge base

Not available

[Che04] Context acqui-
sition module

Ontologies
(OWL)

Context reasoning
engine & context
knowledge base

SOUPA policy
language

[SDA99] Context wid-
gets

Attribute-
value tuples

Context interpreta-
tion & aggregation

Context own-
ership

[Hna11] Sensor mecha-
nism

Key-value
pairs

Context situations Not available

[MEeAT16] Sensor agents Ontologies Pellet ontology rea-
soner

Not available

[RSC07] Sensors MVC MVC Not available
Proposed
Architecture

Sensor com-
ponent

Key-value
pairs

Any rule-based infer-
ence engine & con-
text knowledge base

Application
& user poli-
cies, RBAC,
encryption

Table 2: Comparison between proposed and surveyed architectures

incoming data, and process it. The listeners provide a layer of abstraction between the sensors and

the context-aware application, and the connectors enable the communication between the sensors

and the application. In terms of data processing, the sensor mechanism transforms, validates, and

aggregates the data coming from the sensors before sending in the next component in the system.

The architecture presented in [MEeAT16] uses a sensor multi-agent system to gather data from

the environment. It has the responsibility of gathering raw contextual information using a sensor

network. In this architecture, each sensor is assigned an agent that sends the readings to a sensor

central agent. Finally, the work presented in [RSC07] mentions that sensors can detect implicit

user interactions. However, this paper fails to provide details on how this is done, since the authors

are more preoccupied with representing context in the user interface.

In the architecture presented in this thesis, a sensor component is used to interact with the sen-

sors in the environment. Each instance of the sensor component is tailored to fit the requirements

of each sensor in the environment. The sensor component has methods to connect to the sensors,

receive their readings, transform and validate the readings, aggregate and normalize them, and

store them in the application data store. Overall, various aspects from [FC04, Che04, Hna11] have

been incorporated in the architecture presented in this thesis. The work presented in [RSC07] does

not discuss sensing in details. In [SDA99], the overall concept of widgets is an interesting one,

especially for context acquisition. The main advantage of using their proposed method is that it
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provides a level of abstraction between the sensors and the application. Although widgets are not

used in the work presented in this thesis, there is a level of abstraction between the sensors and the

application. In our architecture, an important feature of the sensor component is to be as generic

as possible while allowing the possibility of being extended to answer the specific needs of some

sensors. This way, most sensors can be deployed to the environment and used without the need of

any changes to the sensor component.

4.2.2 Context Modeling

In [FC04], the context is modeled using a relational data model, which is known to be robust and

mature. The main advantage of using a relational model is that all data interactions will be made

in the Structured Query Language (SQL), which is the most widely used language to deal with

structured data. The problem with using relational databases is that they don’t scale well and they

are not flexible, which can be problematic in smart city applications since the number of sensors

in the physical environment could vary from a few hundred to hundreds of thousand sensors.

The works presented in [Che04, MEeAT16] use ontology to model context. In [Che04], an

OWL-based ontology called COBRA-ONT is introduced to model context. In [MEeAT16], the

authors mention that the context is modeled using ontology but do not provide details. Although

an ontology-based representation allows for the writing of explicit, formal conceptualizations of

contextual information, it can also be inefficient and difficult to work with [AvH04]. According

to [AAS18], most ontological approaches use ontology concepts but mainly through ad-hoc struc-

tures. In fact, the author believes that Formal Concept Analysis (FCA) is the only formal way for

formalizing context. As a formal approach, FCA is credited for its theoretical model, well-defined

operations and expressiveness. However, the goal of FCA is to formally capture relationships

between entities. FCA provides no representation to context.

The work presented in [SDA99] handles context in simple attribute-value-tuples encoded us-

ing XML for transmission. Key-value pairs are used in [Hna11] to model context. This is an

interesting choice because a key-value pair is a simple data structure that is strongly typed, which

means it is more implementable. Finally, in the work presented in [RSC07], only the user context

is modeled because according to the authors, real world objects don’t have context. This is a very

different approach from our work and those surveyed in Chapter 3. The authors claim that this is a

phenomenological view of context, whereas our work follows the positivist/engineering view. The

phenomenological view says that people create and maintain context during interaction, while the

positivist/engineering view is more concerned with representing context.

In our work, context is modeled as dimensions and attributes. This method has a well-defined

representation with the help of the lattice-based formalism used in building context structures. It
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also has context operators to manipulate context and makes it usable for real-world applications.

Finally, it supports context structures (e.g. hierarchical and tree structures).

4.2.3 Context Processing

The CASS inference engine is used in [FC04] for context reasoning and processing. This is an

interesting choice because it enables the system to generate new facts based on rules and context.

Similar to the CASS architecture, the architecture in [Che04] uses a rule-based inference engine

for context reasoning. Both of these approaches are similar to the approach used in our thesis.

The work presented in [SDA99] offers facilities for both context aggregation and context inter-

pretation. The context aggregators are responsible for composing context of particular entities by

subscribing to relevant widgets, while context interpreters provide the possibility of transforming

context. In [Hna11], context situations are used for context processing. A context situation is

a custom state that occurs when predefined environment conditions are met. Situations are rep-

resented as expressions evaluated against context dimensions, and they are defined using logical

conditions over contexts. In [MEeAT16], the authors mention that they use the Pellet ontology

reasoner without providing much details about it. In the [RSC07], the authors do not discuss

any methods for context reasoning, as they assume that it is already done. Their main focus is to

communicate changes in context and inferences to users through a user interface.

In this thesis, we can interface our architecture with any inference engine provided the input and

output of the engine are known. That being said, a context-based, rule-based inference engine is

used in the proposed architecture to reason with context and infer new knowledge. This inference

engine has formal basis, simple syntax, and declarative semantics which makes it theoretically

sound and practically extendable.

4.2.4 Security and Privacy

In [Che04], the author presents a policy-based approach (SOUPA policy language) to deal with

privacy protection. In the work presented in [SDA99], the authors consider a component called

"Authenticator" that validates the source of the information sent to another component using a

public-key infrastructure. This paper also uses the concept of context ownership to preserve user

privacy. Using this method, individuals get assigned context data related to them, and they can

control who can access their data. In [Hna11], the author introduces the Workflow and Policy

Expression Language to define adaptations. This language supports the execution of actions with

respect to a set of policies. Although this can be used to enforce privacy policies, there are no

mentions of this language being used to protect privacy in the paper. The works presented in
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[FC04, RSC07, MEeAT16] do not discuss security and privacy, both of which are crucial to smart

city application design.

In this thesis, application and user policies are used to ensure protection of user information.

These policies are defined using predicate logic, in order to have the same framework and syntax

for all the rules in the system. Furthermore, roles with different levels of permissions are used to

control the communication between components. This ensures that a component can only read or

write from another component when the role allows it. In order for an architecture to be used in a

smart city, privacy and security measures must be considered to protect user information and gain

trust among citizens.

4.3 Summary

In this chapter, the context-aware architecture developed in this thesis was presented and discussed.

The sensor, context, inference, and adaptation components were explained in details, and the in-

teractions between the different components was highlighted. A special focus was on privacy and

security, as they were discussed at each level of the architecture. Finally, a comparison between the

architecture presented in this thesis and those reviewed in Chapter 3 was done, and the main contri-

butions of our architecture were highlighted. This architecture is designed to be generic enough to

be used by different smart city applications. Furthermore, context is modeled using a well-defined

representation of dimensions and attributes, making it suitable for real-world applications. The

architecture also interfaces with any rule-based inference engine, provided the input and output

of that engine are known. RBAC is used to control the communication between components, and

symmetric encryption is used to protect sensitive information in the data stores. In the next chapter,

a detailed design of the architecture will be presented to better illustrate how the components work

and how they interact with each other.
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Chapter 5

Detailed Design

In this chapter, a detailed design of the architecture and its components are given. For each com-

ponent, we describe the interface structure, internal component functionality, and interactions with

other components.

5.1 Design Pattern

In this architecture, the factory design pattern was used to accommodate the requirements of smart

cities. This pattern is used in the Sensor component, the DataStore component, and the Adaptation

component. We use this pattern in order to create objects without having to expose the logic to

their respective controllers. In the Sensor component, we have a base Sensor class, and more

specialized classes for different sensor types. The base class contains the attributes and method

definitions that are common to all the sensor types, whereas the specialized classes override some

of the methods defined in the base class to meet the requirements of the sensor in question.

In the case of the DataStore component, most databases share the same basic functionalities

such read, write, and delete. Therefore, the factory pattern can be used to have one DataStore

class and more specialized classes that implement the functionalities that are specific to a certain

database. As for the Adaptation component, many actuators will have similar implementations.

Therefore, using this design pattern would allow us not to duplicate the implementations. The

factory pattern also provides some flexibility needed when dealing with classes that share some

similarities but have some differences as well. It provides a level of abstraction which helps hide

the implementation of the sensor classes, since other components only need to call one class and

specify which sensor instance they wish to instantiate.
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5.2 Detailed Component Description

As explained in Chapter 4, the context-aware architecture in this thesis is composed of a sensor, a

context, an inference, and an adaptation component. The general and application data stores are

used to store contexts, facts, and rules. The application data store is also used for the communi-

cations between some of the components. The following subsections will delve more into details

about the components of our proposed architecture.

5.2.1 Sensor Component

Figure 17 shows the sensor component, which contains a SensorFactory class, a Sensor class,

a DataSynchronizer class, and a Sensor controller. The controller is responsible for calling and

instantiating other classes in this component. When the controller receives data from the physical

sensors, it reads the sensors’ types and IDs and instantiates the appropriate Sensor objects using

the SensorFactory class. Since there can be many sensors sending data at the same time, we use

the DataSynchronizer class to aggregate data coming from similar sensors in the same area and

to normalize the data before it is stored in the application data store. Once the data is ready, the

controller uses the DataStore component to write it to the database. It does so by instantiating a

DataStore object using the DataStoreFactory class and the appropriate data store type.

Figure 18 shows the sequence diagram for the interactions between the classes in the sensor

component as well as the interactions of the sensor component with other architectural compo-

nents. As soon as sensor data is received by the controller, a Sensor object is created using the

Factory pattern. Then, the data read by the sensor is transformed and validated. As soon as all

the sensor readings have been processed, the data is sent to the DataSynchronizer in order to be

aggregated and normalized. Finally, an instance of DataStore is created and the data is stored in

the application database.

SensorFactory Class

The SensorFactory class is used to instantiate the correct sensor object using the type of the sensor.

