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ABSTRACT 

Statistical Issues in Platform Trials with a Shared Control Group 

Jessica Overbey 

 

Platform trials evaluating multiple treatment arms against a shared control are an efficient alternative 

to multiple two-arm trials.  Motivated by a randomized clinical trial of the effectiveness of two 

neuroprotection devices during aortic valve surgery against a control, this dissertation addresses two 

open questions in the optimal design of these trials. First, to explore whether multiplicity adjustments 

are necessary in a platform design, simulation studies evaluating the operating characteristics of 

platform designs relative to independent two-arm trials were conducted. Under the global null 

hypothesis, relative to a set of two-arm trials, we found that platform trials have slightly lower 

familywise error; however, conditional error rates for an experimental treatment being declared 

effective given another was declared effective are above the nominal alpha-level. Adjusting for 

multiplicity reduces familywise error, but has little impact on conditional error. These studies show 

that multiplicity adjustments are unnecessary in platform trials of unrelated treatments. Second, to 

determine the optimal approach for comparing delayed entry arms to the shared control, five methods 

for incorporating historical controls into two-arm trials were applied to the analyses of simulated 

open platform trials and compared to pooling all controls.  We found that when response rates are 

constant, pooling yields the lowest error and most precise, unbiased estimates.  However, if drift 

occurs, pooling results in type I error inflation or deflation depending on the direction of drift, as well 

as biased estimates.  Although superior to naive pooling, none of the alternatives explored guarantee 

error control or unbiased estimates in the presence of drift. Thus, only concurrent controls should be 

used as comparators in the primary analysis of confirmatory studies. Finally, these findings were 

applied to assess the design and analysis of the neuroprotection trial. 
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CHAPTER 1 

Introduction and Motivating Example  

 

1.1 Call for More Efficient Trial Designs 

In 2016, the Biotechnology Innovation Organization reported that the probability of a drug 

tested in a phase I study ultimately gaining FDA approval was 9.6%1.  In this report thousands of 

drug development programs were evaluated from 2006 to 2015 and transitions within these 

programs from each phase, New Drug Application or Biologics License Application 

(NDA/BLA) filing, and ultimately FDA approval were analyzed.  Of the 1,491 programs in 

phase III observed, only 58.1% transitioned to a NDA/BLA filing.  The probability of FDA 

approval from phase III was estimated to be 49.6%1.  While the failure of some phase III studies 

can be attributed to safety concerns or methodological issues, such as a poor design or an 

insensitive primary outcome, in many cases the treatment being tested is truly ineffective.   

Given the resources needed to conduct confirmatory studies, the low rate of success for these 

studies is striking.  A typical confirmatory trial will compare a single experimental treatment to 

the current standard of care (control).  At best, interim analyses will be pre-specified with 

contingencies to stop early for futility if there is sufficient evidence that the primary hypothesis 

will not be rejected or for efficacy if there is overwhelming evidence of superiority.   In the past 
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two decades there has been a call for more efficient trial designs that minimize the resources and 

the time required to determine whether an intervention is efficacious2, 3.   

 

1.2 Motivating Example 

Peri-operative stroke is a major concern after cardiac surgery.   The majority of peri-

operative strokes are embolic, resulting from emboli, such as blood clots, air bubbles, fat 

deposits, and other debris, that break free in the body during surgery and travel to the brain 

causing a cerebral artery blockage4.  A number of embolic protection devices aimed at capturing 

emboli during surgery, to prevent them from traveling to the brain, have been developed.  Two 

such devices are Embol-X (Edwards Lifesciences, Irvine, CA), an intra-aortic filtration device, 

and CardioGard (Cardiogard, Or-Yehuda, Israel), a suction-based extraction device.   As of 

2015, both of these devices showed promising results in early phase studies and had 

demonstrated the ability to capture debris during surgery; however, the efficacy of these devices 

for reducing peri-operative stroke had not been established. 

Typically, to establish efficacy, each company would sponsor a two-arm, confirmatory 

trial comparing their device to the standard of care.  However, in collaboration with the 

Cardiothoracic Surgical Trials Network (CTSN), a National Institutes of Health (NIH) and 

Canadian Institutes of Health Research (CIHR) funded network aimed at improving cardiac 

surgery outcomes, Edwards and CardioGard agreed to a more efficient, single platform trial that 

simultaneously evaluated the efficacy of both devices.  The primary outcome of the 

“Neuroprotection in Patients Undergoing Aortic Valve Replacement” study was a composite of 

death, clinically apparent stroke, or presence of post-operative emboli on diffusion-weighted 

MRI by post-operative day 7. At the end of the study, either or both of the devices could be 
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declared effective relative to the shared control and no direct comparisons between the active 

arms were to be considered5.  

Patients were to be randomized with equal allocation to one of the two embolic protection 

devices or to a standard aortic cannula (control).  Assuming a composite event rate of 50% in the 

control group, a sample size of 165 patients in each group yielded ~90% power to detect a 35% 

reduction in risk for each device compared to control using a 0.05 level chi-square test.   A single 

interim analysis, based on group-sequential monitoring using efficacy boundaries specified by 

the Lan-DeMets approach with an O’Brien-Fleming type spending function, was prespecified.  

In addition, at the interim analysis a consideration for dropping either arm or halting the trial for 

futility was prespecified if the conditional power under the original alternative hypotheses for 

either was below 20%.   No adjustment was made to the type I error rate in the sample size 

calculations as each comparison of device versus control was viewed as separate5.   

All three arms were intended to start enrolling at the same time.  However, due to an 

unexpected delay in 510(k) approval by the FDA, the CardioGard device was not available at 

trial launch.  Rather than delay the start of the trial, 1:1 randomization began into the Embol-X 

and control groups, with a plan to introduce the CardioGard device when it was available and 

change the randomization ratio to 1:1:1.  When the Embol-X arm reached 165 enrolled it would 

close and 1:1 randomization into the control and CardioGard arms would continue until the 

CardioGard group reached 165.    

The trial launched as planned with the CardioGard arm opening approximately 2 months 

into the study.  At the interim analysis, after 132 patients had been randomized to the control, 

133 to Embol-X, and 118 to CardioGard, the Data Safety and Monitoring Board (DSMB) 

recommended halting enrollment for futility of both experimental devices.  In all analyses, 
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experimental arms were compared only to concurrently randomized controls.  Twelve patients 

were randomized to the control prior to the initiation of the CardioGard arm.  Figure 1.1 shows 

the expected timelines of enrollment under the original and revised design as well as the actual 

timeline of enrollment.  

 

Figure 1.1 Enrollment Timelines for the Neuroprotection Trial.  A depicts enrollment under the 

original platform design where all arms were to open simultaneously, B depicts enrollment under 

the revised design that allowed for CardioGard to enter the trial after launch (n* is the number of 

controls randomized after the Embol-X arm closes), and C depicts the actual trial enrollment. 
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At the time the trial was launched, few methodological papers existed on how to design a 

multi-arm trial where treatment arms open in a staggered manner.  It was not well established 

whether comparisons of each treatment to the shared control needed to be adjusted for multiple 

testing.  Further, there was little published on analyzing platform trial data where not all arms 

were enrolled concurrently.   Approaches that compare treatments to only concurrent controls, as 

was done in the neuroprotection trial, avoid any biases due to drift in the response rate, but lose 

efficiency by not using all available information.  Platform trials are becoming more common 

across a broad range of therapeutic areas to address the growing costs of the “gold-standard” 

randomized controlled clinical trial and the call for more efficient designs. As experimental 

treatments are frequently at different stages in development, these issues are not unique to the 

neuroprotection trial.  It is imperative that these methodological issues be examined carefully to 

optimize efficiency and ensure validity of trial results.   

The work presented here is motivated by the neuroprotection trial.  In Chapter 2, we 

introduce platform trials with a shared control group and review available designs.  Chapter 3 

assesses the operating characteristics of simulated open and closed platform trials with and 

without multiplicity adjustments and evaluates the need for multiple testing corrections under 

these frameworks.  Next, Chapter 4 reviews analytical methods developed to incorporate 

historical control data into analyses of two-arm clinical trials and applies these methods to the 

analysis of an open platform trial.  The efficiency and bias of these approaches are explored 

under varying scenarios of drift in response rates via a simulation study.   In Chapter 5 we apply 

the findings of Chapters 3 and 4 to the neuroprotection trial and discuss whether the methods 

implemented in the trial were appropriate or whether alternatives may have been more efficient.  

Finally, in Chapter 6 we summarize findings and discuss future directions. 
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CHAPTER 2 

Platform Trials with Shared Controls 

 

2.1 Introduction  

When several experimental treatments show signals for efficacy in early phase studies, a 

platform trial can offer several efficiencies relative to independent two-arm trials of each 

treatment.   Under a single master protocol, each experimental treatment is evaluated 

simultaneously relative to a shared control group.  Considering the number of patients, the time 

needed to develop protocols and set up infrastructure, and the costs that would be needed for 

multiple, independent two-arm trials, the resources required for a single platform trial are 

substantially lower.  Additionally, multi-arm trials may have faster accrual than traditional two-

arm trials, as patients may be more willing to enroll given they are more likely to be assigned to 

an experimental treatment6.  Further, a single trial of multiple treatments reduces the competition 

for enrollment between trials within the target population.   Despite these efficiencies, relatively 

few platform trials have been conducted.  Prominent examples include the I-SPY2 and 

STAMPEDE trials in breast and prostate cancer respectively7, 8.  Although most frequently 

conducted in cancer patients, platform trials have also been implemented in pneumonia, 

tuberculosis, and Alzheimer’s disease9.   
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Many designs that compare multiple treatments to a shared control have been developed.  

These designs can be categorized as controlled selection trials or controlled screening trials.  

Controlled selection trials combine the selection element of phase II studies with the 

confirmatory component of phase III studies.  The goal of these trials is twofold: first, to 

determine whether any of the experimental treatments are superior to the control and second, to 

determine which of the experimental treatments shows the greatest superiority over the control.  

Several approaches to controlled selection exist including a single-stage approach, in which a 

selection is made after all patients have completed the trial10, and multi-stage approaches, in 

which a selection is made at the end of a first stage and subsequent patients are randomized to 

only the selected treatment and control in ensuing stages11, 12.   The latter approach will have a 

smaller sample size than the single-stage; however, selection is based off of a relatively small 

number of patients.   If two or more experimental treatments show similar efficacy at the first 

interim analysis, it may be worthwhile to continue enrollment in multiple experimental arms to 

gain more information about the treatments before making a selection.   To address this 

limitation, alternative multi-stage designs have been developed including an approach that allows 

a pre-specified number of treatments to continue at each stage13, and others that allow any 

number to continue through each stage14-17.  Regardless of which approach is chosen, at the end 

of a controlled selection trial, either a single experimental treatment will be selected or none will 

be deemed superior to the control.  In contrast, a controlled screening trial can declare any 

number of experimental treatments effective relative to the shared control. 

In the neuroprotection trial, the goal was to determine if either device was effective 

relative to the standard of care.  This is not a selection design, but rather a screening design, in 

the sense that any number of treatments can be declared effective and treatments that are not 
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effective will be screened out.  Several controlled screening platform designs are available.  

Many were developed as closed trials, meaning all arms open to enrollment at the same time and 

no additional arms are added during the trial.  Under this framework, single-stage platform 

designs, group-sequential multi-stage, multi-arm designs (MAMS)18, a fully sequential 

approach17, and Bayesian alternatives9, 19 are available.  More recently, open platform designs 

that allow for arms to be added during the course of the trial have been proposed.  Saville et al.’s 

approach allows new arms to be added only when other arms are closed after an interim 

analysis9, Elm et al. allow only a single arm to be added20, while Hobbs et al. and Ventz et al. 

allow rolling entry of any number of arms throughout the course of the study19, 21.  In what 

follows, the available closed and open controlled screening platform designs are reviewed.  For 

open designs, approaches to analysis with concurrent versus all controls are also discussed. 

 

2.2 Closed Platform Designs 

2.2.1 Single-Stage Platform Design 

In a single-stage platform design, patients are randomized to one of K active treatment 

groups or to a control group.  After all patients are enrolled and primary endpoint data collection 

is complete, a single analysis is conducted in which a family of K null hypotheses of each active 

treatment versus control (H0j for j=1,…,K) is tested.  H0j is the null hypothesis that arm j has an 

equivalent response to the control.  If any H0j are rejected, the corresponding treatments are 

declared effective.   For a trial with a binary outcome, several design parameters are considered 

including θ0, the response rate of the control group, and θj, the response rates of each 

experimental treatment group.  An experimental treatment with a response rate of θ0 + δ1 would 

be considered sufficiently effective warranting either additional studies or a definitive 
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declaration of efficacy.  Under this design, a type I error would occur if a truly ineffective 

experimental treatment is declared effective and a type II error would occur if a truly effective 

treatment was declared ineffective.  

Sample size for a single-stage platform design can be computed using standard sample 

size formulas.  If the familywise type I error rate of the K null hypotheses is to be controlled, a 

Bonferroni correction can be applied.  In a less conservative approach, Dunnett’s multiple 

comparison procedure for comparing multiple treatments versus a control can also be applied22.  

Unlike the Bonferroni correction, which splits the type I error for each hypothesis test by the 

number of comparisons, Dunnett’s procedure takes the fact that each comparison shares the same 

control into account and considers each hypothesis test conditionally independent given the 

control group.  As a result, confidence intervals around the group differences calculated using 

Dunnett’s procedure are narrower compared to those calculated under a Bonferroni correction.    

Compared to K two-arm trials of each experimental treatment versus control, a closed 

screening platform design with K active treatment arms and one shared control arm will have a 

smaller total sample size.  If multiple testing is not accounted for, given the same design 

parameters and equal allocation between groups, a series of K two-arm trials will have a total 

sample size of 2Kn whereas a single platform trial will have a total sample size of only (K+1)n.  

If multiple testing is accounted for, the sample size savings will be less striking, but the resource 

savings of the shared infrastructure will remain.    

 

2.2.2 Multi-arm, Multi-stage (MAMS) Platform Design 

Single-stage trials are straight-forward to design and conduct; however, more efficient 

designs allow treatment arms to be dropped as evidence accumulates that they are not effective 
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and allow for a study to be terminated if no experimental treatments appear promising.  Follmann 

et al. proposed a group sequential monitoring method for multi-arm trials based on pairwise test 

statistics performed at interim looks of the data using alpha spending functions of information 

time18, 23.  At the start of the trial, the maximum sample size per arm is fixed.  Information time 

ranges from 0 to 1 and is defined as the number of patients evaluated from the current set of arms 

divided by the number planned for the current set of arms.  For the family of hypotheses H0j, Zj(t) 

is the test statistic for testing H0j at information time t.  In the case where the trial aims to 

compare all active arms to a shared control, Zj(t) can be derived using Dunnett’s multiple 

comparison procedure.  At an interim analysis, the information time t is assumed to be the same 

across all comparisons.  Blocked randomization is recommended to ensure that the number 

randomized over the maximum number planned in each arm is nearly equivalent at each interim 

analysis.  The criteria for strong type I error control can be met under a variety of monitoring 

procedures including Pocock’s and O’Brien and Fleming’s.  Calculating these monitoring 

boundaries is computationally intensive and computation time increases with the number of 

arms.  Follman et al. recommend simulations to derive the boundaries.  Alternatively, if multiple 

testing is not considered, each comparison of an experimental treatment versus the shared control 

can be viewed separately and the sample size and group-sequential boundary calculations for a 

two-arm trial can be applied.   

Holding the design parameters, type I error rate, and power constant, the maximum 

sample size of a MAMS trial will be larger than that of a single-stage trial.  However, the 

expected sample size will be lower as the design allows for arms to be dropped for futility.  

When used to the purposes of controlled screening, Follman et al.’s design does not allow for 

early stopping for efficacy.  Efficacy stopping boundaries could be implemented; however, the 
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ethical implications of early stopping for efficacy are complex.  If only one arm passes the 

efficacy boundary and the trial is stopped, potentially effective treatments in other arms would be 

discarded.  Since the goal of these trials is to determine if any of the treatments are effective, 

rather than identify a single effective treatment, efficacy stopping recommendation rules should 

be pre-specified over various scenarios prior to any interim looks at the data.   

Compared to multiple two-arm trials, a MAMS design is more efficient.   However, the 

maximum sample sizes for these trials, especially when multiple testing is accounted for, can be 

prohibitive.  Although the expected sample size is smaller than a comparable single-stage 

platform design, the maximum sample size is larger and the actual sample size is uncertain as 

researchers cannot predict if and when futility boundaries will be crossed.  In addition, when 

multiple testing is accounted for, designing a MAMS trial is challenging.  Choosing the number 

of stages and calculating sample size and critical values from futility boundaries requires a great 

deal of computation time. 

 

2.2.3 Sequential Approach 

As an alternative to the MAMS design, Cheung proposed easy to compute sequential 

selection boundaries that are as flexible as group sequential boundaries in that interim analyses 

can be specified in any number and at any time17.  Cheung’s design was initially developed for 

controlled selection where a single effective treatment is selected at the end of the study.  The 

boundaries were developed by extending Levin and Robbin’s sequential elimination procedure to 

handle the constraint that experimental treatments not sufficiently superior to the control should 

not be selected24.    
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In a study with a binary outcome, each response (xij = 0 or 1 for the ith patient in the jth 

treatment arm) is transformed to Yij =1- aj + ajxij.  At an interim analysis, Sjn, the partial sum of 

the first n transformed responses in arm j, are computed and compared between the arms.  For all 

j, aj is prespecified with a0 for the control group and a1 = a2 = … = ak for the active arms.  The 

a0 and a1 are asymmetrizing parameters set such that the control arm is favored in the 

comparisons of the partial sums.  At an interim analysis, arm k is closed if Skn ≤ max[Sjn] – d 

where d is a prespecified design parameter greater than 0.  Additional design parameters include 

θ0, the response rate of the control, and θ[1], θ[2], …, θ[K], the ranked response rates of each 

experimental treatment such that  θ[1] ≤ θ[2] ≤ …≤ θ[K] where θ[K] indicates the best treatment.  An 

experimental treatment with a response rate of θ0 + δ0 would be considered ineffective while an 

experimental treatment with a response rate of θ0 + δ1 would be considered sufficiently effective.  

Any j experimental treatment with response rate θj ≥ θ0 + δ1 is acceptable for selection.  Under 

the null hypothesis that none of K experimental treatments are effective, a type I error would be 

committed if any experimental treatment was selected.  Under the alternative hypothesis that 

there are m effective treatments, a type II error would occur if no experimental treatment was 

selected.   

Using Cheung’s selection boundaries, two designs can be applied: the ELIM and the 

ELIM0.  With the ELIM design, the trial continues until either the maximum sample size is 

enrolled or until only one arm remains.  In the ELIM0 design the trial can be stopped as soon as 

the control arm is dropped.  If the control arm is dropped the arm with the highest response rate 

is selected.  By incorporating an additional early stopping rule, ELIM0 will have a lower sample 

size on average compared to ELIM; however, the probability of selecting a suboptimal treatment 

is slightly increased.   
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Although developed for selection purposes, Cheung’s sequential boundaries can be 

extended for screening.  As with the MAMs design, sample sizes for trials designed using 

Cheung’s sequential boundaries will, on average, be smaller than the single-stage design.  

Although Cheung’s approach offers easier to compute monitoring boundaries, comparisons of 

the operating characteristics of Cheung’s approach versus the MAMs approach have not been 

explored. 

