
Algorithms for Topology Discovery in

Synchronous Optical Networks

Ali Muhammad

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

March 2019

c© Ali Muhammad, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/286778678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ali Muhammad

Entitled: Algorithms for Topology Discovery in Synchronous Optical

Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Gregory Butler

Examiner
Dr. Denis Pankratov

Examiner
Dr. Thomas Fevens

Supervisor
Dr. Brigitte Jaumard

Approved by
Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Algorithms for Topology Discovery in Synchronous Optical Networks

Ali Muhammad

Telecommunication networks are comprised of interconnected network elements which

provide communication services to end users. The map of port-to-port connectivity of these

network elements is referred to as the network topology. These networks undergo frequent

changes in their topology as new fiber optic links, nodes and circuits are regularly pro-

visioned and removed. One of the hurdles for network operators is to obtain complete

network connectivity maps or topology. Topology discovery of legacy optical networks

namely Synchronous Optical NETworks (SONET), though currently a challenge for net-

work operators, has not been studied much in the literature. We have investigated two

problems namely topology discovery and circuit stitching considering the missing and in-

correct network provisioning information. We modelled the problem as a weighted match-

ing graph problem and significantly improved the topology discovery computation time.

The proposed algorithms have been implemented and evaluated on data sets of customers

of Ciena Corporation.

iii

Acknowledgments

I wish to express my sincere gratitude to my thesis advisor, Prof. Brigitte Jaumard. Her

wide knowledge on the subject and constructive comments have been a great value for me.

I have profoundly benefited from her expert guidance and professional mentorship.

I deeply thank my mother, late father and siblings for their unconditional trust and love.

This journey would not have been possible without their support.

I would like to thank my spouse Jabeen Zehra who has selflessly supported my aca-

demic commitment. Her constant encouragement motivated me to stick to my goal.

I cannot neglect to acknowledge my dear friend Hamed Abdzadeh Ziabari who always

showed up whenever I needed a friend and reminded me to trust in the process.

My acknowledgement would be incomplete without thanking my sister Kanwal Mas-

roor and brother-in-law Masroor Abbas for their continuous support, love and care through-

out my studies here in Canada.

I would like to dedicate this thesis to my younger sister late Saira Naqvi who left

us at a very young age. She had a strong desire for Master’s degree. Saira, you will

always be missed.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 3

1.3 Statements of the Problems . 4

1.4 Organization of Thesis . 4

2 Literature Review 6

2.1 SONETs . 6

2.2 IP Networks . 9

2.3 Classical Algorithms . 11

2.3.1 Graph Algorithms . 12

2.3.2 Graph Matching Problem . 12

2.3.3 Literature on Matching Algorithms 14

2.3.4 String Matching Problem . 15

2.3.5 Literature on String Matching Algorithm 17

3 Topology Discovery of Synchronous Optical Networks 20

v

3.1 Topology Discovery Problem and Port Signatures 20

3.1.1 Background . 21

3.1.2 Port Signature . 21

3.2 Similarity Graph and Confidence Coefficients 23

3.2.1 Definition of the Similarity Graph 24

3.2.2 Similarity Coefficients . 24

3.2.3 Weighted Matching and Confidence Level of a Port Pairing Solution 30

3.2.4 Algorithm PPWM . 32

3.3 Numerical Results . 32

3.3.1 Data Instances . 32

3.3.2 Port Pairings . 33

3.4 Simulator Design and Testing . 34

3.4.1 Simulation Framework . 35

3.4.2 Design Steps . 35

3.4.3 Simulation Results . 39

4 Circuit Stitching 45

4.1 Introduction . 45

4.2 Circuit Stitching . 46

4.2.1 Single hop/ Multiple hop Circuits 46

4.2.2 Problem definition . 49

4.3 Circuit Stitching Algorithm (CISTAL) . 50

4.4 Learning Circuit Stitching to improve Network Topology 51

4.4.1 Correction for Typographical Errors 52

4.4.2 Investigating Circuit Completeness 52

4.4.3 Identifying Protection . 53

4.5 Numerical Results . 53

vi

4.5.1 Data set . 53

4.5.2 Analysis of Results . 56

5 Conclusions and Future Work 57

Bibliography 58

vii

List of Figures

Figure 1.1 Network Topology . 2

Figure 2.1 An Example of a Graph . 13

Figure 2.2 Maximal Matching . 13

Figure 2.3 Maximum Matching . 13

Figure 2.4 Weighted Matching . 13

Figure 3.1 Port Pairing Input for Weighted Matching 31

Figure 3.2 Port Pairing Weighted Matching Output 31

Figure 3.3 Simulation Framework Design . 35

Figure 3.4 Iterative Error Generator . 40

Figure 3.5 Simulator Result . 44

Figure 4.1 An Example of Single-hop and Multi-hop Circuits 47

Figure 4.2 Protection Cases . 54

viii

List of Tables

Table 2.1 An example of String Matching . 16

Table 2.2 An example of character-by-character String Matching 17

Table 3.1 OC Vs Rate . 21

Table 3.2 AD similarity coefficient computation 26

Table 3.3 ST similarity coefficient computation 27

Table 3.4 Illustration of STSP
ij computation . 28

Table 3.5 CID data example . 29

Table 3.6 SCID
ij calculation . 30

Table 3.7 Signature completeness characteristics 33

Table 3.8 Effect of τ on solution confidence 34

Table 3.11 Range for # Timeslots w.r.t Port rate 37

Table 3.12 Rules for Error Vector (1) . 39

Table 3.13 Rules for Error Vector (2) . 40

Table 3.14 Values of Example Error Vector . 40

Table 3.9 Port pairings - τ = 0.50 . 41

Table 3.10 Port pairings - τ = 0.75 . 42

Table 3.15 Attributes of Error Vector . 43

Table 3.16 Error Vector Details . 43

Table 3.17 CID Error Vector . 44

Table 4.1 Potential Parameters of Topological Link 48

ix

Table 4.2 Potential Parameters of a Cross Connection 49

Table 4.3 List of rate and number of connections for a Port [4] 49

Table 4.4 Correcting Typographical errors through Circuit Stitching 52

Table 4.5 Analysis of Protection . 53

Table 4.6 Input to CISTAL . 54

Table 4.7 Output of CISTAL . 55

Table 4.8 Validation of Results . 55

x

Chapter 1

Introduction

1.1 Motivation

Telecommunication industry is currently going through a big revolution as the demands for

services, such as big data, cloud services, video traffic, etc., have risen excessively. In order

to satisfy these ever-growing traffic demands and to catch up with technological advances,

network operators are either planning to migrate to new technologies or are in the process

of optimizing their existing networks. One of the biggest challenges faced by network

operators is to acquire the up-to-date information about their network’s connectivity that is

mandatory for the network migration and optimization tasks.

Communication networks consist of multiple elements to transport user traffic (voice,

video or data) from one end point to another. The distance between two endpoints may

range from few hundreds to thousands of kilometers. Therefore it needs multiple inter-

mediate elements to make overall communication happen. Each Network Element (NE)

is composed of physical termination points or ports that connect with adjacent network

elements via an optical fiber cable. A map of port-to-port connectivity of these network

elements is termed as network topology. This port level connectivity is achieved through

1

different connections within these network elements. Figure 1.1 represents a network topol-

ogy with five network elements. The ports of different elements are connected through fiber

optic cables that are shown as dark blue lines.

Figure 1.1: Network Topology

Topology discovery problem [31] is defined as acquiring and maintaining the existing

information of network nodes and their connections, and also building a topological graph

in order to have complete network connectivity.

The big question that arises is: why do the network operators not have topology of their

own networks? The answer may be surprising: with continuous mergers and acquisitions,

accompanying the trend of multi-vendor network environments, the connectivity maps of

network get outdated. The only way to avoid this outdated information is by updating the

connectivity information each time a change is made in the network. The traditional ways

to handle these changes include manual tracing, using spreadsheets, manual updates to

database [36], etc. However, all these methods are prone to errors due to human interven-

tions and additionally are labor intensive. This brings a dire need for an automated solution

to discover the network connectivity map. Changes in networks are frequent. Each time a

network element is added or removed, a number of connections are affected. Keeping up-

to-date knowledge of network connectivity is a big challenge for network operators. Gen-

erally, the topology discovery problem can be addressed in any network, but this problem

2

is of special interest for legacy optical networks since they have no means to automatically

detect their network topology. The manual discovery of topology in these networks has

been a tedious task since tracing each and every endpoint of fiber is not only labor inten-

sive but also prone to errors. Therefore, means are required to provide automated discovery

of network topology by using efficient tools. The main challenges within topology discov-

ery are: the presence of multi-vendor equipment, the non-centralized network monitoring

systems, the non-availability of network diagrams, and the existence of nodes that do not

provide any information to be used for topology discovery.

1.2 Thesis Contributions

The objective of this thesis is to develop tools to discover the topology of SONETs (Syn-

chronous Optical NETwork). We have investigated two different problems by proposing

efficient algorithms. The data used in this study is obtained from customer networks of

Ciena Corporation.

The first contribution consists of algorithms for Network Connectivity Problem which

provide a solution to topology discovery problem of a SONET at the physical layer. It

resulted in a Conference paper ”Topology Discovery of Synchronous Optical Networks”

published in IEEE International Conference on Computing, Networking and Communica-

tions (ICNC) 2017 [22]. An extended version of this paper will be submitted to an interna-

tional journal soon. The work on topology discovery resulted in a commercial tool used by

Ciena Corporation (see Topology Discovery - Gaining Insight to Your Network [8])

The second contribution is to solve the Circuit Stitching Problem with an objective

to develop efficient algorithms in order to stitch the circuits at different layers. Stitching

circuits means identifying the two endpoints of a connection as well as its complete path.

To the best of our knowledge, there are no algorithms that were able to solve the topol-

ogy discovery problem for SONETs when there is erroneous/missing information.

3

1.3 Statements of the Problems

Topology Discovery Problem: We modelled SONET as a graph G = (V,E) where V is

the set of ports and E is the set of edges between the ports. We define port signature as

a unique ID of a port that consists of four parameters. The parameters may be either user

provisioned or system generated. One or more of the parameters may be missing and may

contain erroneous information. Sij is a similarity measure between the signature of two

ports. Lij is the label that represents the number of signature elements used in calculating

Sij . We define topology discovery as finding the unique pairing of fiber end points or ports

while considering the similarity value and labels of port signatures. The input to topology

discovery problem is a set of ports and output is the ports pairings each with a confidence

value. The confidence value is the measure of reliability of solution that ranges [0,1].

Circuit Stitching Problem: Circuit stitching problem consists of building circuits that

identify the starting and ending point of a connection along with its complete path. A cir-

cuit is a set of alternating cross connection and topological links. Topological links are the

connections between ports of two different network elements connected through optical

fiber cable while cross connection links are the connections between ports of same network

element. We define circuit stitching problem as tracing circuits given topological and cross

connection links as an input. The output of circuit stitching problem is a set of alternating

topological and cross connection links.

