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Summary 

Most university courses in mathematics programs are characterized by a strong focus on the 

axiomatic nature of mathematics, and thus also on proof as the central scientific method of 

mathematics (Selden, A. & Selden, 2008). Lecturers write proofs on the blackboard, students 

attempt to demonstrate their understanding and skills by proving theorems on their own or in 

collaboration with others. However, there is often little systematic discussion in these courses 

on how new mathematical conjectures can be generated and on how proofs are constructed 

(Alcock, 2010). Students’ experiences with conjecturing and proving in schools or in university 

mathematics courses often lead them to “consider proof as a static product rather than a 

negotiated process that can help students justify and make sense of mathematical ideas” 

(Otten, Bleiler-Baxter, & Engledowl, 2017, p. 112). Yet, several authors (e.g., Epp, 2003; Savic, 

2015a; Selden, A. & Selden, 2008) have hypothesized that often only little time can be devoted 

to illustrate students which strategies and processes may help to step through the proof 

construction process and to recover from proving impasses. Furthermore, the knowledge 

about what characterizes proof processes that lead to a successful outcome (i.e., an 

acceptable mathematical proof [according to local acceptance criteria]) is rare. 

To approach this issue, an extensive systematic literature search was conducted to summarize 

common claims and empirical findings about promising conjecturing and proving processes. 

126 articles that focussed on conjecturing and proving were clustered using a topic modeling 

method. The algorithm identified 17 different topics. The most representative papers for each 

topic, in total 45 papers, were qualitatively analysed with regard to their research perspectives 

on which they were based and their claims and findings about the processes that are needed 

to successfully generate conjectures and construct proofs. This combination of statistical 

clustering and qualitative analyses allowed a systematic categorization of claims and empirical 

findings about successful conjecturing and proving processes in the literature. Based on this 

review, a set of characteristics of conjecturing and proving processes, that are assumed or 

reported to be crucial for success, is proposed. 

For the further analysis of such process characteristics, we started from a model differentiating 

students’ prerequisites they bring to bear on the proving situation, the conjecturing and proving 

processes they engage in, and the quality of the resulting product. The main question of the 

empirical work in this dissertation was, which process characteristics influence the quality of 

the final product (the formulated conjecture and constructed proof), and in which way they 

mediate the impact of students’ prerequisites on this product. Specifically, we distinguished 

between individual-mathematical and social-discursive process characteristics of conjecturing 

and proving. These process characteristics were extracted from prior research in mathematics 

education or in educational psychology or in the Learning Sciences.  



    

   

The central aim of this dissertation was to develop an instrument for assessing (prospective 

undergraduate) mathematics students’ conjecturing and proving processes in collaborative 

situations. A high-inference rating scheme with seven scales, based on theoretical 

considerations and on rating guidelines adapted from educational research was designed. The 

rating scheme was evaluated in a study with N=98 prospective undergraduate students 

working in dyads on an open-ended conjecturing and proving task. The results of the empirical 

study with regard to the basic analyses showed that collaborative conjecturing and proving 

processes could be rated with sufficient reliability and that the structure of the data 

corresponded to the underlying theoretical assumption that two dimensions, one related to 

individual-mathematical and one related to social-discursive process characteristics can be 

distinguished. The in-depth analyses pointed out that individual-mathematical process 

characteristics were predictive for the quality of the resulting product and mediated the relation 

between prerequisites (students’ prior knowledge on proof) and the quality of the product. 

In this way, the dissertation contributes to the scientific debate on how to assess (mathematical 

argumentation) skills (e.g., Blömeke, Gustafsson, & Shavelson, 2015; Koeppen, Hartig, 

Klieme, & Leutner, 2008) and provides theoretical and empirical insights on individual-

mathematical and social-discursive process characteristics that describe the quality of 

collaborative conjecturing and proving processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

   

Zusammenfassung 

Die meisten universitären Mathematikveranstaltungen zeichnen sich durch einen starken 

Fokus auf den axiomatischen Charakter der Mathematik und damit auch auf das Beweisen als 

zentrale wissenschaftliche Methode der Mathematik aus (Selden, A. & Selden, 2008). Die 

Dozierenden schreiben Beweise an die Tafel, die Studierenden versuchen, ihr Verständnis 

und ihre Fähigkeiten darzulegen, indem sie Theoreme alleine oder in Zusammenarbeit mit 

anderen beweisen. In diesen Veranstaltungen wird jedoch häufig wenig systematisch 

diskutiert, wie neue mathematische Vermutungen gefunden und wie Beweise konstruiert 

werden können (Alcock, 2010). Die Erfahrungen der Studierenden mit Vermutungen und 

Beweisen, die sie während ihrer Schulzeit oder auch innerhalb der universitären 

Veranstaltungen gesammelt haben, führen sie oft dazu, den Beweis als statisches Produkt zu 

betrachten und nicht als ausgehandelten Prozess, mit dessen Hilfe mathematische Ideen 

begründet und verstanden werden können (Otten, Bleiler-Baxter & Engledowl, 2017, S. 112). 

Mehrere Autoren (u.a., Epp, 2003; Savic, 2015; Selden, A. & Selden, 2008) haben jedoch die 

Hypothese aufgestellt, dass oft nur wenig Zeit aufgewendet werden kann, um den Lernenden 

zu zeigen, welche Strategien und Prozesse dabei helfen können, Beweise zu generieren und 

Fehlwege zu überwinden. Außerdem fehlt es noch an belastbarem Wissen darüber, was 

Beweisprozesse charakterisiert, die zu einem erfolgreichen Ergebnis führen (d.h. zu einem 

akzeptablen mathematischen Beweis [gemäß den lokalen Akzeptanzkriterien]). 

Um diese Problematik anzugehen, wurde eine umfangreiche systematische 

Literaturrecherche durchgeführt, die die weit verbreiteten Behauptungen und empirischen 

Befunde zu vielversprechenden Conjecturing- und Beweisprozessen zusammenfasst. 126 

Artikel, die sich auf Vermutungen und Beweise fokussieren, wurden mithilfe einer 

„Themenmodellierungsmethode“ zu einzelnen Themensträngen geclustert. Mithilfe des 

Algorithmus konnten 17 verschiedene Themenstränge identifiziert werden. Die für jeden 

Themenstrang repräsentativsten Artikel, insgesamt 45 Artikel, wurden hinsichtlich ihrer 

Forschungsperspektiven und ihrer Behauptungen und Erkenntnisse über die Prozesse, die zur 

erfolgreichen Formulierung von Vermutungen und zur Generierung von Beweisen erforderlich 

sind, qualitativ analysiert. Diese Kombination aus statistischem Clustering und qualitativen 

Analysen ermöglichte eine systematische Kategorisierung von Behauptungen und 

empirischen Befunden über erfolgreiche Conjecturing- und Beweisprozesse in der Literatur. 

Basierend auf dieser Kategorisierung wird eine Reihe von Merkmalen von Conjecturing- und 

Beweisprozessen präsentiert, von denen angenommen oder berichtet wird, dass sie für den 

Erfolg entscheidend sind. 

Grundlage für die weitere Analyse derartiger Prozessmerkmale stellte ein Modell dar, welches 

zwischen den individuellen Voraussetzungen, den Conjecturing- und Beweisprozessen sowie 



    

   

der Qualität des daraus resultierenden Produkts unterscheidet. Dem empirischen Teil dieser 

Dissertation liegt die zentrale Frage zugrunde, welche Prozessmerkmale prädiktiv für die 

Qualität des Beweisproduktes sind (die Qualität der formulierten Vermutung und des 

konstruierten Beweises) und inwiefern diese Prozessmerkmale den Einfluss der individuellen 

Voraussetzungen auf die Qualität des Produktes mediieren. Insbesondere wurde in diesem 

Projekt zwischen individuell-mathematischen und sozial-diskursiven Prozessmerkmalen des 

Conjecturings und Beweisens unterschieden. Diese Prozessmerkmale wurden aus früheren 

Forschungsarbeiten aus dem Bereich der Mathematikdidaktik, der Psychologie oder den 

Learning Sciences abgeleitet.  

Zentrales Ziel dieser Dissertation war die Entwicklung eines Analyseinstruments zur 

Beurteilung der kooperativen Conjecturing- und Beweisprozesse von (zukünftigen) 

Mathematikstudierenden in Hinblick auf individuell-mathematische und sozial-diskursive 

Prozessmerkmale.  

Es wurde ein hoch-inferentes Bewertungsschema mit sieben Ratingskalen entwickelt, das auf 

theoretischen Überlegungen und Bewertungsrichtlinien basiert, die aus der Bildungsforschung 

abgeleitet und adaptiert wurden. Das Bewertungsschema wurde im Rahmen einer Studie mit 

N = 98 Studienanfänger/- innen, die in Dyaden an einer offenen Conjecturing- und 

Beweisaufgabe arbeiteten, eingesetzt. Die Ergebnisse der empirischen Studie im Hinblick auf 

die Basisanalysen zeigten, dass kooperative Conjecturing- und Beweisprozesse hinreichend 

zuverlässig bewertet werden können und dass die Struktur der Daten der zugrundeliegenden 

theoretischen Annahme entsprach, dass zwei Dimensionen, eine die sich auf die individuell-

mathematischen Prozessmerkmale und eine die sich auf die sozial-diskursiven 

Prozessmerkmale bezieht, unterschieden werden können. Die weiteren Analysen zeigten auf, 

dass die individuell-mathematischen Prozessmerkmale für die Qualität des resultierenden 

Produkts prädiktiv waren und die Beziehung zwischen den Voraussetzungen (dem Vorwissen 

der Studierenden über Beweise) und der Qualität des Produkts mediiert haben. 

Auf diese Weise trägt die Dissertation zur wissenschaftlichen Debatte, wie (mathematische 

Argumentations-) Kompetenzen beurteilt werden können, bei (u.a., Blömeke, Gustafsson & 

Shavelson, 2015; Koeppen, Hartig, Klieme & Leutner, 2008) und liefert theoretische und 

empirische Einblicke zu individuell-mathematischen und sozial-diskursiven 

Prozessmerkmalen, die die Qualität von kooperativen Conjecturing- und Beweisprozessen 

beschreiben. 
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1 General Introduction 

In the secondary and especially in the tertiary education, conjecturing and proving as specific 

types of mathematical argumentation are central activities. Producing a conjecture and an 

acceptable mathematical justification for it has shifted into the focus of mathematics curricula 

worldwide (e.g., Common Core State Standards Initiative, 2010). However, the ability to 

construct arguments for or against mathematical claims and to formulate new conjectures are 

a challenging demand for students at all educational levels. Much of the research on proof 

construction in the context of mathematics education has been concerned with difficulties 

students encounter (e.g., Epp, 2009; Moore, 1994; Selden, A. & Selden, 2008) or cognitive 

resources that are found to affect students’ proving performance (e.g., Ufer, Heinze, & Reiss, 

2008; Weber, 2001). Understanding how to develop the key insights that are needed to 

construct a proof (e.g., Raman, 2003) and how to write them down (e.g., Selden, A. & Selden, 

2009) have always been considered as important goals by mathematics educational 

researchers and teachers (Stylianides, G. J., Stylianides, & Weber, 2017).  

There is a general interest in studying the processes involved in learning and problem solving 

in advanced mathematics (Dreyfus, 2002) and, in particular, examining the complex cognitive 

processes related to proof construction (Cai, Mamona-Downs, & Weber, 2005). One reason 

for that is to generate theoretical knowledge about the mental and physical processes high-

achieving students or mathematicians engage in during proof construction, and to understand 

why they are employing a specific strategy or process (Selden, A., McKee, & Selden, 2010).  

Some practical issues also guide this strand of research: For instance, teachers of advanced 

mathematics courses should become more conscious of which process characteristics 

determine the success of conjecturing and proving, and explicitly introduce those processes 

that appear to be relevant in their teaching (cf. Selden, J. & Selden, 2015). Furthermore, 

scaffolds to foster mathematical argumentation skills such as heuristic worked examples or 

collaboration scripts that have been developed in the past are mainly based on expert-models 

(e.g., Kollar et al., 2014; Schwaighofer et al., 2017). Yet, before creating such learning 

environments and introducing process characteristics in lectures, it might be essential to find 

out where novice students actually require support in the first place, and which of their 

processes have to be encouraged most. Several researchers claim that the processes used 

by novices differ from those used by experts (e.g., Nadolski, Kirschner, & van Merriënboer, 

2006). From this point of view, it is important to figure out what the components of successful 

conjecturing and proving processes of novice students are and how they are related to each 

other. 
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In this dissertation, we reviewed literature with regard to the process characteristics that are 

considered to be relevant for success from a theoretical perspective (study I – research review) 

and analysed the conjecturing and proving processes of novice students (study II & study III – 

empirical studies). Moreover, we were interested in studying to what extent these process 

characteristics depend on students’ prerequisites. 

It is widely agreed that conjecturing and proving are complex skills including processes such 

as generating hypotheses from examples (e.g., Ellis et al., 2017; Koedinger, 1998; Philipp, 

2012) or finding a chain of claims that can be worked out to a deductive proof (e.g., Boero, 

1999; Stylianides, A. J., 2007). These processes can be described as individual-mathematical 

ones. Since mathematical knowledge generation is often embedded in social contexts (e.g., 

seminars, classrooms, or small collaborative settings), participating successfully in 

mathematical debates is vital for conjecturing and proving as well (Vidakovic & Martin, 2004). 

Thus, conjecturing and proving skills comprise individual-mathematical and social-discursive 

process characteristics (Kollar et al., 2014). Even though critical elements of substantial 

collaborative argumentation processes have been put forward in several domains (e.g., Chi & 

Wylie, 2014; Weinberger & Fischer, 2006) and in mathematics education (e.g., Mueller, 

Yankelewitz, & Maher, 2012; Pease, A. & Martin, 2012), there is still limited knowledge about 

the structural relationship between individual-mathematical and social-discursive process 

characteristics. Moreover, empirical findings about which process characteristics positively 

influence the quality of the resulting product (i.e., the produced conjecture and proof) on the 

one hand and about their relation to prior knowledge on proof on the other hand, are rare. 

The central aim of this dissertation project was to develop an instrument to describe the 

process quality of collaborative mathematical argumentation and proving and to use this 

instrument to identify key characteristics of successful conjecturing and proving processes in 

collaborative situations.  

To form a solid theoretical base for this dissertation, Chapter 2 summarizes the state of 

research on conjecturing and proving in the context of the transition from secondary to tertiary 

mathematics education, and defines how central concepts and terms including argumentation, 

conjecturing, and proving are understood here in this thesis. Section 2.4 presents the central 

model that serves as a basis for our empirical research, which distinguishes between 

prerequisites, processes, and performance (respectively the quality of the final product). In 

Chapter 3, we discuss the motivations behind the identification of individual-mathematical and 

social-discursive process characteristics. The resulting overall research questions and aims of 

this dissertation project are described in Chapter 4. 

Chapter 5 includes a literature review. The purpose of this review is (i) to organize and analyse 

past research on conjecturing and proving (processes) and (ii) to categorize common claims 
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and empirical findings about successful conjecturing and proving processes. Using a topic 

modeling method, which allows to cluster a collection of documents by implementing a 

statistical algorithm (for discovering the latent semantic structures within these documents), 

we identified 17 topics within the literature on conjecturing and proving. Results indicate that 

the literature on conjecturing and proving covers topics that are related to the proving as 

problem-solving, proving as convincing, and proving as a socially-embedded activity 

perspective (cf. Stylianides, G. J. et al., 2017) as well as topics that refer to the discovery 

perspective on proof or on automatic theorem proving. Categories of successful conjecturing 

and proving processes are extracted from studies’ reports on how successful mathematicians, 

university students, or high-achieving college students employ specific proving processes and 

from claims about which proving processes are assumed to be crucial for the success. We 

distinguish between categories of sub-goals within conjecturing and proving processes 

necessary for success and categories of process characteristics that are assumed to be helpful 

in achieving these sub-goals. The analysis yields a broad range of categories of sub-goals 

such as developing a strong understanding of the statement to be proved/ estimation of the 

truth, resolving fixations, or translating less formal to formal arguments as well as categories 

of process characteristics such as varying examples systematically, considering boundary 

cases, using formal symbols and algebraic representations, or applying the trial-and-error 

strategy.  

Chapter 6 provides an extensive description of the development of the high-inference rating 

scheme that was designed to assess (undergraduate) mathematics students’ collaborative 

conjecturing and proving processes. In this chapter, it is reported how process characteristics 

were deduced from the literature and operationalized, how the quality levels of each rating 

scale were defined, and how the rater training was structured and conducted.  

Chapter 7 and Chapter 8 comprise two analyses of one empirical study that is based on the 

data of N=98 prospective university mathematics students participating in a voluntary 

preparatory course. For the analyses, a set of 49 recordings of dyadic collaboration processes 

is used, taking verbal and written contributions of all participants into account. 

The first analysis (presented in Chapter 7) investigates the empirical structure of individual-

mathematical and social-discursive process characteristics, which were inferred from the 

literature. Results indicate that collaborative conjecturing and proving processes can be 

described by a two-dimensional construct, comprising either mostly individual-mathematical or 

mostly social-discursive process characteristics. 

The second analysis (described in Chapter 8) focuses on the predictive power of individual-

mathematical and social-discursive process characteristics. The theory-based process 

characteristics were validated against the quality of the produced conjectures and proofs as 
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the resulting outcome of students’ collaborative conjecturing and proving processes. 

Furthermore, the students’ prior knowledge on proof has been taken into account. Results 

show that the individual-mathematical component of collaborative conjecturing and proving 

processes is predictive for the quality of the resulting outcome. Especially, generating accurate 

and structurally sound arguments during the collaborative proving discourse can be considered 

as key characteristics of successful collaborative conjecturing and proving processes. At the 

end of this dissertation, a summary of the main findings is given.  

In Chapter 9, limitations and implications for research and teaching are discussed. 
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2 State of research 

2.1 The transition phase 

The empirical study of this dissertation is situated in the transition phase from secondary to 

tertiary mathematics education. Before reviewing definitions and models of mathematical 

argumentation, conjecturing and proving and formulating the specific research questions of 

this dissertation, the following three sections present how the character of the learning domain 

mathematics changes at the transition from secondary school to university mathematics, how 

the focus on formal concepts and proofs increases, and what students’ difficulties with proof 

construction are. 

2.1.1 Teaching and learning of mathematics at school and at university – challenges 

at the transition  

Mathematics educational researchers have publishing work that deals with mathematics 

learning and teaching at the university level with a specific focus on the challenges at the 

transition phase from school to university for more than 20 years (Artigue, 2001). In particular, 

the high drop-out rates in mathematics-related academic study programs (e.g., Dieter, 2012) 

urged researchers to pay more attention to the discrepancies between the two educational 

systems and the resulting difficulties students encounter (e.g., Artigue, 2001; Heublein, 2014; 

Kosiol, Rach, & Ufer). It has been reported that the different teaching styles, learning contexts, 

and assessment strategies contribute to the transitional gap between the secondary and 

academic sector (Thomas, M. O. J. & Klymchuk, 2012). 

Thomas and Klymchuk (2012) have hypothesized that the large course sizes at university 

might be one factor that leads to less interaction and communication with students. In 

comparison to school, the teaching style at university is more teacher-centred and the time to 

“‘do’ problems” (p. 289) is limited. It can be said that it is more difficult for students to ask 

individual questions (Thomas, M. O. J. & Klymchuk, 2012) and that the amount of personal 

attention students get from their teachers decreases extremely compared to the school context 

(Gruenwald, Klymchuk, & Jovanoski, 2004). 

In general, the academic field is characterized by a high-degree of self-learning phases. 

University students have to take great responsibility for their own learning, acquire self-

regulative techniques as well as elaboration strategies (Rach, 2014; Rach & Heinze, 2011). 

The type of problems students have to deal with changes as well. Secondary school tasks are 

frequently split into simpler sub-tasks and provide hints that may encourage students to 

develop a solution (Praslon, 2000). Furthermore, most of the tasks students have to work on 

are routine problems that are analogous to those already demonstrated by the teacher and 
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that do not involve any conceptual obstacles, so that they can be described as tasks with a 

low cognitive potential (Jordan et al., 2008). Such problems constitute exercises and might not 

be regarded as problem-solving tasks (Selden, A. & Selden, 2013b). At university, applying 

routines is usually not sufficient as the problems that students face are more complex 

(Gruenwald et al., 2004). 

The survey of de Guzmán, Hodgson, Robert, and Villani (1998) pointed out that a large 

proportion of university students regret that the lectures do not follow a particular textbook and 

that concrete examples are rarely given. From students’ perspective, the teaching style at the 

university is often too abstract. They miss backboard drawings or hand-out notes with detailed 

explanations. Informal content is presented as well, but mainly only orally. It could be observed 

that students typically copy written content, but not necessarily oral comments in their notes 

(Fukawa-Connelly, Weber, & Mejía-Ramos, 2017; Weber, Fukawa-Connelly, Mejía-Ramos, & 

Lew, 2016) 

Regarding the assessment culture at school, the research survey by Thomas and Klymchuk 

(2012) has demonstrated that there are a lot of internal (and external) assessments and much 

more emphasis on passing the exams than on learning to understand. They reported that some 

school teachers have the impression that they only teach to assessments. Furthermore, the 

results of their survey demonstrated that most students prefer the assessment methods at the 

tertiary level for several reasons such as questions are more to the point and without 

hierarchical style, and also the precision of solutions is rewarded. Yet, as reported in 

Gruenwald et al. (2004), university lecturers see the necessity for changing the assessment 

style at university as well. Some of them suggest to demand weekly tests and oral exams as 

both methods may allow to give students a more detailed feedback than just written exams at 

the end of the semester. Kahn and Hoyles (1997) claimed that there has already been made 

a change towards more continuous assessments. 

Based on the assumption that students and expert mathematicians view advanced 

mathematics from different perspectives, Weber et al. (2016) suggested that it has to be clearly 

communicated to students what they should know and learn from the lectures they attend. The 

results of the study of Gruenwald et al. (2004) supported that it is not always obvious to the 

students what is expected of them. More attention needs to be paid to the communication on 

how to achieve the goals required to pass academic mathematics courses. Even at school, 

rules and social-mathematical norms are often not clearly discussed. Thus, students have 

problems to decide whether a proof is valid or not, or what is accepted as explanation. They 

do not feel responsible for these aspects of mathematics (e.g., Dreyfus, 2002; Gueudet, 2008).  

University students have to take more responsibility for their own learning (e.g., Rach & Heinze, 

2011) and learn to recover quickly from failures and disappointments (Selden, A. & Selden, 
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2013a). Schiefele, Streblow, and Brinkmann (2007) concluded that personal traits such as 

intrinsic learning motivation, self-confidence, persistency, social skills, and the ability to cope 

with performance-related pressure also need to be taken into account when focusing on the 

discontinuity phenomena of mathematics students during their transition from secondary to 

tertiary education.  

The most relevant aspect contributing to the transitional gap is that faculty members of 

academic mathematics courses place high value on formal concepts, accuracy, and deductive 

proofs (e.g., Thomas, M. O. J. & Klymchuk, 2012). These features characterize mathematics 

as a scientific discipline. In the following section, it is described how mathematics is presented 

at school, and how mathematics is taught at university from a scientific perspective with a 

specific emphasize on proofs and formal representations. 

2.1.2 The character of mathematics at school and at university and the role of proof 

Epp (2003) and Gueudet (2008) described what happens during the secondary-tertiary 

transition by using the metaphor that novice students often feel like a foreigner entering a new 

world, or at least a new country in which a different language is spoken and other laws are 

effective. These are the language and rules that mathematicians use to construct and 

communicate proofs.  

In the secondary school, there is a specific focus on technical aspects such as manipulating 

algebraic expressions, calculating derivatives, and applying formulas. Concepts and 

procedures are considered as tools for describing more or less real life situations and solving 

everyday problems (e.g., Vollstedt, Heinze, Gojdka, & Rach, 2014). According to this, topics 

such as fractions, percentages and area calculations, which are rarely of interest from a 

scientific point of view, have a high priority in the school syllabus (Rach & Heinze, 2011). 

School mathematics can be described as very mechanical and situational (Gruenwald et al., 

2004). Some researchers assumed that students often succeed in school mathematics by 

employing an algorithm without understanding the concepts beyond (e.g., Guzmán et al., 1998; 

Tall, 1991). Furthermore, some authors from university mathematics education have critically 

remarked that the teaching style at school encourages students to learn disjointed facts and 

procedures, and push the theory into the background (Gruenwald et al., 2004). Aspects that 

characterize mathematics as a scientific discipline (e.g. building a coherent and consistent 

theory, deductive proofs, and formal definitions) are rather underrepresented, even in a 

propaedeutic form, and only sporadically implemented in the school curriculum (Rach & 

Heinze, 2011). Therefore, students may experience substantial difficulties, when entering the 

tertiary level (Guzmán et al., 1998). The gap between school and university mathematics can 

be considered as a great leap from empirical to abstract mathematics, from less formal to 
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formal representations (Nardi, 1996). Students have to learn an entirely new way of thinking 

(Tall, 1991). Moore (1994) claimed that students are inadequately prepared for the rigor and 

accuracy that is expected from them at the university. Some authors hypothesized that 

students have little idea of what mathematics is, when entering academic mathematics 

courses, and that they take the view that it is solely an extension of school mathematics 

(Hoyles, Newman, & Noss, 2001; Nardi, 1996). 

The teaching content at the university is organized and demonstrated in a specific axiomatic 

and rigorous way, and comprises formally defined abstract concepts, theorems, logical 

deductions, and proofs. The lectures follow a specific consistent shape, the so called DTP 

(Definition-Theorem-Proof) structure (Engelbrecht, 2010; Hoyles et al., 2001). Therefore, 

proofs achieve a new and important status at the tertiary level (Guzmán et al., 1998).  

In the study of Harel and Sowder (1998), university students’ proving attempts have been 

categorized. They identified that most students evaluate the validity of a proof by referring to 

external factors or an external authority. Analytical proof schemes, where conviction relies on 

logical deduction were rarely observed. It has been shown that only the minority of 

mathematics students are able to construct a coherent chain of arguments that is accepted as 

proof by the mathematical community (e.g., Gueudet, 2008; Moore, 1994). Proofs at the tertiary 

level tend to be more complex, and have to be based on formal definitions and previously 

established theorems (Selden, A. & Selden, 2009). Students have to develop a deep and 

conscious knowledge of the logical principles involved, and being able to employ them (Epp, 

2003). Informal and empirical arguments such as examples, which are often accepted as 

justification for a statement in the context of school mathematics, can still be used to explore 

the problem situation initially and to think things through, but finally such intuitive or informal 

reasoning must be made more formal and precise for communication and presenting purposes 

in the context of university mathematics (Hanna, Jahnke, & Pulte, 2010; Selden, A. & Selden, 

2009). 

Even though there is a strong emphasis on enhancing students’ creativity and informal 

conceptual understanding (Selden, A. & Selden, 2009), university students are mainly 

assessed on their ability to produce formal mathematics. Consequently, university students 

frequently assume that formal aspects are superior to all other aspects of mathematics. For 

instance, they focus more on using formal symbols than constructing a coherent chain of 

arguments (Weber et al., 2016). 

From the findings reported in the literature and presented in the two last sections, we conclude 

that the transition from secondary to tertiary mathematics education is a challenging phase for 

most students. Reasons for that have been attributed to changes in the learning and teaching 
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culture, in the assessment methods, in the character of mathematics taught, and in particular 

in the role of proofs.  

2.1.3 Students’ difficulties with proofs 

It is well known that many students have difficulties in generating conjectures and constructing 

proofs. This is hypothesized to be one reason for the high dropout rates, as students' proofs 

are used as an important component in evaluating and grading their understanding and 

performance in content courses, such as real analysis or linear algebra (Selden, A. et al., 

2010). Students’ difficulties related to conjecturing and proving at different educational levels 

have been identified and discussed by a number of researchers (e.g., Epp, 2009; Koedinger, 

1998; Moore, 1994; Selden, A. & Selden, 2008; Selden, A. & Selden, 2011). In the following 

section, we summarize the main findings about students’ conjecturing and proving difficulties 

that have been observed and documented in the literature.  

Several researchers reported that undergraduate students tend to focus more on procedures 

than on content, more on formal aspects than on understanding the concepts involved (e.g., 

Moore, 1994). This could be a result of the teaching-style they have experienced at the 

secondary level. Memorizing and imitating proofs may lead students to face problems, not only 

with producing proofs, but even with recognizing what a proof is (Chazan, 1993; Moore, 1994; 

Raman, 2003). It has been observed that students often fail to discover, interpret, or use 

theorems on their own (Selden, A. & Selden, 2008; Weber, 2001). Some students already 

struggle with reviewing their notes if there are any relevant lemmas or theorems they could 

apply. They are prone to proceed directly from the definitions involved and write the entire 

definition into a proof, rather than just saying that the definition applies to a particular 

mathematical object. The distinction between using a definition and examining whether an 

object satisfies a definition remains unclear for them. These difficulties influence students’ 

ability to handle the problem-solving aspects of proofs (Selden, A. & Selden, 2011).  

Furthermore, students often do not know how to begin and end, for instance, direct or 

contradiction proofs (Moore, 1994; Selden, A. & Selden, 2011), or what to do next (Selden, A. 

et al., 2010). They have problems with applying standard proving techniques and with 

unpacking the logical structure of (informally stated) theorems. These are considered as some 

of the reasons why they are not able to structure proofs (e.g., Selden, A. & Selden, 2011). 

A further category of proving difficulties involves that some students do not recognize the 

constraints of empirical or authoritative evidence (Stylianides, G. J. & Stylianides, 2009). It is 

claimed that mathematics researcher, lecturers and students have disparate views on 

mathematics and thus, their conceptions of what constitutes evidence and justification in 

mathematics may differ (e.g., Thomas, M. O. J. & Klymchuk, 2012). The study of Martin and 
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Harel (1989) has shown that many pre-service teachers accepted empirical or even incorrect 

arguments as proofs. Coe and Ruthven (1994) investigated the proof practices and constructs 

of advanced mathematics students that followed a reform-based curriculum and also found out 

that students predominantly prefer empirical proof strategies.  

Transforming informal into formal arguments represents a further challenge (Zazkis, Weber, & 

Mejía-Ramos, 2016). Students’ difficulties in using formal-symbolic notations and the specific 

mathematical language are well documented in the literature. These include problems such as 

taking the scope (Epp, 2003) and order of quantifiers into account (Dubinsky & Yiparaki, 2000), 

understanding that the value of a variable can be arbitrary, but fixed and does not change its 

value within one algebraic expression (Epp, 2003).  

Besides these mathematical difficulties, Selden, A. and Selden (2011) also cited some 

difficulties, such as the incorrect copying of a definition from the blackboard or the incorrect 

articulation of notations and terms when reading or explaining a proof in one’s one words, 

which they summarized as “non-mathematical proving difficulties” (p. 678). 

In general, the descriptions of students’ difficulties provide insights at the process level (though 

sometimes derived from students' written proof attempts). Unfavourable sub-processes or sub-

processes that are often not handled correctly have been discussed. Yet, would it be more 

promising to look at the processes that actually lead to success or that make the difference 

between successful and less successful proving processes? In this dissertation, we will focus 

on and investigate the process characteristics that are assumed to be crucial for success. 

Furthermore, as the success of proving processes are primarily determined by their outcomes, 

we take the quality of the resulting product into account as well. 

For better understanding the difficulties and obstacles that students face in relation to proof, 

researchers have begun to search for the origins and sources of such difficulties (Mariotti, 

2006). In Chapter 2.2.3, we will present the cognitive and affect-motivational resources that 

have been considered as prerequisites that may have an important influence on the proving 

performance (on the quality of the resulting proof product).  

2.2 Argumentation, conjecturing and proving 

In this chapter, the concepts of conjecturing and proving are described from an individual and 

social-discursive perspective. We consider the characterizations of argumentation, 

conjecturing and proving in mathematics and their relationships (section 2.2.1). We provide an 

overview of the context- and personal-specific factors that have been discussed in the literature 

(section 2.2.2 and section 2.2.3) and introduce different approaches to conceptualize 

mathematical argumentation skills (section 2.2.4). Different models of argumentation and the 



State of research 

23 

proof construction process (section 2.2.5) are presented and compared in terms of what we 

already know about conjecturing and proving processes. We derive gaps and open questions 

from the current state of research on conjecturing and proving. Since conjecturing and proving 

are often embedded in social contexts, we also refer to the social-discursive perspective on 

mathematical argumentation and discuss the role of peer collaboration within conjecturing and 

proving activities (section 2.2.6). We conclude with a short summary presenting our research 

model. 

2.2.1 Defining key terms 

2.2.1.1 Different perspectives on proof 

The terms argumentation, conjecturing, and proving have been used in different ways. Even 

though several researchers and curriculum frameworks emphasize the importance of 

argumentation and proving throughout the grades (e.g., Common Core State Standards 

Initiative, 2010; Hanna, 1995, 2000), there are various views on how proof (the corresponding 

concept to the activity of proving) can be defined (Mariotti, 2006; Stylianides, A. J., 2007), and 

how it is related to conjecturing and argumentation (e.g., Pedemonte, 2007). From a 

mathematical perspective, proofs are associated with formal definitions and theorems (the use 

of already established mathematical results), and logical deductions that interlink the 

assumptions (that are regarded as true) with the conclusions (e.g., Healy & Hoyles, 2000). 

Griffiths (2000) stated that “a mathematical proof is a formal and logical line of reasoning that 

begins with a set of axioms and moves through logical steps to a conclusion” (p. 2). In 

mathematics curricula all over the world, (deductive) reasoning is considered as a crucial 

learning goal and refers “to this family of activities that are frequently involved in the 

development of proofs: identifying patterns, making conjectures, and providing arguments - 

both proofs and arguments that do not meet the standard of proof” (Stylianides, G. J., 2010, 

p. 39). As already noticed by Balacheff (1991), most characterizations of proof point mainly to 

the logical structure of proofs. Different types of proofs can be distinguished with regard to the 

underlying logical structure, the proving techniques that have been applied to develop a proof 

(e.g., proof by exhaustion, proof by mathematical induction, proof by contradiction), and to the 

type of claims that have to be proven (e.g., existence proofs) (Hanna, Villiers, & International 

Program Committee, 2008). Besides of establishing the truth or falsity of an assertion (proof 

as a means of verification/falsification) and organizing results into a deductive system 

consisting of axioms, concepts and theorems (proof as a means of systematization), proofs 

can serve a broad range of functions such as providing insight into why an assertion is true or 

false (proof as a means of explanation) or leading to new results (proof as a means of 

discovery). Other functions that proofs can fulfil are tackling a (new) intellectual challenge and 
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providing satisfaction afterwards (proof as a means of intellectual challenge) as well as 

reporting and disseminating mathematical knowledge (proof as a means of communication). 

In this dissertation, we mainly focus on the functions of proofs related to verification, 

systematization and communication (Villiers, 1999).  

Mariotti (2006) pointed to the cognitive side of mathematics and in particular of proofs, and to 

their integration into a social context. She emphasized that after a successive phase of 

(empirically) discovering and systematizing ideas and arguments, a phase follows in which the 

body of developed knowledge is made accessible to the scientific community. In that sense, 

the creative phase of discovery and systematization describes the cognitive dimension, and 

the phase of communication refers to the social side of proof. The quote "...it appears that 

proof is a form of discourse, a means of communication among people doing mathematics" 

(bold added) (Volmink, 1990; as cited in Villiers, 1999) underlines the importance of the social 

side of proof. Manin’s (1977) statement that “a proof becomes a proof after the social act of 

accepting it as a proof” (p. 48) is consistent “with the conceptualization of proofs as 

nonabsolute objects” (Stylianides, A. J., 2007, p. 298).  

Having these different conceptualizations of proof in mind, we go along with the definition 

proposed by Stylianides, A. J. (2007, p. 291), describing proof in the following way:  

“Proof is a mathematical argument, a connected sequence of assertions for or against a 

mathematical claim, with the following characteristics: 

 1. It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justification;  

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and  

3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 

community.” 

Even though the definition originally emerged in the context of proofs at the secondary 

mathematics education, it is also transferable to the context of university mathematics. In this 

way, the classroom community consists of mathematicians such as professors and lecturers 

as well as of mathematics students. We conclude that proofs in mathematics, as deductive 

chains of arguments that are based on true statements, valid forms of reasoning, and 

appropriate forms of representations, are context-dependent (Thurston, 1998). Furthermore, 

we interpreted the term valid as an expression for the fact that the validity of a proof is usually 

determined by certain criteria defined by the corresponding mathematical community. Such 

criteria include sociomathematical norms (Yackel & Cobb, 1996) and values (Dawkins & 
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Weber, 2017). According to Stylianides, G. J. et al. (2017) the activity in search for a proof is 

called proving.  

Yet, what are the common aspects between argumentation and proving, and why is it important 

to take the differences between them into account? The debate about what constitutes a 

mathematical proof leads directly to the question of the relationships between conjecturing, 

proving, and argumentation.  

2.2.1.2 The relationships between proving, conjecturing and argumentation 

Before clarifying the relationship, we want to present different perspectives on mathematical 

argumentation. 

Delineating the terms argumentation, argument, conjecturing and proving 

As with the concept of proof, there is no universally accepted definition of argumentation in 

mathematics education (Pedemonte, 2007). Argumentation is used for both describing “the 

process which produces a logically connected (but not necessarily deductive) discourse about 

a given subject […] and the text produced by that process” (Douek, 2007, p. 169). The process 

of producing a logically connected discourse comprises phases of identifying reasons, making 

inductions, drawing conclusions and applying them to the subject the discourse focuses on. 

An argumentation is a sequence of arguments (including drawings, examples, verbal 

arguments etc.) and inferences, whereas an argument represents a reason or a structured 

chain of reasons for or against a statement or opinion (e.g., Douek, 2007; Hornikx & Hahn, 

2012; Toulmin, 1958). Argumentations (or arguments) are either produced individually (for 

instance, in a written form) or produced orally embedded in a social context (Douek, 1999).  

Some authors emphasized the discursive character of argumentation (e.g., Alibert & Thomas, 

1991). In comparison to proof, argumentation with its non-constraining character (Perelman, 

1979) leaves some degree of freedom regarding the type of inferences (inductive, abductive, 

deductive) chosen (Douek, 1999; Pedemonte, 2008). It usually takes place informally and 

incidentally within mathematicians  to  refine,  discuss  or  communicate  mathematical  

problems  and  outcomes. Some general objective criteria must be applied to the product under 

discussion in order to become accepted as a proof (Heinze, 2010).   

From this perspective, argumentation incorporates the construction of conjectures and proofs 

(Pedemonte & Buchbinder, 2011). Pedemonte (2007) termed the argumentation that 

contributes to the construction of a conjecture a “constructive argumentation” and the 

argumentation that justifies a conjecture a “structurant argumentation” (p. 390). Analogous to 

these terms, we use the notations of conjecturing respectively proving. 
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Different perspectives on the relationships  

In the past, the relationships between argumentation, conjecturing and proving has been 

discussed from different points of view (Stylianides, 2007). Some researchers follow the work 

of Garuti, Boero, and Lemut (1998) by considering “the phenomenon of (possible) continuity 

between the production of a conjecture and the construction of its proof” (Boero, 1999; p. 5-6). 

This continuity is termed cognitive unity. It highlights that an argumentation in which a 

conjecture is produced can be extended to construct a proof by organizing the previously 

generated arguments into a deductive chain. It is based on the assumption that there is a close 

link between the nature of objects, the relations between objects, and the inferences used in 

both as well as the mental cognitive activities that arise during the conjecturing phase and the 

proving phase. Some researchers argue that proof is more “accessible” for students if some 

informal arguments such as drawings, examples, or theorems related to the proof have already 

been explored in the argumentation supporting the conjecture (cf. Pedemonte & Buchbinder, 

2011).  

Boero, Garuti, and Lemut (2007) observed that the dynamic conjecturing processes that led to 

the production of a conjecture can serve as thread, which has to be identified and then can be 

followed to build up a proof. Even though they pointed to the similarities between the processes 

of exploration performed during the conjecturing phase and during the proving phase, they 

remarked that the dynamic exploration differs in its function within these two phases: on the 

one hand it serves as support to the selection and the specification of the conjecture, on the 

other hand it reinforces the logical connection that has been made between the single 

arguments. 

In contrast to this perspective, some researchers recommend to distinguish between the 

concepts of mathematical argumentation and argumentation in mathematics and consider 

argumentation as an “epistemological obstacle to the learning of mathematical proof” 

(Balacheff, 1999, p. 7), whereas others emphasize that there is a “structural gap” between 

argumentation and proof (e.g., Duval, 1995) as in argumentation inferences are related to the 

content while proofs usually have a deductive structure (i.e., claims are deduced from data by 

applying inference rules) (Pedemonte, 2008). However, Pedemonte (2007) claimed that 

argumentation and proof can have the same structure, but that this “structural continuity” does 

- depending on the mathematical domain in which the two processes of argumentation and 

proving are performed - not always favour proof construction.  
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The activity of conjecturing 

Regarding the term conjecturing, Koedinger (1998) developed a cognitive model of 

conjecturing that defines the processes of discovering, recalling, and problem solving as the 

superordinate goals, and conjecture generation and argumentation for or against it as the two 

major sub-goals of conjecturing (see Figure 1). This model suggested that conjecture 

generation and argumentation (including inferences that are based on inductive or deductive 

arguments) are connected to each other via the investigation of examples and 

counterexamples. Furthermore, it indicated that a proof itself also served as a mean to discover 

new conjectures, even though the discovery of a conjecture usually constitutes the result of 

inductive reasoning strategies. Lin, F. L., Yang, Lee, Tabach, and Stylianides G. (2012) point 

out that conjecturing captures the observation from examples, the construction of new 

knowledge, the transformation of prior knowledge, and the reflection on the conjectured 

constructs as well as on the conjecturing processes itself. 

Since there is no widely agreed definition of conjecturing, we conceptualize it as the activity 

that a student or mathematician engages in to find, explore, and formulate a conjecture, 

including the processes of generating (counter-) examples, searching for patterns, extending 

a set of examples into a general argument (informal induction), testing the conjecture’s 

limitations, and presenting it to colleagues or teachers.  

 

Figure 1: The goal structure for conjecturing and argumentation skills (Koedinger, 1998) 

Toulmin’s model as a tool to compare argumentation and proof 

Toulmin’s model constitutes the most common approach to represent the whole structure of 

an argumentation. We will briefly introduce it: In Toulmin’s basic model, any argument 

consisted of three elements: claim (C): it is the assertion or an opinion of a speaker, data (D): 

these are the facts that justify the claim, warrant (W): it is the inference rule, which links the 

data to the claim and gives the data general support (cf. Toulmin, 1958). The model 

demonstrates that a speaker usually starts an argument by proposing a claim. In a next step, 
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the speaker uses data to justify the claim and the warrant, as a general valid rule, to support 

the specific data that lead to the claim (see Figure 2).  

Three further elements may be necessary to describe the whole structure of an argument 

depending on the situation (Toulmin, 1958): A backing to strengthen the warrant, a qualifier 

that shows the degree of confidence in the claim or in the conclusion, and a rebuttal that 

expresses exceptions or conditions for the validity of a claim. 

In the past, several studies have used Toulmin’s model to evaluate and compare students’ 

argumentations and their proofs (cf. Pedemonte, 2007; 2008) or to investigate aspects of 

mathematical learning with regard to explanation, justification, and argumentation in 

mathematics classrooms (e.g., Krummheuer, 1995; Yackel, 2001). We agree that Toulmin's 

model is an appropriate method that can be used to analyse both the structure of an 

argumentation that has already been constructed as well as how argumentation structures are 

developed during proving processes and peer collaboration.  

 

Figure 2: Toulmin’s basic model. Visualizing the structure of an argument. 

Summary 

The presented debate demonstrated that different definitions of and perspectives on the 

relationship between proving, conjecturing, and argumentation “compete” with each other. 

Since Stylianides, G. J. et al. (2017) invite all researchers to be more explicit about the 

definitions one uses, we specify our perspectives on these three concepts as follows: 

In this thesis, we consider conjecturing and proving as certain types of mathematical 

argumentation. Following Otten et al. (2017) and the definition of proof outlined by Stylianides, 

G. J. et al. (2017), a proof consists of a deductive chain of arguments using already stated 

definitions or propositions that determine a mathematical claim. In mathematics, proof is 

deductive, but the processes of attempting to construct a proof (what we call proving) as well 

as to discover and formulate a conjecture (what is termed conjecturing) are often characterized 

by informal, empirical argumentation. Conjecturing and proving processes incorporate several 

mental and physical actions (Selden, A. et al., 2010). Furthermore, we follow the 

conceptualization of argumentation proposed by Kollar et al. (2014) that is based on the 
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assumption that argumentation, and thus also conjecturing and proving, comprise an 

individual-mathematical and a social-discursive component. From this perspective, the 

individual-mathematical component is related to phases of exploration and systematization (cf. 

Boero, 1999; Selden & Selden, 1995). The social-discursive component refers to the 

generation and exchange of well-warranted arguments (cf. Kollar, Fischer, & Slotta, 2007; 

Leitão, 2000) as well as to the social process of accepting these arguments as proof (cf. 

Heinze, 2010; Yackel & Cobb, 1996). Supposing that conjecturing and proving are interrelated 

and an important mechanism in constructing new knowledge, it seems to be an effective 

teaching strategy not to provide students with an initial conjecture, but to present open-ended 

problems that allow them to formulate their own conjectures, and then to prove those 

conjectures (Lin et al., 2012). 

2.2.2 Situations in the context of mathematical argumentation  

Mathematical argumentation activities and the outcomes of these activities occur in different 

(learning-) situations, which may explain why there exist various definitions of and perspectives 

on argumentation.  

Situations in the context of mathematical argumentation include the social environment in 

which the argumentative discourse is embedded, the content area and the type of task that 

represent the argumentation problem, as well as the complexity of the task that determines 

which argumentative activities have to be employed to solve the task. 

2.2.2.1 The social environment 

The social environment comprises the mathematical community that often allocates a specific 

role to argumentation and proof, sets up learning goals in the context of mathematical 

argumentation, and establishes criteria and norms to which the acceptability of a proof is 

adhered. 

There are distinct views on the role of argumentation and proof within mathematical learning 

and what makes a proof acceptable (Hanna, 2000). It can be assumed that a person behaves 

differently in the case of being requested to construct a proof to explain a mathematical 

statement than in the case of being requested to construct a proof to discover a statement. 

Moreover, the criteria and norms about what makes a proof acceptable depend on what 

educators and mathematicians expect from their students or peers. These influence 

mathematical practice (in particular, all activities that mathematicians engage in with regard to 

poof, including proof construction, proof reading, and proof presentation) and the teaching of 

proof in mathematics education. Yackel and Cobb (1996) introduced the notion of 

sociomathematical norms.  These are normative aspects that emerged interactively and 
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regulate mathematical argumentation. Sociomathematical norms determine “what counts as 

an acceptable mathematical explanation and justification” (p. 461) and are defined by the 

corresponding mathematical community. The taken-as-shared basis that has been established 

within this community includes these sociomathematical norms and serves as background that 

set which data and warrants legitimize one’s conclusions. Dawkins and Weber (2017) claimed 

that norms of proof mirror some of the features that mathematicians suspect to be necessary 

or desirable in the generation of new mathematical knowledge.  In their paper, they considered 

the following four values: “(1) Mathematical knowledge is justified by a priori arguments. (2) 

Mathematical knowledge and justifications should be a-contextual and specifically be 

independent of time and author. (3) Mathematicians desire to increase their understanding of 

mathematics. (4) Mathematicians desire a set of consistent proof standards” (p. 128).  

In particular, value (2) has to be regarded critically. On the one hand, there is a consensus that 

the values and norms that specify acceptability criteria depend on the mathematical 

community. On the other hand, there is a demand that the correctness of the proof can be 

evaluated independently from context and the person who created it. Mathematicians’ values 

and norms apprise and limit to some extent how proving practice should proceed.  

However, proofs in the context of school mathematics are not, and cannot be, replications of 

proofs produced by expert mathematicians (e.g., Dawkins & Weber, 2017; Harel & Sowder, 

1998; Weber, Inglis, & Mejia-Ramos, 2014). Within the framework of school mathematics, 

some statements are expediently and publicly used without further justification. What kind of 

statements can be used without further justification for the development of a proof, can vary 

between classroom communities (Stylianides, A. J., 2007).  

In addition to the expectations of the mathematical community (representing an institution) and 

its established norms, against which arguments can be judged, it makes a huge difference 

whether students engage in social discursive argumentation practices or whether 

argumentation constitutes an individual activity. Social discursive argumentation practices 

require collaborative argument construction, including the critical discussion of ideas with 

others and the joint consideration of complex mathematical problems (Mueller et al., 2012). 

Students have to learn to collaborate effectively and to use the “exploratory talk” constructively 

(Mercer, Dawes, Wegerif, & Sams, 2004), since both can positively contribute to the 

development of mathematical arguments (e.g., Mueller et al., 2012). Presenting arguments to 

colleagues, evaluating colleagues' arguments, and trying to understand and learn from the 

shared arguments is a central part of argumentation practice (Dawkins & Weber, 2017). 
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2.2.2.2 The content area, type and complexity of a task 

Based on the findings of previous studies that knowledge of concepts, facts and procedures 

connected to the specific content is a statistically significant predictor for students’ performance 

in proof construction situations (e.g., Chinnappan, Ekanayake, & Brown, 2012; Sommerhoff, 

Ufer, & Kollar, 2016; Ufer et al., 2008), it can be said that the specific content area of the proof 

task plays a crucial role. In their study on proof schemes, Harel and Sowder (1998) started 

from the assumption that the nature of the task influenced what the students focused on and 

what processes they employed to gain certainty. The study of Mejía-Ramos and Inglis (2009) 

was also grounded on the hypothesis that variations in the task contexts could affect different 

behaviours. Their bibliographic study aimed to explore the different task-dependent 

argumentative activities that were associated with the notion of proof. Three types of activities 

could be distinguished with regard to the tasks that were frequently used in mathematical 

practices: the construction of novel arguments, the reading of given arguments, and the 

presentation of arguments. Each of these proof activities requires certain sub-processes 

depending on the given conditions and the intended goals. Mejía-Ramos and Inglis (2009) 

claimed that the comprehension of mathematical arguments (as a sub-process of argument 

reading) and the presentation of arguments, or at least parts of them, are the main activities 

involved in the assessment of undergraduate mathematics students’ argumentation skills. 

However, these activities are often underrepresented within the literature. A complete 

categorization of argumentation processes with regard to the given conditions and intended 

gaols does not yet exist, but one could, for instance, include the conjecturing processes. 

A further aspect that characterizes argumentation- or proof-situations is the complexity of a 

task. Ufer, Heinze, and Reiss (2009) showed that proof construction problems that require 

more than one step are usually more challenging for learners than one-step proofs.  The 

complexity of a task regulates whether automatized reasoning strategies could be applied or 

whether an argument has to be constructed within the base of one’s conceptual knowledge. 

For instance, multi-steps proofs require one’s ability to recall, apply and connect different 

concepts and definitions, as well as planning and coordination processes.  

 

Figure 3: Situation-specific factors of mathematical argumentation and proof. 
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We conclude that argumentation has always to be considered in the context of the situation in 

which it is embedded for the following reasons: i) the success of argumentation is determined 

by the norms and criteria that the mathematical community specifies ii) the processes as well 

as the resources necessary for success depend on the content area, the type, and the 

complexity of a task. Figure 3 summarizes all the situation-specific factors. 

2.2.3 Individual resources 

Current discussions in educational research emphasize the importance of modeling human 

resources (including a person's stable and trainable skills and knowledge facets) that are 

responsible for mastering certain argumentation or proof situations. Researchers are 

interested in what knowledge facets are needed, and how various types of cognitive and affect-

motivational resources direct one’s proving processes (Selden, A., Selden, & Benkhalti, 2018). 

The results of several researchers have indicated that argumentation respectively proving is a 

knowledge-intensive activity (e.g., Chinnappan et al., 2012; Ufer et al., 2008). Ufer et al. (2008) 

empirically investigated the impact of declarative and procedural geometrical knowledge as 

well as mathematics-related problem-solving skills on students’ performance in proof 

construction situations. The findings of their study pointed out that more than 40% of the 

variance of students’ geometrical proof performance can be explained by these three cognitive 

predictors. Weber (2001) focussed on another knowledge facet of argumentation skills. He 

compared university students who had completed a course in abstract algebra with doctoral 

students doing research on this content area. It was observed that the doctoral students were 

able to make better use of strategic knowledge. The exploratory study of Weber and Alcock 

(2004) supported this result. They discovered that the doctoral students were able to choose 

a strategically better starting point to prove that two groups were isomorphic by examining the 

algebraic properties that preserved by isomorphism, whereas the undergraduate students 

immediately focused on the cardinality of these groups and thus were not able to construct a 

proof. Weber and Alcock (2004) interpreted this observation as an indicator for the strong 

impact of strategic knowledge on proving performance. The interview study of Heinze and 

Reiss (2003) has demonstrated that methodological knowledge about proof schemes, proof 

structures and the chain of conclusions, as a further cognitive resource, becomes particularly 

important when students are requested to evaluate correct and incorrect proofs. Sommerhoff 

(2017) investigated the impact of six underlying cognitive resources (conceptual and 

procedural mathematical knowledge, strategic knowledge, methodological knowledge, 

problem solving skills, metacognitive awareness, conditional reasoning skills) on students’ 

performance in proof validation and proof construction situations. Out of these six cognitive 

resources, conceptual knowledge as well as strategic knowledge showed a significant 

influence on the proof validation performance. Procedural and conceptual mathematical 
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knowledge as well as strategic knowledge were predictive for the performance in proof 

construction situations. The strong impact of procedural knowledge on proof construction 

performance, but low relevance within proof validation made the major difference between 

both situations. Since prior findings regarding the effects of methodological knowledge and 

problem-solving skills could not be replicated in this study (cf. Chinnappan et al., 2012; Ufer et 

al., 2008), it can be assumed that different argumentative situations (in particular, different 

communities and content areas of tasks) require different cognitive resources.  

Several researchers have conceptualized the activity of proof construction as a problem-

solving task (e.g., Furinghetti & Morselli, 2009; Weber, 2005). From this perspective, it appears 

obvious to take metacognitive knowledge, beliefs, and self-regularity skills as further predictors 

for the successful outcome into account (cf. Corte, Verschaffel, & Op't Eynde, 2000). Selden, 

A. and Selden (2013b) also emphasized that beliefs about one’s own ability to succeed in a 

specific situation as well as persistency (both affect-motivational resources) may play an 

important role on the success of university students’ and mathematicians’ proof construction 

processes.  

Based upon these results, it can be expected that different cognitive resources (and affect-

motivational resources) shape students’ argumentation and proving processes as well as their 

performance in argumentation tasks. However, most researchers only have investigated the 

impact of specific resources on students’ performance, disregarding the processes as a link 

between them. 

2.2.4 Conceptualizing mathematical argumentation skills 

Mathematics students usually demonstrate their skills and what they have learned during the 

semester by solving proving tasks (e.g., Selden, A. & Selden, 2008). Koedinger (1998) argued 

that the performances on conjecturing and proving tasks are the results of specific skills and 

knowledge facets. Therefore, students’ written proof attempts are used as an important 

component in evaluating their skills and their conceptual understanding (Selden, A. et al., 

2010). 

From this perspective, mathematical argumentation tasks respectively proof problems 

determine the specific situational demands that can be mastered by individuals with a certain 

level of mathematical argumentation skills (cf. Koeppen et al., 2008). 

Following several researchers, we conceptualize mathematical argumentation skills as “latent 

traits […] [that] cannot be directly observed but have to be inferred from observable behavior” 

(Blömeke et al., 2015, p. 3). Observable behaviour includes processes and performance in 
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specific situations, which both can be judged against criteria to determine whether particular 

levels of skills have been reached (cf. Blömeke et al., 2015; Koeppen et al., 2008).  

Prior findings in research, based on quantitative (e.g., Chinnappan et al., 2012; Sommerhoff 

et al., 2016; Ufer et al., 2008) and qualitative studies (e.g., Mejía-Ramos & Inglis, 2009; Selden, 

A. et al., 2010; Selden, A. & Selden, 2013a) have shown that the performance in argumentation 

tasks depends on several cognitive (e.g., Chinnappan et al, 2012; Sommerhoff et al, 2016; 

Ufer et al., 2008) and affective-motivational resources (e.g., Selden, A. et al., 2010; Selden, A. 

& Selden, 2013a), as well as on the situational demands (e.g., Mejía-Ramos & Inglis, 2009; 

Sommerhoff, 2017). 

Furthermore, it can be assumed that the resources students bring to an argumentative situation 

guide the processes of generating arguments and proofs and that the performance is 

influenced by both processes and resources (cf. Carlson & Bloom, 2005).  

Figure 4 presents our general model of mathematical argumentation skills: In response to the 

situational demands, underlying resources (learning prerequisites) are stimulated and used to 

implement the argumentation processes (consisting of a sequence of goals, mental and 

physical actions) that lead to the final product. The final product itself represents the 

performance in the specific situation.  

The argumentation skills (including cognitive and affective-motivational resources) and the 

performance constitute a linked system, cobbled together by the argumentation processes that 

may work as mediators. 

 

Figure 4: Conceptualization of mathematical argumentation skills. 