 

2.2.4 Bayesian Approaches 

Bayesian alternatives are available for each of the closed screening platform designs 

discussed above.  Rather than evaluating efficacy with frequentist hypothesis testing approaches, 

efficacy decisions are based on Bayesian posterior probabilities.  In addition, futility monitoring 

is done using either Bayesian posterior predictive probabilities or Bayesian posterior 

probabilities in lieu of alpha spending functions9, 19.  For a Bayesian closed platform design with 

a fixed randomization ratio across all open arms, a binary primary outcome, and prespecified 

futility rules, many of the design parameters needed for the frequentist approaches discussed 

above remain the same, including the minimum improvement in the response rate from θ0 

deemed sufficiently effective and clinically meaningful (δ1), the maximum sample size (Nmax), 

and the frequency of interim analyses.  Additional parameters include the prior distributions of 

the response probabilities of each treatment.  The response rate of each arm has an assumed prior 

distribution θj ~Beta(α, β).   Criteria for stopping the trial for futility (F) are also predefined.  In 

Saville et. al’s approach, at each interim analysis, if the Bayesian posterior probability that a 

treatment j is superior to control is less than F (i.e. Pr (θj > θ0 + δ1|data) <F) arm j will be 

dropped.  If the futility boundary is not crossed by any of the active treatment arms, the trial 
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proceeds with all arms open9.  In contrast to Saville et al.’s approach, Hobbs et al. bases futility 

monitoring on the Bayesian posterior predictive probability which, unlike the posterior 

probability, which only takes observed interim data into account, also accounts for the 

uncertainty of future responses19.  Regardless of the futility monitoring approach used, at the end 

of the study, a type I error occurs if any ineffective treatment is declared superior to control.  

Each treatment has its own pre-specified type I error rate that is equal across the active arms.  

Type II error is defined as the trial not identifying truly effective treatments. 

The Bayesian approaches are viable alternatives to the approaches discussed above. They 

can also be more efficient as the designs are easily extended to include flexible features such as 

outcome adaptive randomization, more frequent interim monitoring, and adaptive sample size 

estimation.  Bayesian methods are being used with increasing frequency25.  However, despite 

their flexible features, Bayesian methods are not widely accepted in the Phase III realm.  As 

such, the more popular group sequential approaches will likely have an easier path through 

regulatory agencies.    

 

2.3 Open Platform Designs 

The closed platform designs discussed above assumed that all arms would start enrolling 

at the same time and that no additional treatment arms would be added during the course of the 

study.   However, it is common for experimental treatments to be at different stages in 

development.  As in the case of the neuroprotection trial, delays in approval could mean one 

treatment arm is not ready to start enrolling at trial launch.  Additionally, if an unexpected new 

treatment becomes available, it would be opportune to add it to an already established platform 

trial.   
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Methods for open platform designs are not well developed.  Saville et.al proposed a 

Bayesian open selection platform design with the goal of finding a single effective treatment to 

move forward for future studies or approval.  Under the design, a prespecified number of 

treatments are open at the start of the trial and interim analyses are prespecified across fixed time 

or enrollment units.  At interim analyses, arms can be dropped for futility and replaced with new 

treatments.  The trial stops when an experimental treatment’s Bayesian posterior probability that 

it is superior to control exceeds a pre-specified efficacy boundary9.  Saville et al. suggest that 

their design can be extended to a screening paradigm but do not specify the design 

characteristics.   

For active arms that are introduced during the study rather than included from the 

beginning, the experimental treatment can be compared to concurrent controls only or to all 

controls enrolled both prior to the opening of the experimental arm and concurrently.   In Saville 

et al., simulation studies compared an open selection platform design that used concurrent 

controls only versus an open platform design that used all controls.  They found that the use of 

all controls was more efficient than the use of concurrent controls.  On average, fewer patients 

needed to be randomized prior to selecting a treatment in studies that used all controls compared 

to concurrent controls.  However, the simulation studies kept the response rate of all treatments 

constant overtime and did not consider any drift in the response rate.  In an applied example of 

Saville et al.’s design, Berry et al. consider drift26.  This example was designed during the recent 

Ebola epidemic when the need for an effective treatment to reach patients was paramount to both 

increase infected patients’ survival and decrease the rate of incident cases.  Berry et al. proposed 

an open selection platform design where multiple treatments could be evaluated and an optimal 

treatment selected relative to a standard of care control arm.  The primary endpoint of the study 
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was death by 14 days after randomization.  To account for drift in mortality rates, all analyses of 

the primary endpoint were to include month as a covariate to treatment assignment.  The study 

was approved but never launched due to the decline of the Ebola epidemic in 2015. The design 

was criticized in an editorial by Brittain and Proschan where they pointed out that including 

month as a covariate in the model could be inadequate if the model is misspecified.  Changes in 

the mortality rate could occur more frequently than monthly or there could be a treatment by 

time interaction in which a treatment helps only the recently infected and the proportion of 

recently infected changes over time27. 

  In an alternate Bayesian approach, Hobb’s et al. developed an open screening platform 

design where any number of treatments can be declared effective.  Under this design, new 

treatments can be introduced to a trial at any time.  Patients are randomized equally across all 

concurrently active arms and enrollment into each experimental arm continues to a prespecified 

maximum unless a futility boundary is crossed.  Enrollment to the control arm continues as long 

as an experimental arm remains open.  In order to control the familywise error rate and 

prespecify futility thresholds, Hobbs et al. require that the maximum number of arms be pre-

specified19.   To avoid any biases in analyses of active arms versus the control due to drift, Hobbs 

et al.’s design recommends that experimental treatments be compared to concurrent controls 

only.  This approach requires extensive simulation studies to optimize the design.  Furthermore, 

the need to prespecify the number of additional arms could be problematic in the event that an 

unanticipated new treatment becomes available.   

In a frequentist approach, Elm et al. describe an open platform design where a single arm 

is added during the course of the trial and the sample size of the control arm is fixed regardless 

of when the new arm is added20.  For example, a trial could open with two arms, an experimental 
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arm and the control arm.  Both arms have a maximum sample size of n and are randomized with 

equal allocation during a first stage.  When a new arm is introduced, a second stage begins and 

the total sample size of the study increases from 2n to 3n.  The randomization allocation ratio 

changes so that more patients are randomized to the new arm and enrollment into each arm 

finishes around the same time.  To account for the different stages in the trial, Elm et al. 

recommend analyzing the primary endpoint data using a linear model with a fixed or random 

effect for stage or using an adaptive combination rule.  Introducing a new arm if enrollment in 

the opening arms exceeds 50% showed a substantial decrease in power for the comparison of the 

new arm versus the control in simulation studies.  As such, this design is likely not suitable if the 

timing of the additional arm is uncertain.  Furthermore, it was developed for the addition of a 

single treatment arm and likely would not be appropriate if several new arms may be introduced.  

To simplify the design of an open screening platform, Ventz et al. proposed a rolling-

arms design21.  Under this design, the trial opens with two arms, an experimental arm and the 

control.  Sample size for the two arms, n for each, is based on standard sample size calculations 

with group sequential monitoring.  As new treatments become available, new arms are added to 

the trial.  Under this design, multiplicity is ignored.  Assuming each experimental arm shares the 

same null and design alternative hypotheses relative to the shared control, the maximum sample 

size for each experimental arm is n.  However, as experimental arms are added, the control arm’s 

sample size increases so that n patients are concurrently randomized to the control arm while 

each active arm is open.  Throughout the trial the randomization allocation is equal across all 

open arms.  Active arms will stop randomizing either when n patients are randomized or if 

futility boundaries are crossed at an interim analysis.  All interim and final analyses of an active 

treatment are done by comparing the active arm to controls that were randomized concurrently.  
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As an alternative, Ventz et al. explored the use of all controls with simulation studies.  These 

studies assumed designs with one control arm and 5 experimental arms with staggered entry.  

The primary endpoint was time to disease progression.  In the control arm, they assumed varying 

linear increases in the progression free survival of the population every 10 months.  In the 

experimental arms, they assumed the same linear scaling factors so that the treatment effect 

remained constant.  Type I error rates of rolling arm designs that compared experimental 

treatments to concurrent controls only were unaffected by the time trends.  However, approaches 

that considered all controls produced biased hazard ratio estimates and inflated type I error rates.  

The authors did not explore analysis plans that would adjust for the drift and instead 

recommended that the use of all controls be avoided.   

Open platform trials are still in early stages of development and implementation.  There 

is no consensus on whether adjustments for multiplicity are needed for these designs.  Methods 

that do not adjust for multiple testing are the most flexible as they allow any number of 

treatments to be introduced.  The majority of open platform designs discussed in this chapter 

recommend the use of concurrent controls in the analysis of experimental treatments.  However, 

using all information available may yield more efficient studies.  Further exploration of various 

methods of analysis that incorporate all controls is needed.    

 

2.4 Discussion 

There are several efficiencies of platform trials relative to multiple two-arm trials 

including the need for fewer patients, faster accrual rates, and lower infrastructure costs.  Despite 

these efficiencies, competing sponsors may be hesitant to enter their experimental treatments into 

the same study in order to avoid direct comparisons with other potentially efficacious 
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experimental treatments.  Although sample size, cost, and time are decreased under a single 

platform trial compared to multiple two-arm trials, for a sponsor with a single therapy, testing 

their treatment alone in a single two-arm trial may be more efficient.   Similarly, in rare disease 

targets, a platform trial may prove prohibitive as not enough patients are available to test 

multiple experimental treatments simultaneously.   Another inhibitor of platform trials for 

sponsors is the concern that another experimental treatment being tested will be found 

efficacious before their arm completes enrollment.  This is not an issue in closed platform trials 

if efficacy monitoring is not implemented, but in open designs some treatments will reach final 

analysis while others are still enrolling.  If a treatment is found effective it could change standard 

of care and cause enrollment into the platform trial to slow down or be permanently halted.  

However, a similar situation could also occur in the two-arm setting where a competing two-arm 

trial releases results prior to the completion of an ongoing trial in the same target population.   

Despite these issues, platform trials have been successfully implemented.  For many 

sponsors, the efficiencies may outweigh the concerns.  In cases where the efficacy of multiple 

experimental treatments needs to be evaluated, screening platform trials offer an efficient 

alternative to multiple two-arm studies.  However, more methodological research is needed to 

optimize these designs.   

Across both closed and open designs, the decision to correct or not correct the type I error 

rate for multiplicity is an issue.  Although multiple tests are evaluated, many argue that 

multiplicity adjustments are not needed as the familywise error rate of a platform study 

unadjusted for multiple comparisons will be equivalent to that of multiple two-arm trials28, 29. 

The neuroprotection trial followed this approach.  However, since each comparison within the 

multi-arm trial shares the same control group, the comparisons are not independent and the test 
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statistics will be positively correlated.  Simulation studies are needed to explore this issue in the 

open platform setting. Ventz et al. demonstrated that their rolling arms design had nearly 

identical familywise type I error rates and power relative to multiple two-arm trials; however, 

they did not report the conditional probabilities of a type I error given another had been made21. 

Correcting for multiple comparisons in a closed selection trial is straightforward; but in an open 

platform trial where the number and timing of arm entry is not fixed, type I error control is a 

challenge.   

Methods for closed screening platform trials are well established.  However, as with the 

neuroprotection trial, there is an increasing need for platform designs that allow for experimental 

arms to be added during the study.  In open designs, no consensus exists on whether analyses of 

experimental treatments should incorporate concurrent controls or all available controls.  Studies 

exploring how much efficiency is lost by not using all controls and studies exploring analytical 

approaches that use all controls under various drift scenarios are needed.  This thesis seeks to 

address these two gaps identified above.  In subsequent chapters, the need for multiple testing 

corrections in platform trials is assessed and approaches for incorporating all controls into the 

analyses of open platform trials are explored.   
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CHAPTER 3 

Is Adjustment for Multiple Testing Needed in a 

Platform Trial? 

 

3.1 Introduction 

In the context of a clinical trial, a type I error results in promoting a drug or an 

intervention to a next step when, in fact, the intervention is not efficacious. Depending on the 

phase of the study, this can mean a truly ineffective treatment is moved forward for further study 

or potentially even for Food and Drug Administration (FDA) approval. In this case resources that 

could be devoted to other promising treatments are wasted, and more consequentially, an 

ineffective treatment could be translated to patient care. In a two-arm trial comparing a single 

experimental treatment to a control, the type I error probability is protected by pre-specifying a 

stringent threshold (significance level) for testing and rejecting the null hypothesis that the 

experimental treatment and control have an equivalent effect. The significance threshold should 

be sufficiently low such that if the null is rejected, stakeholders feel confident that the observed 

result very likely represents a true difference. However, there is a tradeoff between error 

protection and sample size; the lower the significance level, the higher the sample size required 
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to test the hypothesis. Significance levels of 0.05 and 0.025 for two-sided and one-sided 

hypotheses, respectively, are standard for phase III, two-arm trials.  

In a platform trial, protection of type I error is more complicated, as multiple null 

hypotheses, one for each experimental treatment being evaluated, are tested. Therefore, multiple 

type I errors can be made. It has not been well established whether tests of each experimental 

treatment’s efficacy relative to the control need to be adjusted for multiple testing in a platform 

trial. In a systematic review of multi-arm trials published in 2012 across four major medical 

journals (British Medical Journal, The Lancet, New England Journal of Medicine, and PLoS 

Medicine), 9 out of 20 (45%) exploratory multi-arm trials and 21 out of 39 (54%) confirmatory 

multi-arm trials did not apply adjustments for multiple testing28. Although multiple tests are 

conducted under a platform design with a shared control group, a common view is to treat each 

comparison of an active group versus control as a separate trial29.  In this sense, the familywise 

type I error in the multi-arm trial would be equivalent to the overall type I error incurred by 

multiple two-arm trials.  

The familywise error rate (FWER) is the probability of at least one type I error occurring 

across multiple hypothesis tests. Simulation studies comparing type I error rates between 

platform studies and multiple two-arm trials with the same number of subjects in each arm 

demonstrated that FWER is similar between the two approaches19, 21. FWER is a marginal 

probability that does not consider the occurrence of multiple type I errors across the hypotheses, 

but rather the probability of any single error occurring. In the setting of multiple, two-arm trials 

this is not an issue as tests of each experimental treatment versus control are independent and the 

probability of multiple type I errors occurring simultaneously is minimal, and generally not a 

concern. However, under a platform design, since each experimental treatment shares the same 
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control group, test statistics for each hypothesis test are positively correlated. As such, the 

conditional probability of a type I error for the comparison of one experimental treatment versus 

the control given a type I error has been made on another comparison will be higher than the 

nominal significance level30. This means that the occurrence of one type I error in a platform 

design increases the likelihood of a type I error for the other comparisons so that if one 

ineffective treatment has been declared effective, there is a heightened probability that another 

ineffective treatment will be declared effective as well.  

Several approaches, both frequentist and Bayesian, have been developed for evaluating 

multiple treatments relative to a shared control9, 18-22. Given that the number of experimental 

treatments in a platform trial is fixed, FWER can be controlled under any of these designs. 

Previous simulation studies exploring the operating characteristics of platform studies have 

reported FWER, but have not reported the conditional probability of a type I error given another 

has been made19, 21.  

In this simulation study, conditional type I error rates are explored under platform designs 

with two experimental treatment groups and a shared control group with and without adjustments 

for multiple testing. The study aims to evaluate the impact of adjusting versus not adjusting for 

multiple testing on FWER and conditional type I error rates in a platform trial relative to 

multiple, two-arm trials. 

 

3.2 Methods 

3.2.1 Design Frameworks 

Two platform trial frameworks were explored, a closed design where all three arms enroll 

simultaneously and an open design where the first experimental treatment group and the control 
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group begin enrolling before the second experimental treatment is introduced. For comparison 

purposes, independent two-arm trials were also simulated (Figure 3.1). An open framework was 

explored in addition to the closed as open designs that allow for new treatments to be added to an 

existing, ongoing trial are being increasingly used9, 19, 21. Three arms were chosen for simplicity 

of interpretation, but results can be extrapolated to additional armed studies. Under the closed 

platform framework, enrollment into all three treatment arms opens simultaneously with up to 

200 patients enrolled in each group for a maximum trial sample size of 600. Under the open 

platform framework, trial enrollment opens with only the control arm and the first experimental 

treatment. After 100 patients are randomized with equal allocation to the two groups, the second 

experimental arm is opened to enrollment and the randomization ratio changes to 1:1:1. Once the 

first experimental treatment arm reaches a maximum sample size of 200, it is closed. Enrollment 

continues to the control and second experimental treatment arms until the second experimental 

treatment arm reaches a maximum sample size of 200. Enrollment into the control arm is 

extended to a maximum sample size of 250 so that 200 controls are concurrently randomized to 

each of the experimental treatment arms giving a maximum trial sample size of 650. Under the 

independent two-arm, trial framework, rather than a single trial being conducted, two 

independent trials of each experimental treatment versus independent control groups are 

simulated. Each two-arm trial has a maximum sample size of 400 and patients are randomized to 

the experimental treatment or control with equal allocation so that a set of two trials under the 

independent, two-arm framework has an overall maximum sample size of 800. 
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3.2.2 Outcome Assessment 

A binary outcome of treatment success or failure was considered. For each treatment 

group k, where k=0 denotes the control group and k=1 or 2 denotes the experimental groups, xk 

denotes the number of treatment failures in n patients and xk ~ Binomial(n, πk). For each 

experimental treatment, the one-sided null hypothesis that the failure rate of the experimental 

treatment is equivalent or worse than the control (H0: πk ≥ π0) was tested using a Z-statistic, Zobs(k), 

derived from a Chi-square test. If Zobs(k) ≤ Zcritical then treatment k was declared effective relative 

to control.  

 

3.2.3 Type I Error and Multiple Testing 

A type I error occurs if, under the null hypothesis, an experimental treatment is declared 

effective relative to control. Initial simulations included no adjustment for multiple testing and 

derived Zcritical so that each comparison of experimental treatment versus control was evaluated 

using a one-sided, 0.025 level test. Additional simulations were conducted using a Bonferroni 

adjustment to account for multiple testing so that each comparison of experimental treatment 

versus control was evaluated using a one-sided, 0.0125 level test. 

 

3.2.4 Early Stopping 

Simulations were conducted under each framework with and without early stopping for 

efficacy and futility. Trials with 0, 1, 2 or 3 equally spaced interim analyses were evaluated. 

When 3 interim analyses were pre-specified, analyses occurred after 50, 100, and 150 patient 

responses were observed in each treatment group. Randomization was blocked to ensure equal 

treatment allocation at interim analysis points. Efficacy boundaries were determined using 
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O’Brien-Fleming spending functions. Futility was defined as the conditional power under the 

current trend being less than 10%. At an interim analysis, if both treatments crossed a stopping 

boundary, all three arms closed. However, if only one treatment crossed a stopping boundary, 

only that treatment arm closed while the control arm and the other experimental arm stayed open.  

 

3.2.5 Simulation Scenarios 

The failure rate of both the control group and the first experimental group across all 

scenarios was set to π0  = π1  = 0.5. The failure rate of the second experimental group (π2) varied 

from 0.3 to 0.7. For each framework, number of interim analyses, and set of failure rates, 

100,000 iterations were simulated. All simulations we conducted using R v3.5.031. For each trial 

simulated, uniform random variates were used to simulate patient response. If the uniform 

variate of a subject was smaller than the “true” failure rate of the subject’s assigned group, the 

subject was deemed to have failed. Blocked randomization was done using the blockrand 

package32. 

 

3.2.6 Operating Characteristics 

Several operating characteristics were evaluated. The primary measure of interest was the 

number of trials that resulted in either or both experimental treatments being declared effective. 