It uses the Factory design pattern discussed in Section 5.1. It contains a static method, called

new_sensor, which takes the sensor type and ID as parameters, as described in Table 3.

Method Description

new_sensor This method takes the sensor_id and sensor_type as parameters and returns
the appropriate Sensor class.

Table 3: SensorFactory Methods Description
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Figure 17: Sensor Component Class Diagram
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Figure 18: Sensor Component Sequence Diagram

Sensor Class

The Sensor class is a general class that contains variables and methods that are common to most

sensors, as described in Tables 4 and 5. There are also specialized sensor classes that inherit

from the Sensor class. Examples of such classes include TemperatureSensor, HumiditySensor, and

MotionSensor illustrated in Figure 17. The SensorFactory class is used to determine which sensor

objects to instantiate.
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Variable Description

sensor_id ID of the sensor device.
sensor_type Type of the sensor device.
max_value Maximum value that can be read by the sensor device.
min_value Minimum value that can be read by the sensor device.
unit Unit of value sent by sensor device.
location Location of the sensor device.

Table 4: Sensor Variables Description

Method Description

is_sensor Static method that takes sensor type and returns true if the sensor type
parameter is equal to sensor type in the class, otherwise it returns false.
This method is called by the SensorFactory class.

transform Method that takes a sensor reading and a policy and returns the value trans-
formed to conform to the policy.

validate Method that takes a value as a parameter and ensures that it is valid. This
method returns true or false.

Table 5: Sensor Methods Description

DataSynchronizer Class

The DataSynchronizer class is responsible for ensuring that the sensor data that is most recent,

normalized, and aggregated. The variables and methods of this class are described in Tables 6 and

7.

Variable Description

synchronized_readings List containing the synchronized readings.

Table 6: DataSynchronizer Variables Description

Method Description

aggregate_data Method that takes the normalized sensor readings and aggregates the
readings so that data can be grouped by criteria such as location and
sensor type.

normalize_data Method that takes the sensor readings and populates the synchro-
nized_data list with the normalized readings.

Table 7: DataSynchronizer Methods Description
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Sensor Controller

The Sensor controller is the component that acts as an entry and exit point to the sensor component.

When the controller receives new sensor data, it instantiates a new Sensor object using the Sensor-

Factory class and the sensor type it receives from the sensor reading. After the data is processed

and is deemed fit to be stored, the controller instantiates a DataStore object in order to write the

sensor reading in the appropriate table of the application database.

Another important aspect of the Sensor controller is that it can reject incoming data if there is

a security compromise. One way to do this is by checking the signature of the sender. If it does

not match a list of allowed sources, it can reject the data it is sending. Another way the controller

can reject data is by verifying that the sender is actually allowed to send data according to some

security and privacy policies stored in the database.

5.2.2 Context Component

The Context component is responsible for creating context instances out of sensor readings, storing

the context instances in the context table in the application database, and managing the context

instances in the application database. The Context component contains a Context class and a

Context controller, as shown in Figure 19.

Figure 19: Context Component Class Diagram
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Figure 20 shows the sequence diagram for the Context component. Upon receiving an event

from the sensor table in the application database, the controller validates the reading using the

validate_sensor_reading() method and checks to see if the context needs to be stored using the

manage_context() method. If it does, the context instance is built using the build_context() method.

Finally, the appropriate DataStore object is used to store the context in the application database so

that it can be used by the Inference component.

Figure 20: Context Component Sequence Diagram
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Context Class

The Context class contains the variables and methods used to manipulate context instances. Tables

8 and 9 list these variables and methods along with a short description.

Variable Description

sensor_value Value received from the sensor device.
sensor_type Type of the sensor device.
sensor_timestamp Timestamp of value received from sensor device.
sensor_location Location of the sensor device.

Table 8: Context Variables Description

Method Description

manage_context Method that manages the stored context instances to determine if
they are still valid and whether to store new context instances.

build_context Method that builds a context instance from the sensor reading while
respecting the syntax guidelines and requirements for context in-
stances.

validate_sensor_reading Method that validates a sensor reading based on stored policies. An
example of such policies can be a “Time to live” (TTL) policy.

Table 9: Context Methods Description

Context Controller

The Context controller is responsible for receiving sensor readings from the application database

as soon as they are stored. A Context object is then created in order to validate the incoming data,

determine whether to store this new information in the application database, and write the built

context instance in the appropriate table of the application database. Similar to the way the Sensor

controller applies privacy and security measures, the Context controller can reject incoming data

in the event of a compromise.

5.2.3 Inference Component

The Inference component is responsible for operating the inference engine. It does so with the

help of a few methods that prepare the input to the engine and run the engine if necessary. In our

work, the architecture is not dependent on the inference engine, and so we can plug any inference

engine in order to perform reasoning. This component contains an InferenceEngine class as well

as a InferenceEngine controller. Figure 21 shows the class diagram for this component.
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Figure 21: Inference Component Class Diagram

Figure 22 shows the sequence diagram for the Inference component. The first thing the con-

troller does upon receiving an event from the context table in the application database is load

adaptation rules, application facts, and most recent context instances. Once this is done, it runs

the inference engine with the rules, facts, and context instances as parameters. Finally, it sends the

inferred data to the Adaptation controller.
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Figure 22: Inference Component Sequence Diagram

InferenceEngine Class

The InferenceEngine class is responsible for preparing the input to the inference engine and run-

ning it. Preparation steps include loading adaptation rules, application facts, and context instances

from the databases and ensuring that syntactic requirements are met. Tables 10 and 11 list these

variables and methods along with a short description.

Variable Description

rules List of rules loaded from the application database.
facts List of facts loaded from the databases.
context_instances List of context instances loaded from the application database.

Table 10: InferenceEngine Variables Description
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Method Description

load_rules Method that fetches the rules from the application database and populates
the rules list.

load_facts Method that fetches the facts from the application database and populates
the facts list.

load_context Method that fetches the context instances from the application database
and populates the context_instances list.

run_engine Method that runs the inference engine using the rules, facts, and context
instances loaded from the application database. It returns the inferred data.

Table 11: InferenceEngine Methods Description

InferenceEngine Controller

The InferenceEngine controller is triggered whenever a new context instance is added to the appli-

cation database. As soon as it is triggered, the controller will make the privacy and security checks

mentioned for the sensor and context controllers. Then, it will instantiate a Datastore object in

order to fetch context instances, facts, and rules from the application database. Following that, it

will instantiate an InferenceEngine object in order to load rules, facts, and context instances and

run the inference engine. If the engine runs successfully, the controller will send a trigger to the

Adaptation component in order to proceed with the inferred data.

5.2.4 Adaptation Component

The Adaptation component ensures creation of the appropriate actuator commands based on the

inferred data from the inference engine, selection of actuators in the environment, and transmission

of the commands to the corresponding actuators. This component also verifies the status of all the

actuators in the environment to ensure that they are functionning. As shown in Figure 23, the

Adaptation component contains an ActuatorFactory class, an Actuator class, and an Adaptation

controller.

Figure 24 shows the sequence diagram for the Adaptation component. When the controller

receives a trigger from the Inference component, it creates a new Actuator object based on the

actuator type using the Factory pattern. Then, it transforms the inferred action into an actuator

command. Finally, it connects to the actuator and sends it the command.
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Figure 23: Adaptation Component Class Diagram
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Figure 24: Adaptation Component Sequence Diagram

ActuatorFactory Class

The ActuatorFactory class is used to instantiate the correct actuator object using the type of the

actuator. It contains one static method called new_actuator that takes the actuator type and location

as parameters, as shown in Table 12.

Method Description

new_actuator This method takes the an actuator type and location as parameters and
returns the appropriate Actuator class.

Table 12: ActuatorFactory Methods Description
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Actuator Class

The Actuator class is a general class that contains variables and methods that are common to most

actuator devices, as described in Tables 13 and 14. There are also specialized actuator classes that

inherit from the Actuator base class. Examples of such classes include Cooler, Heater, and Light.

The ActuatorFactory class is used to determine which actuator object to instantiate.

Variable Description

actuator_id ID of the actuator device.
actuator_type Type of the actuator device.
actuator_status Latest status of the actuator device.
actions List of actions that the actuator can perform.
location Location of the actuator device.

Table 13: Actuator Variables Description

Method Description

is_actuator Static method that takes the actuator type and returns true if the
actuator type parameter is equal to actuator type in the class,
otherwise it returns false. This method is called by the Actua-
torFactory class.

connect Method that takes the actuator ID and physical address and
establishes a connection with it.

convert_action_to_command Method that takes an action and an actuator type and trans-
forms the action to a command that can be understood by the
actuator.

send_command Method that takes a command and an actuator ID and sends
said command to the actuator.

get_actuator_status Method that takes an actuator ID and pings said actuator. If the
actuator responds, the status is stored as “ok”, otherwise it is
stored as “down”.

load_actuator_info Method that takes an actuator ID and returns its information
from the general database.

Table 14: Actuator Methods Description

Adaptation Controller

The Adaptation controller is the unit that manages any input and output data to the adaptation

component. As soon as it receives new inferred data from the inference component, it creates a

new Actuator object using the ActuatorFactory class. Using the action from the inferred data, it
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calls the appropriate methods from the Actuator class to convert the action to an actuator command

and sends the command to the corresponding actuator.

5.2.5 DataStore Component

The DataStore component is responsible for all interactions with any data store or database. This

component can be called and used by other components in the architecture to perform actions

such as get, put, update, and delete on a specific data store. It contains a DataStoreFactory and a

DataStore class as shown in Figure 25.

Figure 25: Datastore Component Class Diagram
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DataStoreFactory Class

The DataStoreFactory class is used to instantiate the correct data store object using the type of the

data store. It contains a static method, called new_data_store, which takes the data store type as a

parameter, as shown in Table 15. This class uses the Factory design pattern to select the appropriate

DataStore object to instantiate.

Method Description

new_datastore This method takes the data store type as a parameter and returns the
appropriate DataStore class.

Table 15: DataStoreFactory Methods Description

DataStore Class

The DataStore class is a general class that contains variables and methods that are common to most

data stores, as described in Table 16. There are also specialized data store classes that inherit from

the DataStore base class. Examples of such classes include MySQL, DynamoDB, and MongoDB.

The methods included in the base class allow the other components in the architecture to perform

basic operations with data stores such as get, put, delete, and update. The DataStoreFactory class

is used to determine which data store object to instantiate.