1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 presents a literature review on related subjects

and describes the research on topology discovery for SONET networks. It continues with

4

studies of topology discovery in other networks to provide the reader with an overview of

this problem in other domains. Afterwards, the literature on classical graph matching and

string matching algorithms has been presented. Chapter 3 presents the work on topology

discovery of SONET networks. In Chapter 4, we discussed the circuit stitching problem

along with its applications to improve network topology. Chapter 5 presents the conclusions

that were made in this thesis along with the future line of research.

5

Chapter 2

Literature Review

There have been several researches about topology discovery in different network domains.

In this section, we give a brief account of state of the art for topology discovery. Our main

focus is to identify parameters that have been proposed by researchers to discover topology

in Synchronous Optical Network (SONET) and Internet Protocol (IP) network domains.

2.1 SONETs

While it poses significant challenges for legacy networks like SONET, the topology discov-

ery problem has not been thoroughly studied in the literature till date. The available work,

in form of patents, generally discusses the parameters which could be used to discover

node adjacency. However, how to use the parameters in a multi-vendor network environ-

ment where one network element may not support the same parameters being used at other

network element, and where the provisioning information is sometimes incorrect or even

missing, is not discussed.

One of the most relevant papers is Voigt et al. [36]. The authors proposed a method

for determining network topology by performing iterative validation tests on each network

port. A list of network elements is known in advance to decide which validation tests are

6

required for a network element. The network topology is deduced based on the response

received at other ports on other network elements as a result of the validation tests. The val-

idation tests are of two types; network-affecting tests and non-network-affecting tests. The

network-affecting tests are not a point of interest for this thesis since it is nearly impossible

to perform those tests on live networks as they affect the user traffic in terms of network

downtime. The non-network-affecting tests include section trace validation, synchronous

status message testing and connect tests where a parity bit is changed that generates an

alarm at far-end network element to determine the connectivity. The authors also talked

about the Synchronous Transport Signal (STS) mapping, which is a technique that matches

the STS mapping of two ports in order to reduce the number of validation tests as the two

connected ports should ideally have the same STS mapping.

There are many differences in the proposal made by the authors and our strategy. Firstly,

the proposed strategy takes a list of network elements and their types in advance to perform

the relative validation tests which is not readily available in real life. Even if you know

that several kinds of network elements may support one parameter, it is not guaranteed that

the parameter will always be enabled. For example: Section Trace (ST) is a parameter

in SONET frame that is transmitted through J0 bytes. We can determine if two ports are

connected by comparing the transmit and receive ST value. However, it has been observed

from data set that this parameter is not always enabled on each port of a network element.

Therefore, we can not rely on any single test. Secondly, the authors did not take into

account the case of provisioning errors which are very common. For example, two network

ports may not have identical STS mapping only due to one bit difference which may simply

be a provisioning error. Thirdly, in large networks with hundred thousands of ports, the

connectivity test performed at each single port and observing the response on a single port

out of the remaining thousands of ports would involve a lot of time. Finally, there is no

discussion about the ports that have missing information.

7

Most of the existing research related to the topology discovery accounts for the use of

SONET overhead bytes to transmit unique identifiers from one port and receiving them

on the other end port to deduce the network connectivity. We will briefly discuss some of

those studies.

Olivia et al. [30] proposed transmitting a unique identification of each node and port

using the overhead data channels, also termed as topology trace channels. The authors pro-

posed that the J0 and J1 bytes of SONET frame can be repeatedly transmitted from source

to destination ports and that by matching the information contained in these bytes, the

network management system would be able to form a topology map of the whole network.

Barker et al. [2] proposed a method of sharing two sets of information to discover the

neighboring nodes. The first piece of information is the unique key (section trace identifier)

associated with each port. The second set of information comprises the identity of a node

along with the identity of all the ports associated with this node and their section trace

values. This second information set is then shared between nodes via the communication

link. Then, whenever a node receives a packet on any of its ports, it looks inside the section

trace identifier received, and maps it to the information table to determine the adjacent node.

The technique suggested by the authors requires each node to have some processing means

to compare the received information with the already built information table to deduce the

topology.

Wallace et al. [38] proposed transmission of a unique string between the nodes to

infer the topology. In the proposed strategy, each node had to report the transmitted and

received unique value (termed as signature) to a network manager. The network manager

correlates the data received from each node to build the network connectivity diagram. The

information that this unique signature holds includes the system ID of the node and the

universal port identifier that contains information of shelf, sub-shelf, slot and sub-slot.

Das et al. [9] studied the topology discovery problem in SONET rings and has proposed

8

the parameters to be used inside the Link State Advertisements (LSA) messages in MPLS-

enabled SONETs to discover the adjacent links. The information to be placed in link state

tables include, the topology supported by link (i.e., UPSR, BLSR, 1+1 protection, etc.),

the state of link (i.e., whether working or protection), the Ring-ID, and the value as East or

West. This work is an extension to the study on UPSR presented by Sharma et al. [33] and

extends the protocol to 2F BLSR and 4F BLSR.

Although all aforementioned papers are concerned with topology discovery, none of

them approached the topology discovery algorithms when the input data has missing or

incorrect provisioning information. Moreover, to the best of our knowledge, none of the

research talked about the reliability of the solution for the legacy SONETs.

2.2 IP Networks

IP networks can be considered as the fastest growing networks in the recent past decades.

They have grown from a small experimental research network to a complex network of

routers, switches, and host nodes. Therefore, understanding the topology of large scale IP

networks is very significant in order to carry out the architectural design decisions [37]. In

this section we discuss the literature on topology discovery of IP networks.

Zhao et al. [41] classified the topology discovery methods for IP networks into proac-

tive and passive methods. The proactive methods are defined as those where topology is

achieved by sending probes to the network and watching the response to deduce the topol-

ogy. The passive methods define the means of setting a monitor to record the network’s data

that is later used to analyze the topology. The authors have presented a comparison of the

methods based on protocols such as Internet Control Message Protocol (ICMP), Address

Resolution Protocol (ARP), Open Shortest Path First (OSPF) and Simple Network Man-

agement Protocol (SNMP) and concluded that SNMP outperforms the rest of the protocols

based on the speed, accuracy and the burden it poses on the network.

9

Breitbart et al. [3] have presented the physical topology discovery in heterogeneous

IP networks. The proposed algorithms utilize the information from address forwarding

tables of the network elements that capture the Medium Access Control (MAC) addresses

to discover the data link layer topology. This information is routinely collected in the

SNMP MIBs of router and switches.

Zhang et al. [40] explained the utilization of SNMP protocol to discover the topol-

ogy of passive optical networks. The authors presented the discovery process by sending

SNMP-get messages from Network Management System (NMS) to each device that has

already been configured by an IP address. The response of this message in adequate time

determines the discovery of a device.

Siamwalla et al. [34] proposed various algorithms for IP layer topology discovery. The

first proposed algorithm is based on SNMP. The neighboring routers are found through

router’s IP route table and the hosts are discovered through the table entries of ARP. ARP

is a data link layer protocol used to map the IP addresses of the devices to their hardware

addresses. The second algorithm is based on broadcast ping message and DNS (Domain

Name System) transfer zone. A DNS server keeps a list of all the hosts in its domain along

with their IP addresses. This algorithm deals with getting the DNS list of all hosts and then

verifying their validity through broadcast ping message. The third algorithm validates the

host nodes list obtained from DNS transfer zone through traceroute commands.

Kracht [24] proposed OSI layer 2 and layer 3 discovery. The author proposed a three

step process. The first step is to determine the address range for devices (this address range

is normally entered by the system administrator). The second step is to identify addresses

that are linked with devices (this involves making sub-groups of addresses and assigning

each subgroup to a thread or process which randomly pings each address that it contains

in the list, to all the devices, until the device corresponding to that address responds). The

third step is to identify the type of device (this is done by using SNMP protocol MIB’s that

10

are requested by each device). The final step is to gather the configuration information of

the attached devices. This is done through SNMP requests where the received information

contains the IP address and the interfaces that are associated with a device. The author also

discusses hidden devices termed as ”Black devices” that are the part of network but may not

be supporting the discovery protocol, e.g., SNMP protocol that is used to query information

and hence the devices remained unidentified or hidden. The proposed discovery mechanism

can infer the location of some black devices by using the information reported by other

neighboring devices. i.e., if three or more devices report multiple neighboring devices

on the same port, the discovery mechanism will infer that the devices are actually linked

through a black cloud device.

The above-mentioned references for IP networks discuss the different protocols for

topology discovery and the last given reference [24] talked about the discovery of missing

nodes location. In previous sections, we talked about the topology discovery at physical

layer. However, the information at other layers, like IP layer, can be used to improve the

solution obtained from the single layer topology discovery, e.g. using Data Communication

Networks (DCN).

2.3 Classical Algorithms

In literature, there are many studies that are directly related to the topology discovery prob-

lem. The two most relevant tools are the classical graph algorithms and the string matching

algorithms. The graph algorithms can solve a variety of network connectivity problems,

e.g., the weighted matching problem, the shortest path problem, the network flow problem,

and others. The string matching algorithms can be used to solve records de-duplication and

data cleansing problem. In this section, we will give a brief introduction to these two types

of classical algorithms with some literature review.

11

2.3.1 Graph Algorithms

A graph G is defined as a finite set of elements and is characterized as directed or undi-

rected. A directed graph G = (V,E) is defined as a set V whose elements are called

vertices (or nodes) and a set E whose elements e ∈ E are ordered pairs of vertices, called

arcs [20]. An undirected graph is same as directed graph except that the arcs are undirected,

and called edges. In subsequent section, we will briefly discuss the matching problem in

undirected graph.

2.3.2 Graph Matching Problem

A matching M in an undirected graph G = (V,E) is a set of pairwise non-adjacent edges.

Graph Theory Terminology: In this thesis, we will focus on weighted matching problem

in mesh graphs. Figure 2.1 depicts a graph having four vertices (A-D) and five edges. Fig-

ure 2.2 represents an example of maximal matching (edge between A-D belongs to M).

A matching M is maximal, if addition of any new edge that is not in currently in M will

render the M no longer a matching. Figure 2.3 shows a maximum matching (involving all

vertices from A to D). A matching M is said to be maximum if that contains the largest

possible number of edges. A matching M is said to be perfect if it involves all the vertices

of the graph. The matching M shown in Figure 2.3 is also a perfect matching. Figure 2.4

represents a weighted matching. The weight of matching is the sum of the weights of edges

in the matching. There can be more than one matching in a graph. There are two matching

in this example. Matching 1 has a weight of 14 and Matching 2 has a weight of 11. If the

objective is to find the matching with maximum weight, Matching 1 will be the required

solution.