Under the null scenario (π0  = π1  = π2 = 0.5), in addition to FWER, conditional type I errors rates 

(i.e. the probability of a type I error for one treatment group given the other was declared 

effective) were also explored. In addition, the total sample size and the failure rate across the 

entire trial or trials for the independent, two-arm trial framework were evaluated.  
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Figure 3.1 Simulated Trial Frameworks 

 

 

3.3 Simulation Results 

3.3.1 Type I Error Rates under the Null Scenario (π0 = π1 = π2 = 0.5) 

Table 3.1 shows the simulation results for each design framework and number of interim 

analyses under the null scenario where π0 = π1 = π2 = 0.5. The probability of a type I error for 
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each individual comparison of an experimental treatment versus control was equivalent across 

the three frameworks. The family wise error rate (FWER), the probability of at least one type I 

error occurring, was also comparable across the three frameworks. As expected, in the 

independent, two-arm trial framework with no interim analyses, the FWER was approximately 

0.05 and 0.025 for the unadjusted and Bonferroni adjusted scenarios respectively. Compared to 

the two-arm trial framework with no interim analyses, the closed platform framework had a 

slightly lower FWER (0.046 and 0.022), as did the open platform framework (0.048 and 0.024). 

Although FWER was comparable across the frameworks, under the null scenario, the 

conditional probability of either experimental treatment being declared effective given the other 

had been declared effective were substantially higher under the platform frameworks. In the 

independent two-arm framework, given no interim analyses or multiple comparison adjustment, 

the marginal probability of experimental treatment 1 being declared effective was 0.025 whereas 

the probability of experimental treatment 1 being declared effective given treatment 2 had been 

was slightly lower at 0.023. Under the closed platform framework, the marginal probability of 

experimental treatment 1 being declared effective was 0.026; however, the conditional 

probability of experimental treatment 1 being declared effective given experimental treatment 2 

had been declared effective was approximately seven times higher at 0.184. A Bonferroni 

correction improved the conditional error rate to 0.145; however, this remained substantially 

higher compared to the independent two-arm framework. The open platform framework had 

lower conditional error rates compared to the closed platform with conditional probabilities of a 

type I error for experimental arm 1, assuming no interim analyses, being 0.121 and 0.089 for the 

unadjusted and Bonferroni adjusted scenarios respectively. However, these rates were still high 

relative to the unadjusted, independent, two-arm trial framework. Marginal and conditional error 
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rates for experimental treatment 2 were equivalent to that of experimental treatment 1 across all 

three frameworks. The marginal probability of both treatments being declared effective 

simultaneously was at most 0.005 and 0.003 under the closed and open platform frameworks 

respectively and 0.001 for the independent two-arm framework.  As the number of interim 

analyses increased, marginal and conditional type I error rates generally decreased (Table 3.1). 

 

3.3.2 Type I Error Rates and Power under Alternative Scenarios  

Table 3.2 shows simulation results for each design framework and number in interim 

analyses under an alternative scenario where π0 = π1 = 0.5 and π2 = 0.35. When experimental 

treatment 2 is truly effective with a lower failure rate of 0.35, the probability of a type I error in 

which experimental treatment 1 is declared effective is equivalent across all three frameworks 

for all number of interim analyses. Conditional error rates of treatment 1 being declared effective 

given treatment 2 is declared effective remain higher in the closed and open frameworks 

compared to the independent two-arm trial framework; however, the inflation is much smaller 

than that observed under the null scenario. For scenarios with no interim analyses, the 

conditional type I error rate is 0.026 in the independent two-arm framework and increases by ~ 

0.004 in the closed and open frameworks (0.030 and 0.029 respectively). A Bonferroni 

correction lowers the conditional type I error rate to 0.015 under both the closed and open 

frameworks.  

Conditional type I error rates for other scenarios where π0 = π1 = 0.5 and π2 varies from 

0.3 to 0.7 are shown in Table 3.3. As experimental treatment 2 becomes more effective, the 

conditional error rate of experimental treatment 1 being declared effective given treatment 2 is 

declared effective decreases to the unconditional probability of experimental treatment 1 being 
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declared effective. As experimental treatment 2 becomes worse than the control, the conditional 

type I error rate of experimental arm I also decreases to the unconditional type I error rate. 

Across all three frameworks, when experimental treatment 2 is truly effective, power is 

equivalent. In the alternative scenario where π0 = π1 = 0.5 and π2 = 0.35, with no Bonferroni 

correction or interim analyses, power is approximately 86% in all three frameworks and a 

Bonferroni correction reduced power to ~78% (Table 3.2).   As π2 increases and decreases, 

power also remains similar across the three frameworks (Table 3.3).  

 

3.3.3 Sample Size  

By design, the maximum sample sizes of the closed and open platform designs are 25% 

and 19% smaller than the maximum sample size of the independent, two-arm trial framework. 

When interim analyses are considered, under the null scenario (π0 = π1 = π2 = 0.5), sample size 

for the closed and open platform frameworks remain smaller on average compared to the 

independent, two-arm trial framework (Table 3.1). For one, two and three interim analyses the 

closed design yields average sample sizes ~22%, ~21%, and ~20% smaller than the independent, 

two-arm trial framework. Comparing the open and closed platform framework under the null 

scenario,  for zero, one, two, and three interim analyses, the open platform gives average sample 

sizes ~8%,~12%, ~15%, and ~17% larger than the closed platform framework. Table 3.4 shows 

additional simulation results for each design framework and number in interim analyses under an 

alternative scenario where π0 = π1 = 0.5 and π2 = 0.35. Under this alternative scenario, average 

sample sizes remain higher in the independent, two-arm trial framework compared to the closed 

and open platform frameworks.  
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3.3.4 Treatment Failure Rates 

Under an alternative scenario where π0 = π1 = 0.5 and π2 = 0.35, the overall treatment 

failure rate of patients across each framework was examined (Table 3.4). In the closed platform 

framework, the failure rate across all trial participants was lower on average compared to two 

comparable independent, two-arm trials. For all number of interim analyses considered, the 

treatment failure rate in the closed platform framework was 2% less compared to the 

independent, two-arm trial framework. The open platform also had lower failure rates on average 

compared to the independent, two-arm trial framework; however failure rates were slightly 

higher than those observed under the closed framework. 

In other alternative scenarios where π0 = π1 = 0.5 and π2 varied from 0.3 to 0.7, similar 

patterns where overall treatment failure rates were lower for the platform frameworks compared 

to the independent, two-arm trial framework were observed among scenarios when treatment 2 

was superior to control (π2 <0.5). However, when experimental treatment 2 was worse than 

control, (π2 >0.5), the overall failure rate was higher for platform trial subjects compared to 

subjects enrolled in independent, two-arm studies. Average treatment failure rates and total 

sample sizes across these scenarios are provided in Table 3.5 for analyses with no multiple 

comparison adjustment and Table 3.6 for Bonferroni adjusted analyses.  
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Table 3.1 Simulation Results under the Null Scenario 

  MC 

Adjustment 

   

Either 

Effective E1 Effective E2 Effective 

Both 

Effective 

P(E1 

Effective|E2) 

P(E2 

Effective|E1) Total N 

Trial Type IA π0 π1 π2 n p n p n p n p p p Mean SD 

Closed 

Platform 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.5 4636 0.046 2573 0.026 2527 0.025 464 0.005 0.184 0.180 600.0 0.0 

 Bonferroni 0.5 0.5 0.5 2235 0.022 1211 0.012 1197 0.012 173 0.002 0.145 0.143 600.0 0.0 

1 None 0.5 0.5 0.5 4250 0.043 2333 0.023 2301 0.023 384 0.004 0.167 0.165 377.3 111.2 

 Bonferroni 0.5 0.5 0.5 2044 0.020 1102 0.011 1085 0.011 143 0.001 0.132 0.130 364.3 104.5 

2 None 0.5 0.5 0.5 3991 0.040 2170 0.022 2159 0.022 338 0.003 0.157 0.156 290.8 121.6 

 Bonferroni 0.5 0.5 0.5 1867 0.019 993 0.010 1002 0.010 128 0.001 0.128 0.129 271.6 109.3 

3 None 0.5 0.5 0.5 3258 0.033 1780 0.018 1744 0.017 266 0.003 0.153 0.149 244.2 124.2 

 Bonferroni 0.5 0.5 0.5 1890 0.019 1015 0.010 998 0.010 123 0.001 0.123 0.121 237.5 116.1 

Open 

Platform  

  

  

  

  

  

  

  

0 None 0.5 0.5 0.5 4810 0.048 2548 0.025 2574 0.026 312 0.003 0.121 0.122 650.0 0.0 

 Bonferroni 0.5 0.5 0.5 2362 0.024 1209 0.012 1265 0.013 112 0.001 0.089 0.093 650.0 0.0 

1 None 0.5 0.5 0.5 4386 0.044 2332 0.023 2312 0.023 258 0.003 0.112 0.111 422.2 101.0 

 Bonferroni 0.5 0.5 0.5 2160 0.022 1112 0.011 1138 0.011 90 0.001 0.079 0.081 409.6 94.5 

2 None 0.5 0.5 0.5 4107 0.041 2177 0.022 2157 0.022 227 0.002 0.105 0.104 333.8 108.2 

 Bonferroni 0.5 0.5 0.5 1910 0.019 973 0.010 1009 0.010 72 0.001 0.071 0.074 315.8 96.9 

3 None 0.5 0.5 0.5 3407 0.034 1770 0.018 1807 0.018 170 0.002 0.094 0.096 285.8 109.4 

 Bonferroni 0.5 0.5 0.5 1934 0.019 992 0.010 1016 0.010 74 0.001 0.073 0.075 278.8 101.8 

Independent 

Two-Arm 

Trials 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.5 5086 0.051 2538 0.025 2609 0.026 61 0.001 0.023 0.024 800.0 0.0 

 Bonferroni 0.5 0.5 0.5 2474 0.025 1234 0.012 1249 0.012 9 0.000 0.007 0.007 800.0 0.0 

1 None 0.5 0.5 0.5 4628 0.046 2298 0.023 2376 0.024 46 0.000 0.019 0.020 486.2 116.3 

 Bonferroni 0.5 0.5 0.5 2293 0.023 1133 0.011 1166 0.012 6 0.000 0.005 0.005 471.0 108.1 

2 None 0.5 0.5 0.5 4317 0.043 2160 0.022 2199 0.022 42 0.000 0.019 0.019 368.2 125.4 

 Bonferroni 0.5 0.5 0.5 2055 0.021 1034 0.010 1028 0.010 7 0.000 0.007 0.007 346.4 111.8 

3 None 0.5 0.5 0.5 3623 0.036 1810 0.018 1843 0.018 30 0.000 0.016 0.017 304.8 127.6 

 Bonferroni 0.5 0.5 0.5 2062 0.021 1014 0.010 1055 0.011 7 0.000 0.007 0.007 297.5 119.1 
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Table 3.2 Simulation Results under an alternative scenario where π0  = π1 = 0.5 and π2 = 0.35 

  MC 

Adjustment 

   

Either 

Effective E1 Effective E2 Effective Both Effective 

P(E1 

Effective|E2) 

P(E2 

Effective|E1) 

Trial Type IA π0 π1 π2 n p n p n p n p p p 

Closed 

Platform 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 86064 0.861 2573 0.026 86054 0.861 2563 0.026 0.030 0.996 

 Bonferroni 0.5 0.5 0.35 78416 0.784 1211 0.012 78409 0.784 1204 0.012 0.015 0.994 

1 None 0.5 0.5 0.35 82864 0.829 2333 0.023 82845 0.828 2314 0.023 0.028 0.992 

 Bonferroni 0.5 0.5 0.35 75216 0.752 1102 0.011 75205 0.752 1091 0.011 0.015 0.990 

2 None 0.5 0.5 0.35 78696 0.787 2170 0.022 78648 0.786 2122 0.021 0.027 0.978 

 Bonferroni 0.5 0.5 0.35 71282 0.713 993 0.010 71257 0.713 968 0.010 0.014 0.975 

3 None 0.5 0.5 0.35 74586 0.746 1780 0.018 74531 0.745 1725 0.017 0.023 0.969 

 Bonferroni 0.5 0.5 0.35 68772 0.688 1015 0.010 68743 0.687 986 0.010 0.014 0.971 

Open 

Platform  

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 85960 0.860 2548 0.025 85906 0.859 2494 0.025 0.029 0.979 

 Bonferroni 0.5 0.5 0.35 78532 0.785 1209 0.012 78493 0.785 1170 0.012 0.015 0.968 

1 None 0.5 0.5 0.35 82659 0.827 2332 0.023 82596 0.826 2269 0.023 0.027 0.973 

 Bonferroni 0.5 0.5 0.35 75230 0.752 1112 0.011 75184 0.752 1066 0.011 0.014 0.959 

2 None 0.5 0.5 0.35 78652 0.787 2177 0.022 78550 0.786 2075 0.021 0.026 0.953 

 Bonferroni 0.5 0.5 0.35 71399 0.714 973 0.010 71337 0.713 911 0.009 0.013 0.936 

3 None 0.5 0.5 0.35 74652 0.747 1770 0.018 74544 0.745 1662 0.017 0.022 0.939 

 Bonferroni 0.5 0.5 0.35 68966 0.690 992 0.010 68897 0.689 923 0.009 0.013 0.930 

Independent 

Two-Arm 

Trials 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 86141 0.861 2538 0.025 85798 0.858 2195 0.022 0.026 0.865 

 Bonferroni 0.5 0.5 0.35 78628 0.786 1234 0.012 78363 0.784 969 0.010 0.012 0.785 

1 None 0.5 0.5 0.35 82980 0.830 2298 0.023 82583 0.826 1901 0.019 0.023 0.827 

 Bonferroni 0.5 0.5 0.35 75454 0.755 1133 0.011 75168 0.752 847 0.008 0.011 0.748 

2 None 0.5 0.5 0.35 78929 0.789 2160 0.022 78465 0.785 1696 0.017 0.022 0.785 

 Bonferroni 0.5 0.5 0.35 71522 0.715 1034 0.010 71231 0.712 743 0.007 0.010 0.719 

3 None 0.5 0.5 0.35 75012 0.750 1810 0.018 74524 0.745 1322 0.013 0.018 0.730 

 Bonferroni 0.5 0.5 0.35 69088 0.691 1014 0.010 68765 0.688 691 0.007 0.010 0.681 
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Table 3.3 Simulation Results for varying levels of π2 

  MC 

Adjustment π0 π1 π2 

E1 Effective E2 Effective Both Effective Either Effective P(E1 Effective|E2) 

Trial Type IA n p n p n p n p p 

Closed 

Platform  

0 None 0.5 0.5 0.3 2573 0.026 98425 0.984 2573 0.026 98425 0.984 0.026 

 Bonferroni 0.5 0.5 0.3 1211 0.012 96981 0.970 1210 0.012 96982 0.970 0.012 

 None 0.5 0.5 0.35 2573 0.026 86054 0.861 2563 0.026 86064 0.861 0.030 

 Bonferroni 0.5 0.5 0.35 1211 0.012 78409 0.784 1204 0.012 78416 0.784 0.015 

 None 0.5 0.5 0.4 2573 0.026 51890 0.519 2368 0.024 52095 0.521 0.046 

 Bonferroni 0.5 0.5 0.4 1211 0.012 40136 0.401 1063 0.011 40284 0.403 0.026 

 None 0.5 0.5 0.5 2573 0.026 2527 0.025 464 0.005 4636 0.046 0.184 

 Bonferroni 0.5 0.5 0.5 1211 0.012 1197 0.012 173 0.002 2235 0.022 0.145 

 None 0.5 0.5 0.6 2573 0.026 1 0.000 1 0.000 2573 0.026 1.000 

 Bonferroni 0.5 0.5 0.6 1211 0.012 1 0.000 1 0.000 1211 0.012 1.000 

 None 0.5 0.5 0.7 2573 0.026 0 0.000 0 0.000 2573 0.026 - 

 Bonferroni 0.5 0.5 0.7 1211 0.012 0 0.000 0 0.000 1211 0.012 - 

Open 

Platform 

0 None 0.5 0.5 0.3 2548 0.025 98362 0.984 2548 0.025 98362 0.984 0.026 

 Bonferroni 0.5 0.5 0.3 1209 0.012 96956 0.970 1208 0.012 96957 0.970 0.012 

 None 0.5 0.5 0.35 2548 0.025 85906 0.859 2494 0.025 85960 0.860 0.029 

 Bonferroni 0.5 0.5 0.35 1209 0.012 78493 0.785 1170 0.012 78532 0.785 0.015 

 None 0.5 0.5 0.4 2548 0.025 52387 0.524 2157 0.022 52778 0.528 0.041 

 Bonferroni 0.5 0.5 0.4 1209 0.012 40428 0.404 961 0.010 40676 0.407 0.024 

 None 0.5 0.5 0.5 2548 0.025 2574 0.026 312 0.003 4810 0.048 0.121 

 Bonferroni 0.5 0.5 0.5 1209 0.012 1265 0.013 112 0.001 2362 0.024 0.089 

 None 0.5 0.5 0.6 2548 0.025 1 0.000 1 0.000 2548 0.025 1.000 

 Bonferroni 0.5 0.5 0.6 1209 0.012 1 0.000 0 0.000 1210 0.012 0.000 

 None 0.5 0.5 0.7 2548 0.025 0 0.000 0 0.000 2548 0.025 - 

 Bonferroni 0.5 0.5 0.7 1209 0.012 0 0.000 0 0.000 1209 0.012 - 

Independent 

Two-Arm 

Trials 

0 None 0.5 0.5 0.3 2538 0.025 98411 0.984 2489 0.025 98460 0.985 0.025 

 Bonferroni 0.5 0.5 0.3 1234 0.012 97078 0.971 1194 0.012 97118 0.971 0.012 

 None 0.5 0.5 0.35 2538 0.025 85798 0.858 2195 0.022 86141 0.861 0.026 

 Bonferroni 0.5 0.5 0.35 1234 0.012 78363 0.784 969 0.010 78628 0.786 0.012 

 None 0.5 0.5 0.4 2538 0.025 51871 0.519 1339 0.013 53070 0.531 0.026 

 Bonferroni 0.5 0.5 0.4 1234 0.012 40095 0.401 486 0.005 40843 0.408 0.012 

 None 0.5 0.5 0.5 2538 0.025 2609 0.026 61 0.001 5086 0.051 0.023 

 Bonferroni 0.5 0.5 0.5 1234 0.012 1249 0.012 9 0.000 2474 0.025 0.007 

 None 0.5 0.5 0.6 2538 0.025 1 0.000 0 0.000 2539 0.025 0.000 

 Bonferroni 0.5 0.5 0.6 1234 0.012 0 0.000 0 0.000 1234 0.012 - 

 None 0.5 0.5 0.7 2538 0.025 0 0.000 0 0.000 2538 0.025 - 

 Bonferroni 0.5 0.5 0.7 1234 0.012 0 0.000 0 0.000 1234 0.012 - 
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Table 3.4 Average treatment failure rates and total sample size under an alternative scenario where π0 = π1 = 0.5 and π2 = 0.35 

   

MC Adjustment 

   Overall Failure Rate Total N 

Trial Type IA π0 π1 π2 Mean SD Mean SD 

Closed Platform 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 0.450 0.020 600.0 0.0  
Bonferroni 0.5 0.5 0.35 0.450 0.020 600.0 0.0 