In the past, several researchers have developed frameworks that describe the argumentation 

processes and thus demonstrate how mathematicians execute throughout the proof 

construction process (e.g., Boero, 1999; Schwarz, Hershkowitz, & Prusak, 2010). In the 

following, we will present some of these frameworks. 



State of research 

35 

2.2.5 Argumentation processes 

This section provides an overview about the frameworks and findings of previous research on 

(mathematical) argumentation processes. As the focus in this dissertation is mainly on 

conjecturing and proving (as specific types of argumentation), we will primarily discuss the 

frameworks of proof construction that include phases of exploration and systematization.  

2.2.5.1 The framework of scientific reasoning and argumentation 

We start with a framework that is not specific to mathematics, but that covers current research 

on and models of scientific reasoning and argumentation (SRA) from various scientific 

disciplines. It is the framework proposed by Fischer et al. (2014) who suggested to differentiate 

eight processes (that are called epistemic activities) to characterize reasoning and 

argumentation in any kind of scientific discipline. These processes are termed: problem 

identification, questioning, hypothesis generation, construction and redesign of artifacts, 

evidence generation, evidence evaluation, drawing conclusions and communicating and 

scrutinizing.  

Out of these eight epistemic activities, one can argue that hypothesis generation, evidence 

generation, evidence evaluation, drawing conclusions, and communicating and scrutinizing 

are the core of argumentation and proof construction processes in the context of secondary 

school and university mathematics. The framework describes these activities in the following 

way: 

 Hypothesis generation is the process of formulating a hypothesis (sometimes as a 
possible answer to the question under study) with regard to obvious models, available 
theoretical tools, or empirical evidence.  

 Evidence generation comprises empirical and formal approaches to gather evidence. 
However, within the domain of mathematics, empirical evidence generated by, 
examining examples, constitutes only preliminary evidence. A deductive chain of 
arguments has to be constructed to establish the validity of a statement based on the 
definitions and axioms of a mathematical theory.  

 Evidence evaluation is the process of assessing the degree to which an argument as 
piece of evidence supports a particular claim by taking certain norms (e.g., 
sociomathematical norms) into account.  

 Organizing and integrating different pieces of evidence as well as re-evaluating the 
initial claim by critically analysing data and warrants are summarized as the activity of 
drawing conclusions.  

 Communicating and scrutinizing describes the process of sharing and presenting one’s 
results. This last activity is strongly related to the social character of argumentation.  

Mathematics researchers may also be confronted with the other three epistemic activities: For 

instance, they may discover a discrepancy or shortcoming regarding the available explanation 

of a specific mathematical problem (problem identification), they may formulate one or more 
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initial questions as a driving force for their research (questioning), and they may create a 

prototypical object or an axiomatic system that introduces a new mathematical structure 

(construction and redesign of artifacts). It appears obvious that students are less faced with 

these types of activities as they usually receive a concrete problem, a well-defined question 

and are requested to apply and combine definitions and statements based on the axiomatic 

system.   

We conclude that the framework by Fischer et al. (2014) that is based on numerous theoretical 

considerations provides a detailed picture of the activities (phases) that can occur in 

mathematical argumentation and proof construction processes in different contexts, but does 

not allow the derivation of hypotheses on how these activities have to be employed to achieve 

high performance. 

2.2.5.2 The four phases of problem-solving 

Conceptualizing proving as problem solving (e.g., Weber, 2005) leads to the four phases 

already outlined in Polya (1945): understanding the problem, devising a plan, carrying out the 

plan, and looking back.  

 Understanding the problem: implies to understand all the words used in stating the 
problem, to recognise what one is asked to find or to show, to draw figures, and to 
separate the various parts of the condition. 

 Devising a plan: incorporates the finding of a connection between the givens and the 
unknown as well as the choice of an appropriate strategy to solve the problem. 

 Carrying out the plan: covers the processes of persisting with the plan that one has 
chosen and discarding and choosing another plan if it continues not to work.   

 Looking back: involves checking the results and thinking about whether the results 
could have been derived otherwise. 

This framework, which suggests strategies for attacking problems in mathematics classes, has 

already been used in a slightly amended form to describe the processes involved in proof 

construction (cf. Furinghetti & Morselli, 2009; Selden, J. & Selden, 1995; Selden, A. & Selden, 

2009; VanSpronsen, 2008) 

2.2.5.3 Frameworks of proof construction 

Research that refers to the (possible) continuity between the production of a conjecture and 

the construction of its proof is usually conceptually linked to the phase model proposed by 

Boero (1999) that deals with the role of argumentation in the domain of mathematics and that 

distinguishes between phases of exploration and systematization.  
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2.2.5.4 Boeros’ expert model 

This expert model consisted of six phases that are not intended to be interpreted as a linear 

sequence.  

 The first phase involves the exploration of the problem situation and the identification 
of patterns. Processes associated with this phase are performed with the goal of 
generating a conjecture.  

 The formulation of the statement to be proved constitutes the second phase.  

 Exploring the content by questioning the limits of the conjecture and by applying 
semantic (or sometimes even syntactic) reasoning strategies represents the third 
phase. 

 The fourth phase is characterized by selecting appropriate arguments that serve as 
supporting warrants for the conjecture as well as enchaining these arguments into a 
coherent deductive line.  

 Organizing the enchained arguments into a proof that meets the corresponding 
mathematical community’s expectations and sociomathematical norms forms the fifth 
phase.  

 The process of achieving a completely formal proof is covered by the sixth phase which, 
in most cases, is skipped either due to its irrelevance or impossibility within the context 
of school or university mathematics.  

Boero (1999) clarified that the occurrence of each phase depends on the context in which the 

argumentation is embedded (including the culture, community and type of task), and 

distinguished between the private side of mathematicians’ work (related to phase I and III – 

phases of exploration) and the public side (especially represented by phase II, V, and VI – 

phases of systematization). Moreover, he emphasized the importance of differentiating 

between conjecturing and proving as processes on the one hand and theorems respectively 

proofs as the resulting products on the other hand. Boero (1999) refers to the process-product 

character of proof by claiming that a proof as the final product of one’s mathematical 

argumentation processes has to meet certain formal criteria in order to be accepted as a proof, 

but the conjecturing and proving processes used to generate this proof do not. Therefore, when 

proving a conjecture, one can first generate an informal argument trying to convince oneself 

about the validity of a conjecture and then use this informal argument as a substructure to 

produce a proof (e.g., Garuti et al., 1998; Weber & Alcock, 2004). 

Heinze and Reiss (2007) extended Boero’s model by adding the phase of acceptance by the 

mathematical community to take the social act of proving (cf. Manin, 1977) into account. 
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2.2.5.5 Proving as a problem-solving pathway 

Furinghetti and Morselli (2009) adapted Polya’s problem solving framework to the process of 

proof construction by regarding the proving process as a pathway including processes of 

exploration and systematization and consisting of these four phases: 

 They described the first phase as becoming acquainted with the given task by carefully 
reading and reformulating the text that represents the proving problem and by 
attempting to reach a logical understanding. Drawing pictures and generating examples 
may be part of the reformulating processes that bridge to the phase of developing a 
plan.  

 The second phase involves the thoughtful choice of proving strategies, methods, and 
representations. They emphasized the importance of finding a predictable 
representation by switching from one representation to another and of going back to 
previous steps to overcome deadlocks. Furinghetti and Morselli pointed to Weber and 
Alcock (2004) by claiming that an arithmetic/ algebraic representation may be such a 
predictable representation and thus the starting point for the syntactic proving strategy. 

 The monitoring and use of proving strategies was regarded as the third phase: syntactic 
proving strategies incorporate the application of definitions and procedures such as 
manipulating symbols in an automatic-like style; semantic proving strategies are based 
on meaningful instantiations to guide the formal inferences and require the transition 
from informal to formal arguments (cf. Weber & Alcock, 2004). 

 The fourth phase of the proving pathway was characterized as evaluation and reflection 
phase including processes such as revising the employed proving strategy, checking 
the chain of deductions inferred during the third phase, as well as refining the language 
by the use of formal mathematical symbols. 

This theoretical framework points to the relevance of self-regulatory activities (planning, 

monitoring, and reflection) within proof construction. It was used to guide the analysis of the 

written proof attempts of two unsuccessful mathematics students and helped to identify the 

difficulties that students’ encountered in proving a statement. 

2.2.5.6 Processes related to the formal-rhetorical and the problem-centered part of a 

proof 

Selden and Selden (1995) suggested to differentiate between the processes related to the 

formal-rhetorical part and the processes related to the problem-centered part of a proof.  

 The formal-rhetorical part of a proof consists of “unpacking and using the logical 
structure of the statement of a theorem and associated definitions” (Selden, A. et al., 
2010, p. 200). This includes starting the proof by writing the premise at the beginning, 
leaving space for the main body, and writing the conclusion at the end of the proof. The 
following steps are unpacking the conclusion, selecting the relevant definitions, and 
adapting the symbols used in the definitions to the theorem that has to be proven 
(Selden, A. & Selden, 2011). Constructing a hierarchical structure of a proof can be 
considered as calling a schema, and the processes involved are often executed 
automatically (Selden, A. & Selden, 2009). 

 Filling the space for the main body of the proof refers to the problem-centered part, 
where some “exploration” and “brainstorming” processes gain in importance. They 
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claimed that problem-solving strategies such as drawing diagrams, reflecting on the 
results of prior activities, or trying to remember an example are employed to link 
different concepts and to develop an idea for how to proceed (Selden, A. et al., 2010; 
Selden, A. & Selden, 2011), both required to generate the problem-solving part of a 
proof. Furthermore, they observed that there are propositions for which constructing 
the hierarchical structure of a proof can be very useful in uncovering the "real problem" 
to be solved in the remaining proof (Selden, A. & Selden, 2009). 

In their teaching of proof, Selden, A. and Selden (2008) addressed this distinction of processes 

related to the formal-rhetorical part and those related to the problem-solving part to overcome 

students’ difficulties with proof construction and to enhance their proving performance.  

The frameworks of proof construction related to problem solving suggest that much can be 

gained by thinking about what may work and by reflecting on what has worked respectively not 

worked. Furthermore, they point out that processes of systematization and exploration have to 

be used to develop the structure and ideas that build a formal proof and thus, are conceptually 

linked to Boero’s expert model. 

2.2.5.7 The cognitive model of conjecturing 

The cognitive model of conjecturing proposed by Koedinger (1998) consists of four 

components: generate conjecture, investigate, argue, and deduce (see Figure 2). Conjectures 

may be generated by the investigation of examples, by drawing analogies to familiar problems, 

or even by deduction. These components may also be relevant for testing a conjecture and 

generating evidence for or against it. Conjecture generation comprises identifying patterns and 

commonalities between examples, ensuring that the conjecture is consistent with the empirical 

evidence that has been created before, and affirming that it goes beyond simply replicating the 

premise. Investigation involves exploring examples or, in content areas such as geometry, 

constructing models, measuring objects such as segment lengths, angles, and areas, and 

inducing any relationships that appear to be invariant. Argumentation describes the process of 

generating empirical or deductive arguments. Deduction, as used in Koedinger's model, refers 

to the formulation of conclusions and to the application of theorems in order to generate a 

deductive chain from the givens to the conclusions.  

Koedinger’s model was developed to describe the observations of middle school students’ 

performance on a conjecturing task. According to the school context and geometric content 

area, it primarily focusses on exploratory processes, but also includes formal-deductive 

processes. 

2.2.5.8 Summary 

From the comparison of the frameworks presented above, we inferred that some of these 

frameworks have been developed to enhance the teaching and learning of proof (the 
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framework of Selden, J. and Selden (1995)) respectively problem solving (Polya, 1945). Other 

frameworks have been created to describe school students (the framework by Koedinger, 

1998), university students (the framework by Furinghetti and Morselli (2009)), and expert 

mathematicians (the framework by Boero (1999)) proof construction processes or 

argumentation activities (the framework by Fischer et al. (2014)).  

The frameworks of proof construction have in common that they emphasize the crucial role of 

dynamic exploration (cf. Boero et al, 1996) and systematization:  Furinghetti and Morselli’s  

work (2009) by comprising the phases of understanding the problem and developing a plan as 

phases of exploration and carrying out the plan and looking back as phases of systematization; 

Selden, J. and Selden (1995) by referring to the problem-centered part and the formal-

rhetorical part of a proof; Koedinger (1998) by introducing the components of conjecture 

generation, investigation, and argumentation as exploratory activities and deduction as a 

systematization activity; and Boero’s model (1999) by containing phases related to the private 

side of a mathematician (phase I and III) and the public side (phase II, V, and VI) .  

During the epistemic activities of problem identification and evidence generation, explorative 

processes such as studying and testing examples may occur as well (Fischer et al., 2014). 

The dichotomy of proof suggested by Selden and Selden (1995), Koedinger’s model (1998), 

as well as Borero’s model (1999) include phases of systematization, but they do not explicitly 

bring up the processes of communicating and scrutinizing (cf. Fischer et al., 2014) respectively 

of looking back (Polya, 1945).  

These frameworks can be used to describe argumentation, conjecturing, and proving 

processes. They demonstrate that argumentation processes are a sequence of sub-goals 

(phases) including physical and mental actions. We conclude that phases of exploration and 

systematization are required to communicate arguments precisely. Yet, what does a good 

exploration phase or systemization phase look like? Regarding this question, we observed 

some hints in the literature. For instance, we have inferred from the work of Koedinger (1998) 

that testing a conjecture with multiple examples, searching for a counterexample, as well as 

checking the inferences can be considered as characteristics that describe how conjecturing 

processes should be. The framework of Furinghetti and Morselli (2009) also pointed to 

individual quality features that characterize the proof construction process such as carefully 

choosing appropriate representations or going back to previous steps in the case of impasses.  

However, an overview of which process characteristics are actually relevant for the production 

of an interesting conjecture (that goes beyond repeating the premise) and a correct and 

normatively acceptable proof does not yet exist. Even though the success of argumentation 

processes is determined by the quality of the final product, it is still unclear how “good” 

argumentation processes can be described. We see the need (i) to summarize common claims 
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and findings of previous research on good argumentation processes and (ii) to empirically 

investigate which of the theory-based process characteristics are predictive for the quality of 

the resulting product. 

The frameworks outlined above mainly address the argumentation processes of a person 

working individually. As argumentation is often embedded in social contexts (Balacheff, 1998; 

Yackel & Cobb, 1996), one may argue that the social-discursive argumentation processes of 

a person working in dyads or groups should also be taken into account when attempting to find 

a set of process characteristics that describe good (collaborative) conjecturing and proving 

processes. 

2.2.6 Argumentation as a social practice – the role of collaboration  

Some argumentation processes such as communicating and scrutinizing arguments are 

social-discursive in nature, others such as generating hypothesis and evidence generation 

may benefit from collaborative argumentation (cf. Fischer et al., 2014). When undergraduate 

students learn to construct proofs, the social perspective on argumentation, including the social 

nature of argumentation as well as the role of interaction and transactive reasoning, should be 

considered as well (Blanton & Stylianou, 2014). In the first part of this section, we will describe 

the social nature of argumentation and proof, followed by a section on the mechanisms of 

collaboration that may (positively) influence the generation of mathematical arguments. To 

approach this issue, we will expand our literature search to studies related to research in 

educational psychology and the Learning Sciences (esp. Computer-Supported-Collaborative-

Learning research). 

2.2.6.1 The social nature of argumentation 

Besides their other functions, mathematical argumentation and proofs are means of 

communication (e.g., Hanna, 1990; Villiers, 1999). Students or mathematicians engage in 

proving to generate new knowledge and to justify or explain to their peers why a statement is 

true. It is the teacher or the peer group that judges whether an argument is a proof (e.g., Manin, 

1977; Stylianides, G. J. et al., 2017). Within this perspective, the focus tends to be on the social 

processes that play a particular role in the acceptance of new results by the mathematical 

community. Consequently, educators have started to pay more attention on the concept of 

proof as a “convincing argument” (Hanna, 2000). It cannot be said that the processes of 

ascertaining and persuading (Harel & Sowder, 1998), in the sense of removing one’s own and 

others’ doubts (cf. Mariotti, 2006), as well as the social processes of evaluating the arguments 

of others and checking their logical integrity make mathematics less objective or true; rather, 

the modern view of the logical truth or validity of a mathematical statement relative to a 

reference theory has to be taken (Ernest, 1998) and proofs have to be considered as 
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arguments that meet the norms shared by the respective community. This means a proof is 

always linked to the social context in which the proof occurs. It is a specific type of discourse, 

a form of interaction that is based on shared meanings (cf. Villiers, 1999). Therefore, teachers 

and instructors should give their students the opportunity to engage in the activity of proving 

as it is practiced in the mathematical community, including using proof to raise debates about 

the truth of a conjecture and to negotiate the meanings of concepts as well as (implicitly) the 

criteria for an acceptable proof (e.g., Alibert & Thomas, 1991; Villiers, 1999). Encouraging 

students to participate in mathematical discussions and to solve proof-related tasks 

collaboratively, leads to the question of how collaboration can be effectively used as a resource 

for generating proofs, and which characteristics make collaboration finally effective. 

2.2.6.2 Mechanisms of collaboration 

The phenomena of collaborative learning and problem solving and how they are influenced by 

one’s cognitive and affect-motivational resources or by the use of collaboration scaffolds has 

been put forward in psychology and the Learning Sciences research (esp. Computer-

Supported-Collaborative-Learning research) (e.g., Kopp & Mandl, 2011; Schwaighofer et al., 

2017; Stahl, 2010; Vogel et al., 2016; Webb, 1982; Weinberger & Fischer, 2006). There is 

some evidence that collaborative learning or problem solving is not necessarily effective 

(especially in unstructured leaning situations) (e.g., Andriessen & Schwarz, 2009; Gillies, 

2004) or at least, an advantage over individual learning (e.g., Barron, 2003; Yetter et al., 2006). 

Some experimental studies that directly compared the work of individuals and groups have 

shown that groups often outperform the average individual, but not when the level of pooled 

outcomes of “competent” individuals working alone were also taken into account (e.g., 

Schwartz, 1995). One reason might be that students often have problems engaging in deep-

elaborative discourses when working together (e.g., Kollar et al., 2007; Vogel et al., 2017). 

Research has demonstrated that particularly argumentative dialogues are essential in 

collaborative learning. Students that were instructed to engage in argumentative dialogues 

during collaboration were found to reflect better conceptual understanding in evolutionary 

theory than those who have not been instructed (Asterhan & Schwarz, 2007). Chi and Wylie 

(2014) argued that some studies were not able to provide evidence for the advantages of 

collaborative learning or problem solving on the reason that these studies did not distinguish 

between individual dialogue and joint dialogue respectively interactive dialogue patterns. In 

their paper, they emphasized that individuals can mainly benefit from dialogues when these 

dialogues are truly interactive. Interactive (also called transactive (Teasley, 1997)) dialogues 

involve the mutual exchange of ideas between the participants and lead to new ideas that go 

beyond the ideas one would be able to generate alone. Within interactive dialogues, the 

participants make substantive content-related contributions, such as generating arguments to 
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support a position, asking critical questions, and elaborating on each other’s comments. Webb 

(1989) pointed out that the level of elaborated explanations is likely to be positively related to 

one’s achievement. They claimed that providing highly elaborated explanations requires the 

activities of clarifying and reorganizing the learning material that, in turn, may improve one’s 

understanding. These assumptions are consistent with the model of Wecker and Fischer 

(2014) indicating that the cognitive processes influence the social activities (see Figure 5). 

However, it remains an empirical question to what extent individual-cognitive and social-

discursive processes are related to each other. 

Regarding mathematical argumentation, Mueller et al. (2012) suggested a framework for 

analysing collaborative mathematical argument construction by differentiating three types of 

collaboration, namely co-construction, integration, and modification. Co-construction of 

arguments implies that students collaborate in a back and forth manner by negotiating various 

positions until a mathematical argument is jointly built. Integration occurs when the argument 

of a learner is strengthened by assimilating the ideas and arguments produced by his or her 

learning partners. The third type of collaboration is that of modification incorporating the 

processes of challenging and evaluating the arguments of others. Results indicated that all 

three modes of collaboration influence students’ building of mathematical arguments. The 

study of Goos, Galbraith, and Renshaw (2002) showed that transactive reasoning in small 

group peer discussions affected students’ metacognitive processes that are crucial for 

mathematical problem solving. Similar to Goos et al. (2002), Blanton and Stylianou (2014) 

found that tansactive reasoning in mathematics classroom discourses as a habit of interaction 

encourage students’ proof construction processes and their proof understanding. 

 

Figure 5: Interplay between personal and situational prerequisites, cognitive processes, and 

social learning activities within collaborative learning (Wecker & Fischer, 2014). 
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To identify the mechanisms and processes that make collaborative group settings effective, 

the model proposed by Wecker and Fischer (2014) may provide a theoretical basis for such 

analyses. This model aims to clarify how the learning outcomes of groups arise by focussing 

on the interactions between personal and situational prerequisites, cognitive processes, and 

social learning activities. Within this model, learners are considered as individuals that engage 

in their own, private cognitive processes. These cognitive processes underlie motivational and 

cognitive resources, and are influenced by situational context factors. One’s cognitive 

processes have an impact on one’s learning outcomes as well as on one’s social activities that 

contribute to the collaborative discourse. In addition, the model suggests that the social 

learning activities of an individual affect the dyadic partner’s cognitive processes (see Figure 

5). 

We conclude that (mathematical) argumentation can be viewed as social practice rather than 

a purely individual activity (cf. Fischer et al., 2014), especially from a perspective that 

conceptualizes proving as means for generating and communicating mathematical knowledge 

(e.g., de Villiers, 1990), and for establishing social norms with respect to proof (cf. Yackel & 

Cobb, 1996). Findings of prior research have shown that argumentation processes can be 

influenced by social interactions (e.g., Mueller et al., 2014; Wecker & Fischer, 2014). 

Collaborative mathematical argumentation requires developing a shared understanding of the 

proving problem and creating a common ground that provides the basis for the students’ (and 

the teacher’s) collaborative work (Staples, 2007). Exchanging arguments mutually and 

integrating the ideas of others appeared to be an important aspect of fruitful collaboration (e.g., 

Chi & Wylie, 2014; Mueller et al, 2014). From this point of view, it can be assumed that 

mathematical argumentation processes may benefit from fruitful collaboration. 

Summary  

In this thesis, we restrict ourselves to (collaborative) conjecturing and proving processes as 

specific types of argumentation. These processes are employed with the aim to generate 

hypotheses and to construct subsequent proofs. Other proof-related activities such as proof 

reading or proof presentation (cf. Mejía-Ramos & Inglis, 2009) were not investigated. We 

propose a model of mathematical argumentation skills that differentiates between learning 

prerequisites, argumentation processes, and the final product. Following the framework 

proposed by Blömeke et al. (2015), we assume that argumentation skills can be inferred from 

the argumentation processes and the final product representing the argumentation 

performance in a specific situation. Based on the model of Wecker and Fischer (2014) as well 

as on the theoretical considerations in Stahl (2010), we suppose that students working in 

collaborative dyads are active as individuals, as group participants, and as members of a 

broader community (e.g., the mathematics university community). From this perspective, 
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students who are active as individuals are expected to employ their own individual-

mathematical processes such as generating examples, formulating conjectures, applying 

definitions, selecting appropriate arguments, and organizing these arguments into a deductive 

chain. Students as group participants may share many of these processes with their learning 

partners. Therefore, social-discursive processes such as explaining one’s own ideas and 

evaluating the arguments of others seem to be crucial as well. The mathematical community 

has created and accepted some criteria that are important for assessing the products of 

conjecturing and proving processes. The quality of these products determine the success of 

argumentation processes. We assume that the final products (i.e. the generated conjecture 

and proof) are directly affected by one’s learning perquisites (that comprise several cognitive 

and affect-motivational resources) and that individual-mathematical and social-discursive 

processes work as mediating elements between the learning prerequisites on the one hand 

and the final products on the other hand. 
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3 The motivations behind defining process characteristics of collaborative 

conjecturing and proving 

This thesis is mostly about the processes of conjecturing and proving and also takes the final 

product (i.e. the formulated conjecture and generated proof) into account. We focus on the 

process-product correlation with the aim to identify and define process characteristics of 

collaborative conjecturing and proving that are relevant for the success. In this chapter the 

following questions should be answered: Why would researchers be interested in process 

characteristics of conjecturing and proving? Which added value for research and practice can 

be expected? We will briefly describe several motivational aspects for defining process 

characteristics of collaborative conjecturing and proving form different perspectives. 

Based on the assumptions of Meier et al. (2007) who developed a framework for assessing 

the quality of computer-supported collaboration processes, we suppose that researchers with 

interest in studying collaborative conjecturing and proving processes strive to answer three 

basic questions: 1) which characteristics of collaborative conjecturing and proving processes 

are relevant for success and 2) should therefore be observed? And 3) to what extend can 

different directly observable process characteristics be related to learning prerequisites? 

3.1 Expanding theoretical knowledge about conjecturing and proving processes  

The first aspect refers to expanding the theoretical knowledge about conjecturing and proving 

processes: In the past, many studies of argumentation and proof have examined errors and 

misconceptions in students’ written proof attempts. Overall, students’ proving performance at 

the secondary and tertiary level is primarily found to be weak. Selden, A. and Selden (2008) 

claimed that we need to know more than that a student can, or cannot, prove a specific theorem 

in a certain content area by, for instance, induction, deduction or contradiction. Mejía-Ramos 

and Inglis (2009) critically notated that the knowledge about students’ proof-related activities 

is rare. It is still an open question what the relationships between proofs (as products) and the 

processes that mathematicians use to construct these products are (Douek, 2007). In general, 

there seems to be a need for a comprehensive view on conjecturing and proving in an effort 

to understand students’ difficulties and the sources of these difficulties on the one hand, as 

well as the processes that positively influence students’ conjecturing and proving performance 

on the other hand (cf. Harel & Sowder, 2007).  

The performance in form of the resulting product can be evaluated relatively clearly according 

to certain criteria (cf. Miller, Infante, & Weber, 2018). This gives rise to the question of which 

process characteristics are associated with high-quality proof products and thus describe good 

(collaborative) conjecturing and proving processes. Furthermore, prior research has shown 

that the quality of the proof product strongly depends on learning prerequisites (e.g., Ufer et 
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al., 2008). From this perspective, it is important to find out to what extent the process 

characteristics of conjecturing and proving mediate the relationship between learning 

prerequisites and the quality of the final product.  

We refer to these process characteristics as individual-mathematical process characteristics 

of (collaborative) conjecturing and proving. Theoretical knowledge about individual-

mathematical process characteristics could provide the basis for developing a model of good 

conjecturing and proving processes that researchers may use for further (empirical) 

investigations. As already discussed in previous chapters, conjecturing and proving are often 

regarded as social activities. Therefore, to identify which peer collaboration characteristics may 

be crucial for proof construction when proving is situated in a social context may open up new 

venues for research on the mechanism of learning mathematical argumentation and proof in 

and from peer collaboration (cf. Asterhan & Schwarz, 2009). We call the peer collaboration 

characteristics related to proof construction as social-discursive process characteristics of 

collaborative conjecturing and proving. To sum up, inferring process characteristics from the 

literature and defining those that are assumed to be observable and relevant for the success 

might be a starting point for following empirical analyses.  

3.2 Using process characteristics to measure argumentation skills 

The second aspect comprises the approach of using process characteristics to gain insight 

into students’ or mathematicians’ underlying argumentation skills. Since reaching a high 

reliability of assessing skills on performance-related tasks usually requires a huge number of 

items (e.g., Blömeke et al., 2015; Koeppen et al., 2008), it might be interesting to find out which 

characteristics of conjecturing and proving processes (beyond the final product) provide 

additional information about students’ underlying argumentation skills. Argumentations skills 

as latent constructs cannot be directly observed but may be inferred from observable process 

characteristics of collaborative conjecturing and proving (cf. Blömeke et al., 2015). This means 

that process data could be examined to receive a more complete analysis of student’s 

argumentation skills or to find out how students develop argumentation skills. A resulting 

question is how these process characteristics should be assessed (employing what kind of 

instrument) and how they can be operationalized.  

In the literature, two types of measurements are distinguished: Processes can be measured 

and assessed at the same time they are occurring or as verbal or written representations of an 

activity taking place at an earlier date (cf. Shernoff & Kratochwill, 2003). It would be very 

instructive to have research on how school students, (advanced) university mathematics 

students, or expert mathematicians actually generate conjectures and proofs in real time to 

understand the temporal sequence of or the interplay between different processes. Even 
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though such kind of studies already exist (e.g., Savic, 2015b), the research on conjecturing 

and proving processes based on real-time observations are comparatively rare (Selden, A. 

& Selden, 2013b). Most results about argumentation skills are inferred from written solutions. 

For instance, the research group around Reiss (e.g., Heinze, Cheng, Ufer, Lin, & Reiss, 2008b; 

Heinze, Reiss, & Franziska, 2005) studied the geometry-proof skills and conceptions of high 

school students by conducting multiple longitudinal surveys. The empirical results of these 

studies were derived from students’ written responses to geometric test items. Students’ 

written proof products were also used to identify mistakes and misconceptions (Selden, J., 

Benkhalti, & Selden, 2014) or to infer actions that might be beneficial for the construction of 

proofs (e.g., Selden, A. et al., 2010; Selden, A. et al., 2018).  

We do not want to claim that analysing written responses to test items is detrimental because 

different types of proof (that are required to answer these items) may correspond to different 

skills and processes needed to create them (Selden, A. & Selden, 2008). Furthermore, the 

quality of the written proofs as results of the processes determines the success and thus the 

quality of these processes. Therefore, we assume that taking processes and the final product 

into account may be a promising approach for assessing mathematical argumentation skills. 

We propose an analytic model to measure argumentation skills (see Figure 6): argumentation 

processes that are enacted within a specific situational context become observable in the form 

of diverse process characteristics, learning prerequisites are represented by an individual’s 

prior knowledge on proof, and the final product represents the individual’s argumentation 

performance. The methods to measure each component may include real-time observations 

of the processes (assessed along diverse process characteristics), written proofs as 

representations of the final product (evaluated against diverse product criteria), and proof items 

presented in form of a paper-pencil test to capture prior knowledge on proof (respectively 

(learning-) prerequisites). 

 

Figure 6: An analytic framework for measuring argumentation skills. 
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3.3 Using process characteristics as a diagnostic tool 

The third aspect points to using process characteristics as a diagnostic tool in order to detect 

students’ main deficiencies concerning the formulation of conjectures and the construction of 

proofs. Knowing which process characteristics are crucial for the success may help to identify 

where support is actually needed (Meier, Spada, & Rummel, 2007). Adaptive interventions and 

scaffolds to encourage students’ (collaborative) conjecturing and proving skills may be 

developed on the basis of this knowledge. It allows to design tasks that may optimize the 

learning results by purposefully promoting and scaffolding those process characteristics that 

deemed to be important (cf. Schwartz, 1995). Consequently, students’ may build awareness 

of the process characteristics that are considered to be responsible for successfully formulating 

conjectures and constructing proofs. This perspective conceptualizes process characteristics 

of collaborative conjecturing and proving as potential predictors of the quality of the resulting 

product (the quality of the formulated conjecture and generated proof). The additional focus on 

social-discursive process characteristics may even make it possible to stimulate fruitful 

collaboration patterns, which in turn may enhance the individual-mathematical process 

characteristics (cf. Mueller et al., 2015).  
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4 Aims and research questions of the three studies 

As there is a general consensus on the importance of proofs in university mathematics, and in 

school mathematics (e.g., Harel & Sowder, 2007; Stylianides, A. J., 2007; Stylianides, G. J. et 

al., 2017), conjecturing and proving represent a major line in mathematics educational 

research (Sommerhoff, Ufer, & Kollar, 2015). Although the amount of research appears to 

provide a comprehensive view on conjecturing and proving, available empirical results about 

the activities involved that characterize good collaborative conjecturing and proving processes 

are rather weak. In the past, most studies about conjecturing and proving processes were 

based on small sample sizes using qualitative methods (e.g., Ellis et al., 2017; Savic, 2015b; 

Zazkis et al., 2016, 2015). Models of proof construction were inferred from introspective (e.g., 

Polya, 1945) or observational methods (e.g., Boero, 1999; Schwarz et al., 2010; Selden, J. 

& Selden, 1995)and were mainly premised on theoretical assumptions. In addition, most of 

these studies or models do not explicitly refer to the process-product character of proof (with 

the exception of Boero’s model (1999)) or to collaboration. Until now, research on what 

constitutes “good” collaborative conjecturing and proving processes has not been specific 

enough to describe students’ interactions during poof construction in terms of process 

characteristic that are relevant for the successful outcome (i.e. an interesting conjecture and a 

correct and normatively acceptable proof).  

Building on both the conceptualization of mathematical argumentation skills as consisting of 

an individual-mathematical and social-discursive component as well as the process-product 

character of proof, the primary goal of this dissertation is to develop an instrument to describe 

and analyse collaborative conjecturing and proving processes from a mathematics educational 

and more domain-general social-discursive perspective on argumentation. We will use this 

instrument to study the “black box” of collaborative conjecturing and proving by addressing the 

two questions: "What is happening during the process of proof construction?" and "How do 

learning prerequisites affect individual-mathematical and social-discursive processes that may 

lead to a successful outcome?" 

Yet, before developing such an instrument, it is important to know (1) which individual-

mathematical and social-discursive activities are considered as process characteristics that 

constitute good (collaborative) conjecturing and proving processes from a theoretical point of 

view based on current literature. Study I (Chapter 5) is a literature review that approaches this 

issue and summarizes common claims and findings about conjecturing and proving processes. 

More specifically, this literature review aims to answer the following questions: (1.1) Which 

theoretical perspectives in mathematics-related educational research conceptualize 

characteristics of good conjecturing and proving processes? Do researchers discuss good 

conjecturing and proving processes from the proving as problem-solving, proving as 



Aims and research questions of the three studies 

51 

convincing, or proving as a socially-embedded activity perspective? (1.2) Which conjecturing 

and proving processes are considered to be crucial for the production of interesting conjectures 

and normatively acceptable proofs? (1.3) Which of these proving processes are reported as 

more general sub-goals within conjecturing and proving? And which process characteristics 

are assumed to be helpful to achieve these goals? The results of these research question 

serve as theoretical foundation for defining a set of process characteristics of (collaborative) 

conjecturing and proving. 

Further goals of this dissertation are to find out (2.1) how can such process characteristics be 

operationalized in the context of collaborative proving and conjecturing processes? Is it 

feasible to measure individual-mathematical and social-discursive process characteristics of 

collaborative conjecturing and proving reliably? This research issue requires the development 

of an instrument (including the operationalization of process characteristics inferred from 

mathematics educational and psychology research). This instrument could be used (2.2) to 

analyse the empirical structure of individual-mathematical and social-discursive process 

characteristics and to find out whether coherent dimensions of process quality can be 

identified, (2.3) to study to what extent both learners contribute equally to the performance of 

these process characteristics, and (3) to examine the mutual relations between prerequisites, 

process characteristics, and proof performance. 

To investigate these broad range of research issues, we conduct an empirical study situated 

at the transition phase from secondary to tertiary education. This empirical study is broken 

down in two sub-analyses (Study II and Study III). Furthermore, this dissertation provides a 

“technical report” (Chapter 6) that presents the development of a high-inference coding 

instrument, a description of the rating scales and of the coding procedure, as well as a short 

explanation why we used this type of methodology. 

Study II (Chapter 7) focuses on aspect (2.1) by systematizing and operationalizing a set of 

seven theory-based process characteristic of collaborative conjecturing and proving 

processes. Most centrally, this study provides data on the empirical structure (2.2) of the 

extracted process characteristics for one exemplary conjecturing and proving task. In addition, 

this study addresses aspect (2.3) by considering the relatedness of students working 

collaboratively within one dyad on this conjecturing and proving task. Consequently, study II 

aims to answer the following research questions: (2.1) Can we find reliable process 

characteristics for the individual-mathematical and social-discursive component of 

conjecturing and proving? (2.2) How are individual- mathematical and social-discursive 

process characteristics of conjecturing and proving interrelated? Can two dimensions of 

conjecturing and proving processes, one related to the individual-mathematical and one 

related to the social-discursive component of mathematical argumentation, empirically 
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distinguished from one another? (2.3) Do students working collaboratively on a conjecturing 

and proving task contribute equally to the quality of conjecturing and proving processes? What 

is the adequate level of analysis (individual vs. group) for investigating collaborative 

conjecturing and proving processes?  

Study III (Chapter 8) approaches research issue (3) by analysing the relationships between 

the process characteristics of conjecturing and proving, the quality of the resulting product, and 

the learning prerequisites (operationalized as prior knowledge on proof). In this study, we apply 

the analytic framework that we have introduced in chapter 3 and strive to answer the following 

research questions: (3.1) Which component and process characteristics of collaborative 

conjecturing and proving are predictive for the quality of the resulting product? (3.2) Do prior 

knowledge on proof affect the quality of conjecturing and proving processes? (3.3) Do 

individual-mathematical process characteristics mediate the impact of prior proof knowledge 

on proof on the final product?  

This dissertation concludes (Chapter 9) by comparing and summarizing the findings of the 

three studies. Limitations and strengths as well as implications for further research projects 

were discussed. Last, all the findings will be considered in light of some practical implications. 
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5 Study I 

What are process characteristics of successful conjecturing and proving 

processes? Common claims and findings in research 

5.1 Abstract 

Identifying the processes that are needed to construct proofs and understanding the actions 

of those who are (finally) successful in conjecturing and proving are essential to foster students’ 

mathematical argumentation skills. Even though proof and proving are regarded as important 

in all phases of mathematics education, it seems that there exists more literature on the 

deficiencies students have than on those characteristics of conjecturing and proving that relate 

to the successful generation of conjectures and the construction of proofs. The purpose of this 

literature review is to analyse, categorize, and synthesize past research on conjecturing and 

proving under these considerations. First, different research perspectives on conjecturing and 

proving processes as well as the methodological orientation of the underlying studies are 

presented. We summarize claims and findings of the most representative articles on each 

research perspective, and analyse the processes that are assumed or reported to be crucial 

for success. Second, we propose a set of process characteristics that can be considered as 

indicators of successful conjecturing and proving processes from a theoretical and sometimes 

even an empirical point of view. Based on the theoretical integration and categorization of 

findings, we suggest directions for future investigations and practical implications. 

5.2 Introduction 

A substantial amount of research studies have documented that constructing proofs remains 

a persistent difficulty for students, even at the tertiary level (e.g., Moore, 1994; Selden, A. 

& Selden, 2013b). Results of these studies have indicated that students make a variety of 

mistakes in attempting to construct proofs, including conceptual, logical, formal, as well as 

strategic errors (e.g., Selden, A. & Selden, 2008; Selden, A. & Selden, 2011). These difficulties 

may lead students to deduce invalid inferences, use mathematical notations in incorrect ways, 

or leave students unable to understand the concepts and definitions related to the proving 

problems. Discovering the deficiencies students have and developing theory-based 

explanations about how each of these errors could be prevented, can help to improve the 

teaching and learning of proof. 

Another approach that may facilitate the development of specific instructional methods and 

tools to foster students’ mathematical argumentation skills is expanding the knowledge about 

which processes have shown to be promising in constructing proofs. Thus, carefully analysing 

the behaviour of those, who are successful in proving, could provide valuable insights into how 

conjectures may be generated and (deductively) justified (Zazkis et al., 2015). Exposing 
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students to the processes that high-performing students use to construct proofs and that have 

been recognized to be crucial in various studies, as well as conveying them what can be done 

to recover from proving impasses (cf. Savic, 2015a), may encourage students to overcome 

their difficulties. 

Over the last years, research on conjecturing and proving has matured and the size of 

according literature is growing. Therefore, we see the need for systematizing the existing 

knowledge base on conjecturing and proving processes. The main purpose of this review is to 

identify common claims and findings about what constitutes “successful” conjecturing and 

proving processes. We summarize the results of previous studies that describe how and with 

what intentions specific proving processes are chosen, and analyse the studies’ 

recommendations on which process characteristics should be taught to students (in order to 

support their conjecturing and proving skills). It is not expected to find an exhaustive set of 

process characteristics that covers all processes that may lead to a successful outcome, since 

the term “successful” in the context of conjecturing and proving may vary between different 

(research) perspectives.  

However, we assume that we are able to identify some more general activities within 

conjecturing and proving processes, such as exploring the problem situation and identifying 

appropriate arguments (cf. Boero, 1999) that are considered as necessary for the generation 

of interesting conjectures and valid proofs from different research perspectives. We categorize 

these activities that we call sub-goals within conjecturing and proving processes, and refer to 

the single processes, procedures, and operations (process characteristics) that are reported 

as being helpful in achieving these sub-goals. Our aim is to address multiple process 

characteristics together with their intended goals in order to better understand how these 

aspects of conjecturing and proving may be related to each other and contribute to a successful 

outcome (e.g., a conjecture that goes well beyond replicating the premise (cf. Koedinger, 1998) 

and a sustainable justification that explicitly accounts for why the produced conjecture must be 

true (Stylianides, A. J., 2007). 

In the following, we start with describing the research background before we present our 

systematic literature review and our analyses. 

5.3 Systematizing research perspectives on conjecturing and proving 

Conjecturing and proving are complex mathematical processes that comprise different 

cognitive (e.g., logical, conceptual and problem-solving) as well as social facets (e.g., Weber, 

2005). Both activities can be viewed as a particular type of argumentation in mathematics 

(Pedemonte, 2007). Stylianides, G. J. et al. (2017) distinguished “three broad research 

perspectives in the area of proof” (p. 244), namely, proving as problem solving, proving as a 

means of convincing oneself and others of the truth of a conjecture, and proving as a social 
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activity. Within the problem-solving perspective, the generation of a conjecture and the 

construction of a proof can be considered as tasks in which the learner is asked to find a 

pattern, to formulate a conjecture, and to find an appropriate justification for it, without initially 

knowing how to do so (Selden, A. & Selden, 2013a; Weber, 2004). Definitions, already 

accepted theorems, and acceptable rules of inferences have to be applied to come from the 

givens to the conclusions, and to evaluate the correctness of a proof. Researchers that 

conceptualize proving as problem solving are interested in investigating the cognitive and 

affect-motivational resources, strategies, and skills that are needed to successfully generate a 

justification that demonstrates that a given statement is true (Stylianides, G. J. et al., 2017). 

The illustration of how students think about what constitutes a convincing mathematical 

argument represents the proving as convincing perspective. Harel and Sowder (1998) 

categorized students’ beliefs about what could remove or create doubts about the truth of an 

assertion by inducing the notion of proof schemes. Their proof schemes taxonomy 

distinguished between external, empirical, and analytical proof schemes. From this 

perspective, the nature, values, and norms of proofs (e.g., Dawkins & Weber, 2017) play an 

important role. For instance, students’ beliefs that the formal-symbolic appearance of a proof 

is an indispensable requirement for its acceptance may influence their proof-related behaviour 

(e.g., Harel & Sowder, 1998). These students may prefer to construct proofs that are based on 

strategies such as “unwrapping definitions” and “pushing symbols” (Furinghetti & Morselli, 

2009). The research, which refers to the proving as convincing perspective, is less concerned 

with the question of how valid and acceptable evidence can be developed, but provides an 

analytic framework for researchers and educators to examine students’ norms related to 

conviction. In contrast to the problem-solving perspective, which focuses primarily on 

processes, the convincing perspective considers proof as a product (Stylianides, G. J. et al., 

2017). 

Treating conjecturing and proving as social activities leads to the view that collaborative 

argumentative settings provide excellent opportunities to discuss various types of arguments 

(Yopp & Ely, 2016) and to debate on whether a constructed sequence of arguments constitutes 

an acceptable mathematical proof (Alibert & Thomas, 1991). Since conjecturing and proving 

within a social context are tools to communicate and generate mathematical knowledge (e.g., 

Harel & Sowder, 2007), analysing the studies that have focussed on how students or 

mathematicians successfully engage in proving to justify or explain a claim to their peers and 

to communicate their proving ideas, may give interesting insights into conjecturing and proving 

processes. 

Also Stylianides, G. J. et al. (2017), who used these three perspectives of proving as an 

organizing structure for their research review, remarked that they identified studies that do not 
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fully fit within one of these perspectives. Thus, there might be a broader range of perspectives 

on proving that better captures the variety of studies that have been conducted in the past. In 

this contribution, we aim to systematize empirical and theoretical research on conjecturing and 

proving processes into “research topics” that share a common perspective on these processes. 

Moreover, we will analyse whether studies from different research perspectives on proving 

come to different conclusions about which conjecturing and proving processes are needed for 

the successful generation of conjectures and proofs, and what characterizes promising proving 

processes (promising in the sense that these processes might be helpful to achieve different 

sub-goals within conjecturing and proving processes). 

5.4 Proving processes  

In the past, different models have been established that outline problem solving or, more 

specifically, conjecturing and proving processes. Models that refer to problem solving usually 

include the phases of understanding the problem, developing a plan, implementing this plan, 

and looking back (cf. Carlson & Bloom, 2005; Polya, 1945). The frameworks that deal with 

proof construction processes additionally emphasize phases that aim to explore the problem 

situation and possible conjectures as well as phases of systematization (e.g., Boero, 1999; 

Schwarz et al., 2010). These models are based on self-observations (e.g., Polya, 1945) or 

emerged from the close observation of other mathematicians (e.g., Carlson & Bloom, 2005; 

Schwarz et al., 2010). Even though these frameworks have been developed with the intention 

that (beginning) students may try to implement the described phases and processes, they 

primarily illustrate how (expert) mathematicians solve problems and write proofs.  

Other researchers have also examined the proof-writing behaviour of mathematicians: For 

instance, the study by Lockwood, Ellis, and Lynch (2016) demonstrated the various ways in 

which mathematicians used examples to construct proofs. Assuming a continuity between 

conjecturing and proving, several researchers attributed particular potential to proving 

processes that are based on informal representations (e.g., Garuti et al., 1998; Sandefur, 

Mason, Stylianides, & Watson, 2013) or on abductive reasoning (Pedemonte, 2008). However, 

not all students seem to be able to translate their informal insights into a formal-symbolic 

(Zazkis et al., 2016) or to link the meaning of objects they have used in their abductive 

argumentations with the meaning of according objects in their deductive proofs (Pedemonte, 

2008). 

Using an expert-novice research paradigm, the study by Weber (2001) has shown that 

successful mathematicians possess a large amount of strategic knowledge that undergraduate 

students appeared to lack. This knowledge allowed the expert mathematicians to choose 

adequate proof techniques according to the current situation. From this point of view, it remains 

an open question to what extent students who have less experience with proof construction 
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are able to employ the same processes that experienced mathematicians usually apply (cf. 

Reif, 2008). 

Another series of studies have started to investigate the approaches of students who were 

successful in constructing proofs. Conducting task-based interviews with undergraduate 

students, Gibson (1998) examined how they used diagrams to become familiar with novel 

problems, to estimate the truth of statements, to develop proving ideas, and to communicate 

these ideas. The study by Zazkis et al. (2015) analysed the proving behaviour of six highly-

successful mathematics majors. They observed a substantial variation in the strategies the 

students used to construct proofs. Two main strategies (the targeted/ shotgun strategy) were 

distinguished with regard to how plans were chosen in an attempt to find a solution. 

Overall, literature suggests several ways of generating conjectures and constructing proof. 

However, a common finding in the literature is that successful mathematical problem solvers 

spend at least some time to think about which rules and theorems are likely useful to apply, 

and whether they should or should not try to prove a theorem by, for instance, manipulating 

symbols (e.g., Weber, 2001; Zazkis et al., 2015). In the past, numerous studies have identified 

key traits and techniques that individuals exhibit while solving proof-related tasks (e.g., 

Sandefur et al., 2013; Weber, 2004). However, to design adequate learning environments and 

to support students’ learning of proof, we need to know more than just “what works” - we also 

need to know how and why a specific proving process should be employed. In this research 

review, we aim to systematize the key traits and techniques that have been described in 

several research studies and that we call process characteristics of conjecturing and proving 

in terms of their intended goals. 

5.5 The present study 

The overall purpose of this review is to analyse the scientific discourse regarding 

characteristics of successful mathematical conjecturing and proving processes. Based on 126 

articles and research reports from 1976 to 2017, we start our investigations by using a 

statistical clustering method (cf. McCallum, 2002) to describe the research topics and 

methodological orientation of the included studies. Following the approach by Stylianides, G. 

J. et al. (2017), we use the identified research topics, which constitute different perspectives 

on conjecturing and proving, to structure our review. Another goal of this research review is to 

summarize common claims and findings about aspects of the proving process that are 

proposed to be crucial for a high proving performance and the learning of proof. Therefore, we 

analysed the most representative articles on each identified topic (in total 45 articles and 

research reports) with a specific focus on the sub-goals within conjecturing and proving 

processes that are considered as necessary intermediate steps for the successful generation 

of conjectures and the construction of proofs from different research perspectives. Having 
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identified the sub-goals within conjecturing and proving processes, we explore the extent to 

which each of these sub-goals has been researched so far in the field of mathematics 

education. Furthermore, we are interested in the processes that are assumed or reported as 

being helpful in achieving these sub-goals. These process characteristics are discussed in 

relation to their intended goals in order to better understand how and why students or 

mathematicians (successfully) employ a specific process.  

Particularly, we aim to answer the following research questions: 

1) Which research topics within the literature on conjecturing and proving can be identified 
that represent common perspectives on these processes? Do researchers discuss 
conjecturing and proving processes from the proving as problem-solving, proving as 
convincing, or proving as a social activity perspective (as suggested by Stylianides et al. 
2017)? What further perspectives on conjecturing and proving processes can be found? 

2) Which processes are assumed to be relevant for successful proving performance? What 
are common claims and descriptions about how mathematicians, mathematics majors, or 
high-achieving college students construct proofs successfully?  

In particular, we are interested in claims about how, and for what purposes, specific proving 

processes are employed: 

3) Which of these proving processes are reported as more general sub-goals within 
conjecturing and proving? And which process characteristics are considered as being 
helpful in achieving these sub-goals?  

We explicitly do not strive to apply any kind of meta-analytical procedure based of effect-size 

parameters, as we expect that many studies on conjecturing and proving do not report 

quantitative findings. Furthermore, the studies as well as their conceptualizations and methods 

will most likely be too heterogeneous to allow such a statistical summary.  

5.6 Method 

5.6.1 Literature search 

To ensure a systematic approach, we followed a two-step-procedure to select articles and 

research reports for our review: First, we conducted an extensive database search in 

MathEduc, ERIC, and ScienceDirect for the keywords “proving” and “proof”. As these three 

searches resulted in a total of 964533 hits, we decided to restrict our searches by using more 

specific keywords in each of the three databases. We searched the MatheEduc collection for 

all journal articles and research reports, which contained the keywords “proof construction”, 

“proof production”, “proof writing”, “proving activities”, “proving strategy”, “proving strategies”, 

“proving process”, “proving processes”, “successful proving” as well as “conjecturing” and 

“deductive reasoning”. For ERIC and ScienceDirect “mathematics” was added as a second 

key word by using the logical connection “AND”. Regarding the publication year and sources, 

no restrictions were made.  
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In a second step, we selected articles and research reports based on their abstracts and the 

following criteria: Research reports and articles that … 

1) … have been published in peer reviewed journals or proceedings; 

2) … report to focus on high-quality proving processes or on processes that are strongly 
related to the production of conjectures and its proofs such as example generation;  

3) … contain theoretical claims or empirical findings about successful proving processes 
or about how, and for what purposes, successful university mathematics students, 
mathematicians, or high-achieving college students choose a specific process. 

5.6.2 Topic modeling 

Topic modeling is a method that allows to identify the research perspectives or, respectively, 

topics that are present in a large collection of documents. It was applied to systematize our 

selected literature on conjecturing and proving. In this method, a “topic” comprises a cluster of 

words that usually occur together “in statistically meaningful ways” (Graham, Weingart, & 

Milligan, 2012, p. 3) and is specified by a probability distribution over the respective words. 

Inglis and Foster (2018) illustrated topic modeling as a method that builds upon the hypothesis 

that any given document is a mixture of topics, and thus each document consists of words from 

possible bags of words, with each bag representing a specific topic. 

If this “bag-of-words-assumption” (Steyvers & Griffiths, 2007, p. 427) holds, it becomes 

possible to mathematically parse a written text into the probable bags, and to define a 

corresponding probability distribution. Even though topic modeling programs do not have any 

knowledge about the meaning of words, ignore the order of words, and skip topic-independent 

words such as “the” and “a”, they can be used on a corpus of literature to identify the topics 

embedded in these documents, without analysing and reading them individually (Graham et 

al., 2012; Inglis & Foster, 2018). 

We followed the approach proposed by Inglis and Foster (2018). All of our articles and research 

reports were stored as pdf-files and converted into .txt-files using ABBYY FineReader OCR 

Pro. Copyright statements as well as information about the journal were removed as they do 

not contribute to the content the documents contain. For our analysis, we used the command-

line topic-modeling program MALLET (version 2.0.8RC2; McCallum, 2002). This program 

requires that the number of topics that the algorithm should detect has to be set by the user. 

Therefore, the “perplexity” of a model with a given number of topics was calculated by running 

the topic model program to a subset of the selected documents and evaluating the resulting fit 

parameters. We went through this process repeatedly by systematically changing the number 

of topics. Low perplexity values indicate good model fits. Increasing the number of topics leads 

to the reduction of the perplexity, but at some point the interpretation of too many topics 

becomes challenging. Thus, it is suggested to use a method comparable to Catells’s scree test 
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(1966) for exploratory factor analysis. Inglis and Foster (2018, p. 477) propose to find “a point 

at which the reduction in perplexity appears to ‘level off’” and to select this point as the number 

of topics the algorithm should identify. Once the number of topics has been determined, the 

program was run again in order to return a defining list of words composing those topics. 

Regarding research question (1), we interpreted each topic by analysing the defining list of 

words and by studying the most representative articles or research reports on each topic (the 

papers with the highest proportion of words from their corresponding topic). Then, we tried to 

find meaningful descriptions for each of these topics and allocated these topics to the research 

perspectives on proving as outlined by Stylianides, G. J. et al. (2017). The created topic model 

served as an organizing structure for the further analyses and helped us to reduce the 

complexity of our unstructured document collection of literature on conjecturing and proving. 

Since we would not have been able to handle the deluge of data that would have resulted if 

we had tried to read and interpret all the relevant literature on conjecture and proving, we have 

limited the following in-depth analysis to 45 (of 51) articles that represent the range of topics 

and perspectives found in the studies. 

5.6.3 In-depth-analysis 

In the in-depth analysis, we included the three most representative articles or research reports, 

for each of the identified topics. First, we highlighted their claims and empirical findings about 

any type of promising conjecturing and proving processes. These data were analysed using 

“the synthesis of qualitative research approach” outlined by J. Thomas and Harden (2008) to 

enhance transparency in the review process. Due to the fact that it is difficult to deal with the 

question of what counts as data or - with regard to our review - as claim or finding when 

analysing quantitative and especially qualitative research, we curbed this problem by focusing 

mainly on the listed claims and findings in the text sections labelled as “results”, “findings”, 

“discussion”, or “implications for teaching and learning”. Claims and findings in the abstracts 

or in other text sections that appeared to be relevant as well and that were reported in a similar 

way as in the text sections labelled as “results”, “findings”, “discussion”, or “implications for 

teaching and learning” were also taken into account. In general, when deciding whether to 

include a claim or finding in our analysis or not, we relied on the second and third criteria that 

we already had defined and used when searching for relevant literature on conjecturing and 

proving.  

The synthesis approach proposed by Thomas, J. and Harden (2008) comprises three steps 

that we adapted in the following way: (i) Free line-by-line coding of the claims and empirical 

findings from the primary studies: The extracted data were analysed for meaning and content 

during the coding. The developed codes were subsequently listed into a code book. This 

procedure enabled us to translate the codes and concepts between the studies; (ii) Finding 
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descriptive categories: The developed codes were examined for their meanings, and 

reorganized into related categories; (iii) Generating analytical categories to directly address 

the second and third research question: Each category was examined and compared to other 

categories, in particular by searching for similarities and differences. The categories were 

analysed by whether and how they report any theoretical relationship or empirical mechanism 

between proving behaviour, and proving performance. Similar categories were merged into 

higher-level, more abstract categories that sometimes went beyond the claims and findings of 

the original studies. The step of going beyond the claims and findings of the original studies 

incorporated, for example, our interpretation of which processes were rather described as sub-

goals within conjecturing and proving or as characteristics that might be helpful in achieving 

these sub-goals. This step of the analysis led to a structured description of which proving 

processes were considered as relevant for the successful generation of conjectures and 

proofs.  

The first two steps were mainly inductively. In the third step, most of the categories were 

derived from the data, but we already had some categories in mind before we generated the 

more abstract categories and therefore followed an approach that is partly inductive and partly 

deductive. The more abstract categories we already had in mind were based on the phases 

described in the existing frameworks of proof construction (cf. Boero, 1999; Schwarz et al., 

2010) or problem solving (cf. Carlson & Bloom, 2005; Polya, 1945). These pre-defined 

categories, which we modified and refined throughout our in-depth analysis, were: exploring 

the problem situation, organizing single inferences into a chain, communicating arguments, 

and transforming informal into formal arguments as well as using informal representations, 

generating examples, using formal symbols, or metacognitive processes. Besides these 

categories, we were interested in finding new categories that were described either as sub-

goals within conjecturing and proving or as process characteristics that might be helpful in 

achieving one or more of these sub-goals.  