12

Figure 2.1: An Example of a Graph Figure 2.2: Maximal Matching

Figure 2.3: Maximum Matching Figure 2.4: Weighted Matching

We aim to find maximum weighted matching in general graphs. The maximum weighted

matching is constructed by iteratively adding edges to an initially empty matching M along

augmenting paths in the graph. A path P is said to be alternating (with respect to M) such

that every other edge on this path belongs to the matching. An augmenting path (with

respect to M) is an alternating path that starts and ends at two distinct exposed vertices

[18]. A vertex v of a graph is said to be exposed or isolated if no edge of M (matching) is

incident with v. An edge is matched if it is in M and unmatched otherwise.

13

2.3.3 Literature on Matching Algorithms

Matching has been widely studied in the case of bipartite graphs (can be studied in refer-

ences [11], [1], [13]), but less in the case of general graphs. In the context of this thesis,

we are interested in the latter case, and therefore will only discuss the matching for gen-

eral graphs. We will discuss some previous research on maximum matching and weighted

matching problems.

Edmonds ([13],[12]) proposed the first polynomial time algorithm for maximum match-

ing in weighted graphs. His proposed solution was based on using augmenting paths (see

Section 2.3.2). Edmonds has presented a term ”blossoms” which is defined as an odd-

length cycle in a graph and proposed that shrinking a blossom to a single vertex helps to

achieve the maximum matching. Each iteration of Edmond’s algorithm either finds an aug-

menting path, or finds a blossom and recurses onto the corresponding contracted graph (the

graph as a result of shrinking blossom to a single vertex), or concludes that there are no

augmenting paths. Edmonds’ algorithm has a runtime O(n2m) or O(n4) where n is the

number of vertices in the graph and m is the number of edges. Later, many researchers

worked on Edmond’s algorithm and improved the worst-case complexity.

Gabow et al. [15] proposed an improvement to the Edmonds’ maximum matching

algorithm to achieve a complexity of O(n3) by eliminating the process of blossom expan-

sion. The author proposed a system of labels to store the structure of alternating paths

and explained that a time bound of O(n4) in Edmonds’ algorithm results from n2 blossom

expansion operations since each operation requires time O(n2). However, the proposed so-

lution avoids the shrinking and expansion of blossom by recording the pertinent structure,

hence, results in a factor of n speedup.

Galil et al. [19] made a significant improvement to Edmonds’ blossom in terms of the

time by performing dual adjustment and achieve a time bound of O(mn logn). Gabow

[16], later achieved a bound of O(n(m + n logn)) which is till now the best improvement

14

of Edmonds’ algorithm.

There has been a sequence of improvements in the implementation of Edmonds’ algo-

rithm. [6] proposed an efficient implementation known as Blossom IV that has a running

time of O(n2m). The proposed method makes use of multiple search trees to improve the

practical performance of Edmonds’ algorithm on large-scale problem instances. [29] pre-

sented a variation of [19] which solves the weighted matching problem in general graphs

in time O(mn log n). This implementation outperforms Blossom IV by making use of

concatenable priority queues. A recent implementation of minimum cost perfect matching

algorithm as known as Blossom V is presented by [23] that claims to outperform the ear-

lier best-known implementation, i.e., Blossom IV by maintaining an auxiliary graph whose

nodes correspond to alternating trees in Edmonds’ algorithm. Some open source libraries

for Edmond’s weighted matching algorithm can be found as LEDA [28], LEMON [10].

2.3.4 String Matching Problem

The string matching problem is defined as identifying all the occurrences of a pattern x =

x[0, 1,m − 1] of length m in a text y = y[0, 1....n − 1] of length n. String matching

is widely used in information retrieval and text-editing like applications, e.g., search for a

particular pattern in DNA sequences, search for relevant web pages related to user queries

by internet search engines, etc. An example is shown by Table 2.1 that represents the text

y and a pattern x with an objective to find the occurrences of the pattern x inside the text y.

It is shown by the example that the pattern x can be found in the given text with a character

shift equal to three.

15

Table 2.1: An example of String Matching

Text y a b c a b d c e f

Pattern x a b d c

Shift s s=1 s=2 s=3 a b d c

String Matching for Topology Discovery

The topology discovery problem comprises parameters that are composed of string values

and are predisposed to typographical errors. The errors normally occur during the provi-

sioning of information by the network operators. For example: the two end-points of a

connection are supposed to have the same string ID. However, at the time of configuring

the string ID, the network operator may perform some typographical errors and the two

strings may not remain the same anymore. i.e., String1: Concordia, String2: Cxoncordiaa,

it can be seen that string2 gets some additional characters (Cxoncordiaa) that made the two

strings different. These errors could not be avoided since they are introduced by users and

may result in topology mismatch. The string matching algorithms are therefore required to

get the correct pairing of ports while tolerating a certain amount of error.

We will take the example of Connection ID (see Section 3.1.2) or CID for short, that is

a string value provisioned for each time slot by a network operator. The CID may contain

errors like misspellings or may have additional spaces or special characters introduced by

mistake. Our proposed methodology for topology discovery involves comparing the two

CID values. However, if there are errors in CID strings, this can lead to a mismatch. One

straightforward solution is to perform the character-by-character matching of two strings

in order to determine their equivalence. However, it is not very efficient and may be mis-

leading as the insertion of an error-character at any point of the string will make the rest

of the character comparisons leading to a mismatch. An example is shown by Table 2.2

16

where insertion of a space character inside a string leads to mismatch for all succeeding

characters.

Table 2.2: An example of character-by-character String Matching

Text y C o n c o r d i a

Text z C o # n c o r d i a

String Matching � � x x x x x x x x

We therefore need efficient methods to perform the string matching that takes into ac-

count the errors that may be introduced in between the strings.

2.3.5 Literature on String Matching Algorithm

The problem that we are interested in for topology discovery is a variant of string matching

problem and studied in literature as the duplicate record detection problem ([14] , [32]).

The duplicate record detection is mostly needed for data cleansing inside databases and re-

lies on string comparison techniques to identify the typographical variations. We will dis-

cuss some popular methods that have been used in literature for de-duplication of records.

Edit Distance

Levenshtein [27] has defined edit-distance between two strings as a measure to deter-

mine their similarity. The edit-distance between two strings m1 and m2 is the minimum

number of edit operations of single character that are required to transform one string into

another. The three types of edit operations are insertions, deletions, and substitutions. The

edit-distance approach outperforms the character-by-character string matching operation

by not taking into account the exact position of characters for matching. For example the

edit-distance of two strings (String1: Concordia, String 2: Co#ncordia) is 1 as shown in

17

Table 2.2 since removing a single character, i.e., ”#” makes the two strings identical. How-

ever, the edit distance method has a problem when the numbers are used. For the specific

case of topology discovery where the CID represents the address or location of a port, For

example, String1: ”Concordia1-5-7” and String2: ”Concordia1-5-8”. The three numbers in

the example in each string represents the shelf, slot and port location and therefore, should

be considered a strong mismatch rather a match with a distance of 1. We therefore need to

take care of this type of conditions in the topology discovery problem.

Affine Gap Distance

Waterman et al. [39] proposed a solution for strings that have been truncated or short-

ened as the edit-distance method does not work well in such cases. For example String 1:

”Computer Department UdeM” and String 2: ”Computer Department Universite de Mon-

treal” are the same since University de Montreal in string2 has been abbreviated to UdeM

in string1. The affine gap introduced two extra edit-operations called open-gap and extend-

gap to tackle this type of problem. The affine-gap distance method is not relevant for the

topology discovery string matching problem since the CID only represents the information

regarding the name of a network element and the physical location of the port supporting

this CID, i.e., the location of shelf, slot and the port itself.

Smith-Waterman Distance

Smith and Waterman [35] proposed an extension of edit distance and affine gap dis-

tance. The proposed method gives lower costs to mismatches at the beginning and the

end of strings than the mismatches in the middle. For example, String1: ”Prof. David R.

Cruise, Udem” and String2: ”David R. Cruise, Prof.” will have a very short distance using

the Smith-Waterman distance.

The above discussed methods provide a solution for finding the similarity between the

18

two strings in terms of the distance between them. The topology discovery string matching

problem is close in affinity with these problems however, as discussed earlier, the CID

string values usually contain the physical address of the port (i.e., the numerical value)

and none of the above given methods take care of such exceptions. Therefore we will use

edit-distance (Levenshtein) method [26] with some modifications to achieve the objective

for topology discovery string matching. Other research that has utilized some of the above

discussed methods can be found in ([25], [5], [21]).

19

Chapter 3

Topology Discovery of Synchronous

Optical Networks

This research work has been published as ”Topology Discovery of Synchronous Optical

Networks” in IEEE International Conference on Computing, Networking and Communi-

cations (ICNC) 2017 [22].

3.1 Topology Discovery Problem and Port Signatures

The objective of this study is to develop tools in order to discover the topology or the

port-level connectivity of optical networks, and for the experimental part of the study, the

link connectivity of a SONET network, in view of being able to migrate it smoothly in a

later stage. The proposed strategy will use the offline provisioning data and will provide a

confidence level for each matched port pair.

We define the topology discovery problem as follows: given a set of fiber endpoints, or

ports, how can we pair them in a unique way in order to re-establish the network connectiv-

ity. In order to do so, we will define a signature for each port, and then develop algorithms

in order to uniquely pair these signatures. The port signature may not be unique since the

20

information related to ports might be incomplete, erroneous, or user provisioned.

3.1.1 Background

SONET is a transmission protocol that synchronously transfers the multiple digital bit

streams over optical fiber cable by multiplexing the low rate signals into higher bandwidth

signals. SONET defines its structure in Synchronous Transport Signal (STS) levels, in

which STS-1 is the base level fundamental framing structure. Each STS-1 frame consists

of overhead bytes in addition to payload or information bytes. Some of these different

overhead bytes (Section overhead, Line overhead) will be used as signature parameters. In

this thesis we will use SONET ports of different granularity. The standard unit of measure

for a port is Optical Carrier (OC) that signifies the rate of transmission bandwidth as given

by Table 3.1.

OC Rate (Mbps)

3 155.52

12 622.08

48 2488.32

192 9953.28

Table 3.1: OC Vs Rate

3.1.2 Port Signature

We propose to define the port signature as a 4-tuple made of the four parameters: Auto

Discovery (AD), Section Trace (ST), Time Slot Pattern (TSP) and Connection ID (CID),

which are next described. Note that, in practice, one or more of them may be missing.

21

Auto Discovery. The Auto discovery is a system parameter that allows physical connec-

tivity of nodes to be discovered on transport optics as well as tributaries (a structure to

transport low rate signals [38]. Network element auto discovery involves transmitting a

unique signature in spare bytes of SONET line overhead. By comparing the transmitted

and received auto discovery signature between the two ports, the topology can be deduced.

Auto discovery despite being a useful parameter has some limitations. It is not available on

all legacy equipment, and therefore, is not a multi-vendor compatible parameter.

An example of auto discovery Transmit and Receive strings is: TX: (AB 1 01:54:33:77:55 001)

and RX: (AB 1 01:52:63:33:55 010).