1 None 0.5 0.5 0.35 0.446 0.025 472.0 91.4  
Bonferroni 0.5 0.5 0.35 0.444 0.024 479.3 86.4 

2 None 0.5 0.5 0.35 0.444 0.027 396.6 103.9  
Bonferroni 0.5 0.5 0.35 0.442 0.027 400.2 106.1 

3 None 0.5 0.5 0.35 0.443 0.030 351.0 114.3  
Bonferroni 0.5 0.5 0.35 0.442 0.029 362.6 115.0 

Open Platform  

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 0.454 0.019 650.0 0.0  
Bonferroni 0.5 0.5 0.35 0.454 0.019 650.0 0.0 

1 None 0.5 0.5 0.35 0.451 0.023 515.8 96.1  
Bonferroni 0.5 0.5 0.35 0.450 0.023 526.1 89.3 

2 None 0.5 0.5 0.35 0.450 0.025 441.7 100.9  
Bonferroni 0.5 0.5 0.35 0.449 0.025 447.4 103.6 

3 None 0.5 0.5 0.35 0.450 0.028 395.8 109.6  
Bonferroni 0.5 0.5 0.35 0.449 0.027 409.5 110.9 

Independent Two-

Arm Trials 

  

  

  

  

  

  

  

0 None 0.5 0.5 0.35 0.462 0.017 800.0 0.0 
 

Bonferroni 0.5 0.5 0.35 0.462 0.017 800.0 0.0 

1 None 0.5 0.5 0.35 0.456 0.022 583.7 122.9 
 

Bonferroni 0.5 0.5 0.35 0.455 0.022 591.5 112.4 

2 None 0.5 0.5 0.35 0.454 0.025 481.7 126.5 
 

Bonferroni 0.5 0.5 0.35 0.452 0.025 482.5 123.7 

3 None 0.5 0.5 0.35 0.452 0.028 419.8 133.5 
 

Bonferroni 0.5 0.5 0.35 0.451 0.027 432.3 131.9 
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Table 3.5 Average treatment failure rates and total sample size for varying levels of π2 – No multiple comparison adjustment 

 

     Closed Platform Open Platform Independent, Two-Arm Trials 

 MC 

Adjustment 
   

Overall Response 

Rate Total N 

Overall Response 

Rate Total N 

Overall Response 

Rate Total N 

IA p0 p1 p2 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

0 None 0.5 0.5 0.3 0.433 0.020 600.0 0.0 0.438 0.019 650.0 0.0 0.450 0.017 800.0 0.0 

1 None 0.5 0.5 0.3 0.432 0.028 439.2 100.0 0.438 0.026 479.3 103.0 0.445 0.024 544.7 129.4 

2 None 0.5 0.5 0.3 0.426 0.029 376.1 83.7 0.435 0.026 419.2 82.4 0.439 0.026 458.0 113.0 

3 None 0.5 0.5 0.3 0.425 0.031 332.7 90.9 0.435 0.028 375.6 87.6 0.437 0.029 399.3 115.8 

0 None 0.5 0.5 0.35 0.450 0.020 600.0 0.0 0.454 0.019 650.0 0.0 0.462 0.017 800.0 0.0 

1 None 0.5 0.5 0.35 0.446 0.025 472.0 91.4 0.451 0.023 515.8 96.1 0.456 0.022 583.7 122.9 

2 None 0.5 0.5 0.35 0.444 0.027 396.6 103.9 0.450 0.025 441.7 100.9 0.454 0.025 481.7 126.5 

3 None 0.5 0.5 0.35 0.443 0.030 351.0 114.3 0.450 0.028 395.8 109.6 0.452 0.028 419.8 133.5 

0 None 0.5 0.5 0.4 0.467 0.020 600.0 0.0 0.469 0.019 650.0 0.0 0.475 0.018 800.0 0.0 

1 None 0.5 0.5 0.4 0.464 0.024 461.9 105.2 0.468 0.023 510.1 103.3 0.471 0.022 577.8 124.9 

2 None 0.5 0.5 0.4 0.463 0.028 383.5 129.0 0.468 0.026 430.8 122.5 0.470 0.025 469.6 142.3 

3 None 0.5 0.5 0.4 0.463 0.031 336.2 138.9 0.468 0.028 382.5 131.1 0.469 0.028 405.5 150.5 

0 None 0.5 0.5 0.5 0.500 0.020 600.0 0.0 0.500 0.020 650.0 0.0 0.500 0.018 800.0 0.0 

1 None 0.5 0.5 0.5 0.500 0.027 377.3 111.2 0.500 0.025 422.2 101.0 0.500 0.023 486.2 116.3 

2 None 0.5 0.5 0.5 0.500 0.031 290.8 121.6 0.500 0.029 333.8 108.2 0.500 0.027 368.2 125.4 

3 None 0.5 0.5 0.5 0.500 0.035 244.2 124.2 0.500 0.031 285.8 109.4 0.500 0.031 304.8 127.6 

0 None 0.5 0.5 0.6 0.533 0.020 600.0 0.0 0.531 0.019 650.0 0.0 0.525 0.018 800.0 0.0 

1 None 0.5 0.5 0.6 0.530 0.028 345.2 85.4 0.527 0.026 384.9 66.1 0.523 0.024 446.0 85.6 

2 None 0.5 0.5 0.6 0.529 0.033 254.9 93.2 0.525 0.030 292.6 73.5 0.523 0.029 323.6 92.8 

3 None 0.5 0.5 0.6 0.529 0.038 208.0 95.7 0.523 0.033 244.0 75.6 0.522 0.033 260.0 95.1 

0 None 0.5 0.5 0.7 0.566 0.020 600.0 0.0 0.562 0.019 650.0 0.0 0.550 0.017 800.0 0.0 

1 None 0.5 0.5 0.7 0.561 0.029 343.4 82.5 0.553 0.026 382.5 61.9 0.546 0.025 443.2 82.3 

2 None 0.5 0.5 0.7 0.558 0.035 251.5 89.0 0.549 0.031 288.0 68.9 0.545 0.030 318.3 88.7 

3 None 0.5 0.5 0.7 0.556 0.040 203.2 90.9 0.545 0.034 237.8 71.1 0.543 0.034 252.9 90.3 
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Table 3.6 Average treatment failure rates and total sample size for varying levels of π2 – Bonferroni adjustment 

     Closed Platform Open Platform Independent, Two-Arm Trials 

 MC 

Adjustment 
   

Overall Response 

Rate Total N 

Overall Response 

Rate Total N 

Overall Response 

Rate Total N 

IA p0 p1 p2 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

0 Bonferroni 0.5 0.5 0.3 0.433 0.020 600.0 0.0 0.438 0.019 650.0 0.0 0.450 0.017 800.0 0.0 

1 Bonferroni 0.5 0.5 0.3 0.428 0.027 460.2 91.9 0.435 0.025 503.4 97.0 0.442 0.023 567.1 121.9 

2 Bonferroni 0.5 0.5 0.3 0.424 0.028 384.1 82.2 0.433 0.025 430.0 81.6 0.437 0.025 465.1 106.8 

3 Bonferroni 0.5 0.5 0.3 0.423 0.030 349.3 89.5 0.433 0.027 394.2 88.3 0.435 0.028 416.9 113.9 

0 Bonferroni 0.5 0.5 0.35 0.450 0.020 600.0 0.0 0.454 0.019 650.0 0.0 0.462 0.017 800.0 0.0 

1 Bonferroni 0.5 0.5 0.35 0.444 0.024 479.3 86.4 0.450 0.023 526.1 89.3 0.455 0.022 591.5 112.4 

2 Bonferroni 0.5 0.5 0.35 0.442 0.027 400.2 106.1 0.449 0.025 447.4 103.6 0.452 0.025 482.5 123.7 

3 Bonferroni 0.5 0.5 0.35 0.442 0.029 362.6 115.0 0.449 0.027 409.5 110.9 0.451 0.027 432.3 131.9 

0 Bonferroni 0.5 0.5 0.4 0.467 0.020 600.0 0.0 0.469 0.019 650.0 0.0 0.475 0.018 800.0 0.0 

1 Bonferroni 0.5 0.5 0.4 0.463 0.024 454.0 107.4 0.467 0.023 503.9 104.2 0.471 0.022 568.3 121.7 

2 Bonferroni 0.5 0.5 0.4 0.463 0.028 372.3 130.7 0.468 0.026 420.8 124.9 0.470 0.026 454.5 140.3 

3 Bonferroni 0.5 0.5 0.4 0.462 0.031 336.4 139.2 0.468 0.028 383.8 131.8 0.469 0.028 405.6 148.7 

0 Bonferroni 0.5 0.5 0.5 0.500 0.020 600.0 0.0 0.500 0.020 650.0 0.0 0.500 0.018 800.0 0.0 

1 Bonferroni 0.5 0.5 0.5 0.500 0.027 364.3 104.5 0.500 0.025 409.6 94.5 0.500 0.024 471.0 108.1 

2 Bonferroni 0.5 0.5 0.5 0.500 0.032 271.6 109.3 0.500 0.029 315.8 96.9 0.500 0.028 346.4 111.8 

3 Bonferroni 0.5 0.5 0.5 0.500 0.036 237.5 116.1 0.500 0.032 278.8 101.8 0.500 0.031 297.5 119.1 

0 Bonferroni 0.5 0.5 0.6 0.533 0.020 600.0 0.0 0.531 0.019 650.0 0.0 0.525 0.018 800.0 0.0 

1 Bonferroni 0.5 0.5 0.6 0.531 0.028 337.2 79.1 0.527 0.026 378.4 60.8 0.523 0.024 437.4 78.9 

2 Bonferroni 0.5 0.5 0.6 0.530 0.034 243.0 82.9 0.525 0.030 282.8 64.5 0.523 0.029 311.3 82.5 

3 Bonferroni 0.5 0.5 0.6 0.529 0.038 204.1 89.5 0.523 0.033 240.0 69.9 0.522 0.033 256.0 88.9 

0 Bonferroni 0.5 0.5 0.7 0.566 0.020 600.0 0.0 0.562 0.019 650.0 0.0 0.550 0.017 800.0 0.0 

1 Bonferroni 0.5 0.5 0.7 0.562 0.029 335.9 76.8 0.554 0.026 376.8 57.5 0.547 0.025 435.5 76.4 

2 Bonferroni 0.5 0.5 0.7 0.560 0.035 240.5 79.2 0.550 0.031 279.3 60.3 0.546 0.030 307.3 79.1 

3 Bonferroni 0.5 0.5 0.7 0.556 0.040 199.6 84.8 0.545 0.034 234.1 65.3 0.544 0.034 249.2 84.3 
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3.4 Discussion 

Existing arguments that call multiple testing adjustment in platform trials into question 

are largely philosophical. Freidlin et al. state that when multiple experimental treatments are 

compared to a shared control for the purposes of efficiency alone and the results of one 

experimental treatment have no impact on the interpretation of another, multiple testing 

adjustments are not needed since the underlying clinical question of each comparison is 

independent.29  Other researchers agree that a correction for multiple comparisons is needed only 

if the treatments being tested are related. Examples of related treatments would be different 

doses of the same drug. If the treatments are unrelated, each comparison of an experimental 

treatment versus control can be viewed as an independent trial28, 29. While these arguments have 

merit, the shared control group makes the comparisons of each experimental treatment versus the 

control decidedly dependent.  

This simulation study sought to quantitatively evaluate the impact of adjusting and not 

adjusting for multiple testing on FWER and conditional type I error rates in platform trials. The 

simulation results demonstrate that, on average, platform trial designs yield smaller sample sizes, 

better trial-wide treatment response rates when at least one treatment is more effective than the 

control, and slightly lower FWER when compared to a set of comparable two-arm trials 

evaluating the same set of treatments. These results are consistent with previously reported 

simulation studies that explored the operating characteristics of various platform designs9, 19, 21. 

Compared to closed platform studies where all treatments open to enrollment simultaneously, 

open platform designs that allow for additional treatments to enter after initial study launch have 

higher average sample sizes and, when at least one treatment is effective, lower trial-wide 

treatment response rates due to the higher number of patients allocated to the control group. 
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However, when compared to a set of comparable two-arm trials, the open framework still 

demonstrates lower average sample sizes as well as higher treatment response rates when at least 

one treatment is more effective than the control.  

Conditional type I error rates under the null scenario for one experimental treatment 

being declared effective given the other had been declared effective were substantially higher 

under the platform frameworks compared to the independent, two-arm trial framework. Under 

scenarios with no interim analyses, conditional error rates for the closed and open platform 

frameworks with no multiple comparison adjustment were approximately 8 and 5 times higher 

respectively, when compared to the independent, two-arm trial framework. When a Bonferroni 

correction was applied, the conditional error rates improved to be approximately 6 and 4 times 

higher for the closed and open respectively when compared to a set of two-arm trials with no 

multiple comparison adjustment. Under an alternative scenario where π0 = π1 = 0.5 and π2 = 0.35, 

when no interim analyses are used, power for testing the null hypothesis that π2 ≥ π0  is ~86% 

across all three frameworks when no Bonferroni correction is applied and decreases to ~78% 

when the correction is applied. Although the correction does protect FWER, it does little to the 

conditional type I error rate and results in a substantial loss of power. Further, under the null 

scenario the highest marginal probability observed for both treatments being declared effective, 

in the case of the closed platform with no interim analyses, was only 0.5%. 

In the open platform framework where the second experimental treatment is introduced 

later in the trial, conditional type I error rates are ~35% lower compared to the closed framework 

due to the fact that each experimental treatment is compared only to concurrently randomized 

controls making test statistics less correlated than they are under the closed framework.  

Similarly, under the null scenario, as the number of interim analyses increase, the conditional 
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error rates decrease due to arms exiting the study early for futility resulting in less overlap 

between the control patients used for each experimental versus control comparison. Under 

alternative scenarios where π0 = π1 = 0.5 and π2  varies, as π2 decreases, the conditional 

probability of experimental treatment 1 being declared effective given treatment 2 is declared 

effective decreases downward to the rate observed in the independent, two-arm scenario as 

treatment 2 is declared effective more often. 

Given these observations, multiple comparison adjustments are likely unnecessary in 

platform trials of unrelated treatments. While a Bonferroni correction will control FWER, it does 

not substantially impact conditional type I error rates. Furthermore, if flexible features are 

implemented, such as allowing arms to enter at varying time points under an open framework or 

allowing arms to exit early for efficacy or futility, conditional type I error rates decrease. Since 

FWER is comparable between the unadjusted platform and equivalent two-arm designs, the 

substantial drop in power yielded by adjusting for multiple testing is likely not worth the modest 

improvement in conditional type I error. As such, the results of this simulation study support that 

multiple testing does not need to be adjusted for in a platform trial if the treatments being 

evaluated are unrelated. For related treatments, such as different doses of the same drug, multiple 

testing should be accounted for as the drug is getting multiple chances to be declared effective. 

Platform trials offer an efficient alternative to conducting multiple two-arm studies. 

However, stakeholders should be aware that, as with all efficient design, tradeoffs exist. One of 

which is that conditional error rates are higher than the nominal significance level.  This 

simulation study shows that conditional error rates are elevated regardless of whether analyses 

are adjusted for multiple testing. When developing a platform design, simulation studies should 
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be conducted to ensure study stakeholders understand this as well as other potential tradeoffs 

relative to conducting independent two-arm studies.  
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CHAPTER 4 

Integrating Non-concurrent Controls in Analyses of 

Open Platform Trials 

 

4.1 Introduction 

When launching a trial with multiple experimental treatment arms, logistic or regulatory 

issues can result in a bottleneck, delaying enrollment until all experimental treatments are ready 

to enroll simultaneously.   Open platform designs circumvent this issue by allowing treatment 

arms to enter and exit the platform at varying time points.  Various open designs have been 

discussed previously9, 19-21, 26.  Under these designs, a control arm opens to enrollment at the 

beginning of the trial and remains open as long as any experimental treatment is enrolling.  For 

experimental treatment arms introduced to the platform after the trial’s initial launch, whether to 

incorporate all available control data in analyses or use only controls randomized after the 

introduction of the experimental arm is not standardized.  Using all available controls can 

increase power and yield more precise estimates; however, drift in population parameters over 

time can yield biased estimates and impact type I error rates.   



 

43 
 

To avoid bias and potential type I error inflation, the rolling arm platform design 

proposed by Ventz et al. recommends the use of only concurrently randomized controls in the 

analyses of each experimental arm21.  In the ongoing STAMPEDE and the recent CTSN 

Neuroprotection platform trials, only concurrent controls are incorporated in analyses of 

experimental arms5, 33.   Open platform design proposals by Hobbs et al. and Yuan et al. pool all 

controls in analyses of experimental arms under the stipulation that drift is not a concern.19, 34  If 

drift is a concern, both propose the use of concurrent controls only or the use controls that were 

enrolled within a pre-specified time interval before the experimental arm was introduced.  In 

contrast to a simple pooled approach, Berry et al.’s platform design proposal incorporates all 

controls and accounts for possible drift in outcome rates by using a model with month as a 

covariate26.  A similar approach was implemented in the I-SPY2 trial9.  However, this approach 

has been criticized since including month as a covariate could be inadequate if the model is 

misspecified.27  Recently Kaizer et al. introduced an open platform design aimed at finding an 

effective Ebola treatment quickly that leverages multi-source exchangeability models (MEMs) to 

incorporate non-concurrent controls in analyses.  Experimental treatments are assessed 

sequentially and, through an adaptive randomization procedure, the proportion of patients 

allocated to the current experimental treatment increases if outcome rates in past control data are 

similar to concurrent control data35. 

With the exception of Kaizer et al. and Berry et al.’s approaches, previously proposed 

open platform designs have operated under two extremes.  Either they ignore parameter drift and 

pool all available controls in analyses of experimental treatments, or they protect against drift by 

using concurrent controls only.  A more desirable option would operate in between these 

extremes such that the information incorporated from controls randomized prior to the initiation 
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of an experimental treatment is dependent on observed drift or heterogeneity.   Methods 

developed to incorporate historical control data in the analyses of two-arm clinical trials could be 

applied to address this gap. 

Historical control groups are commonly used in single-arm phase II studies evaluating a 

new experimental therapy relative to a performance goal determined by the historical data.  

However, several approaches are available in which historical control data can supplement 

concurrent control data in two-arm studies36.  Leveraging historical control data can yield lower 

sample sizes and allow for higher patient allocation to the experimental arm37.  FDA guidance 

encourages the use of historical controls in medical device trials and serious conditions38, 39.  

Pediatric, oncology, and rare disease therapeutic areas have increasingly been using these 

approaches40, 41.    

As is the case in an open platform framework, in a two-arm trial incorporating historical 

information, if historical and concurrent controls are homogenous, supplementing the concurrent 

data with the historical controls can increase power and decrease type I error rates and mean 

square error40, 42, 43.  However, if the two groups are not homogenous, estimates can be biased 

and type I error inflated.  To protect against these issues, in a seminal paper, Pocock introduced 

six requirements for incorporating historical controls into the analysis of a randomized clinical 

trial44.   Pocock’s six requirements are as follows: 

1. The historical control group received the same treatment as the randomized control group 

2. The historical control group was collected recently as part of a study with the same 

eligibility criteria 

3. The treatment in the historical control group is evaluated in the same way as the 

randomized control group 
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4. Patient characteristics of the historical control group are similar to those of patients 

enrolled in the randomized trial 

5.  The historical control group comes from a study that was conducted by the same group 

of clinical investigators 

6. There is no reason to expect different outcomes for the historical and randomized 

controls (i.e. patient accrual and selection is similar between the historical and 

randomized studies) 

In an open platform, controls randomized prior to the initiation of a new experimental arm can be 

viewed as pseudo-historical controls.  As all subjects are enrolled under the same protocol, with 

the same eligibility criteria, and at the same clinical centers, it is easy to argue that these pseudo-

historical controls are likely to meet Pocock’s requirements.  This makes the application of 

methods developed to supplement the analyses of two-arm trials with historical control data well 

suited to open platforms.   

