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ABSTRACT 
 

Characterizing human regulatory genetic variation using CRISPR/Cas9 genome editing 

Margot Brandt 

 

Rare gene-disrupting variants and common regulatory variants play key roles in rare and 

common disease, respectively. These variants are of great interest for investigation into genetic 

contributions to disease, but experimental methods to validate their impact on gene expression 

levels are lacking. In this study, we utilized CRISPR/Cas9 genome editing to validate regulatory 

variants including cis-eQTLs, rare stop-gained variants in healthy and disease cases and one 

immune-response trans-eQTL master regulator. 

For investigation into common and rare regulatory variants within transcribed regions, we 

developed a scalable CRISPR-based polyclonal assay for experimental assessment. First, we 

applied this assay to nine rare stop-gained variants found in the general population, in GTEx. After 

editing, the stop-gained variants show a significant allele-specific depletion in transcript 

abundance, as expected. Next, we utilized the assay to validate 33 common eQTLs found in GTEx. 

After editing, the eQTL variants show higher variance in effect size than control variants, 

indicating a regulatory effect. Finally, we applied the polyclonal editing approach to clinical and 

new stop-gained variants in two disease-associated genes. The results follow the expected trend, 

with NMD being triggered by variants upstream of the NMD threshold but not by those beyond. 

This method demonstrates scalable experimental confirmation of putative causal regulatory 

variants, and improved interpretation of regulatory variation in humans. 

Next, we sought to experimentally validate an immune-response eQTL for IRF1 in cis and 

many genes in trans under LPS stimulation. We used CRISPRi to repress the enhancer locus and 



   

 

found that the enhancer is active in our immune cell system. Next, we used CRISPR-Cas9 genome 

editing and isolation of monoclonal cell lines to target this variant locus. After LPS stimulation, 

we performed RNA-sequencing on wild type and edited clones, showing that the effect size of the 

genes which are associated with the trans-eQTL are correlated with differential expression 

between the edited and wild type cell lines for the same genes. Additionally, we find that the 

differential expression between edited clones is correlated with CRISPRi repression of the IRF1 

promoter and enhancer. In this way, we were able to identify a common genetic variant which 

modifies the transcriptomic immune response to LPS and validate the trans-eQTL signal.
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Chapter 1: Introduction 

I. Genetic variation and human traits 

 Genetic variation in the genome is ubiquitous and diverse. Investigating genetic variation 

can provide insights into disease etiology, phenotypic variation, gene function, evolution, and 

more. Variants can be broadly classified into four categories: structural variants, tandem repeat 

variants, single nucleotide variants (SNV), and small insertion/deletion variants (indel). Structural 

variants cause genomic rearrangements or copy number variants of greater than 50 bp. They can 

have severe consequences and are quite rare, occurring several thousand times per human genome. 

Tandem repeat variants are variants which affect the number of repeats in a repetitive region of 

the genome. Due to the difficulty in sequencing and mapping these repetitive regions, the exact 

frequency is unknown. SNVs and indels are by far the most common form of variation with 3-4 

million SNVs and 0.4-0.5 million indels occurring per human genome.  

SNVs and indels can be further classified as coding or noncoding. The protein-coding 

portion of the genome is composed of the segments of genomic DNA which translate to the protein 

sequence of the roughly 20,000 proteins encoded in the genome. Coding variants are defined as 

those falling into this protein-coding portion of the genome, while noncoding variants fall into the 

99% of the genome which does not code for protein. The vast majority of SNVs and indels have 

no functional effect, but many do. Noncoding variants have typically been thought of as having an 

effect on the dosage of protein, while coding variants are thought of as affecting protein structure 

by changing the protein coding sequence. As we study more of these variants, we find that both 

coding and noncoding variants can impact dosage or structure through a variety of mechanisms 

(figure 1-1). 
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Figure 1-1. Different types of genetic variants and their potential effects on protein production in the 

cell.  

Non-coding variants can impact dosage or structure of protein or have no effect, whereas coding variants 

can affect dosage, structure or have no effect at all. Adapted from (Lappalainen et al., 2019). 

 

Understanding phenotypic consequences of variation of the genome has been a priority in 

the field of genetics for as long as the field has existed. Variants associated with mendelian 

disorders tend to be rare and have high penetrance. Historically, linkage analysis was utilized to 

identify the location of mendelian variants by tracking disease cases in families. In the age of next 

generation sequencing, these variants can be discovered by whole exome sequencing of unrelated 

patients to look for damaging mutations within the coding region of genes. However, a challenge 

to this approach is distinguishing harmless variants from gene-disrupting.  



   

 3 

Common variants which typically have low penetrance and have small contributions to 

disease require a much larger sample size to detect their effects. The current standard approach to 

understand the effects of common variants is associating variants in the human population with 

human traits through genome-wide association studies (GWAS). GWAS have been performed on 

a multitude of complex human traits (Welter et al., 2014). Not surprisingly, the traits being studied 

by GWAS with the most interest and attention are human diseases. The rationale behind GWAS 

design is that alleles which are enriched in disease subjects over controls are likely to be 

contributing to disease. A variant which is found to be associated with disease would ideally have 

a clear mechanism of effect on a gene, e.g. by disrupting the protein-coding sequence of a gene by 

introduction of a missense or premature stop codon or by affecting splicing. Unfortunately, about 

90% of GWAS variants are not found within protein-coding regions but instead within the 

noncoding portion of the genome (Maurano et al., 2012). This phenomenon has created a need for 

a better understanding of how noncoding variants affect genome function, regulation of proximal 

target genes, and subsequent pathways that affect disease risk.  

A cis-regulatory variant in the genome is defined by one allele causing a higher expression 

of a proximal gene than the other allele (figure 1-2a). Noncoding regulatory variants can affect 

expression of genes through a multitude of mechanisms. For example, they can act by disrupting 

the binding site of a transcription factor (TF) in an enhancer or affecting the chromatin state of the 

region surrounding the variant. One obstacle is determining which gene a variant is affecting. 

Assuming that the variant affects the nearest gene is a flawed approach since it has been reported 

that approximately one-third of enhancers affect genes which are not the nearest (Gasperini et al., 

2019) and up to two-thirds of GWAS variants are associated with a gene which is not the nearest 

(Zhu et al., 2016). An understanding of the effect of an associated variant on gene expression gives 
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the first clue into the mechanism of disease. Further experimental follow up can deduce how this 

expression regulation then affects the cell or organism but the first step is to understand how the 

sequence modification affects gene expression. Thus, systematic interrogation of the effects of 

common variants on gene expression is essential. Expression quantitative trait loci (eQTL) studies 

have emerged to fill this void, associating variants with expression transcriptome-wide in order to 

identify regulatory variants.  

II. Discovering common regulatory variants 

Expression quantitative trait loci (eQTL) studies 

eQTL studies aim to identify common regulatory variants which have an effect on the 

transcriptome. A cis-eQTL study is designed to detect regulatory variants that affect the expression 

of genes nearby the variant. The studies are typically designed so that genotype data, either from 

genotyping arrays or whole genome sequencing, and gene expression data, either from microarray 

or RNA-sequencing, are collected for a population of individuals. To test for association of a 

variant with expression of a proximal gene, a linear regression is performed between the genotype 

of the variant and expression of the gene (figure 1-2b).  This test is repeated for all variants within 

a specific window on either side of the transcription start site (TSS) of the gene, resulting in a p-

value of association for each variant (figure 1-2c). This is then repeated for every gene in the 

genome. A gene which is associated with a significant eQTL is referred to as an eGene, while all 

variants that are significantly associated with the eGene are referred to as eVariants. With large 

enough sample sizes, eQTL studies have discovered an eQTL association for almost every gene in 

the genome, and multiple independent eQTLs for many genes (GTEx Consortium et al., 2017). 

The results help illuminate elements in the genome that regulate gene expression, as well as assist 

in understanding the mechanisms of human disease.  eQTLs have been reported to be enriched for 
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GWAS loci (Lappalainen et al., 2013) and GWAS loci that are also eQTLs are more likely to be 

true associations (Nicolae et al., 2010). Overlap between eQTLs and GWAS loci is therefore 

utilized to interpret the mechanism of noncoding GWAS variants (Zhu et al., 2016).  

 

Figure 1-2. An example eQTL.  

a) The A allele results in higher expression of the AGA gene than the G allele. Individuals homozygous for 

the G allele have the lowest overall expression, while those homozygous for the A allele have the highest 

expression. Heterozygous individuals have intermediate expression. b) The effect of the variant is detected 

by performing a linear regression between genotype and expression across all individuals in the study. This 

test is repeated for all variants within 1 Mb of the transcription start site of AGA. c) The top variant has the 

strongest association with gene expression, but many variants may have significant associations due to 

linkage disequilibrium with the causal variant. Adapted from (Brandt and Lappalainen, 2017). 
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Cis-eQTLs regulate expression in an allelic fashion, meaning that the variant affects 

expression only of the haplotype of the gene on which it falls. Consider an example where a TF 

binding site is disrupted by the alternative allele of the variant, resulting in decreased expression 

of the gene. The TF’s binding on the reference allele is not affected and therefore the expression 

of that haplotype remains unchanged. Trans-eQTL studies, on the other hand, aim to detect 

regulatory variants that act on distal genes. As in cis-eQTL studies, variants are tested for 

association using linear regression between genotype and expression. A trans-eQTL is defined as 

an association between a variant and a gene which is enacted through a trans mediator. Trans-

eQTLs in practice are detected as a variant which resides on a different chromosome or greater 

than 5 Mb from the TSS of the eGene.  

One possible mechanism through which a trans-eQTL can act is by affecting the expression 

of another gene in cis, which then affects the expression of the tested gene (example in figure 1-

3). Thus, the causal variant for a cis-eQTL can also be the causal variant for a trans-eQTL. This is 

not the only mechanism through which a trans-eQTL can act. In addition to the cis-eGene directly 

regulating the trans-eGene, it could regulate another gene which in turn regulates the trans-eGene. 

Additionally, a trans-eQTL might not involve a cis-eQTL at all. A variant in the protein-coding 

region of a TF gene affecting its activity could in turn affect expression of any downstream targets 

of that gene. Trans-eQTLs by nature do not exert an allelic effect. As in the example in figure 1-

3, the trans-eQTL effect exists because the amount of TF A is reduced, and that affects both alleles 

of Gene B equally.  

Unlike cis-eQTL studies where variants are limited to a window around the TSS of a given 

gene, trans-eQTL studies test all variants genome-wide for association with each gene. Thus, the 
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multiple testing burden on trans-eQTLs is much higher than for cis-eQTLs, which has made them 

much more difficult to detect with the limited size of a typical eQTL study. Even studies with 

sample sizes of greater than 5,000 individuals have discovered modest numbers of trans-eQTLs, 

on the order of a couple of hundred (Brynedal et al., 2017; Westra et al., 2013; Yao et al., 2017). 

By increasing the sample size to over 31,000 and testing only trait-associated variants, a recent 

study was able to detect a few thousand trans-eQTLs (Võsa et al., 2018). Additionally, trans-eQTL 

false positives are more likely than in cis-eQTLs and can be caused by batch effects, population 

structure or even RNA-sequencing alignment errors (Saha and Battle, 2018). 

 

Figure 1-3. An example mechanism of a trans-eQTL association.  

(1) The variant is a cis-eQTL variant for Gene A, which codes for a transcription factor, TF A. (2) When 

the protein TF A is translated from Gene A, it in turn affects expression of Gene B. (3) Thus, the variant 

exhibits a 293Tassociation for Gene B. 
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cis-eQTL

Gene B

trans-eQTL
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TF A

TF A
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Context-specificity of eQTLs 

Most of the eQTL studies mentioned thus far have performed RNA-seq on either one type 

of cell line isolated from individuals or an easily accessible tissue, such as whole blood. Recently, 

emphasis has been placed on context-specific eQTLs: either tissue-specific or condition-specific. 

For example, the GTEx consortium has performed eQTL analysis on 44 tissues from hundreds of 

post-mortem donors (GTEx Consortium et al., 2017). The resulting eQTLs demonstrate a u-shaped 

distribution where eQTLs tend to be either shared by all tissues or unique to one tissue. 

Interestingly, it appears that trans-eQTLs tend to be more tissue-specific than cis-eQTLs.  

In addition to tissue-specific eQTLs, studies have focused on eQTLs which are active under 

specific conditions. Innate immune cells, such as monocytes, have been used for looking at 

context-specificity of eQTLs under stimulation (Chen et al., 2016; Fairfax et al., 2014; Kim-

Hellmuth et al., 2017). Monocytes lend themselves to this type of study because they can be 

isolated from blood and have a transcriptional response to exposure to viral or bacterial stimuli. 

Immune-response eQTLs (reQTL) are eQTLs where the association between the variant and 

eGene varies based on stimulation.  Figure 1-4 shows an example of a reQTL where a variant is 

not associated with expression of a gene under normal baseline conditions, but with exposure to a 

stimulus, individuals with the A allele have higher gene expression of the eGene than those with 

the G allele. Immune reQTLs have been found to overlap GWAS signals for diseases related to 

infection and immunity (Chen et al., 2016; Fairfax et al., 2014; Kim-Hellmuth et al., 2017). This 

demonstrates the utility of immune reQTLs to help determine the mechanism of GWAS loci in the 

noncoding genome, perhaps revealing mechanisms that would be missed if only utilizing cells 

without stimulation.  
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Figure 1-4. A simulated example immune-response eQTL in human immune cells. (a) Under normal 

conditions, the variant does not show an association with expression of the gene, but with immune 

stimulation (b), there is an effect of the genotype of the variant on expression of the gene. Thus, the variant 

is considered an immune-reQTL. 

 

Linkage disequilibrium in eQTL studies 

Linkage disequilibrium (LD) is the phenomenon that variants near each other on the same 

chromosome tend to be inherited together. Recombination during meiosis, which occurs more 

often at recombination hotspots, can separate variants on the same chromosome. But if there is 

little recombination between two variants, they are often found in the same individuals and are 

therefore difficult to statistically disentangle in association studies. LD is advantageous in 

association studies where variants which are not directly measured are imputed, but it is a problem 

for identifying the causal variant at an eQTL locus. Any variant with a significant association with 

an eGene is considered an eVariant, but there is often only one causal eVariant at an eQTL. The 
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LD phenomenon is exemplified in figure 1-2c where several variants have highly significant p-

values for association with the AGA gene, while only one variant is likely to be causal.  

III. Approaches to determine causal variants 

Statistical fine-mapping of eQTLs 

 In order to distinguish causal variants from those in LD with causal variants, several 

computational and experimental methods have been developed. The computational methods 

generally involve statistical fine-mapping of the eQTL locus to assign a probability of causality to 

each variant (Hormozdiari et al., 2014; Pickrell, 2014; Wellcome Trust Case Control Consortium 

et al., 2012; Wen et al., 2015). The methods incorporate LD information between variants with the 

genetic association statistics to determine probability of causality, while taking into account noise 

that can be introduced by small sample sizes. Some of these methods assume a single causal variant 

at the eQTL locus (Pickrell, 2014; Wellcome Trust Case Control Consortium et al., 2012), which 

can lead to false negatives or positives. CAVIAR (Hormozdiari et al., 2014), the fine-mapping 

approach utlilized in chapter 2, provides posterior probabilities of association for each eVariant, 

without assumption of the number of eQTLs present at an eGene. Even with fine-mapping, it is 

often still unclear which is the causal variant. In instances where two variants are in perfect or 

close to perfect LD, it is impossible computationally to distinguish which is causal. Thus, the door 

is open to experimental approaches to detect causality of eVariants. 

 

Experimental approaches for validating regulatory variants 

 The high-throughput experimental approaches to validating regulatory signals fall into two 

broad categories: (1) those which focus on the difference in expression between multiple alleles of 
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a regulatory variant, incorporating the sequence into a reporter assay, and (2) those which confirm 

activity of a regulatory element within which a variant may fall, maintaining the native genomic 

context.  

The first category of high-throughput approaches is dominated by massively parallel 

reporter assays (MPRAs), reviewed in (Inoue and Ahituv, 2015; Santiago-Algarra et al., 2017). 

MPRAs consist of incorporating a potential regulatory DNA sequence into a reporter plasmid, 

upstream of a weak promoter and a reporter gene such as GFP or luciferase, often followed by a 

unique barcode which can be linked to the regulatory DNA sequence. This is done in parallel with 

thousands of DNA sequences either composed of endogenous gDNA or with mutations introduced. 

The constructs are pooled and introduced into cells in culture. To quantify the effect of each DNA 

sequence, the barcodes are sequenced from the mRNA of the cells. An over- or under-

representation of a particular barcode suggests that the matching DNA sequence in indeed 

regulatory. A comparison of the effect of two alleles of the same DNA sequence can identify an 

allele-specific effect of a variant on expression of a gene, and therefore point to a causal regulatory 

variant. The major advantage to these assays is certainly the high-throughput capacity; It has been 

extended to genome-wide scale (van Arensbergen et al., 2019). The ability to compare alleles of 

the same variant in isolation is also an advantage but taking the variant out of its endogenous 

genomic context into an artificial construct can result in false-positive or false-negative results. In 

addition, the results from these assays often do not correlate well with population trends (Tewhey 

et al., 2016; van Arensbergen et al., 2019). 

The second category of high-throughput approaches involves confirming regulatory 

elements while maintaining the native genomic context. Most recently, the emergence of CRISPR 

interference (CRISPRi) technology has led groups to utilize the technology to perturb regions of 
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the genome to detect regulatory effects on expression of genes (Gasperini et al., 2019; Gilbert et 

al., 2013; Yeo et al., 2018). The advantage to this approach is that it maintains the endogenous 

genomic context, which can be important for enhancer activity. However, these assays do not 

provide allele-specific effects and therefore cannot directly confirm the effect of a variant on 

expression of a gene.  

All above high-throughput assays, both the reporter-based and endogenous approaches, are 

relatively good at identifying regulatory elements in enhancers.  A major drawback is that they are 

unable to assay variants which are found within the transcript. These variants can affect the 

expression of genes either through stability of the transcript, splicing disruption or introduction of 

frameshift or premature stop codons. 

Introduction of a specific variant into human cells using genome editing and homologous 

recombination is another approach with which to validate single regulatory variants. CRISPR/Cas9 

genome editing, a tool harnessed from an adaptive immune system in bacteria, provides an easily-

programmable method to target a specific locus in the genome for editing (Cong et al., 2013; Jinek 

et al., 2012; Shalem et al., 2014). In practice, genome editing can be achieved by introducing Cas9 

and a locus-targeting guide RNA (gRNA) into a cell line. This induces the Cas9 enzyme to make 

a double stranded break (DSB) in the genomic DNA at the locus which the gRNA targets. In order 

to achieve a specific change in the DNA sequence, for example converting a specific variant to the 

alternative allele, a homologous template containing the variant is also provided. The cell has two 

pathways for repair of a DSB:  non-homologous end joining (NHEJ) and homology directed repair 

(HDR). The editing of the cells will yield a combination of results from both repair pathways: 

NHEJ will manifest as insertions or deletions, and HDR will manifest as a seamless repair of the 

genome using the provided template. In order to assess particular effects of the variant, generally 
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one would isolate single cells, expand each into a monoclonal cell line and select those cell lines 

which have the desired mutation. All in all, this is a fairly time consuming and low-throughput 

process, and therefore is only practical in cases where a single variant or handful of variants are of 

interest (Gupta et al., 2017; Soldner et al., 2016; Zhu et al., 2018). 

 A less labor-intensive genome editing approach involves editing cells as described above 

but analyzing the polyclonal edited cell population instead of isolating monoclonal cell lines. 

Groups have utilized this approach with CRISPR/Cas9 genome editing and homologous 

recombination followed by sequencing for allelic expression to validate the effects of rare variants 

(Li et al., 2017) and all possible mutations in a particular exon by using saturation mutagenesis 

(Findlay et al., 2014). The advantages to this approach of variant confirmation are that the 

endogenous genomic locus of the variant is maintained and the allelic effect of the variant is 

measured. This approach is limited to validation of variants within the transcript, thus providing a 

complimentary method to validate variants which are unable to be validated with the MPRA 

method. This approach takes advantage of the fact that regulatory variants within the transcript are 

transcribed in the mRNA and therefore can be quantified by sequencing the mRNA. In parallel, 

the gDNA is sequenced in order to quantify the editing efficiency. A significant difference between 

the proportion of the variant in gDNA versus mRNA suggests a regulatory effect of the variant. 

An application of this approach to confirm regulatory transcript variants genome-wide would be 

an integral contribution to the field, and one of the aims of this thesis. 