Method Description

is_datastore Static method that takes the data store type and returns true if the data
store type parameter is equal to data store type in the class, otherwise
it returns false. This method is called by the DataStoreFactory class.

get Method that takes a filter and a table name and fetches the data that
corresponds to the filter from the data store.

put Method that takes the data to be stored and a table name and writes
this data in the given table of the data store.

delete Method that takes a filter and a table name and deletes the data that
corresponds to the filter from the data store..

update Method that takes a filter, the new data, and a table name and updates
the data that corresponds to the filter with the new data provided.

validate_output_format Method that takes data as a parameter and ensures that this data re-
spects the format of the data store.

Table 16: DataStore Methods Description
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5.3 Summary

In this chapter, we discussed the design details of our context-aware architecture in more depth.

Each component was analyzed to show how its internal components communicate with each other.

Also, the variables and methods for each component were presented and discussed.
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Chapter 6

Implementation

This chapter provides more details on the implementation of the context-aware system for smart

city applications developed in this thesis. We begin with an overview of the system requirements.

We then discuss details about the implementation developed for this thesis using the requirements

to justify our choices.

6.1 Context-Aware System Implementation Requirements

Before starting the implementation, a few choices had to be made regarding tools and technology

that meet the implementation requirements for our system. We first identify those requirements in

order to justify the choices made for the implementation.

6.1.1 Programming Language

When the time came to choose the programming language for the implementation, many languages

were considered. After some initial screening, Java and Python were chosen. In order to choose

one of these languages, a set of requirements was introduced.

• Maintainability: When choosing a programming language, it is always important to con-

sider maintainability in order to fix critical issues, develop new features and ensure that the

application evolves with time.

• External libraries and packages: In this implementation, the application has to interact with

external components. With external libraries, these interactions can be made simpler and

more efficient since the libraries are developed independently and optimized for each inter-

action.
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• Object-oriented capabilities: In order to write clean and maintainable applications, object-

oriented concepts and techniques are often required. This feature allows developers to de-

compose the code into smaller logical components using concepts such as encapsulation, ab-

straction, inheritance, and polymorphism, supported in object-oriented programming meth-

ods.

• Speed: One of the key features of the context-aware system developed for this thesis is the

so-called real-time data processing. For this reason, timeliness and processing speed are both

important aspects to consider when choosing a programming language.

Using the requirements described above, the languages Java and Python are compared to de-

termine which one is more suitable for the implementation of the proposed context-aware system.

When considering maintainability, both languages are proven to be suitable, however, we found

Python to be better because it focuses on code “readability” by forcing indentation and using nat-

ural language (English) instead of symbols for some logical operators. Generally, a well written

Python application requires less lines of code than other popular languages like Java.

Both languages allow users to download and use external libraries. In Java, a popular method

of doing this is using a dependency manager called Maven. In this method, the user has to define

and maintain the dependencies in an XML file. Although this is a good method, it is complex and

error-prone. In Python, the use and maintenance of libraries is made simple using the “Pip Installs

Packages” (PIP) package manager. PIP allows users to download and install a single library or

manage a large number of libraries defined in a text file. Overall, both languages enable users to

use external libraries. Java’s method is more robust, while the Python method is simpler.

Object-oriented features and capabilities are important for implementation of context-aware

applications, which explains why the chosen language should allow and support them. Both lan-

guages have object-oriented capabilities, although Java enforces the use of classes and some good

object-oriented practices. Although Python is primarily a scripting language, it is equipped with

the tools to support object-oriented programming. Most of the time, the same application can be

built in both languages using object-oriented concepts.

The final requirement to consider for choosing a desired programming language is speed. When

comparing both languages out of the box, Java is generally considered to be faster than Python.

The reason for that is that Java is a compiled language, while Python is interpreted. That being

said, Python allows the use and integration of modules written in C, allowing developers to write

performance critical sections of the application in C in order to improve performance.

All in all, when analyzing the features of the proposed languages with the requirements, we

found that both languages would be suitable for this implementation. However, choosing Python

allowed us to come up with a working prototype in a short amount of time. The object-oriented
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capabilities of Python allowed us to decompose the code into smaller logical components. Fur-

thermore, if we encounter a feature that requires to be faster, we could simply write it in C for

increased efficiency and performance.

6.1.2 Platform

After choosing the programming language, the next step was to choose a platform to run our

context-aware system. The main choices were (1) to run as a monolithic application, and (2) to

decompose the application into independent services and run them on the cloud. First, we define

the requirements for the platform and development technique in order to justify our choice.

• Scalability: The system should be able to scale up or scale down, depending on amount of

traffic and the load. It should only scale up if it really needs to in order to reduce operational

costs. This requirement is especially important for our application because we need near

real-time performance as some situations may be time critical.

• Security: The nature of the information used in context-aware systems makes security an

important requirement. Security should be integrated in each component of the architecture,

and the communication between components should only be allowed if and when needed.

• Fault tolerance: The application should keep running even if one of the components fail.

This is important because some critical situations require that the application keeps running

since otherwise it could result in undesired, and even catastrophic consequences.

• Independent components: Having independent components means that any developer can

work on one component without having to know details about the others. This can also

improve code maintainability significantly. Furthermore, components do not need to know

about the implementation of other components other than the interface, that is, they only

need to know which input they are receiving and what output they need to produce. Finally,

developing independent components can help with fault tolerance, since the components do

not depend on each other. It also makes it easier to identify the source of a failure when it

occurs.

Given these requirements, we decided to implement our architecture as independent compo-

nents on Amazon Web Services (AWS). AWS is a cloud platform that offers various services

ranging from computing to database storage. The reasons we chose AWS are as follows:

67



• It offers flexibility, security, performance, and scalability.

• It has many cloud computing services that meet the technological needs of businesses and

individuals. Each one of their services is independent from the others, allowing for more

flexibility when designing and building an infrastructure.

• It puts a lot of emphasis on security, and they offer many services to easily manage the

security of an application. In our implementation, we have used the Identity and Access

Management (IAM), Cognito, and Key Management Services (KMS) services to manage

security. These services will be explained in more details in the next section.

• It offers many services that are considered “serverless”, which are components that are fully

managed by a third-party provider. In other words, there is no need to worry about provi-

sioning and maintaining servers. Finally, AWS offers a range of performance, where a client

can pay more to receive high performance.

It is important to note that AWS is not the only platform that can be used for this implementa-

tion. In fact, any cloud provider could be used to host and run the implementation. An interesting

alternative that can be used in case someone wanted to use a non-profit cloud platform is Open-

Stack, which is a free and open-source software platform for cloud computing. In this thesis, we

use AWS for convenience and ease of use, and because it is well documented.

6.2 Implementation Details

In this section, we discuss how we leverage some AWS services in order to build a highly available,

scalable, and secure serverless context-aware architecture for smart city applications. Figure 26

shows a high level architecture of the AWS implementation. To better understand this architecture,

we explain the AWS services in some detail.

6.2.1 AWS Services and Architecture Description

As shown in Figure 26, there are different AWS resources and services used in the architecture.

The following is a list of these services along with a description of their functionality.

• Lambda: AWS Lambda is a high-scale, provision-free serverless computing service. It is

described as serverless because Amazon takes care of setting up and maintaining the servers

on which the application runs. That is, the end users do not need to worry about the servers.
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Figure 26: AWS Implementation Architecture

69



Lambda functions can be triggered by other AWS services such as API Gateway, Cloud-

watch, and AWS IoT. Lambda functions can also be run periodically. These functions enable

development of reactive, event-driven systems. Lambda functions scale well “horizontally”,

as more copies of the function are run in parallel when there are multiple simultaneous oc-

curring events. AWS Lambda is used in our work to run each of the components.

• DynamoDB: DynamoDB is a fast, flexible, and reliable non-relational database service hosted

by AWS. This database is fully managed by AWS, in the sense that users do not have to worry

about hardware provisioning, setup and configuration, throughput capacity planning, repli-

cation, software patching, or cluster scaling. This can be useful for smart city applications in

which scalability, speed, and reliability of the database are very important features to have.

As shown in Figure 26, DynamoDB is used in the context-aware architecture developed in

our work.

• AWS IoT Core: AWS IoT Core is a managed cloud platform that lets the connected devices

interact securely and reliably with cloud applications hosted on AWS. AWS IoT Core can

support billions of devices and trillions of messages, and can process and route those mes-

sages to AWS endpoints and to other devices reliably and securely [IOT]. In our work,

IoT Core is used to receive data from the sensors and to send data to the actuators in the

environment.

• API Gateway: Amazon API Gateway is a fully managed service that makes it easy for devel-

opers to publish, maintain, monitor, and secure APIs at any scale. APIs can be created to act

as a point of entry to the back-end of various applications. Amazon API Gateway handles all

of the tasks involved in accepting and processing up to hundreds of thousands of concurrent

API calls, including traffic management, authorization and access control, monitoring, and

API version management. API Gateway is used to create endpoints that will allow users to

obtain required details of the context information and adaptations stored in the application

data store.

• SNS: Amazon Simple Notification Service (SNS) is a web service that enables users to easily

set up, operate, and send notifications from the cloud. It provides developers with a highly

scalable, flexible, and cost-effective capability to publish messages from an application and

immediately deliver them to subscribers or other applications. Amazon SNS follows the

“publish-subscribe” messaging paradigm, with notifications being delivered to clients using

a “push” mechanism that eliminates the need to periodically check or “poll” for new informa-

tion and updates. This service is used to send notifications to the users of the context-aware

system.

70



• Cognito: Amazon Cognito is an AWS services that allows developers to easily add user

sign-up and authentication to mobile and web applications. Amazon Cognito also enables

the authentication of users through an external identity provider and provides temporary se-

curity credentials to access back-end resources in AWS or any service behind Amazon API

Gateway. Amazon Cognito works with external identity providers that support SAML or

OpenID Connect, social identity providers (such as Facebook, Twitter, Amazon), or cus-

tom identity provider. This service will be used to authenticate users to the web or mobile

application used in our context-aware system.

• IAM: The Identity and Access Management (IAM) service allows developers to securely

control individual and group access to AWS resources. User identities can be created and

managed, and permissions can be granted to those IAM users to access specific resources.

Permissions can also be granted to users outside of AWS. Another interesting feature is the

ability to create roles that contain access policies. Roles can be attached to AWS resources

to control access between the various AWS resources in the architecture. This service is used

to control access and communication between the various components in our architecture.

• KMS: AWS Key Management Service (KMS) is a managed service that lets developers easily

encrypt their data. AWS KMS provides a highly available key storage, management, and

auditing solution for developers to encrypt data within their applications and control the

encryption of data stored across AWS services. KMS is used to manage the keys used to

encrypt the databases in our context-aware architecture.