Beyond naively pooling historical and current data, alternative methods such as down 

weighting the historical data, either with pre-specified weights in a frequentist analysis or with 

power priors in a Bayesian approach, can reduce the influence of the historical data in analysis44, 

45.  However, these methods depend on subjective choices of weights or priors to determine the 

amount of information borrowed from the historical data.  Dynamic methods that allow the data 

to determine the degree of borrowing seem better suited to protect against drift in population 

parameters.  The simplest dynamic method is a test-then-pool approach in which the historical 

control data are pooled with the current control only if one fails to reject the null hypothesis that 

the two are equivalent36.  In contrast to this all or nothing approach, other dynamic methods 

allow for partial borrowing through Bayesian hierarchical modeling.  In an extension of the static 
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power prior, the weight used in a power prior can be treated as a random variable dependent on 

homogenity45, 46.  In an alternative approach, Hobb’s commensurate prior method considers the 

underlying population parameter of the historical data to be distinct from that of the current 

control and uses a commensurability parameter based on the closeness of the two parameters to 

determine the degree of borrowing47, 48.  Methods based on meta-analysis have also been 

developed where multiple historical studies can be used to estimate between-study variability; 

however in the case of one historical sample, an informative prior distribution for the between-

study variance is needed49, 50.   

Recently, Kaizer et al. introduced MEMs for integrating data from previous trials into the 

analysis of a current trial.  In this approach, all possible combinations of exchangeability 

between the current data and the historical datasets are considered and an extension of Bayesian 

model averaging is used to estimate the parameter of interest51.  As referenced above, this 

method has been applied in a platform design aimed at finding an effective Ebola treatment35. In 

this design, experimental treatments are considered one at a time, sequentially and compared to a 

control. For experimental treatments considered after the first experimental treatment arm is 

closed, a pre-specified number of patients are randomized with equal allocation between the 

current experimental arm and control.  If the control data of the current segment is similar to that 

of previous segments, adaptive randomization is used to allocate more patients to the current 

experimental arm.  A MEM is used to estimate the parameter of interest in the control group as 

well as the effective supplemental sample size (ESSS) gained by using the past control.  If 

current control data is homogenous with past segments, the parameter estimate will have higher 

precision and therefore higher ESSS.  The ESSS is used to determine the randomization 

allocation ratio with a higher ESSS corresponding to higher allocation to the experimental group.  
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MEMs have not yet been explored in an open platform framework where multiple experimental 

treatments could be declared effective and randomization is fixed.   

This study aims to assess the operating characteristics of open platform designs that use 

methods developed for integrating historical control data into two-arm trials to incorporate non-

concurrent controls in analyses of experimental treatments.  Five approaches are explored: two 

test-then-pool approaches, a static power prior, a dynamic power prior, and a MEM approach.  In 

a 2016 simulation study, Dejardin et al. assessed the use of various methods of incorporating a 

historical control group in a two-arm non-inferiority trial with a binary outcome.  In this study, a 

dynamic power prior, commensurate prior, and meta-analytic based robust mixture prior were 

compared.  All three approaches demonstrated comparable operating characteristics52.  As such, 

of the three, the dynamic power prior was selected for this study over the commensurate and 

robust mixture priors as it is simpler to implement than the commensurate prior and does not 

require a static weight and informative prior distribution for between-study variance like the 

meta-analytic based approach.  The five selected methods are compared to the two extremes of 

using concurrent controls only versus naively pooling the data across a variety of potential 

parameter drift scenarios. 

 

4.2 Methods 

4.2.1 General Trial Framework 

An open platform design with two experimental treatments and a control was considered.  

Three arms were chosen for simplicity of interpretation, but results can be extrapolated to 

additional armed studies.  The trial opens to enrollment with the first experimental treatment and 
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control only.  The second experimental treatment is subsequently added to the platform after a 

number of patients have been enrolled.   

 

4.2.2 Outcome Assessment 

Efficacy is evaluated with a binary outcome of treatment success or failure. Under the 

trial design, the efficacy of two experimental treatments is evaluated; however, the comparison 

of experimental treatment 2 versus control is the primary interest of this simulation study.  This 

comparison is assessed using the one-sided null hypothesis that the failure rate of the second 

experimental treatment group is equivalent to or worse than the control (H0: π2 ≥ π0).  The null 

hypothesis is rejected if the posterior probability that π2 < π0 is greater than 0.975.  Multiple 

approaches to estimating this posterior probability were explored and are detailed below.   

 

4.2.3 Concurrent Controls Only 

In the most conservative approach, the second experimental treatment is compared to 

only concurrently randomized controls using Bayesian inference.  The probability model is 

defined as follows: 

For each treatment group k, where k=0 denotes the control group and k=1 or 2 denotes the 

experimental groups, xk is the number of treatment failures observed in nk patients.  xk follows a 

Binomial(nk, πk) distribution where πk  is the probability of treatment failure.  The prior 

distribution of πk is assumed to follow a Beta(αk, βk) distribution with known hyperparameters αk 

and βk.  After xk failures are observed in nk patients, the posterior distribution of πk is as follows:  

Pr(𝜋𝑘|𝑥𝑘) ∝ Pr(𝑥𝑘|𝜋𝑘)Pr(𝜋𝑘) ∝ 𝜋𝑘
𝛼𝑘+𝑥𝑘−1(1 − 𝜋𝑘)

𝛽𝑘+𝑛𝑘−𝑥𝑘−1 



 

49 
 

so that Pr(πk|xk) ~ Beta(αk+𝑥𝑘, βk+𝑛𝑘 − 𝑥𝑘).53 A non-informative uniform prior on the 

probability of failure (πk ~ Beta(1, 1)) was used for all groups.   

 

4.2.4 All Controls (Pooled) 

In the least conservative approach, the second experimental treatment is compared to the 

pooled sample of all controls (i.e. concurrent controls and controls randomized prior to the 

initiation of experimental treatment 2).  The probability model used to estimate the posterior 

distributions of π2 and π0 is identical to that of the analysis of concurrent controls only. The only 

difference is that n0 and x0 will have larger values that account for the sample size and number of 

observed failures in the non-concurrent controls. 

 

4.2.5 Test-then-Pool 

In the test-then-pool approach, the inclusion of non-concurrent controls in the analysis of 

experimental group 2 is dependent on failing to reject the null hypothesis that the probability of 

treatment failure is equivalent in the non-concurrent and concurrent controls (i.e. H0: 𝜋0𝑛𝑐  = 𝜋0𝑐). 

The same probability model defined above is used to estimate the posterior distributions of 𝜋0𝑛𝑐  

and 𝜋0𝑐.  The null hypothesis is tested using a Monte Carlo approach to draw random samples 

from the posterior distributions of 𝜋0𝑛𝑐  and 𝜋0𝑐and estimate the posterior probability that 𝜋0𝑛𝑐  ≠ 

𝜋0𝑐 .  If the posterior probability that 𝜋0𝑛𝑐  > 𝜋0𝑐or 𝜋0𝑛𝑐  < 𝜋0𝑐is greater than S, the null is rejected 

and only concurrent controls are included in analysis.  Otherwise, if there is insufficient evidence 

that 𝜋0𝑛𝑐  is not equal to 𝜋0𝑐all controls are incorporated in the analysis.  Two cut-offs for S were 

considered, 0.975 (test-then-pool 1) and 0.95 (test-then-pool 2). 
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4.2.6 Power Prior (Static) 

A fixed power prior essentially down weights non-concurrent control data using a scalar, 

power parameter ϴ ⸦ [0,1].  The general form of the power prior is as follows: 

Pr(𝜋0|𝑥0𝑛𝑐 , 𝛳) ∝ L(𝜋0|𝑥0𝑛𝑐)
𝛳
Pr(𝜋0) = Pr(𝑥0𝑛𝑐|𝜋0)

𝛳
Pr(𝜋0) 

Where 𝜋0 again represents the probability of a treatment failure in the control group, 𝑥0𝑛𝑐 is the 

number of failures observed in the 𝑛0𝑛𝑐  non-concurrent controls, and Pr(𝜋0) is the initial prior 

on 𝜋0 (𝜋0~Beta(α0, β0)) as defined above.  Using these, the power prior is: 

Pr(𝜋0|𝑥0𝑛𝑐, 𝛳) ∝ 𝜋0
𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)

𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1 

so that Pr(𝜋0|𝑥0𝑛𝑐, 𝛳) ~ Beta(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐)+𝛽0). 

After all control data is observed, let 𝑥0𝑐 be the number of failures observed in the 𝑛0𝑐 

concurrent controls.  The posterior distribution of 𝜋0 is then: 

Pr(𝜋0|𝑥0𝑐, 𝑥0𝑛𝑐 , 𝛳) ∝ Pr(𝑥0𝑐|𝜋0)Pr(𝑥0𝑛𝑐|𝜋0)
𝛳 Pr(𝜋0) 

∝ 𝜋0
𝑥0𝑐+𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)

(𝑛0𝑐−𝑥0𝑐)+𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1 

so that Pr(𝜋0|𝑥0𝑐, 𝑥0𝑛𝑐 , 𝛳) ~ Beta(𝑥0𝑐 + 𝛳𝑥0𝑛𝑐 + 𝛼0,(𝑛0𝑐 − 𝑥0𝑐) + 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐)+𝛽0). A 

non-informative uniform prior was used for the initial prior of π0 so that 𝛼0 = 𝛽0 = 1.  The 

power parameter ϴ was set to 0.5 so that the influence of the non-concurrent controls was 

reduced by half.  

 

4.2.7 Power Prior (Dynamic) 

In a dynamic extension of the power prior, the power parameter is considered a random 

variable and is estimated based on the similarity of the non-concurrent and concurrent control 

data.  Specified by Duan et al. the normalized power prior is as follows46: 
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Pr(𝜋0, 𝛳|𝑥0𝑛𝑐) = 
1

𝐶(𝛳)
𝐿(𝜋0|𝑥0𝑛𝑐)

𝛳
Pr(𝜋0)Pr(𝛳) 

Where Pr(𝜋0) is a Beta(𝛼0, 𝛽0) prior on 𝜋0, 𝑃𝑟(𝛳) is a Beta(𝛼𝛳 , 𝛽𝛳) prior on the power 

parameter, and 𝐶(𝛳) is a normalizing constant that ensures the resulting posterior is consistent 

with the likelihood principle46.  The normalizing constant is: 

𝐶(𝛳) = ∫𝐿(𝜋0|𝑥0𝑛𝑐)
𝛳
Pr(𝜋0)𝑑𝜋0 

                                                = ∫𝜋0
𝛳𝑥0𝑛𝑐(1 − 𝜋0)

𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)𝜋0
𝛼0−1(1 − 𝜋0)

𝛽0−1𝑑𝜋0 

                                                = ∫𝜋0
𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)

𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1𝑑𝜋0 

= 𝛽(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐) + 𝛽0) 

Where 𝛽(x,y) indicates the beta function. Expressed in full the normalized power prior is: 

Pr(𝜋0, ϴ|𝑥0𝑛𝑐) ∝
𝜋0

𝛳𝑥0𝑛𝑐(1 − 𝜋0)
𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)𝜋0

𝛼0−1(1 − 𝜋0)
𝛽0−1𝛳𝛼𝛳−1(1 − 𝛳)𝛽𝛳−1

𝛽(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐) + 𝛽0)
 

∝
𝜋0

𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)
𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1𝛳𝛼𝛳−1(1 − 𝛳)𝛽𝛳−1

𝛽(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐) + 𝛽0)
 

After all control data is observed, the joint posterior for 𝜋0 and ϴ is then: 

Pr(𝜋0, ϴ|𝑥0𝑛𝑐 , 𝑥0𝑐) ∝ 𝐿(𝜋0|𝑥0𝑐)Pr(𝜋0, ϴ|𝑥0𝑛𝑐) 

∝ 𝜋0
𝑥0𝑐(1 − 𝜋0)

𝑛0𝑐−𝑥0𝑐
𝜋0

𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)
𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1𝛳𝛼𝛳−1(1 − 𝛳)𝛽𝛳−1

𝛽(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐) + 𝛽0)
 

∝
𝜋0

𝑥0𝑐+𝛳𝑥0𝑛𝑐+𝛼0−1(1 − 𝜋0)
𝑛0𝑐−𝑥0𝑐+𝛳(𝑛0𝑛𝑐−𝑥0𝑛𝑐)+𝛽0−1𝛳𝛼𝛳−1(1 − 𝛳)𝛽𝛳−1

𝛽(𝛳𝑥0𝑛𝑐 + 𝛼0, 𝛳(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐) + 𝛽0)
 

Non-informative uniform priors (Beta(1,1)) were used for  Pr(𝜋0) and Pr(𝛳).  A Markov chain 

Monte Carlo (MCMC) method was used to sample from the joint posterior distribution and 

estimate the posterior distribution of 𝜋0.  
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4.2.8 Multisource Exchangeability Models (MEMs) 

The MEM framework considers two possible combinations of exchangeability between 

the non-concurrent and concurrent control data datasets: either the data are exchangeable and 

pooled, or the data are non-exchangeable and only concurrent data is used.  These two cases are 

represented by two models denoted Ω1 and Ω2 respectively.  The posterior distribution of 𝜋0 

based on the concurrent and nonconcurrent data will be: 

Pr(𝜋0|𝑥0𝑛𝑐 , 𝑥0𝑐) = ∑ 𝑤𝑖Pr(
2
𝑖=1 𝜋0|Ωi, 𝑥0𝑛𝑐 , 𝑥0𝑐) 

Where wi is a posterior weight, based on the data, given by 

𝑤𝑖 = 𝑃𝑟(Ωi|𝑥0𝑛𝑐 , 𝑥0𝑐) =
Pr(𝑥0𝑛𝑐 , 𝑥0𝑐|Ωi) Pr(Ωi)

∑ Pr(𝑥0𝑛𝑐 , 𝑥0𝑐|
2
𝑗=1 Ωj)Pr(Ωj)

 

such that ∑ wi = 12
𝑖=1 .  Pr(Ωi) is the prior probability that model i represents the true model and   

Pr(𝑥0𝑛𝑐 , 𝑥0𝑐|Ωi) is the integrated marginal likelihood of model i.  A Beta(𝛼0, 𝛽0) prior on 𝜋0 is 

assumed for both the concurrent and non-concurrent control data so the integrated marginal 

likelihood of each model is given by: 

Pr(𝑥0𝑛𝑐 , 𝑥0𝑐|Ωi) = 
𝛽(𝑥0𝑐+𝛼0+𝑠𝑖𝑥0𝑛𝑐 ,(𝑛0𝑐−𝑥0𝑐)+𝛽0+𝑠𝑖(𝑛0𝑛𝑐−𝑥0𝑛𝑐))

𝛽(𝛼0,𝛽0)
∗ (

𝛽(𝑥0𝑛𝑐+𝛼0,𝑛0𝑛𝑐−𝑥0𝑐+𝛽0)

𝛽(𝛼0,𝛽0)
)
1−𝑠𝑖

 

Where 𝑠𝑖 is an indicator of whether the non-concurrent data is considered exchangeable or not.  

In model 1 (Ω1), 𝑠1 = 1 and in model 2 (Ω2), 𝑠2 = 0.  This yields a Beta(𝑥0𝑐 + 𝛼0 + 𝑠𝑖𝑥0𝑛𝑐 ,

(𝑛0𝑐 − 𝑥0𝑐) + 𝛽0 + 𝑠𝑖(𝑛0𝑛𝑐 − 𝑥0𝑛𝑐)) posterior distribution for each MEM which makes the 

overall posterior distribution of π0 a weighted mixture of two Beta distributions.  The 

calc.MEM.betabin R function developed by Kaizer et al. was used to estimate the posterior 

distribution of π0
35.  Equal prior weights for exchangeability (Pr(Ωi)=0.5) were assigned and a 

uniform Beta(1,1) prior was assumed for 𝜋0.   
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4.2.9 Trial Design  

The trial opens with 1:1 randomization to the control arm and the first experimental 

treatment.  The second experimental treatment arm opens to enrollment 12 months after trial 

launch and patients are randomized 1:1:1 across the three groups until month 24.  At 24 months, 

the first experimental treatment arm closes and randomization continues 1:1 to the control and 

second experimental treatment arm through 36 months.  The accrual per month was set to 30 

patients so the total sample size is 300 in each experimental arm and 480 in the control group.  

(Figure 4.1)  Randomization was blocked such that there was equal group allocation every 

month. 

 

Figure 4.1 Timeline of Enrollment in Simulated Open Platform Trials 

 

4.2.10 Scenarios 

Multiple scenarios with varying temporal effects on failure rates in the control group 

were explored and are shown in figure 4.2.  Some examples of these different scenarios are 

presented in the discussion.  Under the null hypothesis, experimental treatment group 2’s failure 
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rate was equivalent to control.  Two alternative scenarios were explored in which the failure rate 

of experimental treatment 2 was 0.8 and 0.75 times that of the control.   

 

4.2.11 Simulation Procedures and Operating Characteristics 

For each scenario, 10,000 trials were simulated.  For a single trial, all methods were 

applied on the same set of “subjects” by using the same set of uniform variates and the same 

randomization scheme.  If the uniform variate of a subject was smaller than the “true” failure rate 

of the subject’s assigned group, the subject was deemed to have failed.  Monte Carlo sampling 

was used to evaluate the posterior distributions of π0 and π2 for all methods.  If the posterior 

probability that π0 > π2 was greater than 0.975, experimental treatment 2 was declared effective.  

Type I error rates under null scenarios and power under alternative scenarios are reported.  

Estimated mean, standard deviation and bias for π0 and the relative risk (π2/π0) for each scenario 

are also reported.  All simulations were conducted in R version 3.5.331.  
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Figure 4.2 Simulated Failure Rates Overtime in the Control Group 
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4.3 Results 

The probability of experimental treatments being declared effective under each scenario 

is shown in table 4.1.  As expected, when failure rates are fixed under the “constant” scenario, 

type I error and power are equivalent for the comparison of experimental treatments 1 and 2 to 

their respective concurrent controls.  However, when experimental treatment 2 is compared to all 

controls, type I error decreases from 0.251 to 0.243 and power increases from 0.695 to 0.782 and 

0.877 to 0.931 for true relative risks of 0.8 and 0.75 respectively.  Powers for the test-then-pool, 

power prior and MEM approaches lie in between that of the concurrent only and all pooled 

approaches.  Under the test-then-pool approaches, type I error is higher than both the concurrent 

only and all pooled approaches (type I error = 0.0263 and 0.0270 for test-then-pool 1 and 2 

respectively).  Conversely, the type I error of the static power prior, dynamic power prior, and 

MEM all fall below the all pooled approach (type I error = 0.0209, 0.0216 and 0.226 

respectively).   

Mean estimates of π0 under each scenario are shown in table 4.2.  Under the “constant” 

scenario, π0 estimates are equivalent across all analytical approaches.  The mean for the 

concurrent control approach has the highest variability and all pooled the lowest (SD = 0.285 vs. 