IV. Premature stop-gained variants 

Nonsense-mediated decay 

 Like common transcript regulatory variants, rare stop-gained variants often exert an allelic 

effect on the expression level of the gene in which they reside. This expression effect is mediated 
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through the nonsense mediated decay (NMD) pathway. NMD is a quality control mechanism 

utilized by the cell to detect transcripts with premature stop codons and degrade them before they 

are translated to potentially damaging truncated proteins. The NMD pathway has been extensively 

studied (reviewed in (Hug et al., 2016)). Studies find that premature stop codons prior to 50-55 bp 

before the last exon-exon junction tend to be degraded by the NMD pathway, whereas stop codons 

beyond this cutoff tend to escape NMD (Nagy and Maquat, 1998). As transcription of a gene 

occurs in the nucleus, an exon-junction complex is applied to each pre-mRNA 20-24 bp upstream 

of each exon-exon junction. This complex remains intact through spicing and transport to the 

cytoplasm, where NMD machinery recognizes a premature stop-codon and determines whether it 

is more than 50-55 bp upstream of the last exon-exon junction. The biological rationale for this 

cutoff is that a protein with a small truncation at the 3’ end is perhaps less damaging to the cell 

than a reduction in protein levels, which would be the result from NMD.  

 In RNA-sequencing data, a heterozygous stop-gained variant which triggers NMD can be 

detected as allele-specific expression of the gene, with a depletion of the stop-gained allele (Rivas 

et al., 2015) (exemplified in figure 1-5). In a heterozygous cell where one allele of a gene contains 

a premature stop codon, both alleles are transcribed in the nucleus. Once the mRNA reaches the 

cytoplasm, NMD machinery recognizes the premature stop codon and specifically degrades those 

transcripts. When mRNA is isolated from the cell for RNA-sequencing, there is a strong 

enrichment for the wild type allele.  

 

Stop-gained variants in rare disease 

 Stop-gained variants are enriched in rare disease-causing variants (Holbrook et al., 2004). 

These variants can result in disease whether they trigger NMD or not. Variants which trigger NMD 
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can result in an up to 50% reduction in the amount of a given protein in a cell. If the gene is 

haploinsufficient, this can result in disease. On the other hand, if the stop-gained variant escapes 

NMD (which is likely if it falls after the 50-55 bp cutoff), it can result in a truncated version of the 

protein which can result in dominant negative effects of the protein which can be severe.  

For some disease-associated genes, there are stop-gained variants both at the beginning of 

the transcript, likely triggering NMD, and at the end of the transcript, likely escaping NMD. 

Depending on where the variant is within the transcript, the disease can manifest with different 

symptoms or method of inheritance (Miller and Pearce, 2014).  

 

 

Figure 1-5. Stop-gained variants trigger nonsense mediated decay, which is detected in RNA-

sequencing. A visual example of a cell which is heterozygous, with one reference allele and one stop-

gained allele. The stop-gained variant introduces a premature stop codon into the transcript. In the cell, both 
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alleles are transcribed normally, but after transcription, the NMD complex degrades the transcripts with the 

stop-gained allele. Thus, the resulting effect of the stop-gained variant is a decreased presence of the stop-

gained allele in the mRNA, which can be observed in RNA-sequencing data. 

 

V. Innate immune response to LPS 

 The innate immune system is integral to the body’s rapid response to invading pathogens. 

Cells of the innate immune system are responsible for recognizing pathogens, quickly activating a 

transcriptional response, and releasing signaling molecules to inform other cells throughout the 

body of the infection. Many immune cell-surface receptors responsible for recognizing particular 

pathogenic molecules belong to the Toll-like receptor (TLR) family. The members of the TLR 

family each recognize specific molecules characteristic of bacteria, fungi, protozoa and viruses 

(Takeda and Akira, 2005).  

Extracellular recognition of lipopolysaccharide (LPS), a cell-surface marker on gram-

negative bacteria, is transduced through the trans-membrane protein TLR4. TLR4 binds to 

extracellular LPS cooperatively with extracellular proteins CD14 and MD2 (Rosadini and Kagan, 

2017). The binding of LPS triggers dimerization of TLR4, resulting in activation of two parallel 

signaling pathways: MyD88-dependent and MyD88-independent (figure 1-6). The MyD88-

dependent pathway is responsible for inducing transcription of pro-inflammatory cytokines and 

the MyD88-independent pathway induces transcription of type-I interferons and their targets. 

Notably, both pathways act through activation of the TF NF-kB, whose targets include a broad 

array of pro-inflammatory chemokines and cytokines (Liu et al., 2017). In macrophages and 

monocytes, this release of cytokines in response to LPS stimulation is important for activating and 
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recruiting cells of the innate and adaptive immune system as well as stimulating local tissue 

inflammation (Turner et al., 2014).  

 

Figure 1-6. LPS-triggered signal transduction through the TLR4 receptor. TLR4, located on the 

surface of innate immune cells, binds LPS with cooperation from CD14 and MD-2. This binding activates 

two branches of signaling, the MyD88-dependent pathway and the My88-independent pathway mediated 

by TRIF. Both pathways activate NF-kB and induce expression of cytokines and type I interferons. Adapted 

from (Lu et al., 2008). 
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VI. Interferon-regulatory factor 1 

 Interferon-regulatory factor 1 (IRF1) is a member of a family of nine IRF transcription 

factors. The IRF TFs were first discovered for their regulation of expression of type I interferon 

genes and they recognize variations on the interferon-stimulated response element in the genome. 

In addition to interferon regulation, IRFs are involved in many facets of innate and adaptive 

immunity, oncogenesis and metabolism (Honda and Taniguchi, 2006; Tamura et al., 2008; Zhao 

et al., 2015).  

IRF1 was the first member of the IRF family to be identified and was originally shown to 

be necessary for type-I interferon induction upon viral stimulation (Matsuyama et al., 1993). In 

addition, it has been implicated in lymphoid and myeloid lineage development, with abnormalities 

in immune cell development observed in irf1 knockout mice (Abdollahi et al., 1991; Matsuyama 

et al., 1993; Ogasawara et al., 1998). IRF1 has additionally been shown to be involved in activation 

of macrophages via the IFN-g receptor (Langlais et al., 2016). Also in macrophages, IRF1 has been 

shown to be essential for induction of inducible nitric oxide synthase (iNOS), which produces 

nitric oxide, an important cell signaling molecule released by innate immune cells in response to 

infection (Kamijo et al., 1994).  In the same study, irf1 knockout mice were shown to be more 

susceptible to infection with mycobacterium. Another study showed that IRF1-deficient 

macrophages have reduced IL-12 cytokine induction after stimulation with LPS (Liu et al., 2003). 

Taken together, past research suggests an important role for IRF1 in inducing immune-response 

genes in response to infection. 
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IRF1 is thought to be a target of NF-kB due to conserved NF-kB TF binding sites in its 

promoter (Harada et al., 1994; Iwanaszko and Kimmel, 2015). Additionally, IRF1 is strongly 

induced after stimulation with LPS in monocytes (Kim-Hellmuth et al., 2017). Taken together with 

the fact that NF-KB is a major signal transducer upon TLR4 activation, it is possible that IRF1 

transcription is induced by LPS via NF-kB regulation. Additionally, IRF1 is further implicated in 

TLR signaling, through direct activation by MyD88 (Negishi et al., 2006). Altogether, there is 

plausibility for IRF1 being involved in TLR4 signaling through induction by NF-KB and activation 

by MyD88. This connection is further bolstered by the finding that irf1 knockout mice have 

decreased survival after infection with LPS (Pan et al., 2013), implicating IRF1 in LPS signaling. 

However, the specific role IRF1 plays in LPS signaling has yet to be revealed.  

VII. Summary and thesis aims 

 In genetic association studies, such as eQTL mapping or GWAS, it is not always clear 

whether an associated variant is causal or linked to a causal variant through LD. Computational 

methods to identify causal variants, such as various fine-mapping approaches, can improve our 

estimation of causality, but fall short in cases of high LD and provide probabilistic estimates rather 

than empirical evidence. Therefore, experimental methods to validate causal regulatory variants 

are essential. MPRA approaches attempt to validate these variants in high throughput, but in doing 

so remove the variants from their endogenous loci, and cannot address variants within the 

transcript. In studies of rare stop-gained variants, there is often a strong hypothesis for the 

mechanism of the causal variant, but since the variant is often observed in only one or few 

individuals, statistical evidence is difficult to obtain from the extremely small sample size. This 

makes it difficult to establish the functional mechanism without experimental approaches. 
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In this thesis, we aimed to validate and characterize regulatory variants found in the human 

population using CRISPR/Cas9 genome editing. In chapter 2, we first focused on transcript 

variants from the general population which are associated with gene expression. This includes rare 

stop-gained variants which are suspected to act through the NMD pathway, and common eQTL 

variants which lie in the transcript. Next, we tested our ability to validate the effects of disease-

causing regulatory variants, focusing on premature stop-gained variants in two disease genes, 

ROR2 and GLI3. The validation of causal regulatory variants is a central goal of functional 

genomics research. Here we demonstrate a reliable medium-throughput technique to detect 

regulatory effects of variants, which can be utilized as a valuable tool for variant validation. 

Understanding how genetic variation affects expression of genes across the genome in 

trans can give us a deeper understanding of how variation affects broad transcriptional networks 

in the cell. In chapter 3, we interrogate a particularly interesting immune-response eQTL, which 

is a cis-eQTL for IRF1 early after LPS stimulation and a trans-eQTL for many genes several hours 

after stimulation. To experimentally validate this association, we employed CRISPR/Cas9 genome 

editing and isolation of monoclonal cell lines followed by LPS stimulation and RNA-sequencing. 

Here we demonstrate the power of experimental investigation of master-regulatory variants, which 

contribute to inter-individual differences in cellular response to immune stimulus at a pathway 

level, potentially indicating mechanisms of disease-associated variants. 
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Chapter 2: A polyclonal allelic expression assay for detecting regulatory effects of 

transcript variants  

 

The experiments described in this chapter were conceived and designed by Margot Brandt with 

guidance from Tuuli Lappalainen. All experiments and analyses described in this chapter were 

performed by Margot Brandt with the following exceptions: 1) Alper Gokden and Marcello Ziosi 

performed a replicate of the polyclonal assay on the stop-gained, eQTL and control edited variants. 

The results presented in this chapter will be published as a paper with Margot Brandt as the first 

author (Brandt et al, in submission. https://www.biorxiv.org/content/10.1101/794081v1). 

Introduction 

 A method for scalable functional validation of regulatory variants associated with gene 

expression in human populations remains largely unaccomplished. Methods such as massively 

parallel reporter assays (MPRAs), which couple regulatory sequences with an expression reporter, 

are high-throughput and can be effective for finding active regulatory variants outside of the gene 

body, such as in enhancers. However, the results of the assays show low concordance with the 

direction of the population associations of the variants (Tewhey et al., 2016; van Arensbergen et 

al., 2019), perhaps due to taking the variant out of its genomic context. In addition, MPRAs are 

unsuited to validating variants found within the transcript: variants in exons, 5’ UTRs or 3’ UTRs. 

These variants are not compatible with MPRAs because they can act through post-transcriptional 

regulatory mechanisms affecting the stability of the transcript, as opposed to rate of transcription. 

A regulatory transcript variant can act by affecting splicing, inducing nonsense mediated decay 

(NMD) or impacting a miRNA binding site, for example. Posttranscriptional mechanisms have 
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been shown to be important for regulatory variants, with eQTLs being strongly enriched for 

transcript annotations (Aguet et al., 2019; Lappalainen et al., 2013). In order to validate these 

transcript variants, it is essential to introduce the variant into the native genomic context so that it 

can be incorporated into the transcript when the gene is transcribed by the cell. 

The advent of CRISPR/Cas9 genome editing technology (Cong et al., 2013; Jinek et al., 

2012; Shalem et al., 2014) has provided an avenue with which to introduce specific variants into 

the genome of cells in order to validate their effects on expression. However, editing one variant 

at a time, isolating hundreds of single cell clones, genotyping and expanding clones and measuring 

transcript abundance in both edited and wild type clones is a hugely time-consuming, expensive 

process. In addition to the resource cost of completing such an experiment, undetected large on-

target mutations (Kosicki et al., 2018), off-target mutations and other clone-specific genomic 

abnormalities can create noise which requires many replicates of each desired genotype in order 

to detect the effects of variants. To avoid undesirable clone-specific effects, we employed a method 

to validate the effects of regulatory variants in a polyclonal population of edited and wild type 

cells. 

We first set out to validate eQTL variants from GTEx fibroblasts using CRISPR in a human 

embryonic kidney cell line (293T). In addition to the variants being significantly associated with 

expression of genes, the eQTLs were also fine-mapped using CAVIAR (Hormozdiari et al., 2014). 

The CAVIAR posterior probability of association (PPA) assigned to each eQTL-associated variant 

gives the probability that the variant is causal, which helps distinguish causal eQTL variants from 

those variants in high linkage disequilibrium (LD) with the causal variant. By selecting variants 

for editing that have strong associations with the eQTLs as well as a high PPAs from fine-mapping, 

the chances of the variant truly being causal are increased.   
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In addition to validating eQTL variants, this assay can also be used for validating the effects 

of stop-gained variants on transcript stability. Stop-gained variants located 50-55 bp or more 

before the last exon junction are thought to induce NMD, while variants located beyond this 

threshold are thought to escape NMD and therefore produce truncated protein (Nagy and Maquat, 

1998). In order to establish this application, we first used the assay to analyze rare variants from 

individuals in GTEx which introduce a premature stop codon in the transcript prior to the 55-bp 

threshold.  

Understanding the effect of stop-gained variants on the transcript could have clinical utility 

as well. If a patient has a variant of unknown significance that introduces a stop codon prematurely 

into the transcript, it could be beneficial to validate the variant experimentally to be sure of its 

mechanism of action. This could be especially useful in cases where the disease mode of 

inheritance or severity of symptoms are dependent upon whether the variant induces NMD or 

results in the production of a truncated protein. To demonstrate the utility of the assay in this 

context, we selected two disease-associated genes GLI3 and ROR2. Stop-gained variants towards 

the beginning of GLI3 are associated with Greig cephalopolysyndactyly, while variants towards 

the end of the gene are associated with the clinically distinct Pallister-Hall syndrome (Johnston et 

al., 2005). It is hypothesized that Greig cephalopolysyndactyly is caused by haploinsufficiency of 

GLI3, while Pallister-Hall syndrome is caused by a dominant negative effect of truncated GLI3 

protein. Similarly, stop-gained variants towards the beginning of ROR2 are associated with the 

autosomal recessive Robinow syndrome, while variants towards the end of the transcript are 

associated with autosomal dominant Brachydactyly type B1 (Schwabe et al., 2000). Brachydactyly 

type B is thought to be caused by a dominant negative effect of truncated protein, since the 

recessive inheritance of Robinow Syndrome indicates haplosufficiency of the gene. The 
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association between variant position in the transcript and clinical manifestation of disease is 

hypothesized to be dependent upon whether the variant induces NMD or produces a truncated 

protein. For these two disease genes, we edited both disease-associated variants from ClinVar 

(Landrum et al., 2018) and artificial stop-gained variants falling on both sides of the NMD cutoff. 

Methods 

fgwas enrichment  

First, we sought to establish the relevance of testing eQTL effects driven by variants within 

transcripts by analyzing the extent of cis-eQTL enrichment in functional elements of the genome. 

We used GTEx v6 fibroblast eQTL data and a diverse  set of annotations: Gene annotations were 

obtained from GENCODE (Harrow et al., 2012), and regulatory annotations (CTCF-binding site, 

enhancer, open chromatin region, promoter, promoter-flanking region, and TF binding site) were 

obtained from the Ensembl regulatory build release 80 (Zerbino et al., 2015). Additional 

annotations include CADD variant consequence scores (Kircher et al., 2014), SPIDEX machine-

learning based prediction of splicing effects (Xiong et al., 2015), experimentally validated miRNA 

binding sites from Tarbase (Vergoulis et al., 2012), 3’ UTR regulatory elements (Oikonomou et 

al., 2014), and RNA-binding protein sites from CLIPdb (Yang et al., 2015). Significant fibroblast 

eQTLs were analyzed for enrichment in these functional annotations using fgwas (Pickrell, 2014), 

with each annotation tested separately. Annotations that are significantly enriched in eVariants 

over other non-significant variants include many annotations found within the transcript (figure 2-

1a). These include annotations involved in splicing, such as splice region variant, splice acceptor 

variant and SPIDEX predicted splicing.  Additionally, variants are enriched for annotations that 

affect transcript stability either through triggering nonsense mediated decay (stop-gained variant, 

frameshift variant) or by disrupting a binding site of a regulator within the transcript (miRNA 
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binding site, RNA binding protein site, 3’ UTR variant). Rare stop-gained variants in GTEx within 

the transcript affect transcript stability in an allele-specific manner (figure 2-1b). The bimodal 

pattern of allelic expression in stop-gained variants suggests that some variants affect the 

abundance of the transcript they are found in, as demonstrated by a high reference ratio (calculated 

as ref reads/ total reads), while some maintain a roughly 0.5 reference ratio. These findings 

emphasize the importance of regulatory variants within the transcript and the need for a method to 

validate them.  

 

Assay design 

In order to validate transcript regulatory variants’ allelic effects on transcript abundance, 

we utilized CRISPR/Cas9 genome editing with a gRNA specific to the locus of the variant of 

interest and a single-stranded DNA (ssDNA) template containing the alternative allele for 

homology-directed repair (HDR) (Figure 2-1c). For each variant of interest, we transfected the 

gRNA and ssDNA template into a well of inducible Cas9 293T cells. After editing, cells were 

harvested for gDNA and mRNA, followed by amplicon sequencing of the locus of interest in each. 

A regulatory effect of the variant is detected as a difference in the ratio of the alternative allele 

between gDNA and mRNA (figure 2-1d). This effect size is calculated as the log ratio of the 

alternative allele in cDNA over the ratio of the alternative allele in gDNA: log2(cDNA alt/ref / 

gDNA alt/ref), or the allelic fold change (aFC).  

 

Variant selection 

In this study, we edited five types of variants: GTEx stop-gained, GTEx eQTL, disease 

gene stop-gained, non-eQTL synonymous control, and synthetic control variants.  
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Stop-gained variants from the general population were obtained from the GTEx v6 data 

release. Starting with all stop-gained variants that were singletons in GTEx v6, we used allele-

specific expression (ASE) data from the fibroblast sample of the individual carrying the variant to 

select those that are likely triggering NMD. The selected variants have RNA-seq coverage of >=20 

reads, a reference ratio Ref/(Ref+Alt) > 0.7, and are located in a gene with > 5 RPKM in a 

published HEK293 RNA-seq dataset (Sultan et al., 2014). Additionally, we required ASE data in 

at least 5 tissues and a first quartile of ASE across tissues of > 0.7 to select variants where NMD 

does not appear to be highly tissue-specific. Finally, we selected variants > 30 bp from the end of 

an exon for primer design. Nine variants were used for editing. 

eQTL variants were obtained from the GTEx v8 data release. Significant eQTL variants in 

fibroblasts were filtered for being within at least one protein-coding transcript, having a CAVIAR 

fine-mapping posterior probability of association > 0.8, an eGene with > 1 RPKM in HEK293 

cells, and an effect size in the top quartile of effect sizes of all associations (aFC > 0.30). The top 

33 highest effect size variants with successful gRNA and primer design were chosen for editing. 

Ten stop-gained variants for each of the disease genes GLI3 and ROR2 were created by 

changing a codon in the transcript to a stop codon.  The stop codons were spaced 20 bp apart in 

both directions from the NMD cutoff point (55 bp upstream of last the exon-exon junction).  The 

6 disease variants tested were obtained from ClinVar (Landrum et al., 2018), choosing disease-

associated variants in the two genes on either side of the NMD threshold. 

We selected 30 non-eQTL negative control variants from common synonymous variants 

in GTEx v8 data with an eQTL association p > 0.1 with the gene in which they reside. The 

templates for the 35 synthetic control variants were designed by introducing a nucleotide other 
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than the reference or alternative allele at the stop-gained variant locus, which does not create a 

premature stop codon. 

All variants edited with the assay can be found in Table 2-2. 