As shown in Figure 26, the architecture includes four main components, namely sensor, con-

text, inference, and adaptation components. These components were discussed in details in Chap-

ters 4 and 5. Each one of these components contains a Lambda function, which contains all the

logic for the component, including all the sub-components and classes described in Chapters 4

and 5. Each component can be considered as an independent microservice, and can be developed

and maintained on its own, i.e. independent of other components. The components also contain

a DynamoDB database. In reality, this can be either separate database instances or the same in-

stance, depending on the requirements. For the purpose of this thesis, the same database instance

is used for all data storage needs, and the components use different tables in the database. The

DynamoDB instance illustrated with each component also represents the general data store as well

as the application data store, described in Chapters 4 and 5.

The point of entry and exit of our AWS architecture from the devices in the environment comes

through the AWS IoT Core service. This component is responsible for managing all the devices in

the environment securely and triggering the Lambda function from the sensor component. When
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creating the Lambda function, one simply needs to configure a trigger from AWS IoT Core. Then,

the Lambda function will have access to all the data coming from the sensors through the “event”

variable. Once the data arrives, the Lambda function transforms, validates, and aggregates the data

and stores it in the “SensorReadings” table in DynamoDB. Once the data is stored, the Lambda

function from the context component, which is configured with a DynamoDB trigger, will receive

an event with all the sensor data stored in the application database since the last trigger. The

Lambda function in the context component will then manage, build, and store the context instances

in the “Context” table in DynamoDB. This in turn will trigger the Lambda function from the

inference component. This function is configured to receive triggers from the “Context” table in

DynamoDB. Upon receiving the new context instances from DynamoDB, the Lambda function in

the inference component proceeds to load the rules and facts from the application database and

runs the inference engine. When the inference engine finishes its run and terminates, the inference

Lambda function sends an event to the Lambda function in the adaptation component. The Lambda

function in the adaptation component will in turn determine if an action on the environment is

required, and if positive, it chooses the actuators, loads their metadata, and sends the appropriate

signals to those actuators through AWS IoT Core. In addition, the adaptation Lambda function

stores the results in the application database and sends a notification to SNS in case any application

users needs to be notified.

From a user’s perspective, a web or mobile application would be the point of entry to the

system. To access the application, the user authenticates himself with Amazon Cognito. Once

this is done, the user will have access to previous notifications and will be able to receive further

notifications as they arrive. Also, the user will have access to the adaptation results, which will

be stored in the DynamoDB instance in the adaptation component. In order to have access to

this information, a GET API will be created in API Gateway. This API will point to a Lambda

function that will be responsible to fetch the required data from the application database, format

it, and return it to API Gateway, which will make it available to users through their web or mobile

application. By doing so, a level of transparency is provided to the users, as they will know

exactly what triggers notifications, and they will be able to investigate using the results stored in

the application database.

6.2.2 Privacy and Security

As mentioned in the previous chapters, privacy and security are of the utmost importance when

it comes to smart cities because of the sensitivity of the data being used and the impact of the

consequences in case of a breach. For this reason, privacy and security must be incorporated at

each step of the architecture. As mentioned in the previous subsection, Amazon Cognito will be
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used for user authentication and Amazon IAM will be used to create roles and policies in order to

control the communication between the various components in our proposed architecture.

User Authentication

Amazon Cognito enables developers to easily setup, sign-up, and authenticate themselves using a

custom identity for web and mobile applications. Amazon Cognito also enables the synchroniza-

tion of data across many user devices. So if a user performs an action on the mobile application,

the resulting changes would be applied to the web application if there was one.

In addition to providing a secure and scalable authentication solution, Amazon Cognito offers

the ability to set up password policies and Multi-Factor Authentication (MFA). Password policies

may include characteristics such as password length, types of characters, and password duration.

Setting up password policies provides an additional layer of security and protects users by forcing

them to follow best practices. Configuring MFA in Amazon Cognito means that users need to sign

in using their password and some automatically generated code. This can be done using SMS;

users provide their phone numbers when signing up, and each time they sign in, they receive a

temporary code via SMS, which they will then use to access the application. Using MFA for

authentication provides users with more protection in the event of a password compromise since

accessing the application requires an additional step.

Access Control

Access control will be enforced using the Amazon Identity and Access Management (IAM) ser-

vice. Several roles are created for the components in the architecture, each role having the nec-

essary policies to allow the component to perform its tasks. These policies act as permissions,

controlling access and specific actions between components in the architecture. In what follows,

we give an example in Figure 27 to illustrate how IAM roles function in AWS.

The role shown in this example is used by a Lambda function to read data from DynamoDB.

The role is divided into two sections, namely a version and a statement section. The version section

is hardcoded and does not need to be changed. The statement section is where the role is defined.

It is further divided as follows:

• Action: The “Action” attribute represents a list of actions that are associated with this role. It

is written as “resource:action”. In the case of the example illustrated in Figure 27, the only

resource present is DynamoDB, and the actions included are BatchGetItem, DescribeTable,

GetItem, ListTables, Query, and Scan.
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Figure 27: IAM Role Example

• Effect: The "Effect" attribute determines whether to allow or deny the specified actions on

the resource specified.

• Resource: The “Resource” attribute specifies which resource or resources the role is applied

to. The resource is specified using its Amazon Resource Name (ARN). In the example

illustrated above, the resource specified is the Sensor table in DynamoDB.

Roles can be customized and tailored to fit specific application and business needs. They also

allow for an efficient and secure way to control access between components in a system.

Confidentiality

In order to protect user data and ensure its confidentiality, the databases in the architecture must

be encrypted. One of the important features of DynamoDB is that it allows developers to enable

fully managed encryption at rest. This is done using the keys stored in AWS Key Management

Service (KMS). This encryption protects all the data in the database, including the primary keys,

indexes, streams, and backups. This allows the application to be compliant to various policies and

regulations enforced by governments and users.

Encryption of DynamoDB instances can be done with the help of AWS KMS. KMS manages

the keys that are used to encrypt the databases at rest. In order to encrypt data in a DynamoDB

table, the developer must enable encryption when creating the table. The developer must then

choose a customer master key (CMK) to encrypt the table. The first type of key is the AWS CMK,
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which is owned and managed by AWS. The advantage of this type of key is that developers do

not have to worry about the key at all, as AWS takes care of the encryption. However, this also

means that developers have no control over the CMK or the encryption. The second type of key is

customer managed CMK. This type of key is created, managed, and owned by the developers. This

gives developers full control over the key, making them responsible for ensuring that any policies

are up-to-date and proper cryptographic rotation is put in place. The last type of key is the AWS

managed CMK. These are keys that are created and managed by AWS, but developers can see

these keys and audit them if needed.

It is important to note that when a component or a user with appropriate permission accesses

an encrypted table, DynamoDB takes care of the decryption, without any changes needed by the

developers. Furthermore, encrypting tables does not affect the database performance, and all the

queries and transactions work the same way on encrypted tables as they do on non encrypted tables.

6.3 Summary

In this chapter, we discussed implementation details of the context-aware architecture proposed

in this thesis. The requirements for the features of desired programming language and platform

were analyzed, based on which we selected Python to develop the implementation, and selected

AWS as the platform. The various AWS resources and services used in this implementation were

presented and discussed in order to get a better understanding of the overall cloud architecture. In

this implementation, a special emphasis was put on privacy and security features, since the type of

information that can be used in smart city applications is sensitive. The source code for the imple-

mentation can be found at https://github.com/ZakiChammaa/aws-context-aware-implementation.

In the next chapter, a case study will be presented in order to better understand the proposed archi-

tecture and to show the implementation at work.
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Chapter 7

Case Study

In this chapter, we introduce a case study to showcase the implementation discussed in the previous

chapter. The case study involves efficient configuration control for smart rooms. Many users with

different preferences can use the rooms, and the context-aware system intelligently determines

which preferences are to be applied in different contexts in the rooms.

7.1 Smart Room Configuration Control

A general description of the problem is as follows:

A Smart Building (SB) is required to have a finite number of Smart Rooms (SR), where

each SR has to automatically configure its comfort level according to the preferences

of its occupants subject to certain constraints (policy) imposed by the Supervisory

System (SS) that manages the SB.

We first provide an abstract view of SR settings in the SB, and emphasize on the role and respon-

sibilities of SS in creating such views. Next, we introduce the specific instance of the problem

solved and provide the solution steps that bring out the essential aspects of “smartness”. Finally,

we give an overview of possible generalizations to the algorithms in this approach and motivate

how solutions to different conceptualizations of the general problem can be realized.

The SS determines, after requirements gathering and analysis, the set of sensors and actuators

to be installed in different rooms of SB. They in principle determine the comfort category of every

room. As an example, if a temperature sensor and a humidity sensor are installed in a room that

communicate respectively with Thermostat and Humidifier actuators, then the comfort category

of this room is defined by the range of temperature and humidity values that these actuators can

handle. Assuming that each actuator is uniquely associated with a sensor we can restrict our

discussion abstractly to the comfort attributes (features) associated with the services of sensor

76



types. Thus, the room with Thermostat and Humidifier sensors has the set of comfort attributes

{Temperature, Humidity}. By putting together such comfort attributes for all SRs in a SB, the

SS creates the set CA(B) = {a1, a2, · · · , an} of comfort attributes for a building SB. This set is

predetermined by SS.

In a SB, some SRs may have only one comfort attribute, some SRs may have two comfort

attributes, and in general the set of comfort attributes for a SR in SB is a non-empty subset of

CA(B). Thus, the total collection of possible comfort attributes for all rooms in SB is CA(B),
the set of all subsets of CA(B). It is well known that L(B) = {CA(B),⊂,∪,∩} is a complete

lattice, if we let the minimum element of the lattice be ∅. Thus, the set of comfort attributes

for any room SR in SB is a node in this lattice. Knowing the range of values that a sensor can

generate (and the actuator capabilities), the SS can associate for each attribute ai ∈ CA(B) a

unique ordered set V (ai) of atomic values. That is, in the presentation of set V (ai) the atomic

values are listed in increasing order, as in V (Temperature) = {18, 19, · · · , 26}. By uniqueness

we mean V (ai) ∩ V (aj) = ∅, for i 6= j. The set V (ai) defines all possible comfort levels that

an attribute ai ∈ CA(B) can achieve. The node s = {ai1, · · · , aij} in the lattice CA(B) that is

associated with a room SR can achieve the collection of comfort levels for the room SR defined by

the set

SRL(SR) = {s(x1, x2, · · · .xj)|x1 ∈ V (ai1), · · · , xj ∈ V (aij)}

Thus the lattice generates all possible comfort levels for the rooms in B. Because of this closure

property, every smart adaptation in every room can be executed by an actuator in that room.