Section Trace. Section trace is a user provisioned field that is defined in SONET section

overhead frame as J0 bytes. It is a 16-byte fixed length message string transported between

end ports, so that a receiving terminal can verify its continued connection to the intended

transmitter [30]. Matching a transmitted section trace value of an endpoint with the receiv-

ing section trace value at other endpoint allows the discovery of a connectivity between two

endpoints provided the two unique section trace values within the network. An example of

sample section trace values is:

Port Pi: Section trace Tx: Concordia 15-9-1, Section trace Rx: Mcgill 12-3-2.

Port Pj: Section trace Tx: Mcgill 12-3-2, Section trace Rx: Concordia 15-9-1.

Time Slot Pattern. Timeslot pattern parameter gives the information on the set of time slots

for a given port. In SONET networks, the capacity of an optical carrier is divided into

a number of subrate timeslots. The individual timeslots determine the minimum capacity

subrate path available [4]. For example, if the underlying capacity of the carrier is 2,488

Mbps and the node elements support 48 subrate timeslots, each timeslot has a capacity of

52 Mbps. In order to transmit the traffic between two ports inside a node, a transparent path

22

is established which is termed as cross connection. The timeslot in which traffic leaves a

port is identical to the timeslot in which traffic arrives in at the adjacent node. This is due

to the optical fiber cable which does not manipulate the data passes trough it. An example

of timeslot pattern for an OC-12 port is 100111100110: where 1 represents the occupied

timeslot and 0 represents the empty slot (in this example time slots 1, 4, 5, 6, 7, 10 and 11

are being used).

Connection ID. In order to transmit the user traffic through the network, a path is created

from source to destination node consisting of topological links and cross connection links

(see Section 1.3) to switch traffic from one link to another through out the connection from

the source node to the destination node. This path has an identifier - the Connection ID,

which should be consistent across the network elements. When cross connects are provi-

sioned on a node, they are tagged with this Connection ID. As each network element needs

to be provisioned with its cross connect individually, typographical errors may occur during

this manual provisioning. If two ports have the same set of connection IDs provisioned for

same time slot pattern, it is highly likely that they belong to a pair connected by an optical

fiber, or topological link. An example of connection ID parameter is given below for an

OC-12 port. where ”-” represents an empty slot that has not been configured for any cross

connection.

CID: (UQAM1︸ ︷︷ ︸
1

, −︸︷︷︸
2

, −︸︷︷︸
3

,mcgill1︸ ︷︷ ︸
4

, UQAM2︸ ︷︷ ︸
5

, UQAM3︸ ︷︷ ︸
6

,mcgill1︸ ︷︷ ︸
7

, −︸︷︷︸
8

, −︸︷︷︸
9

, UQAM4︸ ︷︷ ︸
10

, UQAM5︸ ︷︷ ︸
11

, −︸︷︷︸
12

).

3.2 Similarity Graph and Confidence Coefficients

We now define a similarity graph for each possible port rate. Indeed, we can only pair ports

with the same rate, i.e., we can not pair an OC-3 port with an OC-12 port. In this study,

we consider 4 rates (OC-3, OC-12, OC-48 and OC-192), but the algorithm can be easily

extended for more or different rates ports.

23

3.2.1 Definition of the Similarity Graph

We define the similarity graph as a weighted graph G = (V,E), where V refers to the set

of ports and E expresses the set of edges between the ports. An edge e ∈ E if there is a

potential for pairing ports Pi and Pj associated with v and v′. Potential pairing is expressed

throughout two values: Sij , a similarity value that measures the similarities between the

signatures of ports Pi and Pj , and Lij , a label that counts the number of signature elements

taken into account in Sij . As mentioned earlier, some signature elements may be missing

in practice. For instance, user managed parameters have not been filled.

If for a given node pair, Sij < τ, where τ is a preset threshold value, then we do not

set an edge between v and v′ as it is unlikely that we can pair those two pairs based on the

available information. Additional conditions may apply for the insertion of an edge, see for

instance in Connection ID Similarity Coefficient calculation.

3.2.2 Similarity Coefficients

We establish a similarity coefficient for every pair of ports. It is defined as a measure of

resemblance between two ports based on the four parameters of the port signatures (AD,

ST, TSP, CID). It is a numerical value in [0, 1] where 1 delineates complete similarity and

0 complete dissimilarity. For a set of two ports, Pi and Pj , the similarity coefficient Sij is

calculated as follows:

Sij =
1

Lij

∑
•∈{AD,ST,TSP,CID}:S•

ij∈[0,1]
w• S•

ij (1)

where w•, • ∈ {AD, ST, TSP, CID} defines the normalized weight (i.e., wAD +wST +wTSP +

wCID = 1) given to a signature parameter, and S•
ij, • ∈ {AD, ST, TSP, CID} are the similarity

values associated with each signature element, assuming that S•
ij ≤ 1. If some signature

24

elements are missing, corresponding similarities are set to 0 and consequently, the normal-

ization is made according to the number of nonzero similarity coefficients as given by Lij .

Auto Discovery Similarity Coefficient (SAD

ij)

In order to compare the AD values of two ports Pi and Pj , one needs to compare the

transceiver AD of Pi with the receiver AD of port Pj and the transceiver AD of Pj with

the receiver AD of port Pi. However, in practice, some values may be missing, and com-

parison could be limited to only one AD receiver with one AD transceiver. If some AD

transceiver/receiver values are missing in such a way that we cannot compare the AD re-

ceiver of one port with the AD transceiver of the other port (e.g., only the AD receiver

values are provided), then the contribution of AD parameter to overall similarity coeffi-

cient value is either significantly reduced (i.e., 0.6) or zero. The value is chosen slightly

higher than half (i.e., 0.6) based on an observation made in real network where some port

signatures had one pair of AD values matched but the other pair was not matched. This

was reported as an anomaly and just to avoid having wrong pairings, we selected this value

slightly larger than 0.5 which is the value given to user-provisioned parameters. All possi-

ble cases related to AD values are discussed in Table 3.2.

Section Trace Similarity Coefficient (SST

ij)

ST is considered a reliable system parameter if correctly configured on each end port of a

circuit, though it is provisioned manually by the operators. ST has to be seen as a strict

two-way parameter. If ST has been defined for two ports and the first port receives the ST

value from the second port, definitely the second port should also be able to receive the ST

value from the first port and vice versa. This entails that, as for the AD strings, SST
ij = 1 if

we have identical ST values, i.e., if Tx-ST of port Pi matches with Rx-ST of port Pj , and

25

Table 3.2: AD similarity coefficient computation

Cases Ports Availability Conditions SAD
ij

1
Pi

Tx ADi Tx ADi = Rx ADj SAD
ij = 1

Rx ADi Tx ADj = Rx ADi

Pj
Tx ADj All other cases SAD

ij = 0
Rx ADj

#2
Tx ADi Tx ADj = Rx ADi SAD

ij = .6
Pi Rx ADi

Pj Tx ADj All other cases SAD
ij = 0

3
Pi Rx ADi Rx ADi = Tx ADj SAD

ij = .6
Pj Tx ADj All other cases SAD

ij = 0

4 All other cases SAD
ij = 0

Tx-ST of port Pj matches with Rx-ST of port Pi as shown by Table 3.3. However, as soon

as there is a mismatch, or missing data SST
ij = 0. We apply stricter rules than for AD, as AD

is system generated while ST is user provisioned parameter.

Indeed, if ST values match for one direction, but not for the reverse one, due to mis-

matched values, the reason may be due to incorrect fibering on-site. In addition, we cannot

be 100% sure for the port connectivity based on the first match if not confirmed by the

second one. Moreover, since ST is a user-provisioned parameter, it can not be guaranteed

that it will be unique and this may lead to wrong pairing too. So it is important to verify

if the ST is unique when pairing is performed. Based on above mentioned comments, we

only give a weight if both the ends of ports are matched for section trace.

Time Slot Pattern Similarity Coefficient (STSP

ij)

It is computed as follows:

STSP
ij =

matched slots
non-empty slots

(2)

26

Table 3.3: ST similarity coefficient computation

Cases Ports Availability Conditions SST
ij

1
Pi

Tx STi Tx STi = Rx STj SST
ij = 1

Rx STi Tx STj = Rx STi

Pj
Tx STj All other cases SAD

ij = 0
Rx STj

#2
Tx STi Tx STj = Rx STi SST

ij = 0
Pi Rx STi

Pj Tx STj All other cases SST
ij = 0

3
Pi Rx STi Rx STi = Tx STj SST

ij = 0
Pj Tx STj All other cases SST

ij = 0

4 All other cases SST
ij = 0

where # matched slots corresponds to the number of slots that are occupied in both ports

while non-empty slots refers to the slots that are occupied in any one port but neither occu-

pied in both ports nor non-occupied. An example is given below in Table 3.4 and illustrates

different cases. The denominator of Formula 2 is equal to the number of non-empty slots.

This way, it helps to differentiate cases such as Cases 1 and 4 in Table 3.4. In case 1, the

length of TSP is 3 and 1 out of 3 slots is matched hence STSP
ij = 0.33. In case 2, both the

non-empty slots are matched hence the STSP
ij = 1. In case 4, the length of the TSP strings is

192. However, 189 slots are empty considering the common slots of TSPi and TSPj which

are equal to ”0”. Looking at the remaining slots, only 1 out of 3 is matched. It follows that

STSP
ij = 0.33, while it would have been equal to 0.989 if we had consider the overall number

of slots. However, considering that 189 slots are empty, cases 1 and 4 are not different.

Connection ID Similarity Coefficient (SCID

ij)

Each port has usually several time slots associated with it, and each time slot is identified

by a CID string. Let S be the set of non-empty time slots, indexed by s. Hence, for a given

port p, CID is the concatenation CID strings CIDp
s for s ∈ S. We then proceed in two steps

27

Table 3.4: Illustration of STSP
ij computation

Cases Ports TSP strings STSP
ij Length

1
TSPi 110

1/3 = 0.33 3
TSPj 011

2
TSPi 110

2/2 = 1 3
TSPj 110

3
TSPi 100

0 3
TSPj 000

4
TSPi 00..00110

1/3 = 0.33 192
TSPj 00..00011

for computing the CID similarity coefficient.

Firstly, we compute dissimilarity distance between each pair of CID strings, for each

time slot (s):

L DIST(CIDPi
s , CIDPj

s) s ∈ S, (3)

where L DIST is the Levenshtein distance, i.e., a classical string metric for measuring the

difference between two strings. Informally, it is the minimum number of single-character

edits required to change one string into the other (see Section 2.3.5).