 

Cell culture 

Genome editing was carried out in a doxycycline-inducible Cas9 293T cell line, transduced 

with pCW-Cas9 plasmid (Addgene plasmid #50661 (Wang et al., 2014)), courtesy of the Sagi 

Shapira lab.  293T cells were cultured in OptiMEM (Gibco) supplemented with 5% HyClone 

Cosmic Calf Serum (Fisher), 1% Glutamax (Gibco), 1% NaPyr (Corning), and 1% 

penicillin/streptomycin (Corning). The cells were passaged and maintained following standard 

techniques in 5% CO2 and 95% air. 

 

Genome editing 

The protocol for the polyclonal editing assay can be found at 

dx.doi.org/10.17504/protocols.io.7c6hize. gRNAs were designed with E-CRISP version 5.3 

(Heigwer et al., 2014) using medium settings, with an NGG PAM, a 5’ G, excluding designs with 

more than 5 off-targets, and classifying off-targets as having up to 3 mismatches in 5’ region of 

the gRNA. gRNAs were ordered as gBlocks gene fragments (IDT): a U6 promoter sequence 

followed by the specific gRNA and tracr sequence (Arbab et al., 2015). The gBlocks were 

amplified using Q5 high fidelity 2X master mix (NEB) and locus-independent gBlock 

amplification primers (Arbab et al., 2015). Homologous templates were designed by extracting the 

sequence 50 bp upstream and downstream of each variant and substituting the reference allele with 

the alternative allele. Stop-gained control templates have another nucleotide substituted in the 
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variant position which does not create a stop codon. Homologous templates were synthesized as 

ultramers by IDT. If possible, primers which amplify both cDNA and gDNA were designed using 

IDT primer quest, choosing those that cover the PCR target (region spanning the variant and DSB) 

with at least 15 bp between the PCR target and one primer and at least 60 bp to the other primer. 

Otherwise, cDNA- and gDNA-specific primers were designed using either the cDNA or gDNA 

sequence as the template. Nextera adapter sequences were appended to forward and reverse primer 

sequences as follows:  

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG+ForwardPrimerSequence 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG+ReversePrimerSequence 

Primers were ordered as standard oligos from IDT.   

Twenty-four hours before transfection for CRISPR editing, iCas9 293T cells were plated 

in 24-well plates and induced with 5 ug/mL of doxycycline, with a separate well for each targeted 

variant. Cells were transfected with 500 ng homologous template and 500 ng gRNA gblock using 

Lipofectamine MessengerMAX transfection reagent (Thermo Fisher Scientific). After 24 hours, 

transfection reagent was removed and replaced with new media. Cells were split after 4 days and 

6 days, and DNA and RNA were extracted from the polyclonal edited cultures at 9 days. 75% of 

the 24-well culture was harvested for RNA using IBI Isolate DNA/RNA Reagent (IBI Scientific) 

according to the manufacturer’s instructions. Purified RNA was quantified by Nanodrop (Thermo 

Fisher). cDNA was synthesized with ~200 ng of purified RNA using 1/4 reactions of SuperScript 

IV VILO Master Mix with EZ DNase (Invitrogen).  Another 10% of the cell culture was used for 

DNA extraction using 15 uL of QuickExtract (Lucigen).  For the timecourse optimization 

experiment, mRNA and gDNA was extracted as above at days 4, 6 and 9.  
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Library preparation 

Amplicon libraries from cDNA and gDNA were created using either the same nextera 

primers (if possible) or separate nextera primers for cDNA and gDNA. 1 uL of cDNA or gDNA 

was amplified using Q5 High Fidelity 2X Master Mix (NEB). An indexing PCR was performed 

next using Nextera XT index kit primers (Illumina) and NEBNext High-Fidelity 2X PCR Master 

Mix (NEB) resulting in dual barcoded amplicons with illumina adapters. cDNA and gDNA 

libraries were mixed in equal volume and sequenced on the MiSeq using 150 bp paired-end reads. 

We obtained a median coverage of 85,000 reads per sample. 

 

Sequencing analysis 

Fastqs generated from Illumina software were trimmed for adapter sequences and quality 

using trimmomatic.  Reads were aligned to the gDNA or cDNA sequence specific for each 

amplicon and categorized as HDR, no edit, or NHEJ using EdiTyper (Yahi et al. in prep). Variants 

were eliminated if HDR in gDNA was greater than 30% (suggesting the cell line is in fact 

heterozygous for the variant). Samples were filtered out if they had fewer than 1000 reads covering 

the locus of interest. Additionally, samples were filtered out if they had an outlier NHEJ rate of 

greater than 80%, indicative of an alignment error. The effect size for each variant was calculated 

as the log2((Alt/Ref in cDNA) / (Alt/Ref in gDNA)), or allelic fold change (aFC).  An effect size 

of zero means the variant has no effect on transcript abundance.   

 

Statistical analysis 

Significance between the control variant distribution and the other experimental variant 

types was determined using a two-sided Wilcoxon rank sum test. An F test was utilized to detect 
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a difference in variance of aFC between non-eQTL control and synthetic control variants, and 

eQTL and control variants. For each individual regulatory variant, a p-value was calculated from 

the z-score of the variant’s effect size based on the mean and standard deviation of the control 

distribution. The p-values were then bonferroni corrected and variants with a corrected p-value of 

less than 0.05 were considered significant. 

 

eQTL effect size in GTEx 

 For the GTEx effect sizes for the eQTLs, we used the allelic fold change (aFC) estimates 

from the GTEx v8 data release (Aguet et al., 2019; GTEx Consortium et al., 2017; Mohammadi et 

al., 2017). For eQTL effect size in each GTEx tissue, we used the aFC estimates calculated from 

eQTL data. For stop-gained variants, we calculated aFC as the log2 ratio of the alternative and 

reference allele counts in the RNA-seq data in GTEx. To analyze the variation of eQTL variants’ 

effects across GTEx individuals, we calculated the aFC for each eQTL variant across heterozygous 

individuals in GTEx using the alternative and reference allele counts in the gene body 

(Mohammadi et al., 2017). Samples were filtered for those with greater than 50 reads covering 

heterozygous sites in the gene. 

 

eQTL variant characteristics analysis 

 LocusZoom plots were created for the eQTL variants using the p-values obtained from the 

GTEx v8 eQTL dataset and R2 linkage disequilibrium estimates from the same dataset. Predictions 

of the molecular effects of the eQTL variants for Table 2-1 were obtained using the Ensembl 

Variant Effect Predictor tool (McLaren et al., 2016).  



   

 31 

 

Figure 2-1.  Variants found in the transcript are important for regulation of transcript abundance. 

(a) fgwas enrichment of functional annotations in GTEx fibroblast eVariants. Significant annotations are 

colored in purple. (b) Distribution of reference allelic ratio (reference reads/ total reads) in rare stop-gained 

variants found in individuals in GTEx. (c) For each potential regulatory variant of interest, we designed a 

gRNA and ssDNA template specific to the variant locus. (d) Polyclonal allelic expression assay to validate 

regulatory variants found in transcript. Inducible Cas9 293T cells undergo homologous recombination after 

transfection with the gRNA and ssDNA template in order to introduce the alternative allele to the cells. 

Editing is followed by targeted sequencing of gDNA and mRNA to detect the ratio of ALT/REF alleles in 

the polyclonal population of cells. 

 

Results 

Polyclonal allelic expression assay is a replicable method to validate regulatory variants 
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First, we assessed the right timepoint to harvest mRNA after transfection with CRISPR 

constructs. Since mRNA is likely to remain in the cell for hours to days after editing has occurred, 

we expect to see a depletion in edited mRNA molecules early after transfection. To find the optimal 

timepoint, we edited 17 control variants in 17 different genes which are not expected to have an 

effect on expression and harvested at three timepoints post-transfection: 4 days, 6 days and 9 days. 

At four days, we do see a depletion in the edited allele in the mRNA (figure 2-2a). However, this 

effect is lessened after 6 days and gone by 9 days. Therefore, we used the 9-day timepoint for the 

assay in order to analyze only the mRNA which has been transcribed post-editing.  

In order to determine the optimal set of negative control variants, we compared the 

distribution of effect sizes of the synthetic control variants (new variants created in the same genes 

as the stop-gained variants) and non-eQTL variants (common synonymous variants where eQTL 

effects were tested in GTEx and not observed). The synthetic control variants have several outlier 

variants with large effect sizes that are consistent in replicates (figure 2-2b). This suggests that a 

subset of synthetic variants affect transcript levels and are thus not ideal negative controls. The 

non-eQTL control variants, however, have effect sizes consistently close to zero (median aFC = -

0.009), demonstrating the utility of population data in selecting nonfunctional negative control 

variants.  The variance of the synthetic controls was significantly greater than the variance of the 

non-eQTL controls (1.02 versus 0.038; F test  p = 3.7x10-8). The non-eQTL variants were thus 

utilized as the control distribution for comparison with the stop-gained and eQTL variants tested 

with the assay. 

Next, we analyzed how technical variation in editing efficiency or PCR amplification may 

affect the robustness of the assay. We compared the HDR rate with standard deviation of effect 

size between editing replicates of 62 variants (2 replicates for 23 and 3 replicates for 32 variants). 
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We found that low HDR appears to be associated with a higher standard deviation in the calculated 

effect size from the assay (figure 2-2c). Therefore, moving forward, we discarded any variant with 

an HDR rate of less than 0.4% as determined by amplicon sequencing of the gDNA. The effect 

size is well correlated between two replicates of the same variants (Spearman’s rho = 0.53, p = 

2.8x10-3, figure 2-2d). The HDR rate is variable between loci, but very well correlated between 

replicates (Spearman’s rho = 0.95, p = 7x10-16, figure 2-2e), suggesting that the results of the assay 

are not strongly influenced by PCR amplification bias or variation in transfection efficiency.  
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Figure 2-2. The polyclonal allelic expression assay is a replicable measure of variants’ allelic effects 

on transcript abundance. (a) Distribution of effect size for control variants over a timecourse post-

transfection. (b) Distribution of effect size for different control variant types: Synthetic and GTEx 

synonymous non-eQTL. (c) Homologous recombination rate versus standard deviation of effect size for 

variants replicated 2-3 times with assay. Vertical line shows 0.4% HDR cutoff which was used to filter 

variants for subsequent analysis. (d) Scatter plot showing reproducibility of effect size (allelic fold change) 

detected by polyclonal allelic expression assay in two editing replicates of the same variants. (e) Scatter 

plot showing correlation of HDR between the two replicates.  

 

Edited stop-gained variants cause an allele-specific decrease in mRNA 

The first variants selected for evaluation using the polyclonal allelic expression assay were 

rare stop-gained variants from GTEx. The alternative allele of these variants introduces a stop 

codon into the gene and shows evidence of allelic expression in GTEx heterozygous individuals 

as demonstrated by a decreased presence of the alternative allele in the mRNA (reference 

reads/total reads > 0.7 in GTEx).  

The stop variants were expected to have a negative effect size by triggering NMD in the 

cell, which is what we observed (figure 2-3a), with the distribution of the effect size of the stop 

variants being significantly lower than the non-eQTL control variants (Wilcoxon signed rank p = 

3.26x10-5). The fact that the effect size of the edited stop-gained variants is in the expected 

direction consistent with NMD, an effect which is absent in the control variants, lends support for 

the assay capturing NMD effects of variants. As compared to the control variants, five of the stop-

gained variants deviate significantly from the control distribution (Bonferroni-corrected z-test 

p<0.05).  
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Figure 2-3. Stop-gained and eQTL variants from GTEx show allele-specific regulatory effects on 

expression. (a) Effect size of non-eQTL control, eQTL and stop-gained variants after editing with the 

polyclonal assay. Triangular points mark variants whose effect sizes significantly deviate from the control 

distribution. (b) Correlation between effect size observed in GTEx and effect size resulting from polyclonal 

assay for non-eQTL control, eQTL and stop-gained variants. Triangular points mark variants whose effect 

sizes significantly deviate from the control distribution. 

 

eQTL variants have a larger regulatory effect than control variants 

Next, we extended the assay to assess putatively causal eQTL variants within transcripts 

using GTEx fibroblast eQTLs. We chose fibroblasts because GTEx fibroblast transcriptome 

expression is highly correlated with that of HEK293 cells (rho = 0.68, p < 2.2x10-16). The 33 eQTL 

variants chosen for editing are located within the transcript of the eGene with which they are 

associated and have a high posterior probability of causality based on CAVIAR fine mapping. 

After editing and QC filtering, 13 eQTL variants remained. The variance of the effect size of the 

eQTL variants was significantly higher than that of the control variants (0.49 versus 0.038; F-test 

p = 1.65x10-5; figure 2-3a), which suggests that the edited eQTL variants as a whole have a greater 

regulatory effect than the edited control variants. Ten of the 13 variants have an effect in the same 
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direction as the GTEx eQTL effect. Five of the eQTL variants are individually significantly 

different from the control distribution (figure 2-3a), and all five of these variants have an effect in 

the same direction as in GTEx. Additionally, there is a significant correlation between the effect 

size of the edited stop-gained, non-eQTL control and eQTL variants and their effects in GTEx 

(Spearman’s rho = 0.62; p = 5x10-5; figure 2-3b), again indicating that the assay captures regulatory 

effects seen in the population.  

eQTL variant effects vary across tissues and individuals 

The lack of effect observed for some of the eQTL variants could be due to our cell line not 

perfectly recapitulating the genetic regulatory effects in GTEx fibroblast samples. To investigate 

this, we looked at variation in effect size between GTEx tissues for each of the eQTL variants 

(figure 2-4a). We also looked at inter-individual variation within fibroblast samples in GTEx, 

which may reflect more subtle cell type-specific genetic effects as well as the effects of other 

regulatory variants in the GTEx individuals. We measured the effect size in eQTL heterozygotes 

in GTEx based on allelic imbalance within the gene body (figure 2-4b), with eleven of the eQTL 

variants having sufficient data for this analysis. For all five significant variants, there is agreement 

in direction between the polyclonal aFC, median heterozygous aFC across individuals and median 

eQTL aFC across tissues. For several of the other variants, figures 2-4a and b demonstrate a large 

range of effects both across tissues and across individuals. The observed effect of a variant in the 

cell line of our assay, like an individual or tissue, is likely to fall somewhere in a spectrum of 

possible effects. We note that for some of the variants the effect detected in our assay is consistent 

with the eQTL effect but the assay does not currently have sufficient sensitivity to assign this as a 

significant effect.  



   

 37 

Another even more likely possible explanation for the lack of effect in some eQTL variants 

is that the top variant was incorrectly identified by fine mapping and there is another true causal 

variant. To test this hypothesis, we looked at the p-value distributions for the edited eQTL variants 

to see if there are other highly significant variants that could be driving the eQTL association. 

There does not appear to be a difference in the p-value distributions between the significant (figure 

2-4c and d) and non-significant eQTL variants (figure 2-4e and f). In both cases, there are examples 

of distributions which appear to have other likely causal variants (figure 2-4c and e) and those that 

seem to have a clear top variant (figure 2-4d and f).  
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Figure 2-4. Characteristics of the eQTL edited variants. (a) eQTL effect size (aFC) in GTEx tissues for 

the 13 edited eQTL variants shown as boxplots, with lines indicating the median effect size in GTEx 

fibroblasts (red) and in the assay (purple). Asterisks mark variants which were significant in the assay. (b) 

aFC in GTEx fibroblasts, measured in eQTL heterozygous individuals for 11 of the edited eQTL variants. 

(c-d) Locus zoom plots showing p-values and LD for variants tested for eQTL association for two 

representative significant eQTL variants from the polyclonal assay. (e-f) Locus zoom plots showing p-

values and LD for variants tested for eQTL association for two representative non-significant eQTL variants 

from the polyclonal assay. 

 

To further test the hypothesis that some of the non-significant eQTL variants are not causal, 

we used the Ensembl variant effect predictor (VEP) (McLaren et al., 2016) to determine the likely 

molecular consequences of the eQTL variants on their respective genes (Table 2-1). All five of the 

significant eQTL variants fall into the promoter region of the gene, while five out of eight non-

significant variants fall into promoters. Interestingly, three out of five significant eQTLs fall into 

high-info positions within transcription factor (TF) motifs, suggesting they have an impact on 

binding of the TF, while none of the nonsignificant variants fall into high-info positions (fisher 

test, p = 0.035). This result suggests that the assay can distinguish true causal variants disrupting 

genetic regulatory elements from eQTL variants that are not causal.  

To compare our assay to another method of eQTL validation, we compared our results to 

the results from a large MPRA study (van Arensbergen et al., 2019). Of the three of our significant 

eQTL variants that are found in their data, one variant (chr4_139665971_A_T_b38) has a 

nominally significant negative effect in both cell types used in that study, consistent with our 

results. Three of our non-significant eQTL variants (chr17_81294933_T_C_b38, 

chr20_25057848_G_T_b38 and chr2_170816965_G_A_b38) are nominally significant in that 

study and two are not. The overlap of significant variants is not expected to be especially high 
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since the assays likely have different sensitivities and in the MPRA the variants are tested out of 

the genomic context.  

 

 

Table 2-1. Variant effect predictions for the eQTL edited variants. Predicted effects of the edited eQTL 

variants based on Ensembl Variant Effect Predictions. 

 

The polyclonal assay distinguishes disease variants which cause NMD from those that do not 

In order to apply our assay to the detection of nonsense-mediated decay triggered by 

disease-associated variants, we introduced stop-gained variants into two disease-associated genes: 

ROR2 and GLI3. Seven of the edited stop-gained variants fall before the 55 bp threshold and were 

therefore expected to trigger NMD. Of these variants, all seven resulted in negative effect sizes 

and the distribution of these variants was significantly different from that of both the four variants 

which were not expected to trigger NMD (Wilcoxon p = 6.1x10-3) and the non-eQTL control 

variants (Wilcoxon p = 5.8x10-4, figure 2-5a). When tested individually, six of the seven expected 
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NMD variants are significantly different from the control distribution, indicating that we can 

sensitively detect NMD and NMD- escape across the 55-bp boundary in these two genes.  

In addition to the newly created stop-gained variants, we also included disease-causing 

stop-gained variants from ClinVar. The Arg442Ter mutation in ROR2 results in a stop-codon right 

before the predicted NMD cutoff and is associated with the recessively inherited Robinow 

syndrome. We observe a significant negative effect of this variant (aFC = -1.39, Bonferroni 

corrected z-test p = 2.2x10-11), which is consistent with NMD and the clinical manifestation of 

disease (figure 2-5b). In contrast, the variant Trp749Ter is associated with dominant Type B 

brachydactyly and falls after the NMD cutoff in the transcript.  Our assay shows that Trp749Ter 

does not affect the expression level of ROR2 and therefore does not appear to be triggering NMD 

(aFC = -0.17, corrected p = 1). The one disease variant tested in GLI3, Arg792Ter, falling 

immediately before the predicted border of NMD escape, shows evidence of triggering NMD with 

a negative effect size in the assay (aFC = -1.02, corrected p = 3.6x10-6).  This result is consistent 

with the clinical features of this variant, since it is associated with Grieg cephalopolysyndactyly 

syndrome which is thought to be caused by haploinsufficiency in the gene GLI3. The results of 

editing stop-gained variants in these disease genes indicate that there is a sharp cutoff of NMD / 

NMD-escape at the previously described 50-55 bp threshold and pinpoint the immediate molecular 

mechanism of NMD / NMD-escape for these disease variants. Additionally, the results 

demonstrate the potential for utilizing this assay to assess whether a variant of clinical interest 

triggers NMD when it falls close to the threshold of NMD escape.  
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Figure 2-5. Stop-gained variants in disease-associated genes show expected regulatory effect based 

on position in transcript. (a) Effect size in control variants, stop-gained variants after NMD threshold, and 

stop-gained variants before NMD threshold. Triangular points mark variants whose effect size significantly 

deviates from the control distribution. (b) Diagram of the last two exons of NMD disease genes ROR2 and 
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GLI3, showing the effect size (y-axis) and position in the transcript (x-axis) for each successfully edited 

variant. Disease- associated variants from ClinVar are labeled in red. 

 

Discussion 

In this study, we described a method utilizing CRISPR/Cas9 genome editing and targeted 

sequencing to validate regulatory variants without the need for isolating monoclonal cell lines. We 

demonstrated our ability to reliably detect the effects of stop-gained variants in the general 

population and in disease cases with the assay. The ability to experimentally assess the effect of 

potentially disease-causing stop-gained variants could lead not only to better understanding of the 

rules of NMD / NMD-escape, but also more accurate diagnosis and prognosis. The American 

College of Medical Genomics recommends caution in interpreting pathogenicity of stop-gained or 

frameshift variants of unknown significance, especially in cases where the variant is in an exon 

which might be alternatively spliced, or close to the 3’ end of the transcript (Richards et al., 2015). 