Table 1 sets out the dimensions that structure our in-depth analysis. An example of how claims 

or empirical findings were coded and categorized is given in Table 2. 
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Table 1: Dimensions that frame the in-depth analysis of claims and findings about promising conjecturing 
and proving processes   

 Description 

 

Type of sub-goals The aim of this dimension is to identify the different sub-goals within conjecturing and proving 
processes that have been researched in the field of mathematics education.  

This dimension about the sub-goals within conjecturing and proving processes comprises the 
intermediate steps that have been considered as necessary or, at least, as central for the 
successful generation of conjectures and the construction of proofs from different research 
perspectives. It addresses the reasons for choosing a specific proving process or procedure. 

Processes that have been described as sub-goals within conjecturing and proving might be 
placed in categories such as exploring the problem situation, organizing single inferences into a 
chain, communicating arguments, transforming informal into formal arguments, …  

It might be that in some studies the sub-goals were not described in detail and more as latent 
constructs, as if their meaning were obvious. In these cases, the sub-goals were also taken into 
account. 

 

Type of process 

characteristics  

 

The aim of this dimension is to identify the different processes that have been considered (or at 
least can be interpreted as such by taking the context of the study into account) as being helpful 
in achieving one or more of these sub-goals within conjecturing and proving processes. It 
provides the basis for understanding how the use of a particular proving process or procedure 
can work and thus contribute to a successful outcome. 

Processes that have been described as process characteristics might be placed in categories 
such as example generation, using informal representation systems, using formal symbols, 
meta-cognitive processes, …  

The process characteristics are recognizable by the fact that they can be operationalized for 
assessing purposes or discussed with students in a classroom environment to help alleviate 
difficulties in proving tasks. 
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Table 2: Coding examples of claims and findings from three studies. The study of by Savic (2015a) represents 
the topic “problem-solving with a specific focus on processes, impasses, and incubation”, the study of by 
Martinez, Brizuela, and Superfine (2011) represents the topic “modeling”, and the study of by Blanton and 
Stylianou (2014) represents the topic “social/ collective argumentation”.  

Claims and findings 
(data) 

Free-line-coding Sub-goals  Process-characteristics 

“Dr. B’s actions to 
overcome his impasse 
included moving on to 
the next theorem, 
creating 
counterexamples, and 
being interrupted by his 
family, where, at lunch, 
he had an insight that 
turned out to be useful 
for furthering his 
proof.” (p. 74) 

 

processes to 
overcome impasses, 
including 
incubation;  

counterexamples, 
moving on, doing 
something else 

recovering from impasses generating examples: trying to create a 
counterexample 

 

incubation strategies in form of 
domain-general problem-solving 
strategies: moving on to the next task; 
resting and “sleeping on it” 

“Our intention was that 
in producing a chain of 
equivalent expressions, 
students would use one 
of the aspects of 
algebra […] to make 
explicit something that 
was implicit in the 
initial algebraic 
expression” (p. 36) 

 

manipulating 
formal expressions, 
making something 
explicit, searching 
for a new 
expression 

exploration - 

finding an adequate 
representation for the 
proof 

using and manipulating formal-
symbolic/ algebraic representations 

“… the number of 
student transactive 
utterances increased 
from 27% to 64%, 
suggests that they had 
come to view proving 
as a habit of mind that 
involved explaining, 
critiquing, justifying, 
and so forth, as the 
means to […] negotiate 
meanings for the 
component parts of a 
conjecture (e.g., 
“center” of a group).” 
(p. 96) 

transactive 
processes 
(explaining, 
critiquing, 
justifying), 
negotiating 
meanings 

generating a shared 
understanding 

transactive processes: explaining and 
critiquing  

 

5.7 Results 

5.7.1 Main topics of the literature in the area of proof construction 

Our first research question addressed the systemization of the literature on conjecturing and 

proving into research topics that represent common perspectives on these processes. In 
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particular, we were interested in identifying and refining the three research perspectives on 

proving (proving as problem-solving, proving as convincing, or proving as a social activity) that 

have been suggested by Stylianides, G. J. et al. (2017). To determine the optimal number of 

topics for out topic modelling analysis, we used the perplexity of models with 5 to 35 topics. 

The perplexity graph showed that a model with 17 topics was the most adequate approach for 

presenting the literature on conjecturing and proving (Figure 7).  

 

Figure 7: The perplexity of topic models with varying numbers of topics (5 to 35 topics in jumps 

of 1 or 2). The two lines represent linear approximations for the perplexity level above and below 

the identified point 17, where the graph ‘levels off’. 

The research topics determined by the algorithm, which serve as an organizing structure for 

our research review, are listed in Table 3. These are the topics that would be most likely to 

have led to the articles and research reports of our document collection on conjecturing and 

proving. Table 3 also shows the names and perspectives that we allocated to the topics, the 

defining list of words, as well as the average proportion of documents assigned to the topics. 

In our collection of documents, we were able to detect all the three perspectives on proving 

outlined by Stylianides, G. J. et al. (2017). Six of the identified topics were related to the 

problem solving perspective, namely the “examples and conjecturing” topic, “the problem 

solving with a specific focus on affects” topic, the “thinking processes” topic, the “informal 

understanding” topic, the “problem solving with a specific focus on processes, impasses, and 

incubation”, and the “types of reasoning (e.g., semantic/syntactic)” topic. Articles and research 

reports that represented “the problem solving with a specific focus on affects” topic and 

“problem solving with a specific focus on processes, impasses, and incubation” topic were 

explicitly based on the problem-solving perspective. The documents that were assigned to the 
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“examples and conjecturing” topic, “informal understanding” topic, or the “types of reasoning 

(e.g., semantic/syntactic)” topic were implicitly linked to the problem-solving perspective as 

they referred to the development and use of specific problem-solving strategies. Since 

problem-solving tasks usually require complex thinking processes and therefore the use of 

heuristic strategies that can, but do not necessarily, lead to a solution (Abel, 2003), it appeared 

obvious to allocate these research topics to the problem-solving perspective as well. 

The documents that mainly represented the “university level” topic or the “school students” 

topic shared the convincing perspective on proof and, additionally, characterized proving as 

an educational learning goal, which is central within different educational levels. They 

categorized and described the different types of processes that school students, 

undergraduates, or mathematicians used to construct proofs and to convince themselves or 

the corresponding mathematical community. The proving as a social activity perspective was 

covered by articles and research reports that had a high proportion of words from the “social/ 

collective argumentation” topic. Within this perspective, proving was conceptualized as an 

activity that occurs in a social context. The documents that were clustered in one of the topics 

that shared one of the three entrenched perspectives on proving have explicitly or implicitly 

treated proving as a problem-solving, convincing, or a socially-embedded activity at the 

expense of emphasizing the discovery function of conjecture generation and proof 

construction. Both, the “geometry (conjecturing)” topic and the “modeling” topic were about 

proof-related activities that could be used to generate new mathematical knowledge (within a 

specific content area) and thus, pointed to the discovery function of proof. The perspective that 

proof and proof-related activities serve as means to systematize mathematical knowledge was 

taken up (besides other perspectives) in the literature that represented the “formal system” 

topic. We were not able to find further perspectives on conjecturing and proving in the included 

documents. 

Five topics, “the nature of proof and teaching of proof” topic, the “argumentation structure” 

topic, the “geometry (proving)” topic, the “formal systems” topic, as well as the “abstract and 

linear algebra” topic, could not be clearly attributed to one specific perspective on conjecturing 

and proving, since the articles and research reports with the highest proportions of words from 

(at least) one of these topics contributed to the conceptualization of conjecturing and proving 

from different perspectives. The “nature of proof and teaching of proof” topic captured the 

literature on proving that provided a global view on proof-related activities by discussing the 

goals and situations that may guide each of these activities. Although the topic could not be 

attributed to one of the perspectives, the convincing perspective appeared to play an important 

role within this topic. Regarding the “argument structure” topic, we observed that articles and 

research reports that referred to this topic were concerned with the cognitive and structural 

continuities and distances between argumentation and proof. This research issue seemed to 
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be clearly related to the problem-solving as well as the discovery perspective. In the literature 

that was most representative for the “geometry (proving)” topic, proof-related activities were 

discussed with respect to the conceptual (content-specific) knowledge that is required to 

achieve success on geometric proving tasks. From this point of view, it could be assigned to 

the problem-solving perspective, but we have also identified the discovery and social activity 

perspective within this kind of research. Articles and research reports with a high proportion of 

words from the “formal system” topic took, as already mentioned, proving as a means for 

systematizing knowledge perspective as well as the discovery perspective into account. The 

“abstraction and linear algebra” topic included literature on proving, which focused on students’ 

knowledge about different linear algebra concepts, as well as literature that discussed methods 

of theorem proving with abstraction. The latter referred to “the automatic theorem proving” 

topic, a topic that has been identified as an independent branch of research. Due to the fact 

that the literature related to the “abstraction and linear algebra” topic differed widely and thus 

had no common theme, we were not able to assign a research perspective to this topic. The 

articles and research reports on "automatic theorem proving" were excluded from further 

analyses, as the focus of this literature review was on the mathematics educational literature 

on conjecture and proving. 

The topic modeling analysis showed that the included documents typically consisted 

predominantly of words from topics with an overarching perspective on conjecturing and 

proving, followed by words from topics with (in descending order) the problem-solving 

perspective, the convincing perspective, the discovery perspective, and finally the perspective 

on proving as a socially-embedded activity. Within the problem-solving perspective the 

“example and conjecturing” topic appeared to be most popular, followed by the “problem-

solving with a specific focus on affects” topic. Regarding the topics that shared the convincing 

perspective, the algorithm showed that words from the “university level” topic occurred slightly 

more frequently than words from the “school students and school teacher” topic. Overall, the 

literature on conjecturing and proving was composed of only a small proportion of words from 

the “social/ collective argumentation” topic (Mproportion = 0.026) and thus only a few articles 

explicitly shared the social activity perspective on proving. Most articles and research reports 

seemed to consist of words from the “nature of proof and teaching of proof” topic 

(Mproportion = 0.363), typifying the “overarching perspective on proof”. 
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Table 3: The 17 topics and the defining list of words (the words that best characterize the corresponding 
topic in order of probability) for each topic (sorted by their average proportion). 

Perspective Name of the topic Similarities Defining list of words Average proportion  

overarching (mostly 
convincing) 

nature of proof 
and teaching of 
proof 

Identifying and 
describing 
different proof-
related activities 
with respect to 
their situations in 
which they are 
embedded, their 
specific goals and 
functions. 

 

proof mathematics 
mathematical students 
research education proving 
study reasoning teaching 
proofs knowledge prove 
student learning analysis 
journal university 
understanding case 

 

0.363 

convincing 
perspective –  

focusing on a 
specific educational 
level 

university level Several 
approaches that 
professional 
mathematicians, 
undergraduate, or 
doctoral students 
use to prove 
theorems based 
on the ideas they 
find convincing or 
(intuitively) 
meaningful. 

 

students proof proofs weber 
participants statement 
undergraduates courses 
group alcock writing asked 
mathematics prove student 
undergraduate 
mathematicians strategies it's 
statements 

 

0.085 

convincing 
perspective –  

focusing on a 
specific educational 
level  

school students 
and teachers 

Assessing school 
students’ and 
school teachers’ 
proof 
performance by 
focusing on the 
difficulties they 
encountered, the 
proof schemes 
they used, and 
their 
understanding of 
proofs and 
refutations. 

 

proof students teachers 
number mathematics 
mathematical arguments 
reasoning argument numbers 
deductive proofs set schemes 
prime education statement 
proposition study prospective 

 

 

0.071 

problem-solving 
perspective – 

focusing on strategy 
use 

examples and 
conjecturing 

Using examples as 
a powerful tool to 
explore the 
problem 
situation, to 
estimate the truth 
and to justify 
conjectures. 

examples students conjecture 
numbers number conjectures 
true consecutive work 
strategies mathematicians 
general task case proving 
cases stylianides insight 
activity multiple 

0.067 

discovery 
perspective – 
focusing on a 
specific content area  

geometry 
(conjecturing) 

Generating new 
knowledge (e.g., 
statements or 
conjectures) in 
the context of 
geometry by 

students fig conjecture case 
geometry conjecturing proof 
proofs conjectures deductive 
point tasks design triangles 
argumentation teacher 

0.058 
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using (counter-) 
examples or by 
reflecting on and 
utilizing already 
constructed 
proofs.  

 

triangle function activity 
statement 

 

problem-solving 
perspective – 
focusing on affective 
and cognitive 
resources 

problem solving 
(especially, affect) 

Studying the 
interrelation 
between affective 
and cognitive 
resources and 
how they 
influence one’s 
problem-solving 
behaviour. 

 

problem students solving 
proving mathematics 
induction problems solution 
cognitive university process 
problem-solving activity 
representation work 
secondary beliefs behavior 
studies solve 

 

0.050 

overarching (mostly 
discovery and 
problem-solving) 

argumentation 
structure 

Analysing the 
cognitive 
continuities and 
structural 
distances 
between 
argumentation 
and proof. 

 

argumentation proof claim 
students argument model 
abduction number data case 
algebraic arguments cases 
rule conjecture structure 
claims arithmetic warrant 
generalization 

 

0.041 

problem-solving 
perspective – 
focusing on strategy 
use 

thinking processes Abstraction and 
creative thinking 
as central 
components of 
conjecturing and 
proving 
processes. 

problem students process 
solving geometry knowledge 
student investigation thinking 
learning problems test ability 
processes mathematical 
model posing problem-
solving figure metacognitive 

 

0.039 

problem-solving 
perspective – 
focusing on strategy 
use 

informal 
understanding 

 

Analysing the 
cognitive 
processes that are 
involved in 
concept image-, 
visual intuitions- 
and example 
generation 
activities.  

 

function image proof concept 
argument graphical process 
arguments informal formal 
graph definition springer 
processes interval diagram 
diagrams generation 
participants derivative 

 

0.035 

overarching (mostly 
problem solving) - 
focusing on a 
specific content/ 
conceptual 
knowledge 

geometry (proving) Prior knowledge 
and activities 
related to 
geometry proof 
construction. 

triangle concept definition 
activity group students 
triangles definitions angles 
angle line formal 
perpendicular development 
image properties thinking 
individual geometry point 

 

0.033 

problem-solving 
perspective – 
focusing on 
approaches to 

problem solving 
(esp. processes, 
impasses, 
incubation) 

The processes 
mathematicians 
take to recover 

theorem proving pupils 
mathematicians problem 
process selden phase actions 
identity construction time 

0.032 
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overcome proving 
impasses 

from proving 
impasses. 

incubation element 
behavioral planning solving 
impasses framework mind 

 

social-activity 
perspective 

social/ collective 
argumentation 

Using 
collaboration as a 
resource for 
building 
mathematical 
arguments and 
producing 
understanding.  

students discourse teacher 
transactive argument 
authority arguments 
utterances teachers episode 
classroom learning ideas 
reasoning episodes finley 
empirical collective odd 
mathematical 

 

0.026 

problem-solving 
perspective – 

focusing on strategy 
use 

types of reasoning 

(e.g., semantic/ 
syntactic) 

Semantic and 
syntactic proof 
production and 
other 
representation 
systems that best 
model students’ 
reasoning. 

 

reasoning theory lines 
semantic indirect students 
line theorem kirk formal 
statement meaning meanings 
system proof points syntactic 
contradiction mathematical 
point 

 

0.025 

overarching – 
(mostly discovery 
and systematization) 

formal systems Discovering and 
proving theorems 
by the application 
of (logical) rules, 
meta-rules, and 
formal symbols.  

 

rules rule knowledge 
theorems system image 
theorem proved prove set 
element item base properties 
neighbourhood 
mathematicians general 
property sets found 

 

0.023 

discovery 
perspective – 
focusing on specific 
content areas 

modeling (with 
algebraic 
expressions) 

Algebra as a 
modeling tool for 
formulating 
conjectures, 
solving equations, 
and generating 
proofs within 
different content 
areas by defining 
and using 
variables and 
parameters.  

 

 

students blend algebra 
episode blending efp ppp 
variables problem fig 
expression geometric i.e 
conceptual line kgb outcome 
equation data Stacey 

 

0.020 

(no assignment to a 
perspective)  

automated 
theorem proving 

Related to the 
field of machine 
learning. 

transformation facts proofs 
proof transformations fact 
mash isabelle set transfer 
springer number theory mizar 
provers sledgehammer mepo 
type theorem goal 

 

0.017 

overarching – not 
clearly assignable to 
one or more 
perspectives 

abstraction and 
linear algebra 

 

Prior knowledge 
and activities 
related to 
theorem proving 

proof abstraction linear 
clauses set search clause 
proofs span suppose 
resolution strategies depth 

0.016 
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in the context of 
linear algebra or 
about abstraction 
methods to 
develop 
automated 
theorem proving 
systems. 

abstractions vectors vector 
theorem matrix strategy m-
clauses 

 

 

5.7.2 Methodological orientation of the underlying studies 

In the following, we describe the methodological orientations of the articles and research 

reports that are composed of particularly high proportions of words from one of the identified 

topics. We included a total of 51 papers in the search for central claims and empirical findings 

about promising proving processes, and finally 45 of these references comprised relevant 

claims or empirical findings about sub-goals within conjecturing and proving processes or 

about the process characteristics that may be helpful in achieving these goals. The selected 

articles and research reports were published between 1976 and 2017, with a median 

publishing year of 2013 and mean of 2011. The majority of the papers used small sample sizes 

(Median = 8.5). One paper did not provide any sample size information and eight papers 

contained no empirical data at all. Regarding the studies’ methods, mainly qualitative 

approaches were applied. In the 34 qualitative studies (excluding the 8 theoretical papers and 

3 quantitative ones), real-time data collection techniques such as task-based interviews or live 

scribe pens, in which the participants were asked to solve the problem aloud, were most 

prevalent. The resulting think-aloud-protocols served as data base for the subsequent 

analyses. Other common data collection techniques to make proving strategies and processes 

accessible were questionnaires, course observations, and collaborative settings. In three 

studies, the participants were interviewed only after they had completed the given tasks. They 

were prompted to recall the thoughts they had in mind while solving the proof problems and 

retrospective-think-aloud-protocols were created. 

Concerning the data analysis, most researchers developed open codes to describe their data 

in the spirit of grounded theory (e.g., Mueller et al., 2012; Uğurel, Moralı, Koyunkaya, & 

Karahan, 2016). In the remaining three studies, quantitative research was conducted and 

corresponding statistical methods were applied. Two of these research papers reported the 

results of experimental design studies that were implemented to investigate the influence of 

specific instructional approaches on the learning and teaching of proof.  

To sum up, we observed variations in the studies’ design principles (e.g., time-limitations vs. 

no time-limitations, intervening or not intervening the solution process by instructors), in the 

domains (e.g., geometry, number theory, analysis), in the type of tasks (e.g., open-ended, 

similar to already known tasks), in the populations (mathematicians, PhD students, (under-) 
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graduate students, (junior) high-school students), in the data sources (e.g., interview 

transcripts, video-recordings of collaborative settings, questionnaires) and in the research 

(theoretical, quantitative, qualitative). Moreover, results showed that the research on 

conjecturing and proving processes is based mostly on qualitative, explorative studies. Studies 

that tested hypotheses and made predictions about participants’ proving behaviour or 

performance were rare. Table 4 gives an extended overview of the study characteristics of all 

selected articles and research reports. 

Table 4: An overview of the 45 papers that constitute our data for the qualitative analyses. 

Name of the topic Article/ research report Sample Method, instruments, analysis 

Nature of proof and 
teaching of proof 

Mejía-Ramos and Inglis 
(2009) 

 

- Theoretical paper 

 Zaslavsky, Nickerson, 
Stylianides, Kidron, and 
Winicki-Landman (2012) 

 

- Theoretical paper 

University level Weber (2004) 14 Qualitative, think aloud, task-related 
interviews 

 

 Weber and Alcock 
(2004) 

14 Qualitative, description of previous studies: 
questionnaires, task-related interview, think 
aloud 

 

 Zazkis et al. (2015) 6 Qualitative, retrospective recall, 
interpretative analysis 

    

School students and 
teachers 

Lin, F.-L., Yang, and 
Chen (2004) 

3345 Quantitative, questionnaires, theory-based 
coding 

    

 Uğurel et al. (2016) 

 

15 Qualitative, think aloud, interview, grounded 
theory 

 Lee, K. (2016) 60 Qualitative, written proofs, theory-based 
coding  

 

Examples and 
conjecturing 

Ellis et al. (2017) 

 

38 Qualitative, task-based interviews, coding 
was to develop open codes (grounded 
theory) 

 Ozgur, Ellis, Vinsonhaler, 
Dogan, and Knuth 
(2017) 

 

38 Qualitative, task-based interviews, theory-
based coding 
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 Ellis, Lockwood, Dogan, 
and Williams (2013) 

 

26 Qualitative, interviews, think aloud, theory-
based coding and open-coding process 

 

Geometry (conjecturing) Komatsu (2011) 2 Qualitative, questionnaire, observation, 
interview  

 

 Komatsu, Tsujiyama, 
and Sakamaki (2014) 

 

4 Qualitative, interviews, case study, protocol 
analysis 

 Komatsu (2016) 4 Qualitative, interviews, case study, protocol 
analysis 

 

Problem solving 
(especially, affect) 

Furinghetti and Morselli 
(2004) 

1 Qualitative, observations, protocol analysis 

 

 Furinghetti and Morselli 
(2009) 

2 Qualitative, written individual reports, 
protocol-analysis, interpretation 

 

 Furinghetti, Maggiani, 
and Morselli (2013) 

9 Qualitative, questionnaires, interviews, 
theory-based coding 

 

Argumentation structure Pedemonte (2008) 

 

- Theoretical paper 

 

 Pedemonte and Reid 
(2011) 

 

- Theoretical paper 

 Pedemonte & 
Buchbinder (2011) 

12 Qualitative, task-based interviews, think 
aloud, theory-based coding 

 

Thinking processes Herlina and Batusangkar 
(2015) 

78 Quantitative, experimental design, 
intervention, interview, inferential statistics 

 

 Huda (2016) 

 

2 Qualitative, written proof, interview, 
protocol-analysis  

 Carroll (1977) 201 Quantitative, experimental design, pre-and 
post-test, inferential statistics 

 

Informal understanding 

 

Kidron and Dreyfus 
(2014) 

2 Qualitative, interview, protocol-analysis, 
interpretation 

  

 Antonini (2011) 21 Qualitative, clinical interview (task-based) 
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 Zazkis and Villanueva 
(2016) 

 

8 Qualitative, clinical interview (task-based), 
grounded theory  

Geometry (proving) Zandieh and Rasmussen 
(2010) 

25 Qualitative, video-recordings, interviews, 
homework and exams, portfolios, 
retrospective reports 

 

 Vidakovic and Martin 
(2004) 

4 Qualitative, written work, stimulated recall, 
interview, protocol-analysis, interpretation 

  

 Küchemann and Hoyles 
(2006) 

 

2 Qualitative, collaborative setting, protocol-
analysis 

 

Problem solving 
(esp. processes impasses, 
incubation) 

Savic (2015b) 2 Qualitative, Livescribe pen data, interviews, 
theory-based coding 

 Savic (2015a) 9 Qualitative, Livescribe pen data, interviews, 
theory-based coding 

 

 Selden, A. et al. (2010) No exact 
number given 

Qualitative, design experiment, course 
observations, interviews 

 

Social/collective 
argumentation 

Mueller et al. (2012) 8 Qualitative, collaborative setting, (inductively 
based analysis) grounded theory  

 

 Blanton and Stylianou 
(2014) 

30 Qualitative, classroom observations, written 
proofs, theory-based coding 

 

 Otten et al. (2017) 14 Qualitative, classroom observations, 
discourse-analysis 

 

Types of reasoning (e.g., 
semantic/ syntactic) 

Dawkins (2012) 2 Qualitative, task-based interviews, protocol-
analysis 

 Dawkins (2015) 2 Qualitative, task-based interviews, protocol-
analysis 

 

 Dawkins and 
Karunakaran (2016) 

 

- Theoretical paper 

Formal systems Pastre (1989) 2 Qualitative, task-based interview, mainly: 
system experiment 

 

 Bagchi and Wells (1998) 

 

- Theoretical paper 
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 Grenier (2013) - Theoretical paper 

 

Modeling Winkel (2015) - Theoretical paper 

 

 Zandieh, Roh, and 
Knapp (2014) 

4 Qualitative, collaborative setting, videotape 
recordings, grounded theory  

    

 Martinez et al. (2011) 9 Qualitative, task-related interviews, 
grounded theory 

Linear algebra Plaxco and Wawro 
(2015) 

5 Qualitative, task-related interviews, 
grounded theory  

 

Our analysis of claims and empirical findings captured both sub-goals within conjecturing and 

proving processes as well as the process characteristics that have been regarded as being 

helpful in achieving one or more of these sub-goals. Below we present the framework (that we 

have developed out of the results from our in-depth analysis) in two parts: First, we introduce 

the process-characteristics that we have identified. Second, we address the relationships 

between the sub-goals and the processes characteristics by presenting the co-occurrences 

that have been discussed in the literature (or at least could be interpreted as such by taking 

the context in which the study was embedded into account) between some sub-goals and 

some process characteristics.  

5.7.3 Sub-goals within conjecturing and proving 

Based on our research questions, we tried to identify common claims and empirical findings 

about promising conjecturing and proving processes. We observed that a large number of 

researchers conceptualized conjecturing and proving as a pathway including several 

intermediate steps (e.g., Furinghetti & Morselli, 2009; Mejía-Ramos & Inglis, 2009; Savic, 

2015b; Uğurel et al., 2016; Weber, 2004; Zazkis et al., 2015). How these steps may be 

achieved, remained an open question in some of these studies (e.g., Mejía-Ramos & Inglis, 

2009). Yet, in other studies, we found out that different processes were mentioned in the sense 

that they may be useful for reaching one or even more of these intermediate steps (e.g., Ellis 

et al., 2017; Furinghetti & Morselli, 2009; Weber & Alcock, 2004). This led us to differentiate 

between the sub-goals, these are the intermediate steps within conjecturing and proving 

processes, and the process characteristics that were considered as being helpful for achieving 

these sub-goals.  

We started with the identification of the sub-goals that were associated with the successful 

generation of conjectures and the construction of proofs. The study by Mejía-Ramos and Inglis 
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(2009) suggested to distinguish three main processes in the context of proof construction, 

namely “the exploration of a problem”, “the estimation of truth of a conjecture”, and “the 

justification of a statement estimated to be true” (p. 3). Moreover, Mejía-Ramos and Inglis 

(2009) set up the process of presenting an argument as another crucial proof-related activity. 

These four main processes served as a starting point for detecting further sub-goals within 

conjecturing and proving processes as well as for refining the existing sub-goals from our 

document collection. Prior research has shown that in particular the studies that 

conceptualized proving from a problem-solving perspective emphasized the importance of 

understanding and exploring the problem situation (Furinghetti & Morselli, 2009; Savic, 2015; 

Zazkis et al., 2015). The studies that addressed the use of examples additionally pointed to 

the step of estimating the truth of a conjecture (e.g., Ellis et al., 2017; Ozgur et al., 2017). 

Accordingly, we decided to divide the sub-goal exploring the problem situation into more fine-

grained sub-goals, as we have observed that some of the studies focused more on the 

exploratory sub-goal developing a strong understanding of the statement to be proved (e.g., 

Antonini, 2011; Ellis et al., 2017; Zazkis et al., 2015), other studies more on the sub-goal 

inventing and formulating new conjectures or refining existing conjectures (e.g., Ellis et al., 

2017; Komatsu, 2011; Komatsu et al., 2014; Ozgur et al., 2017), and yet others more on the 

sub-goal finding an adequate representation for the proof and adequate proving strategy (e.g., 

Martinez et al., 2011; Mueller et al., 2012). The sub-goal developing a strong understanding of 

the statement to be proved seemed to be closely linked to the sub-goal estimation of the truth. 

We merged these two sub-goals into one category. The process of justification in its various 

forms has been discussed in articles from almost all topics. Some researchers described 

example-based justifications (e.g., Ellis et al., 2017; Komatsu, 2016; Ozgur et al., 2017), others 

drew attention to the production of general deductive arguments. Regarding the production of 

general deductive arguments, we observed that both sub-goals drawing inferences (e.g., 

Furinghetti et al., 2013; Weber & Alcock, 2004) and structuring and organizing inferences (e.g., 

Bagchi & Wells, 1998; Pedemonte & Buchbinder, 2011) were considered as crucial steps. In 

addition, several articles, especially those dealing with the “examples and conjecturing“ topic, 

the “types of reasoning” topic, or the “informal understanding” topic, discussed the step of 

translating less formal to formal arguments, which we defined as a further sub-goal within 

conjecturing and proving processes. The sub-goal communicating and presenting arguments 

was mainly described in articles and research reports with a high proportion of words from the 

“nature of proof and teaching of proof” topic as well from the “formal systems” topic. Articles 

and research reports representing the “problem solving with a specific focus on processes, 

impasses, and incubation” topic obviously contributed to the sub-goal resolving fixations/ 

avoiding errors. Yet, this sub-goal was also addressed in articles and research reports from 

other topics (e.g., Furinghetti & Morselli, 2004; Huda, 2016). Articles and research reports that 
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were clustered to the “social/ collective argumentation” topic considered generating a shared 

understanding as central sub-goal. The last sub-goal that we identified within the literature on 

conjecturing and proving was producing understanding about the proof (e.g., Savic, 2015b; 

Weber, 2004). Table 5 presents an overview about the sub-goals that we have inferred from 

the literature on conjecturing and proving. 

Table 5: Definitions of the sub-goal within conjecturing and proving processes derived from 45 articles and 
research reports on conjecture and proving. 

Sub-goals Claims and findings that were attended to this sub-goal comprised descriptions about the 
process-characteristics that might help to … 

 

Developing a strong 
understanding of the 
statement to be 
proved/ estimation of 
the truth 

 

… become familiar with the concepts and definitions related to the statement to be proved or 
to gain initial insight into why the conjecture must be true (or false). 

Inventing and 
formulating new 
conjectures or refining 
existing conjectures 

 

… find patterns and to identify structures from which conjectures can be inferred or adapting 
already stated conjectures. 

Finding an adequate 
representation for the 
proof and an adequate 
proving strategy 

... find a representation that enables to detect permissible configurations and structures and to 
work with it as well as to contemplate different solution approaches by estimating the effects 
of different proving strategies and tools. 

  

Generating example-
based justifications 

 

… generate counter-examples to refute a conjecture or examples that enable to construct a 
viable proof. 

Drawing inferences 

 

… ensure that the individual constructed arguments are structurally sound. 

Structuring and 
organizing inferences 

 

… ensure that the constructed chain of arguments is structurally sound. 

 

Translating less formal 
to formal arguments 

… to systematize informal arguments and connect them to formal representations and 
axiomatic arguments (arguments from a shared knowledge base) 

Communicating and 
presenting arguments 

… to communicate arguments accurately and precisely and to avoid the presentation of 
arguments that are open to different or even incorrect interpretations.  
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Resolving fixations/ 
avoiding errors 

… to develop anticipatory thinking, to recover from impasses, and to rework parts of arguments 
in the case of a wrong direction.  

 

Generating a shared 
understanding 

 

… to construct a shared knowledge base that is grounded in facts and to pursue common goals. 

Producing 
understanding of the 
proof 

 

… to sustain understanding why the argumentation leads to a proof, to understand the causal 
mechanism behind the proof, and to make sense of the associated representations and 
concepts. 

 

Our analysis of claims and empirical findings captured both sub-goals within conjecturing and 

proving processes as well as the process characteristics that have been regarded as being 

helpful in achieving one or more of these sub-goals. Below we present the framework (that we 

have developed out of the results from our in-depth analysis) in two parts: First, we introduce 

the process-characteristics that we have identified. Second, we address the relationships 

between the sub-goals and the processes characteristics by presenting the co-occurrences 

that have been discussed in the literature (or at least could be interpreted as such by taking 

the context in which the study was embedded into account) between some sub-goals and 

some process characteristics.  

5.7.4 Process characteristics of conjecturing and proving 

The majority of the process characteristics we extracted from the literature were related to 

example use. Across the body of research on example use, we observed that some 

researchers described example use more generally (e.g., Antonini, 2011; Furinghetti & 

Morselli, 2004; Lee, 2016). In contrast, others have identified and categorized different types 

of examples and studied the relation between the specific types of examples and how learners 

leverage their thinking with those examples in order to support conjectures, to see similarities, 

and to generalize arguments. We observed that the following types of example-based 

processes were distinguished (cf. Ellis et al., 2017; Komatsu, 2011; Ozgur et al., 2017): varying 

examples systematically, considering boundary cases, choosing examples with specific 

properties, testing a diversity of examples, and attempting to construct counterexamples. 

Working with informal representations appeared to be a further category of process 

characteristics researchers have paid attention to (e.g., Kidron & Dreyfus, 2014; Pastre, 1989). 

This category includes the use of verbal language (e.g., Furinghetti et al., 2013; Pastre, 1989), 

diagrams (e.g., Küchemann & Hoyles, 2006; Weber, 2004), and mental pictures (e.g., Kidron 
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& Dreyfus, 2014). The next category of process characteristics that we identified was termed 

using formal symbols and algebraic representations. Different researchers emphasized the 

role that formal symbols and algebraic representations could play in order to construct formal-

deductive proofs (e.g., Pedemonte & Buchbinder, 2011; Weber & Alcock, 2004). Reformulating 

and using abductive and inductive inferences are two categories of process characteristics that 

were closely linked to the process characteristics of working with informal representations and 

of using formal symbols and algebraic representations. The category of reformulating involves 

the process characteristic of changing between different representation systems (Furinghetti 

& Morselli, 2009) as well as supplanting informal concepts with formal ones (Dawkins, 2015). 

Literature that referred to the category of using abductive and inductive inferences described, 

for instance, how abductions that occurred in learners’ mathematical activities could be 

productively used within conjecturing and proving processes (e.g., Pedemonte & Reid, 2011) 

or how the generation of examples could enable to make generalizations (e.g., Ellis et al., 

2017; Pedemonte & Buchbinder, 2011). Unpacking mathematical statements was another 

process characteristics category that we inferred from the literature and that appeared to be 

strongly related to the category of using formal symbols and algebraic representations. It 

comprised the formulation of the formal-rhetorical part of a proof (Selden, McKee, & Selden, 

2010) and the use of the logical structure of statements (e.g., Dawkins, 2012; Zazkis 

& Villanueva, 2016). Organizing one’s knowledge and existing definitions, concepts, and 

structures included all process characteristics that were related to the process of (re-

)organizing previous “mathematical constructs within mathematics and by mathematical 

means so as to lead to a construct that is new to the learner” (Kidron & Dreyfus, 2014, p. 299). 

This included process characteristics such as collecting and establishing links between one’s 

ideas (Kidron & Dreyfus, 2014) or combining information in novel ways (Zandieh et al., 2014). 

We observed that a large amount of articles and research reports discussed the role of meta-

cognitive processes within conjecturing and proving. The claims and findings of these studies 

underlined the importance of reflecting on one’s own work (e.g., Komatsu et al., 2014; Selden, 

A. et al., 2010) or on one’s strategy use (e.g., Zazkis et al., 2015), anticipatory thinking (e.g., 

Furinghetti & Morselli, 2009), as well as evaluating one’s own incorrect proof attempts (Savic, 

2015). The next category of process characteristics that we extracted from the literature was 

applying domain-general problem-solving strategies. The process characteristics of drawing 

analogies (e.g., Herlina & Batusangkar, 2015), splitting the task into sub-tasks (Pastre, 1989), 

working forwards and backwards (e.g., Carroll, 1977), and applying the trials-and-error 

strategy (e.g., Zazkis et al., 2015) were allocated to this category. Transactive activities such 

as taking the arguments of others into account (Mueller et al., 2012) and externalizing one’s 

own ideas (Vidakovic & Martin, 2004) represented another category of process characteristics 

that we inferred from the claims and findings that constituted our data base.  
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5.7.5 The interaction between sub-goals and process characteristics 

The development of our framework of “sub-goals versus process characteristics” (see Table 

6) was guided by the following questions: What are the assumptions about how to achieve the 

sub-goals within conjecturing and proving processes? Which process characteristics have 

been considered (or could at least be interpreted as such by taking the context of the study 

into account) as indicators for the achievement of one or more of these sub-goals? 

In the following, the sub-goals (that we have already introduced above) are presented along 

with the process characteristics we have assigned to them.  

Developing a strong understanding of the statement to be proved/ estimation of the truth:  

In order to get familiar with the statement to be proved it may be useful to spend some time 

with the task (Zazkis et al., 2015), to read the statement repeatedly, and to reformulate it 

(Furinghetti & Morselli, 2009). Reformulation may include “using gestures, words, pictures, 

symbols, sketches, examples, and so on” (p. 3). In particular, it is assumed that examples 

provide insight into why a conjecture must be true or false (e.g., Ellis et al., 2017; Ozgur et al., 

2017; Weber & Alcock, 2004). Process characteristics such as varying examples 

systematically, choosing examples with specific properties, and attempting to capture a broad 

range of examples may help to test the domain for which the conjecture holds true and to 

explore its limitations (Ellis et al., 2017). Weber and Alcock (2004) as well as Ellis et al. (2013) 

emphasized that examples have to be purposefully chosen in such a way that they only reflect 

properties that are consistent with the reference theory. The study by Antonini (2011) has 

shown that experts frequently only observe whether an example has the requested properties 

or not by applying the trial-and-error strategy. Collecting all ideas, previous knowledge, and 

examples that seemed useful and connected to the problem (Kidron & Dreyfus, 2014), as well 

as attempting to combine existing information into novel ways (Zandieh et al., 2014) are further 

process characteristics that may be helpful in becoming acquainted with the statement and its 

related concepts. 

Inventing and formulating new conjectures or refining existing conjectures: 

Systematically choosing a set of examples by varying one or more elements can be a first step 

to identify underlying structures and patterns from which a (new) conjecture may be inferred 

(Ellis et al., 2017; Pedemonte & Buchbinder, 2011). In particular, abductive inferences can be 

based on a set of examples (which then serve as facts) with the aim to construct a conjecture 

(Pedemonte & Reid, 2011). The use of algebraic expressions becomes relevant when trying 

to generate a generic example, which in turn can promote the formulation of a recursive rule 

(Pedemonte & Buchbinder, 2011). Referencing to Lakatos (1976), Komatsu (2011) claimed 

that a counterexample that discards an initial conjecture could be used to formulate a new 
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conjecture by adding “a suitable lemma that will be refuted by the counterexample” (p. 149) as 

a condition to the discarded conjecture. In the study by Komatsu et al. (2014), it is also 

emphasized that the identification of counterexamples may be the starting point to invent new 

conjectures (that hold true for the counterexample). Boundary examples that represent 

extreme or special cases (e.g., Ellis et al., 2017) and thus target the boundaries of a conjecture 

can either be helpful for formulating a new conjecture (Ellis et al., 2013; Ellis et al., 2017) or 

for refining an existing one (Komatsu, 2011). According to Grenier (2013), the trial-and-error 

strategy can also be applied in order construct a conjecture, which is based on exploration by 

studying specific cases that are not obviously true. 

Finding an adequate representation for the proof and an adequate proving strategy: 

Within a socially-embedded argumentation, adequate representations for a proof may be found 

by listening to each other, correcting each other, and together negotiating them and the 

arguments that back them up (Mueller et al., 2012). Furinghetti and Morselli (2009) claimed 

that a learner has to switch flexibly between different representations in order to be able to 

distinguish between ‘representations with future’ and ‘representations without future’, that is 

identifying those that may be helpful for the future conjecturing and proving process. Yet, also 

staying within one representation system by, for instance, transforming algebraic expressions 

can be a promising strategy to “make explicit something that was implicit in the initial algebraic 

expression” (Martinez et al., 2011, p. 36). Regarding the aim of finding an adequate proving 

strategy, the process of switching forth and back may encourage to think about which direction 

might be easier to prove (Zandieh et al., 2014). 

Examples-based justifications:  

Different types of examples and counterexamples may be used to support one’s own 

justification (e.g., Ellis et al., 2017; Komatsu, 2011; Lee, 2016). Refuting a conjecture by 

presenting a counterexample is a viable and complete proof (Ellis et al., 2017), other examples 

can only justify mathematical propositions that specify a finite set of objects. Lee (2016) 

explained that when “there are finitely many objects, the proposition may be proven true by 

verifying that each object satisfies the proposition, that is, each object is an example” (p. 28). 

He also pointed out that attempts to justify propositions that specify an infinite set of objects by 

verifying some examples leads to inductive reasoning. Reviewing a set of examples in order 

to find similar structures across this set of cases and building formality by replacing the 

numbers used in the examples with variables may help to construct a general argument (out 

of the set of examples) (Ellis et al., 2017). Several studies pointed to this type of process 

characteristic (i.e., process pattern generalization) and emphasized that one has to focus on 

the regularity in the process rather than on the regularity in the results (e.g., Ozgur et al., 2017; 

Pedemonte & Buchbinder, 2011).  
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Drawing inferences: 

In semantic proof production, instantiations of mathematical objects that are meaningful to the 

prover may guide his or her formal inferences. The term ‘meaningful’ excludes cases in which 

an individual represents a mathematical concept by rewriting its definition without attaching 

meaning to it (Weber & Alcock, 2004). Antonini (2011) observed that the “transformations of 

signs (transformational process) seem[ed] to be guided by a concept image that allows a fruitful 

anticipation of some aspects of a final object” (p. 216). Collecting and combining various ideas, 

concepts, and examples may allow the development of such meaningful instantiations and 

concept images (cf. Herlina & Batusangkar, 2015; Kidron & Dreyfus, 2014), as well as the 

identification of appropriate  warrants that are needed to support the argument one has 

constructed (Dawkins, 2015, p. 68). In addition to generating arguments that are based on 

meaningful instantiations, Weber (2004) claimed that students’ successful proof attempts could 

also be achieved simply by imitating the teacher’s actions or by applying a series of steps that 

have previously provided valid proofs. Proofs that are based on the application of procedures 

are termed procedural proof products. In syntactic proof production, “pushing symbols” 

(Furinghetti et al., 2013, p. 108) and “manipulating correctly stated definitions and other 

relevant facts in a logically permissible way” (Weber & Alcock, 2004, p. 210) represent the 

relevant process characteristics.  

Structuring and organizing inferences: 

It was assumed that studying the logical structure of the presented statement (e.g., Dawkins, 

2012; Selden, A. et al., 2010), differentiating explicitly between the givens and the conclusion 

(Küchemann & Hoyles, 2006; Lee, 2016), and expressing them in an accurate symbolic 

language (Lin, F.-L. et al., 2004) are process characteristics that can encourage learners to 

generate a structurally sound chain of inferences. Writing “the formal-rhetorical part of a proof, 

that is, the part of a proof that depends only on unpacking and using the logical structure of 

the statement of a theorem and associated definitions” (Selden, McKee, & Selden, 2010, p. 2) 

may allow the prover to see where to start and end the body of proof. Systematizing already 

accepted statements and using existing relationships (Küchemann & Hoyles, 2006) as well as 

working forward from the givens and working backward from what one is required to show 

(Carroll, 1977; Küchemann & Hoyles, 2006) are process characteristics that were considered 

to be helpful for structuring one’s own proof. The step of establishing links between different 

arguments to generate a deductive chain may be guided by drawing analogies to familiar tasks 

(Dawkins, 2015). Controlling the chain of individual deductions can help to identify gaps in the 

overall proof (Furinghetti & Morselli, 2009). 
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Translating less formal to formal arguments: 

The “attempt to evaluate what kind of relationship exists between the arrangement of links 

between and within inferences in an informal argument and the arrangement of links between 

and within inferences in a formal proof” (Zazkis & Villanueva, 2016, p. 329) may facilitate the 

achievement of structural continuity between less formal and formal arguments. Structural 

continuity can also be reached by linking the numbers used in the informal argumentation to 

the meaning of variables used in the deductive proof (Pedemonte, 2008) or by replacing 

unscientific or informal concepts with scientific ones (Dawkins, 2015). Weber and Alcock 

(2004) emphasized that it is important that informal representations only reflect the properties 

that are consistent with the reference theory when attempting to generate formal arguments 

out of them. 

Communicating and presenting arguments: 

“Formal language is precise, rigourous, and non-ambiguous” (Pastre, 1989, p. 273) and 

therefore often used to present arguments in an accurate way (Weber, 2004; Zaslavsky et al., 

2012) to communicate with ‘qualified’ people (Pastre, 1989). Bagchi and Wells (1998) pointed 

out that logical and formal symbols are needed instead of words to ensure clarity. However, 

learners may draw sketches to demonstrate their understanding of the concepts involved in 

the proof problem (Plaxco & Wawro, 2015), generate examples to illustrate their claims that a 

conjecture is true (Ellis et al., 2017), and use non-formal language to express ideas, concepts, 

and methods (Pastre, 1989). Furthermore, Ellis et al. (2017) observed that some students use 

examples as illustrations to impart how a formal representation or a graph works, or what it 

represents in relation to the conjecture that has to be proved. 

Resolving fixations/ avoiding errors: 

When reaching an impasse, it may be useful to go back to previous proving steps, to revise 

the applied strategy, to check the chain of arguments, and to refine the language and the 

exterior form of the proof (Furinghetti & Morselli, 2009). Different researchers pointed out that 

reflecting on everything done so far and on one’s own strategy use may help to identify 

deadlocks (Huda, 2016; Savic, 2015b; Selden, A. et al., 2010). Provers that got stuck should 

try to remove incorrect calculations (Huda, 2016) and to make sense of their incorrect proof 

attempts (Savic, 2015b). Taking a walk, going to lunch in attempting to have successful insights 

(what is considered as a period of incubation), or sleeping on it are process characteristics that 

experts often use to recover from proving impasses. It may also helpful to move on in the 

lecture notes or to do other (mathematics-related) projects (Savic, 2015a). Other domain-

general process characteristics that may encourage to overcome impasses are trying to 

remember how the problem before was solved in order to apply those proving techniques 



Study I 

83 

(Huda, 2016) or transforming the ideas from another fields (Savic, 2015a) as well as splitting 

the theorems that have to be proved into two or more simpler ones (Pastre, 1989). Attempting 

to create a counterexample has also been seen as a promising process characteristic if one 

does not know how to proceed (Savic, 2015b). Anticipatory thinking (Huda, 2016),asking 

oneself certain monitoring questions (Savic, 2015a), and writing the formal-rhetorical part of a 

proof (Selden, A. et al., 2010) are process characteristics that have been assumed to be helpful 

to avoid errors. It may be necessary to correct a peer or to assist him or her in making sense 

of an argument that was originally expressed in an obscure or incorrect way when working 

collaboratively on a proof-related task and when mistakes occur (Mueller et al., 2012). 

Generating a shared understanding: 

Developing a shared understanding and conception of a proof or claim may result from parallel 

and successive internalization and externalization of ideas by individuals working together in 

a social context. Internalizing and externalizing processes are assumed “to promote changes 

in and refinements of both individual and shared mathematical notions” (Vidakovic & Martin, 

2004, p. 490). Blanton and Stylianou (2014) claimed that transactive reasoning as a specific 

form of interaction (including explaining, critiquing, clarifying, requesting, and evaluating the 

arguments of others) fosters students’ capacity to generate arguments about complex, 

mathematical ideas, and, as such, has a positive impact on their learning of proof. In the study 

by Mueller et al. (2012), it has been shown that different types of collaboration (co-construction, 

integration, modification) may contribute to the exchange of ideas and to the creation of 

mathematical knowledge. These types of collaboration incorporate process characteristics 

such as externalizing one's own arguments as well as evaluating and integrating the 

arguments of others.  

Producing understanding of the proof: 

Some of the process characteristics attended to the sub-goal generating a shared 

understanding (such as explaining and evaluating arguments) may be listed here, again. 

However, we identified further process characteristics that were assumed to promote 

understanding and that have not been discussed from the proving as a social discursive 

perspective. For instance, generating examples or drawing diagrams may help to understand 

how a proof (or representation of a proof) works, and to understand its limitations (Ellis et al., 

2017; Weber, 2004). In particular, examples with specific properties or boundary cases may 

promote understanding of the causal mechanisms behind a conjecture (Ellis et al., 2017). It is 

suggested to first attempt to understand the meaning of concepts in a proving process in order 

to be able to understand the whole proof (Uğurel et al., 2016). Trying to explain to oneself why 

the proof works (Weber, 2004) and assessing an argument against some criteria (e.g., is it 
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convincing? does it provide evidence?) may help to understand the meaning of an argument 

(Mejía-Ramos & Inglis, 2009).



Study I 

85 

 

Table 6: Sub-goals versus process characteristics. Lightly-shaded cells present the assumed or reported relations between the success within one sub-goal and the 
occurrence of specific process characteristics during the attempt to achieve the sub-goal. 

 Sub-goals 

  
developing 
a strong 
under 
standing 
of the 
statement 
to be 
proved/ 
estimation 
of the 
truth: 

inventing 
and 
formulating 
new 
conjectures 
or refining 
existing 
conjectures 

finding an 
adequate 
representation 
for the proof 
and an 
adequate 
proving 
strategy 

example-
based 
justifications 

drawing 
inferences 

structuring 
and 
organizing 
inferences 

translating 
less 
formal to 
formal 
arguments 

communicating 
and presenting 
arguments 

resolving 
fixations/ 
avoiding 
errors 

generating a 
shared 
understanding 

producing 
understanding 
of the proof 
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example use 

 

          

working with 

informal 

representations 

           

using formal 

symbols and 

algebraic 

representations 

           

reformulating            

using abductive and 

inductive inferences 
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unpacking 

mathematical 

statements 

           

organizing one’s 

knowledge and 

existing definitions, 

concepts and 

structures 

           

meta-cognitive 

processes 

           

applying domain-

general problem-

solving strategies 

           

transactive activities            
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5.8 Discussion 

5.8.1 Summary 

Based on the fact that research on conjecturing and proving is growing rapidly, reflecting the 

importance of conjecturing and proving in mathematics education and the relevance of 

knowing the processes that are assumed or reported to be crucial for the success (cf. Mariotti, 

2006; Stylianides, G. J. et al., 2017), our review had two main objectives: Firstly, we 

systematized the literature on conjecturing and proving using a topic modelling method. The 

algorithm returned 17 topics and a list of words composing those topics. By examining the 

articles and research reports that represent these topics, we have discerned that the research 

clustered to one topic often shares a common perspective on conjecturing and proving. 

Regarding this observation, we have been able to replicate the three perspectives on proving 

outlined by Stylianides, G. J. et al. (2017), namely the proving as problem-solving, proving as 

convincing, and proving as a socially-embedded activity, within the literature on conjecturing 

and proving. Yet, we have identified a new perspective, the discovery perspective on 

conjecturing and proving, within the literature and proposed a more fine-grained categorization 

of the perspectives introduced by Stylianides, G. J. et al. (2017). The discovery perspective 

emphasizes that conjecturing and proving can be used as a means for exploring, discovering, 

and inventing new mathematical results (cf. Villiers, 1999), especially in the field of geometry. 

Our analysis has shown, that the problem-solving perspective can be sub-divided into smaller 

categories such as the problem-solving perspective with a specific focus on strategy use, on 

affective and cognitive resources, or on approaches to overcome proving impasses. Studies 

that share the convincing perspective appear to be embedded in a specific educational context, 

either in the university or in the school context. Furthermore, our topic model indicates that the 

proving as a socially-embedded activity perspective is less present in the literature on 

conjecturing and proving. The articles and research reports of our document collection consist 

only of a small proportion of words from the “social/ collective argumentation” topic that typifies 

the social perspective on conjecturing and proving. This result is in line with Balacheff’s (1988) 

critique that there is a too strong emphasize on the logical side of proof, disregarding its social 

importance as a means for communication. Stylianides, G. J. et al. (2017) also remarked that 

the proving as a socially-embedded activity perspective is less developed than the problem-

solving and convincing perspective. Even though, we were open to consider further 

perspectives on conjecturing and proving, we have to confirm the observation of Stylianides, 

G. J. et al. (2017) that some articles and research reports do not fully fit within one of the three 

(in our case four) perspectives. However, our topic modeling approach has allowed us to 

systematize the literature on conjecturing and proving and to draw conclusions about the 
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presence of specific topics that have been discussed in the literature in the context of 

conjecturing and proving. We have summarized the methodological orientations of the 

underlying studies of the most representative articles and research reports for each topic. This 

summary indicates that existing studies provide a rich qualitative basis on conjecturing and 

proving, but that quantitative findings resulting from the observations of larger populations are 

rare.  

Secondly, we have analysed the most representative articles and research reports for each 

topic with regard to their claims and empirical findings about promising conjecturing and 

proving processes. We noticed that in the literature different types of processes related to 

conjecturing and proving have been presented and that the ways in which they have been 

described varies. Terms such as “exploration” (e.g., Komatsu et al., 2014; Mejía-Ramos 

& Inglis, 2009; Ozgur et al., 2017),  “refinement of conjecture” (e.g., Komatsu, 2011, 2016), 

“producing understanding” (e.g., Ellis et al., 2017; Furinghetti & Morselli, 2009; Zazkis et al., 

2015), or “justification” (Mejía-Ramos & Inglis, 2009; Zaslavsky et al., 2012) that are partially 

unprecise and difficult to operationalize have been used in numerous studies to delineate the 

intermediate steps that are needed to generate conjectures and to construct proofs. In some 

studies, they have been described rather as latent constructs than as directly observable 

processes (e.g., Küchemann & Hoyles, 2006; Mejía-Ramos & Inglis, 2009). However, we 

regarded these processes as necessary intermediate steps, as sub-goals within conjecturing 

and proving processes, which themselves require further, more fine-grained processes and 

which may be achieved in different ways. In total, we have been able to infer eleven sub-goals 

from the literature on conjecturing and proving. Some of these sub-goals, such as developing 

a strong understanding of the statement to be proved/ estimation of the truth or finding an 

adequate representation for the proof and an adequate proving strategy, are comparable to 

the four phases outlined in Polya (1945). Others, such as inventing and formulating new 

conjectures or refining existing conjectures, structuring and organizing inferences, or 

communicating and presenting arguments, occur in the phase model of Boero (1999) in a 

similar way. Moreover, we identified new sub-goals within the literature on conjecturing and 

proving such as resolving fixations/ avoiding errors or generating a shared understanding, 

which are of particular importance in specific situations (e.g., when an impasse is reached) or 

contexts (e.g., when an argumentation is embedded in a social context). As we were interested 

in finding out which processes have been assumed or reported to be helpful in achieving one 

or more of these sub-goals, we have expanded our analysis. We searched for process 

characteristics of conjecturing and proving that have been considered (or may be interpreted 

as such) as indicators of how to successfully accomplish these sub-goals. Our search resulted 

in a broad set of process characteristics that reflect multiple different ways in which successful 

conjecturing and proving processes may be carried out and that have been perceived as 
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relevant from different perspectives on conjecturing and proving. Based on these results, we 

proposed a framework that takes both sub-goals and process characteristics of conjecturing 

and proving into account. By studying the literature with regard to the relationships between 

sub-goals and process characteristics, we found that the processes used to complete a specific 

sub-goal may vary widely. For instance, on one extreme, doing tasks unrelated to 

mathematics, taking a break, or going for lunch are processes that are assumed to be helpful 

in recovering from fixations (Savic, 2015a). At the other extreme, overcoming impasses may 

involve attempting to construct a counterexample, reflecting upon various proving techniques 

(Savic, 2015b), or testing the limitations of a conjecture (Ellis et al., 2013). However, we have 

derived from the literature that anticipatory and structural thinking (including the existence of a 

goal in mind when choosing and employing a specific process) are the two key aspects when 

attempting to achieve a sub-goal, as they can facilitate the achievement of a sub-goal or, if 

they lack, may hinder its achievement.  

5.8.2 Limitations 

The present review has some limitations that should be noted to enable an appropriate 

interpretation and use of our results. Firstly, some constraints stem from the methods we 

applied to create this review. We selected the literature by reading the headings and abstracts 

with respect to our inclusion criteria. Since this procedure is prone to error, we cannot be sure 

that we have included all the relevant literature on conjecturing and proving. Furthermore, this 

selection also leads to the fact, that some articles were included that relate more to machine 

learning than to mathematics educational topics. A topic modeling algorithm has been 

implemented to identify the major strands of research within the literature on conjecturing and 

proving. In general, the algorithm works by analysing the occurrence and combination of words 

within each paper (cf. Inglis & Foster, 2018). This method has turned out to be effective in 

providing an overview about the main topics that reflect the research on conjecturing and 

proving. However, the presence of particular words associated with conjecturing and proving 

is not sufficient to detect and summarize common claims and empirical findings about 

promising conjecturing and proving processes. Consequently, an in-depth analysis has been 

conducted in order to bring the claims and findings together. For this purpose and for each 

topic, we have qualitatively analysed the most representative articles and research reports. As 

we would not have been able to handle the deluge of data that would have resulted if we had 

tried to locate, read, and interpret all the relevant literature on conjecturing and proving, we 

confined the in-depth analysis to a total of 45 articles. Another limitation concerns the fact that 

we have not checked the consistency of interpretations or possible coding errors by applying 

a joint or double-coding procedure. In particular, this should not be disregarded, as the 
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allocation of the "free codes" to the categories of sub-goals and process characteristics 

depends on the judgement and insights of the authors.  

A second group of limitations has its origin in the literature we used. Only a minority of the 

reported studies used quantitative research methods or randomised experimental designs. 