If the normalized Levenshtein distance is less than threshold value τmatch for a given s,

i.e., if

L DISTCID
s =

L DIST(CIDPi
s , CID

Pj
s)

max{|CIDPi
s |, |(CID

Pj
s |}

≤ τmatch, (4)

we consider that the two strings associated with s match (MATCHs = 1), otherwise they are

declared as a non matching string pair and we forget about those CID strings (MATCHs =

0). In addition, if the largest substrings (and not only suffixes) associated with numbers

in the two CID strings do not match, then MATCHNUM
s = 0, otherwise MATCHNUM

s = 1.

The reason of such a rule comes from the fact that numbers are usually associated with the

address or the physical location of a node or port. Hence, we cannot allow any difference,

28

as we did for the other characters. We next compute

ratioCID =

∑
s∈S

MATCHs

|S| . (5)

If the ratioCID ratio is smaller than τ , i.e., the similarity threshold for adding an edge in the

similarity graph, then no edge is added in G between v and v′.

The second step is the computation of SCID
ij :

SCID
ij =

∑
s∈S

MATCHNUM
s (1− L DISTCID

s)

|S| (6)

We illustrate in Table 3.5 the computation of SCID
ij on an example with 3 time slots.

Using τmatch = .25 leads to the value of SCID
ij that is computed in Table 3.6. Note that

MATCHs = 0 for the second slot, as the substrings made of the numbers do not match. In

addition, if ratioCID < τ , there will be no edge e = {v, v′} in G, otherwise e = {v, v′} will

be added with a weight equal to SCID
ij = 0.37 and Lij = 4 if AD, ST and TSP values are also

available.

Table 3.5: CID data example

Ports
Time slots

#1 #2 #3

Pi Standard St. IPCS USC East North 998 McGill

Pj IPCS Tanglefoot Lane USC East North 2312 XMcGill

29

Table 3.6: SCID
ij calculation

Slots L DIST L DISTCID
s match ratioCID SCID

ij

1 15 0.75 = 15/20 0

1/3 = 0.33

1/3× (0.25

2 ∞ - 0 + 0.86)

3 1 0.14 = 1/7 1 = 0.37

3.2.3 Weighted Matching and Confidence Level of a Port Pairing So-

lution

Once the similarity values have been computed, we identify the connected components

of the similarity graph G = (V,E). Components with a single node correspond to iso-

lated ports, for which no pairing can be identified and are removed from similarity graph.

Components with two nodes define straightforward port pairings and will be taken out of

similarity graph in the pre-processing step.

Components with more than 3 nodes need more attention in order to deduce the port

pairings. For them, we use the exact weighted matching algorithm (called W MATCH for

short) of [17] in order to identify the most likely port pairings.

Figure 3.1 represents two disconnected graph components, where one component has 3

vertices (Ports P1, P2, P3) and other component has 6 vertices (Ports P4, P5, P6, P7, P8, P9).

The similarity coefficient values for each pair of ports is shown. Figure 3.2 represents the

weighted matching output as shown by bold edges of the two disconnected graphs where

the matching sum is 0.9 and 0.866 respectively.

30

Figure 3.1: Port Pairing Input for Weighted Matching

Figure 3.2: Port Pairing Weighted Matching Output

The outcome of the weighted matching algorithm leads to a set of potential port pairings

where the confidence of each port pair can be estimated by the similarity value of the edge

e connecting the two ports. We will denote it by CFe. The confidence of a port pairing

31

solution, denoted by CF, can then be evaluated as follows:

CF =

∑
e∈MATCHING SOLUTION

CFe

matching elements
(7)

3.2.4 Algorithm PPWM

We identify the port pairing based on the outputs of a weighted matching algorithm, starting

with the ports (nodes) with the highest label values, as described in the algorithm PPWM

(Port Pairing Weighted Matching) that is described below.

Algorithm PPWM: Port pairing for a given OCx

Preprocessing: Detecting isolated ports and obvious port pairing

Build GOC x with EOC x = {{vi, vj} ∈ E : Lij = 4}
Apply W MATCH Algorithm on each connected component of GOCx

let SW MATCH be the union of the solutions on each component

Pair the ports associated with an edge in the solutions of SW MATCH

For � =3 to 1 step − 1

EOCx ← (EOCx \ S) ∪ {{vi, vj} ∈ E : Lij = �}
Apply W MATCH on each connected component ofGOCx

Let SW MATCH be the union of the solutions on each component

Pair the ports associated with an edge in the solutions of SW MATCH

3.3 Numerical Results

3.3.1 Data Instances

We tested the proposed algorithm on the data set of one customer of CIENA. It corresponds

to a network with 870 ports, whose distribution is as follows:

Rate: #ports OC3 : 92; OC12 : 80; OC48 : 281; OC192 : 417.

32

Table 3.7 contains the completeness characteristics of the port signatures. Almost half

(47.93%) of the port signatures contain all parameters, while the remaining half of them

have from a very incomplete (3.10%) to an almost complete set of signatures.

Table 3.7: Signature completeness characteristics
Available

OC-3 OC-12 OC-48 OC-192 %
parameters

4 - 26 113 278 47.9
3 4 18 108 125 29.3
2 10 23 33 10 8.7
1 67 5 21 2 10.9
0 11 8 6 2 3.1

3.3.2 Port Pairings

We now report on the number of identified port pairs depending on the threshold values

used for building the similarity graph. We have performed experiments based on different

threshold values and results are presented by Tables 3.9 and 3.10. The threshold values

used for the experiments are given below:

SST
ij = SAD

ij = 1.0, STSP
ij = SCID

ij = 0.8, (Ssig
ij = 0.5, 0.75).

Tables 3.9 and 3.10 provide the distribution of port pairings based on the number of param-

eters that were matched for the four different port granularities. The average confidence

value obtained in each iteration is given by z�MATCH. It can be observed that the number of

port-pairing obtained for OC-192 is the largest in comparison to the other ports. The rea-

son is the number of OC-192 ports that have all 4 signature parameters (i.e., 278 out of 417

ports).

Similarly, as we increase the threshold value (τ), the number of unmatched ports also

increases. The reason being the less number of edges in the similarity graph since, only the

33

ports having a value of similarity coefficient greater than the threshold value can form an

edge in the graph.

A large number of OC-3 ports had only a single parameter available which lead to a

large fraction of unmatched ports.

When increasing τ , the number of port pairs decrease but the level of confidence in-

creases as can be well observed in Table 3.8.

Table 3.8: Effect of τ on solution confidence
τ = 0.5 τ = 0.75 % Increase in Confidence

Pre-Processing 0.749 0.817 9.078
Iteration # 1 0.907 0.937 3.307
Iteration # 2 0.602 0.743 23.421
Iteration # 3 0.472 0.492 4.237
Iteration # 4 0 0 -

3.4 Simulator Design and Testing

SONET network connections are manually provisioned by network operators. As the user

demand grows, the connections are revised and upgraded. The network provisioning infor-

mation is highly vulnerable to errors due to this human intervention. Based on the proposed

topology discovery algorithms and working with one customer data set, several questions

are raised:

• Given a first percentage of missing information and a second percentage of erro-

neous information, what is the fraction of network connectivity that can be redis-

covered correctly? and what fraction of network connectivity is deduced wrongly?.

By wrongly, we mean that depending on especially the erroneous information some

wrong deductions could be made on the network connectivity.

• What is the maximum amount of erroneous and incorrect information that can be

34

permitted before the network topology cannot be fully discovered? and what is the

relation of confidence of solution with the number of exact pairing obtained.

To answer these question we propose a simulation framework that will generate a data set

resembling real network data. We will perform extensive testing with different levels of

missing/erroneous information to validate our proposed algorithms.

3.4.1 Simulation Framework

Figure 3.3 presents a simulation framework design. The core modules of this framework

are port-generator, signature-generator, noise Manager, topology discovery engine and ac-

curacy monitor. We have used an online network map with 50 nodes (germany50: available

on http://sndlib.zib.de/home.action).

Figure 3.3: Simulation Framework Design

3.4.2 Design Steps

• Generate ports for NEs based on input parameters: network map, demand matrix,

threshold value and port rate.

35

• Generate the port pairing for one granularity of ports, e.g., OC48.

• Generate exact signatures for each port pair.

• Generate a set of error vectors (noise).

• Introduce error/missing information (noise) in the generated port signatures.

• Run topology discovery and analyze the effect of errors on resultant topology by

comparing the results with the reference port pairings (exact pairings).

Ports Generation

Algorithm 1 Ports generation
1: Input: Network Topology, Traffic demand matrix between nodes, Rate threshold (a

constant value), Port Rate, max # Ports

2: Calculate the shortest path between the nodes

3: Aggregate the bandwidth demand on each link

4: for each link � ∈ L do

5: Create (link rate / Rate threshold) Ports while # Ports for a node ≤ max # Ports.

6: end for

Signature Generation

After generating ports for each NE, port pairing is achieved by generating same signature

for each port pair. Signatures are the collection of four parameters: Auto Discovery (AD),

Section Trace (ST), Time Slot Pattern (TSP), and Connection ID (CID).

AD and ST contain two string values, i.e., Trans and Receive. We will use two string lists

to build AD and ST parameters in each signature.

TSP is a sequence of 1’s and 0’s and will be generated randomly based on the port rate.

However, there will be a threshold value for # used slots as shown in Table 3.11. For

36

example, if the port rate is 192, the length of TSP will be a random value between 49 and

192, that is to justify the use of specific port granularity. CID is composed of string values

corresponding to the slots having 1 in TSP. We will take an input value for the length of

CID string,i.e., the maximum length of CID. The CID strings will be randomly generated

using the English alphabets [A-Z].

Table 3.11: Range for # Timeslots w.r.t Port rate

Port Rate OC-3 OC-12 OC-48 OC-192

Range of slots at least 1 [4,12] [13,48] [49,192]

Noise Generator

Introducing errors (noise) in to signatures is a challenging part of this simulation frame-

work. Table 3.15 shows the attributes of missing/erroneous information N followed by the

definition of each attribute.

(1) # Missing nodes (NMN)

In practice, it may happen that some nodes are hidden and that, in the process of

collecting the circuit endpoint signatures, some nodes are forgotten. To keep the

simulated network close in proximity with the real network, simulator randomly re-

moves the given number of nodes completely along with all their ports.

(2) # Missing parameters (NMP)

Port parameters configuration is user-provisioned. Some parameters may therefore

left unfilled. We provide a number of intended missing parameters in the network

and the simulator randomly selects parameters to remove their values.

(3) # Parameters in error

In real network, it is likely to have parameters in error due to the poor configuration.

The simulator randomly targets the signature parameters and introduces some errors

37

based on the nature of the parameter. This is to note that errors are not introduces

in ST because if two ports have any single character mismatch in ST, the similarity

coefficient weight for ST will be considered as 0. However for AD, if two ports

have paired Tx AD with Rx AD but not the vice versa, it still gets a value of 0.6.

These rules are a result of discussions with Ciena network engineers and based on

the property of a parameter itself. For AD parameter to be in error, we simply remove

the Tx or Rx AD value for the selected signature.