Even though RNA analysis from patients is increasingly used to support variant interpretation 

(Ben-Shachar et al., 2009; Cummings et al., 2017; Kremer et al., 2017), establishing causality has 

been difficult since lower expression of a mutant haplotype or gene could be driven by other 

genetic or environmental factors. Our approach provides evidence that introduction of the specific 

variant in question underlies transcript level changes, thus reducing ambiguity. Furthermore, for 

genes where NMD / NMD-escape is clinically relevant, saturation editing at the 50-55-bp border 

could build a high-resolution reference for variant interpretation.  

This polyclonal assay has the ideal throughput for identifying causal variants from a list of 

a few to several dozen candidate variants discovered from a rare genetic study. It would be feasible 

to perform the polyclonal assay on a number of potential regulatory variants, sequencing mRNA 
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and gDNA from the polyclonal culture, and then sort monoclonal cell lines from the same 

polyclonal culture for only the variants which demonstrate allele-specific regulatory activity. 

When we applied the polyclonal assay to eQTL variants, we detected increased effects on 

expression levels as compared to controls, often in the same direction as the GTEx eQTL effect. 

Five of 13 variants had significant effects, all consistent with the GTEx eQTL data. This clearly 

demonstrates the ability of our assay to capture common regulatory variant effects. Some of the 

non-significant eQTL variants appear to have edited effect sizes consistent with GTEx, but we 

lack the sensitivity to detect these small effects with confidence. In addition, some of the 

inconsistencies between the assay results and eQTL data are likely to originate from the eQTL 

data. Since we do not expect fine mapping to always succeed in identifying the true causal variants 

at these loci, the undetected effects could represent these situations. Furthermore, with multiple 

eQTLs for the same gene being common (GTEx Consortium et al., 2017), it is possible that eQTL 

effect sizes observed in populations reflect multiple regulatory variants in partial LD. Therefore, 

editing a single variant may not yield the same results as the full haplotype. When we looked at 

the aFC in heterozygous individuals for these variants in GTEx, we found a broad range of effect 

sizes, suggesting the presence of effects from multiple variants and potential modifiers that may 

not be captured by editing a single variant. Finally, assessing genetic regulatory effects even in 

closely matched cell lines does not necessarily capture effects measured in tissue samples. While 

this is likely to contribute to some of the differences, cis-eQTLs, especially in the transcribed 

region, are often highly robust across different tissues (GTEx Consortium et al., 2017), and are 

expected to replicate in cell lines as well. We highlight that our approach maintains the genomic 

context of variants and native gene regulation. Thus, it does not suffer from the limitations of 

massively parallel approaches where discrepancies between eQTL and experimental data may be 
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due to measuring genetic regulatory effects in artificial constructs (Tewhey et al., 2016; van 

Arensbergen et al., 2019). Altogether, more experimentation and further comparison of population 

and experimental results are required to fully understand differences between experimental and 

population data. 

Finally, we note that our assay is somewhat limited by HDR efficiency, which varies 

greatly between loci. Capturing the specific effect of the edited variant requires discarding any 

reads in the gDNA or cDNA which contain indels created through non-homologous end joining 

(NHEJ). Since NHEJ often dominates HDR in efficiency, this can result in low numbers of HDR 

reads. Research in improving the HDR rates in editing is ongoing (Aird et al., 2018; Chu et al., 

2015; Maruyama et al., 2015), and likely HDR efficiency will be greatly improved in the future. 

Additionally, future improvements on base editor technology, which avoids the introduction of 

double stranded breaks and therefore minimizes the risk of indels (Gaudelli et al., 2017; Komor et 

al., 2016), could also benefit this system and increase sensitivity of the assay.   
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 Table 2-2. All variants edited with the polyclonal allelic expression assay in chapter 2. 

Variant 
type Variant ID chr Chr pos 

GRCh38 
REF 

allele 
ALT 

allele gRNA seq 

stop 
gained stop_1 1 10463557 G A GTGTGTGCTGCAGCCGCTGGA 
stop 
gained stop_2 1 113981146 C T GGGTGAAGTCACGCAGCCTT 
stop 
gained stop_3 1 946463 G T GCAGCTGCTTGGGAAGGTTC 
stop 
gained stop_5 19 18784264 G A GTGGAAGGACCCGCGAAACG 
stop 
gained stop_6 2 200651022 C T GGCATTGATCTCTTGTTTGTA 
stop 
gained stop_7 20 44948809 C A GGCAATGAGCTTGTAAAGAA 
stop 
gained stop_8 22 36512560 G A GAAGCTGGACTCTCAGCGAG 
stop 
gained stop_9 3 49122992 G A GCCCATCCTCATCTCGACAGC 
stop 
gained stop_10 5 154821355 C T GAGGGCCAAGGAAAACCACA 

eQTL chr1_20508117_C_A_b38 1 20508117 C A GTTTCCGGTCAGGTTAGGCC 

eQTL chr10_16817401_G_C_b38 10 16817401 G C GCGTGTTCGCTGTTCAGTGC 

eQTL chr11_44066439_G_T_b38 11 44066439 G T GGCTCCAGGTTTCCAGGCAG 

eQTL chr15_64156166_C_T_b38 15 64156166 C T GTGGAAGCAGGAGGGCATGG 

eQTL chr16_70157320_G_A_b38 16 70157320 G A GCAGCCTATTAGTTCTGGTG 

eQTL chr19_32972322_C_T_b38 19 32972322 C T GGTTCCTGCCGGCTGTATTC 

eQTL chr19_32972339_A_G_b38 19 32972339 A G GCTGTATTCGGGCCTTGGAC 

eQTL chr19_984554_C_G_b38 19 984554 C G GCAAGAATTACATCAGCGCC 

eQTL chr2_170816965_G_A_b38 2 170816965 G A GCCCAGCGATCCGCTCGGCT 

eQTL chr2_9843557_G_T_b38 2 9843557 G T GCCTCCTTACCGCCTCCTCG 

eQTL chr20_1325648_T_C_b38 20 1325648 T C GCTTTAAACTCCCCTGGCCT 

eQTL chr20_3213332_G_A_b38 20 3213332 G A GATAAGTGCCGGAGTACCAG 

eQTL chr22_36507049_C_T_b38 22 36507049 C T GCGCGGCCTCATTAGACCAC 

eQTL chr4_41990735_G_C_b38 4 41990735 G C GCTCCGTCTGCGATGCAGGG 

eQTL chr8_144414270_T_C_b38 8 144414270 T C GGCAGTGGGTGCAGTCACTG 

eQTL chr5_56909530_A_G_b38 5 56909530 A G GGTGCCAGGAACACTGAGAG 

eQTL chr3_33218930_C_T_b38 3 33218930 C T GCGCTCGGCTCACGAATCGC 

eQTL chr7_4768773_G_A_b38 7 4768773 G A GAGCGGGGAGAGTGGTGAGG 

eQTL chr19_9324196_C_T_b38 19 9324196 C T GCGTGGGCGCATGCGCATAA 

eQTL chr8_544804_C_G_b38 8 544804 C G GCCGCAGGCAGAGCGTCCGG 

eQTL chr16_89972488_G_C_b38 16 89972488 G C GATCAAACCCTCGAACGGTC 

eQTL chr4_139665971_A_T_b38 4 139665971 A T GAACTATTTGTAGAGCGCAC 
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eQTL chr1_147647471_G_A_b38 1 147647471 G A GAGTTTGAGAGCAGAGTGCG 

eQTL chr1_27335461_C_T_b38 1 27335461 C T GGCCACCGAGCAGCCATCAC 

eQTL chr1_197902889_G_T_b38 1 197902889 G T GAGCGAAGAGTTAACCGCGG 

eQTL chr20_25057848_G_T_b38 20 25057848 G T GTCCCAGACGGTGTGGTAGG 

eQTL chr7_90211993_G_A_b38 7 90211993 G A GGGCGAGCCTTGCAGCTCCC 

eQTL chr3_100709512_A_G_b38 3 100709512 A G GAGAACTTGGGCTCTGTACG 

eQTL chr9_133361131_C_T_b38 9 133361131 C T GGCATGTGCTTTTATTAACC 

eQTL chr12_51199833_T_G_b38 12 51199833 T G GCTGAAGGTGGCAATGGCAG 

eQTL chr16_88706338_C_T_b38 16 88706338 C T GCGCGGGCCTGGCCCCGGGA 

eQTL chr19_57840921_G_A_b38 19 57840921 G A GACAGGTGTGTCTCCCAAGA 

eQTL chr17_81294933_T_C_b38 17 81294933 T C GGTCATAGTGAGAGGTCTAG 
ROR2 
stop ROR2_exp_1 9 

91725057-
91725059 CAG CTA GTCTGCGGTGAGGTTCATGG 

ROR2 
stop ROR2_exp_2 9 

91725078-
91725080 CGC CTA 

GCCATGAACCTCACCGCAGACA
G 

ROR2 
stop ROR2_exp_3 9 

91725099-
91725101 GAG CTA 

GCCATGAACCTCACCGCAGACA
G 

ROR2 
stop ROR2_exp_4 9 

91726553-
91726555 GTT CTA GGCATGGAGACCTGTTTGTGC 

ROR2 
stop ROR2_exp_5 9 

91726574-
91726576 GTC CTA GCCATCAGCTGTCGCCGCTG 

ROR2 
stop ROR2_exp_6 9 

91726616-
91726618 GGA CTA GCCATCAGCTGTCGCCGCTG 

ROR2 
stop ROR2_exp_7 9 

91726637-
91726639 ATT CTA GCCATCAGCTGTCGCCGCTG 

ROR2 
stop ROR2_exp_8 9 

91726658-
91726660 GAA CTA GAAAAGGCAAGCGATGACCAG 

ROR2 
stop ROR2_exp_9 9 

91726679-
91726681 CAG CTA GAAAAGGCAAGCGATGACCAG 

ROR2 
stop ROR2_exp_10 9 

91726700-
91726702 GAC CTA GAAAAGGCAAGCGATGACCAG 

ROR2 
stop ROR2_exp_Arg442Ter 9 91726603 G A GCCATCAGCTGTCGCCGCTG 
ROR2 
stop ROR2_exp_Trp720Ter 9 91724334 C T GCGGGACAGTCATCGGGGCA 
ROR2 
stop ROR2_exp_Trp749Ter 9 91724248 C T GTAGTTGGAAAGGTTGCCCC 
GLI3 
stop GLI3_exp_1 7 

41966592-
41966594 GAG CTA GGGCCCATGACGCTTCTCCC 

GLI3 
stop GLI3_exp_2 7 

41966613-
41966615 CAA CTA GGGCCCATGACGCTTCTCCC 

GLI3 
stop GLI3_exp_3 7 

41966635-
41966637 CTG CTA GTCCAACAACACCTGCAGCT 

GLI3 
stop GLI3_exp_4 7 

41967609-
41967611 AGG CTA GAGAGACCGCAGGGGCTTTA 

GLI3 
stop GLI3_exp_5 7 

41967630-
41967632 AGG CTA GAGAGACCGCAGGGGCTTTA 
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GLI3 
stop GLI3_exp_6 7 

41967672-
41967674 TTG CTA GAAAGGCTAAAACAAGTGAA 

GLI3 
stop GLI3_exp_7 7 

41967693-
41967695 TAC CTA GAAACCCGGCAGGGACCAAA 

GLI3 
stop GLI3_exp_8 7 

41967714-
41967716 CCC CTA GAAACCCGGCAGGGACCAAA 

GLI3 
stop GLI3_exp_9 7 

41967735-
41967737 TTG CTA GGCTTGCAAAGCAAGGGCTG 

GLI3 
stop GLI3_exp_10 7 

41967756-
41967758 TGC CTA GGCTTGCAAAGCAAGGGCTG 

GLI3 
stop GLI3_exp_Ser856Ter 7 41966506 G T GTAGGCCGAGCTGATGGTGC 
GLI3 
stop GLI3_exp_Arg792Ter 7 41967653 G A GGTAGAATGGGGTTCAGTCG 
GLI3 
stop GLI3_exp_Gln717Ter 7 41967878 G A GTTGGAATAGTTGCTGATGG 
syntheti
c control stop_con_1 1 10463557 G T GTGTGTGCTGCAGCCGCTGGA 
syntheti
c control stop_con_2 1 113981146 C A GGGTGAAGTCACGCAGCCTT 
syntheti
c control stop_con_3 1 946463 G A GCAGCTGCTTGGGAAGGTTC 
syntheti
c control stop_con_5 19 18784264 G T GTGGAAGGACCCGCGAAACG 
syntheti
c control stop_con_6 2 200651022 C A GGCATTGATCTCTTGTTTGTA 
syntheti
c control stop_con_7 20 44948809 C T GGCAATGAGCTTGTAAAGAA 
syntheti
c control stop_con_8 22 36512560 G T GAAGCTGGACTCTCAGCGAG 
syntheti
c control stop_con_9 3 49122992 G T GCCCATCCTCATCTCGACAGC 
syntheti
c control stop_con_10 5 154821355 C G GAGGGCCAAGGAAAACCACA 
non-
eQTL 
control syn1 11 88294225 A C GGTCTCTTAGACCAGTGTGG 
non-
eQTL 
control syn2 14 104887068 G A GTGAGGGGGGCAGCACCCCG 
non-
eQTL 
control syn3 17 40822211 G A GGAGGCGGCTTTGGTGGAGG 
non-
eQTL 
control syn4 17 79086238 C T GAAATTCCATGCGACGATCC 
non-
eQTL 
control syn5 17 80010342 C T GGATGTCACCGAGGAGGGGC 
non-
eQTL 
control syn6 19 58294717 T C GGATGCGCTCATGCTGGACG 
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non-
eQTL 
control syn7 22 50523830 G A GGCAACCTGTTTGGTGGAGC 
non-
eQTL 
control syn8 7 143863472 T G GAGTGGCCTCCTCGCAGTGG 
non-
eQTL 
control syn9 1 27366484 G T GCCGGCTCCGCGCGCAGCCC 
non-
eQTL 
control syn10 1 3883678 A G GTCACAGTTGAGCTTGTGGG 
non-
eQTL 
control syn11 10 69180435 C T GTTTGGTATTTTGGAGCCAC 
non-
eQTL 
control syn12 11 126304143 C T GCGCGAATTGGACGTGGAGG 
non-
eQTL 
control syn13 14 76776147 C T GCGGGTCGTGTGACACGCTC 
non-
eQTL 
control syn14 16 69330127 G A GGTTCACGAACACGCGCAGG 
non-
eQTL 
control syn15 16 88715671 G A GCGGTAGAGGAAGATGAGCT 
non-
eQTL 
control syn16 16 88721329 C T GGAGGGGCCAGGGGTGCCTG 
non-
eQTL 
control syn17 17 15945284 G T GGACGCGCTGTACGTGGCGC 
non-
eQTL 
control syn18 17 15945323 C T GGTCATCGCCGCGCTTTCGG 
non-
eQTL 
control syn19 17 15999680 C G GGAGGATCCTGACCCCCCGC 
non-
eQTL 
control syn20 17 59213022 G A GCCTGTCGATCAACGAAGTT 
non-
eQTL 
control syn21 17 75909713 C T GGGGAGAGGCACGTGGCCAG 
non-
eQTL 
control syn22 18 23529181 G A GGTTTTTTTCTTTCAGGCGG 
non-
eQTL 
control syn23 19 3959446 G A GGCTGCGCTGCAGCTCGCGC 
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non-
eQTL 
control syn24 21 42903351 G A GTCTTTCTTGACAAAAATTT 
non-
eQTL 
control syn25 5 10239241 C T GTTCTTACTTACTGGGCTTG 
non-
eQTL 
control syn26 6 108074445 C A GCCCCAGCCCTCCACCCTGC 
non-
eQTL 
control syn27 6 139167023 C T GCCGCCGAAGGAACTGCACG 
non-
eQTL 
control syn28 7 156950085 C A GAACAGGGTCCCGGCCTGGG 
non-
eQTL 
control syn29 7 726792 G A GGCCGAGACGGCTGAGGCGG 
non-
eQTL 
control syn30 8 143650949 G A GCTGGGTGAAGTTTGACGTC 
syntheti
c control ROR2_con_1 9 

91725057-
91725059 CAG TAG GTCTGCGGTGAGGTTCATGG 

syntheti
c control ROR2_con_2 9 

91725078-
91725080 CGC TGC 

GCCATGAACCTCACCGCAGACA
G 

syntheti
c control ROR2_con_3 9 

91725099-
91725101 GAG AAG 

GCCATGAACCTCACCGCAGACA
G 

syntheti
c control ROR2_con_4 9 

91726553-
91726555 GTT ATT GGCATGGAGACCTGTTTGTGC 

syntheti
c control ROR2_con_5 9 

91726574-
91726576 GTC ATC GCCATCAGCTGTCGCCGCTG 

syntheti
c control ROR2_con_6 9 

91726616-
91726618 GGA TGA GCCATCAGCTGTCGCCGCTG 

syntheti
c control ROR2_con_7 9 

91726637-
91726639 ATT GTT GCCATCAGCTGTCGCCGCTG 

syntheti
c control ROR2_con_8 9 

91726658-
91726660 GAA AAA GAAAAGGCAAGCGATGACCAG 

syntheti
c control ROR2_con_9 9 

91726679-
91726681 CAG TAG GAAAAGGCAAGCGATGACCAG 

syntheti
c control ROR2_con_10 9 

91726700-
91726702 GAC TAC GAAAAGGCAAGCGATGACCAG 

syntheti
c control ROR2_con_Arg442Ter 9 91726603 G T GCCATCAGCTGTCGCCGCTG 
syntheti
c control ROR2_con_Trp720Ter 9 91724334 C G GCGGGACAGTCATCGGGGCA 
syntheti
c control ROR2_con_Trp749Ter 9 91724248 C G GTAGTTGGAAAGGTTGCCCC 
syntheti
c control GLI3_con_1 7 

41966592-
41966594 GAG AAG GGGCCCATGACGCTTCTCCC 

syntheti
c control GLI3_con_2 7 

41966613-
41966615 CAA TAA GGGCCCATGACGCTTCTCCC 
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syntheti
c control GLI3_con_3 7 

41966635-
41966637 CTG TTG GTCCAACAACACCTGCAGCT 

syntheti
c control GLI3_con_4 7 

41967609-
41967611 AGG GGG GAGAGACCGCAGGGGCTTTA 

syntheti
c control GLI3_con_5 7 

41967630-
41967632 AGG GGG GAGAGACCGCAGGGGCTTTA 

syntheti
c control GLI3_con_6 7 

41967672-
41967674 TTG CTG GAAAGGCTAAAACAAGTGAA 

syntheti
c control GLI3_con_7 7 

41967693-
41967695 TAC CAC GAAACCCGGCAGGGACCAAA 

syntheti
c control GLI3_con_8 7 

41967714-
41967716 CCC TCC GAAACCCGGCAGGGACCAAA 

syntheti
c control GLI3_con_9 7 

41967735-
41967737 TTG CTG GGCTTGCAAAGCAAGGGCTG 

syntheti
c control GLI3_con_10 7 

41967756-
41967758 TGC GGC GGCTTGCAAAGCAAGGGCTG 

syntheti
c control GLI3_con_Ser856Ter 7 41966506 G A GTAGGCCGAGCTGATGGTGC 
syntheti
c control GLI3_con_Arg792Ter 7 41967653 G T GGTAGAATGGGGTTCAGTCG 
syntheti
c control GLI3_con_Gln717Ter 7 41967878 G T GTTGGAATAGTTGCTGATGG 
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Chapter 3: A distant cis-eQTL for IRF1 is a trans-eQTL master regulatory variant in 

immune response 

 

All experiments described in this chapter were conceived and designed by Margot Brandt with 

guidance from Tuuli Lappalainen. All experiment and analyses described in this chapter were 

performed by Margot Brandt with the following exceptions: 1) Sarah Kim-Hellmuth performed 

the immune-respone cis- and trans-eQTL study in which the IRF1 signal was discovered. 2) Aaron 

Wollman transfected the hTLR4 cells and performed the T7E1 assay to confirm editing in 

polyclonal cell population 3) Alper Gokden performed the long-range PCR on the clonal cell lines. 

4) Marcello Ziosi performed the CRISPRi transfection and LPS stimulation of the hTLR4 cells, 5) 

Yocelyn Recinos tested the optimal time point for hTLR4 cell immune stimulus.  