7.1.1 Role and Responsibilities of SS

The role of SS is “technical and administrative manager of SB”. From gathering requirements,

acquiring devices, setting up each SR in the building with sensor/actuator networking, and defining

the roles and policies of SR users in SB, the SS takes a crucial role in the safe functioning of the

SB. Below are the primary responsibilities of SS. The adaptation mechanism that we discuss later

in this section assumes that these roles are fulfilled.

• Room Comfort Level: The SS assigns a unique ID for each SR, defines its location, and

assigns the set of sensors/actuators for each SR. In addition, the SS defines the sets CA(B),

CA(SR) for every SR in SB, and SRL(SR) for every room in SB.

• Sensor/Actuator Level: The SS provides IDs for each device, and precisely specifies the

services provided by each device. In particular, the SS specifies for each sensor its type, the

range of values, and the units of measurements, all of which will be used for validating the

correctness of the data. Whenever there is a modification in sensor/actuator configurations
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or capabilities in a SR, the sets CA(SR) and SRL(SR) are redefined and uploaded by the

SS for dynamic adaptation.

• People Level: The SS provides an ID and assigns a Security Level Clearance (SCL) for each

individual registered in the SB (SCL may be dependent on the role played by the person).

The SS also defines the set of SRs that can be accessed by each individual.

• Policy Level: The SS defines “Configuration Control Policies” that are used by every SR

adaptation system. A policy is a rule that is either global to all rooms in the building B or is

local to each SR. For each room SR, the SS grants to each person p a “Preference Comfort

Choice” that can be met during adaptation, using SRL(SR). An adaptation of comfort level

in SR is enforced by applying these policies in dynamically changing local contexts.

7.2 Specific Instance: Problem Statement

We assume that the comfort attributes for all the rooms in SB are “temperature, lighting, and

window shades”. For the sake of clarity of presentation we consider all rooms in SB to have all the

three attributes and there are no global policies. We explain later how the algorithms in the current

solution can be modified easily to satisfy solutions to several generalizations. We require every SR

in SB to adjust the room temperature, lighting, and window shades automatically according to the

preferences of the occupants of the room subject to the following constraints:

• C1::Initial Configuration: Room is empty, lights are not on, window shades are down

(closed) and the room temperature is 22 degrees.

• C2::Dynamic Configuration: Room is not empty. The room temperature, lighting, and win-

dow shades are to be configured according to the preferences of the highest authority inside

the room. The person of highest authority is one who has the highest SCL granted by the SS.

More than one person may hold the same SCL. In the case that more than one person holds

the highest SCL in the room, the preferences of the person who was in the room first are to

be applied.

This is a simple case study because of the small number of sensors, actuators, and rules for adap-

tations, regardless of the number of persons inside the room at any one instant and the room size.

We discuss in the following sections (1) modeling the problem, (2) user authentication protocols

for “entry” to SR and “exit” from SR, and (3) adaptation algorithms for achieving room comfort

level according to constraints C1 and C2.
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7.3 Abstract Modeling of Specific Example

Every SR has a unique ID, and has only one door that is used for entry as well as exit. Every

sensor is abstracted by its ID, its type, the unit of measurement, and the minimum and maximum

values transmitted by it. Every actuator has a unique ID and a type. Outside the door to the room

SR is a sensor IN , and inside the frame of the door is a sensor OUT . They monitor the entry

into the room and exit from the room of a person who has a unique Smart Card (SC) in which

the ID and SCL of the person are embedded. In this case study, the set CA(SR) consists of the

attributes “Temperature”, “Light”, and “Drape”. The predefined sets of comfort levels (the Vs

defined in Section 7.1) for these attributes, regarded as “enumerated types”, are given specific

names below(for readability):

• Temperature Comfort Levels: TCL = {18, 19, · · · , 26}, the range of integers in the range

18 to 26. It defines the minimum and maximum temperatures allowed in the room.

• Lighting Comfort Levels: The three levels set by SS: LCL = {Low, Medium,High}

• Drape Comfort Levels: The three levels set by SS: DCL = {Down, Middle, Up}

The default comfort level of SR is 〈22, Low,Down〉. The set of all possible comfort levels is

SRL(SR) = {〈x, y, z〉|x ∈ TCL, y ∈ LCL, z ∈ DCL}. Inside the room are three actuators

TA, LA, and DA. The actuator TA is to execute temperature commands, the actuator LA is to

execute lighting commands, and the actuator DA is to execute drape commands. The execution of

a command takes some time, which is largely implementation dependent. In our specification of

system behaviour we can abstract away the time and assume synchronization of commands.

7.3.1 Data Stores

In the architecture discussed in Chapter 4, we have used two data stores, called Application Data

Store (ADS) and General Data Store (GDS), to manage sensor readings, contexts, facts and rules

pertaining to a specific application analysis. To support user authentication and adaptation, we

organize the information supplied by the SS in the following tables:

• Sensor table is maintained in GDS and it contains metadata on the sensors used by the appli-

cation. The attributes of this table are {SensorID, SensorType,RoomID,MinV alue,MaxV alue, Unit}.
This table is used to transform and validate sensor readings.

• Actuator table is maintained in GDS and it contains metadata on the actuators used by the

application. The attributes of this table are {ActuatorID,ActuatorType,RoomID}. By
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associating SensorID and ActuatorID with RoomID, we model precisely those comfort

attributes that a room can have.

• Action table is maintained in GDS and it contains all the actions that the actuators defined in

the database can perform. The attributes of this table are {ActuatorID,Action, Command}.
The “Action” attribute refers to the action name, while the “Command” attribute refers to the

actual command that needs to be sent to the actuator. Thus, the set of comfort levels that a

room can achieve are defined by the actions (capabilities) of actuators in that room.

• User table is maintained in ADS and it contains information related to the users of the appli-

cation. For each user, the SS associates a USERID and SCL. Hence, the attributes of this

table are {UserID, SCL}.

• Room table is maintained in ADS and is used to determine if a user has access to a specific

room. The attributes of this table are {RoomID, UserID}.

• Preferences table is maintained in ADS and it contains the comfort level preferences for

each user for all rooms where he/she is allowed access. The attributes of this table are

{UserID,RoomId, Temperature, Light,Drape}.

Table 17 summarizes the information about the tables presented above and describes metadata on

those tables in order to better understand the purpose of each table and to see which component

can request data from each table.

Table Name Data Store Purpose Component Access

Sensor GDS Store metadata on sensor devices. Used
to transform and validate sensor readings.

Sensor

Actuator GDS Store metadata on actuator devices. Adaptation
Action GDS Store actions and commands for each ac-

tuator. Used to determine actuator com-
mand based on action.

Adaptation

User ADS Store user ID and SCL for all users. Used
when determining room comfort level.

Inference

Room ADS Store RoomID and UserID for each room.
Used to determine which users are autho-
rized to access specific rooms.

Inference

Preferences ADS Store UserID, RoomID, and comfort level
attributes for all users for each autho-
rized room. Used to determine adapta-
tions based on user preferences.

Inference

Table 17: Metadata on Tables in ADS and GDS
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7.4 The Dynamics of the Specific Example

The three stages in the dynamics of this example are Initialization, Authentication, and Adapta-

tion. For each stage, we informally describe the interaction of the components in the architecture

illustrated in Figure 12 from Chapter 4 and give a precise specification of the algorithmic steps. In

the specification, we use the key words ActiveUsers to refer to the set of people inside a SR at any

instant, Adaptations to refer to the comfort level that is defined by the system policy (Constraint

C2), C to denote the context information, SUID to denote the ID of the person of highest au-

thority in the room SR, and Configure to denote the command of the actuator that will execute the

action achieving the adaptation.

7.4.1 Initialization

Initially the SR is empty. The context component sets ActiveUsers to empty set, and constructs

a context instance following step 2 from the INITIAL algorithm and stores it in the Context ta-

ble in ADS, which is used to store active context information. This in turn sends a trigger to the

inference component, which determines that the preference to be chosen is the default one. It

triggers the adaptation component so that it can configure the room comfort with default values

{22, Low,Down}.

INITIAL

1. ActiveUsers← ∅

2. Cinit ← {Null, RoomID, T ime}

3. Adaptation← Preferences(∅, RoomID)

4. Configure← {22, Low,Down}.

Configure will communicate the preferences to the actuators whose IDs are in the Action Table.

7.4.2 Authenticating a User

In order to grant entry only to authorized persons into a SR, the SS creates a smart card SC(p) =

〈uid, scl〉 for each person. The SC consists of the identity uid and the security level clearance scl

assigned to person p registered in the system. The sequence diagram, shown in Figure 28, infor-

mally explains the authentication steps. A more formal authentication algorithm follows it.
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Figure 28: Authentication Procedure

AUTHENTICATE-ENTRY(p)

1. Sensor IN: Sensor IN , installed outside the room SR, scans SC(p) of a person p and copies

Id.SC(p) in uid. It constructs the tuple α = 〈uid, sid〉, where sid is its unique identity, and

forwards the tuple α to the Sensor Component.

2. Sensor Component: It uses sid in α to determine the identifier rid of the SR from the

Sensor(SensorID,RoomID) table. It constructs the tuple β = 〈uid, rid, tsin〉, where

tsin is the timestamp of receiving the tuple α from the sensor IN, and sends it to the Context

Component through the ADS.

3. Context Component: It constructs the context for the authorization request in the format

explained in Chapter 5. Using β it constructs the context Cp = [UserID : uid,RoomID :

rid, Entry_Time : tsin] and sends it to Inference Component through the ADS.

4. Inference Component: It searches the Room table in the ADS for the tuple 〈uid, rid〉. It

sends the tuple 〈Grant_in(uid, rid), Cp〉 to the Adaptation Component and the Application

Database Controller (ADL) if 〈uid, rid〉 is found in the Room table, otherwise it sends the

tuple 〈Deny_(uid, rid), Cp〉 to the Adaptation Component.

5. Adaptation Component: It searches the Sensor table in the GDS and selects the sids cor-

responding to the rid. It then selects the actuator identifier aid corresponding to the sid in

room rid from the Actuator table, selects the command of this actuator that is equivalent to
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the received message from the Action table, and sends it to the actuator for execution. Thus,

if Grant_in(uid, rid) was received, the door opens to let person p enter the room, otherwise

entry is denied to person p.