(4) # TSP slots in error

TSP errors are not frequent and do not involve errors in several slots. However, few

slots may have errors. We consider 1-3 slots in error as shown by Table 3.15.

(5) # CID slots in error

CID is a collection of multiple string values, one for each time slot corresponding to

TSP. It uses two inputs: a) First input value like TSP provides the number of signa-

tures having 1-3 CID slots in error. b) Second input value demonstrates the number

of errors to be introduced inside one CID value.

Table 3.17 shows four error values followed by the nature of their errors. For ex-

ample, if the error value is +1, the program will randomly replace a single character

inside the chosen CID slot. An example is to change ”Concordia” to ”ConcoAdia”

with a single character replacement.

Iterative process for introducing errors

Figure 3.4 presents the error generator diagram. We intend to introduce errors in the net-

work and to investigate the number of discovered links and then repeating the process

several times to obtain the overall trend of error effects on topology discovery. Algorithm

2 demonstrates how we plan to introduce error progressively on the generated signatures.

A question here is important that how to calculate the percentage of error that we want to

38

introduce into the signatures. This means to translate Table 3.15 and Table 3.17 into a per-

centage value that we need for Algorithm 2. We begin with proposing error vectors based

on error attributes and plan to iterate over ’N’ such vectors to get a clear understanding

of the behavior of error on the discovered topology discovery. There are rules associated

with each vector that gives the input values and intended frequency of occurrence for each

parameter as shown by Table 3.12. A value of p1=1 and p2=5 shows that a node will be

removed in every 5 vectors. Same definition follows for the missing parameters. However,

introducing errors inside signature parameters involve another criteria. We define a per-

centage value for each parameter i.e., AD,TSP,CID based on the nature of error occurrence

in real network. For example, AD is given 5%, TSP is given 15%, and CID is given 80%.

3.4.3 Simulation Results

Figure 3.5 presents the simulation results showing the effects of incremental error on confi-

dence value and on the number of exact matches. The X-axis presents number of iterations

and Y-axis provides the number of exact matches obtained. The right Y-axis in red shows

the confidence value in each iteration. It can be observed that at the beginning of simula-

tion (at error vector 0) there is no error and all signature pairs are exact means a confidence

value 1. As we go on increasing the error values in each iteration, the confidence value falls

down as the number of exact matches decreases. However, the confidence value does not

go down less than 65%.

Table 3.12: Rules for Error Vector (1)

S.No. Parameter Value Occurrence

1 Missing Node p1 every p2 vectors

2 Missing Parameter p3 every p4 vectors

3 Errors p5 every p6 vector

39

Table 3.13: Rules for Error Vector (2)

AD TSP CID

p7 p8 p9

5% 15% 80%

Table 3.14: Values of Example Error Vector

p2 p4 p6 p7 p8 p9

5 4 1 5% 15% 80%

Algorithm 2 Iterative Error Generation
1: Input: Error vector, Set of Signatures, Set of Rules, # vectors to generate
2: for # Vectors times do

3: generate error values for each parameter
4: apply values to current Signatures
5: Run Topology discovery
6: Signatures ← current Signatures
7: end for

Figure 3.4: Iterative Error Generator

40

Table 3.9: Port pairings - τ = 0.50
Ports, i.e., # nodes in G

Solution
labels OC-3 OC-12 OC-48 OC-192

Pre-Processing Results

4 0 26 113 278 z�MATCH = 0.749

3 4 18 108 125
� 205 port pairs

2 10 23 33 10
OC-3: 2
OC-12: 8

1 67 5 21 2
OC-48: 64
OC-192: 131

Iteration #1

4 0 24 73 115

z�MATCH = 0.907
81 port pairs

OC-3:0 OC-12:2
OC-48:27 OC-

192:52
Iteration #2

4 0 20 19 11
z�MATCH = 0.602
� 57 port pairs

3 2 12 58 37
OC-3:0 OC-12:6
OC-48:32 OC-

192:19
Iteration #3

4 0 15 3 6
z�MATCH = 0.472
� 6 port pairs

3 2 5 10 4
OC-3: 0
OC-12: 0

2 8 15 13 1
OC-48: 5
OC-192: 1

Iteration #4

4 0 15 3 6 z�MATCH = 0

3 2 5 7 3
� 0 port pairs

2 8 15 6 0
OC-3: 0
OC-12: 0

1 67 5 3 0
OC-48: 0
OC-192: 0

Unmatched # Ports
77 40 19 9 overall: � port pairs

41

Table 3.10: Port pairings - τ = 0.75
Ports, i.e., # nodes in G

Solution
labels OC-3 OC-12 OC-48 OC-192

Pre-Processing Results

4 0 26 113 278 z�MATCH = 0.817

3 4 18 108 125
� 262 port pairs

2 10 23 33 10
OC-3: 1
OC-12: 10

1 67 5 21 2
OC-48: 75
OC-192: 176

Iteration #1

4 0 21 31 31

z�MATCH = 0.937
4 port pairs

OC-3:0 OC-12:0
OC-48:3 OC-192:1

Iteration #2

4 0 21 24 31
z�MATCH = 0.743
� 8 port pairs

3 4 14 64 29
OC-3:0 OC-12:0
OC-48:8 OC-192:0

Iteration #3

4 0 21 22 31
z�MATCH = 0.492
� 8 port pairs

3 4 14 60 28
OC-3: 0
OC-12: 0

2 8 15 4 0
OC-48: 7
OC-192: 1

Iteration #4

4 0 21 22 31 z�MATCH = 0

3 4 14 60 28
� 0 port pairs

2 8 15 4 0
OC-3: 0
OC-12: 0

1 67 2 3 0
OC-48: 0
OC-192: 0

Unmatched # Ports
79 52 89 59 overall: � port pairs

42

#
M

is
si

n
g

N
o
d

es
#

M
is

si
n

g
P

a
ra

m
et

er
s

#
P

a
ra

m
et

er
s

w
it

h
a
n

E
rr

o
r

#
T

S
P

S
lo

ts
in

E
rr

o
r

#
C

ID
S

lo
ts

in
E

rr
o
r

A
D

T
SP

C
ID

1
2

3
1

2
3

5
25

20
69

90
18

48
3

18
48

24

Ta
bl

e
3.

15
:A

ttr
ib

ut
es

of
E

rr
or

V
ec

to
r

#
V

ec
to

rs
#

M
is

si
n

g
N

o
d

es
#

M
is

si
n

g
P

a
ra

m
et

er
s

#
P

a
ra

m
et

er
s

w
it

h
a
n

E
rr

o
r

#
T

S
P

S
lo

ts
in

E
rr

o
r

#
C

ID
S

lo
ts

in
E

rr
o
r

A
D

T
SP

C
ID

1
2

3
1

2
3

1
0

0
0

0
0

0
0

0
0

0
0

2
1

10
1

0
1

0
0

0
0

0
3

3
0

0
0

1
1

0
2

0
0

2
0

4
0

0
0

0
2

0
0

0
1

2
0

5
0

10
0

1
1

0
0

3
0

2
0

6
1

0
0

0
2

0
0

0
0

2
3

T
o
ta

l
2

2
0

1
2

7
0

2
3

1
8

6

Ta
bl

e
3.

16
:E

rr
or

V
ec

to
rD

et
ai

ls

43

Error Value +1 +2 +3 -1 -2 -3

Error Detail
Add 1 Add 2 Add 3 remove 1 remove 2 remove 3

extra char extra chars extra chars extra char extra chars extra chars

Table 3.17: CID Error Vector

Figure 3.5: Simulator Result

44

Chapter 4

Circuit Stitching

4.1 Introduction

In the previous chapter, we discussed why network topology discovery is crucial for net-

work operators and that despite its significance, topology discovery of legacy networks like

SONET has not been studied much in the literature. There has been some work only on

port-level connectivity of SONETs using overhead bandwidth [38] [30] [9] and different

configuration parameters [36]. However, obtaining port-to-port connectivity is not suffi-

cient in many cases. Network operators are always concerned about the routes that their

customer traffic takes form a source node to its destination. The tasks like bandwidth op-

timization, priority traffic routing in case of network failures, and protection management

largely depend on the knowledge of complete traffic paths.

After port-to-port connectivity discovery, the next step is to trace the complete path of

users traffic between two endpoints. This is called circuit stitching. Circuit stitching is

not only a solution for operators that are planning to migrate to new technologies but it

is also of great interest for those optimizing legacy networks. In any case, the automated

discovery helps in alleviating errors that otherwise would happen due to manual ways to

update network information, and better assessing the confidence value of the discovered

45

circuits.

In this chapter, we devise an algorithm that performs circuit stitching, given an input

that comprises of physical links, each associated with a confidence level, which measures

its likeliness. This work can be seen as an advancement to SONET topology discovery

where not only the two ports at fiber layer are traced but the two end points of a connection

along with its complete path is retrieved. To the best of our knowledge, there has been no

work in literature realizing circuit stitching for SONETs.

This chapter is organized as follows. Section 4.2 gives a brief introduction on SONET

network and states formally the circuit stitching problem. The proposed algorithm is de-

scribed in Section 4.3, together with its complexity. Section 4.4 talks about how circuit

stitching can help to identify provisioning bugs and to trace protection. A discussion on

circuit completeness characteristics is also given in Section 4.4. Results are presented in

Section 4.5, together with their validation on a real data set coming from a customer of

Ciena corporation.

4.2 Circuit Stitching

4.2.1 Single hop/ Multiple hop Circuits

Circuit stitching refers to identifying two end-points (start and end point) of a circuit as

well as the complete path between the endpoints. A circuit is a set of alternating cross con-

nection and topological links carrying user information having a bandwidth that is reserved

from a given source NE to a destination NE in order to transmit user traffic. A circuit be-

tween two SONET nodes can be a single-hop or a multi-hop circuit. Figure 4.1 presents

a SONETs of five NEs. A single-hop circuit (shown in black dotted line) is demonstrated

between Nodes NEA and NEB and two multi-hop circuits (shown by green and red dotted

46

lines) between Nodes NEA- NED- NEB- NEC- NEE and NEA- NEB- NED- NEE respec-

tively.

Figure 4.1: An Example of Single-hop and Multi-hop Circuits

Topological links and cross connections links are the two types of connections that

contribute to traffic flow in SONET. Topological links are inter-NE connections as they

connect ports of two different SONET network elements. Cross connections are intra-NE

connections as built inside a network element. For example, as shown in Figure 4.1, user

data is provided at ports of NEA, shown as Src1, Src2 and Src3 to be transported to NEB

and NEE respectively. In order for the data to reach the destination NE, it must follow

alternating cross connection (dotted lines) and topological links (solid lines). We will now

discuss the two types of network connections in detail:

Topological Links

Topological links are the connections formed between the ports of two different network

elements at fiber level. These connections are realized as transparent connections, as the

fiber optic cable between the two NEs does not manipulate the data passing through it and

instead provide a path to the traffic. The optical connections can be seen at granularity of

47

OC-3, OC-12, OC-48, OC-192, etc. Table 4.1 provides potential parameters for a topologi-

cal link. Each topological link, since it provides connectivity between ports of two different

NE’s, has Aend and Zend NE name. Additionally, the ports that form the topological link

are uniquely identified by their location, i.e., Physical Termination Point (PTP), that gives

the shelf, slot and port location.