Introduction 

 Understanding the link between noncoding variants and their effects on genes can help 

interpret variants associated with disease which fall in the noncoding genome. Doing so in a static 

environmental context is how classic eQTL studies are done. However, looking for associations in 

specific environmental contexts can further reveal how regulatory variants act in a cell under 

variable conditions. This is especially relevant for immune cells, such as monocytes, whose 

physiological function is dependent upon rapid transcriptional changes in response to stimulus. 

Immune-response eQTL (reQTL) studies are designed with this goal in mind: to identify regulatory 

variants whose effects are dependent upon the presence or absence of a stimulus. Such variants 

can contribute to genetic inter-individual variation in immune response – a widespread 
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phenomenon that underlies many human infectious and autoimmune diseases  (Fairfax et al., 2014; 

Kim-Hellmuth et al., 2017; Lee et al., 2014). 

 The innate immune response to lipopolysaccharides (LPS), molecules found on the outer 

membrane of gram-negative bacteria, is transduced through toll-like receptor 4 (TLR4), which is 

found on the surface of many immune cells, including monocytes. TLR4 cooperates with MD2 

and CD14 to recognize LPS outside the cell. Once bound to LPS, TLR4 undergoes a 

conformational change which triggers a signaling cascade, activating NF-kB and increasing 

transcription of its targets, including proinflammatory cytokines and type I interferons (Lu et al., 

2008).  

 Immune-reQTL studies in monocytes have identified variants which affect the expression 

of genes involved in the innate immune response, which can explain quantitative differences in 

immune response between individuals (Chen et al., 2016; Fairfax et al., 2014; Kim et al., 2014). 

A cis-reQTL is where a variant is associated with expression of a proximal gene, whereas a trans-

reQTL is where a variant is associated with a distal gene. A previous immune-reQTL study (Kim-

Hellmuth et al., 2017) discovered 126 significant cis-reQTLs in human monocytes which were 

active under stimulation with LPS. One such cis-reQTL for IRF1 is not significant under baseline 

but is a significant eQTL under stimulation with LPS. In addition to being implicated in immune 

cell lineage development, IRF1 has been shown to be involved in activation of macrophages via 

the IFN-g receptor (Langlais et al., 2016). Another study showed that IRF1-deficient macrophages 

have reduced IL-12 cytokine induction after stimulation with LPS (Liu et al., 2003), implicating 

IRF1 in TLR4 signaling in response to LPS. Furthermore, IRF1-knockout mice have been shown 

to have increased survival after infection with LPS as compared to matched control mice (Pan et 
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al., 2013). However, the full extent of the involvement of IRF1 in TLR4 signaling has not yet been 

elucidated. 

Trans-eQTLs, associations between variants and genes which are mediated by a secondary 

factor, are more difficult to detect than cis-eQTLs. In addition to the multiple testing burden 

imposed by testing all variants against all genes, trans-eQTLs also tend to have smaller effect sizes 

(Aguet et al., 2019). However, there is evidence that trans-eQTLs are particularly important for 

understanding mechanisms of disease-associated variants, as GWAS associations for complex 

traits are strongly enriched for trans-eQTLs (Aguet et al., 2019). Furthermore, since they provide 

information on how genetic perturbations affect transcriptional networks, trans-eQTLs have the 

potential to elucidate cellular pathways affected by genetic variants. However, while trans-eQTL 

detection has somewhat improved recently with larger sample sizes (Võsa et al., 2018), there has 

still been very little validation of these associations.  

In this study, we first associated the cis-reQTL variants from Kim-Hellmuth et al. with all 

expressed genes in monocytes in order to detect trans associations. One trans-eQTL near IRF1 is 

of particular interest due to its association with IRF1 in cis early after LPS stimulation and delayed 

association with a large number of genes in trans. This result suggests the association is a 

condition-specific trans-eQTL with potentially broad effects on an individual’s response to LPS. 

Therefore, we chose to follow up on this trans-eQTL master regulatory variant using CRISPRi 

gene expression perturbation and CRISPR/Cas9 genome editing in an immune cell line to replicate 

the variant’s effects. 

Methods 

eQTL discovery 
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The IRF1 cis-reQTL was discovered in a previous immune-response eQTL study (Kim-

Hellmuth et al, 2017).  Briefly, primary monocytes were isolated from 134 donors and treated with 

LPS, MDP, IVT RNA, or no treatment. To assess early and late immune response, RNA expression 

was measured with a microarray chip after 90 min and 6 h.  To detect a significant cis-reQTL, the 

effect size b of association between genotype and expression of genes were compared between 

untreated and treated samples.  rs17622517 was found to be a significant cis-reQTL variant for 

IRF1 at 90m after LPS treatment, i.e. under early immune stimulus. 

Trans-eQTL discovery was done with the MatrixEQTL R package, performing a linear 

regression between the genotype of the top variant for each of the 126 significant cis-reQTL at 

LPS 90 min and all expressed probes in monocytes at 6 hours (22,657).  Benjamini-Hochberg 

correction was performed across p-values for all variants and probes. A significance threshold of 

FDR < 0.5 was used for downstream analyses. Since rs17622517 was found to be associated with 

many genes in trans at 6 hours, in addition to the cis association with IRF1, it was selected for 

further follow up.  

 

Enrichment of IRF1 targets 

IRF1 targets were obtained from the molecular signatures database (MSigDB) gene set 

IRF1-01, which comprises genes which contain at least one IRF1 motif in the 4kb upstream and 

downstream from their transcription start site (Liberzon et al., 2011). Trans-eGenes from the 

rs17622517 trans-eQTL (FDR < 0.5) and CRISPRi differentially expressed gene set (FDR < 0.05) 

were tested for enrichment in IRF1 target genes using a Fisher’s exact test comparing the number 

of genes in the set which overlap IRF1 target genes with the number of background expressed 

genes which overlap IRF1 targets.  
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Cell culture 

 HEK293/hTLR4A-MD2-CD14 Cells (Invivogen) were selected for functional follow up 

of the IRF1 trans-eQTL because of the ease of transfection of HEK293 cells and the addition of 

the TLR4 receptor, which is essential for cellular response to LPS. Cells were cultured in DMEM 

supplemented with 4.5 g/l glucose (Corning), 10% fetal bovine serum (Sigma-Aldrich), 1% 

penicillin/ streptomycin (Corning) and 1% L-glutaMAX (gibco). Cells were passaged using cell 

scraping to avoid damaging the cell surface receptors. 

 

CRISPRi of IRF1 promoter and enhancer locus  

 In order to determine whether the region of the eQTL variant regulates IRF1, and the effect 

of IRF1 perturbation in our cell line, we performed CRISPRi experiments targeting both the variant 

locus and the IRF1 promoter.  HEK293-TLR4 cells were plated in three 24-well plates with 120K 

cells/well in 1ml of DMEM. 24 hours later, the medium was replaced with 0.5ml of OptiMem 

(Gibco) and cells were transfected with 1.5ul of lipofectamine 3000 (Thermo Fisher Scientific), 

200ng of CRISPR-KRAB-MeCP2 vector (Addgene 110821) and 50 ng of gRNA gblock (IDT) (4 

wells each received a gRNA targeting EGFP as a neutral control 

(‘GGTGGTGCAGATGAACTTCA’), 14 bp downstream of the IRF1 promoter 

(‘GTCTTGCCTCGACTAAGGAG’) or the enhancer (‘TTCTCTGTAGCCCTTGTATT’)). After 

28 hours, 1ug/mL of LPS (Invivogen)was added to the 90 m and 12 h samples and nothing to the 

control samples, with four biological replicates of each gRNA for each LPS treatment (36 total 

samples). Cells were collected at their respective timepoint with TRIzol reagent (Thermo Fisher 

Scientific) and stored at -80C before RNA extraction.  
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Genome editing 

 In order to validate the cis and trans reQTL associations of rs17622517, we edited the 

HEK293-TLR4 cells using CRISPR/Cas9 genome editing.  A gRNA 

(‘TTCTCTGTAGCCCTTGTATT’) was designed with an NGG pam and a cut site 1 bp 

downstream from rs17622517.  The gRNA was ordered as a single stranded oligo gblock from 

IDT and amplified using 2 50 uL reactions of Q5 High Fidelity 2X Master Mix (NEB). Cells were 

transfected with 0.5 ug gRNA gblock and 2.5 ug px458 plasmid (Addgene plasmid # 48138) 

containing spCas9 and GFP with lipofectamine 3000 (Thermo Fisher Scientific). 24-hours later, 

cells then underwent fluorescence-activated cell sorting for GFP+ cells using a Sony SH800Z cell 

sorter to enrich for transfected cells. Efficiency of editing was tested using a T7E1 assay and 

electrophoresis gel to detect presence of NHEJ.  The GFP+ cells were also sorted as single cells 

into 15 96-well plates and expanded into monoclonal cell lines.   

Clones were genotyped by creating an amplicon library for each clone from gDNA using 

nextera primers capturing a 218 bp amplicon containing the variant locus. Indexing PCR was 

performed next using primers specific to the constant sequence on the nextera primers, resulting 

in dual-barcoded amplicons with illumina adapters.  Libraries were mixed in equal volume and 

sequenced on the MiSeq using 150 bp paired-end reads.  Fastq files generated by the Illumina 

software were trimmed for adapter sequences and quality using trimmomatic. Reads were aligned 

to the genomic locus and categorized as no edit or NHEJ using Edityper (Yahi et al. In prep). Since 

the cell line is triploid at this genomic locus, clones were considered heterozygous if they had 

NHEJ between 20-70%.  Clones with less than 10% NHEJ were considered wild type and clones 

with greater than 90% NHEJ were considered homozygous edited. Five each of wild type, 
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heterozygous and homozygous edited were selected for follow up. BAM files from the selected 

clones were also visually inspected to confirm genotype. In addition, a 3,496 bp PCR followed by 

electrophoresis gel was performed on the clones in order to check for larger indels not captured by 

the shorter amplicon libraries. 

 

LPS treatment of edited clones 

To detect the reQTL effect of the edited locus, we performed LPS treatment followed by 

RNA-sequencing on each isolated edited and wild type cell line. Each clonal cell line was plated 

into three wells (one well each for control, 90m and 12h treatments) in 24-well plates with 180,000 

cells per well. 24 hours later, 1ug/mL of LPS (Invivogen) was added to the 90 m and 12 h samples. 

RNA was extracted at the designated timepoint by adding 500 uL of IBI Isolate DNA/RNA 

Reagent (IBI Scientific) directly to cells on the plate and stored at -80C until extraction.  

 

RNA extraction and RNA-seq library preparation 

RNA was extracted following the Direct-zol RNA MicroPrep kit (Zymo Research) 

manufacturer’s instructions. RNA was treated with DNAse I (Ambion) and enriched for mRNA 

using Dynabeads mRNA DIRECT Purification Kit (Thermo Fisher).  cDNA was generated using 

a custom scaled-down modification of the SMART-seq protocol (Picelli et al., 2014). cDNA was 

synthesized from RNA input using Maxima H Minus Reverse Transcriptase (Thermo Fisher 

Scientific). It was then amplified using Kapa HiFi 2X Ready Mix (Kapa Biosystems). cDNA was 

then cleaned using 0.9X Ampure beads.  Finally, cleaned cDNA samples were tagmented and 

indexed using the Nextera XT DNA Library Prep Kit (Illumina). Library size and tagmentation 

was confirmed using the TapeStation HS D1000 kit (Agilent).  Libraries were pooled in equal 
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molarity and sequenced with the NextSeq 550 High-Output kit (Illumina) with paired end 2X75 

reads. 

 

RNA-seq analysis 

 Reads were first trimmed of adapters using trimmomatic, then aligned to the hg19 genome 

using STAR 2-pass mapping. Gene counts were calculated with FeatureCounts using gencode v19 

gene annotations.   

 

Differential expression analysis 

  For analysis of the effects of CRISPRi on the transcriptome, a count matrix was 

created in R from the raw counts of all samples. Principal component analysis was performed on 

the count matrix, after transformation and normalization with vst(). Differential expression was 

performed using an interaction model (~gRNA + condition + gRNA:condition) with DESeq2. 

Prior to p-value correction, genes were discarded if they did not have an average expression of 

greater than 5 read counts across samples and an annotation of protein coding or lncRNA in 

gencode. P-values for differential expression were corrected using Benjamini-Hochberg correction 

and a 5% FDR significance threshold was used.  

For analysis of the effect of CRISPR editing the variant locus, a count matrix was created 

in R from the raw counts of all samples. Since library prep and RNA-Seq were performed twice, 

the count matrices from the two runs were summed together. Differential expression analysis was 

performed using the R package DEseq2 using a nested interaction model (expression ~ genotype 

+ genotype:clone + genotype:condition) accounting for the same clone being found in each 

treatment group and testing for differential expression in the interaction between condition and 
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genotype. Prior to p-value correction, genes were discarded if they did not have an average 

expression of greater than 5 read counts across samples and an annotation of protein coding or 

lncRNA in gencode. P-values for differential expression were corrected using Benjamini-

Hochberg correction and a 5% FDR significance threshold was used.  

Enrichment analysis on significantly differentially expressed genes was done using 

DAVID biological process gene ontology enrichment, using Benjamini-Hochberg corrected p 

values and 5% false discovery rate. 

 

Comparison between edited clone and CRISPRi differential expression 

For comparison of the differential expression fold changes between the edited clonal RNA-

seq and the CRISPRi RNA-seq experiments, the genes in the edited differential expression analysis 

with an FDR of 25% were intersected with the genes in the CRISPRi differential expression 

analysis and a Spearman correlation test was performed. 

 

Trans-reQTL comparison to differential expression of edited clones and CRISPRi samples 

Some of the expression probes in the monocyte study measure the same gene. Therefore, 

the mean beta from the trans-eQTL study for probes overlapping the same gene was taken. The 

intersection of this gene list and the genes tested for differential expression was obtained. A 

Spearman correlation test was performed on the trans-reQTL betas and fold changes from 

DESeq2.  

Results 

Top variant for IRF1 cis-reQTL is in a likely enhancer  
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In the cis-reQTL study, the most significant variant for IRF1 expression 90 minutes after 

stimulation with LPS is rs17622517, which is the top variant associated with IRF1 expression 

under stimulation with LPS, but not at baseline (figure 3-1a). This variant is located about 23,000 

bp downstream of the IRF1 TSS in an intron of the gene C5ORF56. There are other neighboring 

variants which are significantly associated with IRF1 expression as well (figure 3-1b). However, 

the genomic context of rs17622517 lends further support to its causality. In ENCODE DNase 

hypersensitivity assays, this locus overlaps a peak in many cell types, including monocytes 

(Thurman et al., 2012). Furthermore, ENCODE H3K27Ac ChIP-Seq in the GM12878 cell line, a 

lymphoblastoid cell line, suggests an active immune cell enhancer in this region (pink peaks in 

H3K27Ac track in figure 3-1c). Finally, ENCODE transcription factor ChIP-Seq data also show 

significant peaks at this locus for many transcription factors in lymphoblastoid cell lines (figure 3-

1c). These include IRF4, another interferon regulatory factor, and RELA, a subunit of NF-κB, a 

key regulator in TLR4 signaling. Additionally, this variant has been found as a hit in a GWAS for 

chronic inflammatory diseases: ankylosing spondylitis, Crohn's disease and ulcerative colitis 

(Ellinghaus et al., 2016), lending further support for its involvement in immunity. 
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Figure 3-1. rs17622517 is the top variant associated with the IRF1 cis- and trans- reQTL under LPS 

stimulation. (a) cis-reQTL boxplots demonstrating IRF1 expression versus genotype of rs17622517 in 

monocytes harvested from 132 individuals at baseline, 90 min and 6 hours after LPS stimulation. (b) 

LocusZoom plot of the IRF1 cis-reQTL, highlighting top variant rs17622517. (c) UCSC genome browser 

view of top variant rs17622517, demonstrating overlap with transcription factor binding, DNase 

hypersensitivity and H3K27Ac peaks. The red line shows the variant location. (d) The number of gene 

expression probes (y-axis) associated with cis-eQTL top variant (x-axis) at FDR 0.5 for those cis-eQTL 

variants with greater than one trans association. IRF1 top cis-eQTL variant rs17622517 is highlighted in 

orange. 

 

IRF1 cis-reQTL variant is a significant trans-reQTL for many target genes 
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The top variants for all 126 of the significant cis-reQTLs at LPS 90 min from Kim-

Hellmuth, et al. was tested for association with the expression of all 22,657 expressed probes in 

monocytes. The IRF1 variant is associated with 232 expression probes with a lenient FDR 

threshold of 0.5 (table 3-3), substantially more than the other cis-reQTLs (figure 3-1d). These 

results suggest that the IRF1 variant acts as a master regulator trans-eQTL to modify expression 

of many genes. The FDR 0.5 trans-eQTL genes are enriched for MSigDB IRF1 target genes, 

defined as having an IRF1 motif within 4 kb of their TSS (Fisher test p = 1.8e-4). These trans-

reQTLs are mostly not detected until 12 hours after LPS stimulation (figure 3-2a), suggesting a 

sequential expression effect with the cis-eQTL detectable at 90 minutes and the trans-eQTL 

detectable at 12 hours. This timing is consistent with the hypothesis that the cis-eQTL affects 

expression of IRF1 first, which then affects the expression of downstream direct and indirect 

targets of IRF1. With a more stringent FDR threshold of 0.05, the IRF1 variant is associated with 

12 trans-eGenes, all but one of which have higher expression in individuals with the alternative 

allele (figure 3-2b), which is the same direction as the cis-eQTL. The discovery of the vast number 

of trans-associations for this variant inspired the next part of this study: replicating the trans-

reQTL for IRF1 experimentally.  
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Figure 3-2. The trans-association for rs17622517 is detectable 6 hours after LPS stimulation, after 

the 90 min cis-eQTL for IRF1. (a) Beta of association with rs17622517 for the 216 trans-reQTLs (FDR 

0.5) at baseline, 90 min and 6 hours after LPS stimulation. (b) Boxplots for the 12 significant trans-reQTLs 

(FDR 0.05) showing expression of trans-eGenes versus genotype of rs17622517 6 hours after LPS 

stimulation. 

 

IRF1 enhancer locus appears to be an active enhancer in HEK-TLR4 cells  

 In order to investigate the effect of repressing the enhancer in which the IRF1 eQTL SNP 

is located, we transfected a gRNA at the variant locus along with a dCas9-KRAB-MeCP2 vector 

in HEK-TLR4 cells. In this CRISPRi system, the dCas9 enzyme is guided to the genomic locus of 

interest by the gRNA but lacks the enzymatic capacity for inducing double stranded breaks and is 

coupled to KRAB-MeCP2, a repressor which has been shown to strongly decrease expression of 

proximal genes (Yeo et al., 2018).  To test the effect of repressing expression of IRF1 under LPS 

stimulation, we also transfected a gRNA targeting 14 bp downstream of the IRF1 TSS along with 
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the dCas9-KRAB-MeCP2 vector (schematic in figure 3-3a). Additionally, we included a gRNA 

targeting EGFP as a control. After transfection with CRISPRi constructs, we treated four replicates 

of each transfection with LPS for 0h, 90m or 12h. We then performed RNA-sequencing on the 36 

samples (3 gRNAs x 3 LPS conditions x 4 replicates) and mapped reads to known genes.  

 Upon principle component analysis, samples tend to cluster both by LPS condition, 

captured in principal component 1, and gRNA, captured in principal component 2 (figure 3-3b). 

This result suggests that both promoter and enhancer gRNAs are inducing strong effects on the 

transcriptome. When we look at the expression of IRF1 across samples, we see significantly higher 

IRF1 expression in LPS 90m samples (Wilcoxon p = 0.024) and LPS 12h samples (Wilcoxon p = 

0.038) as compared to 0h samples. Additionally, we see a strong repression of IRF1 in the promoter 

gRNA samples across LPS conditions as compared to the control (Wilcoxon p = 7.4x10-7, figure 

3-3c), indicating a successful repressive effect of the promoter gRNA. The enhancer gRNA 

samples do not have significantly different IRF1 expression than the controls (Wilcoxon p = 0.8), 

but it is not expected to have as large of an effect as in the promoter gRNA.   
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Figure 3-3. RNA-sequencing of hTLR4 cells with CRISPRi targeting IRF1 promoter and rs17622517 

supports causality of the variant locus. (a) Schematic of the promoter (orange) and enhancer (purple) 

gRNAs guiding dCAS9-KRAB-MeCP2 to their respective genomic loci. (b) PCA plots of normalized 

RNA-sequencing counts coloring samples by LPS condition and CRISPRi gRNA. (c) IRF1 expression in 

all samples split by CRISPRi gRNA.  
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Next, we performed differential expression analysis on the gene counts from the RNA-seq 

of the 36 samples to detect the transcriptional effect of LPS, silencing of the enhancer and the IRF1 

promoter and the interaction between the two. First, we looked at the effect of LPS treatment in 

control gRNA samples using a model of differential expression between the LPS conditions. The 

90m LPS versus 0h effect includes 30 differentially expressed genes with an FDR of 0.05. The top 

enriched GO terms for this set of genes are inflammatory response (corrected p-value = 5.6x10-8), 

chemokine-mediated signaling pathway (corrected p-value = 1.7x10-5) and response to LPS 

(corrected p-value = 7.4x10-4). The 12h versus 0h effect includes 476 differentially expressed 

genes. The top enriched GO terms for this set of genes are inflammatory response (corrected p-

value = 1.9x10-5), cell-cell signaling (corrected p-value = 8.0x10-3), chemokine-mediated signaling 

pathway (corrected p-value = 8.5x10-3) and NF-kB signaling (corrected p-value = 1.1x10-2). 