0.224 under null scenario).  In between these two extremes, the test-then-pool, power prior, and 

MEM approaches have similar standard deviations.  Relative risk estimates follow the same 

patterns with more precise estimates for methods that borrow information from non-concurrent 

controls.  (Table 4.3) 

  Under an increasing linear trend, the rate of failure in the control group increases monthly 

at a constant rate.  As a result, the estimate of π0 is higher for concurrent controls compared to all 

controls pooled (0.623 vs. 0.5873 and 0.562 vs. 0.544 under the null for the “increasing linear 
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1” and “increasing linear 2” scenarios respectively, Table 4.2).  Consequently, pooling controls 

randomized prior to the initiation of experimental group 2 results in lower type I error (Type I 

error = 0.0017 vs. 0.225 and 0.007 vs. 0.0273 for all pooled vs. concurrent only under the 

“increasing linear 1” and “increasing linear 2” scenarios respectively).  Power is also lower for 

the pooled analyses as relative risk estimates are inflated towards 1 by the inclusion of the non-

concurrent controls with lower failure rates (Table 4.1 and 4.3).  The bias of relative risk 

estimates is shown for all scenarios in table 4.4.  In the “increasing linear 1” scenario, when all 

controls are pooled, relative risk estimates are 0.0639, 0.0531, and 0.0492 higher than the true 

relative risks of 1, 0.8 and 0.75 respectively.  In contrast, under this same scenario, bias ranges 

from only 0.004-0.005 in analyses that include only concurrent controls.  When the rate of 

increasing failure is slower under the “increasing linear 2” scenario, estimates from pooled 

analyses remain upwardly biased at 0.0363, 0.0313 and 0.0294 for true relative risks of 1, 0.8 

and 0.75 respectively, compared to values that range from 0.005-0.006 for analyses of concurrent 

controls.   

Under the “increasing linear 1” scenario, the test-then-pool, power prior, and MEM 

approaches all yield less bias then the all pooled analysis.  However, bias under these approaches 

remains higher than the concurrent only analysis.  Similarly, type I error and power for these 

approaches fall in between the two extremes. Under the “increasing linear 1” scenario, the test-

then-pool approach produced the least biased estimates of the methods that incorporate all 

controls.  In the null scenario, bias is 0.020 and 0.014 for the test-then-pool 1 and 2 approaches 

respectively versus 0.064 in all pooled (Table 4.4).  However, the variability around the relative 

risk and π0 estimates for the test-then-pool approaches is the highest of all methods explored 

(Tables 4.2 and 4.3).  Type I error for the second test-then-pool approach is similar to that of 
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concurrent controls only (0.0226 vs. 0.0225).  Power is lower but comparable when the true 

relative risk is 0.75 (power for test-then-pool 2 = 0.839 and 0.960 vs. 0.866 and 0.968 for 

concurrent controls when relative risk is 0.8 and 0.75 respectively, Table 4.1).  The first test-

then-pool approach, which has a higher threshold for declaring concurrent and non-concurrent 

controls different, has lower type I error and power (Table 4.1).   

In the “increasing linear 2” scenario, where failure rates increase at a slower rate, the 

difference between concurrent and non-concurrent controls is less extreme than in the 

“increasing linear 1” scenario.  As a result, the second test-then-pool approach becomes less 

similar to the concurrent only analysis in terms of type I error and power (Table 4.1).  Type I 

error for the static power prior, dynamic power prior and MEM approaches remains lower than 

that of the test-then-pool approaches; but power is relatively comparable across all 5 approaches 

(range between 0.748-0.769 when true relative risk is 0.8 and 0.923-0.936 when true relative risk 

is 0.75, Table 4.1).  These values are higher than the power of the all pooled analysis, and 

comparable to the concurrent only analysis when the true relative risk is 0.75.  However, when 

the true relative risk is 0.8, power is slightly lower for these approaches than the concurrent only.  

Despite the similarity in power when the true relative risk is 0.75, relative risk estimates remain 

upwardly biased for all 5 approaches (range 0.015-0.020 for test-then-pool, power prior and 

MEM approaches versus 0.006 in concurrent only analysis. Table 4.4).  Relative risk estimates 

from the second test-then-pool approach remained the least biased of the methods that 

incorporate all controls.  However, the bias of the first test-then-pool approach was comparable 

to that of the static power prior and greater than that of the MEM and dynamic power 

approaches.  (Table 4.4)  



 

59 
 

Under the decreasing linear trends, the estimate of π0 is lower in concurrent controls 

compared to controls randomized prior to the initiation of experimental treatment 2.  As a result, 

the trends observed under the “increasing linear 1” and “increasing linear 2” scenarios are 

switched.  Type I error is higher for the all pooled analyses compared to the concurrent only 

(0.164 and 0.0732 vs. 0.0240 and 0.0235 for the “decreasing linear 1” and “decreasing linear 

2” scenarios respectively, Table 4.1).  Type I error is also inflated for the test-then-pool, power 

prior, and MEM approaches.  Although values are lower compared to the all pooled analyses 

(Type I error ranges from 0.0530-0.0795 and 0.0392-0.0617 for scenarios 1 and 2 respectively), 

they are still substantially higher than the type I error of the concurrent only analyses (Table 4.1).  

Of the methods that incorporate all controls, the second test-then-pool approach again has the 

least biased estimates for relative risk and π0; however, the variance around the test-then-pool 

estimates remain the highest of all approaches (Tables 4.2-4.4).  Relative risk estimates for the 

test-then-pool, power prior, and MEM approaches are closer to the values of the concurrent only 

analyses compared to the all pooled approach.  The static power prior, which down weights the 

non-concurrent data by 50%, has the most biased estimates of the five approaches.  The dynamic 

power prior and MEM yield less biased estimates that are comparable across all relative risk 

scenarios.  However, MEM estimates have higher variability, which corresponds to the dynamic 

power prior having higher power (Table 4.3 and 4.1). 

In the exponential like scenarios, failure rates change quickly early on and stabilize 

towards the end of the enrollment period.  Because most of the change occurs early on, in the 

“increasing exponential like 1” and “increasing exponential like 2” scenarios, π0 estimates are 

lower for analyses incorporating all controls versus concurrent controls only.  As such, patterns 

of type I error and power deflation are similar for the increasing exponential like and increasing 
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linear scenarios (Table 4.1).  Compared to the all pooled approach, the test-then-pool, power 

prior, and MEM approaches were substantially more powerful, but less powerful than analyses 

that included concurrent controls only.  (Table 4.1)  Under the “increasing exponential like 2” 

scenario, power is comparable across the five methods, though highest for the second test-then 

pool approach.  However, under the “increasing exponential like 1” scenario, power is not 

comparable across the five approaches.  The static power prior performs the worst and the test-

then-pool approaches have the highest power.  (Table 4.1).   

In the “increasing exponential like 1” and “increasing exponential like 2” scenarios, 

relative risk estimates were also more biased for methods that incorporated all controls.  Across 

both scenarios, the second test-then-pool approach remained the least biased of the methods that 

incorporate all controls (Table 4.4).   Interestingly, as observed in the increasing linear scenarios, 

in the exponential scenario with less extreme growth (“increasing exponential like 2”), the bias 

of the first test-then-pool approach was comparable to that of the static power prior, and higher 

than that of the MEM and dynamic power approaches.  Comparing the MEM and dynamic 

power prior approaches, in the “increasing exponential like 1” scenario, relative risk estimates 

were more biased for the dynamic power prior; however, in the less extreme “increasing 

exponential like 2” scenario, bias was comparable with the dynamic power prior having slightly 

less bias.  (Table 4.4)   

Similar to the decreasing linear scenarios, under the decreasing exponential like 

scenarios, type I error is inflated for approaches that incorporate all controls.  In the more 

extreme “decreasing exponential like 1” scenario, type I error is 0.218 in the all pooled analysis 

compared to 0.025 in the concurrent only.  Among the five historical control approaches, type I 

error is highest for the static power prior approach (0.098) and lowest for the MEM and test-
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then-pool 2 approaches (0.053 and 0.056 respectively, Table 4.1).  In the “decreasing 

exponential like 2” scenario, type I error is 0.069 in the all pools approaches versus 0.023 in the 

concurrent only analysis.  Of the five historical control approaches, the dynamic power prior and 

MEM approaches have the lowest type I error (0.038 and 0.041 respectively) while the two test-

then-pool approaches have the highest (0.058 and 0.052 for test-then-pool 1 and 2 respectively).   

Under both decreasing exponential like scenarios, relative risk estimates from the second 

test-then-pool approach remained the least biased but had higher variability than the all pooled, 

power prior, and MEM approaches.   In the “decreasing exponential like 1” scenario, bias was -

0.07 in the all pooled analysis compared to 0.007 in the concurrent only.  The static power prior 

approach produced the most biased estimate of the 5 historical control approaches (-0.044), 

followed by the dynamic power prior (-0.024) and MEM (-0.012).  In the less extreme 

“decreasing exponential like 2” scenario, bias was more comparable across the five historical 

control approaches ranging from 0.009 for the test-then-pool 2 to -0.0175 for the static power 

prior (Table 4.4).   

In the “seasonal” scenario, failure rates cycled up and down annually.  As a result, 

although monthly rates varied, the overall annual rates were constant.  Since the second arm was 

introduced after one year of enrollment, π0 estimates were comparable across all approaches and 

results were similar to those observed under the “constant” failure rate scenario.   

 

 



 

 

 

6
2
 

Table 4.1 Probability of Experimental Treatment being Declared Effective 

Scenario True RR 

E1 vs 

Control 

E2 vs Control 

Concurrent 

Only All Pooled 

Test then 

Pool (1) 

Test then 

Pool (2) 

Power Prior 

- Static 

Power Prior 

- Dynamic MEM 

Constant 1.00 0.0251 0.0251 0.0243 0.0263 0.0270 0.0209 0.0216 0.0226 

0.80 0.6954 0.6954 0.7815 0.7736 0.7668 0.7516 0.7455 0.7535 

0.75 0.8717 0.8768 0.9307 0.9236 0.9170 0.9171 0.9125 0.9133 

Increasing Linear 1 1.00 0.0228 0.0225 0.0017 0.0210 0.0226 0.0041 0.0084 0.0138 

0.80 0.7702 0.8660 0.6776 0.8141 0.8390 0.7697 0.7921 0.7870 

0.75 0.9241 0.9679 0.9051 0.9524 0.9600 0.9428 0.9473 0.9461 

Increasing Linear 2 1.00 0.0249 0.0273 0.0070 0.0203 0.0234 0.0114 0.0135 0.0128 

0.80 0.7352 0.7832 0.7192 0.7568 0.7689 0.7512 0.7543 0.7479 

0.75 0.8958 0.9337 0.9153 0.9300 0.9355 0.9279 0.9301 0.9286 

Decreasing Linear 1 1.00 0.0215 0.0240 0.1638 0.0795 0.0609 0.0776 0.0548 0.0530 

0.80 0.8713 0.7694 0.9792 0.8131 0.7927 0.9374 0.8735 0.8211 

0.75 0.9710 0.9283 0.9982 0.9395 0.9329 0.9897 0.9680 0.9454 

Decreasing Linear 2 1.00 0.0276 0.0235 0.0732 0.0617 0.0554 0.0410 0.0392 0.0429 

0.80 0.7909 0.7257 0.9122 0.8378 0.8113 0.8573 0.8293 0.8193 

0.75 0.9312 0.9012 0.9835 0.9465 0.9321 0.9658 0.9535 0.9432 

Increasing 

Exponential Like 1 
1.00 0.0249 0.0237 0.0010 0.0234 0.0235 0.0032 0.0090 0.0162 

0.80 0.5524 0.6679 0.3194 0.6199 0.6433 0.4614 0.5288 0.5509 

0.75 0.7469 0.8479 0.5753 0.7996 0.8207 0.7032 0.7509 0.7556 

Increasing 

Exponential Like 2 
1.00 0.0226 0.0240 0.0071 0.0198 0.0218 0.0105 0.0125 0.0136 

0.80 0.6522 0.6961 0.6078 0.6569 0.6743 0.6467 0.6547 0.6455 

0.75 0.8339 0.8688 0.8299 0.8563 0.8642 0.8546 0.8576 0.8520 

Decreasing 

Exponential Like 1 
1.00 0.0288 0.0248 0.2181 0.0767 0.0561 0.0983 0.0619 0.0527 

0.80 0.8278 0.7202 0.9794 0.7503 0.7356 0.9295 0.8363 0.7614 

0.75 0.9542 0.8913 0.9976 0.9023 0.8972 0.9849 0.9471 0.9089 

Decreasing 

Exponential Like 2 
1.00 0.0259 0.0229 0.0692 0.0576 0.0527 0.0408 0.0377 0.0413 

0.80 0.7443 0.7003 0.9047 0.8227 0.7944 0.8381 0.8109 0.7998 

0.75 0.9097 0.8723 0.9757 0.9275 0.9143 0.9506 0.9347 0.9234 

Seasonal 1.00 0.0251 0.0245 0.0248 0.0267 0.0278 0.0222 0.0223 0.0228 

0.80 0.8080 0.8059 0.8760 0.8706 0.8638 0.8538 0.8494 0.8542 

0.75 0.9419 0.9487 0.9759 0.9721 0.9706 0.9684 0.9670 0.9680 
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Table 4.2 Mean and Standard Deviations of π0 Estimates 

Scenario 

True 

RR 

Concurrent Only All Pooled 

Test then Pool 

(1) 

Test then Pool 

(2) 

Power Prior - 

Static 

Power Prior - 

Dynamic MEM 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Constant 1.00 0.5001 0.0285 0.5001 0.0224 0.5001 0.0243 0.5001 0.0253 0.5001 0.0234 0.5001 0.0238 0.5001 0.0236 

0.80 0.5000 0.0288 0.5001 0.0228 0.5002 0.0246 0.5001 0.0257 0.5000 0.0238 0.5001 0.0242 0.5001 0.0240 

0.75 0.5005 0.0285 0.5004 0.0228 0.5004 0.0245 0.5005 0.0256 0.5005 0.0237 0.5005 0.0240 0.5004 0.0239 

Increasing 

Linear 1 
1.00 0.6230 0.0275 0.5873 0.0222 0.6137 0.0331 0.6174 0.0316 0.6011 0.0229 0.6079 0.0261 0.6112 0.0299 

0.80 0.6223 0.0278 0.5867 0.0222 0.6129 0.0335 0.6167 0.0321 0.6004 0.0231 0.6073 0.0263 0.6106 0.0303 

0.75 0.6222 0.0279 0.5869 0.0222 0.6129 0.0333 0.6165 0.0320 0.6005 0.0230 0.6073 0.0264 0.6106 0.0303 

Increasing 

Linear 2 
1.00 0.5616 0.0285 0.5439 0.0227 0.5513 0.0282 0.5541 0.0289 0.5507 0.0236 0.5524 0.0247 0.5517 0.0259 

0.80 0.5613 0.0284 0.5432 0.0224 0.5509 0.0283 0.5537 0.0290 0.5502 0.0234 0.5519 0.0245 0.5513 0.0258 

0.75 0.5612 0.0283 0.5434 0.0225 0.5512 0.0281 0.5540 0.0289 0.5502 0.0234 0.5520 0.0245 0.5515 0.0257 

Decreasing 

Linear 1 
1.00 0.5512 0.0286 0.5870 0.0222 0.5609 0.0343 0.5568 0.0328 0.5732 0.0234 0.5663 0.0269 0.5631 0.0310 

0.80 0.5512 0.0287 0.5873 0.0225 0.5608 0.0342 0.5570 0.0329 0.5734 0.0237 0.5664 0.0271 0.5631 0.0311 

0.75 0.5514 0.0282 0.5869 0.0221 0.5615 0.0339 0.5573 0.0324 0.5732 0.0232 0.5665 0.0265 0.5634 0.0305 

Decreasing 

Linear 2 
1.00 0.5256 0.0289 0.5436 0.0226 0.5359 0.0286 0.5332 0.0294 0.5366 0.0237 0.5349 0.0249 0.5355 0.0262 

0.80 0.5255 0.0283 0.5435 0.0225 0.5360 0.0281 0.5331 0.0289 0.5365 0.0234 0.5349 0.0245 0.5355 0.0257 

0.75 0.5250 0.0287 0.5431 0.0225 0.5357 0.0283 0.5326 0.0291 0.5362 0.0236 0.5345 0.0248 0.5351 0.0260 

Increasing 

Exponential 

Like 1 

1.00 0.4846 0.0286 0.4417 0.0225 0.4773 0.0347 0.4807 0.0325 0.4582 0.0236 0.4685 0.0280 0.4742 0.0324 

0.80 0.4850 0.0286 0.4420 0.0223 0.4780 0.0345 0.4811 0.0324 0.4586 0.0235 0.4689 0.0280 0.4747 0.0324 

0.75 0.4844 0.0286 0.4416 0.0223 0.4769 0.0347 0.4803 0.0326 0.4581 0.0235 0.4683 0.0280 0.4740 0.0325 

Increasing 

Exponential 

Like 2 

1.00 0.4987 0.0286 0.4798 0.0224 0.4880 0.0287 0.4909 0.0293 0.4871 0.0235 0.4890 0.0247 0.4884 0.0262 

0.80 0.4989 0.0286 0.4804 0.0227 0.4882 0.0286 0.4910 0.0293 0.4875 0.0236 0.4893 0.0248 0.4887 0.0262 

0.75 0.4986 0.0287 0.4800 0.0227 0.4882 0.0286 0.4909 0.0294 0.4872 0.0236 0.4890 0.0248 0.4885 0.0262 

Decreasing 

Exponential 

Like 1 

1.00 0.5153 0.0287 0.5583 0.0226 0.5225 0.0348 0.5192 0.0326 0.5417 0.0237 0.5314 0.0282 0.5256 0.0325 

0.80 0.5158 0.0289 0.5585 0.0226 0.5230 0.0349 0.5198 0.0329 0.5420 0.0238 0.5319 0.0283 0.5262 0.0327 

0.75 0.5154 0.0284 0.5580 0.0223 0.5227 0.0344 0.5195 0.0324 0.5416 0.0234 0.5316 0.0278 0.5260 0.0322 

Decreasing 

Exponential 

Like 2 

1.00 0.5010 0.0284 0.5199 0.0223 0.5117 0.0286 0.5089 0.0293 0.5127 0.0233 0.5108 0.0246 0.5113 0.0261 

0.80 0.5017 0.0287 0.5204 0.0226 0.5123 0.0286 0.5093 0.0293 0.5132 0.0236 0.5113 0.0248 0.5119 0.0262 

0.75 0.5012 0.0287 0.5200 0.0228 0.5119 0.0287 0.5089 0.0294 0.5127 0.0238 0.5109 0.0249 0.5115 0.0263 

Seasonal 1.00 0.5744 0.0281 0.5746 0.0224 0.5745 0.0240 0.5745 0.0250 0.5745 0.0233 0.5745 0.0236 0.5745 0.0234 

0.80 0.5747 0.0285 0.5747 0.0227 0.5748 0.0243 0.5748 0.0253 0.5747 0.0237 0.5747 0.0240 0.5748 0.0238 

0.75 0.5751 0.0282 0.5751 0.0223 0.5752 0.0241 0.5753 0.0251 0.5751 0.0233 0.5751 0.0236 0.5752 0.0234 
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Table 4.3 Mean and Standard Deviations of Relative Risk (RR= π2/π0) Estimates 

Scenario 

True 

RR 

Concurrent 

Only All Pooled 

Test then Pool 

(1) 

Test then Pool 

(2) 

Power Prior - 

Static 

Power Prior - 

Dynamic MEM 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Constant 1.00 1.0070 0.0821 1.0044 0.0737 1.0047 0.0764 1.0051 0.0775 1.0051 0.0750 1.0052 0.0755 1.0050 0.0754 

0.80 0.8065 0.0730 0.8044 0.0672 0.8045 0.0686 0.8049 0.0695 0.8050 0.0680 0.8050 0.0683 0.8049 0.0681 