Table 4.1: Potential Parameters of Topological Link

Parameter Value

aEnd Element Name NE 1
zEnd Element Name NE 2

aEnd PTP /shelf=1/slot=6/port=1
zEnd PTP /shelf=1/slot=1/port=7

Cross-connection Links

Cross connections provide the connectivity between two ports inside a network element us-

ing a cross connect circuit pack. The main parameters that are required for building a cross

connection in SONET are presented by Table 4.2. Each cross connection is identified by

an ”A-end” and ”Z-end” physical termination points, the exact timeslots in both end ports

as Connection Termination Point (CTP) and a Connection ID (CID). The cross connections

may have different granularity, that is STS-1, STS-3c, VT-1.5, etc. If the cross connection

is built at STS-1 level, it means it can reserve only 1 timeslot in both the end-ports. If it

is built at STS-3c, it means that three consecutive STS-1 timeslots are bunched together

(concatenated) through out the connection. Table 4.3 represents the number of connections

that a port may have for different rates of cross connections along with the potential slot

numbering.

48

Table 4.2: Potential Parameters of a Cross Connection

Parameter Value

Element Name Network Element-1

aEnd PTP : aEnd CTP /shelf=1/slot=6/port=1 : sts1 slot = 17

zEnd PTP : zEnd CTP /shelf=1/slot=1/port=7 : sts1 slot = 17

Connection ID University link # 7

Table 4.3: List of rate and number of connections for a Port [4]

Port Rate # Connections Slot Numbering

OC192

sts192c 1 1
sts48c 4 1-4
sts12c 16 1-16
sts3c 64 1-64
sts1 192 1-192
vt1.5 5,376 1-5376

OC48

sts48c 1 1
sts12c 4 1-4
sts3c 16 1-16
sts1 48 1-48
vt1.5 1,344 1-1344

OC12

sts12c 1 1
sts3c 4 1-4
sts1 12 1-12
vt1.5 336 1-336

OC3
sts3c 1 1
sts1 3 1-3
vt1.5 84 1-84

4.2.2 Problem definition

We define the circuit stitching problem as identifying the two end-points of a circuit along

with its complete path. The inputs to this problem are topological and cross connection

links. We first select each endpoint of a topological link in turn and check whether we can

49

merge the set it belongs to with another set, in case the endpoints of the incomplete circuits

in each set can be connected, i.e., they have the same label. A label is defined as follows:

Label = {Shelf, Slot, STS Rate (high rate), STS TS, VT (low rate), VT TS}, where TS is

the timeslot number and VT stands for Virtual Tributary. It should be noted that in this

case we only match if the IDs are exactly the same. The reason being that if a connection

is provisioned, it must have the values of shelf, slot and rate. We keep building the circuit

this way until we reach to a point when we can not trace anymore. The circuits (set of

topological links) are obtained as an output to this problem.

4.3 Circuit Stitching Algorithm (CISTAL)

The key to circuit stitching is to understand how the time slots are configured for different

cross connections. Time slots allocated for a cross connection should be the same on both

end ports for a successful connectivity. A variant of a union-find algorithm, (see e.g.,

Cormen et al. [7]) is proposed here to solve the circuit stitching problem. After a pre-

processing step (Algorithm 2) in order to decouple the search of the primary and backup

paths, we proceed with a union-find data structure (Algorithm 1). At the outset, every link

defines a set. At any iteration, a set will contain either a full circuit, or a circuit fragment

identified by the characteristics of its two endpoints. Note that a port may be configured for

different rates (higher and lower rates). In that case, the time slots of all the available rates

need to be matched. For example, some cross connections have VT1.5 connection on the

top of STS1 connection. The union-find algorithm stops when we cannot merge any pair of

sets, i.e., when we cannot stretch further any incomplete circuit. As soon as a set contains

a complete circuit, it is eliminated from the list of sets to be considered. The complexity of

the resulting algorithm is O(n log n), where n is the sum of the number of topological links

and the number of cross-connect links, following the complexity of union-find algorithms

[7].

50

Algorithm 3 CISTAL
1: Input : Set of links: L = {�1, �2, �3......�n} where � ∈ L =

{(p,NEp, Labelp), (p
′, NEp′ , Labelp′),Type}

Type ∈ {topological, cross-connect}
p = source port, p′ = destination port, Label = {Shelf, Slot, STS Rate, STS TS, VT, VT
TS}, TS = Timeslot number

2: Output : S = {S1, S2,, Sn} (a set of sets)
3: for � ∈ L do

4: Initialize S with MakeSet(�) : � ∈ L
5: end for

6: for p being the endpoint of a topological link do

7: Let S be the set (incomplete circuit) with endpoint p
8: Search for S ′ such that Edpt(S ′) = p′

9: Pair S and S ′ if labelp= labelp′
10: S ← S ∪ {S ∪ S ′} \ {S, S ′}
11: Keep track of the endpoints of S ∪ S ′ (new set) and their labels
12: end for

Algorithm 4 Pre Processing
1: Input : Set of links: L = {�1, �2, �3......�n} where � ∈ L =

{(p,NEp, Labelp), (p
′, NEp′ , Labelp′),Type}, �Type = {CX,OPT}

2: Output: Updated L
3: for � ∈ LCX do

4: Search for � with one source �s and two destinations �d1 and �d2 or vice versa.
5: Create link �i ← {�s, �d1}
6: Create link �j ← {�s, �d2}
7: L ← L \ �
8: end for

4.4 Learning Circuit Stitching to improve Network Topol-

ogy

Circuit stitching originally intends to trace the two endpoints of a circuit along with its

complete path. However, it can provide some more interesting results. In this section, we

will discuss three applications of circuit stitching. (i) Typographical errors correction that

occur during connection provisioning, (ii) Identifying circuit completeness characteristics,

and (iii) Protection identification that helps to improve the discovered topology results.

51

4.4.1 Correction for Typographical Errors

Typographical errors are often introduced by human operators at the provisioning of cir-

cuits. Ideally, all the links belonging to a circuit should have the same CID (see Section

4.2). However, sometimes circuits are extended later by different operators, and sometimes

due to typographical errors, the CID values do not remain the same. Table 4.4 shows an

example of a circuit with 4 links. The confidence value (a measure of reliability, see [22])

for each link is much higher but the CID values are different for some links. It can be seen

that all the CIDs refer to same connection, i.e., from Concordia to Mcgill, however, the

naming convention is somehow different which can be easily corrected once the complete

circuit is successfully traced. This would help the network operators in future to follow the

corrected naming conventions.

Table 4.4: Correcting Typographical errors through Circuit Stitching
Circuit # # Link Connection ID Confidence

1

1 Concordia to Mcgill1 0.9
2 Concordia to Mcgil1 0.85
3 Concord to Mcgill 0.8
4 Concor to Mg1 0.9

4.4.2 Investigating Circuit Completeness

Circuit Stitching may help to identify the complete and incomplete circuits. Complete

circuits are those circuits that have terminating ports at both ends. Incomplete circuits can

be of two types. (i) circuits that have terminating port only at one end. (ii) circuits that

end at a topological link (even-length circuits). Circuits ends at a topological link due

to any of the two reasons: either the next link (cross connection) is not accessible or the

stitched circuit has some wrong links. Table 4.7 provides a breakup of circuits based on

their completeness.

52

4.4.3 Identifying Protection

Protection is a point of concern for almost every network including SONET that may suffer

from equipment or link failures. As, the failure of a link or equipment may lead to traffic

breakdown. We specifically look at path protection and define circuits as fully protected if

there are two disjoint paths (i.e., there is no link shared by both paths as shown in Figure 4.2

(a)) connecting a source and destination. Protection comes at a cost for operators and hence

all circuits are not fully protected normally. Circuit stitching may help us to identify if the

protection is adequately provisioned in the network or if some links need to be protected

further.

Based on the current data set, we have identified three circuit patterns as shown by Figure

4.2, where (a) presents the complete end to end protection, i.e., in case of failure of a link in

first path (containing ports 1,2 and 3, 4) the traffic can flow through second path (containing

ports 5,6 and 7,8). (b) presents under-protected links and (c) represents the broken circuits.

Table 4.5: Analysis of Protection
Stitched # Protected # Retrieved E2E # Broken % Retrieved
Circuits Circuits Protected Circuits Circuits Protected Circuit
3,634 989 704 40 71.18
3,674 981 714 14 72.78
3,711 1,085 880 14 81.10
4,016 1,300 1,022 14 78.61

4.5 Numerical Results

4.5.1 Data set

We use the data set of a customer of Ciena in order to validate the algorithms proposed

in the previous section. Input to the circuit stitching problem consists of a set of links,

53

Figure 4.2: Protection Cases

partitioned into topological links and cross connection links. In the context of our study,

the set of links comes as an output of a topology discovery algorithm, with a threshold

value (τ) for the confidence level. Considering four different threshold values (see Table

4.6), we got four input instances to test the circuit stitching algorithms. It can be observed

that pre-processing (i.e., Algorithm 2) increases the number of links significantly.

Table 4.6: Input to CISTAL
Topological # Cross-connections # Links before # Links after

links pre-processing pre-processing
245 (τ = 0.75) 12,580 12,825 15,169
271 (τ = 0.70) 12,580 12,851 15,195
309 (τ = 0.65) 12,580 12,889 15,233
324 (τ = 0.60) 12,580 12,904 15,248

54

Ta
bl

e
4.

7:
O

ut
pu

to
fC

IS
TA

L
#

In
pu

tL
in

ks
#

St
itc

he
d

C
ir

cu
its

C
om

pl
et

e
C

ir
cu

its
1-

E
C

O
C

ir
cu

its
1-

E
C

E
C

ir
cu

its
0-

E
C

E
C

ir
cu

its
0-

E
C

O
C

ir
cu

its
#

A
vg

le
ng

th
#

A
vg

le
ng

th
#

A
vg

le
ng

th
#

A
vg

le
ng

th
#

A
vg

le
ng

th
15

,1
69

3,
63

4
71

4
11

8
5

11
3

1,
12

6
2

2,
30

8
5

15
,1

95
3,

67
4

83
4

12
8

6
13

4
1,

15
2

2
2,

29
8

5
15

,2
33

3,
71

1
13

4
5

73
8

20
7

1,
22

3
2

2,
26

1
6

15
,2

48
4,

01
6

14
0

5
69

8
30

7
1,

55
3

2
2,

22
4

6

1
E

C
E

:1
-E

nd
-C

ir
cu

it-
E

ve
n

(C
ir

cu
it

en
di

ng
at

an
op

tic
al

lin
k

an
d

ha
ve

on
e

te
rm

in
at

in
g

en
d)

1
E

C
O

:1
-E

nd
-C

ir
cu

it-
O

dd
(C

ir
cu

it
en

di
ng

at
cr

os
s

co
nn

ec
tio

n
an

d
ha

ve
on

e
te

rm
in

at
in

g
en

d)
0

E
C

E
:1

-E
nd

-C
ir

cu
it-

E
ve

n
(C

ir
cu

it
en

di
ng

at
an

op
tic

al
lin

k
w

ith
no

te
rm

in
at

in
g

en
d)

0
E

C
O

:1
-E

nd
-C

ir
cu

it-
O

dd
(C

ir
cu

it
en

di
ng

at
cr

os
s

co
nn

ec
tio

n
w

ith
no

te
rm

in
at

in
g

en
d)

Ta
bl

e
4.