Between these two sets of differentially expressed genes, 22 genes overlap. This result 

demonstrates that the TLR4 cells are responding to LPS stimulation by activating pro-

inflammatory cellular pathways.  

The promoter versus control effect, using a model of differential expression between 

gRNAs in 12h LPS samples, includes 1016 genes. The enriched terms for this gene set fall into a 

broad spectrum of cellular processes (table 3-1), perhaps due to the large range of functions of 

IRF1 in the cell. The 19th highest enriched GO term for this set of genes is NF-kB signaling 

(corrected p-value = 3.2x10-4). The enhancer versus control main effect includes 225 genes. 

Interestingly, 161 of these enhancer differentially expressed genes are also differentially expressed 

under the promoter gRNA, suggesting that the enhancer effects on the transcriptome are primarily 

mediated by IRF1. Among other cellular processes (table 3-2), this set of enhancer differentially 

expressed genes is enriched for MyD88-independent TLR signaling pathway (p-value = 9.4x10-4), 
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NF-kB signaling (corrected p-value = 7.3x10-3), TRIF-dependent TLR signaling pathway 

(corrected p-value = 0.015), MyD88-dependent toll-like receptor signaling pathway (corrected p-

value = 0.02). The MyD88 and TRIF-dependent pathways are the two parallel pathways triggered 

by LPS binding and TLR4 activation. These enrichments suggest that repression of the enhancer 

affects the immune cell’s response to LPS. Neither enhancer nor promoter differentially expressed 

gene lists were significantly enriched for msigdb IRF1 targets (Fisher test p = 1 and 0.245, 

respectively).  

Finally, we used a ~gRNA + condition + gRNA:condition model to capture the interaction 

effects of gRNA and LPS condition. We see very few significant genes for the interaction effect 

between gRNA and LPS condition: 2 genes for promoter:condition90m, 15 for 

enhancer:condition90m, 1 for promoter:condition12h and 17 for enhancer:condition12h. We 

hypothesize that perhaps we are underpowered to detect subtle interaction effects. Nevertheless, 

due to the large number of genes whose expression is affected by the enhancer CRISPRi, and high 

overlap between these genes and the genes affected by the IRF1 promoter CRISPRi, we felt 

confident that the enhancer is active in these cells and the causality of the lead cis- and trans-eQTL 

variant is worth pursuing.  

 

Table 3-1. Promoter versus control enriched GO terms in differentially expressed genes in 12h LPS samples 

GO Term Count % p-value Fold Enrichment 
BH adjusted 
p-value 

SRP-dependent cotranslational 
protein targeting to membrane 68 6.7 1.73E-63 13.2 5.21E-60 

viral transcription 68 6.7 1.12E-55 11.1 1.68E-52 

translational initiation 73 7.2 2.95E-54 9.7 2.96E-51 
nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 67 6.6 7.60E-52 10.3 5.72E-49 

rRNA processing 79 7.8 6.57E-44 6.7 3.96E-41 
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translation 81 8.0 9.27E-40 5.8 4.65E-37 
mitochondrial electron transport, 
NADH to ubiquinone 18 1.8 3.72E-10 6.7 1.60E-07 

cell-cell adhesion 42 4.2 2.91E-09 2.8 1.10E-06 
mitochondrial respiratory chain 
complex I assembly 19 1.9 4.04E-09 5.5 1.35E-06 

ribosomal small subunit assembly 11 1.1 1.34E-08 10.6 4.02E-06 
mitochondrial electron transport, 
cytochrome c to oxygen 11 1.1 2.54E-08 10.0 6.96E-06 

cytoplasmic translation 12 1.2 2.70E-08 8.8 6.77E-06 

cell division 47 4.6 2.99E-08 2.5 6.92E-06 
mitochondrial ATP synthesis 
coupled proton transport 11 1.1 4.61E-08 9.6 9.93E-06 
positive regulation of ubiquitin-
protein ligase activity involved in 
regulation of mitotic cell cycle 
transition 18 1.8 5.42E-07 4.3 1.09E-04 

mitotic nuclear division 35 3.5 7.08E-07 2.6 1.33E-04 
anaphase-promoting complex-
dependent catabolic process 18 1.8 9.70E-07 4.2 1.72E-04 
negative regulation of ubiquitin-
protein ligase activity involved in 
mitotic cell cycle 17 1.7 1.05E-06 4.4 1.75E-04 

NIK/NF-kappaB signaling 16 1.6 2.02E-06 4.4 3.20E-04 
proteasome-mediated ubiquitin-
dependent protein catabolic process 29 2.9 5.93E-06 2.6 8.92E-04 
positive regulation of canonical Wnt 
signaling pathway 21 2.1 7.51E-06 3.2 1.08E-03 

ribosomal small subunit biogenesis 8 0.8 1.06E-05 9.1 1.44E-03 

ATP biosynthetic process 10 1.0 1.56E-05 6.3 2.04E-03 

protein polyubiquitination 26 2.6 2.39E-05 2.6 3.00E-03 
stimulatory C-type lectin receptor 
signaling pathway 18 1.8 5.22E-05 3.1 6.27E-03 

viral process 34 3.4 9.91E-05 2.1 1.14E-02 
DNA damage response, detection of 
DNA damage 10 1.0 1.04E-04 5.1 1.15E-02 
Wnt signaling pathway, planar cell 
polarity pathway 16 1.6 1.31E-04 3.2 1.40E-02 
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antigen processing and presentation 
of exogenous peptide antigen via 
MHC class I, TAP-dependent 13 1.3 1.34E-04 3.8 1.38E-02 

regulation of mRNA stability 17 1.7 1.42E-04 3.0 1.42E-02 

error-prone translesion synthesis 7 0.7 3.85E-04 6.7 3.67E-02 
hydrogen ion transmembrane 
transport 12 1.2 4.15E-04 3.6 3.83E-02 

covalent chromatin modification 17 1.7 4.22E-04 2.7 3.78E-02 
cellular response to DNA damage 
stimulus 25 2.5 4.44E-04 2.2 3.85E-02 

 

Table 3-2. Enhancer versus control enriched GO terms in differentially expressed genes in 12h LPS 

samples 

GO Term Count % p-value Fold Enrichment 

BH 
adjusted 
p-value 

SRP-dependent cotranslational protein 
targeting to membrane 71 32.0 4.58E-119 62.8 4.94E-116 
viral transcription 70 31.5 6.50E-108 52.0 3.50E-105 
nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 70 31.5 3.45E-105 48.9 1.24E-102 
translational initiation 70 31.5 3.30E-99 42.5 8.88E-97 
rRNA processing 70 31.5 2.37E-82 27.2 5.10E-80 
translation 72 32.4 6.52E-80 23.7 1.17E-77 
cytoplasmic translation 13 5.9 2.79E-17 43.2 4.30E-15 
ribosomal small subunit assembly 9 4.1 2.47E-11 39.4 3.33E-09 
cell-cell adhesion 21 9.5 9.39E-11 6.4 1.12E-08 
ribosomal small subunit biogenesis 8 3.6 3.31E-10 41.6 3.57E-08 
ribosomal large subunit assembly 8 3.6 3.20E-09 31.7 3.14E-07 
translational elongation 6 2.7 1.76E-06 27.7 1.59E-04 
virion assembly 5 2.3 9.15E-06 34.6 7.58E-04 
ribosomal large subunit biogenesis 6 2.7 1.02E-05 20.0 7.87E-04 
MyD88-independent toll-like receptor 
signaling pathway 5 2.3 1.31E-05 32.0 9.40E-04 
regulation of mRNA stability 9 4.1 3.30E-05 7.3 2.22E-03 
response to ethanol 9 4.1 3.79E-05 7.1 2.40E-03 
DNA damage response, detection of 
DNA damage 6 2.7 6.52E-05 13.9 3.90E-03 
error-prone translesion synthesis 5 2.3 6.71E-05 21.9 3.80E-03 
NIK/NF-kappaB signaling 7 3.2 1.36E-04 8.8 7.33E-03 
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negative regulation of ubiquitin-protein 
ligase activity involved in mitotic cell 
cycle 7 3.2 2.05E-04 8.2 1.05E-02 
positive regulation of ubiquitin-protein 
ligase activity involved in regulation of 
mitotic cell cycle transition 7 3.2 2.97E-04 7.7 1.45E-02 
TRIF-dependent toll-like receptor 
signaling pathway 5 2.3 3.26E-04 14.8 1.52E-02 
regulation of necrotic cell death 4 1.8 3.43E-04 27.7 1.53E-02 
intracellular transport of virus 6 2.7 3.51E-04 9.8 1.50E-02 
anaphase-promoting complex-dependent 
catabolic process 7 3.2 3.67E-04 7.4 1.51E-02 
regulation of tumor necrosis factor-
mediated signaling pathway 5 2.3 4.28E-04 13.9 1.69E-02 
regulation of type I interferon production 4 1.8 4.42E-04 25.6 1.69E-02 
viral life cycle 5 2.3 4.87E-04 13.4 1.79E-02 
maturation of SSU-rRNA from 
tricistronic rRNA transcript (SSU-rRNA, 
5.8S rRNA, LSU-rRNA) 5 2.3 5.51E-04 13.0 1.96E-02 
MyD88-dependent toll-like receptor 
signaling pathway 5 2.3 6.21E-04 12.6 2.14E-02 
I-kappaB kinase/NF-kappaB signaling 6 2.7 7.49E-04 8.3 2.49E-02 
regulation of protein ubiquitination 4 1.8 8.43E-04 20.8 2.72E-02 
translesion synthesis 5 2.3 8.70E-04 11.5 2.72E-02 
negative regulation of epidermal growth 
factor receptor signaling pathway 5 2.3 8.70E-04 11.5 2.72E-02 
DNA damage response, signal 
transduction by p53 class mediator 
resulting in cell cycle arrest 6 2.7 8.70E-04 8.0 2.65E-02 
nuclear import 4 1.8 1.21E-03 18.5 3.55E-02 
G2/M transition of mitotic cell cycle 8 3.6 1.32E-03 4.9 3.76E-02 
error-free translesion synthesis 4 1.8 1.42E-03 17.5 3.95E-02 
protein polyubiquitination 9 4.1 1.70E-03 4.1 4.60E-02 

 

Isolating monoclonal cell lines with edits at the IRF1 variant locus 

 In order to obtain cell lines to further investigate the IRF1 reQTL, we used CRISPR/Cas9 

genome editing to introduce indels at the variant’s genomic locus in HEK293-TLR4 cells. The 

experimental strategy is exhibited in figure 3-4a. Amplifying and sequencing gDNA from the 

polyclonal edited population revealed an editing efficiency of 31% NHEJ before sorting and 50% 

NHEJ after sorting GFP+ cells, the difference presumably explained by increased transfection 
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efficiency. Fifteen plates of monoclonal cell lines from the GFP+ sorted cells were screened for 

editing. Fifteen of those clones were expanded based on promising results from the monoclonal 

genotyping sequencing. Because the HEK293 cell line is triploid at this locus, clones are 

considered heterozygous if they have one or two edited alleles. Homozygous clones have all three 

alleles edited, and wild type clones show no edited alleles. Upon further inspection, clone 1-A4 

was eliminated from further study due to the fact that it has 50% of one deletion and 50% of 

another, suggesting it has lost an allele. Additionally, clone 2-B4 was eliminated due to long-range 

PCR producing multiple bands, suggesting large indels at the variant locus (figure 3-4b). The 13 

clones selected for functional follow-up include five homozygous reference (wild type) clones (not 

shown), three heterozygous clones, and five homozygous alternative clones (figure 3-4c).  
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Figure 3-4. Eight edited clones with small deletions at the rs17622517 variant locus and five wild type 

clones were obtained using CRISPR/Cas9 and single cell sorting. (a) Approach to edit and isolate single 

cell clones. A gRNA which cuts 1 bp from the rs17622517 variant is transfected as a gblock along with a 

CRISPR/Cas9 and GFP+ plasmid into HEK293-TLR4 cells.  GFP+ cells are then sorted into single wells 

of 96 well plates. Genotyping of the monoclonal cell lines is performed by next-generation amplicon 

sequencing using locus-specific primers and indexed nextera adapters. (b) Gel electrophoresis image of a 

3,496 bp PCR amplicon spanning the cut site to check for larger deletions or insertions in 15 expanded 

monoclonal cell lines. (c) The deletions in the three “heterozygous” and five “homozygous” edited clones 

chosen for LPS stimulation and RNA-seq, along with five wild type clones, not pictured. 
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Editing the enhancer locus results in differential expression which correlates with enhancer 

and promoter CRISPRi perturbation 

 Each of the 13 clones was exposed to three conditions: untreated, 90 min LPS treatment 

and 12 hours LPS treatment. The 12 hour timepoint was used instead of the 6 hour timepoint used 

in the monocyte study because previous experiments in the lab showed that genes involved in LPS 

response had a longer lag in response time in HEK293-TLR4 cells than in monocytes (data not 

shown). After treatment, RNA-sequencing was performed on the samples and reads were mapped 

to the genome and assigned to known genes. The stimulation and sequencing experiment was 

performed twice and the reads were combined for each sample, resulting in an average of 31.6 

million reads per sample. Principle component analysis of normalized gene expression 

demonstrates that samples separate strongly by treatment effect and slightly by genotype (figure 

3-5a). This is as expected, since LPS stimulation should elicit a strong response in these cells and 

the genotype effect is small and expected to only be active at the 12h timepoint.   

 Differential expression analysis of the RNA-sequencing samples revealed that many genes 

are differentially expressed between the 90m or 12h LPS and control samples (figure 3-5b). The 

DE gene lists for control vs 90m and 12h are enriched for gene ontology (GO) terms involved in 

inflammatory response and NF-kB signaling, signifying a successful stimulation of the samples. 

IRF1 expression is induced upon stimulation at 90m and 12h as compared to control (figure 3-5c), 

but IRF1 does not vary significantly between genotypes (Kruskal-Wallis p = 0.17, figure 3-5d). 

An effect of the edit on expression of genes would manifest as an interaction between genotype 

and condition, meaning edited clones differ in their transcriptional response to LPS stimulation 

than wild type clones. However, differential expression (DE) analysis on the interaction between 

genotype and condition did not result in meaningful significant genes, much like we saw with the 
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CRISPRi treatment. For the 12-hour timepoint, where we would expect to see the trans-eQTL 

effect, there were 37 DE genes (FDR 5%) between HO and HE clones, 0 genes between HO and 

WT and 3 DE genes between HE and WT. These DE genes have no overlap with IRF1 targets or 

trans-eGenes from the eQTL study, suggesting that it may be due to noise. This result is not 

necessarily surprising given the relatively low sample size and modest effects of trans-eQTLs. As 

in the CRISPRi differential expression, we hypothesized that perhaps the interaction effects of 

gRNA and LPS condition exist, but are subtle and their discovery is limited by power. 

In order to determine whether editing the variant locus results in a similar effect as the 

CRISPRi perturbation of the enhancer or promoter, we looked at the correlation between the 

differential expression fold changes in the edited cells and CRISPRi 12h differential expression 

fold changes. The correlation between the promoter interaction fold changes with the monoclonal 

edited HE vs HO fold changes in DE genes (FDR 0.25) is significant (rho = 0.21, p = 2.52x10-8, 

figure 3-5e), suggesting that editing the variant has a similar effect on these genes as a knockdown 

of IRF1 expression. We also see a significant correlation in this same set of genes between the 

enhancer interaction fold changes and the edited clone fold changes (rho = 0.22, p = 4.31x10-9 

figure 3-5f), indicating that a similar effect is produced by CRISPRi and genome editing at the 

enhancer locus. 
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Figure 3-5. RNA-sequencing demonstrates an effect of editing the locus which correlates with the 

CRISPRi perturbations. (a) PCA plots of normalized RNA-sequencing counts coloring samples by 

condition and genotype. (b) Shared and unique significantly differentially expressed genes (5% FDR) 

between 90 min and control and 12 hour and control samples in WT clones along with the three top 

significantly enriched GO terms for each gene set from DAVID. (c) IRF1 expression in all clones split by 

condition and colored by individual clone identity. (d) IRF1 expression in all clones split by genotype for 

90 min samples. (e) Correlation between differential expression fold change between HE and HO edited 

clones and differential expression fold change between CRISPRi gRNA treatments (promoter vs control) 

for the same set of genes (HE vs HO DE genes at 0.25 FDR). (f) Correlation between differential expression 

fold change between HE and HO edited clones and differential expression fold change between CRISPRi 

gRNA treatments (enhancer vs control) for the same set of genes (HE vs HO DE genes at 0.25 FDR). 

 

IRF1 trans-eQTL effect sizes are correlated with differential expression fold change in edited 

clones 

 In order to investigate if and how the effect of the trans-eQTL can be captured by genome 

editing a cell line, we compared the effect size (beta) of association for the trans-eQTL eGenes at 

6 hours in the monocyte study with the fold changes from the differential expression, testing the 

interaction between genotype and condition for the same genes. The trans-eQTL betas are 

significantly positively correlated with the fold changes in WT/HE clones (figure 3-6a) and 

significantly negatively correlated with fold changes in HE/HO clones (figure 3-6b). The 

correlation between WT/HO fold changes and trans betas was not significant. The correlation 

finding here is strong evidence that the trans-eQTL is a true association, which is acting through 

a condition-specific active enhancer modifying the expression level of the IRF1 gene.  

 In order to see if the CRISPRi perturbation has a similar effect a the trans-eQTL 

associations, we also looked at the correlation of the fold changes in the 12h interaction differential 

expression with the betas of the IRF1 trans-eGenes from the monocyte study (filtered for FDR 

0.25). The correlations between promoter and enhancer interaction fold changes and trans-eGene 
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betas are not significant (figure 3-6c-d), suggesting a stronger similarity between CRISPR editing 

and the trans-eQTL effect than CRISPRi perturbation and the trans-eQTL effect. 

 

 

Figure 3-6. RNA-sequencing of the edited clones with and without LPS stimulation demonstrates a 

mild effect of genotype on the trans-eGenes for rs17622517. (a) Correlation between trans-reQTL effect 

sizes from the monocyte study and differential expression fold change between WT and HE clones for the 

same set of genes (trans-eGenes at 0.5 FDR). (b) Correlation between trans-reQTL effect sizes from the 

monocyte study and differential expression fold change between HE and HO edited clones for the same set 

of genes (trans-eGenes at 0.5 FDR). (c) Correlation between trans-reQTL effect sizes from the monocyte 

study and differential expression fold change between promoter CRISPRi and control gRNA treatments at 

c. d.
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12h for the same set of genes (trans-eGenes at 0.5 FDR). (d) Correlation between trans-reQTL effect sizes 

from the monocyte study and differential expression fold change between enhancer CRISPRi and control 

gRNA treatments at 12h for the same set of genes (trans-eGenes at 0.5 FDR).  

Discussion 

In this study, we discovered an immune-response eQTL which is significant not only for 

one gene IRF1 in cis, but also many other genes in trans.  Trans-eQTLs in general are difficult to 

detect, in part because of the multiple testing burden of testing each variant against all genes, 

generally smaller effect sizes, context-specificity and other technical factors (Saha and Battle, 

2018; Võsa et al., 2018). We increased the FDR threshold to 0.5 in order to further investigate the 

trans associations, something that is not unusual in trans-eQTL studies. The much higher number 

of IRF1 trans-eGenes as compared to the other cis-eQTLs as well as the enrichment of IRF1 targets 

in those trans-eGenes lends strong support for the trans-eQTL’s validity.  