0.75 0.7558 0.0708 0.7542 0.0655 0.7544 0.0671 0.7546 0.0679 0.7546 0.0662 0.7546 0.0666 0.7546 0.0665 

Increasing 

Linear 1 
1.00 1.0041 0.0630 1.0639 0.0621 1.0200 0.0708 1.0137 0.0687 1.0399 0.0609 1.0289 0.0632 1.0241 0.0671 

0.80 0.8051 0.0587 0.8531 0.0589 0.8180 0.0648 0.8129 0.0631 0.8338 0.0577 0.8250 0.0592 0.8211 0.0620 

0.75 0.7547 0.0580 0.7992 0.0578 0.7667 0.0633 0.7620 0.0618 0.7813 0.0569 0.7730 0.0584 0.7695 0.0609 

Increasing 

Linear 2 
1.00 1.0054 0.0732 1.0363 0.0684 1.0234 0.0738 1.0184 0.0743 1.0240 0.0686 1.0212 0.0696 1.0226 0.0709 

0.80 0.8060 0.0664 0.8313 0.0642 0.8205 0.0673 0.8165 0.0678 0.8212 0.0639 0.8189 0.0645 0.8200 0.0654 

0.75 0.7559 0.0634 0.7794 0.0613 0.7691 0.0643 0.7653 0.0646 0.7700 0.0609 0.7678 0.0615 0.7687 0.0624 

Decreasing 

Linear 1 
1.00 1.0056 0.0739 0.9418 0.0608 0.9887 0.0797 0.9958 0.0784 0.9652 0.0639 0.9780 0.0692 0.9848 0.0753 

0.80 0.8060 0.0670 0.7546 0.0566 0.7927 0.0712 0.7981 0.0703 0.7734 0.0593 0.7839 0.0633 0.7894 0.0679 

0.75 0.7547 0.0643 0.7072 0.0548 0.7415 0.0679 0.7469 0.0670 0.7246 0.0572 0.7340 0.0608 0.7388 0.0648 

Decreasing 

Linear 2 
1.00 1.0064 0.0786 0.9706 0.0668 0.9858 0.0768 0.9911 0.0782 0.9838 0.0694 0.9873 0.0714 0.9866 0.0734 

0.80 0.8071 0.0702 0.7785 0.0617 0.7905 0.0687 0.7950 0.0696 0.7891 0.0636 0.7918 0.0650 0.7911 0.0662 

0.75 0.7563 0.0675 0.7292 0.0593 0.7403 0.0658 0.7448 0.0670 0.7392 0.0612 0.7418 0.0625 0.7412 0.0637 

Increasing 

Exponential 

Like 1 

1.00 1.0069 0.0845 1.1026 0.0857 1.0237 0.0969 1.0160 0.0923 1.0633 0.0832 1.0415 0.0873 1.0306 0.0932 

0.80 0.8066 0.0756 0.8834 0.0781 0.8195 0.0843 0.8138 0.0811 0.8519 0.0757 0.8345 0.0781 0.8255 0.0820 

0.75 0.7586 0.0732 0.8305 0.0753 0.7715 0.0821 0.7657 0.0789 0.8009 0.0731 0.7846 0.0757 0.7765 0.0796 

Increasing 

Exponential 

Like 2 

1.00 1.0073 0.0822 1.0446 0.0767 1.0285 0.0833 1.0227 0.0838 1.0296 0.0769 1.0261 0.0781 1.0276 0.0799 

0.80 0.8054 0.0734 0.8346 0.0711 0.8223 0.0746 0.8178 0.0748 0.8229 0.0706 0.8202 0.0712 0.8215 0.0723 

0.75 0.7571 0.0715 0.7845 0.0689 0.7724 0.0724 0.7683 0.0730 0.7735 0.0686 0.7709 0.0692 0.7720 0.0703 

Decreasing 

Exponential 

Like 1 

1.00 1.0071 0.0808 0.9267 0.0643 0.9942 0.0877 1.0001 0.0851 0.9558 0.0685 0.9760 0.0769 0.9882 0.0844 

0.80 0.8053 0.0717 0.7415 0.0590 0.7949 0.0764 0.7996 0.0748 0.7646 0.0624 0.7804 0.0684 0.7900 0.0741 

0.75 0.7570 0.0684 0.6971 0.0571 0.7471 0.0727 0.7515 0.0712 0.7188 0.0600 0.7336 0.0653 0.7425 0.0703 

Decreasing 

Exponential 

Like 2 

1.00 1.0074 0.0810 0.9680 0.0685 0.9853 0.0799 0.9910 0.0814 0.9825 0.0712 0.9866 0.0735 0.9860 0.0760 

0.80 0.8060 0.0736 0.7749 0.0641 0.7884 0.0723 0.7933 0.0733 0.7863 0.0662 0.7896 0.0679 0.7891 0.0696 

0.75 0.7554 0.0728 0.7261 0.0641 0.7388 0.0714 0.7434 0.0724 0.7369 0.0661 0.7399 0.0676 0.7394 0.0690 

Seasonal 1.00 1.0053 0.0702 1.0030 0.0632 1.0034 0.0650 1.0037 0.0662 1.0037 0.0643 1.0038 0.0646 1.0036 0.0644 

0.80 0.8058 0.0644 0.8042 0.0591 0.8044 0.0604 0.8045 0.0613 0.8047 0.0600 0.8047 0.0603 0.8045 0.0600 

0.75 0.7545 0.0615 0.7532 0.0572 0.7533 0.0583 0.7532 0.0589 0.7536 0.0578 0.7536 0.0580 0.7535 0.0579 
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Table 4.4 Bias of Mean Relative Risk (RR= π2/π0) Estimates 

Scenario 

True 

RR 
Concurrent 

Only All Pooled 

Test then 

Pool (1) 

Test then 

Pool (2) 

Power Prior - 

Static 

Power Prior - 

Dynamic MEM 

Constant 1.00 0.0070 0.0044 0.0047 0.0051 0.0051 0.0052 0.0050 

0.80 0.0065 0.0044 0.0045 0.0049 0.0050 0.0050 0.0049 

0.75 0.0058 0.0042 0.0044 0.0046 0.0046 0.0046 0.0046 

Increasing Linear 1 1.00 0.0041 0.0639 0.0200 0.0137 0.0399 0.0289 0.0241 

0.80 0.0051 0.0531 0.0180 0.0129 0.0338 0.0250 0.0211 

0.75 0.0047 0.0492 0.0167 0.0120 0.0313 0.0230 0.0195 

Increasing Linear 2 1.00 0.0054 0.0363 0.0234 0.0184 0.0240 0.0212 0.0226 

0.80 0.0060 0.0313 0.0205 0.0165 0.0212 0.0189 0.0200 

0.75 0.0059 0.0294 0.0191 0.0153 0.0200 0.0178 0.0187 

Decreasing Linear 1 1.00 0.0056 -0.0582 -0.0113 -0.0042 -0.0348 -0.0220 -0.0152 

0.80 0.0060 -0.0454 -0.0073 -0.0019 -0.0266 -0.0161 -0.0106 

0.75 0.0047 -0.0428 -0.0085 -0.0031 -0.0254 -0.0160 -0.0112 

Decreasing Linear 2 1.00 0.0064 -0.0294 -0.0142 -0.0089 -0.0162 -0.0127 -0.0134 

0.80 0.0071 -0.0215 -0.0095 -0.0050 -0.0109 -0.0082 -0.0089 

0.75 0.0063 -0.0208 -0.0097 -0.0052 -0.0108 -0.0082 -0.0088 

Increasing Exponential Like 1 1.00 0.0069 0.1026 0.0237 0.0160 0.0633 0.0415 0.0306 

0.80 0.0066 0.0834 0.0195 0.0138 0.0519 0.0345 0.0255 

0.75 0.0086 0.0805 0.0215 0.0157 0.0509 0.0346 0.0265 

Increasing Exponential Like 2 1.00 0.0073 0.0446 0.0285 0.0227 0.0296 0.0261 0.0276 

0.80 0.0054 0.0346 0.0223 0.0178 0.0229 0.0202 0.0215 

0.75 0.0071 0.0345 0.0224 0.0183 0.0235 0.0209 0.0220 

Decreasing Exponential Like 1 1.00 0.0071 -0.0733 -0.0058 0.0001 -0.0442 -0.0240 -0.0118 

0.80 0.0053 -0.0585 -0.0051 -0.0004 -0.0354 -0.0196 -0.0100 

0.75 0.0070 -0.0529 -0.0029 0.0015 -0.0312 -0.0164 -0.0075 

Decreasing Exponential Like 2 1.00 0.0074 -0.0320 -0.0147 -0.0090 -0.0175 -0.0134 -0.0140 

0.80 0.0060 -0.0251 -0.0116 -0.0067 -0.0137 -0.0104 -0.0109 

0.75 0.0054 -0.0239 -0.0112 -0.0066 -0.0131 -0.0101 -0.0106 

Seasonal 1.00 0.0053 0.0030 0.0034 0.0037 0.0037 0.0038 0.0036 

0.80 0.0058 0.0042 0.0044 0.0045 0.0047 0.0047 0.0045 

0.75 0.0045 0.0032 0.0033 0.0032 0.0036 0.0036 0.0035 
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4.4 Discussion 

 This study sought to determine whether methods developed to integrate historical 

controls into two-arm studies could be applied to the analysis of later-entry experimental 

treatments in open platform trials.  Two aspects of implementing these approaches were 

explored.  First their performance in statistical inference under the null hypothesis H0: π2 ≥ π0 

was assessed by evaluating type I error under the null scenario and power under two alternatives.  

Second, the performance in estimation was assessed by reporting the bias of relative risk 

estimates produced using each approach under fixed relative risk values.  Simulation results 

confirm that in the presence of no parameter drift, pooling non-concurrent and concurrent 

controls yields higher power, lower type I error, and more precise, unbiased estimates.  Clearly, 

if outcome rates are known to be constant over time, pooling is the optimal approach.  However, 

constant outcome rates may not be a realistic assumption.   

There are many reasons that outcome rates in the control arm can change overtime.  The 

fact that sites open to enrollment at different times, that there may be a learning curve for 

protocol procedures, that centers have different experience levels conducting clinical trials, and 

other logistical issues can all impact trial-wide outcome rates.  In a vaccine trial, infection 

outcome rates could vary seasonally as explored in the “seasonal” scenario.  Linear changes are 

also possible in cases where standard of care improves over time.  In a rare disease population 

with limited treatment options, early enrollees are likely to be on the more severe end of the 

disease spectrum, while the later enrollees may be less severe patients.  This could result in 

outcome trends similar to the exponential-like scenarios explored in this simulation study.   Even 

if constant event rates are a realistic assumption for a disease population, an unexpected change 

in the treatment landscape could impact the anticipated enrollment population and therefore 
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event rates.  For instance, in a cancer platform trial, if a new treatment is found to work on a 

subset of the disease population with a specific biomarker, future patients with this biomarker 

will not enroll in the trial.  If this subset has different event rates than patients without the 

biomarker, trial-wide events rates could change depending on how event rates differ in the rest of 

the disease population, and on how large the subset is relative to the overall study population. 

 When failure rates increase over time, simulation results show that pooling non-

concurrent and concurrent control data results in type I error deflation and upwardly biased 

relative risk estimates that make the experimental treatment appear less effective than it truly is.  

Conversely, when failure rates decrease over time, pooling yields inflated type I error and 

downwardly biased relative risk estimates that indicate a stronger treatment effect than truly 

exists.  These results confirm that naively pooling the data is suboptimal when outcome rates 

change overtime.   

Several approaches between the extremes of pooling all controls and using concurrent 

controls only were explored.  In theory, approaches that down weight the non-concurrent data or 

dynamically borrow information based on how homogeneous the data are provide a viable 

alternative to losing power and precision by using concurrent controls only while still protecting 

against bias in the presence of parameter drift.  Across scenarios where outcome rates increased 

or decreased over time, the test-then-pool 2 approach yielded the least biased relative risk 

estimates of the methods that incorporated all controls.  Compared to the test-then-pool 1 

approach, the test-then-pool 2 approach had a lower threshold for declaring the concurrent and 

non-concurrent controls different, and therefore was more likely to default to a concurrent only 

analysis.  The more extreme the change over time, the less biased estimates were as non-

concurrent controls were more likely to be discarded from analyses of experimental treatment 2.   
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Despite having the least biased estimates among approaches that incorporated all controls, type I 

error for the test-then-pool 2 approach was higher across many of the scenarios.  Notably, when 

outcome rates were constant, the test-then-pool approaches yielded higher type I error than both 

the all pooled and concurrent only approaches.  This result is consistent with Dejardin et al.’s 

study that explored incorporating a historical control in the analysis of a two-arm non-inferiority 

trial and observed inflated type I error for a test-then-pool approach52.  Under constant failure 

rates, rejection of the hypothesis that the concurrent and non-concurrent controls have equal 

failure rates can occur due to random variability.  The inflation of type I error above the nominal 

0.025 level observed in the concurrent only analysis under the “constant” scenario lends the test-

then-pool approach unacceptable in cases were strict type I error control is needed. 

Unexpectedly, under constant failure rates, the power prior and MEM approaches yielded 

type I error rates below that of both the concurrent only and all pooled analyses.  One would 

expect type I error for these approaches to fall between the concurrent only and all pooled 

approaches; however, simulation results were consistent with type I error rates observed for the 

dynamic power prior, robust mixture prior, and commensurate prior explored in Dejardin et al.’s 

study52.  Based on the “constant” scenario alone, any of these three methods have acceptable 

type I error; however, in scenarios where failure rates decreased overtime, although type I error 

was lower than that observed in the all pooled analyses, rates were still inflated relative to the 

concurrent only analysis and above the nominal 0.025 level.   

Relative risk estimates for the power prior and MEM approaches were all less biased than 

for the all pooled approach.  In scenarios with increasing or decreasing failure rates, the static 

power prior yielded more biased estimates compared to the dynamic power prior.  This matches 

intuition that of the two approaches, the dynamic power prior would be the preferred method as 
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it does not rely on a subjective choice for the power parameter and instead treats the power 

parameter as a random variable dependent on the similarity between the concurrent and non-

concurrent data.   Compared to an alternative dynamic approach, the dynamic power prior was 

comparable to the MEM across many scenarios.  With the exception of the “constant” scenario, 

standard deviations around relative risk estimates were slightly higher for the MEM approach 

compared to the dynamic power prior.  In the scenarios with faster rates of change in outcome 

rates, the MEM demonstrated lower bias in relative risk estimates.  However in less extreme 

scenarios, the dynamic power prior demonstrates slightly less bias.  Neither method stands out as 

clearly better.  Of the two approaches, the MEM is easier to implement and requires less 

computation time.   

Although superior to naively pooling the data when outcome rates are non-constant, none 

of the five approaches explored guarantee type I error control in the presence of parameter drift.  

It is possible that at the design stage, decision criteria and operating characteristics could be fine-

tuned to ensure type I error control using one of these approaches over a variety of temporal 

trends; however there is no guarantee that the simulated scenarios will cover the true trend.  

Protecting type I error would also not protect against bias in estimates.   Further, in the event 

there is no parameter drift, this process could result in an ultimately inefficient design.   

Where strict error control is needed, such as in a confirmatory drug trial, these methods are likely 

unacceptable as primary analyses, but could serve as sensitivity analyses to supplement a 

concurrent only analysis.  These methods may be acceptable for early phase screening platforms. 

Medical device trials, serious conditions and rare diseases may also provide populations where 

these approaches are acceptable, as FDA guidance for these already encourages the use of 

historical controls38, 39. Extending such guidance to incorporating non-concurrent controls in 
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analyses of open platforms would be plausible, as long as extensive simulation studies are done 

across various drift scenarios. This will ensure stakeholders are aware of the possible extent of 

type I error inflation and bias. However, such simulation studies would be challenging, as 

uncertainty both in drift and the timing of new arm entries would need to be taken into account.   

In conclusion, in the presence of parameter drift, methods that partially borrow non-

concurrent data, either through a static weighting mechanism or through methods that allow the 

heterogeneity between non-concurrent and concurrent data to determine the degree of borrowing, 

are superior to naively pooling the data in the presence of parameter drift.   However, compared 

to using concurrent controls only, these approaches cannot guarantee type I error control and 

may still produce biased estimates.  If strict error control is required, using only concurrent 

controls in the analyses of experimental treatments is the most conservative approach.   
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CHAPTER 5 

Applications to the Neuroprotection Trial 

 

5.1 Introduction 

In the motivating example of this work, the CTSN neuroprotection trial evaluated the 

efficacy of two embolic protection devices for reducing post-operative infarcts after surgical 

aortic valve replacement (AVR).  In the United States, approximately 100,000 patients undergo 

AVR each year54, 55.  Prospective studies of surgical AVR patients report post-operative 

clinically apparent stroke rates between 5 and 17%56-58 and rates of any cerebral infarction, as 

measured by post-operative magnetic resonance imaging (MRI), as high as 60%59, 60.  Most of 

these infarcts are caused by emboli that the bloodstream carries from the surgical site to the 

brain4.  Embolic protection devices that collect debris during surgery aim to prevent infarction.   

The two devices evaluated in the neuroprotection trial were an intra-aortic filtration 

device (Embol-X (Edwards Lifesciences, Irvine, CA)) and a suction based extraction device 

(CardioGard (Cardiogard, Or-Yehuda, Israel)).  Rather than conduct two independent, two-arm 

controlled trials to evaluate each devices’ efficacy, both device manufacturers agreed to share a 

platform where their devices would be evaluated simultaneously against a shared control group.  

For CTSN, this provided an efficient alternative to conducting two trials, both because fewer 



 

72 

 

patients would need to be randomized, and because of the substantial resource savings associated 

with only needing to build the infrastructure and protocol for a single trial versus two.   

The primary outcome of the neuroprotection trial was a composite of death, clinically 

apparent stroke, or presence of post-operative emboli on diffusion-weighted MRI by post-

operative day 7.  As described in Chapter 1, under the original design, all three arms were to 

open to enrollment simultaneously with 1:1:1 randomization (Figure 5.1); however, due to an 

unexpected delay in 510(k) approval by the FDA, the CardioGard device was not available at the 

anticipated launch date.  Rather than delay launching the trial, the protocol was amended so that 

the trial would open to enrollment with 1:1 randomization to Embol-X and the control, with a 

plan to introduce the third arm and 1:1:1 allocation once the CardioGard device was cleared.   
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Figure 5.1 Original Trial Design Schematic 

 

 

In the analytical plan, each device was to be compared to controls that were concurrently 

randomized. To ensure adequate power for both devices, the maximum sample size of the control 

arm was increased so that 165 controls would be concurrently randomized with each device.  The 

Embol-X arm would close after enrolling 165 patients, at which point randomization would 

continue 1:1 to CardioGard and the control until the CardioGard arm reached 165 patients and 

trial enrollment closed. 
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When the neuroprotection trial was designed, few methodological papers were available 

on designing a multi-arm trial where not all treatment arms open simultaneously.  Statistical 

issues such as whether adjusting for multiple testing was necessary, or whether analyses of arms 

that opened after initial launch could incorporate information from non-concurrent controls were 

not well established.  This work sought to explore these issues and determine whether the 

approaches implemented in the neuroprotection trial were appropriate and/or whether 

alternatives may have been more efficient 

 

5.2 Multiple Testing in the Neuroprotection Trial 

In the neuroprotection trial, either or both of the embolic protection devices could be 

declared effective relative to the shared control.  Since determining the efficacy of each device 

was the primary aim, there was no intent to compare device to device.  As a result, both 

comparisons of device versus control were conducted at the 0.05 significance level.  No 

adjustment was made to control the familywise type I error rate as each comparison was viewed 

as separate.  As explored in Chapter 3, this view is not uncommon.28, 29  However, as discussed, 

sharing a control group will induce a dependency between the comparisons since the test 

statistics for each comparisons will be positively correlated due to the shared control data.  This 

means that in the neuroprotection trial, under the global null hypothesis of no difference between 

the control and either device, if one device was erroneously declared effective, there would have 

been a heightened conditional probability that the other device would have also been erroneously 

declared effective.   