Most results were inferred from data based on small sample sizes and qualitative research 

methods. Some may oppose the comparability and synthesis of qualitative research on the 

grounds that the results of single studies have been decontextualized and that the process 

characteristics of conjecturing and proving identified in one study are not directly applicable to 

other studies or research contexts (cf. Thomas, J. & Harden, 2008). In addition, we observed 

that the articles and research reports that represent a topic were often been written by authors 

who belong to the same research group. This might be one reason why they share similar 

perspectives on conjecturing and proving, similar theories, beliefs, methods, and data sets (cf. 

Lakatos, 1978, as cited in Inglis and Foster (2018). Finally, as stated in the beginning of this 

review, it can be critically remarked that we did not distinguish between the process 

characteristics that were inferred from the observation of expert mathematicians and those that 

were inferred from data of undergraduate students (cf. Reif, 2008).  

5.8.3 Implications for research and teaching  

We close this paper by proposing some implications and recommendations for future research 

and teaching based on our results. 

Even though conjecturing and proving processes often take place in mathematics classrooms 

(e.g., Vidakovic & Martin, 2004; Yackel & Cobb, 1996) or in form of mathematical debates 

(Alibert & Thomas, 1991), the results of our topic modeling approach indicate that studies that 

conceptualize conjecturing and proving as socially-embedded activities are rare. Stylianides, 

G. J. et al. (2017) critically remarked that this perspective on conjecturing and proving is still 

poorly evolved and not yet coherent. Research on how individual proving ideas develop in a 

social context appear to be underrepresented. We claim that research in this area has to be 

extended and that an alternative perspective that takes individual and social characteristics of 

conjecturing and proving into account should be adopted.  

Most of the studies described in this review have used exploratory research approaches (such 

as grounded theory) to understand the processes that are needed to successfully construct 

conjectures or generate proofs. These studies provide a fruitful qualitative basis for future 

research directions and for the formulation of hypotheses about promising conjecturing and 

proving processes. For instance, based on the findings of the study by Ellis et al. (2017) and 

of the study by Weber and Alcock (2004), it can be hypothesized that students who choose 

and use examples purposefully (in the way that they systematically vary examples, search for 
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similar mathematical structures, and build formal representations out of the examples) are 

more likely to be successful in producing semantic proofs than students who only pick some 

random examples. However, confirmatory research about conjecturing and proving processes 

is still missing. We claim that a quantitative validation of the results found in the qualitative 

studies would facilitate a more generalizable picture of conjecturing and proving processes. 

Furthermore, the findings of our in-depth analysis support the observation by Dawkins and 

Karunakaran (2016) that there exists a large number of studies on proof-orientated behaviour 

that make content- and context-independent claims about promising conjecturing and proving 

processes. Discussing conjecturing and proving processes in a content- and context-

independent way can be criticised on the grounds that the framing of research questions and 

the methodological choice of collecting and analysing data may non-trivially influence the 

nature of the phenomena observed and thus the studies’ findings. For instance, we assume 

that students or mathematicians who receive support (cf. Komatsu, 2011), who have no time 

restrictions (cf. Herlina & Batusangkar, 2015; Savic, 2015a), who work on geometry tasks (cf. 

Küchemann & Hoyles, 2006), or who are allowed to use lecture notes (cf. Selden, A. et al., 

2010) may behave differently than those who get no assistance, who work with time-limits (cf. 

Lin, F.-L. et al., 2004), or who have to solve analysis tasks (cf. Kidron & Dreyfus, 2014).We 

intend to sensitize the research community on the role that particular measurement methods 

or other context factors may have on the studies’ results about conjecturing and proving 

processes.  

By distinguishing separate but related categories of sub-goals and process characteristics of 

conjecturing and proving, our framework not only highlights the complexities associated with 

conjecture generation and proof construction, but also offers a way to understand how and 

why the occurrence of specific process characteristics may increase the probability of being 

successful. The sub-goals describe the intermediate steps that are considered to be necessary 

for generating interesting conjectures and constructing valid proofs. The process 

characteristics are observable and assumed to be potential indictors for the success within a 

certain intermediate step. As the intermediate steps such as exploring the problem situation or 

producing understanding of the proof have been listed as (latent) sub-goals in several studies, 

mathematics educators and researchers will need to operationalize these constructs. The 

process characteristics we identified may be used to operationalize the sub-goals within 

conjecturing and proving, and therefore may be valuable for analysing and assessing students’ 

conjecturing and proving processes. Furthermore, the proposed framework may be adapted 

for teaching purposes. We suggest that teachers and lecturers should introduce the process 

characteristics in combination with the associated intended sub-goals that might be 

accomplished by employing them. Pointing to the different types of process characteristics can 

give students insights into how the sub-goals considered necessary for success may be the 
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consequences of the appearance of certain process characteristics during the conjecturing 

and proving processes. Even though it is hard to determine the relative importance of each of 

these sub-goals respectively process characteristics of conjecturing and proving, as the types 

of processes successful provers engage in may vary according to different contexts, we claim 

that our framework may provide guidance for enhancing the learning and teaching of 

conjecturing and proving in (undergraduate) mathematics classes and for systematically 

analysing students’ proving behaviour. 
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6 A rating scheme for assessing process characteristics of collaborative 

conjecturing and proving 

The summary and findings of our literature review show a comparatively detailed picture of 

potential relationships between (collaborative) conjecturing and proving processes and proof 

performance. We observe a large body of qualitative research offering diverse hypotheses 

about relevant sub-processes and process characteristics of conjecturing and proving, but little 

systematically generated evidence about the importance of the hypothesized sub-processes 

and process characteristics. Therefore, we see the need for empirically investigating the 

impact of a set of process characteristics of collaborative conjecturing and proving on the 

quality of the resulting product. 

One of the central goals of this dissertation was develop an instrument to describe and analyse 

collaborative conjecturing and proving processes along several theory-based process 

characteristics inferred from the mathematics educational as well as the psychological and the 

Learning Sciences literature. A high inference coding scheme was designed, based on existing 

guidelines and an extensive literature search. But beforehand, a theoretical excurse is 

presented to illustrate the considerations that guided the development of this coding scheme. 

This chapter describes the decisions that had been made before the data collection and data 

coding was realised. We demonstrate how process characteristics were chosen and 

operationalized, present the whole rating scheme, and provide an overview about the rater-

training. We complete this chapter by illustrating how the rating scheme was applied in our 

empirical studies and which further instruments have been used to assess undergraduate 

students’ mathematical argumentation skills. 

6.1 Why using “real-time” recordings and high inference coding strategies to 
analyse collaborative conjecturing and proving processes? 

To investigate prospective undergraduate mathematics students’ conjecturing and proving 

processes, we decided to use computer-supported learning environments that allowed to 

record students’ verbal face-to-face interactions and their written utterances. All screen and 

audio activities were recorded by the laptops and transformed into a video file. In general, we 

assume that the use of “real-time” recordings of students’ interactions during collaborative 

proof construction activities provides several advantages over other methodologies (such as 

questionnaires, interviews or real-time observations, etc.) (cf. Roth, 2009):  

o Video-recordings as a “real-time” data collection technique allow comprehensive 
analyses of collaborative conjecturing and proving processes 

We assume that video-recordings that capture “real-time” conjecturing and proving processes 

allow the identification of the process characteristics that may lead to an impasse as well as 

the process characteristics that may lead to success. “Real-time” conjecturing and proving data 
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are also expected to provide information regarding what is going on during collaborative 

conjecturing and proving processes, how impasses occur, and which activities are promising 

to overcome them (cf. Savic, 2015a). Moreover, this kind of data may allow to describe the 

process characteristics that positively influence the generation of conjectures and construction 

of proofs and the characteristics that predict different patterns of peer collaboration.  

o Video-recordings of screen and audio activities allow precise and subtle analyses of 
collaborative conjecturing and proving processes  

As collaborative conjecturing and proving processes are very complex and involve several 

activities, such as generating examples, applying definitions, or selecting and evaluating the 

arguments of others, researchers can reach their limits to perceive all aspects that occur 

simultaneously. In order to avoid missing important details and information that may explain 

students’ success or troubles in formulating conjectures and generating proofs, video-

recordings can be stopped, slowed down and broken down in subsections. Consequently, 

researchers can code students' collaborative conjecturing and proving processes in multiple 

passes, and review every interaction the students have made at several times (cf. Roth, 2009).  

o Video-recordings of screen and audio activities allow to achieve high inter-rater 
agreements and the objective coding of collaborative conjecturing and proving 
processes 

Achieving a high inter-rater agreement is a major challenge in the context of assessing the 

quality of students’ collaborative conjecturing and proving processes. In general, quality 

judgments require inferences based on the observable data that go beyond counting directly 

observable events or assigning characteristics to a particular category (cf. Seidel, 2005). A set 

of video-recordings of previous studies can be used for rater-trainings. Pointing to specific 

instances occurring in one of the video-recordings can help to establish coding rules and serve 

as anchor examples. Disagreements can be resolved by explaining one’s coding decision by 

reviewing the video-recording together. Moreover, a precise coding procedure (see aspects 

listed under 2) can help increase the likelihood of high levels of inter-rater agreements (cf. 

Roth, 2009).  

o Video-recordings of screen and audio activities allow both qualitative and quantitative 
analyses of collaborative conjecturing and proving processes 

Video-recordings of students’ collaborative conjecturing and proving processes can be 

qualitatively analysed (e.g., do students’ accurately present their arguments by providing 

adequate warrants, do they equally contribute to the collaboration process by exchanging and 

evaluating each other’s idea, etc.). These video recordings can be used to capture multiple 

qualitative descriptions of collaborative conjecturing and proving processes, but they also allow 

for more quantitative analysis (e.g., how often do students present new ideas or generate 

examples, what is the average length of students’ utterances in the collaboration process, how 
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many times do students formulate questions, etc.). Another advantage is that video-recordings 

receive data that can be re-analysed and used for a variety of purposes in the future. For 

instance, researchers may select some of the video-recordings to provide additional evidence 

to communicate their results within the mathematics educational community, or to use them 

as best-practice examples for teaching purposes (cf. Roth, 2009). 

Video-recordings initially constitute raw data material. A further decision regarding the coding 

strategy has to be made. As our research questions address the assessment of the quality of 

collaborative conjecturing and proving processes, the use of high inference rating scales is 

reasonable (cf. Clausen, Reusser, & Klieme, 2003; Seidel, 2005). Low inference coding 

techniques are more suitable for counting how often an event or specific characteristic occurs 

(e.g., checklists) or for classifying a specific characteristic into one category (e.g., category 

systems). In general, their coding instructions can be formulated very clearly and achieving a 

high reliability is much easier than with high inference coding strategies. Due to the fact that 

instruments such as checklists or category systems often split observational events or 

characteristics down to the smallest detail, a global view on the underlying construct that 

should actually be measured is often lost. Based on the experience of previous studies that 

focussed on process-product correlations within the educational science, the use of high 

inference coding strategies appeared to be preferable. For instance, the IPN video study has 

also contributed to strengthen video-recordings as a methodological design and to apply high 

inference coding techniques (cf. Seidel et al., 2005). The use of global ratings as a particular 

high inference coding technique enables to capture the content and structures of the 

underlying construct in a valid way (cf. Clausen et al., 2003; Gartmeier et al., 2015; Newble, 

2004). Rating scales produce data that can be handled as approximately interval-level, 

especially if the endpoints of the scales are considered as the extremes of a continuum (Wirtz 

& Caspar, 2002). Moreover, the study of Meier et al. (2007) also showed that rating scales 

provide an adequate technique “to evaluate the quality of collaboration processes on a 

relatively global level” (p. 71) and that their application is time-efficient, since the transcription 

of students’ dialogue is not necessarily required. From this perspective and with regard to our 

research questions and aims, we think that developing high inference rating scales that take 

the entire collaboration process into account appears to be an adequate coding strategy for 

analysing video-recordings of prospective undergraduate mathematics students’ collaborative 

conjecturing and proving processes. 

6.2 Developing of a high inference rating scheme  

This section will go into detail about the development procedure of the rating scheme we 

created to describe and analyse (prospective undergraduate) students’ collaborative 

conjecturing and proving processes. We followed the guidelines proposed by Seidel and 
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colleagues (2005): In a first step, a theoretical foundation for the high inference rating scales 

was generated. We conceptualized collaborative conjecturing and proving processes as a two-

dimensional construct comprising the components: (i) individual-mathematical process 

characteristics and (ii) social-discursive process characteristics. Since we were interested in 

both components of collaborative conjecturing and proving processes, our literature search 

included research from mathematics education as well as from psychology and the Learning 

Sciences. We aimed to identify a set of theory-based process characteristics of collaborative 

conjecturing and proving, predicting the success of collaborative conjecturing and proving 

processes. Process characteristics should be defined with regard to our main assumption, 

based on the hypotheses put forward in the literature, that students engaged with a high level 

of quality in one or more of these process characteristics are likely to formulate an interesting 

conjecture and a valid proof (valid in the sense of being accepted by the corresponding 

mathematical community).  

Our literature search consisted of two parts: a structured search using specific key words in 

databases (such as the keyword “successful” AND “proving”) and a slightly more unstructured 

literature search performed by cross-referencing the articles that were found to be interesting 

within the structured search. The structured search was a part of the literature search for our 

research review as described in Chapter 5 (Study I). All potentially relevant literature was 

selected and we deduced seven process characteristics of collaborative conjecturing and 

proving processes, three related to the individual and four related to the social-discursive 

component of mathematical argumentation. Table 11 describes the process characteristics we 

inferred from the literature. Subsequently, the unity of analysis was chosen. Initially, we 

decided to make qualitative judgements over the entire collaboration process for each of the 

seven process characteristics. The formulation of the rating scales resulted from our identified 

set of process characteristics and our theoretical framework of mathematical argumentation 

skills (e.g., including sub-processes of exploration and systematization; cf. Chapter 2). The 

scaling of the individual rating scales (five quality levels) was determined in accordance with 

the methods used in other studies (cf. Gartmeier et al., 2015; Seidel, 2005) and in coordination 

with the video recordings at hand. In order to achieve a high interrater agreement, we created 

detail coding rules as well as descriptions and anchor examples for each rating scale (Langer 

& Schulz von Thun, 2007; Seidel, 2005). The levels of the rating scales roughly correspond to 

German school grades (1 = excellent to 5 = fail). Video-recordings that were used for 

developing and testing were not included in the final data analyses (Seidel, 2005). The rating 

scales were tested and validated with video-recordings from previous studies by comparing 

the judgments of two to four researchers (that discussed the rating scales in a group several 

times). Based on the observations during the test phase, it was decided to change the unit of 

analysis by dividing the entire collaboration process into two parts to reduce the complexity of 
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the coding process. After the rating scales were developed, the rater training started and inter-

rater agreement was checked using a randomly selected sample of 10 video-recordings. A 

more detailed description of the rater-training is presented in the next section. The training was 

finished after both raters agreed that their codes are based on a shared theoretical 

understanding and the inter-rater agreement appeared to be good (ICC ≥ 0.6). As a last step, 

all 49 video-recordings of prospective undergraduate students’ collaborative conjecturing and 

proving processes were analysed. Figure 8 shows the entire development procedure for the 

rating scheme.  

 

Figure 8: Development process for rating scales (adapted from Seidel, 2005) 

In the following, we provide an overview of the fundamental coding rules and the initially 

constructed rating scales, and present one rating scale in more detail. It has to be noted that 

the descriptions of the rating scales and of the coding rules are not to be seen as a finalized 

product, since they only acted as support for decision making for the coding and they are to a 

certain degree specific to our concrete context (undergraduate student population, task, 

collaborative setting). However, the descriptions of the rating scales and coding rules served 

as basis for the rater training sessions and were adapted during the training (cf. Seidel, 2005). 

The final version of the coding scheme can be found in the Appendix. 
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6.2.1 A brief description of the rating scheme 

Instruction and basic rules:  

The coding scheme is a guideline for the rating of undergraduate students’ collaborative 

conjecturing and proving processes. It is structured according to our conceptualization of 

collaborative conjecturing and proving processes, consisting of two facets, one individual and 

one social-discursive component. The coding scheme comprises seven rating scales, four 

related to individual and three related to social-discursive process characteristics. We 

established the following rules:  

 The rating-scales serve to assess students’ collaborative conjecturing and proving 
processes along selected theory-based process characteristics. 

 The individual rating scales, the concepts involved, and their quality levels are 
explained scale-wise. 

 For each rating scale: The pass requirement for a quality level is that the student fulfils 
all its criteria. If this “minimum requirement” is not satisfied, a code for one of the lower 
levels has to be given. 

 The raters watch the video-recording up to one half of the collaboration process and 
evaluate this part of the recording for the seven process characteristics, after that, the 
second part is watched and rated. The raters can stop and replay parts of the video-
recordings as required. 

 Every learner is individually assessed along the seven rating scales. 

 If one half of the collaboration process contains few explicit content for a single learner 
and process characteristic, so that a specific rating is not possible, then there is no 
evaluation for those process characteristics. Code “missing data” (9) will be assigned 
to the coded segment for this characteristic.  

6.2.2 Overview of the rating scales 

The rating scales were developed in order to assess (i) to what extend ideas and arguments 

are formulated correctly and precisely, and to what extend arguments are reworked in the case 

of a presumed error or wrong direction (accuracy and precision);  (ii) to what extent different 

ideas are developed, combined, and linked to the definitions and underlying concepts involved 

in the proving problem, and to what extent the learner brings in new perspectives on the 

collaborative conjecturing and proving process (cognitive complexity); (iii) to what extent the 

learner explores both what is available to use (without having any initial idea of how to proceed) 

and what could be proved, and to what extent the learner critically investigates different 

conjectures by generating examples, counter-examples, and testing the constraints (critical 

exploration); (iv) to what extent the learner formulates structurally sound arguments by basing 

claims on data and using warrants to justify the link between the data and the claim, and to 

what extent the learner defines the scope of the argument by using qualifiers (argument 
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structure); (v) to what extent the student questions the learning partner’s ideas, arguments and 

proving strategies to comprehend his/ her approach better, and the level of elaboration of these 

questions (critical question); (vi) to what extent the learner actively contributes to longer phases 

of a coherent joint discourse by exchanging ideas and taking the learning partner’s 

contributions into account, and to what extent the learner refines arguments until a joint 

argument is built (turn-taking); (vii) to what extent the learner identifies errors and impasses 

within the learning partners’ arguments, and to what extent these errors are explained and 

alternative solution steps are proposed (reaction to the learning partners’ errors). A more 

detailed description about the process characteristic argument structure is presented below as 

an excerpt from the coding scheme (and translated to English).   

Quality levels of the process characteristics “argument structure” 

Question: To what extent does the learner formulate structurally sound arguments during the 

proving discourse? Does the learner base his or her claims on warrants that justify the link 

between the data and the claim? To what extent does the learner define the scope of an 

argument by using qualifiers? 

Criteria: Arguments that are central within the collaboration process are taken into account. 

These arguments are evaluated with regard to their structural elements. A central criterion is 

that claims are based on data and warrants that give support for the link between the data and 

the claim. Depending on the context of the discourse, the argument has to be qualified in order 

to demonstrate the degree of certainty with which a conclusion is drawn.  

In each case, it is not relevant whether the claims, warrants and data are correct, but whether 

they are structurally complete in themselves. 

Moreover, it is not central that every argument is complete, but that the parts that are essential 

in the discourse and that are not already obvious elsewhere are explicated.  

1 

The learner's arguments are detailed in their structure throughout the collaboration process, 

in particular at all phases of the discourse where it is possible and helpful. Claims are explicitly 

connected to warrants, and qualifiers are adequately used with regard to the type of warrant. 

Warrants usually go beyond empirical or intuitive support, and are related to the reference 

theory. 

2 

The learner's arguments go beyond the formulation of a “blank” claim. Only in a few cases, 

arguments lack cues as to the data on which the claim is based and with what degree of 

certainty the conclusion is drawn. In addition to empirical or intuitive support, warrants are 

mainly related to the reference theory.   
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3 

The learner's arguments mainly go beyond the formulation of a “blank” claim. However, at a 

few key points of the discourse, where it would be necessary, there is a lack of cues as to the 

data on which the claim is based and with what degree of certainty the conclusion is drawn. 

Warrants are mostly limited to empirical support. 

4 

The learner’s arguments that go beyond the formulation of a “blank” claim are rather rare. At 

many key points, there is a lack of cues as to the data on which the claim is based and with 

what degree of certainty the conclusion is drawn. Warrants are mostly limited to empirical 

support. 

5 

Even in the case of central arguments and phases of the discourse in which it would be 

appropriate and necessary, the learner puts forward claims that lack warrants and qualifiers. 

The arguments produced by the learner are mostly limited to the formulation of claim, possibly 

with few exceptions.  

 

6.3 Training of the raters 

The use of high inference rating schemes demands an extensive rater-training in order to 

develop a joint understanding on the conceptualizations of the rating scales and to increase 

the reliability of coding. Two raters participated in a three-day rater training, in three further 

meetings the agreement between the two raters was checked by using, in total, a sample of 

10 “training video-recordings” that were not included in the final analyses. The three-day rater 

training consisted of six sessions. The structure and composition of the rater-training was 

designed according to the guidelines proposed by Wiesbeck (2015) as well as by Langer and 

Schulz von Thun (2007). Session I started with a theoretical introduction of the process 

characteristics in order to acquire knowledge about their conceptualizations. Raters were 

asked to solve the conjecturing and proving problem, which was presented to the students as 

task, on their own and to read the coding scheme. Subsequently, there was time for group 

discussion. Session II incorporates the “discrimination training”: Raters were requested to sort 

three video-recordings with regard to their understanding of “good” collaborative conjecturing 

and proving processes. This training component severed as starting point to become familiar 

with the video-recordings at hand and to develop an idea of how students deal with the task 

and interact with each other. In session III, the “creation training” was conducted: the mediocre 

video-recoding from the discrimination training of the second session had to be transformed 

into a good respectively bad version, for each rating scale. Afterwards, “good” and “bad” 

versions of the process characteristics of collaborative conjecturing and proving were 

discussed. Session IV incorporated a “concept training”: Raters watched one video-recording 

in group and listed all observable processes they regarded as important. These conjecturing 
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and proving processes were jointly assigned to the rating scales and appropriate scores. The 

purpose of this session was to become acquainted with the coding scheme, to allocate 

students’ observable conjecturing and proving processes to the rating scales, and to identify 

typical examples that may serve as anchors for further coding. In session V, the two raters 

coded one new video-recording along all process-characteristics. They documented all 

questions and difficulties that arose during the coding procedure. After the run, the ratings of 

the process characteristics as well as the questions and difficulties were discussed in group 

and alternations were made. Session VI started with repeating the coding rules, especially 

those that have been set up during the rater-training. Moreover, frequent rater errors as well 

as techniques how to avoid them were discussed. After this first training phase, a second 

phase followed by a trial run in which 5 video-recordings were rated (three video-recordings 

from collaborative working sessions that were not part of our empirical studies and two video-

recordings from the session that constitute our database). For each video-recording that 

served as training material, the ratings of both rater were compared (without any statistical 

analyses). Cases where ratings diverged were discussed and the corresponding sequences 

of the video-recordings were re-analysed. The aim of this second phase of training was that 

the raters got more experienced with the coding scheme and the video-recordings at hand. 

Final questions were clarified and a further set of 10 video-recordings was selected for 

calculating the inter-rater agreement. These video-recordings pertained to our database. The 

inter-rater reliabilities (ICCs) and inter-rater correlations for all rating scales are presented in 

study II (Table 7). The inter-rater agreement across all seven rating scales (process 

characteristics) of the coding scheme was MICC  = .90 (SDICC = .11). An overview of the entire 

rater training and its training components can be found in the Appendix.  

6.4 Study design and instruments 

We applied the newly developed rating scheme to process-data from a sample of 49 

collaborating dyads. The collaborative working session in which data on students’ conjecturing 

and proving processes were collected was embedded in a two-week voluntary preparatory 

course for prospective university mathematic students. This preparatory course incorporated 

14 lectures and 14 tutorials on basic mathematical topics (e.g., propositional and predicate 

logic, proof techniques, number theory, functions, induction and recursion), four test sessions 

(including pre- and post-tests to assess the participants’ knowledge on proof and their domain-

general knowledge on argumentation) and 6 collaborative working sessions in total. All six 

collaborative working sessions and testing phases were also part of a large study, the ELK 

Math Study - Effects of heuristic worked examples and collaboration scripts on the acquisition 

of individual and discoursive components of mathematical argumentation skill (Fischer, Reiss, 

Ufer, & Kollar; funded by DFG 2011-2018). 
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In the tutorials, conversations were mainly based on students’ work. Tutors demonstrated how 

they construct a proof, encouraged students to develop their own solutions, and hence, gave 

students the opportunity to experience different types of proofs. In the collaborative working 

sessions, students were paired in dyads and worked collaboratively in a computer-supported 

learning environment on different mathematical conjecturing and proving tasks, one task per 

session. The computer-supported learning environment has already been used in prior studies 

(cf. Kollar et al., 2014; Vogel et al., 2016). To avoid major discrepancies in the learning 

prerequisites of students working within one dyad, we decided to form homogeneous dyads 

with respect to their prior school achievements (cf. Webb, Nemer, & Zuniga, 2002).The first 

collaborative working session (that started on day six of the course and took around 90 min) 

represents our data basis for evaluating our rating scheme and for investigating our empirical 

research questions. During the session, students did not receive any feedback as we were 

interested in how students collaboratively generate conjectures and construct proofs without 

any instructional support. Nevertheless, in the tutorials, before the beginning of the 

collaborative working sessions, participants got the opportunity to formulate conjectures to a 

different mathematical topic, to construct proofs, and to receive feedback from tutors. In the 

collaborative work sessions, the learning partners of each dyad was seated on opposite sides 

of a table and were equipped with laptops and graphic tablets. The computer-supported 

learning environment allowed them to exchange written ideas and arguments by using a 

graphical chat, as well as to communicate to each other verbally face to face. To assess the 

final product (the formulated conjecture and generated proof) of students’ collaborative 

conjecturing and proving processes, students were asked to write down an individual solution 

on a blank paper at the end of the collaborative working session. The final product was 

evaluated with regard to the correctness and creativeness of the formulated conjecture, the 

mathematical ideas that became visible in the solution, the soundness of the produced chain 

of arguments, and the correctness of the formal representations used to present the 

arguments.  

In our empirical study (see Chapter 7 and Chapter 8), students worked on the following open-

ended conjecturing and proving task: "Take four consecutive numbers, multiply them, and add 

one. Repeat this and try to find similarities. Formulate a conjecture and prove it!" The fact that 

students were requested to generate their own conjectures makes their work different from the 

typical proving tasks that are usually presented in the school or university context, where 

students often have to develop arguments to support a claim they might never have thought 

of before (cf. Douek, 2007). As it was a further research issue to examine how students’ prior 

knowledge on proof affects their collaborative conjecturing and proving processes, we adapted 

the argumentation-skill-test designed by Reichersdorfer et al. (2012) and administered it on 

day four of the course during a testing session to obtain a measure of the participants’ prior 
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knowledge on proof in elementary number theory. This test was developed to capture four 

facets of mathematical argumentation skills: “technical proof skills”, “flexible proof skills” and 

“evaluations skill for true or false mathematical statements”. A more detailed description about 

the test and how it was coded, can be found in chapter 8 as well as in the Appendix.  
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7 Study II 

Good collaborative conjecturing and proving processes – The structure of 

individual-mathematical and social-discursive process characteristics 

7.1 Abstract 

One of the central goals of university mathematics programs is improving students’ skills to 

formulate mathematical conjectures and to provide evidence for the truth or falsity of these 

conjectures. Frequently, such argumentation processes occur in collaborative settings. 

Generating conjectures and proofs thus requires both individual-mathematical activities such 

as exploring the problem situation and developing deductive lines of arguments as well as 

social-discursive activities such as engaging in meaningful mathematical discussions. Even 

though both types of activities are intensively discussed in the literature and are often used to 

conceptualize the quality of collaborative conjecturing and proving processes, it is unclear to 

what extent they can be seen as independent from each other. Furthermore, there is still only 

limited knowledge regarding the question of how good mathematical conjecturing and proving 

processes can be systematically described. We introduce an analytic rating scheme that 

outlines collaborative conjecturing and proving processes along seven theory-based process 

characteristics that take an individual-mathematical and social-discursive perspective on 

argumentation into account. In a study with N=98 incoming mathematics students, this new 

rating scheme was used to investigate the empirical relations between these characteristics of 

collaborative conjecturing and proving processes. Results showed that individual-

mathematical and social-discursive process characteristics can be clearly distinguished 

empirically. We discuss ways how to operationalize different characteristics of collaborative 

conjecturing and proving processes and implications for further research. 

7.2 Introduction 

Conjecturing and proving are challenging for students at all educational levels (e.g., Yang, 

2012).  Even undergraduate students in mathematics often struggle to construct proofs and to 

communicate them correctly and with precision (Epp, 2003). Prior research has documented 

different types of errors and underlying misconceptions (e.g., Healy & Hoyles, 1998; Moore, 

1994; Selden, A. & Selden, 1987; Selden, A. & Selden, 2008), but provides few directions in 

terms of which activities are good for the generation of valid conjectures and acceptable proofs. 

“Good” means that these activities are sufficient or even necessary to develop a connected 

sequence of true statements that is structurally valid and justifies the truth of the formulated 

conjecture (cf. Ozgur et al., 2017; Stylianides, A. J., 2007). 
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The exploration of conjectures and the construction of proofs are central practices within 

mathematics (e.g., Lakatos, 1976; Lin, F. L. et al., 2012). Therefore, it is essential that 

university students are able to implement conjecturing and proving processes successfully on 

their own as well as in collaborative settings (e.g., Lakatos, 1976; Lin, F. L. et al., 2012). 

Following Roschelle and Teasley (1995), we talk about collaborative when students or 

mathematicians working in small groups or dyads strive to develop and maintain a shared 

understanding of the (proving) problem. 

In this contribution, we study undergraduate mathematics students’ collaborative conjecturing 

and proving processes. We consider collaborative conjecturing and proving as a specific type 

of argumentation incorporating the formulation and exploration of a mathematical conjecture, 

the generation of adequate arguments for or against it, the combination of these arguments 

into a deductive proof, as well as the evaluation and integration of arguments produced by 

others (cf. Reichersdorfer et al., 2012). According to previous conceptualizations of 

mathematical argumentation (e.g., Kollar, et al., 2014), we distinguish between two 

components: One related to individual-mathematical activities such as deducing conjectures 

from examples (Koedinger, 1998), “unpacking the conclusion” (Selden, J. et al., 2014, p. 246), 

selecting and enhancing arguments (Boero, 1999), or developing different proof strategies 

(Zazkis et al., 2015). The other component focuses on social-discursive activities, which refer 

to more general, dialogical argumentation skills and stem from more a domain-overarching 

strand of research in psychology and the Learning Sciences (e.g., Asterhan & Schwarz, 2007; 

Kollar et al., 2007). The social-discursive component points to the facts that mathematical 

knowledge generation is often embedded in a social context (e.g. seminars, tutorial sessions) 

and that participating in mathematical discourse is vital for collaborative conjecturing and 

proving. From this perspective, activities such as exchanging ideas and feedback (Reinholz, 

2016), eliciting knowledge from the learning partner (Weinberger & Fischer, 2006), building 

upon each other’s arguments (e.g., Chi & Wylie, 2014; Teasley, 1997), and providing evidence 

for the weakness or incorrectness of a partner’s argument (Asterhan & Schwarz, 2007) are 

important for a fruitful argumentative discourse with the goal to acquire knowledge, but mostly 

conceptualized independently from the specific mathematical content.  

This study is concerned with the development and empirical testing of an instrument that 

makes the differentiation between the individual-mathematical and social-discursive 

component possible. (1) We will present a set of seven process characteristics of collaborative 

conjecturing and proving that are assumed to be relevant for successful mathematical 

argumentation from a theoretical point of view based on current literature. (2) Furthermore, we 

will provide data on the empirical structure of the extracted process characteristics for one 

exemplary conjecturing and proving task. 
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7.3 Research on collaborative conjecturing and proving processes 

7.3.1 Individual strategies and activities during conjecturing and proving 

Conjecturing can be considered as a creative work including different experimental activities 

such as investigating examples and counter-examples, discovering new logical relations 

between previously unrelated ideas and arguments as well as drafting and formulating 

conjectures (Yang, 2012). These activities seem to be crucial for a broad range of disciplines, 

but still they differ across domains. Dissimilarities include, for instance, what counts as a valid 

conjecture and as supporting evidence (Lin, F. L. et al., 2012). In contrast to other domains 

such as biology, medicine or politics, the ideal evidence in university mathematics is a chain 

of deductive arguments based on axioms and definitions (Fischer et al., 2014). Mathematicians 

agree that empirical, intuitive and authoritative arguments have strong limitations (Weber et 

al., 2014). Following Stylianides, G. J. et al. (2017), proving is the process of constructing a 

sequence of arguments for or against a mathematical conjecture that is characterized by using 

only previously accepted statements, theorems and definitions, valid forms of reasoning and 

adequate forms of notations. What can be regarded as ‘valid’ or ‘adequate’ is defined by the 

respective mathematical community and is partially dependent on the specific context of the 

proof construction process. The proof construction process itself has been described by 

different researchers in the form of models that are based on theoretical assumptions (e.g., 

Boero, 1999) or on self-reports (e.g., Schwarz et al., 2010). 

Boero (1999) created a process model of proof consisting of various phases that start from 

exploring the problem situation to formulate a mathematical conjecture and end up in writing 

down a proof in a readable way that corresponds to the sociomathematical norms. This expert 

model refers to the assumption of cognitive unity (Garuti et al., 1998), which outlines strong 

relations between the activities of conjecturing and proving. Schwarz et al. (2010) suggested 

that three main activities related to proof construction – “enquiring”, “proving” and “inscribing 

proof” – should be differentiated. The first activity concerns making sense of the problem, 

establishing conjectures and intermediate hypotheses (subgoals) for the proof (cf. Heinze, 

Cheng, Ufer, Lin, & Reiss, 2008a). Developing a deductive chain of theory-based arguments 

that connects the prerequisites with the claim of the conjecture represents the second activity. 

The third activity includes checking the logical integrity of the proof, and communicating it with 

formal precision.  

These frameworks give some indications about which activities may occur during the proof 

construction process, and how an ideal proof construction process may look like. Since 

empirical-inductive and formal-deductive steps are incorporated in both models, we conclude 

that exploratory activities, checking the consistency between the mathematical concepts 
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related to the proof problem and one’s own arguments, as well as unpacking the logical 

structures of statements are crucial within conjecturing and proving processes. 

Exploratory activities such as generating examples (e.g., Koedinger, 1998), reflecting on 

familiar problems, and associating similarities between them (Selden, A. & Selden, 2013a) can 

help students to understand the problem, find a conjecture or devise a plan for solving the task 

(e.g., Mills, 2014; Polya, 1945). Sandefur et al. (2013) the strategy of creating examples in 

university students’ efforts to prove or refute a mathematical conjecture. In their study, students 

worked in small groups on number theoretic tasks. Although most groups tried to find examples 

that would provide some conceptual insight into the structure of a statement, example use 

varied among the groups within problems. The authors assumed that the use of example-

based reasoning strategies depends on students’ experience, their personal example space, 

and the way problems are presented. Drawing diagrams can be considered as a further 

exploratory activity that might help discovering new ideas or getting empirical evidence for the 

truthfulness of an argument (Gibson, 1998). For some mathematicians, the exploration of 

examples or visual arguments is an essential part in coming to understand new concepts and 

to justify new theorems, while others construct proofs that are entirely based on the 

manipulation of symbols within the representation system of the given problem (Alcock & Inglis, 

2008). Certainly, it is an advantage to be able to use both strategies, but many students and 

also some professionals obviously prefer one type of reasoning (Zazkis et al., 2015). 

The consistency between the mathematical concepts that are related to the given proof 

problem and one’s own ideas constitutes a central aspect within the proof construction process 

(Mariotti, 2006). This means that students have to connect the formal definitions of the 

concepts to the instantiations they use for their argumentation. The mathematical objects that 

make up their arguments may only have properties that conform with the formal theory (Weber 

& Alcock, 2004). To achieve the required consistency, activities such as using different 

representations (Boero, 1999; Ufer et al., 2009) or operable definitions (Selden, J. et al., 2014) 

may be helpful. These types of activities may depend on students’ individual conceptual 

understanding that, in turn, enables them to monitor their performance and to identify their own 

impasses (Ohlsson & Rees, 1991). 

Selden, A. et al. (2010) claimed that the enactment of “behavioral schemas” (p. 205), which 

are partly procedural knowledge, affect the use of logical structures.  Unpacking the logical 

structure of a statement can be considered as a first important step within the proof 

construction process, since “the logical structure of a mathematical statement is closely linked 

to the overall structure of its proof” (Selden, A. & Selden, 2008, p. 105). Inferring from their 

observations of 61 students participating in a university preparatory course, they suggest that 

it may be a promising strategy to unpack the conclusion by writing down a proof framework 
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before getting started with the problem-centred part of a proof (Selden, J. & Selden, 1995). 

Other researchers emphasized the importance of analysing and using the structure of 

mathematical arguments in the context of learning proofs (Knipping, 2008; Pedemonte, 2007), 

as well. 

Though all of these individual-mathematical activities and aspects may be useful for students 

to find a conjecture and to establish the validity of it, they do not necessarily lead to an 

interesting conjecture and an accepted proof. Until now, there is still limited knowledge about 

which activities actually predict the quality of the resulting proof. 

7.3.2 Collaboration in mathematical conjecturing and proving 

It is a common approach to treat proving as a cognitive activity employed by individuals with 

the aim to verify the correctness of a mathematical statement or to gain insight into why it is 

true is a common approach (e.g., Villiers, 1999). However, generating conjectures and 

developing proofs can also be considered from a social-discursive perspective. This is 

consistent with the view that conjectures are provided for the reflection of other mathematicians 

(and learners), sharing ideas and discussing arguments for or against them (Alibert & Thomas, 

1991). What is accepted as a proof depends on the social context (Thurston, 1994) and on 

different criteria defined by the mathematical community (Stylianides, G. J., Sandefur, & 

Watson, 2016) and to be acquired in mathematical discourse. Within this perspective, proof 

might be seen as a “means of convincing oneself whilst trying to convince others” (Alibert 

& Thomas, 1991, p. 215). Participating in argumentative dialogues requires the ability to justify 

and explain a claim to peers on the one hand, as well as to interpret ideas of the speaker and 

to give feedback for correctness on the other hand. One challenge is to develop a “common 

ground” (Clark, H. H. & Schaefer, 1989). For instance, interacting with peers demands 

establishing a shared perception of what is recognized as a claim, an inferential rule or a given 

fact (Yackel & Cobb, 1996), building common frames of reference and resolving discrepancies 

in understanding (Barron, 2000). A very basic indication of successful collaboration is that 

students’ conversational turns built upon each other (e.g., Chi & Wylie, 2014; Roschelle 

& Teasley, 1995; Vogel et al., 2016). These so-called transactive (Teasley, 1997) or interactive 

(Chi, 2009) activities are attributed a high potential for fostering domain-general argumentation 

skills and deepening conceptual knowledge (Asterhan & Schwarz, 2009). According to Blanton 

and Stylianou (2014), interactive reasoning might also be seen as a discourse tool by which 

students can improve their proof understanding as well as their strategic knowledge in 

constructing proofs. Especially, criticizing or integrating the learning partner’s utterances are 

considered as interactive activities that are likely to trigger deep cognitive processes (Vogel et 

al., 2016). Therefore, the extent to which students monitor each other’s utterances, integrate 

divergent interpretations and, finally, make decisions together can be seen as an influential 
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factor that may explain the variability of outcomes in collaborative math-problem-solving tasks 

(Barron, 2000; Clark, K., James, & Montelle, 2014).  

Several studies have demonstrated that, on average, collaborative work may lead to better 

learning outcomes than individual engagement (cf. Barron, 2000; Cohen, 1994; Johnson, 

Johnson, & Smith, 2007), but this is not happening automatically. In unstructured learning 

environments (without any guidance), collaborators often tend to engage in low-level 

argumentation processes (e.g., Kollar et al., 2007), for instance, they rarely relate explicit 

evidence to their explanations (e.g., Sandoval, 2003). We conclude that students may benefit 

from collaboration and that learning occurs through interaction with peers when an atmosphere 

that enhances productive collaboration can be reached. Furthermore, we take the view that 

mathematical proving is at least partially a social activity and thus, are interested in 

understanding the relation between, and effects of, social-discursive and individual-

mathematical characteristics of conjecturing and proving processes. 

7.4 Process characteristics for collaborative conjecturing and proving 

Research from different perspectives has put forward a number of theoretically plausible and 

partially empirically supported hypotheses about what constitutes mathematical conjecturing 

and proving processes that are successful in the sense that they lead to an interesting 

conjecture that goes well beyond the information available initially, and to a validly reasoned 

evaluation of this conjecture (e.g., Koedinger, 1998; Furinghetti & Morselli, 2009; Zazkis et al., 

2015). However, a large proportion of these hypotheses has not been researched 

systematically so far, beyond mostly exploratory case studies. In the following, we will subsume 

them under the term process characteristics of collaborative conjecturing and proving. Our 

main assumption, based on the hypotheses put forward in the literature, is that collaborative 

conjecturing and proving processes that show an “ideal version” of one or more of these 

process characteristics will direct to interesting conjectures and valid proofs more frequently 

than those with a “low version” (ideal version: including all of the desirable aspects that ought 

to be present; low version: including none of these aspects). We differentiate between process 

characteristics that refer to primarily individual-mathematical aspects resp. social-discursive 

aspects (cf. Kollar et al., 2014). 

7.4.1 Individual-mathematical process characteristics 

In the following we present four individual-mathematical process characteristics referred from 

mathematics-educational research on conjecturing and proving. We agree with several 

researchers that the process of proving is complex, incorporating a wide range of activities 

such as identifying patterns, formulating conjectures, selecting given properties and structures, 
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organizing logical arguments, and communicating them to a broader public – each of them is 

by no means trivial (e.g., Boero, 1999; Healy & Hoyles, 2000; Selden, A. & Selden, 2013a). 

The four individual-mathematical process characteristics describe the quality of how proving 

problems are explored, how precisely arguments are communicated, how different ideas are 

selected, combined and related to underlying mathematical concepts, and how claims are 

justified by data, warrants and modal qualifiers.  

Cognitive complexity: Constructing mathematical proofs requires developing ideas that ideally 

show “why a particular claim is true” (Raman, 2003, p. 324) and that can be translated into 

arguments that demonstrate consistency to the reference theory. These “key ideas” combine 

two central aspects of conjecturing and proving, namely, (informal) conceptual understanding 

and a sense of formal rigour. For instance, using the symmetry property of even functions to 

argue that the derivative of an even function is odd, represents a key idea (Raman, 2003). 

Producing such kind of ideas may be done while generating examples or by finding suitable 

representations of definitions that provide access to the underlying logical structure and 

concepts (Alcock & Weber, 2010; Moore, 1994; Sandefur et al., 2013; Selden, J. et al., 2014). 

Yet, generating one’s own examples and choosing appropriate definitions demand complex 

cognitive activities that go beyond simply replicating examples or definitions given by 

professors or textbooks (Moore, 1994). Forming analogies to related tasks, transferring 

concepts from one field to another or cross-referencing previous developed ideas seem to be 

cognitive activities that enable to gain new insights and to generate mathematical proofs 

successfully (Pease, A. & Martin, 2012). We conclude that developing different (key) ideas and 

bringing in new perspective in the proof construction process by searching for patterns, 

considering different cases, or changing flexible between formal and informal representation 

systems, as well as making explicit connection between ideas and mathematical concepts can 

be regarded as process characteristics that indicate the quality of conjecturing and proving 

processes. 

Accuracy and precision of statements: Although mathematical ideas and proofs have to be 

evaluated with respect to a given context, they still must conform to the knowledge shared and 

accepted by the mathematical community. Furthermore, they need to be communicated in a 

“subject-specific, scientific language” (Engelbrecht, 2010). Accuracy and explicitness are 

considered as key aspects of successfully explaining mathematical ideas (Reinholz, 2016). 

The use of specific formal notations or symbols is certainly not necessary, but may facilitate 

the correct and precise communication of mathematical ideas and arguments. Wrong, 

inaccurate or implicit statements may lead the proof construction process on wrong paths and 

cause impasses and errors (Selden, J. et al., 2014). Savic (2015b) observed that 

mathematicians check, analyse and utilize incorrect proving steps more frequently than 

graduate students. Thus, capturing mathematical ideas and arguments in an accurate and 
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precise way as well as identifying and rethinking incorrect assertions and impasses (Weber, 

2009) form further promising process characteristics of conjecturing and proving processes.  

Exploring and refining conjectures: The examination of an online discussion by Pease, A. and 

Martin (2012), where twenty-seven people from around the world solved a mathematical 

problem of International Mathematical Olympiad standard collaboratively, has shown that a 

large proportion of comments concerned conjectures. Participants proposed not only one, 

initial conjecture but also several sub-conjectures, explored their properties and limits, and 

expressed a level of confidence in them (Pease & Martin, 2012). Reformulating an initial 

conjecture and checking if the new reformulation is more transparent, or reflecting on how a 

counterexample would look like, seem to be promising strategies within conjecturing and 

proving (Weber, 2009). Especially when experienced mathematicians reach an impasse, they 

question the constraints of their conjectures and try to construct a counterexample (Savic, 

2015b). Based on these observations, we assume that exploring and refining conjectures 

critically are an indication of deep cognitive processes and thus, represent activities that are 

essential for both generating conjectures and testing conjectures.  

Argument structure: The importance of formulating structurally sound arguments has already 

been discussed in detail by several researchers (e.g., Toulmin, 1958; Krummheuer, 1995; 

Yackel, 2001) and constitutes a quality criterion for assessing argumentation in, for instance, 

online learning environments (e.g., Clark, D. B., Sampson, Weinberger, & Erkens, 2007). 

Formulating structurally sound arguments means that claims need to be based on some facts 

(called data) and that the legitimacy of the inferences connecting data and claim has to be 

explained by warrants and backings. Making implicit warrants explicit, as well as transforming 

data, claims and warrants of informal arguments into a more formal mathematical language 

contribute to the successful translation of informal arguments into verbal-symbolic proofs 

(Zazkis et al., 2016). Furthermore, Inglis, Mejia-Ramos, and Simpson (2007) emphasized that 

choosing adequate modal-qualifiers for each type of warrant play a crucial role within the proof 

construction process.  

7.4.2 Social-discursive process characteristics 

Analysing processes of collaborative argumentation is a central topic in educational 

psychology and in Learning Sciences research (especially, in CSCL research) (e.g., Asterhan 

& Schwarz, 2007, 2009; Kollar et al., 2014; Meier et al., 2007; Vogel et al., 2016; Weinberger 

& Fischer, 2006), as well.  The motivation behind this research is to identify the challenges on 

the one hand and the aspects that are crucial for successful learning in collaborative 

environments on the other hand. Since engaging students in collaborative argumentative 

discourses is considered as an effective tool for enhancing students’ understanding of 
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challenging concepts (e.g., Clark, D. B. et al., 2007; Leitão, 2000), we also focus on social-

discursive activities that refer to more general, dialogical argumentation skills. It is assumed 

that these skills are required for individuals to be able to participate successfully in 

mathematical debates. We define three social-discursive process characteristics that comprise 

the quality of how students contribute to a collaborative argumentative discourse by building 

upon and integrating each other’s perspectives and ideas as well as by asking critical questions 

or proposing alternative strategies.  

Critical questions: Clark, K. et al. (2014) conducted research on advanced calculus students 

working in small groups on problem solving tasks. The goal of their study was to examine the 

role of group interactions and to identify strategies that these students employ while problem 

solving. One of their results was that group members questioned each other for several 

reasons and during different phases, and that this was an important strategy to establish a 

collaborative atmosphere. Questions that prompt the learning partners to justify their approach 

as a specific type of transactive activities may lead to productive argumentation in collaborative 

settings (Teasley, 1997). Meier et al. (2007) also assumed that questions may contribute to a 

“smooth ‘flow’ of collaboration” (p. 82), and that they can be used for making sure to have the 

learning partner’s attention.  

Turn-taking sequences: The structure of turn-taking sequences is regarded as “as an indication 

of the degree to which students share common problem representations” (Roschelle & 

Teasley, 1995, p. 76). It is supposed that a shared conception of a given problem enables 

meaningful and profound conversations between peers. Interactive turn-taking sequences are 

characterized by turns that build upon each other, extend or challenge the ideas of others and 

take criticism and feedback of all learning partners into account (Chi, 2009; Roschelle 

& Teasley, 1995; Teasley, 1997). Establishing a shared conception of a subject matter 

includes integrating different perspectives, modifying initial arguments on the basis of the 

learning partner’s contributions, and trying to make joint decisions (Weinberger & Fischer, 

2006). We subsume all these activities that capture how students’ turns reference to the 

contribution of others as a characteristic of productive collaboration.  

Reacting to the learning partner’s errors: In collaborative settings, learners often tend to accept 

the ideas of their learning partners without being critical about what they have said (“quick 

consensus building”; Weinberger & Fischer, 2006, p. 84). Yet, scrutinizing the information 

provided by others is crucial for being able to participate successfully in collaborative 

argumentations. Identifying invalid arguments that contain fallacies or errors in reasoning 

constitutes an important characteristic of high-quality argumentation (Mayweg-Paus, 

Thiebach, & Jucks, 2016). To address the mistakes of the learning partner’s arguments means 

expressing criticism. Since conflict-oriented consensus building has been put forward as an 
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important aspect in collaborative settings, learners need to be explicit about the errors they 

have identified, modify them or present alternative approaches (Weinberger & Fischer, 2006). 

This characteristic combines individual-cognitive and social-discursive features of 

argumentation, in the way that an adequate reaction to the learning partner’s errors requires 

domain-specific knowledge, accuracy and precision (e.g. Reinholz, 2016), as well as the social 

act of monitoring and evaluating other people’s verbal and written utterances (Pease & Martin, 

2012; Vogel et al., 2016).   

Taken together, we suppose that important aspects of conjecturing and proving in collaborative 

situations can be measured along these seven process characteristics. Based on the literature, 

we further hypothesize that processes that present almost the "ideal version” of each of these 

seven properties are likely to lead to an interesting conjecture resp. an acceptable proof during 

the collaboration, and thus reflect the quality of collaborative conjecturing and proving 

processes to a large extent. This set of process characteristics is certainly not exhaustive. For 

example, meta-cognitive activities are currently not considered explicitly. However, the 

preliminary collection provides a first attempt to structure a subset of process characteristics 

of collaborative conjecturing and proving, and to investigate them empirically. 

Since symbol schemes only code whether or not a certain mode of behaviour occurs and 

category schemes only assign the observed characteristic to a specific category disregarding 

its quality (Seidel, Prenzel, & Kobarg, 2005), rating scales that allow to capture the quality of a 

characteristic seem to be an appropriate method for assessing conjecturing and proving 

processes along the seven process characteristics we have defined. In terms of the degree of 

inference required for the coding, Seidel et al. (2005) classified the directly observable symbol 

scheme as low inference, the category scheme as middle inference, and the rating scales, for 

which a certain amount of interpretation is necessary, as high inference coding schemes. Low 

inference coding schemes (such as checklists) are often criticized for trivialization. Usually, 

they are not able to reflect one’s behaviour and performance on a task and thus, the underlying 

construct (Newble, 2004). In the educational domain, it has been shown that complex 

constructs and structures can be measured more validly with high inference rating schemes 

(e.g., Seidel et al., 2005; Gartmeier et al., 2015). Consequently, we follow the approach of 

creating a high inference rating scheme consisting of seven rating scales presenting the 

identified process characteristics of conjecturing and proving. 

7.5 The current study 

Even though students’ proving difficulties have been frequently discussed (e.g., Selden, A. 

& Selden, 2008; Selden, A. & Selden, 2011; Ufer et al., 2008; Weber, 2001), there is still little 

knowledge about how good collaborative conjecturing and proving processes could be 
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described and measured. The current study presents a high inference rating scheme that 

facilitates a systematic analysis of students’ collaborative conjecturing and proving processes 

in an open-ended conjecturing task from an individual-mathematical and social-discursive 

perspective. Based on our systematization of process characteristics from the literature, we 

were interested in (1) if and how these process characteristics of collaborative conjecturing 

and proving can be measured reliably. This question addresses the fact that the assessment 

of students’ collaborative conjecturing and proving processes along different characteristics 

should be consistent between different observers. To approach this question, independent 

coders rated a set of video-taped collaborative conjecturing and proving processes for an open 

conjecturing and proving task independently. Inter-rater correlations as values for the inter-

rater agreement were used to determine the extent to which the two raters came to the same 

classification of quality levels for each process characteristic (Seidel et al., 2005). Intraclass-

correlations that estimate the inter-rater agreement by comparing the variability of different 

ratings of the same observer to the total variation across all ratings and all observers were 

calculated, as well (Uebersax, 2010). We expected (1.1) a satisfactory inter-rater agreement 

(ICC ≥ 0.6). This cut-off point was chosen in accordance with existing guidelines (Cicchetti, 

1994; LeBreton & Senter, 2008). Moreover, and more exploratory, we aimed (1.2) to study 

whether the members of a dyad would contribute equally to the quality of collaborative 

conjecturing and proving processes, or if the scores for two members of a dyad would be rather 

independent from each other. From a methodological perspective, these data can inform future 

studies about the adequate level of analysis (individual vs. group) when considering similar 

collaboration processes. 

Furthermore, we were interested in (2) the empirical structure of the observed process 

characteristics. In particular, we assumed (2.1) that individual-mathematical and social-

discursive process characteristic of collaborative conjecturing and proving would each form a 

consistent dimension. Prior studies have shown low correlations between individual-

mathematical and social-discursive aspects of mathematical proof skills (Kollar et al., 2014). 

Thus, and based on how we conceptualized individual-mathematical and social-discursive 

process characteristics, we expected (2.2) low correlations between the two dimensions.  

7.6 Method 

7.6.1 Setting and sample 

The current study was embedded in a voluntary two-week preparatory course for prospective 

mathematics university students. The course contained lectures and seminars about 

elementary number theory and other basic mathematical topics (e.g. proof techniques, 

propositional and predicate logic, elementary set theory). N = 98 undergraduate mathematics 
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students (Mage = 19.83, SDage = 3.56; 44 female, 3 without specification) participated in this 

study on the sixth day of the course. Students worked in dyads in a computer-supported 

collaborative learning environment on the following open-ended conjecturing and proving task: 

"Take four consecutive numbers, multiply them, and add one. Repeat this and try to find 

similarities. Formulate a conjecture and prove it!". We tried to keep the content knowledge 

required to solve the problem at a relatively low level, so that the participants’ reasoning would 

not be restrained by their lack of content knowledge to a large extent 

Each student was provided with one laptop and one graphics tablet that allowed them to 

exchange written ideas, visualisations or arguments within their dyad using a graphical chat. 

The students were also allowed to communicate to each other verbally face-to-face. All screen 

and audio activities were recorded by the laptops and transformed into a video file. More details 

about the design of the computer-supported learning environment can be found in Kollar et al. 

(2014) and Vogel et al. (2016).  

Before starting collaboration, the learners received a short introduction (around 7 min) about 

how to operate with the technology and about how to work collaboratively on this type of task. 

To avoid specific effects of grouping peers with substantially different prior achievement (Webb 

et al., 2002) on students’ conjecturing and proving processes, the students were assigned to 

homogenous dyads with respect to prior school achievement. The collaboration session took 

between 45 and 60 minutes. 

7.6.2 Coding manual and rating procedure 

To quantify the quality of students’ conjecturing and proving processes, we developed a theory-

based rating scheme that incorporated high inference ratings for the individual-mathematical 

and social-discursive process characteristics introduced above. Each rating scale comprised 

five quality levels. For each of seven process characteristics the rating scheme provided a 

detailed definition, a description of the “ideal version” including desirable aspects that ought to 

be present as well as undesirable aspects that ought to be absent, illustrative examples, and 

coding rules. We labelled and operationalized the process characteristics as: 

(1) Cognitive complexity focuses on how key ideas are developed and combined at different 

phases of the proving process. (2) Accuracy and precision is the extent to which mathematical 

arguments and ideas are captured correctly and precisely. (3) Critical exploration refers to the 

extensive investigation of conjectures by generating examples and counter-examples, 

exploring the constraints of a conjecture, and by formulating more than one initial conjecture. 

(4) Argument structure measures whether mathematical claims are based on data and whether 

appropriate warrants are provided that explain the legitimacy of the data. (5) Critical questions 

refers to utterances that critically questions the ideas of the learning partner or one’s own 

http://www.linguee.de/englisch-deutsch/uebersetzung/relatively+low.html
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solution steps and demand an explicit answer of the learning partner. (6) Turn-taking-sequence 

includes to what extent the learner takes the partner’s contribution into account either by 

extending the learning partner’s ideas or by using the same approach. (7) Reaction to the 

learning partner’s errors scores to what extent the learner identifies errors and impasses 

produced by the learning partner and whether the learner explains these errors or proposes 

alternative solution steps.  

All process characteristics were judged on a 5-point Likert scale with lower values indicating 

better performance and high values indicating lower quality (comparable with the German 

school grade system) (Gartmeier et al., 2015). To minimize the complexity of these global 

judgments, we divided the whole working process of each dyad into two parts of equal length. 