7.4.3 Adaptation

Adaptation is required whenever a user p enters or exits the room SR. We use Adaptation proto-

cols ADAPT-ENTER(p) and ADAPT-EXIT(p) respectively for entering and exiting the room. The

adaptation policies are the constraints C1 and C2. Tables Users, Sensors, Actuators, Actions, and

Preferences (constructed by SS for all the registered users in the system) are used by the adaptation

algorithms. The interactions of components and the their actions are described in the protocols.

We use the function find(rid, ActiveUsers) in the specification of both ADAPT-ENTER(p) and

ADAPT-EXIT(p) below. This function returns the user identity wid of user in the set ActiveUsers

in room rid who has the highest SCL and entered the room earliest.

SPECIFICATION OF FUNCTION find(rid, ActiveUsers)

The pre-condition for invoking this function is ActiveUsers 6= ∅. The Inference Component

computes the subset of ActiveUsers who all have the highest SCL in the user User table, and

then computes from this set the identity of the person who entered the room earliest, as described

below.

• Compute X = {〈uid, tsin〉|〈uid, rid, tsin〉 ∈ ActiveUsers}. This set extracts partial infor-

mation from the set ActiveUsers who are in room rid.

• Compute Y = {〈vid, tsin〉|〈vid, tsin〉 ∈ X, 〈vid, scl〉 ∈ UserTable , 〈xid, scl′〉 ∈ UserTable,

xid 6= vid, scl > scl′}. This set consists of all active users in room rid who have the same

maximum security clearance level.

• find← wid, where 〈wid, tsmin〉 ∈ Y , 〈vid, tsin〉 ∈ Y, tsmin < tsin

ADAPT-ENTER(p)

1. ADL: Upon receiving 〈Grant_in(uid, rid), Cp〉 from the Inference Component it triggers

the following database operation:

• Update ActiveUsers: From the message 〈Grant_in(uid, rid), Cp〉 received from the

Inference Component, the ADL extracts uid, rid, tsin, and setsActiveUsers← ActiveUsers

∪{uid, rid, tsin}. That is, the ActiveUsers table in the database is updated.
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• Apply Constraint C2 : The ADL triggers the function find(rid, ActiveUsers), which

returns the user identity wid of users in ActiveUsers who has the highest SCL and

entered the room earliest.

• Select Preferences: It selects the preference tuple prefwrid = 〈tel, lil, drl〉 correspond-

ing to the tuple 〈wid, rid〉 from the Preference table, and sends it to Adaptation Com-

ponent. In this case, tel corresponds to the temperature level attribute, lil to the light

level attribute, and drl to the drape level attribute.

2. Adaptation Component: It performs the adaptation by invoking the appropriate set of actua-

tors and their commands:

• Create Adaptation: Adaptations← prefwrid.

• Apply configurations based on adaptations:

Configure ← Adaptations. It searches the Sensor table in the GDS and selects the

sids corresponding to the rid. It then selects the actuator identifier aid corresponding

to each sid in room rid from the Actuator table, selects the command of this actuator

that is equivalent to the received message from the Action table, and sends it to the

actuator for execution.

We need a slightly different protocol for authenticating exit from SR, just to ensure that every one

who exits from a SR was indeed authenticated to enter the room. This is to prevent a group of

people from entering SR at the same instant by the fact that one member of the group was authen-

ticated. The exit authentication protocol is described below.

AUTHENTICATE-EXIT(p)

1. Sensor OUT: Sensor OUT , installed inside the room SR, scans SC(p) of a person p and

copies Id.SC(p) in uid. It constructs the tuple α = 〈uid, sid〉, where sid is its unique

identity, and forwards the tuple α to the Sensor Component.

2. Sensor Component: It uses uid in α and determines the identifier rid of SR from the Sen-

sor(SensorID,RoomID) table. It constructs the tuple β′ = 〈uid, rid, tsout〉, where tsout is the

timestamp of receiving the tuple α from the sensor IN and sends it to the Context Component

through the ADS.

3. Context Component: It constructs the context of authorization request in the format ex-

plained in Chapter 5. Using β′ it constructs the context C ′p = [UserID : uid,RoomID :

rid, Exit_Time : tsout] and sends it to Inference Component through the ADS.
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4. Inference Component: It searches theActiveUsers table stored in ADS for the tuple 〈uid, rid, ?〉,
where ? is a “don’t care” condition. It sends the tuple 〈Grant_Out(uid, rid), C ′p〉 to the

Adaptation Component and the ADL if 〈uid, rid, ?〉 is found in the ActiveUsers table, oth-

erwise it sends the tuple 〈Deny_out(uid, rid), C ′p〉 to the Adaptation Component.

5. Adaptation Component: In case 〈Grant_out(uid, rid), C ′p〉 is received, it searches the Sensor

table in the GDS and selects the sid of OUT corresponding to rid. It selects the actuator

identifier aid corresponding to the sid in room rid from the Actuator table, selects the com-

mand of this actuator that is equivalent to the received message from the Action table, and

sends it to the actuator for execution. Thus, if 〈Grant_Out(uid, rid), C ′p〉 was received, the

door opens to let the person p exit the room, otherwise exit is denied to the person p.

ADAPT-EXIT(p)

1. ADL: Upon receiving 〈Grant_out(uid, rid), C ′p〉 from the Inference Component, it triggers

the following database operation:

• Update ActiveUsers: From the message 〈Grant_out(uid, rid), C ′p〉 received from the

Inference Component, it extracts 〈uid, rid, tsin〉, and setsActiveUsers← ActiveUsers\
{uid, rid, tsin}. That is, ActiveUsers table in the database is updated.

• Apply Constraint C1: If AciveUsers = ∅, then it sends the default adaptation prefer-

ence pref = 〈22, Low,Down〉 to the Adaptation Component.

• Apply ConstraintC2: IfAciveUsers 6= ∅, it triggers the function find(rid, ActiveUsers),

which returns the user identitywid of the user inActiveUserswho has the highest SCL

and entered the room earliest.

• Select Preferences: It selects the preference tuple prefwrid = 〈tel, lil, drl〉 correspond-

ing to the tuple 〈wid, rid〉 from the Preference table, and sends it to Adaptation Com-

ponent. In this case, tel corresponds to the temperature level attribute, lil to the light

level attribute, and drl to the drape level attribute.

2. Adaptation Component: It performs the adaptation by invoking the appropriate set of actua-

tors and their commands:

• Apply Adaptation: Adaptations← prefwrid.

• Apply configurations based on adaptations:

Configure ← Adaptations. It searches the Sensor table in the GDS and selects the

sids corresponding to the rid. It then selects the actuator identifier aid corresponding

to each sid in room rid from the Actuator table, selects the command of this actuator
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that is equivalent to the received message from the Action table, and sends it to the

actuator for execution.

7.5 Extensions

In this section, we discuss two extensions to the case study. The first extension allows different

comfort attributes for different rooms, and permits users to choose a partial subset of comfort

attributes of a room for their preferences. The second extension allows the application of global

policies by the SS.

7.5.1 Different Comfort Attributes and Partial Set of Preferences

In the case study, we assumed that all the rooms had the same set of comfort attributes, and all

users choose preferences based on all these attributes. It can be easily extended to handle smart

room configuration when not all rooms have identical comfort attributes, and users can choose

a partial subset of a smart room comfort attributes as their preferences. As an example, two

rooms R1 and R2, respectively may have comfort attributes {Temperature, Light, Drape},
and {Temperature, Light, Humidity}. The selected sets of preference for a user p with respect

to R1 can be 〈20, ?,Down〉, and with respect to R2 the preferences can be 〈?,Medium, ?〉.

The following sets are precomputed by the SS.

1. For each room SR with ID rid, the set CA(rid)

2. For the set CA(B) =
⋃

ridCA(rid), which is the set all comfort categories for the building

3. For each room rid, the set SRL(rid) = {s(x1, · · · , xk)|ai ∈ CA(rid), xj = V (aj), j =

1, · · · , k}

Internally, the attributes in CA(B) define the comfort attributes in a table. To specify CA(rid)

for a room, we use “NULL” values for the attributes that are not available in that room. Because

the SS creates CA(SR) for each user, the SS will ensure that users don’t assign values to comfort

attributes that are not available in a specific room. To better understand how this works, consider

the above example with rooms R1 and R2. R1 has the comfort attributes “Temperature”, “Light”,

and “Drape”, andR2 has the comfort attributes “Temperature”, “Light”, and “Humidity”. Suppose

that the building has one registered user with user ID uid. Suppose that for R1, the user selects

the value “23” for “Temperature” attribute, the value “Medium” for “Light” attribute, and omits to

provide a value for the “Drape” attribute. Assume that for roomR2, the user’s selected preferences
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are “23” for “Temperature” attribute, “Medium” for “Light” attribute, and “45” for “Humidity”

attribute. In the data store tables, all the comfort attributes in CA(B) are used as attributes of

the comfort table, and the comfort attributes that are unavailable for a given room will be marked

as “NULL”, as shown in Table 18. The internal comfort level is constructed with the attributes

〈Temperature, Light,Drape,Humidity〉, the union of the attribute sets of rooms R1 and R2.

With this change in the data store, all the algorithms presented in the previous sections will work

with no modification. Although the adaptation for a room SR is now dependent on the room

comfortCA(SR) and preferences of user p for room SR, the Select Preferences step inADAPT−
ENTRY (p) (andADAPT−EXIT (p)) will select the preferences of user p (wid) with respect to

the room rid of SR. If any attribute preference is not specified by the user, the default preference

value for that attribute will be substituted at the database level by the SS, before the preferences

are sent for adaptation.

UserID RoomID Temperature Light Drape Humidity

uid R1 23 Medium Down Null
uid R2 23 Medium Null 45

Table 18: Example Preference Table

7.5.2 Supervisory System Policies

For clarity of illustration, we assume that a policy is simple in the following sense.

• All policies must be consistent, meaning that no two policies can contradict each other.

• A policy mentions preferences on one or more comfort attributes for one or more rooms.

• A policy cannot include negation.

• A policy may include time constraints (durations).

Some sample policies that are considered for extending our case study are the following.

• Evening Policy: Every day between 7 PM and 7 AM, the window shades in all SRs are

brought down. This policy applies to all the SRs that have drapes.