We used a CRISPR-based approach to analyze this trans-eQTL in a cellular model. After 

establishing that our HEK293-TLR4 cell line has a robust response to LPS, we verified with 

CRISPRi that silencing of the enhancer affects many genes, demonstrating that the eQTL variant 

locus is an active enhancer in these cells. Next, we demonstrated that genetic disruption of this 

eQTL variant locus impacts the expression of IRF1 targets in a condition-specific manner, and 

these effects are correlated with the CRISPRi silencing of the enhancer and the effect sizes of the 

trans-eQTLs. These results provide strong experimental support for the trans-eQTL.  

The CRISPRi experiments to perturb both the IRF1 promoter and the enhancer locus 

further support the idea that IRF1 plays a role in LPS response. The effect of the enhancer gRNA 

on many genes demonstrates that it is in fact active in these cells. The differential expression in 

promoter and enhancer are not significantly correlated with the trans-eGenes, which would have 
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further validated the trans-eQTL effect. However, IRF1 is known to affect different genes in many 

different cellular contexts and it is likely that its effect in this cell line may differ from that in 

primary monocytes. Nevertheless, the positive correlation between the enhancer CRISPRi 

differential expression and the monoclonal edited differential expression confirms that by 

inactivating the enhancer with CRISPRi, we are mimicking the effect of the edited variant. 

Furthermore, correlation between the promoter CRISPRi differential expression and the 

monoclonal edited differential expression indicates that the edited variant is acting through 

affecting transcription of IRF1.  

Differential expression analysis between the different genotypes of the monoclonal cell 

lines under stimulation did not detect the expected effect of editing the variant on expression of 

the trans-eGenes or IRF1. One explanation for this result is that we are underpowered to detect 

subtle changes in gene expression. eQTL studies require hundreds of subjects for this reason: 

regulatory effects can be small and noise due to smaller sample sizes can obscure true associations. 

In our case, perhaps the modest number of edited clones was not sufficient to detect the subtle 

effects of the variant. As we saw with the eliminated clone in figure 3-3b, monoclonal cell lines 

can have undetected large insertions or deletions which can introduce additional noise into the 

system. Additionally, we introduced a deletion into the variant locus, rather than introducing the 

exact variant into the cell line. If the variant somehow increases the activity of the enhancer, it is 

possible that deleting a portion of the enhancer does not replicate this effect, and that different 

deletions have different effects. We took this approach instead of introducing the variant with 

homologous recombination because of the extremely low HDR efficiency when we included a 

ssDNA template in the transfection. Optimizing the CRISPR and transfection conditions in these 
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cells could potentially increase editing efficiency and allow for isolation of monoclonal cell lines 

with the precise variant edited.   

In both the monoclonal editing and CRISPRi RNA-sequencing experiments, we do not see 

a perfect correlation of differentially expressed genes with the trans-eQTL effects. One explanation 

is that the trans-eQTL association was detected in primary patient-derived monocytes, while the 

CRISPRi silencing and variant editing was performed in a HEK cell line transduced with a hTLR4 

receptor. It is not surprising that the cell line does not fully recapitulate the trans-eQTL effect, 

since it may lack expression of other immune-related genes which may be interacting with IRF1. 

For example, IRF1 has been found to cooperate with  STAT1 (Abou El Hassan et al., 2017) in 

inducing expression of target genes. Furthermore, it is likely that the trans-eQTL genes are 

composed not only of direct targets of IRF1, but also downstream targets of IRF1 targets. If these 

genes are not as inducible in this cell line as in monocytes, these downsteam effects will be 

dampened. Another drawback to the cell line could be that it lacks expression of a protein which 

introduces a post-translational modification on IRF1, which affects its transcriptional activity. 

While research is unclear on the importance of post-translational modifications on IRF1, recent 

evidence suggests ubiquitination and phosphorylation may affect its activity (Garvin et al., 2019). 

Perhaps introducing variants into a monocyte cell line, such as THP1 cells, would benefit from a 

more robust immune response and therefore a larger effect of the enhancer perturbation. However, 

there are likely to be limitations to using any immortalized cell line. A future avenue of study could 

be introducing the variant into a mouse line and studying the LPS response in edited and wild type 

mouse-derived monocytes, as well as cytokine production in the mice in response to LPS.  

Our model for the regulatory action of the variant is that it affects the activity of the 

enhancer in which it resides, likely by changing the affinity for binding of a TF that may be active 
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only under LPS stimulus. This genetic effect on activity of the enhancer in turn affects expression 

of IRF1 under stimulation with LPS. The results of this study suggest that the IRF1 TF plays a role 

in regulating the transcriptional response of immune cells to LPS stimulation, and that a common 

genetic variant leads to inter-individual variation in this response. The alternative allele of this 

variant has additionally been found to be associated with ankylosing spondylitis, Crohn's disease 

and ulcerative colitis in a GWAS for chronic inflammatory diseases (Ellinghaus et al., 2016). 

Further support for IRF1 being plausibly involved in these diseases comes from the connection 

between known ulcerative colitis-related genes and IRF1. For example, ulcerative colitis has also 

been linked to IRF1 targets genes CXCL10 (Shi et al., 2019), IL6 (Wu et al., 2014) and iNOS (Wu 

et al., 2014) and IRF1-cooperating transcription factor STAT1 (Ciorba et al., 2010). Further 

experiments to explore the link between IRF1 and these diseases could include observing whether 

a knockdown of IRF1 or the enhancer locus in an animal model of ulcerative colitis improves the 

disease symptoms. 

In the cis-reQTL study, IRF1 does not have a significant cis-eQTL at baseline. It is only 

under stimulation with LPS that the regulatory effect of the variant is revealed. Therefore, the IRF1 

locus exemplifies the utility of introducing a cellular perturbation in order to detect variants 

involved not necessarily in baseline expression of genes, but dynamic expression of genes in 

different physiological contexts. Additionally, the top variant for this eQTL is found within an 

intron of another gene, C5ORF56. Therefore, when the variant was found as a hit in the 

inflammatory disease GWAS, it was automatically assigned to this gene, based on proximity. The 

results of the eQTL association for this variant suggest that the gene of interest might actually be 

IRF1, located 20 Kb away. The variant might be contributing to disease by modifying the 

expression of IRF1 and its targets and therefore modifying the immune-response in the individual. 
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This finding further exemplifies the usefulness of integrating eQTL data with GWAS in order to 

match variant-gene combinations. Although more follow up on the variant and enhancer is needed, 

this study has identified a genetic variant which modifies individuals’ response to immune 

stimulation by affecting an enhancer for IRF1 and the downstream regulatory pathways of IRF1 

in an immune stimulus -specific manner, suggesting that this is the likely mechanism for the 

genetic risk for autoimmune disease driven by this locus.  
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Table 3-3.  Trans-reQTL associations in monocytes for rs17622517 6 hours after stimulation with 
LPS (0.5 FDR). 

Illumina probe gene symbol trans-eQTL beta trans-eQTL p-
value trans-eQTL FDR 

ILMN_1811378 GTPBP1 0.2 3.68E-08 0.001 
ILMN_1670000 DCAF6 -0.27 6.67E-08 0.002 
ILMN_1756862 APOL3 0.84 2.61E-07 0.008 
ILMN_2404512 PSEN2 0.24 2.80E-07 0.008 
ILMN_1701613 RARRES3 0.35 3.37E-07 0.01 
ILMN_1700671 ETV7 0.28 4.24E-07 0.012 
ILMN_1809467 VAMP5 0.47 8.16E-07 0.021 
ILMN_1690241 BATF2 0.37 1.03E-06 0.026 
ILMN_3307659 SFT2D2 0.38 1.61E-06 0.04 
ILMN_2373831 BTN3A3 0.25 1.79E-06 0.043 
ILMN_1670305 SERPING1 0.5 2.03E-06 0.047 
ILMN_1778599 SP140 0.25 2.09E-06 0.048 
ILMN_1768433 CCDC71 0.2 2.41E-06 0.055 
ILMN_1669617 GRB10 0.2 3.04E-06 0.068 
ILMN_1718558 PARP12 0.41 3.00E-06 0.068 
ILMN_2284998 SP100 0.36 3.23E-06 0.072 
ILMN_1808148 SMCHD1 0.15 3.73E-06 0.081 
ILMN_2233783 CD38 0.82 4.08E-06 0.086 
ILMN_1764380 GLTP -0.34 4.78E-06 0.096 
ILMN_1783843 MIIP 0.24 4.82E-06 0.096 
ILMN_2395236 CHEK2 0.19 5.27E-06 0.103 
ILMN_1668378 SFT2D2 0.18 5.38E-06 0.105 
ILMN_2373177 PANK2 0.24 5.44E-06 0.105 
ILMN_1771921 HSCB 0.23 6.39E-06 0.117 
ILMN_3237462 IDO2 0.23 6.87E-06 0.12 
ILMN_1805201 PML 0.18 6.86E-06 0.12 
ILMN_1690921 STAT2 0.46 7.11E-06 0.121 
ILMN_1753758 IL27 0.86 7.41E-06 0.124 
ILMN_1703263 SP140 0.34 7.88E-06 0.129 
ILMN_1749372 GGT5 0.24 8.00E-06 0.13 
ILMN_2296950 APOBEC3F 0.22 8.25E-06 0.132 
ILMN_1776602 ANG 0.2 8.55E-06 0.135 
ILMN_1710726 APOBEC3F 0.24 8.76E-06 0.137 
ILMN_1662964 PRMT3 -0.27 8.85E-06 0.138 
ILMN_3204136 LOC100132707 0.1 9.04E-06 0.14 
ILMN_1687533 SEMA4D 0.51 9.26E-06 0.142 
ILMN_1757845 SPIRE1 -0.26 9.42E-06 0.143 
ILMN_3238326 RNF144A 0.15 9.45E-06 0.143 
ILMN_1780831 SLC6A12 0.32 9.63E-06 0.144 
ILMN_1731299 PML 0.11 1.01E-05 0.151 
ILMN_1782487 GBP1 0.69 1.06E-05 0.153 
ILMN_1691393 DNPEP 0.19 1.06E-05 0.153 
ILMN_2148785 GBP1 0.65 1.05E-05 0.153 
ILMN_1727271 WARS 0.51 1.07E-05 0.154 
ILMN_1683178 JAK2 0.44 1.13E-05 0.161 
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ILMN_1797191 KIAA0040 0.2 1.20E-05 0.166 
ILMN_2183510 MANF 0.29 1.23E-05 0.167 
ILMN_2337655 WARS 0.43 1.24E-05 0.167 
ILMN_1728224 OGFR 0.35 1.26E-05 0.168 
ILMN_1788017 HSH2D 0.27 1.28E-05 0.171 
ILMN_1742929 HESX1 0.42 1.30E-05 0.173 
ILMN_1662026 BTK 0.26 1.34E-05 0.176 
ILMN_1659960 NUP62 0.45 1.34E-05 0.176 
ILMN_1692168 UBE2Z 0.27 1.37E-05 0.178 
ILMN_1726769 CNDP2 0.34 1.44E-05 0.184 
ILMN_1678766 DYNLT1 0.45 1.44E-05 0.184 
ILMN_1665865 IGFBP4 0.36 1.47E-05 0.187 
ILMN_1701114 GBP1 0.7 1.52E-05 0.19 
ILMN_1790472 SLC25A28 0.48 1.53E-05 0.191 
ILMN_1704477 COX5A -0.29 1.60E-05 0.198 
ILMN_1786612 PSME2 0.35 1.71E-05 0.207 
ILMN_2106725 NCF1B 0.26 1.72E-05 0.207 
ILMN_1751079 TAP1 0.38 1.72E-05 0.208 
ILMN_1721411 PARP10 0.46 1.77E-05 0.212 
ILMN_1731044 NDUFC2 0.26 1.89E-05 0.217 
ILMN_2325338 APOL2 0.27 1.90E-05 0.217 
ILMN_1665682 IL15RA 0.49 1.87E-05 0.217 
ILMN_1784320 ELMO1 0.32 1.89E-05 0.217 
ILMN_1813455 SP110 0.43 2.02E-05 0.219 
ILMN_1670572 IDO2 0.33 2.03E-05 0.219 
ILMN_1769143 KCNE2 0.12 2.01E-05 0.219 
ILMN_2355168 MGST1 -0.46 1.97E-05 0.219 
ILMN_1740572 TCN2 0.2 1.97E-05 0.219 
ILMN_1806017 PSME1 0.23 2.15E-05 0.229 
ILMN_1697409 TNFRSF14 0.27 2.18E-05 0.231 
ILMN_2349061 IRF7 0.52 2.26E-05 0.234 
ILMN_1771385 GBP4 0.77 2.29E-05 0.237 
ILMN_1725700 MOV10 0.44 2.32E-05 0.238 
ILMN_1713285 NAPA 0.24 2.34E-05 0.239 
ILMN_1738704 TRIM26 0.25 2.58E-05 0.254 
ILMN_2289093 RNF213 0.49 2.54E-05 0.254 
ILMN_2115752 MEFV 0.41 2.56E-05 0.254 
ILMN_2379718 RAB24 0.35 2.73E-05 0.259 
ILMN_2092333 GPR141 0.39 2.85E-05 0.264 
ILMN_2058782 IFI27 0.81 2.93E-05 0.268 
ILMN_1739274 PDHB -0.25 3.10E-05 0.275 
ILMN_1713561 C20orf103 0.54 3.11E-05 0.275 
ILMN_1753745 HDDC2 -0.3 3.19E-05 0.276 
ILMN_1696654 IFIT5 0.37 3.24E-05 0.277 
ILMN_1769520 UBE2L6 0.57 3.24E-05 0.277 
ILMN_1658759 PEX19 -0.26 3.24E-05 0.277 
ILMN_1705241 TDRD7 0.44 3.35E-05 0.28 
ILMN_1811823 MED25 0.19 3.35E-05 0.28 
ILMN_3237165 LOC100128164 0.13 3.34E-05 0.28 
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ILMN_2344079 ZGPAT 0.14 3.49E-05 0.288 
ILMN_1772824 WNT5B 0.39 3.57E-05 0.29 
ILMN_1733176 LIMS1 -0.44 3.57E-05 0.29 
ILMN_3246953 FTSJD2 0.31 3.64E-05 0.294 
ILMN_2104696 ERICH1 0.27 3.63E-05 0.294 
ILMN_2198376 PSMA4 0.22 3.70E-05 0.296 
ILMN_1729115 UBE2S 0.22 3.89E-05 0.304 
ILMN_1776723 PHF11 0.34 3.91E-05 0.304 
ILMN_1795704 KIAA0232 -0.09 3.95E-05 0.306 
ILMN_1792305 ZNF318 -0.38 3.97E-05 0.307 
ILMN_1687495 SLC37A1 0.16 4.04E-05 0.31 
ILMN_1812926 ANTXR2 0.51 4.19E-05 0.314 
ILMN_1678422 DHX58 0.65 4.17E-05 0.314 
ILMN_1673649 HYOU1 0.34 4.19E-05 0.314 
ILMN_1731001 ERICH1 0.25 4.26E-05 0.318 
ILMN_1780756 RBM23 0.16 4.30E-05 0.321 
ILMN_1651346 TICAM2 0.32 4.41E-05 0.326 
ILMN_1802151 OSBPL5 0.22 4.45E-05 0.326 
ILMN_1809086 XRN1 0.43 4.44E-05 0.326 
ILMN_2393544 PRMT2 0.27 4.53E-05 0.329 
ILMN_1652525 FAM125B 0.4 4.82E-05 0.34 
ILMN_1803652 C9orf91 0.3 4.84E-05 0.34 
ILMN_1710740 C2 0.13 4.86E-05 0.34 
ILMN_1765547 IRF2 0.27 4.88E-05 0.341 
ILMN_1903568 CR625988 -0.32 4.93E-05 0.341 
ILMN_1789095 BMPR2 0.31 4.96E-05 0.341 
ILMN_1718303 PVRL2 0.33 4.98E-05 0.341 
ILMN_2311826 USP6NL 0.23 5.19E-05 0.346 
ILMN_1684789 CCDC101 0.17 5.20E-05 0.346 
ILMN_1753547 STAT5A 0.49 5.13E-05 0.346 
ILMN_1811171 GPR132 0.44 5.20E-05 0.346 
ILMN_2376108 PSMB9 0.55 5.13E-05 0.346 
ILMN_1795991 C22orf28 0.25 5.11E-05 0.346 
ILMN_2388466 TIA1 0.21 5.12E-05 0.346 
ILMN_3268914 CLEC2D -0.25 5.39E-05 0.354 
ILMN_2112988 NCF1C 0.58 5.45E-05 0.355 
ILMN_2365465 XBP1 0.26 5.43E-05 0.355 
ILMN_2167416 MR1 0.24 5.62E-05 0.361 
ILMN_2339006 KIAA0564 -0.3 5.66E-05 0.361 
ILMN_1802106 APOBEC3G 0.43 5.68E-05 0.361 
ILMN_2415157 ARID5A 0.22 5.81E-05 0.364 
ILMN_2103362 ARHGAP27 0.18 5.97E-05 0.367 
ILMN_1701455 FBXO6 0.37 6.00E-05 0.368 
ILMN_1745356 CXCL9 0.55 6.11E-05 0.371 
ILMN_1750400 C19orf66 0.42 6.17E-05 0.371 
ILMN_2344373 MVP 0.29 6.15E-05 0.371 
ILMN_1719392 FH -0.24 6.31E-05 0.376 
ILMN_1723414 HACL1 -0.21 6.35E-05 0.376 
ILMN_1789955 PNRC1 0.27 6.38E-05 0.376 
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ILMN_1654488 KDM6A 0.28 6.43E-05 0.377 
ILMN_1761820 EDARADD 0.13 6.46E-05 0.377 
ILMN_1695917 C5orf15 0.27 6.54E-05 0.379 
ILMN_1665428 GSDMD 0.44 6.78E-05 0.386 
ILMN_2166524 CCNYL1 0.26 6.76E-05 0.386 
ILMN_1729973 ZC3HAV1 0.68 6.87E-05 0.389 
ILMN_1745397 OAS3 0.82 6.86E-05 0.389 
ILMN_1683678 SPATS2L 0.52 6.96E-05 0.391 
ILMN_1777660 RNF144A 0.16 7.11E-05 0.392 
ILMN_2262044 PARP10 0.5 7.02E-05 0.392 
ILMN_1860051 C20656 0.33 7.30E-05 0.398 
ILMN_1787680 SELS 0.18 7.30E-05 0.398 
ILMN_3199438 X69637 0.23 7.30E-05 0.398 
ILMN_1801307 TNFSF10 0.82 7.29E-05 0.398 
ILMN_1706326 MRPL33 -0.16 7.45E-05 0.402 
ILMN_1774287 CFB 0.99 7.57E-05 0.404 
ILMN_1801766 CCDC109B 0.4 7.56E-05 0.404 
ILMN_1807114 UNC93B1 0.27 7.63E-05 0.404 
ILMN_1694070 FAM114A1 0.11 7.76E-05 0.405 
ILMN_1760727 ANG 0.18 7.79E-05 0.405 
ILMN_1751330 RBCK1 0.33 7.92E-05 0.405 
ILMN_1695432 TPST2 -0.28 7.92E-05 0.405 
ILMN_2300186 DYNLL1 -0.21 7.94E-05 0.406 
ILMN_1691567 GNPDA2 -0.13 8.13E-05 0.407 
ILMN_1781374 TUFT1 0.26 8.14E-05 0.407 
ILMN_1716272 KBTBD8 -0.36 8.23E-05 0.409 
ILMN_1683026 PSMB10 0.23 8.31E-05 0.41 
ILMN_1710844 PARP10 0.44 8.68E-05 0.414 
ILMN_1728349 TMEM63B 0.19 8.50E-05 0.414 
ILMN_1674063 OAS2 0.57 8.74E-05 0.414 
ILMN_1794470 ANKFY1 0.24 8.73E-05 0.414 
ILMN_3243928 DDX60L 0.45 8.42E-05 0.414 
ILMN_1731181 TEX2 -0.23 8.80E-05 0.415 
ILMN_1728073 DENND1A 0.16 8.91E-05 0.416 
ILMN_1897741 CR610863 -0.28 8.97E-05 0.418 
ILMN_1769129 CCL19 0.75 1.00E-04 0.44 
ILMN_1688526 ARL5A -0.23 1.01E-04 0.44 
ILMN_3219806 UNC93B1 0.42 1.01E-04 0.44 
ILMN_1797001 DDX58 0.44 1.03E-04 0.441 
ILMN_1750401 C17orf62 0.27 1.03E-04 0.441 
ILMN_2362581 FNDC3A 0.33 1.03E-04 0.441 
ILMN_1759250 TAP2 0.43 1.02E-04 0.441 
ILMN_1808661 TOMM5 -0.24 1.04E-04 0.441 
ILMN_1678054 TRIM21 0.31 1.05E-04 0.442 
ILMN_2360784 RRBP1 0.24 1.07E-04 0.442 
ILMN_1767934 PCSK5 -0.28 1.07E-04 0.442 
ILMN_1653711 FZD2 0.32 1.08E-04 0.442 
ILMN_1807044 UBAC1 -0.19 1.07E-04 0.442 
ILMN_1678140 HEATR8-TTC4 -0.15 1.08E-04 0.442 
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ILMN_1779324 GZMA 0.14 1.05E-04 0.442 
ILMN_2046896 ESRRA -0.21 1.06E-04 0.442 
ILMN_1795227 DYNLL1 -0.19 1.09E-04 0.446 
ILMN_1682098 PSMA4 0.28 1.10E-04 0.446 
ILMN_2343010 BOLA3 -0.26 1.10E-04 0.446 
ILMN_1662795 CA2 -0.89 1.10E-04 0.447 
ILMN_3239785 CHEK2 0.25 1.10E-04 0.447 
ILMN_1801938 NHS 0.07 1.11E-04 0.447 
ILMN_2329679 TPST2 -0.3 1.12E-04 0.45 
ILMN_2235851 NEURL3 0.48 1.12E-04 0.45 
ILMN_1720083 EHD4 0.21 1.13E-04 0.45 
ILMN_2404665 TRIM5 0.23 1.14E-04 0.452 
ILMN_1776777 ADAR 0.31 1.16E-04 0.453 
ILMN_1676555 TTC26 0.2 1.17E-04 0.456 
ILMN_1695058 SLC38A5 0.13 1.19E-04 0.457 
ILMN_2359627 BCL2L11 0.22 1.19E-04 0.457 
ILMN_2373763 CASP7 0.41 1.20E-04 0.457 
ILMN_1793012 C7orf44 0.14 1.20E-04 0.458 
ILMN_2406313 RBCK1 0.28 1.21E-04 0.46 
ILMN_2045729 WDR12 -0.31 1.22E-04 0.461 
ILMN_1718734 MLLT6 0.24 1.23E-04 0.463 
ILMN_1765851 TRADD 0.28 1.24E-04 0.466 
ILMN_2129877 PARP11 0.22 1.25E-04 0.468 
ILMN_1750079 PURB -0.29 1.26E-04 0.47 
ILMN_1760490 ACVR1 -0.4 1.27E-04 0.47 
ILMN_1745374 IFI35 0.54 1.27E-04 0.47 
ILMN_2312275 SRP54 0.14 1.28E-04 0.47 
ILMN_1739840 LRRC8A -0.18 1.31E-04 0.472 
ILMN_3234831 RPL17 -0.12 1.31E-04 0.472 
ILMN_1688621 C9orf80 -0.18 1.33E-04 0.473 
ILMN_1678862 FUT11 0.09 1.34E-04 0.476 
ILMN_1727315 DENND1A 0.22 1.35E-04 0.477 
ILMN_1750051 FAM123B 0.19 1.36E-04 0.478 
ILMN_1763207 BATF3 0.5 1.36E-04 0.478 
ILMN_1724181 IL15 0.46 1.37E-04 0.479 
ILMN_1804738 MEFV 0.28 1.38E-04 0.481 
ILMN_1664646 NSUN6 0.1 1.38E-04 0.481 
ILMN_2400935 TAGLN 0.07 1.43E-04 0.489 
ILMN_2065783 EXOC2 0.22 1.44E-04 0.491 
ILMN_1670532 GMCL1 -0.11 1.48E-04 0.496 
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Chapter 4: Conclusions and future perspectives 