The first half of the video was coded along the seven process characteristics, separately for 

each learner. Afterwards, the second half was rated in the same way. Thus, the conjecturing 

and proving processes of each learner were assessed twice along each of the process 

characteristics. An excerpt from the coding scheme to illustrate the operationalization of the 

process characteristic cognitive complexity can be found in Figure 9. When most of time was 

spent with off-task talk and hence, the coding of a specific process characteristic was not 

possible, we coded it as missing value. 

7.6.3 Rater Training 

It is well known that the inter-rater reliability of high inference ratings is often lower than in more 

standardized assessment methods such as low inference coding systems (Seidel, 2005). 

Since applying high inference ratings challenges the observers to interpret students’ activities 

and to make decisions that go beyond the directly observable behaviour (Herweg, Seidel, & 

Dalehefte, 2005), an intensive rater-training was needed. The two raters participated in a three-

day training to get an introduction to the theoretical concepts behind each process 

characteristic, to obtain a sound understanding of the coding dimensions and levels of the 

rating scales, and to convey the expected range of performance and the corresponding scores 

(cf. Langer & Schulz von Thun, 2007). The training consisted of six sessions (spread over 

three days), which included activities such as sorting videos according to the quality of 

students’ conjecturing and proving processes. Several proof attempts were evaluated to 

develop a shared understanding about which arguments have to be supported by warrants 

and backing, and which key ideas have to be formulated and combined to construct an 

acceptable proof. Other sessions included discussions about common rater-errors and 

strategies for avoiding them. Three more training phases followed in which videos were first 

coded by each rater individually and then discussed together in the group. The training videos 

came from a previous study and were excluded from further analyses.  
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Question: To what extent does the learner generate new ideas, establish logical relationships between 
different ideas and concepts, and thus, introduce new aspects at all relevant phases?  

 

1 

The learner generates new ideas at all different phases of the conjecturing and 
proving process and relates most of them to each other. Given elements and 
previously constructed concepts and theorems are combined in new ways. In 
all appropriate situations, the learner brings in new perspectives on the 
conjecturing and proving process by considering different cases, identifying 
patterns and logical relationships between them, or by changing the 
representation system. A global view on the conjecturing and proving process 
is consistently observable.  

2 

The learner generates new ideas at many different phases of the conjecturing 
and proving process and relates some of them to each other. Given elements 
and previously constructed concepts and theorems are sometimes combined 
in new ways. In many appropriate situations, the learner brings in new 
perspectives on the conjecturing and proving process by considering different 
cases, identifying patterns and logical relationships between them, or by 
changing the representation system. A global view on the conjecturing and 
proving process is largely observable.  

3 

The learner generates new ideas at some different phases of the conjecturing 
and proving process and relates only a few of them to each other. Given 
elements and previously constructed concepts and theorems are sometimes 
combined. In some appropriate situations, the learner brings in new 
perspectives on the conjecturing and proving process by considering different 
cases, identifying patterns and logical relationships between them, or by 
changing the representation system. A global view on the conjecturing and 
proving process is only partly observable. 

4 

The learner generates only a few new ideas and doesn’t relate them to each 
other. Given elements and previously constructed concepts and theorems are 
only seldom combined. The learner mostly repeats or paraphrases existing 
ideas or already known concepts/ approaches. A global view on the 
conjecturing and proving process is rarely observable. 

5 
The learner generates only a few ideas and doesn’t look beyond single aspects. 
A global view on the conjecturing and proving process is never observable. 

 

Figure 9: Quality levels of the first process characteristic “cognitive complexity” 

7.7 Results 

7.7.1 Descriptive results and reliability of the coding scheme 

First, we investigated (1.1) whether the two trained observers achieved a satisfactory inter-

rater agreement. After the two raters had analysed 20% of the sample with the rating scheme 

independently from each other, intra-class correlations and inter-rater correlations were 

calculated for all ratings (see Table 7). The inter-rater correlations (Mr  = .87, SDr  = .11) as well 

as the intra-class correlations (MICC  = .90, SDICC = .11) with values higher than the set-cut off 
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point (ICC ≥ .60) showed that, for a high inference rating scheme, the observed process 

characteristics led to highly reliable outcomes (Cicchetti 1994; LeBreton & Senter, 2008). Table 

8 provides the mean values and standard deviations for each process characteristic, 

separately for the first and the second half of the collaborative working process. Across all 

process characteristics, the incoming university mathematics students achieved a mean value 

of 2.93 (SD = 0.52). The mean values of the process characteristics ranged from 2.13 to 3.67, 

and a slight decrease in the mean values from the first to the second half of the collaboration 

working process was observable for most of the process characteristics. The mean values of 

the process characteristics critical exploration and reaction to the learning partner’s errors 

tended to be lower compared to the mean values of the other process characteristics. Accuracy 

and precision and turn-taking-sequence were the process characteristics with the highest 

mean values at both measurement intervals. Ceiling or floor effects could not be observed for 

any of the process characteristics. The standard deviations indicated that there was a 

substantial dispersion between the individuals. 

To analyse (1.2) whether the scores for two members of a dyad were more similar to each 

other than to the scores for participants of other dyads, we compared the variance within dyads 

with the variance between dyads (ρ), in the ratings of each process characteristic using 

intraclass-correlations (see Table 9). Results showed small values for ρ for the process 

characteristics cognitive complexity, critical questions and turn-taking-sequence for the first 

half of the collaborative working process, implying considerable differences between students 

within a dyad across these three characteristics. The values for ρ for the process 

characteristics accuracy and precision, critical exploration, argument structure and reaction to 

the learning partner’s errors were already substantially within the first half. For the second half 

of the collaborative working process, the variance within the dyads was much smaller than the 

variance between the dyads for all process characteristics, indicating a more similar 

contribution of the students in a dyad to the quality of the collaborative conjecturing and proving 

process later in the working process. Note that the values for ρ, describing the similarity of 

students’ contributions to the process quality, did not increase for the process characteristic 

reaction to the learning partner’s errors (see Table 9). The willingness of the students to 

critically examine the arguments of their counterparts remains constantly low. 
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Table 7: Inter-rater correlations and intra-class correlations for all process characteristics. 

 First half of the collaboration Second half of the collaboration 

 Inter-rater  

correlations (rs) 

Intra-class  

correlations (ICC) 

Inter-rater  

correlations (rs) 

Intra-class  

correlations (ICC) 

Cognitive 
complexity 

.960** .966 .923** .901 

Content accuracy .977** .969 .967** .995 

Critical exploration .890** .968 .985** .986 

The soundness of 
arguments 

.675** .922 .902** .903 

Critical questions .836** .826 .813** .942 

Turn-taking-
sequence 

.766** .749 .914** .961 

Reaction to the 
learning partner 

.958** .968 .681** .618 
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Table 8: Mean values and standard derivations for all process characteristics. 

 First half of the collaboration 

M (SD) 

Second half of the collaboration 

M (SD) 

Cognitive complexity 2.612 (.970) 3.109 (1.262) 

Content accuracy 2.163 (.938) 2.341 (1.147) 

Critical exploration 3.367 (1.255) 3.637 (1.269) 

The soundness of 
arguments 

3.052 (.863) 3.000 (1.206) 

Critical questions 2.663 (.907) 3.121 (1.172) 

Turn-taking-
sequence 

2.133 (.857) 2.596 (1.276) 

Reaction to the 
learning partner 

3.540 (1.305) 3.672 (1.300) 

 

Table 9: Intra-class correlations as values for the between-cluster variance. 

 First half of the collaboration 

ICC 

Second half of the collaboration 

ICC 

Cognitive complexity .000 .382 

Content accuracy .425 .620 

Critical exploration .347 .749 

The soundness of 
arguments 

.176 .622 

Critical questions .000 .216 

Turn-taking-
sequence 

.011 .711 

Reaction to the 
learning partner 

.384 .276 
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7.7.2 Structure of individual-mathematical and social-discursive process 

characteristics 

In the following analyses, we only included the data from the first half of the collaborative 

working process due to a larger amount of missing values in the second half. These missing 

values in the second half of the collaboration processes are attributable to the fact that some 

dyads stopped to work on the proving task earlier and started to have private conversations.  

To investigate the empirical structure of the process characteristics, we performed 

confirmatory factor analyses for categorical data with Mplus 7.4 (Muthén & Muthén, 2015). We 

took the hierarchical structure of the data (individual students nested within dyads) into account 

by using the “TYPE=COMPLEX” option of the “ANALYSIS command” (Muthén & Muthén, 

2015). Results indicated that the two-dimensional model with one individual-mathematical and 

one social-discursive component showed good fit indices (χ2(13) = 20.61, p = .08, RMSEA 

= .07, CFI = .95, WRMR = .63). The factor loadings were significantly different from zero for all 

process characteristics, except for the process characteristic reaction to the learning partner’s 

errors (see Table 10).  

In order to improve the two-dimensional model fit, we reconsidered this process characteristic 

and decided to treat it as an individual-mathematical one (a theoretical justification of this 

decision is provided in the discussion section that follows) and conducted a further factor-

analysis with four individual-mathematical and two social-discursive process characteristics. 

This model showed a very good fit (χ2(13) = 13.14, p = .44, RMSEA = .01, CFI = .99, WRMR 

= .47) and substantial factor loadings for all process characteristics (see Table 4). The 

individual-mathematical and social-discursive factors were not significantly correlated, and 

consequently, the one-dimensional model did not fit the data adequately well (χ2(14) = 63.72, 

p<.001, RMSEA = .19, CFI = .639, WRMR = 1.21). These findings as well as the theoretical 

foundation support our assumptions (2.1) that individual-mathematical and social-discursive 

process characteristics of collaborative conjecturing and proving can be treated as coherent 

constructs in themselves, and (2.2) that these two dimensions should be distinguished when 

analysing collaborative conjecturing and proving processes with our instrument. 
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Table 10: Factor loadings for both 2-dim model.  

 First model  Second model 

 First factor 

(individual-
mathematical) 

Second factor 

(social-discursive) 

First factor 

(individual-
mathematical) 

Second factor 

(social-discursive) 

Cognitive 
complexity 

.770**  .758**  

Content accuracy .321**  .338**  

Critical exploration .568**  .576**  

The soundness of 
arguments 

.684**  .686**  

Critical questions  -.873**  .768** 

Turn-taking-
sequence 

 -.706**  .801** 

Reaction to the 
learning partner 

 .048 .303**  

 

7.8 Discussion 

Conjecturing and proving are highly valued mathematical practices to demonstrate students 

how knowledge is dynamically evolving within the discipline of mathematics (Komatsu, 2016). 

In the past, conjecturing and proving were investigated either from an individual-mathematical 

or social-discursive perspective. Mathematics educational researchers have mainly focussed 

on mathematics-related conjecture and proof aspects. For instance, Yang (2012) evaluated 

the quality of how students formulated conjectures, and found that successful students guided 

their thinking by the use of examples and by recognizing the logical structure of an argument. 

Other researchers investigated the transition from informal arguments to formal proofs 

(Gibson, 1998; Zazkis, et al., 2016), or categorized the structure of students’ argumentations 

and proofs (e.g., Inglis, et al., 2007). We summarized those aspects under the term individual-

mathematical process characteristics. Research in educational psychology and in the Learning 

Sciences proposed different strands of research regarding the social aspects of 

argumentation. Studies that took those aspects of argumentation, that we call social-discursive 

process characteristics, into account investigated how students can benefit from the interaction 
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with peers in collaborative learning situations, and how they can develop a common 

understanding of a problem (e.g., Asterhan & Schwarz, 2007; Meier et al., 2007; Roschelle & 

Teasley, 1995; Vogel et al., 2016). In this study, we attempted to include both perspectives, 

we systematized process characteristics of collaborative conjecturing and proving that have 

been extensively discussed in the literature, and we developed a rating scheme that 

incorporates these theory-based process characteristics. We evaluated the new rating scheme 

by analysing the collaborative conjecturing and proving processes of 49 dyads and 

investigated the empirical structure of the observed process characteristics.   

7.8.1 Summary of the results 

Regarding the reliability of measuring collaborative conjecturing and proving processes, our 

results showed that the inter-rater agreement across all high inference ratings was very good. 

Achieving a satisfactory consistency between different raters is challenging with high inference 

rating scales in general (Newble, 2004; Seidel, 2005). Making qualitative judgments that 

include interpretations that go beyond directly observable behaviour often leads to a reduced 

reliability of the ratings (Seidel, 2003). As in prior studies, the intensive rater training proved 

crucial to obtain reliable data. From a theoretical point of view, the advantages for the 

development of high inference ratings are given by their validity (e.g., Newble, 2004). Until 

now, high inference rating schemes have been used more often in learning climate research 

(Clausen, 2002) and hence, in the area of educational science (e.g., Seidel et al., 2005) than 

in mathematics educational research. However, the new analytic rating scheme allowed us to 

capture seven theory-based process characteristics of conjecturing and proving (four deduced 

from mathematics educational research and three from research in educational psychology 

and the Learning Sciences) reliably. 

In a next step, we analysed how similarly the learners of one dyad contributed to the quality of 

collaborative conjecturing and proving processes. Our results indicate that the within-dyad 

similarities seem to be more pronounced for some process characteristics (accuracy and 

precision, critical exploration, argument structure and reaction to the learning partner’s errors) 

than for others (cognitive complexity, critical questions and turn-taking-sequence). This points 

out that some aspects seem to align during the collaborative process, while others do not. One 

reason for a missing alignment might be students’ different (learning) prerequisites (e.g., 

complementary knowledge that they cannot integrate) or different expectations about 

collaboration (cf. Meier et al., 2007). Moreover, the relatedness of students working within one 

dyad increased from the first to the second half of the collaborative working process for most 

of the process characteristics. This is in line with the findings of other researchers that students 

in dyads seem to imitate each other increasingly over time and thus, develop similar 

behavioural patterns (Anjewierden, Gijlers, Kolloffel, Saab, & Hoog, 2011). Furthermore, we 
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observed a slight decrease in the quality of how individual-mathematical and social-discursive 

activities are employed during the working process from the first to the second part of 

collaboration. One explanation for this might be that students lost motivation due to the 

complexity of the task, and thus were less engaged in producing new ideas or validating a 

completed argument after some time. Furthermore, they may lack confidence in their own 

abilities to develop something new or something better than before (Selden, A. & Selden, 

2013a). 

Our assumption about the consistency of the individual-mathematical respectively social-

discursive component of collaborative conjecturing and proving processes could be confirmed 

(with one exception, see below), as well as that both dimensions can be empirically 

distinguished from one another. The individual-mathematical component takes into account 

the quality of exploring and formulating conjectures (e.g., Koedinger, 1998; Pease, A. & Martin, 

2012) as well as the quality of generating accurate (e.g., Reinholz, 2016) and structurally sound 

arguments (e.g., Toulmin, 1958) that are related to the underlying concepts. This component 

mainly refers to domain-specific knowledge that is necessary, for instance, to develop a mental 

representation of the problem-situation and to identify crucial properties that offer an access 

to deduce further inferences. Moreover, the process-characteristics that are related to this 

component may differ across domains. For example, transferring the aspects for generating 

structurally sound arguments to other disciplines appears problematic as, in mathematics, the 

only acceptable evidence is a chain of deductive arguments, while other sciences may allow 

empirical-inductive methods as well. The social-discursive component describes more domain-

general argumentation skills such as questioning (e.g., Mayweg-Paus et al., 2016) or refining 

the learning partner’s contributions (Teasley, 1997). These process-characteristics may occur 

in a similar manner across different domains.  

In comparison to the initial model with four individual-mathematical and three social-discursive 

process characteristics, an adapted model that categorized the characteristic reaction to the 

learning partner’s errors as an individual-mathematical one fitted the data better. This might 

be mainly due to the fact that the identification of errors and impasses is strongly related to 

domain-specific knowledge of mathematics and additionally, constitutes the prerequisite for all 

the further activities that make up this process characteristic such as explaining the error to 

the learning partner. 

Regarding the empirical structure of the observed process characteristics, our results are 

consistent with findings from prior studies that the individual-mathematical and social-

discursive components of mathematical argumentation are widely unrelated to each other. The 

measurement of the students' underlying individual-mathematical and social-discursive 

argumentation skills, using written test items, revealed a low correlation between the two facets 
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(Kollar et al., 2014). With respect to fostering mathematical argumentation skills, the meta-

analysis by Vogel, Wecker, Kollar, and Fischer (2017) indicates that supporting social-

discursive aspects of mathematical argumentation skills is not necessarily effective, unless it 

is accompanied by domain-specific support addressing individual-mathematical skills or 

process characteristics. We conclude, both facets of mathematical argumentation processes 

are important, even though they showed no substantial correlation.  

In sum, this study provides first evidence for the feasibility of measuring theory-based process 

characteristics of collaborative conjecturing and proving: The good interrater-agreement as 

well as the internal structure of our data, which largely fits our theoretical assumptions, indicate 

that the quality of students’ collaborative conjecturing and proving processes can be 

categorized and evaluated by applying our rating scheme.  

7.8.2 Limitations of the study 

Despite these promising results, some limitations of the study need to be acknowledged. First 

of all, participating in the preparatory course in which the study was embedded was voluntary. 

Self-selection effects may have led to a selective sample, e.g. with high interest in 

mathematics. Furthermore, our sample consisted only of prospective mathematics university 

students before the beginning of their first semester. Due to the selectivity of the sample, our 

results have to be generalized carefully. It might be that graduate students or expert 

mathematicians focus more on the arguments and conceptual issues proposed by their 

counterpart (e.g. explicitly express their disagreement or formulate counter-arguments) and 

thus, their social-discursive activities can be more closely related to their individual cognitive 

thinking (Leitão, 2000). Moreover, we applied our analysis scheme for students’ collaborative 

conjecturing and proving processes to one task in this study. Task-specific factors that may 

influence the results cannot be eliminated, and are an important field for further research. In 

the future, proof processes for several tasks might be compared to determine the internal 

structure of the process characteristics of collaborative conjecturing and proving (cf. Blömeke 

et al., 2015). Finally, the small number of process characteristics especially for the social-

discursive component is a further limitation of the present study. The social-discursive 

component may comprise a broader range of process characteristics, such as the co- and 

socially shared regulation activities (Järvelä & Hadwin, 2013). The individual-mathematical set 

of process characteristics may be expanded as well by adding additional characteristics such 

as the quality of the use of formal-symbolic notations (Ottinger, Kollar, & Ufer, 2016). To adapt 

our coding scheme to other contexts, the specific rating rules and scale’s anchors will have to 

be modified to the features of the collaborative conjecturing and proving situations one intends 

to evaluate. Since this study was a first attempt to measure collaborative conjecturing and 

proving processes from an individual-mathematical and social-discursive perspective, the set 
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of process characteristics might not be exhaustive. Yet, it merely aimed at demonstrating how 

different process characteristics of collaborative conjecturing and proving might be 

operationalized and observed in students’ behaviour. Finally, it still remains an open question 

whether these process characteristics that are assumed to be crucial for the success indeed 

predict the quality of the resulting outcome. 

7.8.3 Conclusion and directions for future research 

This study extends prior research in several ways: (1) It systematizes several individual-

mathematical and social-discursive process characteristics from previous studies that have 

been reported in combination with successful conjecturing and proving, or argumentation 

outcomes. (2) It provides a rating scheme for assessing students’ collaborative conjecturing 

and proving processes. High inference rating strategies that worked effectively in the medical 

or educational domain (Gartmeier et al., 2015; Seidel, 2005) were successfully adapted and 

transferred. (3) Substantial standard deviations, the high inter-rater agreement as well as the 

consistency within the two dimensions showed that our approach is feasible in principle: The 

developed rating-scheme comprises seven process characteristics of collaborative 

conjecturing and proving that could be reliably measured and analysed with regard to the 

within-dyad-similarities and the internal structure of the observed characteristics. Furthermore, 

our rating scheme allows for a direct assessment of collaborative conjecturing and proving 

processes, since it does not require the transcription of students’ dialogues. It is time efficient 

and, from an educational perspective, it may be used for instructional purposes. Tutors may 

use this rating scheme, if they are taught how to apply it to identify where support is needed 

and which aspects they have to encourage most.  As the rating scheme is largely content-

neutral, it may be adapted to a variety of tasks. (4) Regarding the within-cluster variance we 

observed relatively high values for some process characteristics pointing out that it is 

necessary to consider each individual’s contributions separately, not only at the dyad level, 

when evaluating collaborative conjecturing and proving processes. (5) On the other hand, for 

most of the process characteristics, especially at the second half of the collaborative working 

process, the within-cluster variance was quite low. Analyses that do not take this clustering 

into account may result in underestimation of standard errors and overestimation of statistical 

significance (cf. Lee, V. E., 2000). (6) Finally, this study investigated the empirical structure of 

individual-mathematical and social-discursive process characteristics of collaborative 

conjecturing and proving. Results indicated that collaborative conjecturing and proving 

processes can be conceptualized as a two-dimensional construct. As a practical consequence, 

in order to encourage students’ collaborative conjecturing and proving skills, it would be useful 

to design learning environments that provide support for both components (cf. Vogel, et al., 

2017).  
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The findings of this study delivered empirical evidence that our rating-scheme constitutes a 

valuable instrument for analysing students’ collaborative conjecturing and proving processes 

from an individual-mathematical and social-discursive perspective. It has potential for further 

usage in research and teaching. Since the validity criterion plays an important role in the 

development of instruments (e.g., Blömeke, et al., 2015), future studies should investigate 

which of the process characteristics we have extracted from the literature actually predict the 

quality of the resulting product of collaborative conjecturing and proving processes. Moreover, 

the rating scheme may be applied to detect effects of interventions or scaffolds that 

systematically foster one of the two quality facets. Making it useable for practitioners could also 

be a next step, as the rating scheme may support instructors and tutors while monitoring and 

supporting students’ proof processes. It may be used to help tutors or lecturers learn to notice 

and interpret important characteristics of students’ collaborative conjecturing and proving 

processes and thus, to enhance their “professional vision” for these processes (Goodwin, 

1994; van Es & Sherin, 2002).  
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8 Study III 

Generating structurally sound and accurate arguments: Key characteristics of 

successful collaborative conjecturing and proving processes 

8.1 Abstract 

There seems to be general consensus on the assumption that specific process characteristics 

of conjecturing and proving are crucial for their success, even though they may not emerge 

directly in the final product (the formulated conjecture and the constructed proof). Based on 

the literature, we have selected four individual-mathematical and three social-discursive 

process characteristics of collaborative conjecturing and proving that are considered essential 

for the successful production of conjectures respectively proofs. We empirically investigated to 

which extent these characteristics predicted the quality of the final conjecture and proof. 

Furthermore, we were interested in studying their relations to students’ prior knowledge on 

proof. Therefore, we examined the interaction of N=98 prospective mathematics university 

students working collaboratively on a conjecturing and proving task. Results indicate that 

generating structurally sound and accurate arguments during the collaborative discourse are 

key characteristics of successful conjecturing and proving processes. Furthermore, this study 

shows that individual-mathematical process characteristics mediate the relation between 

students’ prior knowledge on proof and the quality of their resulting conjectures and proofs. 

We present more detailed analyses of the process characteristics and their effects on the 

specific quality aspects of the final product and discuss implications for teaching and research. 

8.2 Introduction 

Inquiring mathematical conjectures, finding supporting arguments, and discussing them with 

peers are the daily work of mathematicians and hence considered as a substantial objective 

of mathematics education (e.g., Mariotti, 2006; Stylianides, A. J., Bieda, & Morselli, 2016). 

However, developing these complex skills is challenging for most students (Heinze et al., 2005; 

e.g., Heinze & Reiss, 2004; Moore, 1994; Selden, A. & Selden, 2008). In other disciplines such 

as politics, psychology, or philosophy, students also have to be able to generate evidence-

based arguments.  

This might be one reason why there is a widespread trend towards describing and analysing 

students’ behaviour when solving argumentation tasks. Researchers from several disciplines 

focus their attention on investigating what the crucial aspects of scientific reasoning and 

argumentation are (Fischer et al., 2014). Learning more about this may help to discover the 

causes for students’ main difficulties and to design adequate scaffolds. Of course, it is possible 

to come up with characteristics of “good” argumentation processes by theoretical analyses or 
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by observing students’ argumentative activities. However, the success of a good conjecturing 

and proving process is determined by its outcome, the final conjecture respectively proof.  

In this contribution, we are interested in the relations between characteristics of the processes, 

the final conjecture and proof, and the students’ prior knowledge on proof (representing their 

individual (learning-) prerequisites). Along with other researchers, we conceptualized 

conjecturing and proving processes as specific types of argumentative activities (e.g., Selden, 

A. & Selden, 2013b) and differentiate between an individual-mathematical and social-

discursive component of argumentation (Kollar et al., 2014). We reviewed literature from 

mathematics education and educational psychology as well as the Learning Sciences to find 

potentially predictive process characteristics of collaborative conjecturing and proving.  

There are several motivations behind our approach to investigate the relations between the 

processes, the final product, and students’ prerequisites. First, analysing the relations between 

process characteristics and the resulting product may allow to uncover key characteristics for 

success. Secondly, it might help to detect specific challenges of students’ and thereby to find 

out where support is required. Based on this knowledge, new scaffolds may be designed. If 

the relation is due to general (learning-) prerequisites, developing scaffolds with the focus on 

the processes may become less important. Furthermore, we expect to receive information that 

may be used for diagnostic purposes to identify dyads that will run into trouble. One may also 

be interested in studying the relations between process characteristics and prerequisites in 

order to be able to diagnose more general traits such as prior knowledge. However, the main 

objective of this study was to investigate the effects of individual-mathematical and social-

discursive process characteristics on the quality of the resulting conjecture respectively proof 

by controlling for prior knowledge on proof.  

The first part of this paper describes different process characteristics of collaborative 

conjecturing and proving and hence provides an overview about what counts as good 

collaborative conjecturing and proving processes from a theoretical point of view. In the second 

part, we will present the results of an empirical analysis capturing the relations between 

different individual-mathematical and social-discursive process characteristics, the quality of 

the resulting conjecture and proof (as the outcome of students’ collaborative conjecturing and 

proving processes), and their prior knowledge on proof. 

8.3 Research on conjecturing, proving and argumentation 

In the past, the concepts of argumentation and proof have received serious attention by 

numerous researchers in mathematics education (Stylianides, G. J. et al., 2017; e.g., 

Stylianou, Blanton, & Knuth, 2010). While there was some debate on the relationship between 

argumentation and proof (e.g., Balacheff, 1999; Garuti, Boero, Lemut, & Mariotti, 1996; 
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Krummheuer, 1995), there is no disagreement that the consideration of both concepts is 

important to include all processes that are crucial in the context of poof (Mariotti, 2006). Since 

different definitions of the terms argumentation and proof are pursued by different research 

traditions (Balacheff, 1999; Stylianides, A. J. et al., 2016), we delineate our perspectives on 

conjecturing, proving, and argumentation in the following section. Furthermore, we theorize 

what set of skills are needed to solve conjecturing and proving tasks.  

8.3.1 The relation between conjecturing, proving and argumentation skills 

Argumentation is often described as an activity that mathematicians engage in when 

constructing proofs or conjectures, involving a variety of processes such as working with 

examples or using rhetorical tools to convince others that a statement is true. However, not 

every mathematical argument constitutes a proof (Selden & Selden, 2013), and not every 

argumentation task requires the generation or refinement of a conjecture. Consequently, we 

conceptualize proving and conjecturing as specific types of argumentation. Conjecturing 

comprises the activity of formulating a conjecture “according to some given information which 

could include either ill-defined or well-defined problems” (Lin, F. L. et al., 2012, p. 309). The 

formulation of a conjecture often results from exploratory activities, such as generating 

examples, testing a variety of cases, and attempting to identify patterns between them (e.g., 

Ellis et al., 2017; Koedinger, 1998). By proving, we are referring to the activity that a student 

or mathematician engages in to produce a connected sequence of logical inferences (i.e., 

proof), which satisfies the sociomathematical norms (Yackel & Cobb, 1996) and values so that 

the sequence of inferences will be acceptable to his/ her peers (Dawkins & Weber, 2017). 

Furthermore, we build upon the hypothesis that there exist some kinds of continuity, 

conceptualized as cognitive unity, between conjecturing and proving processes (cf. Garuti et 

al., 1996). The construction of a logical chain of inferences may be more ‘accessible’ to 

students when they get involved with the exploratory activities related to the formulation of a 

conjecture (Pedemonte, 2008). 

Mathematicians have to negotiate with their colleagues about which conjectures are interesting 

for further explorations, which argumentations are accepted as proofs, and which pieces of 

their arguments have to be specified explicitly (e.g., Inglis & Aberdein, 2014; Manin, 1977). 

These definitions of conjecturing and proving merge individual and social point of views. The 

individual-mathematical perspective encompasses the ability to formulate conjectures, to 

select theorems that are related to the given problem, to generate appropriate and valid 

arguments, and to combine them to a deductive proof or refutation (e.g., Boero, 1999; 

Koedinger, 1998). To acquire this complex ability, students need a deep conceptual 

understanding in the area of the proof problem, knowledge about the nature of mathematical 

arguments (e.g., Ufer et al., 2008), strategic knowledge (Sommerhoff, 2017; Weber, 2001) as 
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well as problem solving skills (e.g., Schoenfeld, 1992). The ability to participate in 

argumentative discussions, to debate about the acceptability of arguments, to justify one’s own 

proving steps, to take the arguments of others into account, and to synthesize different 

contributions constitute the more domain-general, social-discursive dimension of mathematical 

argumentation (e.g., Kollar et al., 2014). Generally, it is assumed that social-discursive 

argumentation skills play a crucial role in collaborative knowledge construction and problem-

solving activities (e.g., Kollar et al., 2007). In this project, mathematical argumentation is 

understood as a complex cognitive skill that includes both dimensions, one genuine to 

mathematics and the other related to the more domain-general, social-discursive component 

of argumentation.  

8.3.2 Mathematical argumentation as a complex cognitive skill 

Current discussion in research emphasizes the importance of conceptualizing skills and 

pursues the question of how skills become visible and accessible (e.g., Koeppen et al., 2008). 

Inspired by the framework proposed by Blömeke et al. (2015), we consider argumentation skills 

as a latent construct that becomes visible in the processes and the performance of an 

individual in a proof-related situation. From this perspective, conjecturing and proving 

processes as well as the performance can serve as indicators for an individual’s mathematical 

argumentation skills. The performance can be observed and evaluated in the light of pre-

defined criteria that are conform to the sociomathematical norms (cf. Yackl & Cobb, 1996). 

Furthermore, is assumed that the quality of these processes and the performance is affected 

by the individual’s cognitive (learning-) prerequisites, such as prior knowledge on proof. 

Conjecturing and proving processes can be viewed as connecting elements that lead from the 

cognitive prerequisites on the one hand to the situation-specific performance on the other 

hand. To what extent conjecturing and proving processes mediate between one’s cognitive 

prerequisites and performance has to be investigated empirically.  

Examples of different situations requiring argumentation skills are constructing, reading, or 

presenting conjectures and proofs (e.g., Mejía-Ramos & Inglis, 2009) in individual or socially-

embedded learning settings (e.g., Tristanti, Sutawidjaja, As’ari, & Muksar, 2016). When 

evaluating a constructed proof, representing the performance of an individual, the judgement 

may be based on criteria that capture the ideas necessary to establish the desired conclusion 

(Selden, A. & Selden, 2013b), the type of the presented arguments (empirical vs. deductive 

arguments) (e.g., Harel & Sowder, 1998), the soundness of the logical structure of the proof, 

and its correctness regarding the interpretation and use of formal symbols (e.g., Dubinsky 

& Yiparaki, 2000; Weber & Alcock, 2004).  
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The criteria that have to be taken into account when focusing on conjecturing and proving 

processes and that allow to infer whether an individual performs the processes that are 

required to engage successfully in a conjecturing and proving task have not been defined so 

far. Even though various models of the proof construction process have been developed in the 

past (which we will present in the next section), there is a lack of criteria that determine what 

successful conjecturing and proving processes are. Much of the extant work regarding 

conjecturing and proving processes involves theoretical arguments (e.g., Boero, 1999) and 

case studies (Zazkis et al., 2015). Systematic empirical investigations on the process 

characteristics that indicate how an individual can come to an interesting conjecture and an 

acceptable proof and that may form the foundation for defining criteria to which argumentative 

processes may be judged are rare. We contribute to this issue in the following way: 

By introducing the concept of process characteristics, we aim to identify and empirically 

investigate the characteristics of conjecturing and proving processes that may predict the 

quality of the final product. We assume that the process characteristics contribute to the 

variance in undergraduate student’s performance, besides their prior knowledge on proof.  

8.4 Focusing on processes – Which characteristics are considered as relevant for 

successful conjecturing and proving processes? 

Different frameworks and models have emerged describing the proof construction process and 

associated activities from an individual-mathematical perspective (cf. Boero, 1999; Carlson 

& Bloom, 2005; Schwarz et al., 2010). Just like other scientific disciplines, mathematics lives 

from the exchange of knowledge. External impulse and the discussion with peers present 

important opportunities to work on conjecturing and proving tasks, as the ideas of others may 

encourage to rethink already produced arguments or to develop new ones (Vogel et al., 2016). 

Therefore, the social-discursive dimension and related frameworks of collaborative 

argumentation need also to be taken into account when analysing argumentative activities 

(Osborne, 2010).  

As stated, systematic empirical analyses about the effectiveness and success of specific 

activities within conjecturing and proving processes, in particular, in collaborative settings are 

rare. However, in the literature it has been argued that some process characteristics are 

relevant for high-quality conjecturing and proving performance or for collaboration. We will 

focus on these process characteristics in the next sections by presenting different frameworks 

and models from the individual-mathematical and social-discursive perspective.  
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8.4.1 The individual-mathematical perspective 

The frameworks related to conjecturing and proving are largely based on theoretical 

assumptions or have been derived from the observations or self-reports of mathematicians 

(e.g., Schwarz et al., 2010) or students (e.g., Carlson & Bloom, 2005) on how they make sense 

of a problem, raise conjectures, and generate solutions. Though the models are illustrated in 

form of phases, they should not appear as linear. They can encompass cycles, refinements, 

impasses, or derivations (Furinghetti & Morselli, 2009). 

The four phases of problem-solving  

As conjecturing and proving are considered problem-solving processes, it is plausible to use 

the Multidimensional Problem-Solving Framework created by Carlson and Bloom (2005) which 

incorporates the four phases already outlined by Polya (1945): (I) understanding the problem, 

(II) developing a plan, (III) carrying out the plan, and (IV) looking back. Each of these phases 

involves cognitive and metacognitive activities and some of them bridge to the subsequent 

phase.  

Phase I: The logical understanding of the problem is considered as a central characteristic of 

the first phase of problem-solving. Based on the observations of undergraduate students, 

Selden, J. et al. (2014) claimed that logical understanding may be reached by unpacking the 

conclusion, that is, looking up its definitions and adapting them to the given problem (Selden, 

J. et al., 2014). Reformulating the initial problem-situation by expressing the given task in one’s 

own words using examples, symbols, pictures, or gestures is also regarded as a relevant 

approach in attempting to understand the problem (Furinghetti & Morselli, 2009).  

Phase II: In the planning phase, the choice of appropriate representations and the ability to 

switch flexibly from one representation to another have been approved to be important 

activities to get from the initial hypothesis to the desired conclusion (Gholamazad, Liljedahl, & 

Zazkis, 2003). Boero (2001) argued that some representations may encourage the 

transformation of the given mathematical structure, whereas others may be obstructive to 

achieve the final envisaged shape.  

Phase III: The study by Zazkis et al. (2015) has shown that the choice of the proving method 

and the amount of time that provers spend to explore each method could also have an impact 

on the success. Constructing new mathematical objects or manipulating variables without 

exactly knowing the value of these activities is sometimes necessary to generate ideas and to 

bring in new perspectives (Selden, J. et al., 2014).  

Phase IV: Savic (2015b) used the framework of Carlson and Bloom (2005) to investigate the 

differences between the proving processes of mathematicians and that of graduate students. 
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One conclusion of his study was that checking and re-evaluating previous proving steps by 

critically analysing impasses and correcting one’s own work are crucial proving activities. He 

proposed that the activities of questioning the constraints of conjectures, constructing 

counterexamples, and identifying gaps can be considered as influential factors regarding the 

success of proving processes.  

Structural characteristics of arguments - Toulmin’s model 

In the literature, Toulmin’s model (1958) has been applied both for investigating and for 

demonstrating how learning progresses in classrooms (Krummheuer 1995; Yackel 2001) and 

how argumentations develop (Wood, 1999). It divides the components of an argument into six 

elements: claims (assertions that have to be proven), data (facts that are used as evidence to 

support the claim), warrants (rules or statements that support the relationship between data 

and claim), qualifiers (restrictions under which the claim is assumed to stay true), backings 

(justifications for the warrant), and rebuttals (specific conditions in which the justification of the 

warrant would have to be repealed). This scheme is commonly used to analyse the structure 

of arguments (e.g., Clark, D. B. et al., 2007) and proofs from a cognitive point of view 

(Pedemonte, 2008). 

The phases of argumentation and proof construction  

Boero’s model of argumentation and proof construction (1999) points to the continuity between 

conjecturing and proving (Cognitive Unity of Theorems: Garuti et al. (1996)) and includes 

phases of exploration and systematization.  

Phases of exploration: The explorative phases are important to get in touch with the problem, 

to notice regularities, to create a conjecture, and to gain insights into the concepts and 

definitions involved (e.g., Pinto & Tall, 2002). Koedinger (1998) observed that students often 

do not have many problems in formulating conjectures in general, but in developing 

conjectures that say “something new, something beyond repeating the premise” (p. 329). A 

sophisticated strategy to find more interesting conjectures is to vary elements of successive 

examples systematically and to investigate which relationships appear invariant (Koedinger, 

1998). Examples can be used in a number of ways within the proof construction process. Some 

successful students generate a set of examples in order to search for patterns and to explore 

the underlying mathematical structure. They often strive to discover structural regularities and 

transform them into formal representations (Ozgur et al., 2017). In contrast, less experienced 

students often do not look for links between concept definitions and the examples they have 

produced and consequently, have problems to formalize empirical arguments (Alcock & 

Weber, 2010).  



Study III 

135 

Phases of systematization: Engaging in activities such as elaborating, syntactifying, and 

rewarranting have been put forward as promising strategies to build explicit links between 

informal and formal arguments. In this case, elaborating means adding more details to the 

proof, that has to be constructed, by making the warrants of informal arguments explicit and 

by enclosing supporting (empirical) data and warrants to them. Changing a graphical 

representation of a concept or argument to a verbal-symbolic one comprises the activity of 

syntactifying, and rewarranting describes the replacement of an informal warrant by a new, 

more suitable, verbal-symbolic warrant and thus, allows to make formal inferences (Zazkis et 

al., 2016). Other researchers also claimed that informal ideas and arguments have to be linked 

to formal definitions (e.g., Pinto & Tall, 2002) and that the rules of logic have to be applied 

(Selden, J. et al., 2014). Boero (1999) described the phases of systematization as processes 

of organizing single arguments into a deductive chain and of communicating them to the 

scientific community.  

8.4.2 The social-discursive perspective 

Although mathematical argumentation often occurs in social contexts, the models and 

frameworks presented above conceptualize problem-solving, argumentation, and proving as 

individual activities rather than as social practices. Considering argumentation as a social 

activity raises the question which activities characterize good collaboration and how 

collaboration influences students’ individual conjecturing and proving processes.  

Modes of collaboration 

The term collaboration implies a joint production of a solution, where students share their ideas, 

build upon each other’s arguments, and contrive a collective understanding of a problem 

(Staples, 2007). Several researchers agree that collaboration and social interactions are 

essential for mathematical problem-solving and especially for the development of students’ 

argumentation skills (e.g., Alrø & Skovsmose, 2002; Vogel et al., 2016; Yackel & Cobb, 1996). 

Mueller et al. (2012) distinguished three different modes of collaboration. The first form 

describes the co-construction of arguments in which students alternately produce one joint 

argument. Integration, the second mode, occurs when learners take the ideas and 

contributions of others into account to strengthen their own initial arguments. The third one, 

modification, emerges when originally incorrect or unclear arguments of learners are corrected 

by their learning partners. In their study, Mueller et al. (2012) observed that all three modes 

influenced students’ mathematical argumentation processes in a strong way.  
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Building a common ground 

The success of any mode of collaboration might depend on different aspects such as actively 

building a common ground (Clark, 1996), sharing information, ideas, and cognitive processes 

(Hinsz, Tindale, & Vollrath, 1997), engaging in transactive discussions (Teasley, 1997; Vogel 

et al., 2016), or developing common plans of how to approach a specific task or goal (Barron, 

2000). Meier et al. (2007) assumed that attempts to reach a mutual understanding, such as 

eliciting feedback from the learning partner or asking questions for clarification, can be 

considered as indicators for successful collaboration as well as coordinative aspects in order 

to avoid confusion about whose turn it is to bring in new ideas or to monitor the remaining time 

to solve the task. Collecting all task-relevant information that is spread over the participants 

and relating it to the concepts that already have been established during discourse are deemed 

to be important as well as motivational factors and the interpersonal relationship between 

learners.  

Interactivity 

A further characteristic that is often cited in the context of collaboration is the interaction-

sequence of learners participating in an argumentative discourse. Leitão (2000) proposed that 

the pattern of generating an argument, constructing a counterargument, and creating a reply 

that builds upon the counterargument and modifies the initial argument shapes the process of 

social knowledge construction and the transformation through argumentation in a desirable 

way.  

8.4.3 Summary 

From the literature we have sourced, we conclude that exploring conjectures critically, 

generating accurate and structurally sound arguments as well as linking different ideas and 

arguments to each other and to relevant theoretical concepts are characteristics of 

conjecturing and proving that may have an impact on the success. Employing explicit feedback 

strategies, such as paraphrasing or ensuring mutual attention by asking questions as well as 

taking the learning partner’s contributions into account and evaluating them critically, may lead 

to a deep elaboration of the problem situation and simultaneously may foster the development 

of evidence-based arguments. However, whether this is true is subject to empirical 

investigation.  

We term the four individual-mathematical process characteristics critical exploration, accuracy 

and precision, argument structure, and cognitive complexity, the three social-discursive ones 

critical questions, turn-taking-sequence, and reaction to the learning partner’s errors (see 

Study II- Chapter 7). 



Study III 

137 

8.5 The current study 

In this study, we analysed the interaction of prospective mathematics students working in 

dyads on a conjecturing and proving task from an individual-mathematical and social-

discursive point of view. The primary aim of this study was to examine students’ prior 

knowledge, their individual-mathematical and social-discursive process characteristics of 

collaborative conjecturing and proving (that are based on the research presented above), and 

their final products in attempt to better understand how successful conjecturing and proving 

proceed. This approach allows us to find empirical evidence to determine characteristics of 

successful conjecturing and proving processes. In addition, we are interested in investigating 

whether the process characteristics describing the collaborative partners’ interactions correlate 

with each other. 

In particular, we investigated the following research questions: 

(RQ1) Which individual-mathematical and social-discursive process characteristics of 

collaborative conjecturing and proving go along with the success on the resulting conjecture 

and proof (the final product)? 

We assume that overall individual-mathematical and social-discursive process characteristics 

predict overall quality of the final product (H1). From an individual-mathematical point of view 

and based on research on conjecturing and proving (e.g., Boero, 1999; Koedinger 1998, 

Furinghetti & Morselli 2009, Zazkis et al., 2016), we expect that all four individual-mathematical 

process characteristics work together (in response to changing demands during the 

collaborative conjecturing and proving process) to directly impact the final product (H1.1). From 

the social-discursive perspective and based on research on collaborative problem-solving 

(e.g., Blanton & Stylianou, 2014; Roschelle & Teasley, 1995; Vogel et al., 2016), we assume 

that the three social-discursive process characteristics mutually affect the quality of the final 

product as well (H1.2). Regarding the individual-mathematical process characteristics, we 

propose more differentiated hypotheses: We suspect that the critical exploration process 

characteristic influences the quality of the formulated conjecture (H1.1.1). For instance, varying 

examples systematically and testing the constraints of a conjecture have been found to 

positively influence its content and correctness (e.g., Koedinger, 1998; Leuders & Philipp, 

2013; Pease, A. & Martin, 2012). In addition, we assume that the cognitive complexity process 

characteristic is an indicator of the number of generated ideas that are needed to solve the 

proving task (H1.1.2). This hypothesis is based on previous findings that reformulating the 

problem situation, creating analogies to other tasks, and linking ideas and arguments to each 

other and to formal definitions facilitate the development of different ideas and arguments 

related to the proving task (Alcock & Inglis, 2008; Furinghetti & Morselli, 2009; Pease, A. 

& Martin, 2012). Furthermore, we expect that the argument structure process characteristic 
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predicts the overall quality of the final product and, particularly, the soundness of the structure 

of the final proof product (H1.1.3). Thereby, we follow the assumption that the generation of 

arguments based on facts and supported by warrants enables the construction of evidenced-

based conjectures and proofs (e.g., Pedemeonte, 2008), a transition from informal to formal 

arguments (Zazkis et al., 2016), and thus, the construction of proofs that correspond to shared 

mathematical standards. Regarding the accuracy and precision process characteristic, we 

hypothesize that it influences the overall quality of the final product, especially the correctness 

of formal symbols used to present the proof (H1.1.4). It can be argued that applying definitions 

and rules in a precise way as well as checking and re-evaluating previous proving steps may 

help to draw correct inferences (Savic, 2015b; Selden, J. et al., 2014) and to present 

conjectures and proofs in an accurate manner (e.g., Weber & Alcock, 2004). 

(RQ2) Do the relations between the process characteristics of collaborative conjecturing and 

proving and the final product remain substantial when prior knowledge on proof is controlled? 

Do the process characteristics mediate between prior knowledge of proof and the final 

product? 

According to other researchers, we assume that the (learning-) prerequisite prior knowledge 

on proof may influence conjecturing and proving processes (e.g., Selden, A. et al., 2010) as 

well as the final product (e.g., Sommerhoff et al., 2016; Ufer et al., 2008; Weber, 2001) (H2.1). 

As the proposed set of process characteristics is not intended to be exhaustive, a direct and 

an indirect effect of prior knowledge on proof on the final product are expected (H2.2) 

(RQ3) In collaborative settings, do the process characteristics among partners correlate to 

each other? 

Collaborative settings provide opportunities to reflect and adapt one’s thinking (Cohen, 1994; 

Webb, Troper, & Fall, 1995) and to share mathematical knowledge and strategies in attempting 

to influence the thinking of others (e.g., Barron, 2000; Mueller et al., 2012; Yackel & Cobb, 

1996). Martin and Towers (2003) emphasized that the emergent mathematical understanding 

should be understood as something more than merely an individual activity, namely as a 

phenomenon that grows through social interaction. From this perspective, it can be assumed 

that the individual-mathematical process characteristics describing the interactions of both 

learners correlate to each other (H3.1) as well as the individual-mathematical process 

characteristics of one learner and the social-discursive process characteristics of the 

collaborative partner (H3.2). 
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8.6 Method 

8.6.1 Participants and Design 

N = 98 prospective mathematics students (51 male, 3 not reported; Mage=19.83, SDage=3.56) 

from two German universities took part in the present study. The instructional settings were 

embedded in a voluntary two-week preparatory course for university mathematics. The course 

was offered before the beginning of the first semester to support incoming students in the 

transition to university mathematics. It comprised twelve lectures and fourteen tutor exercises 

on basic topics such as propositional and predicate logic, proof techniques, elementary 

number theory, relations, and induction. The number of course attendees was much higher, 

but we excluded participants that missed the “prior knowledge on proof”- test or the 

collaborative learning session.  

On the third day of the course, the students individually worked for 45 minutes on a self-

designed test on their prior knowledge on proof. The collaborative learning session, which was 

recorded and finally analysed, took place on day six. In this session, students were assigned 

to homogenous dyads with respect to their prior school achievement and instructed to work 

collaboratively in a computer-supported-learning environment on an open-ended conjecturing 

and proving task. After around 50 minutes, at the end of the collaborative learning session, 

they were asked to write down their individual solutions.  

8.6.2 Materials and Instruments  

Prior knowledge on proof in elementary number theory 

To assess prospective students’ prior knowledge on proof, we adapted a test that was already 

used in several prior studies (e.g. Kollar et al., 2014; Schwaighofer et al., 2017). The test 

covered four facets of mathematical argumentation and proof skills, namely, five items 

measuring technical proof skills, four items testing flexible proof skills and eight items 

measuring conjecturing and proving skills. As technical proof skills we understand the 

application of simple rules, whereas flexible proof items require more than one proving step 

and additionally, the change of the representational system. The conjecturing and proving 

items of this test involve the evaluation of true and false mathematical statements and the 

subsequent construction of a proof or refutation. All of the items are elementary number theory 

problems (example items can be found in Figure 10).  
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5 items - technical proof skills 

(e.g. Show that for natural numbers a and b the following statement is true: If 15 divides (10a-5b) then 

3 divides (2a-b)) 

 

4 items - flexible proof skills  

(e.g. Prove the following statement: The sum of a natural number and its square plus one is odd.) 

 

8 items - conjecturing skills for false and true statements 

(e.g. Prove or refute the following statement: Sum up the square of an odd number and the square of 

an even number. If you divide this result by 4 the remainder is always 1. 

 

Figure 10: Example items of the test for assessing students’ prior knowledge on proof. The test 

was adapted from Reichersdorfer et al., 2012.  

To score the quality of students’ proof attempts, a four-level coding was applied. Missing or 

irrelevant trials were scored with zero. Partially correct answers that included less than half of 

all central arguments required to completely solve the task were coded with one, and solutions 

that consisted of more than half of all central arguments but with small methodological errors 

(like an incorrect proof structure) received score two. Completely correct argumentations and 

proofs were scored with score three. Two independent raters coded all items and the inter-

rater reliability for each part was found to be good (Mĸ, PKP = .86, SDĸ, PKP =.08).  

Collaborative mathematical and conjecturing processes 

During the collaborative learning session, the participants were seated in dyads working on 

the following conjecturing and proving task: “Take four consecutive numbers, multiply them, 

and add one. Repeat this and try to find similarities. Formulate a conjecture and prove it!”. The 

task was presented in a computer-supported learning environment that allowed the students 

to write down their individual ideas and arguments, to exchange them in a shared workspace, 

and to verbally discuss their approaches. The whole working process was recorded and later 

analysed by two independent raters. For the analysis a high-inference coding scheme was 

developed that allowed to assess the process quality along four individual-mathematical 

(accuracy and precision, argument structure, cognitive complexity, critical exploration) and 

three social-discursive process characteristics (critical questions, turn-taking-sequence, 

reaction to the learning partner’s errors) (see Study II – Chapter 7). Since quality assessments 

require some interpretation by the rater and thus, often result in a low reliability, a detailed 

coding handbook including descriptions about the different quality levels of each process 

characteristic was written and used in an extensive rater training. In this way we tried to 

standardize judgements as much as possiblTa to reach a high inter-rater-reliability. Each scale 

of a process characteristic comprised five different quality levels that went from 1 (excellent) 

to 5 (very poor). The raters were allowed to take notes of their impressions while watching the 

recordings to make it easier to remember and to evaluate the learner’s interaction. In order to 
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reduce the memory load, we split each video into two equal-length parts that were rated 

separately for each learner of one dyad. A short summary of the rating scales of the process 

characteristics can be found in Table 11. The interactions of twenty undergraduate students 

were coded by two independent raters. As a measure of inter-rater reliability, we calculated 

the intra-class-correlation for each process characteristic. All ICCs were above 0.7 and thus, 

allow a meaningful interpretation (Wirtz & Caspar, 2002). We calculated the overall mean of 

the four individual-mathematical process characteristics (Mindividual-mathematical = 2.849, SDindividual-

mathematical = .417) and the overall mean of the three social-discursive process characteristics 

(Msocial-discursive= 2.938, SDsocial-discursive = .340). Both overall mean values indicated a satisfactory 

quality level and correlated significantly (r = .412; p < .001). The standard deviations gave 

some evidence that we were able to measure the variance within the interactions of each 

learner during their collaborative discourse. The reliability of the overall individual-

mathematical scale was α = .73 and the reliability of the overall social-discursive scale was α 

= .51. 

The quality of the final product 

We used the individual solutions that each student created after the collaborative learning 

session to measure the students’ conjecturing and proving performance and analysed them 

with regard to the quality of the formulated conjecture and the quality of the constructed proof. 

The quality of the conjecture was assessed along one criterion reaching from 0 (incorrect) to 

2 (correct and creative). For evaluating the quality of the proof, we used three different criteria. 

The first one captured the number of arguments produced (0: less than half of all arguments 

required to completely solve the task, 1: more than half of all arguments, but not all arguments, 

2: proofs that include all relevant arguments). The quality of the structure of the proof was 

measured along the second proof criterion (0: proofs that showed large structural gaps, 1: 

proof with small structural gaps, 2: proofs that were valid from a structural point of view). The 

third proof criterion assessed the quality of the use of mathematical symbols and language (0: 

large formal errors, 1: small formal errors that have no influence of the meaning, 1: formally 

correct arguments). After the coding process the four criteria were aggregated to a product 

score that served as the measurement-value for the quality of the final product (presenting the 

conjecturing and proving performance of a student). The reliability of the overall product scale 

was α = .73. Double coding of over 10% of the data led to the inter-rater reliability of Mĸ, product 

= .78 (SDĸ, product = .13).  
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Table 11: Seven process characteristics of collaborative conjecturing and proving processes and the resulting 
scales of the rating scheme. 

 Description of the scale 

 

Content accuracy Focuses on the extent to which mathematical arguments and ideas are 
captured correctly and accurately, and on the extent to which a learner re-
evaluates previous proving steps by critically analyzing impasses and 
mistakes. 

Argument structure  Measures whether mathematical arguments are specified by basing claims on 
facts, making warrants explicit, and using qualifiers to point out under which 
conditions the argument is assumed to stay true. 

Cognitive 
complexity 

Focuses on how key arguments are developed and combined at different 
phases of the proof construction process. Thereby, activities such as 
changing the representation system or cross-referencing within different ideas 
play an important role. 

Critical exploration Refers to the extensive investigation of conjectures by generating examples 
and counter-examples, exploring their limits, and formulating more than one 
initial conjecture. 

Critical questions Refers to all contributions that critically question the ideas and arguments of 
the learning partner or one’s own proving steps and that demand explicit 
feedback that is attempted to be implemented.  

Turn-taking-
sequence 

Measures whether the learner takes the partner’s contributions into account 
either by extending or refining the learning partner’s ideas or by strengthening 
his / her own arguments. 

Reaction to the 
learning partner’s 
errors 

Focuses on the extent to which the learner addresses the errors and 
impasses produced by the learning partner and measures whether the learner 
finds explanations for these errors or proposes alternative solution steps. 

 

8.7 Results 

8.7.1 Relations between process characteristics and the quality of the final product 

To investigate the impact of different process characteristics of collaborative conjecturing and 

proving on the quality of the resulting product, linear regression analyses were conducted 

(RQ1) using Mplus Version 7.4 (Muthén & Muthén, 2015) and taking the hierarchical structure 

of the data (students nested in dyads) into account. We assumed that the overall mean value 

of the individual-mathematical process characteristics as well as the overall mean value of the 

social-discursive process characteristics predict the quality of the resulting conjecture and 

proof. Therefore, the product score that assessed the quality of the resulting conjecture and 

proof served as dependent variable in each of the analyses. Results showed that the overall 

mean value of the individual-mathematical process characteristics had a significant impact on 

the overall quality of the resulting conjecture and proof (supporting our assumption H1.1; 
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β̂ = -.392; p < .001). This could not be hold for the social-discursive component of 

argumentation. Here, the overall mean value of the social-discursive process characteristics 

was no predictor for the overall quality of the final product (refuting our assumption H1.2; 

β̂ = -.043; p = .832) (see Table 12).  

Since these results did not completely meet our expectations, we proceeded with some further 

explorative analyses. We investigated whether there is a significant interaction between 

individual-mathematical and social-discursive process characteristics on the quality of the final 

product. Therefore, we conducted a multiple linear regression analysis with the overall mean 

value of the individual-mathematical process characteristics, the overall mean value of the 

social-discursive process characteristics, and their respective product term as predictive 

variables and the product score as dependent variable. To facilitate the interpretation of the 

results, we centred the predictive variables by subtracting the sample means of the individual-

mathematical and social-discursive components from their respective values. Again, the 

overall mean value of the individual-cognitive process characteristics showed a significant 

impact on the overall quality of the final product (β̂ = -.349; p < .001), but no significant effect 

of the social-discursive component could be found (β̂ = -.005; p = .972). The interaction 

between individual-mathematical and social-discursive process characteristics was statistically 

significant (β̂= .320; p = .003) indicating that students with higher social-discursive process 

quality profited more from the positive impact of the individual-mathematical process 

characteristics on the overall quality of the final product than students with lower social-

discursive process quality. 

To examine the hypotheses (H1.1.1) and (H1.1.2) we conducted two single probit regression 

analyses. A significant impact of critical exploration on the quality of the produced conjecture 

could be discovered (supporting our assumption H1.1.1; β̂ = -.321; p = .034) as well as a 

significant impact of cognitive complexity on the number of arguments (supporting our 

assumption H1.1.2; β̂ = -.370; p = .002) (see Table 12).  