As expected, when no multiple testing adjustment is applied, simulation studies in 

Chapter 3 demonstrated that this dependency does result in conditional type I error rates higher 
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than the nominal significance level.  However, simulation studies show that applying a 

Bonferroni correction would not have controlled the conditional type I error inflation.  Although 

the correction would control the familywise error rate, conditional type I error rates would 

remain above the nominal significance level.  Interestingly, simulation studies demonstrated that 

even when a multiple testing correction is not applied, although conditional probabilities are 

inflated, the marginal probability of both treatments being declared effective simultaneously is 

minimal under the global null.   

In light of these results, the decision to not adjust for multiple testing in the 

neuroprotection trial was appropriate.  Applying a correction would have required a larger 

sample size to maintain power in exchange for a modest improvement in conditional type I error.  

Since the marginal probability of both devices being declared effective under the global null is 

minimal, the inflation in conditional type I error probabilities should be seen, in this case, as an 

acceptable tradeoff with the efficiency gained from sharing a control group.  Further, since the 

two devices were developed by independent companies and the underlying mechanism of each 

was different (the Embol-X device uses a filtration system to capture debris, while the 

CardioGard device uses suction to collect debris), the devices are unrelated and their 

comparisons should be viewed separately.   

 

5.3 Incorporating Non-concurrent Controls in the CardioGard Efficacy Analysis  

In March 2015, the trial launched with Embol-X and control.  The following May, the 

CardioGard arm opened to enrollment.  Twelve controls were enrolled prior to the introduction 

of CardioGard.  In July 2016 at a pre-specified interim analysis, after 132 patients had been 

randomized to the control, 133 to Embol-X, and 118 to CardioGard, the DSMB recommended 
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halting enrollment for futility of both experimental devices.  In the final analysis, Embol-X was 

compared to all enrolled controls, and CardioGard was compared to its 119 concurrently 

randomized controls.   

As determined in Chapter 4, the decision to compare the CardioGard device to 

concurrently randomized controls exclusively was conservative and avoided any potential bias in 

efficacy estimates or inflation in type I error due to parameter drift.  In the neuroprotection trial, 

concerns about parameter drift are valid.  Overall, 18 clinical sites randomized patients; however, 

site startup was staggered (Figure 5.2).   Differences in patient populations and surgeons across 

sites, as well as staff learning curves for protocol procedures at each site could all impact trial 

wide outcome rates overtime.  In addition, a protocol revision finalized in October 2015 that 

widened the eligibility criteria from ≥65 years of age to ≥60 could also have potentially impacted 

outcome rates since existing infarcts, associated with age, are known to be associated with higher 

incidence of post-operative infarction.61  Observed treatment failure rates in the control arm by 

quarter are shown in figure 5.3.  Changes by quarter can be observed; however, in earlier 

quarters the relative number of controls randomized is small and observed changes could be due 

to random chance rather than temporal drift.   
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Figure 5.2 Cumulative Number of Sites Open to Enrollment by Quarter 
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Figure 5.3 Observed Treatment Failure Rates in the Control Arm by Quarter 

 

 

Baseline and operative characteristics for each device arm and its respective control are 

shown in table 5.1.  Unsurprisingly, because only 12 controls were randomized prior to the 

initiation of the CardioGard arm and the remaining 119 controls are shared, the characteristics of 

the control groups for Embol-X and CardioGard are similar.  
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Table 5.1 Baseline and Operative Characteristics  

Baseline Characteristicsa 

Embol-X 

(N=133) 

Embol-X 

Controlb 

(N=132) 

CardioGard 

(N=118) 

CardioGard 

Controlb 

(N=120) 

Male sex  81 (60.9) 86 (65.2) 69 (58.5) 77 (64.2) 

White 126 (94.7) 118 (89.4) 108 (91.5) 107 (89.2) 

Age – yrs 73.6 ±6.6 73.6 ±6.7 74.6 ±6.8 73.4 ±6.7 

Medical and surgical history      

   Diabetes 36 (27.1) 37 (28.0) 48 (40.7) 36 (30.0) 

   Renal insufficiency 18 (13.5) 14 (10.6) 15 (12.7) 13 (10.8) 

   Myocardial infarction 15 (11.3) 10 (7.6) 16 (13.6) 8 (6.7) 

   Atrial fibrillation 13 (9.8) 16 (12.1) 14 (11.9) 16 (13.3) 

   Stroke or TIA 11 (8.3) 8 (6.1) 16 (13.6) 8 (6.7) 

SF-12c     

   Physical Health Composite Score 40.1 ±11.0 40.2 ±11.2 41.4 ±10.6 40.5 ±11.2 

   Mental Health Composite Score 52.9 ±9.6 52.9 ±9.4 53.2 ±9.3 52.9 ±9.3 

White Matter Lesion Volume (mm3) 6303 (2686, 10027)  4704 (2265, 9776)  4592 (2433, 8377)  4719 (2201, 9776) 

Maximum Atheroma Gradef 2.3 ±0.7 2.3 ±0.6 2.5 ±0.7 2.4 ±0.6 

Operative Characteristicsa 
Surgical Procedure     

   Isolated AVR 77 (57.9) 80 (60.6) 67 (56.8) 73 (60.8) 

   AVR & CABG 51 (38.3) 52 (39.4) 50 (42.4) 47 (39.2) 

   AVR & MV Repair ± CABG 5 (3.8) 0 1 (0.8) 0 

Concomitant procedures 23 (17.3) 20 (15.2) 17 (14.4) 19 (15.8) 

Cardiopulmonary bypass time – min 109.1 ±42.4 101.7 ±39.8 104.9 ±39.6 102.2 ±40.2 

a Categorical measures are presented as the number of patients and (%).  If the denominator is not equal to the group sample 

size, data is presented as the number of patients/the number observed (%).  White matter lesion volume is presented as median 

(IQR) and all other continuous measures are presented as mean (standard deviation). 

b The first 12 control patients served as controls for Embol-X only and 120 patients were common to both control groups.   
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Although the choice to compare devices to concurrently randomized controls was 

appropriate, because the experimental treatments were medical devices, it is possible that 

regulatory and oversight bodies would have considered any of the alternative methods presented 

in Chapter 4 viable for the primary analysis plan.  Here, the seven analytical approaches explored 

in Chapter 4 are applied to the neuroprotection trial data.  The probability models assumed for all 

seven approaches and the methods for estimating posterior distributions are the same as 

presented in Chapter 4.  For each approach, estimates of the probability of treatment failure in 

the control (π0) and estimates of the relative risks of failure for CardioGard versus control (π2/π0) 

are reported.  To explore the possible impact of CardioGard’s introduction being delayed farther, 

these estimates are also reported assuming the CardioGard launch was pushed back 3, 6 and 9 

months after the true launch date.  In these cases, CardioGard patients randomized before the 

hypothetical launch date are removed from analysis and control patients randomized prior are 

considered non-concurrent.  All analyses were conducted using R version 3.5.331.  

Observed primary outcome data under each of the four launch scenarios explored are 

shown in table 5.2.  For all analytical approaches, estimated probabilities of treatment failure in 

the control arm and the relative risk of failure for CardioGard versus Control are shown in tables 

5.3 and 5.4 respectively.  Unsurprisingly, because of the small number of patients randomized 

prior to the actual initiation of CardioGard, relative risk estimates across the seven approaches 

under the actual scenario are equivalent.  Notably, the variance around the estimated probability 

of failure for the control is comparable across all approaches except for the MEM which has a 

lower estimate relative to the others (0.033 versus ~0.044), indicating the MEM may 

underestimate variability in this case.   
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When the launch of CardioGard is artificially delayed 3 months, the observed proportion 

of treatment failures in non-concurrent and concurrent controls is similar (68.4% vs. 65%) and 

relative risk estimates remain similar across the seven approaches.  Although estimates are 

similar, confidence intervals are slightly narrower among the methods that incorporate non-

concurrent controls.  Interestingly, if the launch is delayed 6 months, the observed rate of 

treatment failures becomes higher in the non-concurrent controls (76.3% versus. 60.5%) and 

there is more variability in the relative risk estimates across the seven methods.  In the 

concurrent only analysis, the estimated relative risk is 1.08 versus 0.99 when CardioGard is 

compared to all controls pooled.  Estimates from the test-then-pool approaches differ as the 

second approach, which has a more liberal threshold for declaring the non-concurrent and 

concurrent controls unequal, rejects the null that the two control groups are equivalent and 

defaults to the concurrent only analysis.  Alternatively, the first test-then-pool approach, which 

has a more conservative threshold, defaults to the all pooled analysis.  The power prior and 

MEM approaches each have comparable relative risk values that fall in between the concurrent 

only and all pooled analyses.   When launch is pushed back 9 months, observed failure rates in 

the non-concurrent versus concurrent controls remain different (75.8% vs. 54.4%).  With a 

greater disparity between the control groups, both test-then-pool approaches default to the 

concurrent only analysis.  The dynamic power prior and MEM approaches have relative risk 

values closer to the concurrent only analysis whereas the static power prior is closer to the all 

pooled analysis.   

As observed in Chapter 4, the all pooled, static power prior, dynamic power prior, and 

MEM approaches yield more precise estimates across each scenario.  However, simulation 

studies in Chapter 4 also demonstrated that these approaches are prone to bias when parameter 
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drift occurs.  Because the true relative risk of CardioGard versus control is unknown, which 

approach yields the least biased estimate cannot be determined.  The concurrent control analysis 

is the most conservative, but could be more sensitive to random highs and lows compared to 

pooling all controls.  In the actual case, because only a small number of non-concurrent controls 

were randomized, ultimately the choice of approach does not affect estimates.  However, had 

more of a delay occurred, the six alternative approaches could provide a set of sensitivity 

analyses that supplement the concurrent only analyses in combination with an exploration of 

possible parameter drift.
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Table 5.2 Observed Primary Outcomes in the CardioGard Arm and in CardioGard’s Non-Concurrent and Concurrent Controls for 

Varying Launch Scenarios 

 Non-Concurrent Control Concurrent Control Cardiogard 

No. 

Randomized 

No. 

Observed 

Treatment 

Failures 

No./No. Obs 

(%) 

No. 

Randomized 

No. 

Observed 

Treatment 

Failures 

No./No. Obs 

(%) 

No. 

Randomized 

No. 

Observed 

Treatment 

Failures 

No./No. Obs 

(%) 

Actual 12 7 5/7 (71.4) 120 112 73/112 (65.2) 118 101 68/101 (67.3) 

3 Month 25 19 13/19 (68.4) 107 100 65/100 (65) 104 87 57/87 (65.5) 

6 Month 44 38 29/38 (76.3) 88 81 49/81 (60.5) 91 77 50/77 (64.9) 

9 Month 70 62 47/62 (75.8) 62 57 31/57 (54.4) 67 54 34/54 (63) 

 

 

Table 5.3 Estimates for Probability of Failure in Control Arm for Varying Launch Scenarios and Analytical Approaches 

 �̂�𝟎 ± 𝐯𝐚𝐫(�̂�𝟎) 

Concurrent All TTP1 TTP2 PPS PPD MEM 

Actual 0.649 ±0.044 0.653 ±0.043 0.653 ±0.043 0.653 ±0.043 0.651 ±0.044 0.651 ±0.044 0.652 ±0.033 

3 Month 0.647 ±0.047 0.653 ±0.043 0.653 ±0.043 0.653 ±0.043 0.650 ±0.045 0.650 ±0.044 0.651 ±0.035 

6 Month 0.603 ±0.053 0.653 ±0.043 0.653 ±0.043 0.603 ±0.053 0.632 ±0.047 0.629 ±0.050 0.628 ±0.034 

9 Month 0.543 ±0.064 0.653 ±0.043 0.543 ±0.064 0.543 ±0.064 0.617 ±0.051 0.593 ±0.065 0.564 ±0.053 
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Table 5.4 Estimates for the Relative Risk of Failure in CardioGard versus Control for Varying Launch Scenarios and Analytical 

Approaches 

 Relative Risk (95% Credible Interval) 

Concurrent All TTP1 TTP2 PPS PPD MEM 

Actual 1.04 (0.85, 1.25) 1.03 (0.85, 1.24) 1.03 (0.85, 1.24) 1.03 (0.85, 1.24) 1.03 (0.85, 1.25) 1.03 (0.85, 1.25) 1.03 (0.86, 1.22) 

3 Month 1.01 (0.82, 1.24) 1.00 (0.81, 1.22) 1.00 (0.81, 1.22) 1.00 (0.81, 1.22) 1.01 (0.82, 1.23) 1.01 (0.81, 1.22) 1.01 (0.82, 1.20) 

6 Month 1.08 (0.84, 1.37) 0.99 (0.80, 1.21) 0.99 (0.80, 1.21) 1.08 (0.84, 1.37) 1.03 (0.82, 1.28) 1.03 (0.81, 1.29) 1.04 (0.84, 1.25) 

9 Month 1.17 (0.85, 1.59) 0.96 (0.74, 1.21) 1.17 (0.85, 1.59) 1.17 (0.85, 1.59) 1.02 (0.77, 1.31) 1.07 (0.78, 1.44) 1.13 (0.84, 1.49) 
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5.4 Conclusions 

As neither of the Embol-X or CardioGard devices demonstrated efficacy for reducing 

post-operative infarcts after surgical AVR, the need for embolic protection in the AVR 

population remains.  If new, alternative devices or procedures become available, a trial design 

similar to that of the CTSN neuroprotection trial could provide an efficient platform for 

evaluating the efficacy of multiple new experimental therapies.  Simulation studies in Chapter 3 

support the decision to not correct for multiple testing in the neuroprotection trial.  As long as 

devices included in a new platform trial are unrelated and there is no intention to compare 

devices, a similar approach to multiple testing can and should be implemented for a more 

efficient design.   Simulation studies in Chapter 4 demonstrated that using concurrent controls 

only in the analyses of experimental treatments is likely the best choice for confirmatory trials 

with staggered experimental arm entry.   This approach avoids potential bias in estimates and is 

the only way to guarantee error control.  However, as explored above, alternative approaches that 

incorporate all controls should be pre-specified as sensitivity analyses.   
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CHAPTER 6 

Conclusion and Future Directions 

 

Motivated by the recent CTSN neuroprotection trial, this work sought to examine two 

statistical issues in platform trials of multiple experimental treatments with a shared control.  

First, whether comparisons of each experimental treatment and the shared control need 

adjustment for multiplicity, and second, whether methods developed to incorporate historical 

controls in two-arm trials can be applied to incorporate non-concurrent controls in analyses of 

experimental treatments in open platform trials to maximize efficiency.   

Simulation studies to evaluate the operating characteristics of three-arm platform designs, 

adjusted and not adjusted for multiple testing, relative to two independent two-arm trials were 

discussed in Chapter 3.  These studies confirmed that FWER is comparable between a platform 

design that does not adjust for multiple testing and a set of equivalent, independent, two-arm 

trials.  These studies also demonstrated that although multiple testing adjustments control 

FWER, they do not substantially decrease the conditional type I error rate of an experimental 

treatment being declared effective given another was also erroneously declared effective in a 

platform trial.  If the trial design includes flexible features, such as arms entering at varying time 

points or exiting early for efficacy or futility, conditional type I error rates decrease as the 
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overlap between the concurrent control groups of each experimental treatment decreases.  In the 

scenario with the highest conditional error rates, a closed platform with no interim analyses, the 

marginal probability of both experimental treatments being declared effective simultaneously 

under the global null was minimal (~0.5%).  Therefore, the drop in power from adjusting for 

multiple testing is likely not worth the modest improvement in conditional error rates.  If the 

experimental treatments being evaluated in a platform trial are unrelated, multiple testing 

adjustments are unnecessary.   

Chapter 4 explored five methods of incorporating non-concurrent controls into the 

analysis of an experimental treatment arm that opened after the launch of an open platform trial.  

The five approaches included one static approach (fixed power prior) and four dynamic 

approaches that allowed the similarity between non-concurrent and concurrent controls to 

determine the amount of information used from non-concurrent controls (two test-then-pool 

approaches, a dynamic power prior, and a MEM approach).   These methods’ performance 

across both inference on the null hypothesis that the later entry treatment was equivalent or 

worse than the control and estimation of the relative risk of treatment failure in the later entry 

arm compared to control were evaluated.  Type I error, power, and bias of relative risk estimates 

under each of these methods were compared to the extremes of using concurrent controls only 

and naively pooling all controls under varying scenarios of parameter drift.  Simulation results 

confirmed that if there is no parameter drift, naively pooling all control data yields the highest 

power, lowest type I error, and most precise, unbiased estimates compared to all other 

approaches.  However, if event rates change over time, naive pooling results in type I error 

inflation or deflation depending on the direction of drift, as well as biased treatment effect 

estimates.  Although superior to naive pooling, none of the five alternative approaches guarantee 
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type I error control or unbiased estimates in the presence of drift.  Thus, only concurrent controls 

should be used as comparators in the primary analysis of confirmatory studies.  This 

conservative approach will guarantee type I error control and protect against bias.  Even if 

investigators are confident that response rates will not change during the course of their trial, 

unanticipated protocol changes, logistical issues (such as clinical sites closing), or events 

external to the trial (such as the approval of a new therapy), make the assumption of fixed event 

rates unrealistic.  However, approaches that incorporate all controls can be included as secondary 

sensitivity analyses in combination with an analysis of possible parameter drift. 

Chapter 5 applied the findings of Chapters 3 and 4 to the CTSN neuroprotection trial.  

Based on the findings of Chapter 3, the decision to not adjust for multiple testing was 

appropriate.  The devices evaluated by the trial were developed independently and captured 

debris by two different mechanisms.  Adjusting the type I error would have required a larger 

sample size to maintain power and would not have substantially decreased conditional type I 

error rates.   In re-analyses of the trial data, the choice of whether to use concurrent controls 

only, naively pool all controls, or use any of the five alternative approaches explored in Chapter 

4 ultimately did not affect estimates as only a small number of non-concurrent controls were 

randomized.  However, had the introduction of CardioGard occurred later, the use of concurrent 

controls only was the most appropriate and conservative approach.  For future trials in the 

neuroprotection space, the design of the CTSN trial provides an efficient platform for evaluating 

the efficacy of multiple new experimental therapies.   

When multiple experimental treatments are available, platform trials with a shared 

control group offer an efficient alternative to the “gold standard” two-arm, randomized 

controlled trial.  While this work has elucidated the effects of adjusting versus not adjusting for 
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multiple testing and evaluated approaches to incorporating all control data in the analyses of 

open platforms, there remain areas in need of future research.  The sample sizes selected in both 

simulation studies were somewhat arbitrary.  Additional studies assessing the impact of smaller 

and larger sample sizes should be explored.  Extensions of the binary outcome studies conducted 

in Chapter 3 and 4 to continuous and time-to-event outcomes should also be explored.  Further, 

although we recommend the use of concurrent data only in confirmatory analyses, alternative 

approaches that leverage all control data may still be appropriate in earlier phase studies.  

Simulation studies exploring the use of these methods and incorporating interim analyses with 

futility and efficacy-stopping rules should also be conducted.   
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