• Cost Effective Policy: The lights in a SR are always off when very bright natural light shines

through the windows. User preferences on “Light” are taken into account only during night

time or on cloudy days. This policy applies to all the SRs that have a light actuator as well

as a window.
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In general, a policy (with or without explicit time constraints) from SS is applied by “event-driven”

mechanism. If no explicit time is specified in the policy, the SS can trigger an event to “start”

applying the policy and trigger another event to “terminate” the application of that policy. For

applying a policy in which time constraints are explicit, the SS can “start” and “terminate” through

“clock-triggered” events at the specific times. The SS may wish to apply either one policy or more

than one policy at disjoint time intervals. Consequently, we consider two cases for adaptations.

The SS assigns itself the identification sid with the highest SCL at all times for all rooms.

Case 1: Apply one Policy for one or more SRs

The SS broadcasts the event “start” to all rooms in which a policy has to be applied, and then

adds its ID suid to the set ActiveUsers in each of those room. This will trigger the context-aware

system to perform the steps described in the previous sections for each room. The context-aware

system determines that suid has the highest authority in the SR and applies those preferences for

each room. It is important to note that a policy may only apply to a subset of a room’s comfort level

attributes. Consequently, when a user either enters or leaves a room when the SS policy is in effect,

only the comfort level attributes that are not affected by the SS policy must be configured according

to constraints C1 and C2 described in Section 7.2. When the SS policy needs to be terminated, the

SS broadcasts the “terminate” event to remove the suid from the set of ActiveUsers in all the

affected rooms. The adaptation on exit of suid will be according to the algorithm described earlier.

This mechanism works whether or not the policy has explicit time constraints.

Case 2: Apply more than One Policy on one or more Rooms

When more than one policy needs to be applied on a subset of the SRs in SB, there are three scenar-

ios that might occur. These may be described either by using explicit times or temporal moments

before and after. Since they lead to the same conclusions, we use explicit times for “start” and

“terminate” times for the policies. Let policy P1 start at time t1 and end at time t2, and policy P2

start at time t′1 and end at time t′2.

Case 2.1 t1 < t2 < t′1 < t′2 or t′1 < t′2 < t1 < t2 (Figure 29): The policies are applied sequentially.

In the case where P1 is applied before P2, we must consider “atomicity” in the implementation.

That is, the SS starts by applying P1 by adding a super user with ID suid to the set ActiveUsers in

the rooms affected by the policies (at its local clock time t1) using the method described in “Case

1”. The SS removes the user with ID suid from the set of ActiveUsers in the affected rooms to

terminate the policy (at its local clock time t2). Then the SS resets its local clock to apply policy

P2.
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Figure 29: Policies Occurring Sequentially

Case 2.2 t1 < t′1 < t2 < t′2 or t′1 < t1 < t′2 < t2 (Figure 30): The policy application can be

enforced as shown in Figure 31 if t1 < t′1 < t2 < t′2. There is a time period that starts at time

t′1 and ends at time t2 where both P1 and P2 are applied on a given room. In order to deal with

this scenario, the SS applies P1 first using the same method described for “Case 1”. At time t′1,

when P2 needs to be applied, the SS removes P1 from the room and removes the user with ID suid

from the set of ActiveUsers. It then applies a policy P3 = P1 ∪ P2 to the SR and adds the user

with ID suid back to the set of ActiveUsers. At time t2, the SS needs to remove policy P1 and

keep policy P2 in the SR. It starts by removing P3 from the SR and removes user with ID suid

from the set of ActiveUsers. It then applies P2 on the SR and adds the user with ID suid back

to ActiveUsers. At time t′2, the SS removes policy P2 from the SR and removes the user with ID

suid from ActiveUsers. The other situation t′1 < t1 < t′2 < t2 is dealt with in a similar manner.

Figure 30: Policies Intersecting

Figure 31: Intersecting Policies Example
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Case 2.3 t′1 < t1 < t2 < t′2 or t1 < t′1 < t′2 < t2 (Figure 32 ): Policy application and adaptations

are dealt with as in Case 2.2

Figure 32: Policy Starting and Ending Within Runtime of Another Policy

In fact, through a generalized abstraction, event triggers from SS, and allowing “NULL” values

in the data store implementation of our case study, it is possible to handle extensions with no

modification to the inference and adaptation algorithms discussed in the previous sections.

7.6 Summary

In this chapter, we introduced a case study in which our context-aware system was responsible

for the configuration control of a smart room. The case study involved many users with different

preferences, and the context-aware system was responsible for determining the correct preferences

to apply to a room. Furthermore, we described two extensions to the original case study in order

to enrich it. In the first extension, we described an additional requirement in which smart rooms

in the building could have different comfort attributes from one another. In the second extension,

we discussed how the SS can apply global policies to a subset of the SRs in the SB. This extension

explored a more complex example and allowed us to demonstrate how different types of policies

are applied by the SS.
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Chapter 8

Conclusion and Future Work

The smart city vision originated with the conviction that sensor technology and information and

networking technologies can be efficiently integrated to provide efficient and uninterrupted ser-

vices to urban areas which continue to attract many people from rural areas. In order to realize

and support this vision, it is necessary to develop a rigorous platform where software engineering

principles are applied to manage big data and integrate services from different application domains

such as transportation, healthcare, and energy supply. This thesis addresses one fundamental issue

in this context, namely the development of a generic context-aware architecture that can be used to

build smart city applications. A summary of the thesis contributions together with possible future

research are as follows.

8.1 Summary of Contributions

In this thesis, we presented a context-aware architecture for smart city applications. The focus

of this work was to develop a generic architecture that can support and span various smart city

applications, with a focus on privacy and security mechanisms at different levels. In our work, we

considered context as a set of dimensions and attributes, and used it as a main component in the

proposed architecture. This simple yet powerful method of modeling context has a well-defined

representation that provides smart city applications with a rich way to model and represent data.

Furthermore, an inference engine was used in our work to reason with context and infer new data.

The proposed architecture can interface with any inference engine provided it knows what input

to send and what output to receive. Finally, application and user policies were used to ensure

protection of user information and roles with different levels of permissions were used to control

the communication between the architecture components. These features helped us develop a

generic and secure context-aware architecture for smart city applications.
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In Chapter 1, we presented a list of contributions that we set to achieve in this thesis. The

first contribution discussed in Chapter 1 describes the set of requirements to govern the design and

implementation of a Wireless Sensor Network (WSN) in a smart city application. The rationale is

that WSN is the foundation for building context-aware system architecture. In Chapter 2, a brief

literature review of WSNs was presented. This embraced issues such as fault tolerance, privacy,

and security requirements that must govern WSNs in smart city applications.

The second and third contributions presented in this thesis are to present a robust architecture

for a context-aware system that incorporates privacy and security at every layer and to interface

said architecture with an inference engine. In order to come up with a suitable context-aware

architecture for smart city applications, we first started by reviewing other architectures from the

literature in Chapter 3. By doing so, we were able to highlight the advantages and disadvantages

of each solution and present an architecture that would address the shortcomings. While reviewing

those architectures, we found that many of them did not address privacy and security concerns that

often arise in context-aware systems. We also found that many did not discuss the data models

used to represent information such as sensor data, context, and user preferences. In Chapter 4, we

presented the context-aware architecture developed in this thesis. The various components were

explained in detail, and the set of interactions between them was explained. A special focus was

given for privacy and security, and solutions such as privacy policies, role-based access control,

and encryption were discussed at each level of the architecture. In Chapter 5, a detailed software

design was provided for each component of the context-aware architecture discussed in Chapter 4.

Class diagrams and sequence diagrams were presented for each component in order to explain the

inner workings of the components.

The final contribution was to implement a proof of concept and present a case study using the

proposed architecture. Chapter 6 presented an implementation of the context-aware architecture

discussed throughout the thesis. The proof of concept was developed on Amazon Web Services

(AWS) using the Python programming language after it was determined that AWS and Python

would meet the implementation requirements that we defined. The AWS services that were used in

the implementation were discussed in details. Finally, we presented a “Smart Room Configuration

Control” case study in Chapter 7. This case study involved having multiple users with different

comfort level preferences use a smart room in a building. We were able to demonstrate how our

proposed implementation intelligently determined which preferences to apply in the room based

on some defined constraints. We further extended this case study to support different comfort

attributes in different smart rooms in a building and to show how the “Supervisory System” can

apply global policies on a subset of the smart rooms. These extensions allowed us to show how

the proposed architecture and algorithms can be used to support a wide range of requirements

without requiring any changes to the architecture, hence demonstrating the extensibility and the
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generic aspect of the proposed architecture. This case study was inspired by the work presented

in [MEeAT16], where the authors discuss an example in which they used their context-aware

architecture for a smart living room. However, the authors failed to provide details on how they

process and store user preferences and failed to demonstrate how their work can support more

than one user in the room. Our case study addressed both of those issues and provided a complete

solution that is easy to extend.

It is important to note that our proposed architecture is not restricted to smart buildings as it can

be used for various smart city applications. An interesting example could be a smart traffic light

system, where traffic is allowed based on various external sensors such as cameras and motion

sensors. In this example, the external sensors would provide data to our context-aware system,

where it would then be processed in order to generate adaptations that would indicate which traffic

light should turn on. This simple example could be extended to include all the traffic lights on a

road. This extension would require more complex rules combined with a sophisticated inference

engine in order to generate adaptations that account for all the sensors in the environment, and

since our architecture can interface with any inference engine, we could easily integrate the new

inference engine with our system.

8.2 Future Work

In our view, context-aware architectures are important pillars of smart city development. Therefore,

improving these architectures can vastly improve their performance, which would help in achieving

the goals of smart cities. Some of the necessary improvements are the following:

• Evaluate the architecture for different smart city applications such as traffic management, air

pollution, and energy consumption to further validate how generic the architecture is.

• Evaluate the architecture with a higher volume of data coming from a variety of sensors

to study the scalability and fault tolerance aspects of the architecture. This would provide

further research opportunities.

• Incorporate an intrusion detection system (IDS) in the architecture to provide an additional

layer of security against some common attacks.

• Characterize the big data that arises from the Internet of Things (IoT) that forms the basis of

smart city design and come up with efficient storage and retrieval methods in order to support

different types of rigorous analysis and reasoning with such data to assess smartness.

93



Bibliography

[AANC+12] "Suha Alawadhi, Armando Aldama-Nalda, Hafedh Chourabi, J. Ramon Gil-Garcia,

Sofia Leung, Sehl Mellouli, Taewoo Nam, Theresa A. Pardo, Hans J. Scholl, and

Walker" Shawn. "building understanding of smart city initiatives". In "Hans J.