Regarding the two content-specific process characteristics (argument structure; accuracy and 

precision), our assumptions H1.1.3 and H1.1.4 could be supported. Results revealed that the 

process characteristic accuracy and precision had a significant influence on the quality of the 

resulting product (β̂ = -.449; p < .001) and in particular on the soundness of the structure of the 

final proof (supporting our assumption H1.1.3; β̂ = -.471; p < .001). As expected, the accuracy 

and precision process characteristic predict the overall quality of the final product (β̂ = -.369; 

p < .001, especially the correctness of formal symbols used to present the proof (supporting 

our assumption H1.1.4; β̂ = -.299; p = .007).  
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Furthermore, we observed that the process characteristics critical exploration and cognitive 

complexity were no predictors for the overall quality of the final proof (β̂ = -.111; p = .391; 

β̂ = -.187; p = .090). 

8.7.2 Relations between process characteristics, the quality of the final product, and 

prior knowledge on proof 

Regarding the second research question (RQ2), we examined whether the relation between 

individual-mathematical process characteristics and the final product remain substantial if prior 

knowledge on proof is controlled. We investigated the direct effect of prior knowledge on proof 

on the quality of the final product and the indirect effect mediated by individual-mathematical 

process characteristics. The quality of the final product served as the measurement value of 

students’ conjecturing and proving performance.  

Descriptive results of students’ prior knowledge on proof and the final product can be found in 

Table 13 and 14. The participants seemed to have less problems to identify and refute false 

statements than to solve technical proof items, flexible proof items or to evaluate and prove 

true statements. The overall mean value of prior knowledge on proof was MPKP = 1.414 (SDPKP 

= .587). This implies that on average less than half of all arguments required to completely 

solve the items were present.  

A path analysis was conducted to estimate the influence of prior knowledge on proof on the 

individual-mathematical process characteristics and the final product (representing students’ 

conjecturing and proving performance). Prior knowledge on proof had a significant impact on 

the overall mean value of the individual-mathematical process characteristics (supporting our 

assumption H2.1; β̂ = -.5188, ẑ = 4.999, p < .001). Moreover, a statistically significant direct 

effect (β̂ = .238, ẑ = 2.036, p = .042) and an indirect effect linking prior knowledge on proof and 

the final product by the overall mean value of the individual-mathematical process 

characteristics (β̂ = .139, ẑ = 2.112, p = .035) were found, confirming our assumptions (H2.2). 

Overall, the specified model explained 19.5% of the variance of conjecturing and proving 

performance, and 26.8% of the variance of the overall mean value of the individual-

mathematical process characteristics.  

8.7.3 Relations between the process characteristics of students within one dyad  

To analyse the correlative relationship between the individual-mathematical process 

characteristics of both students, and the relationship between the individual-mathematical 

process characteristics of a student and the social-discursive process characteristics of the 

collaborative partner (RQ3), we restructured the dataset and considered both halves of the 

working process separately. In the first half, no significant relationship between the individual-
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mathematical process characteristics of a student and the social-discursive process 

characteristics of the collaborative partner could be observed (r = .106; p = .398). Also, the 

individual-mathematical process characteristics of both learners seemed to be unrelated. Yet, 

in the second half of the working process, results indicated that the individual-mathematical 

process characteristics of the learner and the social-discursive process characteristics of the 

respective learning partner were significantly related to each other (r = .433; p < .001). 

Additionally, we found a highly significant relationship between the individual-mathematical 

process characteristics of both students (r = .648; p < .001) at this part of the working process.  

Table 12: Results of linear regression analyses predicting the quality of the resulting product. 

Depended 
variable 

Predictor β S. E.β β̂ p 

Overall 
quality   
product 

  

Mind-math 

R2 

 

-.316 

.103 

.068 

 

-.392 <.001 

 

Overall 
quality   
product 

 

Msoc-dis 

 

 

-.039 .185 -.043 .832 

Overall 
quality   
product 

Mind-math 

Msoc-dis 

Mind-math x Msoc-dis 

R2 

 

-.278 

-.005 

.335 

.248 

.113 

.134 

.085 

-.349 

-.005 

.320 

.013 

.972 

<.001 

Overall 
quality   
product 

accuracy and precision 

R2 

 

-.226 

.137 

 

.053 -.369 <.001 

Overall 
quality   
product 

argument-structure 

R2 

 

-.259 

.202 

.054 -.449 <.001 

Overall 
quality 
product 

 

cognitive complexity -.101 .057 -.187 .078 

Overall 
quality 
product 

 

critical exploration -.001 .071 -.111 .392 
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Product 
criterion: 
conjecture 

critical exploration 

R2 

 

 

-.331 

 

.103 

.151 -.321 .103 

Product 
criterion: 
number of 
arguments 

 

cognitive complexity 

R2 

 

-.379 

 

.137 

.116 -.370 .001 

Product 
criterion: 
structure 

 

argument structure 

R2 

 

-.257 

 

.222 

.061 -.471 <.001 

Product 
criterion: 
correctness 

accuracy precision 

R2 

 

-.172 

 

.089 

.065 -.299 .007 

 

Table 13: Mean values and standard derivations for the four quality facets of prior knowledge on proof. 

 M (SD) 

Technical proof skills 1.381 (.740) 

Flexible proof skills 1.259 (.807) 

Conjecturing true statements 1.355 (.715) 

Conjecturing false statements 1.660 (.787) 

Note: min=0; max=3 
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Table 14: Mean values and standard derivations for the quality criteria of the resulting proof. 

 M (SD) 

Quality of the conjecture 1.337 (.592) 

Number of arguments 1.211 (.845) 

Structure of the proof 1.158 (.621) 

Correctness of mathematical 

symbols 

1.084 (.804) 

Note: min.=0; max=2 

8.8 Discussion 

The present study examined the interactions of prospective undergraduate mathematics 

students working collaboratively on a conjecturing and proving task and sheds light onto the 

relations between different individual-mathematical and social-discursive process 

characteristics, the quality of the resulting product, and the prior knowledge on proof. Even 

though the concepts of argumentation and proof (e.g., Balacheff, 1999; Boero et al., 1996; 

Mariotti, 2006) as well as students’ difficulties within conjecturing and proving (e.g., Martin & 

Harel, 1989; Moore 1994; Epp, 2003) have already been objects of extensive studies, this 

article addressed a largely unexplored field in mathematics educational research, namely the 

empirical investigation of different process characteristics of collaborative conjecturing and 

proving and their interplay in predicting conjecturing and proving performance, respectively the 

quality of the resulting product.  

Most studies on conjecturing and proving were based on small sample sizes and qualitative 

findings (e.g., Koedinger, 1998; Savic, 2015b; Selden, A. et al., 2010) that did not allow any 

statistical analyses. Therefore, we saw the need for systematically examining the impact of 

process characteristics that are assumed to be important from a theoretical point of view on 

the quality of the resulting product (by controlling for prior knowledge on proof) in order to 

identify key characteristics for successful collaborative conjecturing and proving processes. 

Furthermore, we contribute to the mathematics educational literature by studying individual-

mathematical and social-discursive process characteristics and by analysing the relations 

between these process characteristics of one student and the process characteristics of the 

collaborative partner.  
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8.8.1 The identification of key characteristics of successful collaborative conjecturing 

and proving processes 

We extracted different individual-mathematical and social-discursive process characteristics of 

collaborative conjecturing and proving from the literature that were assumed to play a crucial 

role for the success. Our results indicate that the process characteristics related to the 

individual-mathematical component of mathematical argumentation predict the quality of the 

resulting product. This coincides with our hypothesis (H1.1) that grounded on prior research 

(e.g., Pease, A. & Martin, 2012; Savic, 2015b; Selden, A. & Selden, 2013b). For instance, 

Savic (2015b) has already claimed that “the proof-construction process could have a lasting 

effect on the correctness of a student's proofs” (p. 81). In addition, we found empirical evidence 

for our assumptions that ideas and arguments have to be formulated with precision (H1.1.3) 

and based on facts and warrants (H1.1.4) during the collaborative discourse in order to 

succeed. These results supported the claims and findings of other researches that evaluating 

the truth or falsity of mathematical statements requires the correct use of definitions, concepts, 

and rules (e.g., Epp, 2003; Moore, 1994) as well as the ability to express mathematical ideas 

in a largely formal correct way (e.g., Selden & Selden, 2011). In addition, it supported the 

finding that highly-successful students are able to identify and rethink incorrect assertions or 

impasses (Weber, 2009). Moreover, prior studies have already shown that the construction of 

explicit warrants (Zazkis et al., 2016) and the additional use of modal qualifiers to justify 

deductive and non-deductive conclusions are crucial for the process of solving proof problems 

(Inglis et al., 2007). Furthermore, our study points out that the critical exploration of conjectures 

by generating (counter-) examples and testing their limitations is a predictive criterion for the 

quality of the produced conjecture (H1.1.1), confirming the observations by other researchers 

(Koedinger, 1998; Pease & Martin, 2012). Regarding the process characteristic cognitive 

complexity, we found empirical support for our assumption that changing the representation 

system, creating analogies to other tasks, and linking ideas and arguments to each other and 

to formal concepts can encourage students to bring in new perspectives in the proof 

construction process and thus, to generate arguments that are needed to solve the proving 

task (H1.1.2). Other researchers also emphasized the importance of working flexibly with 

different representations (e.g., Alcok & Inglis, 2008) and of combining different problem-solving 

steps (e.g., Hiebert et al., 2003) to produce arguments.  

Even though the three social-discursive process characteristics (critical questions, turn-taking-

sequence, reaction to the learning partner’s errors) addressed aspects that were supposed to 

be relevant for collaboration quality from a theoretical point of view (e.g., Meier et al., 2007; 

Roschelle & Teasley, 1995) and that in turn may positively affect students’ conjecturing and 

proving performance (cf. Mueller et al., 2015), no significant impact on the final product could 

be observed. On the one hand, this refutes the assumption (H1.2) that students who build upon 
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each other’s arguments and who question the ideas of their learning partners show a better 

performance at the end (cf. Kneser & Ploetzner, 2001). However, some researchers of other 

disciplines also were not able to find substantial correlations between collaborative process 

quality and solution quality (Meier et al., 2007; Sampson & Clark, 2009). One reason might be 

that some learners do not refer to each other’s contributions at all, but still construct knowledge 

(constructive activities) (Chi, 2009; Chi & Wylie, 2014). Another explanation might be that some 

learners who are initially interested in the collaborative partners’ work, but do not receive 

explanations from them that are understandable and expedient, start to “self-regulate their 

learning behaviour by making more use of their internal and less use of their social resources” 

(Kneser & Ploetzner, 2001, p. 79) after some time.  

On the other hand, the interaction effect of individual-mathematical and social-discursive 

process characteristics indicates that students who show a high individual-mathematical 

process quality and high collaboration quality (above the overall average values respectively) 

may benefit more from their individual-mathematical activities than students who are able to 

present the same individual-mathematical process quality but lower collaboration quality. It 

seems that the impact of high-quality individual-mathematical process characteristics on the 

quality of the resulting product might be only shown in combination with high collaboration 

quality. The process of explaining and questioning ideas may stimulate learners to re-evaluate 

their own arguments and thus, might even make themselves aware of possible impasses in 

their reasoning (van Boxtel, van der Linden, & Kanselaar, 2000). Productive collaboration 

between successful students may also sustain the motivation to explore conjectures more 

deeply and to rethink already produced arguments (Roschelle & Teasley, 1995). Moreover, it 

is assumed that “embedding a conjecture in a different body of knowledge can lead to further 

insights into the conjecture” (Pease, A., Smaill, Colton, & Lee, 2009, p. 133). 

In summary, we can say that we have identified different process characteristics that predict 

the quality (or at least one quality criterion) of the resulting product. Especially the individual-

mathematical process characteristics can be considered as key characteristics of successful 

collaborative conjecturing and proving processes. Regarding the social-discursive process 

characteristics, it can be deduced that collaboration is not necessarily sufficient for the initial 

performance on an argumentation task (Meier, et al., 2007; Sampson & Clark, 2009), but that 

the impact of collaboration process quality may also depend on the individual-mathematical 

process characteristics. 
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8.8.2 Mediation effects of individual-mathematical process characteristics of 

collaborative conjecturing and proving processes 

One further purpose of this study was to investigate whether collaborative conjecturing and 

proving processes link prior knowledge on proof to conjecturing and proving performance. The 

results of this study show that collaborative conjecturing and proving processes that can be 

assessed by different process characteristics mediate between prior knowledge on proof on 

the one hand and the final product on the other hand (H2), and thus support the framework 

proposed by Blömeke et al. (2015). This framework suggests that processes are mediating 

elements between cognitive (and affect-motivational) dispositions and the situation-specific 

performance. Prior knowledge on proof as (learning-) prerequisite represented the cognitive 

dispositions related to mathematical argumentation skills, the final product represented the 

performance in a collaborative conjecturing and proving situation. We examined this mediating 

mechanism as well as the direct effect of prior knowledge on proof on conjecturing and proving 

performance. Our findings provided empirical evidence for all of these theoretical 

considerations and revealed the overall mean value of the individual-mathematical process 

characteristics as a significant mediator. The estimated direct effect of prior knowledge on 

proof on the quality of the resulting product confirmed that individual-mathematical process 

characteristics do not completely mediate the impact of prior knowledge on proof on 

conjecturing and proving performance. This result indicates that conjecturing and proving 

processes as “sequence[s] of mental and physical actions” (Selden, A. et al., 2010, p. 205) 

may contain crucial processes that are not directly accessible (e.g., Abrahamson & Lindgren, 

2014), but that may explain something beyond the performance and thus, it might be possible 

to infer “kinds of difficulties in students’ proof construction processes from their written proof 

attempts” (Selden, J. et al., 2014, p. 246). This has to be examined in further studies. Overall, 

we can conclude from the path analysis that prior knowledge on proof predict processes and 

performance in specific situations (cf. Spencer & Spencer, 2008) and that individual-

mathematical process characteristics play a mediating role within this relationship.  

8.8.3 Relations between dyad partners  

It is generally accepted that collaborative work between peers provides a promising 

environment for problem-solving and learning (e.g., Kaartinen & Kumpulainen, 2002; Kneser 

& Ploetzner, 2001; Roschelle & Teasley, 1995). In this study we were interested in analysing 

whether the individual-mathematical contributions of a learner and the social-discursive 

contributions of the collaborative partners are related to each other. Our results suggest that 

the relationship between the process characteristic of learners working collaboratively on a 

conjecturing and proving task changes during the discourse. The contributions of both learners 

seem to be more affected by their learning prerequisites at the beginning, but their individual-
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mathematical process characteristics became more interrelated over the time as well as the 

social-discursive contributions of one learner and the individual-mathematical contributions of 

the corresponding partner. One reason could be that students initially have to find out which 

role they want to assume during the discourse and which knowledge they already possess or 

need to solve the given task (Kneser & Ploetzner, 2001). After this initial phase, it has been 

shown that the learners align themselves in their cognitive contributions and that there is a 

positive relationship between the quality of social-discursive activities of one learner and the 

individual-mathematical process characteristics of the dyad partner. These findings are in 

accordance with the observations of Anjewierden et al. (2011) that students within a 

collaborative learning setting “mirror” each other in such a way that if one learner contributes 

a more domain-related message, the other learner also tends to post a domain-related 

statement. We concur with other researchers that collaboration could influence the building of 

(mathematical) arguments and that also the way how students interact during the discourse 

depend on their prior knowledge and process characteristics (Kneser & Ploetzner, 2001; 

Mueller et al., 2012). 

8.8.4 Restrictions and perspectives 

This exploratory study provides empirical evidence for the effectiveness of different process 

characteristics that have been assumed to be relevant for successful conjecturing and proving 

processes from a theoretical point of view. We tested theoretical assumptions about individual-

mathematical and social-discursive process characteristics that were primarily based on 

findings of prior case studies. Even though our study broadens the literature on conjecturing 

and proving by systematically examining these process characteristics and by presenting 

findings that go beyond small-sample-sized, qualitative research studies and purely theoretical 

considerations, there are some limitations that have to be mentioned. By analysing the 

interactions of undergraduate students working collaboratively on one conjecturing and proving 

task, we can only describe which process characteristics within this single context have an 

effect on the quality of the resulting product. The contextualized character of argumentation 

skills, which means that person- and situation-specific factors, and especially the interplay 

between these both factors, play an important role (Koeppen et al., 2008), could not be taken 

into account in this study. To manage this problem, several tasks should be used to investigate 

students’ conjecturing and proving processes in future studies. A first step might be to increase 

the number of tasks in the context of number theory and then to present conjecturing and 

proving task from other context areas such as geometry (e.g. Komatsu, 2011). Modifying the 

context with regard to the intended proving activities may allow to detect differences between 

the (learning-) prerequisites and processes that are required to solve proof-reading, proof-

validation or proof-construction tasks (cf. Mejía-Ramos & Inglis, 2009; Selden, A. & Selden, 
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2015; Sommerhoff, 2017). A further restriction is that our study is confined to individual-

mathematical and social-discursive aspects, neglecting affective-motivational dispositions and 

processes (Koeppen et al., 2008; Weinert, 2001). It might be fruitful to extend our coding-

scheme by operationalizing affective-motivational process characteristics and by taking meta-

cognitive processes, such as reflection, (Kneser & Ploetzner, 2001) into account.  

With respect to our analyses, a major limitation lies in the small sample size and in the relatively 

small number of process characteristics. SEM analyses with latent variables, which require 

certainly more participants than the equivalent model with one observed variable and a 

representing number of individual-mathematical and social-discursive process characteristics, 

would be preferable, since single indicators (respectively process characteristics) are usually 

measured with errors (Wolf, Harrington, Clark, & Miller, 2013). Additionally, due to the small 

sample size, the results of the moderation analysis and correlations analysis (with the 

reconstructed dataset) have to be interpreted carefully.  

Finally, regarding our social-discursive process-characteristics, we did not check how exactly 

students build upon the ideas of their learning partners. This means that we did not differentiate 

between co-construction, integration and modification (Mueller et al., 2012) or between dialogic 

and dialectic dialogues (Vogel et al., 2016; Wegerif, 2008). It would be interesting if a more 

detailed analysis of the social-discursive component would present the assumed relevance of 

collaboration quality better.  

8.8.5 Conclusions  

Conjecturing and proving processes are considered as core components in which 

mathematical argumentation skills become (at least partially) accessible (cf. Blömeke, 2015) 

and which substantially affect the quality of the resulting product (representing conjecturing 

and proving performance) (e.g., Savic, 2015b). Knowledge of the dependencies of these 

processes on (learning-) prerequisites and their impact on the quality of the final conjecture 

and proof appears crucial for teaching and interventions in schools and higher mathematics 

education to foster the development of mathematical argumentation skills. As a starting point 

we suggested and empirically investigated a set of individual-mathematical and social-

discursive process characteristics that have been assumed to describe successful 

collaborative conjecturing and proving processes from a theoretical point of view. From our 

study’s findings, we draw the following conclusions: 

1) Individual-mathematical process characteristics of collaborative conjecturing and proving 
have a significant impact on the quality of the resulting product. 

Generating structurally sound arguments that are based on facts, supported by warrants that 

strengthen the connection of the facts to the claim, and that are classified by qualifiers (e.g., 
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Clark, D. B. et al., 2007; Inglis et al., 2007; Toulmin, 1958) turned out to be key characteristics 

of successful conjecturing and proving processes as well as the accurate and precious 

formulation of mathematical ideas and arguments (e.g., Reinholz, 2016; Savic, 2015b) during 

the collaborative discourse. Exploring conjectures critically (e.g., Koedinger, 1998; Pease, A. 

& Martin, 2012) and linking different ideas to each other and to formal concepts (e.g., Pease, 

A. & Martin, 2012) appeared also to be essential, but particularly for a specific criterion 

representing the quality of the produced solution.  

2) Social-discursive process characteristics show no significant impact on the quality of the 
resulting product, yet the interaction of individual-mathematical and social-discursive 
process characteristics does.  

Against the theoretical assumptions, the social-discursive process characteristics have not 

directly influenced the quality of the resulting conjecture and proof. However, our results point 

to the significant effect of the interaction of individual-mathematical and social-discursive 

processes, indicating that collaboration quality is necessary, but not sufficient for the success 

of collaborative conjecturing and proving processes. 

3) Individual-mathematical process characteristics (partially) mediate the impact of prior 
knowledge on proof on the quality of the final product.  

From this finding, we conclude that conjecturing and proving processes (beyond the outcome) 

could provide additional information about students’ mathematical argumentation skills, but 

that the inclusion of processes involves further problems as mental processes sometimes 

remain hidden (e.g., Blömeke et al., 2015; Selden, A. et al., 2010). 

4) The relations between the process characteristics of a dyad group become stronger during 
the argumentative discourse.  

The results of this study indicate that differences of how students within one dyad engage in 

collaborative conjecturing and proving processes and utilize their prior knowledge become less 

important during their collaborative work as they adjust their process characteristics to each 

other during the argumentative discourse (cf. Anjewierden et al., 2011). 

8.8.6 Theoretical and practical implications  

In view of our results, at least in the context of the study, specific focus might be given to the 

individual-mathematical process characteristics of collaborative conjecturing and proving, in 

particular on generating accurate and structural sound arguments during the argumentative 

discourse. It might be useful making students aware of these activities by explicitly discussing 

them in (advanced) undergraduate mathematics courses and to design interventions that 

address these process characteristics. For instance, it would be a good starting point to request 

students to construct warrants paired with appropriate modal qualifiers (Inglis et al., 2007) for 

relatively easy conclusions or to ask them to analyse the structure of a written proof. Instructors 
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can explicitly demonstrate their ways of generating logically sound arguments in their lectures 

and point out why the warrant they have constructed is needed (Harel & Sowder, 1998). 

Regarding the correct and accurate formulation of arguments, we suggest that students should 

discover and discuss different interpretations of definitions and arguments (Selden, J. et al., 

2014), and that instructors explicitly convey how arguments can be accurately formulated by 

using, for instance, formal notations.  

As we have extracted and identified some key characteristics of successful conjecturing and 

proving processes, it would be possible to adapt our coding-scheme as a diagnostic instrument 

which teachers and tutors may use to detect students’ problems within conjecturing and 

proving and to find out where support is needed. This would allow a real-time analyses of 

students’ (collaborative) conjecturing and proving processes. In addition, learners may be 

asked to evaluate their own collaborative conjecturing and proving processes along these key 

characteristics of collaborative conjecturing and proving in order to scaffold learning and 

encourage meta-cognitive skills (Lee, E. Y. C., Chan, & van Aalst, 2006; Meier et al., 2007). 

Based on our findings regarding the interaction effect of individual-mathematical and social-

discursive process characteristics, it would be promising to promote social-discursive process 

characteristics in addition to the individual-mathematical ones (cf. Vogel et al., 2017) and to 

design scaffolds that address both components of collaborative conjecturing and proving 

processes. As the social-discursive process characteristics did not directly affect the quality of 

the final product, researchers may investigate whether collaborative learning settings would 

be more beneficial for the long-term learning of mathematical argumentation and proof than 

for the instant performance on a conjecturing and proving task (cf. Sampson & Clark, 2009). 

From our analysis of the mediation effect of prior knowledge on proof on the resulting product 

by individual-mathematical process characteristics, we deduce that it would be possible to 

scaffold the (learning-) prerequisites that are necessary to effectively engage in collaborative 

conjecturing and proving processes in order to stimulate the individual-mathematical process 

characteristics.  

Considering the relations of process characteristics between dyad students, it would be 

beneficial to deliberately choose the “tuning-in-phases” for interventions, as these phases may 

provide opportunities for better and more innovative argumentation processes. However, 

whether the students jointly converge to a higher or lower quality level remains a question for 

further investigations.  
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9 Discussion 

9.1 Summary of the central findings 

Much research on mathematical argumentation and proof has focused on the products, the 

accuracy and validity of the conjectures and proofs themselves (e.g., VanSpronsen, 2008). 

While this is a valuable endeavour, it is just as important to identify and investigate the 

characteristics of successful conjecturing and proving processes.  

In this dissertation, we presented three studies, one literature review and two empirical 

analyses, on (collaborative) conjecturing and proving processes. We will summarize the 

theoretical framing and central findings of the three studies and, where possible, show links 

between them. 

9.1.1 Theoretical framing 

The main goal of this dissertation was to systematically describe and analyse process 

characteristics of collaborative conjecturing and proving and to investigate their relevance for 

the resulting product (the quality of the formulated conjecture and constructed proof). The first 

chapter provided a short summary of previous research’ findings about students’ difficulties 

with conjecturing and proving. In the second chapter, an individual-mathematical and social-

discursive perspective on mathematical argumentation and proof were presented. We 

compared different definitions of both constructs and drew attention to the three elements 

(resources, processes, and situations respectively products) of argumentation skills. 

Conjecturing and proving processes were conceptualized as specific types of argumentation 

processes, consisting of an individual-mathematical and social-discursive component (cf. 

Kollar et al., 2014). The individual-mathematical component captured phases of exploring the 

problem situation, formulating a conjecture, selecting appropriate arguments and organizing 

them into a deductive chain (e.g., Boero, 1999; Reichersdorfer et al., 2012). Phases of 

communicating and presenting one’s own arguments (e.g., Hanna, 1990) as well as evaluating 

and integrating the arguments of others (e.g., Chi, 2009; Leitão, 2000) were allocated to the 

social-discursive component of conjecturing and proving processes. We set out an analytic 

framework for measuring mathematical argumentation skills by differentiating between 

(learning-) prerequisites, processes, and the final product. In particular, we were interested in 

figuring out how conjecturing and proving processes can be assessed. We suggested to focus 

on process characteristics that have been mentioned in the literature on (mathematical) 

argumentation, taking both components of conjecturing and proving into account, and 

investigating their connection to the quality of the final proof products. Conjecturing and proving 

process characteristics were considered as observable variables that mediate between prior 
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knowledge on proof and the final product (including the formulated conjecture and the 

constructed proof). 

9.1.2 Central findings of the literature review 

Our research review provided an elaborated summary of common claims and empirical 

findings of previous research regarding high-quality conjecturing and proving processes. It 

started with the application of a topic-modeling method, resulting in a clustering of different 

research topics on conjecturing and proving and the extent to which each of these topics has 

been researched in the field of mathematics education. The algorithm suggested to 

differentiate 17 topics associated with the concepts of conjecturing and proving. The most 

common topics are “the nature of proof and teaching of proof” topic, followed by the “university 

level” topic and “the school students and teachers” topic. According to the three perspectives 

on proving outlined by Stylianides, G. J. et al. (2017) namely the problem-solving perspective, 

the proving as convincing perspective, and the proving as a socially-embedded activity 

perspective, we attempted to allocate each topic to one of these research perspective on 

conjecturing and proving. We observed that the studies that are most representative for one 

topic typically share one common perspective on conjecturing and proving. This means that 

they are based on similar theoretical constructs, investigate comparable research questions, 

and sometimes even apply similar research methods. Besides the three established 

perspectives on proving, we identified a new one, namely the discovery perspective. This 

perspective fits with the discovery function of proof, as described by Villiers (1999). 

Furthermore, our findings support the observation of Stylianides, G. J. et al. (2017) that some 

articles and research reports cannot clearly be allocated to one single perspective on 

conjecturing and proving. This especially concerns the “nature of proof and teaching of proof” 

topic or, for instance, the “argument structure” topic. The facts that the “nature of proof and 

teaching of proof” topic itself discusses the role and functions of proof and that most articles 

and research reports are composed of words from this topic may explain why it covers different 

perspectives on conjecturing and proving. Articles and research reports that represent the 

“argument structure” topic focussed on the cognitive and structural continuities and distances 

between argumentation and proof and hence pointed to a topic that can be elucidated from all 

perspectives. Overall, the topic model provides a first systematization of the large body of 

research on conjecturing and proving. Subsequently, the claims and findings of the most 

representative articles and research reports for each topic (in total 45 papers) have been 

analysed qualitatively and synthesized to explore which processes related to conjecturing and 

proving are considered crucial for the success. We decided to distinguish between the sub-

goals within conjecturing and proving processes that are often described in more general 

terms, difficult to operationalize, and the process characteristics of conjecturing and proving 
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that are assumed to be helpful in accomplishing these sub-goals. Several studies, 

independently of their research topics, demonstrate consistency in the sub-goals (related to 

conjecturing and proving) which they considered as necessary intermediate steps within 

conjecturing and proving processes. We extracted eleven different types of sub-gaols from the 

literature on conjecturing and proving, incorporating some sub-goals related to broader 

categories (for instance, the sub-goal “inventing and formulating new conjectures or refining 

existing conjectures” can be assigned to an overarching category “exploring the problem-

situation”) and some sub-goals that define a new category such as the sub-goal “recovering 

from impasses/ avoiding errors”. Regarding the process-characteristics of conjecturing and 

proving, we have identified nine categories that capture those characteristics that have been 

described as observable processes and as processes that occur in the context of successfully 

achieving one or more of these sub-goals. For instance, the process characteristics category 

“example use” that includes process characteristics such as “varying examples systematically”, 

“considering boundary cases”, “choosing examples with specific properties”, “testing a diversity 

of examples”, and “attempting to construct counterexamples” was frequently discussed in the 

context of the sub-goal “developing a strong understanding of the proof/ estimation of the truth” 

or of the sub-goal “intervening and formulating new conjectures or refining existing 

conjectures”, but also in the context of the sub-goal “drawing inferences” or the sub-goal 

“communicating and presenting arguments” (cf. Ellis et al., 2017; Ozgur et al., 2017). Process 

characteristics such as “splitting a task into more, simpler sub-tasks” (Pastre, 1989) or “working 

forwards from the givens and working backwards from what one is required to show” (cf. 

Carroll, 1977; Küchemann & Hoyles, 2006) form the process characteristics category “domain-

general problem-solving processes that, for instance, occur in the context of the sub-goal 

“structuring and organizing” or “recovering form impasses/ avoiding errors”. In this way, we 

categorized the previous studies’ claims and findings about promising conjecturing and proving 

processes with regard to sub-goals and process characteristics of conjecturing and proving. 

The framework we created addresses both dimensions, the sub-goals and process 

characteristics, and therefore demonstrates the range of processes that may occur during 

conjecturing and proving, and how they may be employed in a deliberate and productive 

manner. 

9.1.3 Summary of the technical report 

In addition to the theoretically comprehensive overview of the sub-goals and process 

characteristics of conjecturing and proving that our literature review provides, we have set 

ourselves the aim of empirically investigating various types of process characteristics. This 

implies to overcome some methodological challenges, such as the development of a rating 

scheme that allows to quantify undergraduate students’ collaborative conjecturing and proving 
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processes. We focussed on undergraduate students’ collaborative conjecturing and proving 

processes for the following reasons: (i) there is a lot of research on undergraduate students’ 

(un-) successful proof attempts, what facilitates the extraction and defining of theory-based 

process characteristics; (ii) collaborative learning situations allow to measure processes 

(verbal and written utterances) directly at the time and place of their natural occurrences 

(without explicitly prompting students to verbalize their thoughts). 

The Technical Report describes a new rating scheme to assess undergraduate mathematical 

students’ collaborative conjecturing and proving processes empirically and the methods used 

to apply this assessment tool. It shows how guidelines for high inference ratings from the 

educational science have been adapted to capture process characteristics of mathematical 

argumentation empirically. The report includes information on the rater training, 

documentations of the ratings scales, and describes the coding procedures in detail. 

9.1.4 Central findings of the empirical study 

As we lack quantitative studies concerning mathematics students’ activities in generating 

mathematical conjectures and proofs that focussed on the processes and the resulting 

products, we conducted an exploratory empirical study. In our empirical study, we have 

operationalized and analysed seven process characteristics of collaborative conjecturing and 

proving. These process characteristics comprised the critical exploration of the problem 

situation, the cognitive complexity of students’ contributions, the accuracy and precision of how 

arguments are presented, the argument structure, the critical questioning of the arguments 

produced by the learning partner, the turn-taking structure within the collaboration process, 

and the reaction to the learning partners’ incorrect or invalid arguments. The process 

characteristics related to the first four categories were inferred from the mathematics 

educational literature that primarily conceptualizes conjecturing and proving as individual-

mathematical activities (e.g., Koedinger, 1998; Selden, J. et al., 2014; Zazkis et al., 2015), the 

latter three predominately from the research of the Learning Sciences and psychology with a 

social-discursive perspective on argumentation (e.g., Asterhan & Schwarz, 2007; Chi & Wylie, 

2014; Weinberger & Fischer, 2006). Based on these two perspectives on conjecturing and 

proving, we were interested in empirically studying the relationship between individual-

mathematical and social-discursive process characteristics of collaborative conjecturing and 

proving. Furthermore, we focussed on their impact on the quality of the resulting product (the 

formulated conjecture and the constructed proof). We investigated N=98 prospective 

undergraduate mathematics students’ collaborative conjecturing and proving processes, their 

prior knowledge on proof, and their final proof products resulting from these processes. 
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Empirical study – Study II 

We draw four central new findings from our fist analyses: 

The results show that (1) individual-mathematical and social-discursive process characteristics 

can be reliably measured, indicating that the developed rating scheme allows the user to 

assess the quality of collaborative conjecturing and proving processes from an individual-

mathematical and social-discursive perspective on mathematical argumentation. In addition, 

this study demonstrates that (2) the two components of collaborative conjecturing and proving 

processes can be empirically distinguished from one another and that they were not strongly 

related. The findings of Kollar et al. (2014) also indicted that undergraduate students’ 

performance on the individual-mathematical respectively social-discursive component of 

mathematical argumentation skills are largely unrelated to each other. There is, to our 

knowledge, no further prior research on the structure of collaborative conjecturing and proving 

processes that would allow a comparison of our results.  However, the independence of both 

components might have been strengthened by the differences in their conceptualizations, as 

the individual-mathematical and social-discursive process characteristics were derived from 

distinct research disciplines, from the mathematics educational respectively psychological and 

the Learning Sciences discipline. The disciplines may differ in terms of the conceptualizations 

and operationalisations they use (cf. Inglis & Foster, 2018). Nevertheless, we have tried to find 

a common language to transfer the identified process characteristics into rating scales. In 

addition, this study makes also a methodological contribution. Taking into account that the 

participants of our study worked in dyads on a conjecturing and proving task, the analysis of 

the within-cluster and between-cluster variance, induced by the hierarchical structure in the 

data, shows that (3) the clustering of the data has to be corrected by using multi-level analysis 

(in particular, concerning the process data that emerged from the second part of the 

collaboration process). Yet, results also indicate that (4) it is necessary to consider each 

student’s contributions separately (cf. Anjewierden et al., 2011), and not only aggregated data 

on dyad level, at least for the process characteristics related to the categories cognitive 

complexity, critical questions and turn-taking-sequence. To sum up, studying the empirical 

structure of individual-mathematical and social-discursive process characteristics of 

collaborative conjecturing and proving is completely innovative as no prior comparable 

research on mathematical argumentation ca be found. 

Empirical study – Study III 

We draw eight central new findings from our second analyses: 

This analysis has examined the theoretically assumed effects of the individual-mathematical 

and social-discursive process characteristics on the quality of the resulting product. 
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Furthermore, we were interested in investigating the effect of prior knowledge on proof on the 

final product and the extent to which it is mediated by the conjecturing and proving processes 

that we operationalized by the set of process characteristics. Our hypothesis that all theory-

based process characteristics related to the seven categories are predictive for the quality of 

the resulting product was only partly confirmed. The empirical findings have shown that (1) 

prospective undergraduate mathematics students’ individual-mathematical process 

characteristics can be used to predict their performance in solving conjecturing and proving 

tasks, (2) but not the social-discursive process characteristics. The latter may be due to the 

fact that in the studies from which they were discussed previously, the socio-discursive process 

characteristics were originally conceptualized as collaborative learning activities rather than as 

activities that directly promote success in achievement situations (e.g., Chi & Wylie, 2014; 

Vogel et al., 2016). However, we found (3) an interaction effect of individual-mathematical and 

social-discursive process characteristics, indicating that a good collaboration is necessary, but 

not sufficient for the success. Regarding the individual-mathematical process characteristics 

of collaborative conjecturing and proving, the findings of this study go in line with the results of 

our research review. In particular, we found that (4) generating accurate and structurally sound 

arguments during the proving discourse has a substantial impact on the quality of the resulting 

product, thus confirming hypotheses derived from prior qualitative studies (e.g., Inglis et al. 

2007; Krummheuer, 1995; Pedemonte, 2008; Yackel, 2002). (5) Process characteristics 

related to the critical exploration of the problem situation have been found to be relevant for 

the formulation of correct and creative conjectures, process characteristics related to the 

cognitive complexity category for the number of relevant mathematical ideas visible in 

students’ solutions. These results provide empirical evidence for the respective relationships 

between process characteristics and sub-goals, as described in our research review, and 

therefore support the claims and findings of other researchers (e.g., Ellis et al., 2017; Kidron 

& Dreyfus, 2014; Koedinger, 1998). Supporting our basic assumption that process 

characteristics are strongly influenced by situational instantiations of prior knowledge on proof, 

we observed (6) strong correlations between students’ individual-mathematical process 

characteristics and their prior knowledge on proof. Furthermore, we found empirical evidence 

for the assumption that (7) conjecturing and proving processes mediate between the prior 

knowledge on proof (representing the students’ underlying resources) on the one hand and 

the quality of the resulting product (representing the students’ performance in generating 

conjectures and constructing proofs) on the other hand (cf. Blömeke et al., 2015; Sommerhoff, 

2017), and therefore support for our analytical framework. A further result of this study was 

that in the second half of the collaboration process, the individual-mathematical process 

characteristics of both students who worked together within a dyad were significantly 

correlated, suggesting firstly the relevance of taking the hierarchical structure of the data 
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(students nested in dyads) into account (as already mentioned in the context of study II). 

Moreover, this finding indicates that the students of a dyad align their cognitive behaviour 

during the collaboration discourse (e.g., Anjewierden et al., 2011). Additionally, we observed 

(8) a highly significant relationship between the individual-mathematical process 

characteristics of one student and the social-discursive process characteristics of his or her 

learning partner. This result shows that the students' individual-mathematical process 

characteristics should not be interpreted in isolation, in particular at the second half of the 

collaboration process. It provides evidence for the assumption that the individual-mathematical 

process characteristics could not be attributed only to the student who enacted them. The 

individual-mathematical process characteristics may need to be assessed with regard to the 

socio-discursive process characteristics of the learning partner, and more generally, in terms 

of the community in which the student participates (cf. Stahl, 2010).  

9.2 Limitations, strengths, and implications for teaching and future research 

This section aims to highlight and discuss the central findings of this thesis with regard to their 

strengths and limitations. We will put the results in a larger context of current research and 

draw some theoretical and practical implications for future research on conjecturing and 

proving. 

9.2.1 Structuring the literature on conjecturing and proving  

Our research review provides a new systematization of the literature on conjecturing and 

proving by presenting the main topics that have been investigated in the context of conjecturing 

and proving and discussing the research perspectives from which conjecturing and proving 

processes have been conceptualized. In consistency with the categorization suggested by 

Stylianides, G. J. et al. (2017), we identified several studies that extended on the problem-

solving literature from cognitive psychology and conceptualized conjecturing and proving as 

problem-solving, several studies that built upon the literature on proof schemes and 

conceptualized conjecturing and proving as convincing, and a small proportion of studies that 

form the literature on conjecturing and proving as social practices and thus conceptualized 

conjecturing and proving as socially-embedded activities. Furthermore, we detected some 

studies that were based on the literature that described conjecturing and proving as tools to 

generate and explore new knowledge and that conceptualized conjecturing and proving as 

discovering. Even though the statistical clustering of the studies to topics is quite objective, as 

the topic modeling analysis itself is conducted algorithmically, the interpretations of the 

identified topics are more subjective and therefore open to criticism (e.g., Inglis & Foster, 

2018). One may also criticise that the allocation to the research perspectives rest on subjective 

judgements and that they should be verified by other researchers. However, the topic modeling 
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method and the subsequent allocation to the topics and research perspective allow to uncover 

the topics and research perspectives on conjecturing and proving that appear to be under-

researched so far. Based on those findings, we see the need for expanding the literature on 

conjecturing and proving that addresses the questions of how conjecture generation and proof 

construction activities are practiced in mathematical and classroom communities. 

The higher-order sub-goals categories, which we have systematized with regard to the inter-

mediate steps within conjecturing and proving processes deemed to be necessary for the 

successful generation of conjectures and proofs in the primary studies, provide a further “data-

driven” structuring of the literature on conjecturing and proving. This structuring depends on 

the reviewer’s insights and judgments as well. Yet, it may allow other researchers to save a lot 

of time and effort by using this categorisation in order to select the literature that is specifically 

designed to learn more about a particular sub-goal. 

9.2.2 Bringing different research disciplines and perspectives together  

In this thesis, we integrated knowledge from different research disciplines. Scientific 

communities from different research disciplines usually use distinct theoretical descriptions of 

similar phenomena and apply distinct research methods (e.g., Inglis & Foster, 2018). In 

attempting to find out what good collaborative conjecturing and proving processes are and how 

they can be defined, we reviewed the mathematics educational literatures as well as the 

psychological and the Learning Sciences literature on (mathematical) argumentation. Even 

though we have identified different research perspectives on conjecturing and proving in the 

mathematics educational literature (e.g. the problem-solving perspective or the conjecturing 

and proving as discovering perspective), the processes associated with conjecturing and 

proving within this discipline were conceived primarily as activities to be performed by 

individuals (cf. Balacheff, 1988). The educational-psychological and the Learning Sciences 

research on scientific argumentation has its research focus predominately on the externalised 

processes and  products  of  scientific  argumentation and reasoning  within  social  contexts 

(Fischer et al., 2014). Therefore, the process characteristics from an individual-mathematical 

perspective on conjecturing and proving (the individual-mathematical process characteristics) 

were primarily derived from the mathematics educational literature on conjecturing and 

proving, the social-discursive ones from the research in psychology and the Learning Sciences 

on scientific argumentation. Considering the findings from the different research disciplines 

allowed us to connect und contrast several individual-mathematical and social-discursive 

process characteristics of collaborative conjecturing and proving. However, one may argue 

against our approach on the grounds that each discipline differs in the way of how they use 

and operationalize terms and concepts. We are aware of the fact that those differences have 

to be taken into account. Yet, we have followed the recommendation of other researchers that 
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more interdisciplinary research on (mathematical) argumentation is needed (e.g., Fischer et 

al., 2014; Sommerhoff, 2017) and that researchers should “make a concerted effort to read 

journals from outside the discipline” (Inglis & Foster, 2018, p. 495). In this way, we have 

combined the previously unconnected research traditions and thus contribute to a more 

comprehensive understanding of the (relatively similar or at least related) phenomena. 

Furthermore, we successfully adapted the guidelines and procedures proposed by researchers 

from educational science (e.g., Gartmeier et al., 2014; Seidel, 2005) and psychology (Meier et 

al., 2007) to develop a high-inference rating scheme to assess the quality of collaborative 

conjecturing and proving processes. To our knowledge, high-inference rating schemes or 

comparable, more generic assessment methods have rarely been developed or used in the 

study of students’ mathematical cognitions, so far.  

9.2.3 Proposing the “sub-goals versus process characteristics” framework 

In our literature review, we present a framework that shows how different processes, and in 

particular the co-occurrence of these processes, can contribute to the successful generation 

of conjectures and proofs. Since simply applying a certain kind of proving process type does 

not necessarily lead to success (e.g., Furinghetti & Morselli, 2009; Zazkis et al., 2016), we 

have tried to uncover the process characteristics of conjecturing and proving that are assumed 

or reported as being helpful in achieving the inter-mediate steps within conjecturing and 

proving processes (the “sub-goals”) that, in turn, are considered as being necessary for the 

successful generation of conjectures and proofs. We categorized and synthesized claims and 

findings of prior research on conjecturing and proving with regard to these two dimensions (the 

sub-goals dimension and process characteristics dimensions). The resulting framework 

demonstrates the process characteristics and sub-goals that these researchers indicate are 

used by successful provers. We claim that our “sub-goals versus process characteristics” 

framework may be adapted for teaching purposes. Teachers and lecturers may explain the 

identified sub-goals and highlight the ways in which students can succeed when employing the 

associated process characteristics of conjecturing and proving.  

Moreover, the new framework may be used to guide research on conjecturing and proving as 

it provides a structure for conceptualizing and designing future research studies. The 

framework offers a theoretical foundation for addressing rich and detailed questions about 

students’ conjecturing and proving processes. For instance, it provides a conceptual structure 

for empirically investigating which characteristics of proof processes go along with acceptable 

proof constructions, which type of example use goes along with the development of 

understanding of the problem situation, or which problem-solving strategies go along with 

resolving fixations. In addition, the framework demonstrated current research foci regarding 
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process characteristics and sub-goals and how these are examined and related to each other 

in the mathematics educational research literature. Some combinations of process 

characteristics and sub-goals were not addressed at all. This could either be an indication that 

the combinations are still unexplored or under-researched, or that the process characteristics 

are not expected to encourage the achievement of these sub-goals. Moreover, this framework 

provides an initial overview about which process characteristics, according to the current 

literature, might be encouraged in order to help students to fulfil a specific sub-goal within 

conjecturing and proving processes and thus constitutes a theoretical base for developing 

scaffolds and interventions. 

Besides the strengths of this framework, one has to be aware that it was necessary to go 

beyond the contents of the original studies at some points (for instance, when the content of 

the study not directly focussed on sub-goals or process characteristics of conjecturing and 

proving) in order to produce a satisfactory synthesis (cf. Marston & King, 2006). 

9.2.4 The analytical framework of assessing argumentation skills  

As our research review has shown that quantitative studies on (collaborative) conjecturing and 

proving are rare, we designed one empirical study including two main analyses. Our central 

aims were to examine a set of process characteristics of collaborative conjecturing and proving 

that were suggested by prior research to be predictive for students’ performance in solving 

conjecturing and proving tasks. To address these aims, we adapted the framework for 

mathematical argumentation and proof skills proposed by Sommerhoff (2017). This framework 

distinguishes the resources (prerequisites) that underlie the argumentation and proof skills, the 

processes by which the skills become enacted in corresponding situations, as well as students’ 

performance in these situations. The situation we chose was one conjecturing and proving task 

that the students had to solve collaboratively initially, but for which they had to compose an 

individual solution afterwards. We followed the definition of argumentation skills suggested by 

Kollar et al. (2014) and expanded the framework by distinguishing between individual-

mathematical and social-discursive processes of collaborative conjecturing and proving. Both, 

the individual-mathematical and social-discursive processes were considered as mediating 

elements between the resources and the performance in this specific situation. Another 

change we made was that we additionally expected a direct effect of the prerequisites on 

students’ performance, since we could not ensure to capture all characteristics of 

argumentation processes in our analysis, which are relevant for the quality of the final 

conjecture and proof (performance).  

We measured the performance by requesting the students to write down an individual solution 

of the conjecturing and proving task the students had collaboratively worked on before. Each 
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solution was evaluated with regard to the quality of the formulated conjecture and the quality 

of the constructed proof. To examine the influence of individual-mathematical and social-

discursive processes on the quality of the resulting product, we operationalized a set of theory-

based process characteristics of collaborative conjecturing and proving. Regarding the 

resources, we adapted the argumentation and proof test develop by Reichersdorfer et al. 

(2012) that consisted of seventeen items representing students’ prior knowledge on proof.  

Even though we investigated all three components and their relations in one of our empirical 

studies, our analytical and practical implementation of the framework for mathematical 

argumentation and proof skills has some limitations. First, we considered only one single 

situation by using one task. Second, we measured the resources by a test that did not allow a 

finer-grained distinction of the students’ cognitive resources. Previous research has shown that 

it is important to discern between the types of resources predictive for students’ performance 

(e.g., Chinnappan et al., 2012; Sommerhoff et al., 2016; Ufer et al., 2008), and that different 

situations may cause different processes (e.g., Mejía-Ramos & Inglis, 2009) and require 

different resources (e.g., Sommerhoff et al., 2017). Hence, future studies should try to focus 

on the resources more precisely and to assess the processes related to proof-construction, 

proof-reading, and proof presentation. The relations between specific resources (such as 

methodological knowledge) and process characteristics (such as the process characteristic 

argument structure) have not been investigated in detail  

However, to our knowledge, this dissertation provides the first study that investigates the 

relevance of process characteristics in a systematic way, at least for one concrete situation. 

Furthermore, it demonstrates how the three components of argumentation skills can be 

operationalized and how their relationships can be empirically investigated.  

9.2.5 Developing and evaluating an instrument for assessing the quality of 

collaborative conjecturing and proving processes 

The analysis of conjecturing and proving processes as well as of collaboration is a central topic 

in mathematics educational (e.g., Mueller et al., 2015; Weber, 2004) respectively psychological 

or the Learning Sciences research (e.g., Schwaighofer et al., 2017; Vogel et al., 2016). 

However, defining and operationalizing process characteristics that constitute key 

characteristics of successful conjecturing and proving and developing instruments capable of 

assessing these characteristics is a challenging task (cf. Meier et al., 2007). In this dissertation, 

seven process characteristics extracted from the literature were defined, operationalized, and 

rated quantitatively: critical exploration, cognitive complexity, accuracy and precision, 

argument structure, critical questioning, turn-taking-sequence, reaction to the learning 

partner’s mistakes. In extracting and defining these process characteristics, we followed a top-
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down approach. We set what we wanted to observe on the basis of theoretical assumptions 

and empirical finings of previous studies and created detailed descriptions of the process 

characteristics. Based on these theoretical assumptions, we developed a rating scale that 

distinguishes five quality levels for each process characteristic. In doing so, we followed the 

guidelines of developing high-inference rating schemes proposed by Seidel (2005). The 

endpoints of the rating scales were labelled as “very good” on their positive sides and as “very 

bad” on their negative sides.  

The rating scheme was applied to process data of undergraduate students working 

collaboratively on a conjecturing and proving task. Study II and Study III, which investigated 

the empirical structure of the process characteristics and their relationships to prior knowledge 

on proof and to the quality of the resulting product, can be considered as evaluation studies 

for the newly-developed coding scheme.  

Regarding the top-down approach to identify and define process characteristics of 

collaborative conjecturing and proving, one critical remark may be that it would be possible 

that we have overlooked some aspects that have made the given situation (in which our studies 

have been embedded, namely a dyadic setting where students were requested to 

collaboratively solve a conjecturing and proving task) specifically successful or unsuccessful. 

This might be a limitation of the coding scheme, but we aimed to define process characteristics 

that will probably be easily to transfer to other contexts. We argue that the process 

characteristics extracted from the literature will allow to compare a wider range of collaborative 

conjecturing and proving situations than process characteristics that would have been 

grounded in data gathered with one specific setting and task (cf. Meier et al., 2007). 

Furthermore, we are aware of the fact that details of the collaborative conjecturing and proving 

processes may be lost due to the aggregation of multiple processes necessary for the 

application of high-inferential rating scales. More fine-grained, low-inference category systems 

would allow to detect the details, yet possibly at the expense of capturing the overall complexity 

of these processes (e.g., Newble, 2004; Seidel, 2005). However, since our goal was to assess 

and quantify the quality of collaborative conjecturing and proving processes on a relatively 

global level and not to calculate frequencies, a high-inferential rating scheme constituted the 

most suitable method (cf. Seidel, 2005; Wiesbeck, 2015).  

Based on the positive findings regarding the inter-rater reliability, consistency, and the relations 

between the operationalized process characteristics and the quality of the resulting product 

(as a hint for the process-outcome validity), it would be possible to use our new developed 

rating scheme in different areas of collaborative conjecturing and proving. 
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This rating scheme allows judging the observed interactions of (undergraduate) mathematics 

students working collaboratively on conjecturing and proving tasks against defined quality 

levels, and thus can be applied in future studies to yield a direct evaluation of the quality of 

collaborative conjecturing and proving processes. 

9.2.6 The importance to differentiate between individual-mathematical and social-

discursive process characteristics   

Along with Kollar et al. (2014), we differentiated between an individual-mathematical and 

social-discursive component of collaborative conjecturing and proving processes. To test our 

assumption that these components comprise differentiable conjecturing and proving 

processes, we defined four individual-mathematical and three social-discursive process 

characteristics representing the two dimensions. Confirmatory factor analyses based on the 

ratings were conducted to check whether the data fit the theoretical model. The result of these 

analyses supported our assumption that the two dimensions can empirically distinguished from 

one another and that they are weakly correlated to each other.  

Our second confirmatory factor analysis, in which the process characteristic reaction to the 

learning partner’s errors was treated as an individual-mathematical characteristic, 

demonstrated better fit indices than our initial model, in which this process characteristic was 

treated as a social-discursive one. This observation indicates that there might be some 

processes that reflect both individual-mathematical and social-discursive skills, and thus are 

at the interface of the two components of collaborative conjecturing and proving processes (cf. 

Kollar et al., 2014). Future studies may include more of these characteristics that involve both 

components of mathematical argumentation skills and investigate whether these 

characteristics form a continuum between individual-mathematical and social-discursive 

process characteristics of collaborative conjecturing and proving processes.  

Furthermore, our findings have pointed out that the individual-mathematical process 

characteristics strongly depend on prior knowledge on proof. It can be expected that social-

discursive process characteristics also depend on prior knowledge on - what Kollar et al. (2014) 

call - the social-discursive component of argumentation skills. This comprises a domain-

overarching ability to construct arguments, counterarguments, and syntheses of different 

arguments. In the study by Kollar et al. (2014) the relationship between students’ prior 

knowledge on proof (representing the individual-mathematical component of argumentation 

skills) and their knowledge on the sequence of an argumentation process (representing the 

social-discursive component of argumentation skills) has been investigated. Results of this 

study demonstrated that these prior knowledge components are only weakly correlated. This 

might explain why the process characteristics also show low correlations. 
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Regarding the effects of process characteristics on the quality of the resulting product, the 

findings of our study indicate again that it is advisable to distinguish between individual-

mathematical and social-discursive process characteristics:  

9.2.6.1 Empirical evidence for the relevance of individual-mathematical process 

characteristics 

As the success of collaborative conjecturing and proving processes is determined by their 

outcomes, we investigated the relationships between the process characteristics and the 

quality of the final product (while controlling for prior knowledge on proof). Results indicated 

that the individual-mathematical process characteristics are predictive for the overall quality of 

the resulting product. In particular, generating accurate and structurally sound arguments 

appear to be key characteristics of successful collaborative conjecturing and proving 

processes.  

Based on these findings, it would be possible to develop pedagogical concepts and 

interventions to support students’ conjecturing and proving processes by, for instance, 

explicitly addressing these process characteristics in lectures (cf. Selden & Selden, 2013), by 

prompting students to base their claims on warrant and to use qualifiers (cf. Inglis et al., 2007), 

or by encouraging students to adjust the wordings to present arguments in an accurate way 

(cf. Savic, 2015b).  

Moreover, we observed that the relationship between prior knowledge on proof and the final 

product is only partially mediated by the individual-mathematical process characteristics. This 

can be considered as a hint that our set of process characteristics is not exhaustive or that 

some processes are even not accessible for external observation (e.g., Blömeke et al., 2015; 

Selden, A. et al., 2010). However, it should be emphasized that our set of individual-

mathematical process characteristics can explain some part of the relationship between 

students’ prior knowledge on proof and the quality of the final product.  

9.2.6.2 The (lacking) influence of social-discursive process characteristics 

The social-discursive process characteristics did not turn out to be predictive for the quality of 

the final product. One reason might be that, in previous studies from which they have been 

deduced, the social-discursive process characteristics were mainly conceptualized as 

collaborative learning activities that have an impact on the disposition to use argumentation 

skills (e.g., Vogel et al., 2016) or to generate knowledge in learning situations (Weinberger & 

Fischer, 2006), but not as activities that are directly related to the success in performance 

situations. In our research review, we also allocated the social-discursive process 

characteristics to the sub-goal of achieve a common understanding. From this perspective, it 

might play a role that the collaborative working session in this study, from which the data were 
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extracted, may have been perceived by students as a performance situation rather than a 

learning situation (cf. Schulmeiß, Seidel, & Meyer). However, whether the students 

experienced the collaborative working session more as a performance- than as a learning 

situation and whether this affects the impact of social-discursive process characteristics on the 

quality of the final product remains an open question. Future studies may also investigate 

whether the impact of social-discursive process characteristics would increase when students 

work together for a longer period of time (Staples, 2007).  

Based on the finding of our study that the interaction between individual-mathematical and 

social-discursive process characteristics has shown a statistically significant effect on the 

quality of the final product, it would be effective to study interventions that scaffold the social-

discursive process characteristics in addition to the individual-mathematical ones.  

While we do not claim that the seven process characteristics exhaust the fully spectrum of 

necessary or sufficient characteristics for successful mathematical argumentation and proof, 

we believe this is a promising start that could be helpful both to university teachers (including 

lectures and teachers) as well as to researchers. In our literature review, we have identified a 

larger number of process characteristics that are described as (potential) predictors for the 

successful outcome from a theoretical point of view. Several of these process characteristics 

have not been empirically investigated, yet. These process characteristics can be addressed 

in future studies. Our rating scheme can serve as a template how these ‘potential predictors’ 

can be operationalized and assessed. Moreover, the process characteristics we have defined 

and operationalized can help tutors or lecturers to identify the specific challenges their students 

face and to find out where support is needed.  

9.2.7 Individual learner vs. group level 

The second part of the empirical study supports the assumption that relationships between the 

single students’ contributions to a dyadic proving process can be found (cf. Asterhan & 

Schwarz, 2009; Wecker & Fischer, 2011). However, a replication respectively analogous study 

with more participants would also allow to test whether students’ individual learning outcomes 

are predicted by the social-discursive and individual-mathematical process characteristics of 

the learning partner (as hypothesized, e.g., by Wecker & Fischer, 2011; Vogel et al., 2016).  

When analysing students working in dyads on complex tasks, the question arises whether the 

students contribute equally to the (successful) outcome and whether the group-processes 

adequately represent the processes of the individuals. Based on our findings, we see the need 

to consider the individual’s contributions separately, and not on the dyad level. This go in line 

with the observations of other researchers that the quantity and quality of contributions that 

are made in a small group within a collaborative working process are not necessarily equally 
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distributed among the members of the group (Jiménez‐Aleixandre, Bugallo Rodríguez, & 

Duschl, 2000) and that the results from group-level analysis and individual-level analysis can 

differ (MacKinnon, Fairchild, & Fritz, 2007). However, regarding the within-cluster and 

between-cluster variance, our study indicates that the hierarchical structure of the data 

(students nested into dyads) has to be taken into account when conducting statistical analyses. 

Using methods to control nested data dependencies has proven to be a promising approach 

to analyse collaborative conjecturing and proving processes. 
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10 Appendix 

10.1 Hoch-inferente Ratings - kooperative Argumentations- und Beweisprozesse 

Allgemeine Anmerkung:  

 Die Ratingskalen dienen dazu, kooperative Argumentations- und Beweisprozesse 
anhand ausgewählter theorie-basierter Prozessmerkmale zu bewerten. 

 Die einzelnen Ratingskalen und deren Qualitätsniveaus werden anhand von Kriterien 
und Beispielen erläutert. 

 Für jede Ratingskala gilt: Es müssen immer alle Aspekte der Qualitätsstufe, die in der 
Beschreibung angeführt werden, erfüllt sein, um den entsprechenden Code zu 
vergeben. Wenn diese „Mindestanforderung“ nicht erfüllt ist, muss ein Code für eine 
der unteren Stufen vergeben werden. 

 Die Rater beobachten die Videoaufzeichnung bis zur Hälfte des 
Kooperationsprozesses und bewerten die Prozesse eines Lerners anhand der sieben 
Prozessmerkmale. Danach wird der zweite Teil angesehen und die Prozesse 
desselben Lerners bewertet. Die Rater können Teile der Videoaufnahmen nach Bedarf 
anhalten und beliebig oft ansehen. Für die Beurteilung der Prozesse des Lernpartners 
wird das Video erneut bis zu ersten Hälfte sowie bis zur zweiten Hälften angesehen 
und jeweils bewertet.  

Fachliche Korrektheit der Beiträge zum Diskurs 

Frage: Inwiefern bringt der Lerner fachlich korrekte Äußerungen in den Diskurs ein? Inwiefern werden 

also fachlich korrekte Aussagen über die betrachteten mathematischen Konzepte gemacht? 

Kriterien: Bewertet werden die vom Lerner im Diskurs geäußerten Beiträge. Wesentlich ist dabei, ob 

es sich aus mathematischer Sicht – unter Berücksichtigung der üblichen Standards in einem 

Brückenkurs – um fachlich korrekte Äußerungen handelt. Es wird berücksichtigt, ob und wie schnell 

Fehler korrigiert werden und inwiefern der Problemlöseprozess durch die fachlich falschen Äußerungen 

des Lerners beeinträchtigt wird (d.h. inwiefern führen die fachlich falschen Äußerungen des Lerners zu 

längeren Fehlwegen). 

1 
Fachliche Beiträge des Lerners sind weitgehend korrekt, vereinzelte falsche Beiträge 

werden umgehend selbst korrigiert.  

2 

Fachliche Beiträge des Lerners sind weitgehend korrekt, vereinzelte falsche Beiträge 

werden nicht immer umgehend selbst korrigiert. Diese betreffen jedoch nur einzelne 

Stellen des Diskurses und führen nicht zu längeren Fehlwegen im Problemlöseprozess.  

3 

Der Lerner äußert wenige falsche Beiträge, die er nicht immer umgehend selbst korrigiert. 

Über einzelne Stellen hinaus führen diese vereinzelt zu längeren Fehlwegen im 

Problemlöseprozess, die aber im Wesentlichen selbst oder vom Partner erkannt und 

geklärt werden. 
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4 

Der Lerner äußert falsche Beiträge, die er nicht immer umgehend selbst korrigiert. Über 

einzelne Stellen hinaus führen diese mehrfach zu längeren Fehlwegen im 

Problemlöseprozess, die nicht immer im Wesentlichen erkannt und geklärt werden. 

5 

Der Lerner äußert viele falsche Beiträge, die überwiegend nicht korrigiert werden. Es 

treten mehrfach längere Fehlwege im Problemlöseprozess auf, die im Wesentlichen nicht 

erkannt und geklärt werden. 

 

Typische Beispiele:  

Falsch: „Null ist doch keine gerade Zahl“ 

Bemerkungen: Die Korrektheit einer fachlichen Äußerung ergibt sich immer aus dem Kontext. Nicht-zielführende 

Äußerungen können somit dennoch fachlich korrekt sein. 

Anmerkungen während der Kodiererschulung: 

Anmerkung zu Code 1: Werden lediglich kleine formale Mängel, die die Bedeutung einer Aussage nicht wesentlich 

einschränken, nicht selbst korrigiert, so kann dennoch der Code 1 vergeben werden. 

Anmerkung zu Code 3: Bsp.: Lerner verrechnet sich und findet den Fehler nicht. Dies führt zu einem längeren 

Fehlweg im Problemlöseprozess, der nicht mehr korrigiert wird. Alle weiteren Aussagen sind allerdings weitgehend 

korrekt -> Code 3 

Allgemein: Notationsfehler werden ebenfalls berücksichtigt. Je nach Art des Fehlers und dessen Konsequenzen 

auf den Problemlöseprozess werden (Notations-)Fehler allerdings unterschiedlich gewichtet (d.h. inwiefern führt 

der Fehler zu einem falschen „Fehlweg“). 

Kognitives Niveau der Beiträge zum Diskurs 

Frage: Inwiefern bringt der Lerner zu unterschiedlichen Phasen des Argumentationsprozesses neue 

inhaltliche Ideen ein, stellt logische Beziehungen zwischen unterschiedlichen Ideen und Konzepten her 

und bringt somit neue Aspekte in den Diskurs ein? 

Kriterien: Die Kodierung fokussiert insbesondere auf Stellen an denen Impasses auftreten oder an 

denen der Problemlöseprozess die Chance hat eine neue Richtung zu bekommen, weil neue Ideen 

eingebracht oder vorhandene Ideen und Konzepte neu verknüpft werden. Ideen bezeichnen hier im 

Diskurs vorhandene Aussagen, Zusammenhänge und Strukturierungen, aber auch andere inhaltliche 

Informationen aus dem Kontext des Brückenkurses bzw. dem individuellen Vorwissen der Lernenden. 

Relevant ist dabei nicht, ob die eingebrachten Ideen tragfähig sind oder ob sie weiterhin aufgegriffen 

werden. Zentral ist das Einbringen von neuen Perspektiven durch die Verknüpfung von Ideen und 

Konzepten, die allerdings auf den Inhalt des Diskurses bezogen sein müssen (Problemstellung, 

Vorlesung, Tutorien, Vorwissen,...). 
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1 

Der Lerner bringt zu unterschiedlichen Phasen des Argumentationsprozesses häufig neue 

inhaltliche Ideen ein, verknüpft an den meisten geeigneten Stellen vorhandene Ideen und 

Konzepte auf eine neue Art oder assoziiert neue inhaltsbezogene Ideen außerhalb des 

Diskurses, die er wiederum mit bereits vorhandenen Ideen und Konzepten in Verbindung 

bringt. An vielen Stellen bringt er damit völlig neue Perspektiven auf die gerade im Fokus 

stehenden Konzepte ein, so dass neue Beweisideen generiert werden können. 

2 

Der Lerner bringt zu unterschiedlichen Phase des Argumentationsprozesses häufig neue 

inhaltliche Ideen ein, verknüpft an den meisten geeigneten Stellen vorhandene Ideen und 

Konzepte auf eine neue Art oder assoziiert neue inhaltsbezogene Ideen außerhalb des 

Diskurses. Selten, aber an mindestens an einer Stelle bringt er damit völlig neue 

Perspektiven auf die gerade im Fokus stehenden Konzepte ein, so dass neue 

Beweisideen generiert werden können. 

3 

Der Lerner bringt nur zu bestimmten Phasen des Argumentationsprozesses neue 

inhaltliche Ideen ein, verknüpft teilweise an geeigneten Stellen vorhandene Ideen und 

Konzepte auf eine neue Art oder assoziiert neue inhaltsbezogene Ideen außerhalb des 

Diskurses. Allerdings bringt er damit im Wesentlichen keine völlig neue Perspektive auf 

die gerade im Fokus stehenden Konzepte ein, so dass keine neuen Beweisideen generiert 

werden können. 

4 

Der Lerner bringt nur zu bestimmten Phasen des Argumentationsprozesses neue 

inhaltliche Ideen ein, verknüpft nur vereinzelt an geeigneten Stellen vorhandene Ideen und 

Konzepte auf eine neue Art oder assoziiert neue inhaltsbezogene Ideen außerhalb des 

Diskurses. Weitgehend wiederholt oder paraphrasiert er bereits eingebrachten Ideen oder 

bereits bekannte Konzepte. 

5 

Der Lerner bringt nur vereinzelt neue inhaltliche Ideen ein, arbeitet weitgehend lokal an 

der gerade fokussierten Idee, bringt lediglich an sehr wenigen Stellen neue Verknüpfungen 

mit anderen Teilen des Problemlöseprozesses oder neue Ideen von außerhalb des 

Diskurses ein. 

 

Typische Beispiele:  

Hatten wir da nicht vorhin was dazu? War x nicht gerade? Ich glaube, dass hat immer was mit der Zahl zu tun, mit 

der man anfängt… 

Nicht einschlägig: „Steht da nicht was im Skript dazu?“, „Ich kann mal die Definition nachsehen.“ 

Bemerkungen, Anmerkungen während der Kodiererschulung: 

Allgemein: Nicht einschlägig ist lediglich ein Verweis auf andere Informationsquellen. 
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Qualität der Exploration von Hypothesen  

Frage: Inwiefern werden vom Lerner verschiedene Vermutungen exploriert? Inwiefern wird vor Beginn 

oder während der Evidenzgenerierung die Plausibilität einer Vermutung kritisch hinterfragt? 

Kriterien: Die Kodierung fokussiert insbesondere auf die Exploration und Generierung von 

Vermutungen.  Von Interesse ist dabei, inwiefern verschiedene Vermutungen exploriert werden und ob 

die Plausibilität der Hypothese vor Beginn der (formalen) Evidenzgenerierung kritisch überprüft wird.  

1 

Der Lerner exploriert verschiedene Vermutungen, er versucht möglichst viele 

verschiedene Vermutungen zu finden. Im Wesentlichen wird die Plausibilität seiner 

Vermutung jeweils vor Beginn oder während der Evidenzgenerierung kritisch hinterfragt, 

indem (informale) Argumente für und gegen die Hypothese gesucht werden.  

2 

Der Lerner exploriert verschiedene Vermutungen, er versucht verschiedene Vermutungen 

zu finden. Die Plausibilität seiner Vermutung wird jeweils nur teilweise kritisch hinterfragt, 

indem (informale) Argumente für oder gegen die Hypothese gesucht werden. 

3 
Der Lerner exploriert eine Vermutung. Die Plausibilität dieser Vermutung wird kritisch 

hinterfragt, indem (informale) Argumente für oder gegen die Hypothese gesucht werden. 

4 

Der Lerner exploriert im Laufe des Problemlöseprozesses verschiedene Vermutungen. 

Die Plausibilität der Vermutungen wird jeweils vor Beginn oder während der 

Evidenzgenerierung nicht kritisch hinterfragt. An Stellen, an denen kein weiterer Fortschritt 

erfolgt, der Problemlöseprozess zu stagnieren beginnt, Schwierigkeiten auftreten oder 

Bearbeitungszeit über bleibt, wird eine neue Vermutung exploriert, die wiederum nicht 

kritisch hinterfragt wird. 

5 

Der Lerner exploriert im Laufe des Problemlöseprozesses eine Vermutung. Die 

Plausibilität einer Vermutung wird vor Beginn oder während der Evidenzgenerierung nicht 

kritisch hinterfragt. Weitere Vermutungen werden nicht exploriert.    

 

Typische Beispiele:  

Beispiele für eine kritische Prüfung der Plausibilität: „Wir sollten vielleicht auch mal versuchen ein Gegenbeispiel 

zu finden!“, „Ich glaube nicht, dass das immer gilt, da…(ein Argument als Grund für die Zweifel muss angegeben 

werden)“, „Das gilt jetzt erstmal nur für die Beispiele, aber wenn es allgemein gelten soll, dann muss gezeigt werden, 

dass….“, „Lass uns lieber noch weitere Beispiele ansehen!“, „Das wird aber schwer zu beweisen sein, 

da…(+Begründung)“ 

Als kritische Aktivitäten werden ebenfalls gewertet: das Betrachten von Extremfällen sowie eine kritische Analyse 

der Struktur der zu beweisenden Behauptung. 

Bemerkungen, Anmerkungen während der Kodiererschulung: 
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Anmerkung zu Code 1: Um Code 1 zu vergeben, muss der Lerner vor Beginn und während der Evidenzgenerierung 

Argumente suchen, die die Plausibilität seiner Hypothese stützen (z.B. Exploration von Beispielen) und er muss 

sich zusätzlich darüber hinaus Gedanken machen, weshalb seine Hypothese nicht gelten könnte (z.B.: „Lässt sich 

auch ein Gegenbeispiel finden?“, „ich glaube nicht, dass man das so allgemein aufschreiben kann, da…“) 

Allgemein: Das Skizzieren einer Beweisskizze kann als kritische Exploration aufgefasst werden, wenn der Lerner 

sich z.B. Gedanken darüber macht, an welchen Stellen des Beweises Probleme auftreten können oder, wenn er 

sich z.B. darüber Gedanken macht, wie die zu beweisende Behauptung am Ende aussehen sollte (ggf. im 

entsprechendem Repräsentationssystem).  

Allgemein: Werden verschiedene Vermutungen exploriert, so wird mindestens der Code 2 vergeben, wenn eine der 

Vermutung kritisch exploriert wurde.  

Allgemein: Bei dieser Variable werden Vermutungen, die offensichtlich von „Nachbarn“ stammen, nicht 

berücksichtigt. 

Allgemein: Werden nach der Formulierung der Vermutung weitere Beispiele betrachtet, so wird dies lediglich als 

kritische Aktivität kodiert, wenn deutlich wird, dass der Lerner die Generierung von weiteren Beispielen dazu 

verwendet, sich selbst noch stärker von der Vermutung zu überzeugen. 

Allgemein: Wird eine Behauptung lediglich vom Lernpartner übernommen und selbst überhaupt nicht in Hinblick 

auf deren Plausibilität untersucht, so wird ebenfalls Code 5 vergeben.  

Qualität der Argumentstruktur 

Frage: Inwiefern bringt der Lerner mathematische Schlüsse in den Diskurs ein, die in Bezug auf ihre 

Struktur vollständig sind? Inwiefern gibt der Lerner Hinweise darauf, auf welcher Basis und mit welcher 

Sicherheit ein Schluss gezogen wird, wo es im Kontext des Diskurses notwendig und hilfreich ist? 

Kriterien: Betrachtet werden Argumente, die wesentlich für den mathematischen Problemlöseprozess 

sind. Relevant ist, inwiefern über eine Behauptung (Claim) hinaus weitere Strukturelemente von 

Argumenten expliziert werden: 

Claim:  Ein Claim ist eine Behauptung, also eine Aussage deren (angenommene) Gültigkeit 

kommuniziert wird. 

Solche Behauptungen können in Argumentationsprozessen unterschiedliche Rollen (Status) erfüllen, 

z.B. als (vorläufige, nicht abgesicherte) Vermutung oder als (z.B. deduktiv abgesicherte) 

Schlussfolgerung.  

Hinweise zur Identifizierung 

Claims sind Aussagen, die im Kontext des Studiums begründungsbedürftig sind. Dazu zählen wir 

Aussagen, deren Gültigkeit nicht anhand einer einfachen elementaren Rechenoperation (mit Regeln 

aus dem Schulunterricht) belegt werden kann oder deren Gültigkeit aus dem Schulunterricht nicht 

bereits gut bekannt ist. So wird z.B. die Aussage „2x+4=2(x+1)“ nicht als Claim kodiert, eine Aussage 

wie „die Summe zweier gerader Zahlen, ist immer gerade“ jedoch schon. Behauptungen sind solche 

Aussagen, die im Rahmen des Mathematikstudiums eine zusätzliche Begründung/ Erklärung erfordern 
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und deren Gültigkeit nicht einfach akzeptiert wird. Bem.: die Gültigkeit und Akzeptanz einer Aussage ist 

immer abhängig von der Community.  

Der Status einer Behauptung gibt innerhalb eines diskursiven Prozesses Aufschluss darüber, ob es sich 

um eine Hypothese oder um eine abgesicherte Schlussfolgerung handelt, deren Gültigkeit bereits 

gesichert wurde (angelehnt an Duval, (2002)). 

Datum: Gründe für die Behauptung aus dem Kontext des Problemlöseprozesses, also bereits etablierte 

Aussagen oder im Diskurs als korrekt angenommene Aussagen. Dies umfasst nicht Aussagen, die aus 

der Rahmentheorie (z.B. Vorlesung, Vorwissen,...) herangezogen werden. 

Stützung: Gründe für die Behauptung (bzw. dafür, dass die Behauptung aus dem Datum folgt). Wir 

unterscheiden dabei Stützungen, die aus einer Rahmentheorie (z.B. Vorlesung, Vorwissen,...) 

herangezogen werden (d.h. formale Stützungen) sowie anschauliche oder empirische Stützungen, die 

auf Beispiele basieren (d.h. informale Stützungen).  

Einschränkungen: Aussagen über die Sicherheit eines Schlusses (modal qualifier (Toulmin, 1996), 

epistemic status (Duval, 2002): wahrscheinlich, wenn ich mich nicht irre, sicher,...) bzw. Aussagen über 

mögliche einschränkende Bedingungen für die Gültigkeit des Schlusses („zumindest wenn x gerade 

ist“).  

Relevant ist jeweils nicht, ob die Aussagen, Stützungen und Schlüsse korrekt sind, sondern ob sie 

strukturell vollständig sind.  

Zentral ist weiter nicht, dass jedes Argument vollständig ist, sondern dass die im Diskurs an der 

jeweiligen Stelle wesentlichen, aber nicht ohnehin anderweitig naheliegenden Teile expliziert werden. 

1 

Die Argumente des Lerners sind durchgehend in Bezug auf ihre Struktur ausführlich und 

geben, wo es im Kontext des Diskurses möglich und hilfreich ist, Hinweise darauf, auf 

welcher Basis und mit welcher Sicherheit welcher Schluss gezogen wird. Stützungen 

gehen meist über empirische oder anschauliche Stützungen hinaus.  

2 

Die Argumente des Lerners gehen überwiegend über die Formulierung einer Behauptung 

hinaus. Nur an wenigen oder an wenig zentralen Stellen fehlen notwendige Hinweise 

darauf, auf welcher Basis oder mit welcher Sicherheit der Schluss gezogen wird. Neben  

empirischen oder anschaulichen Stützungen finden sich auch Stützungen, die aus der 

Rahmentheorie herangezogen werden. 

3 

Die Argumente des Lerners gehen überwiegend über die Formulierung einer Behauptung 

hinaus. Dennoch fehlen an wesentlichen oder vielen Stellen notwendige Hinweise darauf, 

auf welcher Basis oder mit welcher Sicherheit der Schluss gezogen wird. Stützungen 

beschränken sich zumeist auf empirische oder anschauliche Stützungen. 

4 
Die Argumente des Lerners gehen vereinzelt, aber nicht überwiegend über die 

Formulierung einer Behauptung hinaus. An vielen wesentlichen Stellen fehlen notwendige 
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Hinweise darauf, auf welcher Basis oder mit welcher Sicherheit der Schluss gezogen wird. 

Stützungen beschränken sich zumeist auf empirische oder anschauliche Stützungen. 

5 

Auch bei zentralen Argumenten und solchen, wo es sich anbieten würde, beschränken 

sich Argumente des Lerners im Wesentlichen auf die Angabe einer Behauptung, ggf. mit 

wenig aussagekräftigen Einschränkungen. 

 

Typische Beispiele:  

Beispiele dazu, an welchen Stellen (bzw. an welch analogen Stellen) wir unbedingt eine Stützung und 

ggf. einen Qualifier/ Einschränkung erwarten: 

Behauptung: Das Ergebnis ist eine Quadratzahl.  

-> Eine Stützung ist notwendig: wenn empirisch (z.B.: 1*2*3*4*+1=52=25 und 2*3*4*5+1=112=121), 

dann muss ein Qualifier/ Einschränkung erfolgen (z.B.: Es scheint so, als sei das Ergebnis immer eine 

Quadratzahl. Das müssen wir jetzt aber noch beweisen). Die Einschränkung, dass die Behauptung 

noch zu beweisen ist, muss allerdings nicht unmittelbar folgen. Es reicht, wenn gefolgert wird, dass 

dies erstmal eine Vermutung ist.  

Behauptung: Das Ergebnis lässt sich schreiben als (n(n+3)+1)2.  

-> Eine Stützung ist notwendig: wenn empirisch (z.B.: 1*4=5 ->52=25 und (2*5+1)2=112=121), dann 

muss ein Qualifier/ Einschränkung erfolgen (z.B.: Dies gilt zumindest schon mal für die Beispiele, aber 

das ist noch nicht bewiesen). 

n(n+1)(n+2)(n+3)+1 = 2l(2l+1)(2l+2)(2l+3)+1= 2k+1mit k := l(2l+1)(2l+2)(2l+3), k𝝐ℤ 

Behauptung: Das Ergebnis ist das Quadrat einer Primzahl.  

-> Hier kann nur eine empirische Stützung erfolgen. Es muss explizit angemerkt werden, dass das 

erstmal nur für die Beispiele gilt und noch zu beweisen ist.  

Bemerkungen, Anmerkungen während der Kodiererschulung: 

Anmerkung: Es ist zu berücksichtigen, dass insbesondere Behauptungen, die lediglich auf Beispiele 

stützen, Hinweise, mit welcher Sicherheit der Schluss gezogen wurde, enthalten sollen.  

Reaktion auf fachlich falsche Äußerungen des Lernpartners 

Frage: Inwiefern trägt der Lerner zu einem kritisch-konstruktiven fachlichen Diskurs bei, indem er auf 

fachlich falsche Äußerungen des Lernpartners reagiert? Inwiefern erfolgen über die Kritik hinaus 

Begründungen und Alternativvorschläge? 

Kriterien: Die Kodierung fokussiert auf fachlich falsche Äußerungen des Lernpartners, insbesondere 

auf Stellen, an denen eine Reaktion des Lerners stattfindet. Kodiert wird, ob eine Reaktion des Lerners 

auf eine fachlich falsche Äußerung des Lernpartners erfolgt und inwiefern über die Kritik hinaus 

Begründungen und Alternativvorschläge angeführt werden. Dabei ist weniger von Bedeutung, ob 
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wirklich alle fachlichen Fehler des Lernpartners identifiziert werden (z.B. kleine formale Mängel, die die 

Bedeutung einer Aussage nicht wesentlich einschränken); wichtiger ist vielmehr, ob zentrale Fehler, die 

zu längeren Fehlwegen im Problemlöseprozess führen (könnten), erkannt werden und inwiefern eine 

elaborierte Kritik stattfindet. 

1 

Fachlich falsche Äußerungen des Lernpartners werden häufig vom Lerner kritisch 

hinterfragt. Die Kritik wird durchgehend begründet und Alternativvorschläge werden 

angeführt. 

2 

Fachlich falsche Äußerungen des Lernpartners werden häufig vom Lerner kritisch 

hinterfragt. Die Kritik wird überwiegend begründet und nur an wenigen zentralen Stellen 

fehlen Alternativvorschläge. 

3 

Fachlich falsche Äußerungen des Lernpartners werden mehrfach vom Lerner kritisch 

hinterfragt. Die Kritik wird nur teilweise begründet und nur an wenigen zentralen Stellen 

werden Alternativvorschläge angeführt, aber mindestens einmal.  

4 

Fachlich falschen Äußerungen des Lernpartners werden nur vereinzelt vom Lerner kritisch 

hinterfragt. Die Kritik wird ebenfalls nur vereinzelt begründet, aber mindestens einmal. 

Alternativvorschläge werden nicht oder nur vereinzelt angeführt. 

5a 
Fachlich falsche Äußerungen werden überhaupt nicht oder nur vereinzelt erkannt. 

Begründungen für die Kritik oder Alternativvorschläge werden überhaupt nicht angeführt. 

5b 
Der Lernpartner äußert bis auf einzelne Ausnahmen keine fachlich falschen Äußerungen. 

Kritik wäre somit auch nicht angebracht. 

 

Typische Beispiele:  

„Ich komm auf ein anderes Ergebnis, das müsste doch 11x2 heißen. Ich glaube, du hast dich verrechnet“ 

„Das ist nicht 4x+5, schließlich sollen wir multiplizieren und nicht addieren“ 

Bemerkungen, Anmerkungen während der Kodiererschulung: 

Anmerkung – zu einem bestimmten Fall: Der Lerner ist sich selbst an einer Stelle unsicher und fragt 

deshalb seinen Partner. Dieser antwortet ihm. Allerdings ist seine Antwort nicht korrekt. -> Auch wenn 

der Lerner selbst unsicher ist, wird dennoch von ihm erwartet, dass er die fehlerbehaftete Antwort seines 

Partner zumindest kritisch hinterfragt. Ist dies nicht der Fall, so wird dies negativ bewertet.  

Qualität von fachlichen Fragen im Diskurs 
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Frage: Inwiefern prägt der Lerner den Diskurs durch sein Interesse, eine inhaltliche Abstimmung mit 

dem Lernpartner zu erreichen, indem er fachliche Fragen stellt? Inwiefern trägt der Lerner zu einer 

kollaborativen Zusammenarbeit bei, indem er die Perspektive des Lernpartners erfragt? 

Kriterien: Berücksichtigt werden Äußerungen des Lerners an Stellen, an denen Unklarheiten, Zweifel 

oder unterschiedliche Sichtweisen auftreten, oder wo von den Lernern unterschiedliche Aspekte der 

Aufgabe bearbeitet werden. Hier wird insbesondere darauf fokussiert, inwiefern der Lerner die 

Möglichkeit nutzt, die Perspektive seines Lernpartners zu erfragen, um eine inhaltliche Abstimmung der 

Arbeit zu erreichen.  

1 

An vielen, geeigneten Stellen (>3) trägt der Lerner weitgehend dazu bei, eine inhaltliche 

Abstimmung mit dem Lernpartner zu erreichen, indem er (über rhetorische Fragen und 

Rückversicherungen hinaus) die Perspektive sowie das Vorgehen des Lernpartners in 

regelmäßigen Abständen erfragt und einbezieht. Die Fragen beziehen sich vorwiegend 

auf den gemeinsamen Arbeitsprozess oder auf die Beiträge des Lernpartners und tragen 

zur Weiterentwicklung gemeinsamer Ideen bei.  

2 

An einzelnen, geeigneten Stellen (max. 3) versucht der Lerner (über rhetorische Fragen 

und Rückversicherungen hinaus) eine inhaltliche Abstimmung mit dem Lernpartner zu 

erreichen, indem er die Perspektive sowie das Vorgehen des Lernpartners erfragt und 

einbezieht. Die Fragen beziehen sich vorwiegend auf den gemeinsamen Arbeitsprozess 

oder auf die Beiträge des Lernpartners.  

3 

Die inhaltliche Abstimmung zwischen den Lernpartnern beschränkt sich im Wesentlichen 

auf mehrere (>3) rhetorische Fragen und Rückversicherungen für das eigene Vorgehen. 

Die Perspektive sowie das Vorgehen des Lernpartners bleiben dabei weitgehend 

unberücksichtigt und werden nicht weiter einbezogen. 

4 

Die inhaltliche Abstimmung zwischen den Lernpartnern beschränkt sich auf einzelne (max. 

3) rhetorische Fragen und Rückversicherungen für das eigene Vorgehen. Das Vorgehen 

des Lernpartners bleibt dabei völlig unberücksichtigt und wird überhaupt nicht hinterfragt.   

5 

Versuche einer Abstimmung, indem an wesentlichen Stellen an den Lernpartner Fragen 

gestellt werden, sind nicht zu erkennen. Selbst rhetorische Fragen und 

Rückversicherungen für das eigene Vorgehen treten überhaupt nicht auf. 

 

Typische Beispiele:  

Fragen, die über rhetorische Fragen sowie Rückversicherungen hinausgehen: 

Bsp.: Sollen wir das nun formal aufschrieben? Ich versteh nicht, wie bist du darauf gekommen? Was 

wollten wir jetzt nochmal schreiben? Was ist deine Vermutung denn? 



Appendix 

180 

Rhetorische Fragen sowie Rückversicherungen: 

Bsp.: (Lerner rechnet und sagt leise vor sich hin) Das müsste jetzt stimmen, oder? Passt? Du siehst 

auch noch nichts, oder? 

Fragen bezüglich der Lösungsschritte im Programm werden nicht als fachliche Fragen gezählt, ebenso 

nicht wie rein organisatorische Fragen wie z.B. Schreibst du das auf oder soll ich? 

Bemerkungen, Anmerkungen während der Kodiererschulung: 

Wenn nur einmal eine Frage bezogen auf die Vorgehensweise des Lernpartners erfolgt und das 

Vorgehen nicht direkt einbezogen wird (also nur „Hast du schon eine Vermutung?“ und dann unmittelbar 

die eigene Vermutung vorgestellt wird), so wird dies mit max. 3 kodiert. Code 2 wird erst dann gegeben, 

wenn der Lerner auf die Antwort seines Partners direkt eingeht bzw. darauf anschließend Bezug nimmt.  

Um Code 1 zu vergeben, ist es wichtig, dass Fragen, die sich auf den gemeinsamen Arbeitsprozess 

oder auf die Beiträge des Lernpartners beziehen, an verschiedenen Stellen auftreten.  

Zyklen im Gespräch/ Inhaltliche Kohärenz 

Frage: Inwiefern trägt der Lerner aktiv zu längeren Phasen eines zusammenhängenden, fachlichen 

Diskurses über die Aufgabenbearbeitung bei? Inwiefern trägt der Lerner durch geeignete Impulse dazu 

bei, gemeinsame Ideen weiterzuentwickeln.  

Kriterien: Hier wird darauf fokussiert, inwiefern der Lerner eine gemeinsame Arbeit an einem geteilten 

Thema oder einer gemeinsamen Idee aktiv sicherstellt, sich daran beteiligt oder aber eine solche 

gemeinsame Arbeit vereinzelt oder wiederholt unterbricht.  

Ein längerer gemeinsamer Diskurs zieht sich über wenigstens fünf bis sechs zusammenhängende 

Wortwechsel und ist von einem gemeinsamen Interesse an einem Thema geprägt. 

1 

Der Lerner trägt wesentlich aktiv dazu bei, dass längere Phasen gemeinsamen Diskurses 

an einem gemeinsamen Thema auftreten, beispielsweise indem er das Gespräch an 

geeigneten Stellen durch geeignete Impulse fokussiert und gemeinsame Ideen 

weiterentwickelt. 

2 

Der Lerner beteiligt sich durchgehend wesentlich an längeren Phasen gemeinsamen 

Diskurses an einem gemeinsamen Thema, beispielsweise indem er das Thema sowie 

gemeinsame Ideen weiterentwickelt und nicht abschweift. 

3 

Der Lerner unterbricht vereinzelt Phasen des gemeinsamen Diskurses, indem er vom 

gemeinsam diskutierten Thema oder der gemeinsamen Idee abschweift. Überwiegend 

beteiligt er sich jedoch auch an längeren Phasen des gemeinsamen Diskurses. 
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4 

Der Lerner unterbricht häufig Phasen des gemeinsamen Diskurses, indem er vom 

gemeinsam diskutierten Thema oder der gemeinsamen Idee abschweift oder keinen 

Bezug auf Ideen des Lernpartners nimmt. Er arbeitet weitgehend an seinen eigenen Ideen. 

5 

Der Lerner nimmt nur selten substantiellen Bezug auf die Äußerungen des Lernpartners, 

sodass im Gespräch auch kürzere Phasen gemeinsamen Diskurses zu einem 

gemeinsamen Thema oder gemeinsame Ideen kaum auftreten.  

 

Typische Beispiele:  

Bsp.: „Lass uns das doch nochmal überprüfen!“; „Ich glaube wir können unsere Vermutung auch so 

schreiben…“; „ich habe es jetzt so aufgeschrieben, wie du vorgeschlagen hast, würde aber noch 

ergänzen, dass…“ 

Bemerkungen, Anmerkungen während der Kodiererschulung: 

Wenn der Lerner einmal eine längere Phase abweicht, dann bereits 3 
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10.2 Ratingskalen 

Videodatei:    

Rater:     

Durchgang: 

Lerner – Code:  

Ratings: 

Var-Inhaltliche Korrektheit (Var_Inhalt): 

Inwiefern bringt der Lerner fachlich korrekte Äußerungen in den Diskurs ein? Inwiefern 

werden also fachlich korrekte Aussagen über die betrachteten mathematischen Konzepte 

gemacht? 

9 5 4 3 2 1 

 

Var-Kognitives Niveau (Var_Kogn): 

Inwiefern bringt der Lerner zu unterschiedlichen Phase des Argumentationsprozesses neue 

inhaltliche Ideen ein, stellt logische Beziehungen zwischen unterschiedlichen Ideen und 

Konzepten her und bringt somit neue Aspekte in den Diskurs ein? 

9 5 4 3 2 1 

 

Var-Exploration von Vermutungen (Var_Expl): 

Inwiefern werden vom Lerner verschiedene Vermutungen exploriert? Inwiefern wird vor 

Beginn oder während der Evidenzgenerierung die Plausibilität einer Vermutung kritisch 

hinterfragt? 

9 5 4 3 2 1 

 

Var-Argumentstruktur (Var_Arg): 

Inwiefern bringt der Lerner mathematische Schlüsse in den Diskurs ein, die in Bezug auf ihre 

Struktur vollständig sind? Inwiefern gibt der Lerner Hinweise darauf, auf welcher Basis und 

mit welcher Sicherheit ein Schluss gezogen wird, wo es im Kontext des Diskurses notwendig 

und hilfreich ist? 
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9 5 4 3 2 1 

 

Var-Reaktion auf fachlich falsche Äußerungen (Var_Reak): 

Inwiefern trägt der Lerner zu einem kritisch-konstruktiven fachlichen Diskurs bei, indem er 

auf fachlich falsche Äußerungen des Lernpartners reagiert? Inwiefern erfolgen über die Kritik 

hinaus Begründungen und Alternativvorschläge? 

9 5b 5a 4 3 2 1 

 

Var-Fachliche Fragen (Var_Frage): 

Inwiefern prägt der Lerner den Diskurs durch sein Interesse, eine inhaltliche Abstimmung mit 

dem Lernpartner zu erreichen, indem er fachliche Fragen stellt? Inwiefern trägt der Lerner zu 

einer kollaborativen Zusammenarbeit bei, indem er die Perspektive des Lernpartners erfragt? 

9 5 4 3 2 1 

 

Var-Inhaltliche Kohärenz (Var_Zyklus): 

Inwiefern trägt der Lerner aktiv zu längeren Phasen eines zusammenhängenden, fachlichen 

Diskurses über die Aufgabenbearbeitung bei? Inwiefern trägt der Lerner durch geeignete 

Impulse dazu bei, gemeinsame Ideen weiterzuentwickeln? 

9 5 4 3 2 1 

 

Notizen:
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10.3 Rater-Training 

Trainingsprinzip: wiederholte Herstellung einer Verknüpfung von beobachtbaren mathematischen Argumentationsprozessen mit der 

konzeptgemäßen Qualitätsstufe durch den übenden Rater. Fehler werden durch unmittelbares Feedback korrigiert. 

Zeit Ziel der Phase Methode Hinweise 

Ca. 2,5 h Die Rater sollen mit den inhaltlichen und 

formalen Anforderungen der Aufgabe vertraut 

werden und Prozessmerkmale 

mathematischen Argumentierens und 

Beweisens in kooperativen Settings kennen 

lernen. 

Die Aufgabe und das Kodiermanual werden 

vorgelegt. Der Rater löst die Aufgabe zunächst 

selbst und liest das Kodiermanual durch. Der Rater 

wird anschließend mündlich über die Herkunft der 

Konzepte und Prozessmerkmale mathematischen 

Argumentierens und Beweisens aufgeklärt. Die 

Prozessmerkmalsdefinitionen und Beschreibungen 

sowie die Verankerungen der Qualitätsstufen 

durch Beispiele werden gemeinsam diskutiert. 

Fragen können dabei jederzeit gestellt werden. 

 

Ca. 3,5 h  Ziel ist das Erkennen von 

(Skalenausprägungs-) Unterschieden: Die 

Rater sollen ein Gefühl für die Qualität der 

mathematischen Argumentationskompetenz 

von StudienanfängerInnen in kooperativen 

Settings entwickeln. 

Diskriminationstraining: 3 Videos (ggf. 3 

Videoausschnitte) werden vorgelegt und sind vom 

Rater in eine Rangfolge hinsichtlich ihrer 

Qualitätsausprägung zu bringen (für jedes 

Prozessmerkmal einzeln). Anschließend werden 

die Ergebnisse im Plenum diskutiert und 

begründet. 

Die Videos sollten sich im Hinblick 

auf die Qualität der Prozessmerkmale 

deutlich voneinander unterscheiden. 

Möglichst eine sehr erfolgreiche und 

eine weniger erfolgreiche Dyade. Es 

ist darauf zu achten, dass möglichst 

viele verschiedene 
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Qualitätsausprägungen in vielfältiger 

Kombination auftreten. 

Ca. 30 min Die Rater sollen ein Gefühl für positive und 

negative mathematische 

Argumentationsprozesse in kooperativen 

Settings entwickeln. 

Herstellungstraining: Ein Video mittlerer Qualität 

(aus dem Diskriminationstraining bekannt) wird 

vorgelegt. Der Rater soll jetzt dieses Video in eine 

positive und negative Version umwandeln und 

seine Gedanken dabei erläutern. 

Das Video wurde bereits im Rahmen 

des Diskriminationstrainings 

angesehen. 

Ca. 1,5 h 

(nur bei 

zusätzlichen 

Bedarf) 

Die Rater sollen lernen, mathematische 

Argumentationskompetenz anhand 

verschiedener Prozessmerkmale zu beurteilen. 

Überlappungen und Verwechslungen zwischen 

diesen Merkmalen sind zu vermeiden. 

 

Konzept-Unterscheidungstraining: Ein Video wird 

vorgelegt und der Rater ordnet aufgrund seines 

(gelernten) Verständnisses jedem Prozessmerkmal 

ein typisches Beispiel (typische 

Argumentationsprozesse) aus dem Video zu. Die 

Zuordnung muss jeweils begründet werden.  

 

Ca. 1,5 h Die Rater sollen ein gemeinsames Verständnis 

der einzelnen Prozessmerkmale 

mathematischen Argumentierens entwickeln 

und an Erfahrung gewinnen.  

 

Ein weiteres Video wird vorgelegt und ist vom 

Rater hinsichtlich aller Prozessmerkmale zu raten. 

Während des Ratings werden Fragen und 

Schwierigkeiten notiert, die anschließend im 

Plenum diskutiert werden. Bei Bedarf wird das 

Kodiermanual adaptiert und es werden zusätzliche 

Regeln eingeführt. 

 

 

Anschließend werden weitere Videos geratet und statistisch analysiert (z.B. Häufigkeiten, Prozentuale Übereinstimmung, Cohens Kappa). Die 

Ergebnisse bilden die Grundlage für die Trainingsphase 2.  
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Zeit Ziel der Phase Methode Hinweise 

Ca. 30 min Jeder Rater soll seine Einschätzung mit den 

Einschätzungen der anderen Rater 

vergleichen. Die Interrater-Übereinstimmung 

wird überprüft. 

Die Interrater-Übereinstimmung für alle 

Prozessmerkmale wird diskutiert, insbesondere 

Merkmale mit einer geringen Übereinstimmung. 

 

Ca. 15 min Die Einschätzung für verschiedene 

Qualitätsausprägungen soll trainieret werden. 

Qualitätsausprägungen, die sehr häufig oder nur 

sehr selten vergeben wurden, werden diskutiert.  

 

Ca. 40 min Ursachen für Unklarheiten und für eine geringe 

Interrater-Reliabilität werden analysiert und 

diskutiert. 

Extremfälle (besonders auffällige 

Argumentationsprozesse sowie Fälle mit 

besonders geringer Übereinstimmung) werden 

gemeinsam analysiert. Die entsprechenden 

Videosequenzen werden erneut gemeinsam 

angesehen. 

 

 

Das Training kann dann beendet werden, wenn alle Rater ein gemeinsames theoretisches Verständnis zu den Prozessmerkmalen mathematischen 

Argumentierens und Beweisens aufgebaut haben (zeigt sich anhand einer guten Interrater-Reliabilität) und alle Fragen geklärt werden konnten. Alle 

Videos, die für das Training verwendet wurden, sollten nicht in die Datenanalyse eingebracht werden. 

(Langer & Schulz von Thun, 2007; Wiesbeck, 2015) 
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10.4 Kodier-Manual der Eigenlösungen als Produkt kooperativer Argumentations-

prozesse 

Inhalt der Vermutung 

Hier geht es darum, welche Vermutung gefunden wurde (formale Mängel spielen hierbei noch keine 

Rolle), also um den Inhalt der Vermutung. Solange weitgehend zweifelsfrei erkennbar ist, was 

gemeint ist (auch bei formalen Mängeln im Aufschreiben) wird die Vermutung interpretiert. 

Code Beschreibung Beispiel 

0x Vermutung falsch oder nicht interpretierbar 

Es wurde keine korrekte Vermutung gefunden oder formuliert oder die Vermutung ist nicht 

interpretierbar. 

0 

Keine Vermutung 

Es wurde keine Vermutung 

explizit formuliert. Dieser Code 

wird auch dann vergeben, wenn 

zwar aus dem Beweis die 

Vermutung ersichtlich wird, 

diese aber nicht explizit 

aufgeschrieben wurde. 

 

1 

Falsche Vermutung 

Es wurde eine nicht korrekte 

Vermutung  formuliert. 

„Vermutung: Das Ergebnis 

ist immer das Quadrat 

einer Primzahl.“ 

2 

Nicht-interpretierbare Vermutung 

Es wurde eine auch bei guten 

Willen nicht interpretierbare 

Vermutung formuliert. Die 

Vermutung ist aus inhaltlicher 

Sicht nicht verständlich. 

„ z.z.: x2 ⋀ x|1 ⋀ x 

ungerade“,… 

1x Vermutung korrekt, aber teilweise trivial 

Es wurde mindestens eine korrekte, aber triviale Vermutung gefunden und formuliert, d.h. es könnte 

eine stärke Vermutung abgeleitet werden. 

0 

Korrekte, teilweise triviale 

Vermutung  

Es wurde eine korrekte 

Vermutung formuliert. Allerding 

ist diese eher von trivialer Natur, 

d.h. eine stärkere Vermutung 

hätte abgeleitet werden können. 

„Das Ergebnis ist immer 

ungerade“, „ohne 1 ergibt 

sich eine gerade Zahl“, 

„x(x+1)(x+2)(x+3) ist immer 

gerade.“… 
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1 

Mehrere korrekte, teilweise 

trivialen Vermutungen 

Es wurden mehrere korrekte 

Vermutungen formuliert. 

Allerding sind diese alle eher 

von trivialer Natur, d.h. eine 

stärkere Vermutung hätte 

abgeleitet werden können. 

„Wenn man vier 

aufeinanderfolgende 

Zahlen miteinander 

multipliziert und 1 addiert, 

dann ergibt sich immer 

eine ungerade Zahl und 

ohne 1 hat man eine 

gerade Zahl“ 

 

2 

Korrekte, teilwiese triviale 

Vermutung, implizit 

Es wurde eine korrekte 

Vermutung nur implizit 

formuliert. Diese implizite 

Vermutung ist eher von trivialer 

Natur, d.h. eine stärkere 

Vermutung hätte abgeleitet 

werden können. 

=> ungerade  

3 

Korrekte, nicht-triviale Vermutung 

& falsche Vermutung 

Es wurde eine nicht-triviale, 

korrekte Vermutung und eine 

falsche Vermutung formuliert. 

Der Fokus liegt auf der nicht-

trivialen, korrekten Vermutung. 

 

2x Vermutung korrekt und nicht trivial 

Es wurde mindestens  eine korrekte und nicht triviale Vermutung gefunden und formuliert. 

0 

Korrekte und nicht triviale 

Vermutung 

Es wurde eine korrekte, nicht 

triviale Vermutung formuliert.  

„Wenn man vier 

aufeinanderfolgende ganze 

Zahlen miteinander 

multipliziert und 1 addiert, 

dann ergibt sich immer 

eine Quadratzahl.“,… 

„Wenn man vier 

aufeinanderfolgende ganze 

Zahlen multipliziert und 1 

addiert, dann bleibt bei 

Division durch 4 Rest 1. 
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1 

Mehrere korrekte Vermutungen 

und davon eine nicht triviale 

Vermutung  

Es wurden mehrere korrekte 

Vermutungen formuliert. Eine 

davon ist nicht trivial.   

„Wenn man vier 

aufeinanderfolgende 

Zahlen miteinander 

multipliziert und 1 addiert, 

dann ergibt sich immer 

eine ungerade Zahl. Diese 

Zahl ist immer eine 

Quadratzahl.“ 

2 

Korrekte und nicht triviale 

Vermutung, implizit 

Es wurde eine korrekte, nicht 

triviale Vermutung  nur implizit 

formuliert. 

=> Das Ergebnis ist eine 

Quadratzahl 

Form der Vermutung 

Hier geht es darum, ob die Vermutung formal und verbal klar und eindeutig formuliert ist – 

unabhängig davon ob sie inhaltlich korrekt und/oder trivial ist oder nicht. Dabei geht es um die 

Verwendung von Variablen, Junktoren, Quantoren, Implikationspfeilen und Fachsprache. 

Code Beschreibung Beispiel 

0x Vermutung mit gravierenden formalen Mängeln  

Es wurde keine formal verständliche Vermutung (unabhängig vom Inhalt der Vermutung) gefunden 

oder formuliert. 

0 

Keine Vermutung oder nur 

implizite Vermutung 

Es wurde keine Vermutung 

explizit formuliert. Dieser Code 

wird auch dann vergeben, wenn 

zwar aus dem Beweis die 

Vermutung ersichtlich wird, 

diese aber nicht explizit 

aufgeschrieben wurde. 

 

1 

Vermutung mathematisch nicht 

korrekt formuliert, gravierende 

Mängel, überhaupt nicht 

interpretierbar 

Es wurde eine Vermutung 

formuliert. Die Formulierung 

(unabhängig vom Inhalt der 

Vermutung!) ist jedoch nicht 

korrekt. Die Mängel sind so 

gravierend, dass die Aussage 

keinen Sinn macht und somit 

inhaltlich nicht interpretierbar ist.  

z.B.: dieselbe Variable wird 

für unterschiedliche 

algebraische Ausdrücke 

verwendet oder mehrere 

formale Mängel treten 

gleichzeitig auf; „z.z.: x2 ⋀ 

x|1 ⋀ x ungerade“ 

2 Es wurde eine Vermutung 

formuliert. Die Formulierung 

z.B.: dieselbe Variable wird 

für unterschiedliche 



Appendix 

190 

Vermutung mathematisch nicht 

korrekt formuliert, gravierende 

Mängel,  nur schwer verständlich 

(unabhängig vom Inhalt der 

Vermutung!) ist jedoch nicht 

korrekt. Die Vermutung ist 

inhaltlich interpretierbar, aber 

aufgrund der gravierenden 

formalen Mängel nur sehr 

schwer verständlich.  

algebraische Ausdrücke 

verwendet oder mehrere 

formale Mängel treten 

gleichzeitig auf; „z.z. ƎxϵZ: 

x2|x(x+1)(x+2)(x+3)+1“,… 

1x Vermutung mit kleinen formalen Mängeln  

Es wurde eine formal verständliche, allerdings nicht ganz formal korrekte Vermutung (unabhängig 

vom Inhalt der Vermutung) gefunden und formuliert. Kleine oder wenige formale Mängel sind zu 

finden, die jedoch die Bedeutung der Vermutung kaum einschränken. 

0 

Vermutung mathematisch nicht 

ganz korrekt formuliert, nur 

wenige und kleine formale 

Mängel, die die Bedeutung der 

Aussage kaum einschränken 

Es wurde eine Vermutung 

formuliert, die formale Mängel 

enthält. Die Vermutung ist aber 

im Prinzip verständlich. 

Allerdings finden sich kleine 

formale Mängel, so dass die 

Vermutung nicht vollständig 

sauber aufgeschrieben wurde. 

Die formalen Mängel sind so 

geringfügig, dass sie die 

Bedeutung der Aussage kaum 

in ihrer Verständlichkeit 

einschränken.  

Variablen werden nicht 

systematisch eingeführt 

(keine Angaben zum 

Definitionsbereich), statt 

Verwendung des 

Allquantors wird 

versehentlich der 

Existenzquantor 

verwendet,…  

1 

Vermutung nicht ganz korrekt 

formuliert, Verknüpfung zwischen 

Voraussetzung und Behauptung 

fehlt 

Es wurde eine Vermutung 

formuliert, die formale Mängel 

enthält. Der Wesentliche 

formale Mangel besteht darin, 

dass keine Verknüpfung 

zwischen Voraussetzung und 

Behauptung hergestellt wird. 

Darüber hinaus finden sich 

weitgehend keine weiteren 

formalen Fehler. 

„Das Ergebnis ist immer 

eine Quadratzahl.“ 

2x Vermutung formal korrekt  

Es wurde eine formal verständliche und formal korrekte Vermutung (unabhängig vom Inhalt der 

Vermutung) gefunden und formuliert.  
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0 

Vermutung formal korrekt und 

verständlich formuliert 

Es wurde eine verständliche und 

weitgehend formal korrekte 

Vermutung aufgeschrieben. 

Kleinere Probleme wie 

offensichtliche Schreibfehler 

werden toleriert. 

z.z.: „∀x∊Z:  

x(x+1)(x+2)(x+3)+1 = 

(x2+(3x+1))2, 

„∀x∊Z mit 

x(x+1)(x+2)(x+3)+1 ergibt 

sich eine Quadratzahl;… 

 

Vorhandene Beweisideen 

Hier geht es darum, ob die wesentlichen Ideen des Beweises erkennbar sind (wesentlichen 

zentralen Ideen siehe Erklärung zur Aufgabe). Es geht dabei weniger darum, ob der Beweis formal 

korrekt dargelegt ist. Zentral ist, dass die wesentlichen Ideen inhaltlich erkennbar sind.  

Code Beschreibung Beispiel 

0x Weniger als die Hälfte der zentralen Ideen 

Es wurden weniger als die Hälfte der zentralen Ideen angesprochen.  

0 

Keine zentralen Ideen 

Es wurden keine zentralen 

Ideen angesprochen. Entweder 

wurde nicht versucht, eine 

Vermutung zu beweisen oder es 

wurde keine zentrale Idee 

gefunden. Hierzu zählt auch ein 

reines Betrachten von 

Beispielen. 

s. Erklärung zur Aufgabe 

1 

Weniger als die Hälfte der 

zentralen Ideen 

Es wurden weniger als die 

Hälfte der zentralen Ideen 

angesprochen.  

s. Erklärung zur Aufgabe 

1x Mehr als die Hälfte der zentralen Ideen 

Es wurden mehr als die Hälfte der zentralen Ideen im korrekten Zusammenhang angesprochen. 

0 

Mehr als die Hälfte der zentralen 

Ideen 

Es wurden mehr als die Hälfte 

der zentralen Ideen 

angesprochen, aber nicht alle 

Ideen gefunden. Einige Ideen 

fehlen oder sind nicht 

nachvollziehbar.  

s. Erklärung zur Aufgabe 

2x Alle zentralen Ideen 



Appendix 

192 

Es wurden alle zentralen Ideen angesprochen. 

0 

Alle zentralen Ideen  

Es wurden alle zentralen Ideen. 

Der Beweis enthält die 

wesentlichen Ideen. 

s. Erklärung zur Aufgabe 

Form des Beweises 

Hier geht es darum, ob die im Beweis erkennbaren Argumente (unabhängig von der inhaltlichen 

Korrektheit der Argumente) formal verständlich und formal korrekt dargelegt sind. Es geht hier 

lediglich um die Darstellung der Argumente, unabhängig von deren inhaltlicher Korrektheit. 

Beispielsweise wären formal perfekt dargelegte, beispielbasierte Argumente für Allaussagen 

durchaus mit „2x“ zu kodieren. 

Es geht im Wesentlichen darum, ob für die einzelnen Schlüsse im Beweis Variablen, Junktoren, 

Quantoren und Fachsprache adäquat verwendet wurde. 

Code Beschreibung Beispiel 

0x Argumente mit gravierenden formalen Mängeln 

Es wurden keine formal korrekt dargelegten Argumente gefunden oder es wurden Argumente mit 

gravierenden formalen Mängeln formuliert, die wesentliche Teile des Beweises unakzeptabel 

machen. 

0 

Keine Argumente 

Es wurden keine Argumente 

formuliert. 

 

1 

Argumente mit gravierenden 

formalen Mängeln 

Es wurden Argumente mit 

gravierenden formalen Mängeln 

formuliert, die bei ernsthafter 

Interpretation alle wesentlichen 

Teile des Beweises 

unakzeptabel machen.  

Die Art wie formale 

Notationen/ Variablen/ 

Quantoren/ Logische 

Junktoren verwendet 

werden ist bis auf wenige 

Ausnahmen kaum 

nachvollziehbar/häufig 

falsch/häufig mehrdeutig. 

1x Argumente mit kleinen formalen Mängeln 

Es wurden im Wesentlichen interpretierbare, allerdings nicht ganz formal korrekte Argumente 

(unabhängig vom Inhalt der Argumente) gefunden und formuliert. Kleine oder wenige formale 

Mängel sind zu finden, die jedoch nur wenige Schritte des Beweises beeinflussen.  

0 

Argumente mit wenigen oder 

leichten Mängeln 

Es wurden Argumente mit 

wenigen oder leichten formalen 

Mängeln formuliert, die auch bei 

Die Art wie formale 

Notationen/ Variablen/ 

Quantoren/ Logische 
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ernsthafter Interpretation nur 

wenige Schritte des Beweises 

betreffen. 

Junktoren verwendet 

werden, ist schwer 

nachvollziehbar/teilweise 

falsch/teilweise 

mehrdeutig. 

z.B. werden Variablen nicht 

korrekt eingeführt, sonst 

aber konsistent verwendet; 

vereinzelte falsche 

Verwendung des 

Gleichheitszeichens/ von 

Quantoren/ des 

Implikationspfeils. 

2x Argumente weitgehend formal korrekt  

Es wurden formal verständliche und weitgehend formal korrekte Argumente (unabhängig vom Inhalt 

der Argumente) gefunden und formuliert. Keine oder nur minimale formale Mängel sind zu finden, 

die den Beweis nicht wesentlich beeinflussen. 

0 

Argumente mit minimalen 

formalen Mängeln 

Es wurden Argumente mit 

minimalen formalen Mängel 

formuliert, die die Interpretation 

des Beweises auch bei 

ernsthafter Interpretation nicht 

wesentlich beeinflussen  

z.B.: Nicht für alle 

Variablen wird der 

Definitionsbereich angeben 

1 

Argumente formal korrekt 

 

Es wurden formal korrekte 

Argumenten formuliert. Keine 

formalen Mängel sind zu finden.  

Alle formalen Notationen 

werden in 

nachvollziehbarer Art 

verwendet. 

Beweisstruktur/- kette 

Hier geht es darum, inwiefern klar aufeinander folgende Schritte aneinandergereiht (beginnend bei 

den Voraussetzungen, endend bei der Behauptung) werden und inwiefern Lücken zwischen den 

einzelnen Beweisschritten vorzufinden sind. Ausschlaggebend ist hier nicht die notierte Reihenfolge 

der Beweisschritte sondern die Organisation der präsentierten Argumente. 

Code Beschreibung Beispiel 

0x Beweisstruktur/-kette mit gravierenden Mängeln 

Es wurden zahlreiche Teilschritte nicht bewiesen und/ oder es finden sich Fehler in der 

Beweisstruktur (d.h. die Struktur der Einzelschlüsse belegt nicht die Vermutung auf der Basis der 
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Voraussetzungen und bekannter Sätze und Definitionen), wobei die gewählte Vorgehensweise 

nicht als heuristisches Hilfsmittel zu betrachten ist. 

0  

Keine Beweisschritte 

  

Es wurden keine Argumente 

formuliert. 

 

1 

Fehler in der Beweiskette: 

Zahlreiche Teilschritten nicht 

beweisen 

Es wurden zahlreiche 

Teilschritte nicht bewiesen, die 

in der Argumentation verwendet 

wurden, so dass der Beweis 

große Lücken aufweist.  

„x(x+1)(x+2)(x+3)+1=  

(x2+x) (x2+5x+6)= c2“ 

2 

Fehler in der Beweisstruktur: die 

Struktur der Einzelschlüsse belegt 

nicht die Vermutung auf der Basis 

der Voraussetzungen und 

bekannter Sätze und Definitionen 

Es wurden aufeinanderfolgende 

Schritte nicht klar 

aneinandergereiht. Die 

Argumentation ist 

gekennzeichnet durch eine 

nicht-korrekte Beweisstruktur. 

Die Argumentation in der 

Bearbeitung geht von der 

Behauptung aus und leitet 

aus dieser unter Nutzung 

der Voraussetzung und 

bereits bekannter 

Definitionen, Sätze und 

Regeln eine weitere 

Aussage ab. Es wird 

versucht, etwas vom Typ 

„1=1“ abzuleiten. 

Der Beweis beginnt nicht 

bei der Voraussetzung und 

endet bei der Behauptung. 

3 

Fehler in der Beweiskette und der 

Beweisstruktur 

Kombination aus Code 02 und 

01. 

„x(x+1)(x+2)(x+3)+1=  c2 

(x2+x) (x2+5x+6)= c2“,..“ 

1x Beweisstruktur/-kette mit kleinen Mängeln 

Es wurden nur wenige Teilschritte nicht bewiesen oder es wurde die Behauptung und 

Voraussetzung als heuristisches Hilfsmittel genutzt. 

0 

Wenige Teilschritte nicht 

bewiesen 

Es wurden die meisten 

Teilschritte, die in der 

Argumentation verwendet 

wurden, bewiesen. Nur 

vereinzelt finden sich noch 

Teilschritte, die nicht bewiesen 

„x(x+1)(x+2)(x+3)+1= 

(x2+x) (x2+5x+6) = 

(x2+(3x+1))2 
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wurden, so dass der Beweis 

minimale Lücken aufweist. 

1 

Nutzung von Voraussetzung und 

Behauptung als potentielles 

heuristisches Mittel 

Es wurde die Behauptung und 

Voraussetzung als heuristisches 

Hilfsmittel genutzt. Es wurde 

also anders als logisch 

konsistent vorgegangen, aber 

dieses Vorgehen wurde als 

heuristisches Mittel genutzt. 

Die Argumentation in der 

Bearbeitung beginnt mit 

der Behauptung und leitet 

aus dieser unter Nutzung  

der Voraussetzung und 

bereits bekannter 

Definitionen, Sätze und 

Regeln eine weitere 

Aussage ab, die als 

strategische Hilfe dient und 

genutzt wird. 

2x Beweisstruktur/-kette korrekt 

Es wurden alle aufeinanderfolgenden Schritte klar aneinandergereiht und bewiesen, so dass 

weitgehend keine Mängel in der Beweisstruktur/-kette vorliegen. Die Argumentation beginnt bei der 

Voraussetzung und endet bei der Behauptung bzw. bildet die Struktur, dass sie bei der Behauptung 

enden würde, wenn der Beweis zu Ende geführt worden wäre. 

0 

 

Es wurden alle 

aufeinanderfolgenden Schritte, 

die in der Argumentation 

verwendet wurden, klar 

aneinandergereiht und 

bewiesen, so dass weitgehend 

keine Mängel in der 

Beweisstruktur/- kette vorliegen. 

 

 

 

 

 

 



 

196 

  



 

197 

 

List of figures 

Figure 1: The goal structure for conjecturing and argumentation skills (Koedinger, 1998) ....27 

Figure 2: Toulmin’s basic model. Visualizing the structure of an argument. ..........................28 

Figure 3: Situation-specific factors of mathematical argumentation and proof. .....................31 

Figure 4: Conceptualization of mathematical argumentation skills. .......................................34 

Figure 5: Interplay between personal and situational prerequisites, cognitive processes, and 

social learning activities within collaborative learning (Wecker & Fischer, 2014). ..................43 

Figure 6: An analytic framework for measuring argumentation skills. ....................................48 

Figure 7: The perplexity of topic models with varying numbers of topics (5 to 35 topics in jumps 

of 1 or 2). The two lines represent linear approximations for the perplexity level above and 

below the identified point 17, where the graph ‘levels off’. ....................................................64 

Figure 8: Development process for rating scales (adapted from Seidel, 2005) .....................97 

Figure 9: Quality levels of the first process characteristic “cognitive complexity”................. 117 

Figure 10: Example items of the test for assessing students’ prior knowledge on proof. The 

test was adapted from Reichersdorfer et al., 2012. ............................................................. 140 

 



  
  

198 

List of tables  

Table 1: Dimensions that frame the in-depth analysis of claims and findings about promising 

conjecturing and proving processes .....................................................................................62 

Table 2: Coding examples of claims and findings from three studies. The study of by Savic 

(2015a) represents the topic “problem-solving with a specific focus on processes, impasses, 

and incubation”, the study of by Martinez, Brizuela, and Superfine (2011) represents the topic 

“modeling”, and the study of by Blanton and Stylianou (2014) represents the topic “social/ 

collective argumentation”. .....................................................................................................63 

Table 3: The 17 topics and the defining list of words (the words that best characterize the 

corresponding topic in order of probability) for each topic (sorted by their average proportion).

 .............................................................................................................................................67 

Table 4: An overview of the 45 papers that constitute our data for the qualitative analyses. .71 

Table 5: Definitions of the sub-goal within conjecturing and proving processes derived from 45 

articles and research reports on conjecture and proving. ......................................................76 

Table 6: Sub-goals versus process characteristics. Lightly-shaded cells present the assumed 

or reported relations between the success within one sub-goal and the occurrence of specific 

process characteristics during the attempt to achieve the sub-goal. .....................................85 

Table 7: Inter-rater correlations and intra-class correlations for all process characteristics. 119 

Table 8: Mean values and standard derivations for all process characteristics. .................. 120 

Table 9: Intra-class correlations as values for the between-cluster variance. ...................... 120 

Table 10: Factor loadings for both 2-dim model. ................................................................. 122 

Table 11: Seven process characteristics of collaborative conjecturing and proving processes 

and the resulting scales of the rating scheme. .................................................................... 142 

Table 12: Results of linear regression analyses predicting the quality of the resulting product.

 ........................................................................................................................................... 145 

Table 13: Mean values and standard derivations for the four quality facets of prior knowledge 

on proof. ............................................................................................................................. 146 

Table 14: Mean values and standard derivations for the quality criteria of the resulting proof.

 ........................................................................................................................................... 147 

 



  
  

199 

11 References 

Abel, C. F. (2003). Heuristics and problem solving. New Directions for Teaching and 

Learning, 2003, 53–58. 

Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. The Cambridge 

Handbook of the Learning Sciences, 2, 358–376. 

Alcock, L. (2010). Mathematicians’ perspectives on the teaching and learning of proof. 

Research in Collegiate Mathematics Education VII, 63–92. 

Alcock, L., & Inglis, M. (2008). Doctoral students’ use of examples in evaluating and proving 

conjectures. Educational Studies in Mathematics, 69, 111–129. 

https://doi.org/10.1007/s10649-008-9149-x 

Alcock, L., & Weber, K. (2010). Undergraduates’ example use in proof construction: 

Purposes and effectiveness. Investigations in Mathematics Learning, 3, 1–22. 

https://doi.org/10.1080/24727466.2010.11790298 

Alibert, D., & Thomas, M. (1991). Advanced Mathematical Thinking: Kluwer Dordrecht. 

Alrø, H., & Skovsmose, O. (2002). Dialogue and Learning in Mathematics Education: 

Intention, Reflection. Critique, 29. 

Andriessen, J. E. B., & Schwarz, B. B. (2009). Argumentative design. In M.N. Muller & AN. 

Perret-Clermont (Eds.), Argumentation and education (pp. 145–174). Springer, Boston, 

MA. 

Anjewierden, A., Gijlers, H., Kolloffel, B., Saab, N., & Hoog, R. de. (2011). Examining the 

relation between domain-related communication and collaborative inquiry learning. 

Computers & Education, 57, 1741–1748. https://doi.org/10.1016/j.compedu.2011.03.010 

Antonini, S. (2011). Generating examples: Focus on processes. ZDM, 43, 205–217. 

Artigue, M. (2001). What can we learn from educational research at the university level? In 

D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, A. Schoenfeld (Eds.), The 

teaching and learning of mathematics at university level (pp. 207–220). New ICMI Study 

Series, vol 7. Springer, Dordrecht. 

Asterhan, C. S. C., & Schwarz, B. B. (2007). The effects of monological and dialogical 

argumentation on concept learning in evolutionary theory. Journal of Educational 

Psychology, 99, 626–639. https://doi.org/10.1037/0022-0663.99.3.626 



  
  

200 

Asterhan, C. S. C., & Schwarz, B. B. (2009). Argumentation and explanation in conceptual 

change: Indications from protocol analyses of peer‐to‐peer dialog. Cognitive Science, 33, 

374–400. https://doi.org/10.1111/j.1551-6709.2009.01017.x 

Bagchi, A., & Wells, C. (1998). On the communication of mathematical reasoning. Problems, 

Resources, and Issues in Mathematics Undergraduate Studies, 8, 15–27. 

Balacheff, N. (1988). A study of students' proving processes at the junior high school level. 

Second UCSMP International Conference on Mathematics Education. 

Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical 

proof. In Mathematical knowledge: Its growth through teaching (pp. 173–192). Springer. 

Balacheff, N. (1999). Is Argumentation an Obstacle? Invitation to a Debate. International 

Newsletter on the Teaching and Learning of Mathematical Proof, 5-6. 

www.lettredelapreuve.itlResumeslBoerolBoero99.html (zuletzt aufgerufen am 

10.11.2018). 

Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. The 

Journal of the Learning Sciences, 9, 403–436. 

https://doi.org/10.1207/S15327809JLS0904_2 

Barron, B. (2003). When smart groups fail. The Journal of the Learning Sciences, 12, 307–

359. 

Blanton, M. L., & Stylianou, D. A. (2014). Understanding the role of transactive reasoning in 

classroom discourse as students learn to construct proofs. The Journal of Mathematical 

Behavior, 34, 76–98. https://doi.org/10.1016/j.jmathb.2014.02.001 

Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies: 

Competence Viewed as a Continuum. Zeitschrift Für Psychologie, 3–13. 

https://doi.org/10.1027/2151-2604/a000194 

Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, 

unavoidable relationship in mathematics and mathematics education. International 

Newsletter on the Teaching and Learning of Mathematical Proof, 7. 

www.lettredelapreuve.org/OldPreuve/Newsletter/990708Theme/990708ThemeUK.html 

Boero, P., Garuti, R., & Lemut, E. (2007). Approching theorems in grade VIII. Theorems in 

School: from History, Epistemology and Cognition to Classroom Practice, 249, 249–264. 

Cai, J., Mamona-Downs, J., & Weber, K. (2005). Mathematical problem solving: What we 

know and where we are going. The Journal of Mathematical Behavior, 24(3-4), 217-220.  



  
  

201 

http://dx.doi.org/10.1016/j.jmathb.2005.09.014  

Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent 

multidimensional problem-solving framework. Educational Studies in Mathematics, 58, 

45–75. 

Carroll, C. D. (1977). The relative effectiveness of three geometric proof construction 

strategies. Journal for Research in Mathematics Education, 62–67. 

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral 

Research, 1, 245–276. 

Chazan, D. (1993). High school geometry students' justification for their views of empirical 

evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387. 

Chi, M. T. H. (2009). Active‐constructive‐interactive: A conceptual framework for 

differentiating learning activities. Topics in Cognitive Science, 1, 73–105. 

https://doi.org/10.1111/j.1756-8765.2008.01005.x 

Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to 

active learning outcomes. Educational Psychologist, 49, 219–243. 

https://doi.org/10.1080/00461520.2014.965823 

Chinnappan, M., Ekanayake, M. B., & Brown, C. (2012). Knowledge use in the construction 

of geometry proof by Sri Lankan students. International Journal of Science and 

Mathematics Education, 10, 865–887. 

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and 

standardized assessment instruments in psychology. Psychological Assessment, 6, 284. 

Clark, D. B., Sampson, V., Weinberger, A., & Erkens, G. (2007). Analytic frameworks for 

assessing dialogic argumentation in online learning environments. Educational 

Psychology Review, 19, 343–374. https://doi.org/10.1007/s10648-007-9050-7 

Clark, H. H., & Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science, 13, 259–

294. https://doi.org/10.1016/0364-0213(89)90008-6 

Clark, K., James, A., & Montelle, C. (2014). “We definitely wouldn't be able to solve it all by 

ourselves, but together…”: group synergy in tertiary students' problem-solving practices. 

Research in Mathematics Education, 16, 306–323. 

https://doi.org/10.1080/14794802.2014.950687 

Clausen, M. (2002). Unterrichtsqualität: Eine Frage der Perspektive? Empirische Analysen 

zur Übereinstimmung, Konstrukt- und Kriteriumsvalidität. Münster: Waxmann Verlag. 



  
  

202 

Clausen, M., Reusser, K., & Klieme, E. (2003). Unterrichtsqualitat auf der Basis hoch-

inferenter Unterrichtsbeurteilungen: Ein Vergleich zwischen Deutschland und der 

deutschsprachigen Schweiz. Unterrichtswissenschaft, 31, 122–141. 

Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics 

students. British Educational Research Journal, 20, 41–53. 

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. 

Review of Educational Research, 64, 1–35. https://doi.org/10.3102/00346543064001001 

Common Core State Standards Initiative. (2010). National Governors Association Center for 

Best Practices and Council of Chief State School Officers. Retrieved from 

http://www.corestandards.org. 

Corte, E. de, Verschaffel, L., & Op't Eynde, P. (2000). Self-regulation: A characteristic and a 

goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), 

Handbook of self-regulation (pp. 687–726). Elsevier. 

Dawkins, P. C. (2012). Extensions of the semantic/syntactic reasoning framework. For the 

Learning of Mathematics, 32, 39–45. 

Dawkins, P. C. (2015). Explication as a lens for the formalization of mathematical theory 

through guided reinvention. The Journal of Mathematical Behavior, 37, 63–82. 

Dawkins, P. C., & Karunakaran, S. S. (2016). Why research on proof-oriented mathematical 

behavior should attend to the role of particular mathematical content. The Journal of 

Mathematical Behavior, 44, 65–75. 

Dawkins, P. C., & Weber, K. (2017). Values and norms of proof for mathematicians and 

students. Educational Studies in Mathematics, 95, 123–142. 

Dieter, M. (2012). Studienabbruch und Studienfachwechsel in der Mathematik: Quantitative 

Bezifferung und empirische Untersuchung von Bedingungsfaktoren. Dissertation, 

Universität Duisburg-Essen. http://duepublico.uni-duisburg-

essen.de/servlets/DerivateServlet/Derivate-30759/Dieter_Miriam.pdf. 

Douek, N. (1999). Argumentation and conceptualization in context: a case study on 

sunshadows in primary school. Educational Studies in Mathematics, 39, 89–110. 

Douek, N. (2007). Some remarks about argumentation and proof. Theorems in School: from 

History, Epistemology and Cognition to Classroom Practice, 163–181. 

Dreyfus, T. (2002). Advanced mathematical thinking processes. In Tall D. (Ed.), Advanced 

Mathematical Thinking. Mathematics Education Library, vol 11. Springer, Dordrecht. 



  
  

203 

Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA quantification. 

Research in Collegiate Mathematics IV, 239–289. 

Ellis, A. B., Lockwood, E., Dogan, M. F., & Williams, C. C. W. (2013). Choosing and using 

examples: How example activity can support proof insight. In A. Lindmeier & A. Heinze 

(Eds.), Proceedings of the 37th Conference of the International Group for the Psychology 

of Mathematics Education (Vol. 2, pp. 265–272). Kiel, Germany. 

Ellis, A. B., Ozgur, Z., Vinsonhaler, R., Dogan, M. F., Carolan, T., Lockwood, E., . . . 

Zaslavsky, O. (2017). Student thinking with examples: The criteria-affordances-purposes-

strategies framework. The Journal of Mathematical Behavior. Advance online publication. 

https://doi.org/10.1016/j.jmathb.2017.06.003 

Engelbrecht, J. (2010). Adding structure to the transition process to advanced mathematical 

activity. International Journal of Mathematical Education in Science and Technology, 41, 

143–154. https://doi.org/10.1080/00207390903391890 

Epp, S. S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 

110, 886–899. https://doi.org/10.1080/00029890.2003.11920029 

Epp, S. S. (2009). Proof issues with existential quantification. In F.-L. Lin, F.-J. Hsieh, G.   

Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 Conference: Proof and 

Proving in Mathematics Education (Vol. 1, pp. 154-159). 

Ernest, P. (1998). A postmodern perspective on research in mathematics education. In A. 

Sierpinska; J. Kilpatrick (Ends.), Mathematics education as a research domain: A search 

for identity (pp. 71–85). Dordrecht: Kluwer Academic Publishers. 

Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., . . . Fischer, M. (2014). 

Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda 

in Education. Frontline Learning Research, 2, 28–45. 

Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (2017). Informal Content and Student 

Note-Taking in Advanced Mathematics Classes. Journal for Research in Mathematics 

Education, 48, 567–579. 

Furinghetti, F., Maggiani, C., & Morselli, F. (2013). How mathematics students perceive the 

transition from secondary to tertiary level with particular reference to proof. NORDISK 

MATEMATIKKDIDAKTIKK, 17, 101–116. 

Furinghetti, F., & Morselli, F. (2004). Between Affect and Cognition: Proving at University 

Level. (2004). In Johnsen Hønes, M. & Berit Fuglestad, A (Eds), Proceedings of the 28th 



  
  

204 

Annual Conference of the International Group for the Psychology of Mathematics 

Education (Vol. 3, pp. 369-376). Bergen, Norway, Bergen University College.  

Furinghetti, F., & Morselli, F. (2009). Every unsuccessful problem solver is unsuccessful in 

his or her own way: affective and cognitive factors in proving. Educational Studies in 

Mathematics, 70, 71–90. 

Gartmeier, M., Bauer, J., Fischer, M. R., Hoppe-Seyler, T., Karsten, G., Kiessling, C., . . . 

Prenzel, M. (2015). Fostering professional communication skills of future physicians and 

teachers: effects of e-learning with video cases and role-play. Instructional Science, 43, 

443–462. https://doi.org/10.1007/s11251-014-9341-6 

Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulty of proof. 

In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the 

International Group for the Psychology of Mathematics Education (pp. 2–345). 

Garuti, R., Boero, P., Lemut, E., & Mariotti, M. A. (1996). 'Challenging the traditional school 

approach to theorems: a hypothesis about the cognitive unity of theorems'. In L. Puig & A. 

Gutierrez (Eds.), Proceedings of the 20th Annual Conference of the International Group 

for the Psychology of Mathematics Education (Vol. 2, pp. 2-345). Spain: Universitat de 

València. 

Gholamazad, S., Liljedahl, P., & Zazkis, R. (2003). One line proof: what can go wrong? In N. 

A. Pateman & Dougherty, B. J., Zilliox, J. T. (Eds.), Proceedings of the 27th Annual 

Conference of the International Group for the Psychology of Mathematics Education 

Proceedings and PMENA (Vol. 2, pp. 429–435). Honolulu, HI: University of Hawai’i. 

Gibson, D. (1998). Students’ Use Diagrams to Develop Proofs in an Introductory Analysis 

Course. Research in Collegiate Mathematics Education. III, 7, 284–306. 

Gillies, R. M. (2004). The effects of cooperative learning on junior high school students 

during small group learning. Learning and Instruction, 14, 197–213. 

Goodwin, C. (1994). Professional vision. American Anthropologist, 96, 606–633. 

Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating 

collaborative zones of proximal development in small group problem solving. Educational 

Studies in Mathematics, 49, 193–223. 

Graham, S., Weingart, S., & Milligan, I. (2012). Getting started with topic modeling and 

MALLET. Retrieved from https://programminghistorian.org/en/lessons/topic-modeling-and-

mallet [10.11.2018]. 



  
  

205 

Grenier, A. (2013). Research situations to learn logic and various types of mathematics 

reasoning and proofs. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 

8th Congress of the European Society for Research in Mathematics Education (pp. 136–

145). Ankara, Turkey: Middle East Technical University.  

Griffiths, P. A. (2000). Mathematics at the turn of the millennium. The American Mathematical 

Monthly, 107, 1–14. 

Gruenwald, N., Klymchuk, S., & Jovanoski, Z. (2004). Reducing the gap between the school 

and university mathematics: university lecturers' perspective. New Zealand Mathematics 

Magazine, 41(3), 12–24. 

Gueudet, G. (2008). Investigating the secondary–tertiary transition. Educational Studies in 

Mathematics, 67, 237–254. 

Guzmán, M. de, Hodgson, B. R., Robert, A., & Villani, V. (1998). Difficulties in the passage 

from secondary to tertiary education, Proceedings of the International Congress of 

Mathematicians, Berlin, Documenta mathematica, extra volume ICM 1998, 747–762. 

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21, 6–13. 

Hanna, G. (1995). Challenges to the importance of proof. For the Learning of Mathematics, 

15, 42–49. 

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in 

Mathematics, 44, 5–23. 

Hanna, G., Jahnke, H. N., & Pulte, H. (2010). Explanation and proof in mathematics: 

Philosophical and Educational Perspectives. New York: Springer. 

Hanna, G., Villiers, M. de, & International Program Committee. (2008). ICMI Study 19: Proof 

and proving in mathematics education. ZDM, 40, 329–336. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 

American Mathematical Society, 7, 234–283. 

Harel, G., & Sowder, L. (2007). Toward Comprehensive Perspectives on the Learning and 

Teaching of Proof. In F. Lester (Ed.), Second Handbook of Research on Mathematics 

Teaching and Learning (Vol. 2, pp. 805-842). National Council of Teachers of 

Mathematics. 

Healy, L., & Hoyles, C. (1998). Justifying and proving in school mathematics: Technical 

report on the nationwide survey: Institute of Education, University of London. 



  
  

206 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research 

in Mathematics Education, 396–428. https://doi.org/10.2307/749651 

Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems and proofs: An 

empirical approach. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof 

in mathematics: Philosophical and educational perspectives (pp. 101–111). New York: 

Springer.  

Heinze, A., Cheng, Y.-H., Ufer, S., Lin, F.-L., & Reiss, K. (2008a). Strategies to foster 

students’ competencies in constructing multi-steps geometric proofs: Teaching 

experiments in Taiwan and Germany. ZDM, 40, 443–453. https://doi.org/10.1007/s11858-

008-0092-1 

Heinze, A., Cheng, Y.-H., Ufer, S., Lin, F.-L., & Reiss, K. (2008b). Strategies to foster 

students’ competencies in constructing multi-steps geometric proofs: Teaching 

experiments in Taiwan and Germany. Zentralblatt für Didaktik der Mathematik, 40, 443–

453. 

Heinze, A., & Reiss, K. (2003). Reasoning and proof: Methodological knowledge as a 

component of proof competence. In M. A. Mariotti (Ed.), International Newsletter of Proof, 

No. 4-6/2003. 

Heinze, A., & Reiss, K. (2004). The teaching of proof at the lower secondary level - a video 

study. Zentralblatt für Didaktik der Mathematik, 36, 98–104. 

Heinze, A., Reiss, K., & Franziska, R. (2005). Mathematics achievement and interest in 

mathematics from a differential perspective. Zentralblatt für Didaktik der Mathematik, 37, 

212–220. 

Herlina, E., & Batusangkar, S. (2015). Advanced Mathematical Thinking and the Way to 

Enhance It. Journal of Education and Practice, 6, 79–88. 

Herweg, C., Seidel, T., & Dalehefte, I. M. (2005). Coding manual – Clear and structured 

teaching. In T. Seidel, M. Prenzel, & M. Kobarg (Eds.), How to run a video study. 

Technical report of the IPN Video Study (pp. 145–164). Münster: Waxmann. 

Heublein, U. (2014). Student Drop‐out from G erman Higher Education Institutions. European 

Journal of Education, 49, 497–513. 

Hiebert, J., Gallimore, R., Garnier, H., Bogard Givvin, K., Hollingsworth, H., Jacobs, J., Chui, 

A. M. Y., Wearne, D., Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, W. 

Manaster, C., Gonzales, P. & Stigler, J. (2003). Teaching Mathematics in Seven 



  
  

207 

Countries: Results from the TIMSS 1999 Video Study (No. NCES 2003-013). Washington 

DC: U.S. Department of Education, National Center for Education Statistics. 

Hinsz, V. B., Tindale, R. S., & Vollrath, D. A. (1997). The emerging conceptualization of 

groups as information processors. Psychological Bulletin, 121, 43-64. 

Hornikx, J., & Hahn, U. (2012). Reasoning and argumentation: Towards an integrated 

psychology of argumentation. Thinking & Reasoning, 18, 225–243. 

Hoyles, C., Newman, K., & Noss, R. (2001). Changing patterns of transition from school to 

university mathematics. International Journal of Mathematical Education in Science and 

Technology, 32, 829–845. 

Huda, N. (2016). University Students' Metacognitive Failures in Mathematical Proving 

Investigated Based on the Framework of Assimilation and Accommodation. Educational 

Research and Reviews, 11, 1119–1128. 

Inglis, M., & Aberdein, A. (2014). Beauty is not simplicity: an analysis of mathematicians' 

proof appraisals. Philosophia Mathematica, 23, 87–109. 

https://doi.org/10.1093/philmat/nku014 

Inglis, M., & Foster, C. (2018). Five decades of mathematics education research. Journal for 

Research in Mathematics Education, 49, 462–500. 

https://doi.org/10.5951/jresematheduc.49.4.0462 

Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: 

The importance of qualification. Educational Studies in Mathematics, 66, 3–21. 

Järvelä, S., & Hadwin, A. F. (2013). New frontiers: Regulating learning in CSCL. Educational 

Psychologist, 48, 25–39. https://doi.org/10.1080/00461520.2012.748006 

Jiménez‐Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” 

or “doing science”: Argument in high school genetics. Science Education, 84, 757–792. 

Johnson, D. W., Johnson, R. T., & Smith, K. (2007). The state of cooperative learning in 

postsecondary and professional settings. Educational Psychology Review, 19, 15–29. 

Jordan, A., Krauss, S., Löwen, K., Blum, W., Neubrand, M., Brunner, M., . . . Baumert, J. 

(2008). Aufgaben im COACTIV-Projekt: Zeugnisse des kognitiven Aktivierungspotentials 

im deutschen Mathematikunterricht. Journal Für Mathematik-Didaktik, 29, 83–107. 

Kaartinen, S., & Kumpulainen, K. (2002). Collaborative inquiry and the construction of 

explanations in the learning of science. Learning and Instruction, 12, 189–212. 



  
  

208 

Kahn, P. E., & Hoyles, C. (1997). The changing undergraduate experience: a case study of 

single honours mathematics in England and Wales. Studies in Higher Education, 22, 349–

362. 

Kidron, I., & Dreyfus, T. (2014). Proof image. Educational Studies in Mathematics, 87, 297–

321. 

Kneser, C., & Ploetzner, R. (2001). Collaboration on the basis of complementary domain 

knowledge: Observed dialogue structures and their relation to learning success. Learning 

and Instruction, 11, 53–83. 

Knipping, C. (2008). A method for revealing structures of argumentations in classroom 

proving processes. ZDM, 40, 427. https://doi.org/10.1007/s11858-008-0095-y 

Koedinger, K. R. (1998). Conjecturing and argumentation in high-school geometry students. 

Designing Learning Environments for Developing Understanding of Geometry and Space, 

319–347. 

Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence 

modeling and assessment. Zeitschrift Für Psychologie/Journal of Psychology, 216, 61–73. 

https://doi.org/10.1027/0044-3409.216.2.61 

Kollar, I., Fischer, F., & Slotta, J. D. (2007). Internal and external scripts in computer-

supported collaborative inquiry learning. Learning and Instruction, 17, 708–721. 

https://doi.org/10.1016/j.learninstruc.2007.09.021 

Kollar, I., Ufer, S., Reichersdorfer, E., Vogel, F., Fischer, F., & Reiss, K. (2014). Effects of 

collaboration scripts and heuristic worked examples on the acquisition of mathematical 

argumentation skills of teacher students with different levels of prior achievement. 

Learning and Instruction, 32, 22–36. https://doi.org/10.1016/j.learninstruc.2014.01.003 

Komatsu, K. (2011). How do students generalize a conjecture through proving?: The 

importance of boundary cases between example and counterexample. In B. Ubuz (Ed.), 

Proceedings of the 35th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 3, pp. 89–96). Ankara: PME. 

Komatsu, K. (2016). A framework for proofs and refutations in school mathematics: 

Increasing content by deductive guessing. Educational Studies in Mathematics, 92, 147–

162. 

Komatsu, K., Tsujiyama, Y., & Sakamaki, A. (2014). Rethinking the discovery function of 

proof within the context of proofs and refutations. International Journal of Mathematical 



  
  

209 

Education in Science and Technology, 45, 1053–1067. 

https://doi.org/10.1080/0020739X.2014.902135 

Kopp, B., & Mandl, H. (2011). Fostering argument justification using collaboration scripts and 

content schemes. Learning and Instruction, 21, 636–649. 

Kosiol, T., Rach, S., & Ufer, S. (Which) Mathematics Interest is Important for a Successful 

Transition to a University Study Program? International Journal of Science and 

Mathematics Education, 1–22. 

Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld 

(Eds.), The emergence of mathematcial meaning: interaction in classroom cultures 

(pp. 229–269). Hillsdale, NJ: Erlbaum. 

Küchemann, D., & Hoyles, C. (2006). Secondary school pupils’ approaches to proof-related 

tasks in geometry. In Hewitt, D. (Ed.), Proceedings of the British Society for Research into 

Learning Mathematics (Vol. 26, pp. 53–58). 

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery: Cambridge 

university press. 

Langer, I., & Schulz von Thun, F. (2007). Messung komplexer Merkmale in Psychologie und 

Pädagogik: Ratingverfahren. In D. H. Rost (Ed.), Standardwerke aus Psychologie und 

Pädagogik - Reprints (4th ed.). Münster: Waxmann. 

LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability 

and interrater agreement. Organizational Research Methods, 11, 815–852. 

https://doi.org/10.1177/1094428106296642 

Lee, E. Y. C., Chan, C. K. K., & van Aalst, J. (2006). Students assessing their own 

collaborative knowledge building. International Journal of Computer-Supported 

Collaborative Learning, 1, 57–87. 

Lee, K. (2016). Students’ proof schemes for mathematical proving and disproving of 

propositions. The Journal of Mathematical Behavior, 41, 26–44. 

https://doi.org/10.1016/j.jmathb.2015.11.005 

Lee, V. E. (2000). Using hierarchical linear modeling to study social contexts: The case of 

school effects. Educational Psychologist, 35, 125–141. 

https://doi.org/10.1207/S15326985EP3502_6 

Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43, 

332–360. https://doi.org/10.1159/000022695 



  
  

210 

Leuders, T., & Philipp, K. (2013). Preparing students for discovery learning – skills for 

exploring mathematical patterns. In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 

37th Conference of the International Group for the Psychology of Mathematics Education 

(Vol. 3, pp. 241–248). Kiel, Germany: IPN. 

Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M., & Stylianides G. (2012). Task designing for 

conjecturing and proving: Developing principles based on practical tasks. In M. de Villiers 

& G. Hanna (Eds.), Proof and Proving in Mathematics Education. The 19th ICMI Study 

(pp. 305–323). Springer. 

Lin, F.-L., Yang, K.-L., & Chen, C.-Y. (2004). The features and relationships of reasoning, 

proving and understanding proof in number patterns. International Journal of Science and 

Mathematics Education, 2, 227–256. 

Lockwood, E., Ellis, A. B., & Lynch, A. G. (2016). Mathematicians’ example-related activity 

when exploring and proving conjectures. International Journal of Research in 

Undergraduate Mathematics Education, 2, 165–196. 

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annu. Rev. 

Psychol., 58, 593–614. 

Manin, Y. I. (1977). A course in mathematical logic for mathematicians. New York: Springer-

Verlag. 

Mariotti, M. A. (2006). Proof and proving in mathematics education. Handbook of Research 

on the Psychology of Mathematics Education: Past, Present and Future, 173–204. 

Marston, C., & King, E. (2006). Factors that shape young people's sexual behaviour: a 

systematic review. The Lancet, 368, 1581–1586. 

Martin, W. G., & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal 

for Research in Mathematics Education, 41–51. 

Martinez, M. V., Brizuela, B. M., & Superfine, A. C. (2011). Integrating algebra and proof in 

high school mathematics: An exploratory study. The Journal of Mathematical Behavior, 

30, 30–47. 

Mayweg-Paus, E., Thiebach, M., & Jucks, R. (2016). Let me critically question this! – Insights 

from a training study on the role of questioning on argumentative discourse. International 

Journal of Educational Research, 79, 195–210. https://doi.org/10.1016/j.ijer.2016.05.017 

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit. University of 

Massachusetts, Amherst. http://mallet.cs.umass.edu/ [20.11.2018]. 



  
  

211 

Meier, A., Spada, H., & Rummel, N. (2007). A rating scheme for assessing the quality of 

computer-supported collaboration processes. International Journal of Computer-

Supported Collaborative Learning, 2, 63–86. https://doi.org/10.1007/s11412-006-9005-x 

Mejía-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics 

education research. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds.), 

Proceedings of the ICMI study 19 conference: Proof and proving in mathematics 

education (Vol. 2, pp. 88–93). 

Mercer, N., Dawes, L., Wegerif, R., & Sams, C. (2004). Reasoning as a scientist: Ways of 

helping children to use language to learn science. British Educational Research Journal, 

30, 359–377. 

Miller, D., Infante, N., & Weber, K. (2018). How mathematicians assign points to student 

proofs. The Journal of Mathematical Behavior, 49, 24–34. 

Mills, M. (2014). A framework for example usage in proof presentations. The Journal of 

Mathematical Behavior, 33, 106–118. https://doi.org/10.1016/j.jmathb.2013.11.001 

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in 

Mathematics, 27, 249–266. 

Mueller, M., Yankelewitz, D., & Maher, C. (2012). A framework for analyzing the collaborative 

construction of arguments and its interplay with agency. Educational Studies in 

Mathematics, 80, 369–387. 

Muthén, L. K., & Muthén, B. O. (2015). Mplus: Statistical analysis with latent variables: User's 

guide. Muthén & Muthén Los Angeles. 

Nadolski, R. J., Kirschner, P. A., & van Merriënboer, J. J. G. (2006). Process support in 

learning tasks for acquiring complex cognitive skills in the domain of law. Learning and 

Instruction, 16, 266–278. https://doi.org/10.1016/j.learninstruc.2006.03.004 

Nardi, E. (1996). The Novice mathematician's encounter with mathematical abstraction: 

Tensions in concept-image construction and formulisation. Oxford: University Oxford. 

Newble, D. (2004). Techniques for measuring clinical competence: objective structured 

clinical examinations. Medical Education, 38, 199–203. 

Ohlsson, S., & Rees, E. (1991). The function of conceptual understanding in the learning of 

arithmetic procedures. Cognition and Instruction, 8, 103–179. 

https://doi.org/10.1207/s1532690xci0802_1 



  
  

212 

Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. 

Science, 328, 463–466. https://doi.org/10.1126/science.1183944 

Otten, S., Bleiler-Baxter, S. K., & Engledowl, C. (2017). Authority and whole-class proving in 

high school geometry: The case of Ms. Finley. The Journal of Mathematical Behavior, 46, 

112–127. https://doi.org/10.1016/j.jmathb.2017.04.002 

Ottinger, S., Kollar, I., & Ufer, S. (2016). Content and Form - All the Same or Different 

Qualities of Mathematical Arguments. In C. Csikos, A. Rausch, & J. Szitanyi (Eds.), 

Proceedings of the 40th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 4, pp. 19–26). Szeged, Hungary: PME. 

Ozgur, Z., Ellis, A. B., Vinsonhaler, R., Dogan, M. F., & Knuth, E. (2017). From examples to 

proof: Purposes, strategies, and affordances of example use. The Journal of Mathematical 

Behavior, (in press). 

Pastre, D. (1989). MUSCADET: an automatic theorem proving system using knowledge and 

metaknowledge in mathematics. Artificial Intelligence, 38, 257–318. 

https://doi.org/10.1016/0004-3702(89)90035-0 

Pease, A., & Martin, U. (2012). Seventy four minutes of mathematics: An analysis of the third 

Mini-Polymath project. In AISB/IACAP World Congress 2012 (Ed.), Proceedings of 

AISB/IACAP 2012 (pp. 52–105). 

Pease, A., Smaill, A., Colton, S., & Lee, J. (2009). Bridging the gap between argumentation 

theory and the philosophy of mathematics. Foundations of Science, 14, 111–135. 

Pedemonte, B. (2007). How can the relationship between argumentation and proof be 

analysed? Educational Studies in Mathematics, 66, 23–41. 

Pedemonte, B. (2008). Argumentation and algebraic proof. Zentralblatt für Didaktik der 

Mathematik, 40, 385–400. 

Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving 

processes through a cognitive lens: the case of triangular numbers. Zentralblatt für 

Didaktik der Mathematik, 43, 257–267. 

Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational 

Studies in Mathematics, 76, 281–303. 

Perelman, C. (1979). The rational and the reasonable. In C. Perelman (Ed.), The New 

Rhetoric and the Humanities (pp. 117–123). Bosten: D. Reidel. 



  
  

213 

Philipp, K. (2012). Experimentelles Denken: theoretische und empirische Konkretisierung 

einer mathematischen Kompetenz. Springer-Verlag. 

Pinto, M., & Tall, D. (2002). Building formal mathematics on visual imagery: A case study and 

a theory. For the Learning of Mathematics, 22, 2–10. 

Plaxco, D., & Wawro, M. (2015). Analyzing student understanding in linear algebra through 

mathematical activity. The Journal of Mathematical Behavior, 38, 87–100. 

Polya, G. (1945). How to solve it. New Jersey: Princeton University Press. 

Praslon, F. (2000). Continuités et ruptures dans la transition Terminale S/DEUG Sciences en 

analyse: Le cas de la notion de dérivée et son environnement. Publications 

Mathématiques Et Informatiques De Rennes, 3, 1–27. 

Rach, S. (2014). Charakteristika von Lehr-Lern-Prozessen im Mathematikstudium: 

Bedingungsfaktoren für den Studienerfolg im ersten Semester: Waxmann Verlag. 

Rach, S., & Heinze, A. (2011). Studying mathematics at the university: the influence of 

learning strategie. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the 

International Group for the Psychology of Mathematics Education (pp. 9–16). Ankara: 

PME. 

Raman, M. (2003). Key ideas: What are they and how can they help us understand how 

people view proof? Educational Studies in Mathematics, 52, 319–325. 

Reichersdorfer, E., Vogel, F., Fischer, F., Kollar, I., Reiss, K., & Ufer, S. (2012). Different 

collaborative learning settings to foster mathematical argumentation skills. In T. Tso (Ed.), 

Proceedings of the 36th conference of the International Group for the Psychology of 

Mathematics Education (pp. 345–352). 

Reif, F. (2008). Applying cognitive science to education: thinking and learning in scientific 

and other complex domains: MIT press. 

Reinholz, D. L. (2016). Improving calculus explanations through peer review. The Journal of 

Mathematical Behavior, 44, 34–49. https://doi.org/10.1016/j.jmathb.2016.10.001 

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative 

problem solving. In C. E. O'Malley (Ed.), Computer-Supported Collaborative Learning 

(pp. 69–197). Berlin: Springer. 

Roth, K. J. (2009). Using video studies to transform science teaching and learning: results 

from the STeLLA professional development program. In T. Janik, & T. Seidel (Eds.),The 



  
  

214 

power of video studies in investigating teaching and learning in the classroom (pp. 23-37). 

Münster, Germany: Waxmann.  

Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific 

argumentation. Science Education, 93, 448–484. 

Sandefur, J., Mason, J., Stylianides, G. J., & Watson, A. (2013). Generating and using 

examples in the proving process. Educational Studies in Mathematics, 83, 323–340. 

https://doi.org/10.1007/s10649-013-9510-6 

Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific 

explanations. The Journal of the Learning Sciences, 12, 5–51. 

https://doi.org/10.1207/S15327809JLS1201_2 

Savic, M. (2015a). The incubation effect: How mathematicians recover from proving 

impasses. The Journal of Mathematical Behavior, 39, 67–78. 

https://doi.org/10.1016/j.jmathb.2015.06.001 

Savic, M. (2015b). On similarities and differences between proving and problem solving. 

Journal of Humanistic Mathematics, 5, 60–89. 

https://doi.org/10.5642/jhummath.201502.06 

Schiefele, U., Streblow, L., & Brinkmann, J. (2007). Aussteigen oder Durchhalten. Zeitschrift 

Für Entwicklungspsychologie Und Pädagogische Psychologie, 39, 127–140. 

https://doi.org/10.1026/0049-8637.39.3.127 

Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, 

and sense-making in mathematics. In D. Grouws (Ed.), The Handbook for Research on 

Mathematics Teaching and Learning (pp. 334-370). New York, NY: McMillan. 

Schulmeiß, I., Seidel, T., & Meyer, L. (2003). Vermischung von Lern-und 

Leistungssituationen. In T. Seidel, M. Prenzel, R. Duit, M. Lehrke (Hrsg.), Technischer 

Bericht zur Videostudie. Lehr-Lern-Prozesse im Physikunterricht (S. 229-238). Kiel, 

Germany: IPN. 

Schwaighofer, M., Vogel, F., Kollar, I., Ufer, S., Strohmaier, A., Terwedow, I., . . . Fischer, F. 

(2017). How to combine collaboration scripts and heuristic worked examples to foster 

mathematical argumentation – when working memory matters. International Journal of 

Computer-Supported Collaborative Learning, 12, 281–305. 

https://doi.org/10.1007/s11412-017-9260-z 

Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem solving. 

The Journal of the Learning Sciences, 4, 321–354. 



  
  

215 

Schwarz, B. B., Hershkowitz, R., & Prusak, N. (2010). Argumentation and mathematics. 

Educational Dialogues: Understanding and Promoting Productive Interaction, 115, 141. 

Seidel, T. (2005). Video analysis strategies of the IPN Video Study – a methodological 

overview. In T. Seidel, M. Prenzel, & M. Kobarg (Eds.), How to run a video study. 

Technical report of the IPN Video Study (pp. 70–78). Münster: Waxmann. 

Seidel, T., Prenzel, M., & Kobarg, M. (Eds.). (2005). How to run a video study. Technical 

report of the IPN Video Study: Münster: Waxmann. 

Selden, A., & Selden, J. (1987). Errors and misconceptions in college level theorem proving. 

In Proceedings of the second international seminar on misconceptions and educational 

strategies in science and mathematics (Vol. 3, pp. 457–470). New York: Cornell 

University. 

Selden, A., & Selden, J. (2008). Overcoming students’ difficulties in learning to understand 

and construct proofs. Making the Connection: Research and Teaching in Undergraduate 

Mathematics, 95–110. 

Selden, A., & Selden, J. (2011). Mathematical and non-mathematical university students’ 

proving difficulties. In L. R. Wiest & T. D. Lamberg (Eds.), Proceedings of the 33rd annual 

conference of the North American chapter of the International Group for the Psychology of 

Mathematics Education (pp. 675–683). Reno, NV. 

Selden, A., & Selden, J. (2013a). The roles of behavioral schemas, persistence, and self-

efficacy in proof construction. In B. Ubuz, C. Hasar, & M. A. Mariotti (Eds.), Proceedings 

of the 8th Congress of the European Society for Research in Mathematics Education 

[CERME-8] (pp. 246-255). Ankara, Turkey: Middle East Technical University. 

Selden, A., & Selden, J. (2015). Validations of proofs as a type of reading and sense-making. 

In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th Annual Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 145–

152). Hobart, Australia. 

Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and the proving 

process. International Journal of Mathematical Education in Science and Technology, 41, 

199–215. 

Selden, A., & Selden, J. (2009). Teaching proving by coordinating aspects of proofs with 

students' abilities. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and 

learning across the grades: A K-16 perspective (pp. 339–354). New York, NY: Routledge. 



  
  

216 

Selden, A., & Selden, J. (2013b). Proof and problem solving at university level. The 

Mathematics Enthusiast, 10, 303–334. 

Selden, A., Selden, J., & Benkhalti, A. (2018). Proof Frameworks: A Way to Get Started. 

Problems, Resources, and Issues in Mathematics Undergraduate Studies, 28, 31–45. 

Selden, J., Benkhalti, A., & Selden, A. (2014). An analysis of transition-to-proof course 

students’ proof constructions with a view towards course redesign. In T. Fukawa-Connolly, 

G. Karakok, K. Keene, & M. Zandieh (Eds.), Proceedings of the 17th Annual Conference 

on Research in Undergraduate Mathematics Education (pp. 246–259). 

Selden, J., & Selden, A. (2015). A perspective for university students’ proof construction. In 

Proceedings of the 18th Annual Conference on Research in Mathematics Education 

(pp. 45–59). 

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. 

Educational Studies in Mathematics, 29, 123–151. 

Shernoff, E. S., & Kratochwill, T. R. (2003). The Application of behavioral assessment 

methodologies in educational settings. In S. N. Haynes & E. H. Heiby (Eds.), 

Comprehensive handbook of psychological assessment (pp.365–385). New York: John 

Wiley.  

Sommerhoff, D. (2017). The individual cognitive resources underlying students' mathematical 

argumentation and proof skills (Doctoral dissertation). München: LMU München. 

Retrieved from: https://edoc.ub.uni-muenchen.de/22687/1/Sommerhoff_Daniel.pdf 

[18.11.2018]. 

Sommerhoff, D., Ufer, S., & Kollar, I. (2016). The impact of cognitive resources on students' 

performance in mathematical proof construction: Mathematical Argumentation and Proof - 

Supporting a Complex Cognitive Skill. In C. K. Looi, J. L. Polman, U. Cress, & P. Reimann 

(Eds.), Transforming Learning, Empowering Learners: The International Conference of the 

Learning Sciences (ICLS) (pp. 811–814). International Society of the Learning Sciences. 

Spencer, L. M., & Spencer, P. S. M. (2008). Competence at Work models for superior 

performance: John Wiley & Sons. 

Stahl, G. (2010). Group cognition as a foundation for the new science of learning. In M. S. 

Khine & I. M. Saleh (Eds.), New science of learning: Cognition, computers and 

collaboration in education (pp. 23-44). New York, NY: Springer. 

Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics 

classroom. Cognition and Instruction, 25, 161–217. 



  
  

217 

Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. In T. Landauer, D McNamara, 

S. Dennis, & W. Kintsch, Handbook of Latent Semantic Analysis (Vol. 427, pp. 424–440). 

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in 

Mathematics Education, 289–321. https://doi.org/10.2307/30034869 

Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in 

mathematics education research. In A. Gutierez, G. Leder, & P. Boero (Eds.), 2nd 

handbook on the psychology of mathematics education (pp. 315–351). Rotterdam: Sense 

Publishers.  

Stylianides, G. J. (2010). Engaging Secondary Students in Reasoning and Proving. 

Mathematics Teaching, 219, 39–44. 

Stylianides, G. J., Sandefur, J., & Watson, A. (2016). Conditions for proving by mathematical 

induction to be explanatory. The Journal of Mathematical Behavior, 43, 20–34. 

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical 

arguments to proof. Journal for Research in Mathematics Education, 314–352. 

Stylianides, G. J., Stylianides, A., & Weber, K. (2017). Research on the teaching and 

learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for 

Research in Mathematics Education (pp. 237–266). Reston, VC: National Council of 

Teachers of Mathematics. 

Stylianou, D. A., Blanton, M. L., & Knuth, E. J. (2010). Teaching and learning proof across 

the grades: A K-16 perspective: Routledge. 

Tall, D. (1991). Advanced mathematical thinking: Springer Science & Business Media. 

Teasley, S. D. (1997). Talking about reasoning: How important is the peer in peer 

collaboration? In L. B. Resnick & R. Säljö & C. Pontecorvo & B. Burge (Eds.), Discourse, 

tools and reasoning: Essays on situated cognition (pp. 361384). Berlin: Springer.  

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research 

in systematic reviews. BMC Medical Research Methodology, 8, 45. 

Thomas, M. O. J., & Klymchuk, S. (2012). The school–tertiary interface in mathematics: 

teaching style and assessment practice. Mathematics Education Research Journal, 24, 

283–300. 

Thurston, W. P. (1998). On proof and progress in mathematics. New Directions in the 

Philosophy of Mathematics, 337–355. 

Toulmin, S. (1958). The uses of argument: Cambridge: Cambridge University Press. 



  
  

218 

Tristanti, L. B., Sutawidjaja, A., As’ari, A. R., & Muksar, M. (2016). The construction of 

deductive warrant derived from inductive warrant in preservice-teacher mathematical 

argumentations. Educational Research and Reviews, 11, 1696–1708. 

Uebersax, J. (2010). Statistical methods for rater and diagnostic agreement. Retrieved from: 

http://www. john-uebersax.com/stat/agree.htm [09.10.2018]. 

Ufer, S., Heinze, A., & Reiss, K. (2008). Individual predictors of geometrical proof 

competence. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), 

Proceedings of the Joint Meeting of PME (Vol. 4, pp. 361–368). 

Ufer, S., Heinze, A., & Reiss, K. (2009). Mental models and the development of geometric 

proof competency. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of 

the 33rd Conference of the International Group for the Psychology of Mathematics 

Education (Vol. 5, pp. 257–264). 

Uğurel, I., Moralı, S., Koyunkaya, M. Y., & Karahan, Ö. (2016). Pre-service Secondary 

Mathematics Teachers' Behaviors in the Proving Process. Eurasia Journal of 

Mathematics, Science & Technology Education, 12(2), 203-301. 

Van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and 

the elaboration of conceptual knowledge. Learning and Instruction, 10, 311–330. 

Van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ 

interpretations of classroom interactions. Journal of Technology and Teacher Education, 

10, 571–596. 

VanSpronsen, H. D. (2008). Proof processes of novice mathematics proof writers. (Doctoral 

dissertation). Retrieved from: https://scholarworks.umt.edu/etd/778/ [26.10.2018]. 

Vidakovic, D., & Martin, W. O. (2004). Small-group searches for mathematical proofs and 

individual reconstructions of mathematical concepts. The Journal of Mathematical 

Behavior, 23, 465–492. https://doi.org/10.1016/j.jmathb.2004.09.006 

Villiers, M. de. (1999). Rethinking proof with the Geometer’s Sketchpad. Key Curriculum 

Press, Emeryville, CA.  

Vogel, F., Kollar, I., Ufer, S., Reichersdorfer, E., Reiss, K., & Fischer, F. (2016). Developing 

argumentation skills in mathematics through computer-supported collaborative learning: 

The role of transactivity. Instructional Science, 44, 477–500. 

https://doi.org/10.1007/s11251-016-9380-2 



  
  

219 

Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (2017). Socio-cognitive scaffolding with 

computer-supported collaboration scripts: A meta-analysis. Educational Psychology 

Review, 29, 477–511. 

Vollstedt, M., Heinze, A., Gojdka, K., & Rach, S. (2014). A Framework for Examining the 

Transformation of Mathematics and Mathematics Learning in the Transition from School 

to University: An Analysis of German Textbooks from Upper Secondary School and the 

First Semester. In S. Rezat, M. Hattermann & A. Peter-Koop (Hrsg.), Transformation – A 

Fundamental Idea of Mathematics Education (pp. 29–50). New York: Springer. 

 Webb, N. M. (1982). Group composition, group interaction, and achievement in cooperative 

small groups. Journal of Educational Psychology, 74, 475. 

Webb, N. M. (1989). Peer interaction and learning in small groups. International Journal of 

Educational Research, 13, 21–39. 

Webb, N. M., Nemer, K. M., & Zuniga, S. (2002). Short circuits or superconductors? Effects 

of group composition on high-achieving students’ science assessment performance. 

American Educational Research Journal, 39, 943–989. 

https://doi.org/10.3102/00028312039004943 

Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge. 

Educational Studies in Mathematics, 48, 101–119. 

Weber, K. (2004). A Framework for Describing the Processes that Undergraduates Use to 

Construct Proofs. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th 

conference of the International group for the Psychology of Mathematics Education (Vol. 

4, pp. 425–432). Bergen: PME. 

Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-

solving processes and learning opportunities in the activity of proof construction. The 

Journal of Mathematical Behavior, 24, 351–360. 

Weber, K. (2009). How syntactic reasoners can develop understanding, evaluate 

conjectures, and generate counterexamples in advanced mathematics. The Journal of 

Mathematical Behavior, 28, 200–208. https://doi.org/10.1016/j.jmathb.2009.08.001 

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational 

Studies in Mathematics, 56, 209–234. 

Weber, K., Fukawa-Connelly, T. P., Mejía-Ramos, J. P., & Lew, K. (2016). How to Help 

Students Understand Lectures in Advanced Mathematics. Notices of the AMs, 63. 



  
  

220 

Weber, K., Inglis, M., & Mejia-Ramos, J. P. (2014). How mathematicians obtain conviction: 

Implications for mathematics instruction and research on epistemic cognition. Educational 

Psychologist, 49, 36–58. https://doi.org/10.1080/00461520.2013.865527 

Wecker, C., & Fischer, F. (2014). From guided to self-regulated performance of domain-

general skills: The role of peer monitoring during the fading of instructional scripts. In T. 

Seidel & A. Krapp (Eds.), Pädagogische Psychologie (pp. 746–756). Weinheim: Beltz. 

Wegerif, R. (2008). Dialogic or dialectic? The significance of ontological assumptions in 

research on educational dialogue. British Educational Research Journal, 34, 347–361. 

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge 

construction in computer-supported collaborative learning. Computers & Education, 46, 

71–95. https://doi.org/10.1016/j.compedu.2005.04.003 

Weinert, F. E. (2001). Concept of competence: A conceptual clarification. Concept of 

competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining 

and selecting key competencies (pp. 45-65). Ashland, OH, US: Hogrefe & Huber 

Publishers.   

Wiesbeck, A. B. (2015). An evaluation of simulated conversations as an assessment of pre-

service teachers’ communication competence in parent-teacher conversations (Doctoral 

dissertation). München: TU München. Retrieved from: 

https://mediatum.ub.tum.de/?id=1271404 [20.11.2018]. 

Winkel, B. (2015). Informed conjecturing of solutions for differential equations in a modeling 

context. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 25, 

158–169. 

Wirtz, M. A., & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität: 

Methoden zur Bestimmung und Verbesserung der Zuverlässigkeit von Einschätzungen 

mittels Kategoriensystemen und Ratingskalen: Hogrefe. 

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements 

for structural equation models: An evaluation of power, bias, and solution propriety. 

Educational and Psychological Measurement, 73, 913–934. 

Wood, D. (1999). Teaching the young child: Some relationships between social interaction, 

language and thought. Lev Vygotsky: Critical Assessments, 3, 259–275. 

Yackel, E. (2001). Explanation, Justification and Argumentation in Mathematics Classrooms. 

In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the 



  
  

221 

international group for the psychology of mathematics education (Vol. 1, pp. 1–9). Utrecht, 

Olanda: PME. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for Research in Mathematics Education, 458–477. 

Yang, K.-L. (2012). Providing opportunities for students to create mathematics. Procedia-

Social and Behavioral Sciences, 46, 3905–3909. 

https://doi.org/10.1016/j.sbspro.2012.06.170 

Yetter, G., Gutkin, T. B., Saunders, A., Galloway, A. M., Sobansky, R. R., & Song, S. Y. 

(2006). Unstructured collaboration versus individual practice for complex problem solving: 

A cautionary tale. The Journal of Experimental Education, 74, 137–160. 

Yopp, D. A., & Ely, R. (2016). When does an argument use a generic example? Educational 

Studies in Mathematics, 91, 37–53. 

Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for 

characterizing progress from informal to more formal ways of reasoning. The Journal of 

Mathematical Behavior, 29, 57–75. https://doi.org/10.1016/j.jmathb.2010.01.001 

Zandieh, M., Roh, K. H., & Knapp, J. (2014). Conceptual blending: Student reasoning when 

proving “conditional implies conditional” statements. The Journal of Mathematical 

Behavior, 33, 209–229. 

Zaslavsky, O., Nickerson, S. D., Stylianides, A. J., Kidron, I., & Winicki-Landman, G. (2012). 

The need for proof and proving: Mathematical and Pedagogical Perspectives. In G. Hanna 

& M. de Villiers (Eds.), Proof and Proving in Mathematics Education. The 19th ICMI Study 

(pp. 215–229). Netherlands: Springer. 

Zazkis, D., & Villanueva, M. (2016). Student conceptions of what it means to base a proof on 

an informal argument. International Journal of Research in Undergraduate Mathematics 

Education, 2, 318–337. 

Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2015). Two proving strategies of highly 

successful mathematics majors. The Journal of Mathematical Behavior, 39, 11–27. 

https://doi.org/10.1016/j.jmathb.2015.04.003 

Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2016). Bridging the gap between graphical 

arguments and verbal-symbolic proofs in a real analysis context. Educational Studies in 

Mathematics, 93, 155–173. https://doi.org/10.1007/s10649-016-9698-3 

 



  
  

222 

 

 

 

 

 

 

 

  



  
  

223 

 

Eidesstattliche Versicherung 

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.) 

 

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir 

selbstständig, ohne unerlaubte Beihilfe angefertigt ist. 

 

Ottinger, Sarah

 

Name, Vorname 

 

 

 

München, 22.11.2018                                      Sarah Ottinger 

 

Ort, Datum                                                       Unterschrift Doktorand/in 

 