8:
V

al
id

at
io

n
of

R
es

ul
ts

#
St

itc
he

d
ci

rc
ui

ts
C

ie
na

C
us

to
m

er
In

pu
t

τ
=

0.
75

τ
=

0.
70

τ
=

0.
65

τ
=

0.
60

#
C

ir
cu

its
A

ve
ra

ge
le

ng
th

%
re

tr
ie

ve
d

1
pi

ec
e

2
pi

ec
es

1
pi

ec
e

2
pi

ec
es

1
pi

ec
e

2
pi

ec
es

1
pi

ec
e

2
pi

ec
es

70
13

.7
8

lin
ks

10
0%

3
0

9
1

11
2

13
26

61
-9

9%
6

22
16

32
16

32
7

17
31

-6
0%

4
34

2
10

2
7

2
4

0-
30

%
0

1
0

0
0

0
0

1
To

ta
l#

13
57

27
43

29
41

22
48

ci
rc

ui
ts

70
70

70
70

55

4.5.2 Analysis of Results

Table 4.7 presents the results of CISTAL algorithm for four input instances. A circuit is

said to have one terminating end if only one endpoint is a topological link while it has even

number of links if the endpoints of circuit are topological links and has odd number of links

if the endpoints of circuit are cross-connection link.

The partially completed circuits are further categorized as: 1-ECE, i.e., circuits with

1 terminating end with even number of links, 1-ECO, i.e., circuits with 1 terminating end

with odd number of links, 0-ECE, i.e., circuits with no terminating end with even number

of links, and 0-ECO, i.e., circuits with no terminating end with odd number of links. It

can be observed from Table 4.7 that as the number of input links increases, the number of

complete circuits also increase.

We have validated results on a data set of Ciena customer. The validation is performed

by Ciena engineers by comparing the results of our solution with the actual circuit traced.

The results obtained by our algorithms sometimes gave better solution and sometimes gave

worse regarding the count of traced circuits. We get better solution in terms of retrieving

more circuits than that manually traced by Ciena partner. The reason being the limitations

in manual tracing as discussed in Section 1. At times, our solution was worse due to the

missing/erroneous values in provisioning parameters that turned out as getting circuits in

two pieces (broken circuits) as shown by the Table 4.8. We have reported our observations

on the basis of percentage of circuit (length) retrieved. One observation is: for the 70 input

circuits, we have retrieved 39 out of 70 complete circuits by CISTAL with the fourth input

case (with lowest threshold value). For the other cases (with a lower threshold value τ), the

number of complete circuits increases as the threshold decreases. Table 4.5 presents the

count of protected circuits, end-to-end protected circuits and broken circuits for the four

different number of inputs links. It can be observed that as the number of stitched circuits

increases, the number of complete end-to-end protected circuits also increase.

56

Chapter 5

Conclusions and Future Work

In this thesis, we proposed modelling of topology discovery problem as a weighted match-

ing problem that appeared to be a good fit for maximizing the identification of proper port

pairings, subject to missing or erroneous data. We also studied circuit stitching problem to

determine paths that circuits follow from source endpoints to destinations.

This research work resulted in a tool (commercially being used in industry) [8] that

helps to avoid tedious search and manual tracing for both topology discovery and circuit

stitching. Unlike some previous works for topology discovery our algorithms take into

account the effect of missing and incorrect network provisioning information which has

never been considered before.

As a future work, we plan to investigate our algorithms for topology discovery in other

network domains, e.g., IP, OTN, and SDN networks by modifying the signature parameters

usable for these networks.

57

Bibliography

[1] A. Azad, M. Halappanavar, F. Dobrian, and A. Pothen. Computing maximum match-

ing in parallel on bipartite graphs: Worth the effort? In Proceedings of the First

Workshop on Irregular Applications: Architectures and Algorithm (IAAA), pages 11–

14, 2011.

[2] A. J. Barker. Communications network for self-determining its own topology, Nov. 4

2008. US Patent 7,447,753.

[3] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A. Silberschatz. Topol-

ogy discovery in heterogeneous IP networks: the netinventory system. IEEE Trans-

actions on Networking, 12(3):401–414, June 2004.

[4] S. Chatterjee. Unique numbering for SONET/SDH timeslots in network management

system applications, Mar. 16 2006. US Patent App. 10/939,427.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy

match for online data cleaning. In SIGMOD, pages 313–324, 2003.

[6] W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS

Journal on Computing, 11(2):138–148, Feb. 1999.

[7] T. H. Cormen. Introduction to Algorithms. MIT press, 2009.

58

[8] C. Corporation. Topology discovery gaining insight to your

network. https://www.ciena.com/insights/videos/

Topology-Discovery-Gaining-Insight-to-Your-Network-prx.

html. Accessed: 2019-11-3.

[9] S. Das. Topology discovery and path provisioning in SONET rings using GMPLS. In

International Conference on Wireless and Optical Communications Networks, 2006.

[10] B. Dezs, A. Jttner, and P. Kovcs. {LEMON} an open source c++ graph template

library. Electronic Notes in Theoretical Computer Science, 264(5):23 – 45, 2011.

Proceedings of the Second Workshop on Generative Technologies (WGT) 2010.

[11] R. Duan and H. Su. A scaling algorithm for maximum weight matching in bipar-

tite graphs. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 1413–1424, 2012.

[12] J. Edmonds. Matching and a polyhedron with 0,l vertices. Journal of Research of the

National Bureau of Standards. – B. Mathematics and Mathematical Physics, 69(1 &

2):125–130, 1965.

[13] J. Edmonds. Path, trees and flowers. Can. J. Math., 17:449–467, 1965.

[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection:

A survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, Jan

2007.

[15] H. N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum

matching on graphs. J. ACM, 23(2):221–234, Apr. 1976.

[16] H. N. Gabow. Data structures for weighted matching and nearest common ancestors

with linking. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 434–443, 1990.

59

[17] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph matching

problems. J. ACM, 38(4):815–853, Oct. 1991.

[18] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Comput.

Surv., 18(1):23–38, Mar. 1986.

[19] Z. Galil, S. Micali, and H. Gabow. An O(EV\logV) algorithm for finding a maximal

weighted matching in general graphs. SIAM Journal on Computing, 15(1), 1986.

[20] M. Gondran, M. Minoux, and S. Vajda. Graphs and Algorithms. John Wiley & Sons,

Inc., New York, NY, USA, 1984.

[21] M. A. Hernández and S. J. Stolfo. The Merge/Purge problem for large databases.

SIGMOD Rec., 24(2):127–138, May 1995.

[22] B. Jaumard, A. Muhammad, and R. Fahim. Topology discovery of synchronous op-

tical networks. In International Conference on Computing, Networking and Commu-

nications (ICNC), pages 194–199. IEEE, 2017.

[23] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect match-

ing algorithm. Mathematical Programming Computation, 1(1), 2009.

[24] J. E. Kracht. Approaches for determining actual physical topology of network based

on gathered configuration information representing true neighboring devices, Feb. 4

2003. US Patent 6,516,345.

[25] M. L. Lee, H. Lu, T. W. Ling, L. Tok, W. Ling, and Y. T. Ko. Cleansing Data for

Mining and Warehousing. Springer, 1999.

[26] V. Levenshtein. Levenshtein distance. https://en.wikipedia.org/wiki/

Levenshtein_distance. Accessed: 2019-10-1.

60

[27] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-

sals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[28] K. Mehlhorn and S. Näher. Leda a library of efficient data types and algorithms. In

International Symposium on Mathematical Foundations of Computer Science, pages

88–106. Springer, 1989.

[29] K. Mehlhorn and G. Schäfer. Implementation of O(Nmlogn) Weighted Matchings in

General Graphs: The Power of Data Structures. J. Exp. Algorithmics, 7, Dec. 2002.

[30] S. A. Oliva and B. Crowe. Network system and method for automatic discovery of

topology using overhead bandwidth, Nov. 25 2003. US Patent 6,654,802.

[31] Y. Qiuxiang and Z. Lihong. A research on the automatic discovery technology of

network topology. In 2nd International Conference on Biomedical Engineering and

Informatics, pages 1–3, Oct 2009.

[32] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’02, pages 269–278, 2002.

[33] V. Sharma, A. Das, and C. Chen. Leveraging IP signaling and routing to manage

upsr-based transport networks. In IEEE International Conference on Communications

(ICC), volume 2, pages 1268–1272, May 2003.

[34] R. Siamwalla, R. Sharma, and S. Keshav. Discovering internet topology. https:

//www.cs.cornell.edu/skeshav/papers/discovery.pdf, 1998. Ac-

cessed: 2015-07-21.

[35] T. F. Smith and M. S. Waterman. Comparison of biosequences. Advances in Applied

Mathematics, 2(4):482 – 489, 1981.

61

[36] J. D. Voigt, C. T. Coston, R. J. Feuerstein, D. Youngblood, D. Rosenstock, T. Kau,

and G. Bernhardt. Systems and methods for discovering network topology, Jan. 8

2013. US Patent 8,352,632.

[37] D. G. Waddington, F. Chang, R. Viswanathan, and B. Yao. Topology discovery for

public ipv6 networks. SIGCOMM Comput. Commun. Rev., 33(3):59–68, July 2003.

[38] C. Wallace, G. McCloskey, K. Cherwenka, and H. Truong. Determining connectivity

in communication networks, Sept. 18 2003. US Patent App. 10/051,930.

[39] M. S. Waterman, T. F. Smith, and W. A. Beyer. Some biological sequence metrics.

Advances in Mathematics, 20(3):367 – 387, 1976.

[40] Y. Zhang, Y. Zhao, and X. Chen. Design and implementation of topology automatic

discovery algorithm in PON NMS. In 2nd International Conference on Instrumenta-

tion, Measurement, Computer, Communication and Control, pages 1490–1493, Dec

2012.

[41] Y. Zhao, J. Yan, and H. Zou. Study on network topology discovery in IP networks. In

3rd IEEE International Conference on Broadband Network and Multimedia Technol-

ogy (IC-BNMT), pages 186–190, Oct 2010.

62