   

In this body of work, we set out to experimentally investigate common regulatory variants 

discovered in population-based eQTL studies and rare regulatory variants. The motivation for this 

goal stems from the fact that that the vast majority of GWAS variants are regulatory (Maurano et 

al., 2012). eQTL signals which overlap GWAS signals can help in the interpretation of these 

variants by pointing to a mechanism and gene of action (Battle et al., 2014; Grundberg et al., 2012; 

GTEx Consortium et al., 2017; Lappalainen et al., 2013; Nicolae et al., 2010). If these signals are 

to be understood, identifying the causal variants at eQTLs and the consequences of these regulatory 

variants through experimental validation is essential.  

In chapter 2, we established a method to validate regulatory variants that are found within 

the transcript. While previous studies have tested rare variants’ regulatory effect (Li et al., 2017), 

and saturation mutagenesis of all variants in particular exons (Findlay et al., 2014; 2018), a scalable 

method for testing eQTL variants within the transcript has not previously been developed. 

Additionally, our study is unique in that we establish a control variant distribution with which 

variants genome-wide can be compared. We showed that matched control variants which introduce 

a non-stop codon at the same locus as the variant of interest are not ideal controls. Some of these 

variants have unpredictable effects on gene expression levels and thus result in an artificially large 

control distribution. Instead, we find that a distribution of synonymous variants which are not 

significantly associated with eQTLs is a more appropriate control distribution. By using this 

control distribution, we take into account the background noise involved in the assay and are 

therefore better able to confidently identify causal regulatory variants. 
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A reliable assay which not only identifies causal regulatory variants, but also captures the 

magnitude and direction of effect within the native genomic context has also not existed until now. 

While MPRAs are scalable assays to identify variants which affect expression, they have been 

found to have low directional concordance with population data (Tewhey et al., 2016; van 

Arensbergen et al., 2019), likely due to the removal of the variants from their genomic context by 

introducing them into a reporter vector. It is notable that in this study we did maintain the genomic 

context, allowing us to detect the specific and directional effects of regulatory variants in the 

genome. Additionally, MPRAs are not able to interrogate variants which act by affecting the 

stability of transcripts. 

We demonstrated that the polyclonal assay works particularly well for variants which 

introduce premature stop codons into the transcript. Of the fourteen total stop-gained variants (both 

common GTEx stop-gained and disease gene stop-gained) which were expected to trigger NMD, 

eleven had significant effects on transcript abundance after editing, all in the expected direction. 

Additionally, none of the four disease gene stop-gained variants which were not expected to trigger 

NMD were significant, demonstrating sensitivity and specificity of the assay. The reason for the 

strong success with the stop-gained variants may be because there is a clear cell-type-independent 

mechanism through which the variants act. NMD is a universal pathway present in all cell types, 

whereas other mechanisms through which eQTL variants regulate might be cell-type specific. 

Additionally, NMD effects of rare variants tend to be larger than the relatively small effects of 

eQTL variants.  

When we applied the polyclonal assay to eQTL variants, we found five of the thirteen 

variants to be significant. Importantly, all five of these variants’ effects were in the same direction 

as we saw in GTEx, demonstrating the assay’s ability to capture directional effects of regulatory 



   

 91 

variants. There are a few possible reasons for why the remaining eQTL variants were not detected 

to a significant level. Perhaps the most likely reason for this shortfall is that the fine mapping fell 

short of identifying the true causal variants at the loci. With a scarcity of validated experimental 

data in the field (a fact that motivated this study), it is hard to assess fine-mapping approaches’ 

ability to distinguish causal variants from those in linkage disequilibrium. When we looked at the 

p-value distributions of the eQTL signals, we observed that many of the variants are in high linkage 

disequilibrium with neighboring variants, which also have highly significant p-values. These 

neighboring significant variants could conceivably be causal and were mis-identified by fine-

mapping. Thus far, fine-mapping approaches have only been tested for efficacy on simulated data 

(Brown et al., 2017; Hormozdiari et al., 2014; Wen et al., 2016), meaning we have little insight 

into how effective they are at identifying causal variants at real eQTLs. In the future, the polyclonal 

assay could be utilized to distinguish between significant variants at a locus and thus test the 

efficacy of fine-mapping approaches.  

However, the non-significant eQTL variants whose effect hovers around zero seem to be 

truly not causal in this cell line.  By investigating the range of effects both across tissues and across 

individuals, we showed that some of these variants might be context-specific and not active in this 

cellular context. Additionally, the possibility of eQTLs reflecting combined effects of multiple 

variants in a haplotype could explain why a single variant does not replicate the effect seen in the 

population.  

Another likely explanation for why we don’t detect every eQTL as significant is that the 

assay is not sensitive enough to detect the very small effects of weak eQTLs. This phenomenon 

can be observed in the three eQTL variants, chr20_3213332_G_A_b38, 

chr17_81294933_T_C_b38 and chr9_133361131_C_T_b38, which are not called as significant 
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but have similar effects to those seen in GTEx. Technical improvements to homologous 

recombination efficiency, which is a major area of research (Aird et al., 2018; Gutschner et al., 

2016; Song et al., 2016), could reduce noise in the assay and make it able to detect these smaller 

effects in the future. 

The success of the polyclonal assay when applied to stop-gained variants in disease-

associated genes demonstrates the applicability of the assay to confirming the causality of potential 

disease-causing variants. The relationship between disease manifestation and position of the 

premature stop codon in the transcript in GLI3 (Furniss et al., 2007) and ROR2 (Ben-Shachar et 

al., 2009) promotes the idea that understanding whether a variant results in NMD or truncated 

protein can provide diagnostic insight into the disease. While the 55 bp NMD cutoff provides a 

guideline for whether a variant triggers NMD or not, this prediction is far from perfect (Rivas et 

al., 2015). Therefore, the polyclonal assay could feasibly be applied to improving diagnostic or 

prognostic information for patients with rare variants of unknown consequence, such as variants 

falling right at the NMD border.  

In some cases, there have been conflicting reports on the mechanism of some disease-

causing stop-gained variants, and this assay could assist in resolving those cases. We showed the 

capacity to do such by demonstrating that the ClinVar variant ROR2 Arg442Ter triggers NMD. 

This variant was found in a patient with Robinow Syndrome and shown experimentally to produce 

truncated protein (Schwarzer et al., 2009). However, the study used an overexpression vector to 

express the two alleles of the variant in cell culture, and thus was perhaps overwhelming the NMD 

machinery and thus producing truncated protein. It appears that in the native genomic context, as 

in our assay, the variant triggers NMD and results in an allele-specific decrease in gene expression 

level. Our result is more consistent with the clinical manifestation of the disease: both parents of 
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the patient are unaffected, suggesting the disease is not caused by a dominant negative effect of 

truncated protein. Similarly, we demonstrated in the assay that ClinVar variant GLI3 Arg792Ter, 

identified in patients with Grieg cephalopolysyndactyly, triggers NMD. An early study 

hypothesized that the variant acted through production of truncated protein (Kalff-Suske et al., 

1999). Another study suggested the variant may be triggering NMD, but their data from allele 

specific expression in a patient line did not support it (Johnston et al., 2005). Finally, a study 

demonstrated allele-specific depletion of the mutation in a patient-derived fibroblast line (Furniss 

et al., 2007), a result which agrees with our findings. The polyclonal assay avoids the need to 

isolate patient-derived cell lines and is thus more scalable and appropriate for testing many variants 

with appropriate controls. 

Furthermore, we see an application of this assay to narrowing down causal variants in 

studies where one may have dozens of possible causal variants, such as in whole exome sequencing 

studies. In such a case, the monoclonal cell line isolation approach is too labor-intensive for this 

number of variants, and has the potential to be confounded by large on- and off-target mutations, 

but a higher throughput method like saturation mutagenesis, currently applicable only to individual 

genes, is laborious and lacks the ability to assay variants across the genome. This polyclonal assay 

is the ideal throughput for identifying causal variants from a list of a few dozen candidate variants 

discovered from a genetic study. Although we did not take this approach in this study, it would be 

feasible to perform the polyclonal assay on a number of potential regulatory variants, sequencing 

mRNA and gDNA from the polyclonal culture, and then take the same polyclonal culture and sort 

monoclonal cell lines for only the variants which demonstrate allele-specific regulatory activity. 

In this approach, the polyclonal assay narrows down the pool of variants to a reasonable number 

for in-depth follow up with functional assays, protein quantification, and other assays. The 
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straight-forward nature of the polyclonal assay makes it easily adoptable in any lab with tissue 

culture facilities and access to a sequencing instrument. 

The assay need not be limited to SNPs associated with gene expression levels. It can easily 

be applied to assessing the effect of indels, by introducing the indel into the homologous template 

instead of a SNP and comparing the presence of the indel in the cDNA versus gDNA. Additionally, 

we see a clear application of the assay to testing whether or not transcript variants affect splicing. 

If applied to splicing, the only modifications to the assay would be to look for splicing changes in 

the amplified region between the reference and alternative alleles. 

In Chapter 3, we sought to experimentally validate a variant which is associated with IRF1 

in cis and many genes in trans under immune stimulation. Trans-eQTLs have been more difficult 

to discover than cis-eQTLs due to multiple testing, false positives and negatives attributed to 

technical confounders and generally smaller effect sizes (Saha and Battle, 2018; Võsa et al., 2018). 

However, there is evidence that trans-eQTLs, which are enriched in enhancers and tend to be more 

tissue-specific (GTEx Consortium et al., 2017), and are even more informative for understanding 

the genetic basis of complex disease (Aguet et al., 2019; Westra et al., 2013). Unlike cis-eQTLs, 

trans-eQTLs have the potential to influence broad cellular networks by regulating the expression 

levels of many genes (Brynedal et al., 2017), and thus can illuminate pathway-level effects of 

genetic variants, which is important for understanding potential disease mechanisms beyond the 

local effects in cis. While there are a few examples of experimental validation of cis-eQTLs (Gupta 

et al., 2017; Soldner et al., 2016; Zhu et al., 2016), there has been almost no validation of trans-

eQTLs. Therefore, detecting and validating trans-eQTLs is of the utmost importance. 

Variants within close proximity to IRF1 have been found through GWAS to be associated 

with immune-related diseases such as Crohn’s Disease (Franke et al., 2010), eczema (Kichaev et 
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al., 2019) and asthma (Demenais et al., 2018; Ferreira et al., 2017). Additionally, variants in IRF1 

and signaling disruption of IRF1 have been implicated in multiple sclerosis (Fortunato et al., 2008; 

Ren et al., 2011), further linking IRF1 to autoimmune disease. Our work provided strong evidence 

of the functional mechanisms of this disease-associated locus. The further mechanism of how the 

IRF1 pathway affects autoimmune disease risk is yet unknown, but since IRF1 induces expression 

of pro-inflammatory cytokines which can induce an inflammatory response in a broad range of 

cell types (Kröger et al., 2002), this is the likely mechanism. Future studies to analyze the variant’s 

effect on cytokine production in an immune cell line or mouse model could further explore the 

physiological and cellular effects of the variant.  

IRF1 is known to be induced by TLR signaling, and in turn induces expression of type-I 

interferons (Miyamoto et al., 1988). However, its role in TLR4 signaling in response to LPS is not 

well characterized beyond the finding that IRF1 is induced in monocytes in response to LPS (Kim-

Hellmuth et al., 2017) and that irf1 knockout mice have increased survival after LPS infection as 

compared to controls (Pan et al., 2013). Our finding that an enhancer variant alters expression of 

IRF1 and a multitude of downstream genes in response to LPS further bolsters the idea that IRF1 

plays a role in LPS response in the innate immune system. 

The correlation between our edited cell lines and the trans-eQTL associations under 

stimulation helps to validate the trans-eQTL association. The eQTL variant can be classified as a 

master regulatory variant, due to its impact on a number of genes involved in immune response. 

Individuals with the variant exhibit increased expression levels of IRF1 and its targets, i.e. an 

increased immune response to stimulus. We discovered the variant in the context of LPS 

stimulation, but the variant could possibly modify IRF1 and its targets in any case where IRF1 is 

upregulated via activation of this enhancer.  The association of the variant in a GWAS for 



   

 96 

inflammatory traits (Ellinghaus et al., 2016) is consistent with this idea, since inflammatory 

disorders are characterized by an overactive inflammatory response. The trans-eQTL could 

feasibly contribute to inflammatory disease by increasing the expression of IRF1 and its targets in 

response to LPS stimulation. 

With the IRF1 locus, we discovered a variant which is not active under baseline but affects 

IRF1 expression under LPS stimulation. This context-dependence lends information as to how the 

variant might influence cellular networks in a physiological context. Immune-response eQTLs 

have been found to be more highly enriched for autoimmune GWAS loci than baseline eQTLs 

(Kim-Hellmuth et al., 2017). This variant might be widely important for immune response in 

humans and would not have been discovered under baseline conditions, emphasizing the 

importance of looking at how regulatory variants impact the transcriptome in a variety of cellular 

contexts.  

Our attempts at validating regulatory variants also demonstrate the challenges involved. 

Isolating monoclonal cell lines, the approach utilized in chapter 3, is time- and resource-

consuming. Additionally, unexpected genetic and epigenetic effects in monoclonal cell lines can 

create undetected noise. In this case, we could not utilize the polyclonal assay to validate the cis 

effect because the top variant is located in an enhancer, not in the gene body, and it would not have 

given us information about the trans effects of the variant. In differential expression analysis 

between clones with deletions at the eQTL variant locus and wildtype clones, as well as in the 

CRISPRi-treated cells, the cis-regulatory signal was not clear, and we failed to detect the trans-

eGenes as significantly differentially expressed genes. It may be that the number of clones of each 

genotype needed to detect the trans-eQTL signal is much higher than the number isolated in this 

study, and in similar studies (Gupta et al., 2017; Soldner et al., 2016; Zhu et al., 2016). Logically, 
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it seems as though you would need many fewer edited cell lines than individuals in eQTL studies 

because you are introducing the mutation into a constant genomic background. However, the 

results from ours and similar studies suggest that the number of clones needed for detecting 

transcriptome effects has been underestimated. In our analysis, we were able to capture the effects 

of CRISRPi and CRISPR perturbations by leveraging the power of analysis of the entire 

transcriptome that allows detection of even small effects.  

In addition to undetected off-target and on-target mutations in these clones (Kosicki et al., 

2018), transformed cell lines are known to have a multitude of chromosomal rearrangements, 

which may vary between individual cells in the cell line (Boone et al., 2014). For future studies 

utilizing the edited monoclonal cell line approach to validate regulatory effects of variants, it is 

imperative to isolate many clones of each genotype. Additionally, more thorough genotyping of 

the targeted locus in wild type and edited clones to detect large insertions or deletions at the 

targeted locus should be considered. This thorough genotyping can be performed using approaches 

such as long-range PCR, as was used in chapter 3 to eliminate one of the clones, or genomic qPCR 

which can be used to quantify the copy number of the genomic region surrounding the variant 

(D'haene et al., 2010). Furthermore, the proper choice of control is important. If a cell line which 

has not undergone editing is used as a control, there is a risk of confounding the results by detecting 

off-target or clone-specific effects in the edited clones instead of the effect of the specific variant. 

Therefore, control cell lines should be chosen from the same set of monoclonal cell lines as the 

edited cell lines, as we did in this study. Since there is generally no shortage of clones which do 

not harbor the desired mutation, isolating a number of these control cell lines is not a challenge, 

although their analysis by RNA-sequencing adds to the cost of these studies.  
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Another consideration to be taken into account when doing these types of validation 

experiments is that studying genetic effects in cell lines will never perfectly capture the effect of a 

variant that is observed in a population. All cell lines have limitations and the genomic 

rearrangements that occur in immortalized cell lines (Boone et al., 2014) no doubt can affect the 

genome and transcriptome of the cells. However, in order to find causality at a population-based 

association signal, experimental validation of the regulatory variant is essential. Additionally, 

eQTL studies, especially trans-eQTL, which are based on correlation in the population, are subject 

to false positives and negatives. Therefore, association studies and experimental validation studies 

provide complementary information on the effects of genetic variants.  

Over the past fifteen years, researchers have discovered tens of thousands of GWAS 

associations to an extensive array of human traits. However, identifying a genetic signal is just the 

beginning of the story.  The causal variant, the gene of action, and the mechanism of action of the 

association are often unclear. Therefore, our ability to identify and prove causality of regulatory 

variants in the population is of the utmost importance to the field of genomics. This elucidation is 

crucial for understanding the mechanism of variants that cause disease, and therefore discovering 

therapeutic targets. Despite the drawbacks associated with the different methods applied to 

functional genomics, further optimization and development in this field is necessary. This 

development is needed in order to expand our understanding of how the genetic variation between 

us humans defines the combination of traits that makes each of us unique.   
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