Scholl, Marijn Janssen, Maria A. Wimmer, Carl Erik Moe, and Leif Skiftenes Flak",

editors, "Electronic Government", pages "40–53", "Berlin, Heidelberg", "2012".

"Springer Berlin Heidelberg".

[AAS18] Ammar Alsaig, Vangalur Alagar, and Nematollaah Shiri. Formal context represen-

tation and calculus for context-aware computing. In Phan Cong Vinh and Vangalur

Alagar, editors, Context-Aware Systems and Applications, and Nature of Computa-

tion and Communication, pages 3–13. Springer International Publishing, 2018.

[ABD15] Vito Albino, Umberto Berardi, and Rosa Maria Dangelico. Smart cities: Definitions,

dimensions, performance, and initiatives. Journal of Urban Technology, 22(1):3–21,

February 2015.

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and

Pete Steggles. Towards a better understanding of context and context-awareness.

In Proceedings of the 1st International Symposium on Handheld and Ubiquitous

Computing, HUC ’99, pages 304–307. Springer-Verlag, 1999.

[AHSC12] Muhammad R Ahmed, Xu Huang, Dharmandra Sharma, and Hongyan Cui. Wireless

sensor network: Characteristics and architectures. International Journal of Electri-

cal, Computer, Energetic, Electronic and Communication Engineering, 6(12):1398

– 1401, 2012.

[APW17] V. Alagar, K. Periyasamy, and K. Wan. Privacy and security for patient-centric

elderly health care. In 2017 IEEE 19th International Conference on e-Health Net-

working, Applications and Services (Healthcom), pages 1–6, Dalian, China, October

2017.

94



[AvH04] Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL, pages

67–92. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on con-

text&#45;aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, June

2007.

[BTR15] B. R. Tapas Bapu, K. Thanigaivelu, and A. Rajkumar. Fault tolerance in wireless

sensor networks – a survey. International Journal of Computer, Electrical, Automa-

tion, Control and Information Engineering, 9(2), February 2015.

[CBN11a] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart cities in europe. Journal

of Urban Technology, 18(2):65–82, 2011.

[CBN11b] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart cities in europe. Journal

of Urban Technology, 18(2):65–82, 2011.

[Che04] Harry Lik Chen. An Intelligent Broker Architecture for Pervasive Context-Aware

Systems. PhD dissertation, University of Maryland, 2004.

[Che10] Thomas M. Chen. Smart grids, smart cities need better networks [editor’s note].

IEEE Network, 24(2):2–3, March 2010.

[CPFJ04] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: standard ontology for ubiquitous

and pervasive applications. In The First Annual International Conference on Mobile

and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004.,

pages 258–267, August 2004.

[Dey01] A. Dey. Understanding and using context. Personal and Ubiquitous Computing,

5:4–7, February 2001.

[FC04] Patrick Fahy and Siobhán Clarke. Cass-middleware for mobile context-aware appli-

cations. January 2004.

[GDB+13] "AmirHosein GhaffarianHoseini, Nur Dalilah Dahlan, Umberto Berardi, Ali Ghaf-

farianHoseini, and Nastaran Makaremi". "the essence of future smart houses: From

embedding ict to adapting to sustainability principles". "Renewable and Sustainable

Energy Reviews", "24":"593–607", "2013".

[GMW10a] O. Garcia-Morchon and K. Wehrle. Efficient and context-aware access control for

pervasive medical sensor networks. In 2010 8th IEEE International Conference

95



on Pervasive Computing and Communications Workshops (PERCOM Workshops),

pages 322–327, March 2010.

[GMW10b] Oscar Garcia-Morchon and Klaus Wehrle. Modular context-aware access control

for medical sensor networks. In Proceedings of the 15th ACM Symposium on Ac-

cess Control Models and Technologies, pages 129–138, New York, NY, USA, 2010.

ACM.

[HAAK+17] Muhammad Hamza Akhlaq, Mohammad Arif, Inam Khan, Nazia Azim, Shaheen

Ahmad, Pakistan , Abdul Wali Khan, and University Mardan. Advantages, applica-

tions and research challenges in wireless sensor networks. 5:41–46, april 2017.

[HEH+10] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak,

and P. Williams. Foundations for smarter cities. IBM Journal of Research and

Development, 54(4):1–16, July 2010.

[Hna11] Sofian Alsalman Hnaide. A framework for developing context-aware systems. Mas-

ter’s thesis, Concordia University, April 2011.

[HNBR97] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards situated computing. In Digest

of Papers. First International Symposium on Wearable Computers, pages 146–153,

October 1997.

[IOT] Aws iot core faqs. Online; accessed 14-April-2019.

[KFJ03] Lalana "Kagal, Tim Finin, and Anupam" Joshi. "a policy based approach to security

for the semantic web". In "The Semantic Web - ISWC 2003", pages "402–418",

"Berlin, Heidelberg", "2003". "Springer Berlin Heidelberg".

[KK08] Cornel "Klein and Gerald" Kaefer. "from smart homes to smart cities: Opportu-

nities and challenges from an industrial perspective". In Sergey "Balandin, Dmitri

Moltchanov, and Yevgeni" Koucheryavy, editors, "Next Generation Teletraffic and

Wired/Wireless Advanced Networking", pages "260–260", "Berlin, Heidelberg",

"2008". "Springer Berlin Heidelberg".

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view

controller user interface paradigm in smalltalk-80. J. Object Oriented Program.,

1(3):26–49, August 1988.

96



[MCM14] Htoo Aung Maw, Hannan Xiaoand Bruce Christianson, and James A. Malcolm. A

survey of access control models in wireless sensor networks. Journal of Sensor and

Actuator Networks, 3:150 – 180, 2014.

[MEeAT16] Moeiz Miraoui, Sherif El-etriby, Abdulasit Zaid Abid, and Chakib Tadj. Agent-

based context-aware architecture for a smart living room. International Journal of

Smart Home, 10:39–54, 2016.

[MvH] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language

overview. Online; accessed 20-July-2018.

[NM01] Natalya Fridman Noy and Deborah L. McGuinness. Ontology development 101: A

guide to creating your first ontology. Technical Report KSL-01-05, Stanford Knowl-

edge Systems Laboratory, 2001.

[NP11] Taewoo Nam and Theresa A. Pardo. Conceptualizing smart city with dimensions

of technology, people, and institutions. In Proceedings of the 12th Annual Interna-

tional Digital Government Research Conference: Digital Government Innovation in

Challenging Times, dg.o ’11, pages 282–291, New York, NY, USA, 2011. ACM.

[OH13] Sharief Oteafy and Hossam Hassanein. Component-based wireless sensor networks:

A dynamic paradigm for synergetic and resilient architectures. pages 735–738, Oc-

tober 2013.

[oPP] International Association of Privacy Professionals. What is privacy? Online; ac-

cessed 1-July-2018.

[PAW17] K. Periyasamy, V. Alagar, and K. Wan. Dependable design for elderly health care.

In 2017 Federated Conference on Computer Science and Information Systems (Fed-

CSIS), pages 803–806, Sept 2017.

[PDY+17] P. Pappachan, M. Degeling, R. Yus, A. Das, S. Bhagavatula, W. Melicher, P. E.

Naeini, S. Zhang, L. Bauer, A. Kobsa, S. Mehrotra, N. Sadeh, and N. Venkatasub-

ramanian. Towards privacy-aware smart buildings: Capturing, communicating, and

enforcing privacy policies and preferences. In 2017 IEEE 37th International Con-

ference on Distributed Computing Systems Workshops (ICDCSW), pages 193–198,

June 2017.

[PSC09] V. Potdar, A. Sharif, and E. Chang. Wireless sensor networks: A survey. In 2009

International Conference on Advanced Information Networking and Applications

Workshops, pages 636–641, May 2009.

97



[PSW04] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor net-

works. Commun. ACM, 47(6):53–57, 6 2004.

[RSC07] Kasim Rehman, Frank Stajano, and George Coulouris. An architecture for interac-

tive context-aware applications. IEEE Pervasive Computing, 6(1):73–80, January

2007.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding

the development of context-enabled applications. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’99, pages 434–441.

ACM, 1999.

[Tra16] Phillip Tracy. What is a smart building and how can it benefit you?, 2016. Online;

accessed 2-July-2018.

[WA85] William W. Wadge and Edward A. Ashcroft. LUCID, the Dataflow Programming

Language. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[Wan06] Kaiyu Wan. Lucx: Lucid Enriched with Context. PhD thesis, Concordia University,

Montreal, P.Q., Canada, Canada, 2006. AAINR16286.

[WSB+10] Doug Washburn, Usman Sindhu, Stephanie Balaouras, Rachel A Dines, Nick M

Hayes, and Lauren E Nelson. Helping CIOs Understand “Smart City” Initiatives:

Defining the Smart City, Its Drivers, and the Role of the CIO. 2010.

98


	List of Figures
	List of Tables
	Introduction
	Context-Awareness and Reasoning
	Thesis Contributions
	Thesis Outline

	A Background of Wireless Sensor Networks for Smart City Applications
	Requirements
	Fault Tolerance
	Privacy
	Security

	Summary

	Context-Aware Systems
	Definition of Context
	Problem Statement
	Context-Aware Framework Solutions
	Context-Awareness Sub-Structure (CASS)
	Context Broker Architecture (CoBrA)
	Context Toolkit
	Context-Aware Framework (CAF)
	Agent-Based Context-Aware Architecture for a Smart Living Room 
	An Architecture for Interactive Context-Aware Applications

	Summary

	Context-Aware Architecture for Smart City Development
	Proposed Architecture
	Sensor Component
	Context Component
	Inference Component
	Adaptation Component
	Data Stores

	Analysis and Discussion
	Sensing
	Context Modeling
	Context Processing
	Security and Privacy

	Summary

	Detailed Design
	Design Pattern
	Detailed Component Description
	Sensor Component
	Context Component
	Inference Component
	Adaptation Component
	DataStore Component

	Summary

	Implementation
	Context-Aware System Implementation Requirements
	Programming Language
	Platform

	Implementation Details
	AWS Services and Architecture Description
	Privacy and Security

	Summary

	Case Study
	Smart Room Configuration Control
	Role and Responsibilities of SS

	Specific Instance: Problem Statement
	Abstract Modeling of Specific Example
	Data Stores

	The Dynamics of the Specific Example
	Initialization
	Authenticating a User
	Adaptation

	Extensions
	Different Comfort Attributes and Partial Set of Preferences
	Supervisory System Policies

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography

