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Abstract

Energy-Efficient Algorithms and Access Schemes for Small Cell Networks

Haluk Celebi

Dense deployment of small base stations (SBSs) brings new challenges such as growing en-

ergy consumption, increased carbon footprint, higher inter-cell interference, and complications in

handover management. These challenges can be dealt with by taking advantage of sleep/idle mode

capabilities of SBSs, and exploiting the delay tolerance of data applications, as well as utilizing

information derived from the statistical distributions of SBSs and user equipment (UE)-SBS asso-

ciations. This dissertation focuses on the formulation of mathematical models and proposes energy

efficient algorithms for small cell networks (SCN). It is shown that delay tolerance of some data

applications can be taken advantage of to save energy in SCN. This dissertation introduces prac-

tical models to study the performance of delayed access to SCNs. Operational states of SBS are

modeled as a Markov chain and their probability distributions are analyzed. Also, it argues that

SCN can be operated to save energy during low traffic periods by taking advantage of user equip-

ments’ (UEs) delay tolerance in SCN while providing high access probability within bounded

transmission range.

Dense deployment of SCNs cause an increase in overlapping SBS coverage areas, allowing

UEs to establish communication with multiple SBSs. A new load metric as a function of the

number of SBSs in UE’s communication range is defined, and its statistics are rigorously ana-

lyzed. Energy saving algorithms based on aforementioned load metric are developed and their

efficiencies are compared. Besides, UE’s delay tolerance allows establishing communication with

close-by SBSs that are either in fully active mode or in sleeping mode. Improvements in cover-

age probability and bitrate are analyzed by considering different delay tolerance values for UEs.

Key parameters such as UE’s communication range are optimized with respect to SBS density and

delay tolerance.

The fundamental problem of local versus remote edge/fog computing and its inherent tradeoffs



are studied from a queuing perspective taking into account user/SBS density, server capacity and

latency constraints. The task offloading problem is cast as an M/M/1(c) queue in which CPU in-

tensive tasks arrive according to Poisson process and receive service subject to a tolerable delay.

The higher the proportion of locally computed tasks, the less traffic SCN handles between edge

processor and UE. Therefore, low utilization of SCN can be interperted as increased spectral ef-

ficiency due to low interference and close UE-SBS distance. Tradeoff between delay dependent

SCN utilization and spectral efficiency is evaluated at high and low traffic loads.
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Chapter 1: Introduction

Energy and capacity have been fruitful research topics that bring both challenges and advan-

tages for wireless networks. Today, due to rising traffic demand, cellular networks are on the

crossroads of a major shift in terms of their structure, topology and operation. These major changes

open new areas of research for capacity enhancement and energy optimization.

Existing macro cellular infrastructure reached its capacity limits and possibly will fall short of

meeting forecasted traffic demand. In the past decades, research was motivated by the desire to

enchance capacity without altering network topology. In these research efforts, planned cellular

networks are optimized to meet peak traffic demand. Optimizations took place in spectral effi-

cient wireless transmission techniques, such as orthogonal frequency-division multiple (OFDM),

and multiple-input multiple-output (MIMO) techniques. Besides, sophisticated wireless resource

management and mobility management schemes have also been put forward to ensure the quality

of service (QoS) experienced users. Despite their usefulness, these enhancements will not be able

to alleviate traffic growth problem.

Approximately 1000x traffic throughput will be needed in the next ten years according to 3GPP

[1] and Qualcomm’s 1000x data challenge [2]. One way to achieve such capacity is to increase

frequency reuse by deploying small base stations (SBSs) [3, 4]. Besides the overall traffic increase

due to the growing number of mobile users, the reasons for the deployment of small base stations

lies in diverse QoS demands of mobile applications and dead zones (e.g. inside buildings, or in the

subway). As a promising technique for future networks, small base stations expand the coverage

of cellular networks, provide high bit rate, decrease the transmission power of user equipment, and

increase the spectrum efficiency.

In communications networks, capacity and energy demand problems come hand in hand. Solv-

ing capacity challenge this way will bring energy-efficiency problems since small loads in small

1



base stations will cause them to stay idle and waste power. To tackle this issue, it is necessary

to develop energy-efficient techniques that not only meet capacity demands but also avoid wasting

power in small cell networks. It is possible to design energy-saving methods by taking into account

the hardware flexibility of small base stations, smart phone usage patterns, and delay tolerance of

data applications.

Small base stations (aslo called femtocells, picocells, and microcells) are commonly seen as

a solution to meet this growing data demand. Despite boosting network capacity, large-scale de-

ployment of SBSs will inevitably bring some challenges:

• Irregular topology: In conventional cellular networks, cell patterns are roughly in the form

of regular shapes such as hexagons, circles, and squares. Such patterns and assumption

of symmetrical deployment may not hold for small base stations. Besides, in large scale

deployment, the irregularity of SBS locations inevitably affect many performance metrics.

• Interference management: Conventional techniques such as frequency reuse, and sectoring

for interference management in planned networks may not be applicable in small cell net-

works due to irregular SBS locations.

• Resource scheduling: Frequency resources needs to be shared between small base station

and macrocells. One solution of frequency assignment is having dedicated frequency bands.

However, this solution reduces spectral efficiency. Therefore, an efficient but challenging

solution is to operate small cells in a co-channel band with existing macrocell.

• Energy consumption: Small base stations conserve much less energy when compared to

macrocell. However, large scale deployments of small base stations still consume consider-

able amount of energy. In [5], operational costs of small base stations and macrocells are

compared. It is shown that cost of one macro base station amounts to total operational cost

of 450 small base statations. Therefore, in large scale deployments, energy-efficient mech-

anisms are still necessary to avoid both idle power consumption at low traffic periods and

unnecessary signaling between user equipment (UE) and small cell.

2



Besides aforementioned technical challenges, enviromental concerns also stimulate the re-

search efforts for energy-efficient networks. The growing demand for higher throughput, and

peak-traffic based network planning have a high energy bill on global scale. The information and

communication technologies (ICT) contributes 2% of global Greenhouse Gases (CO2) emissions

[6]. The amount of CO2 due to information and communication technologies was 151 MtCO2 in

2002. It also forecasted that the CO2 emission will rise to 349 MtCO2 in 2020, in which 51%

of emissions are from the mobile networks [7].Telecommunications industry takes initiatives for

climate change, eco-sustainability, and global energy management. For this reason, a number of

collaborative projects, such as GreenTouch consortium [8], EARTH (Energy Aware Radio and Net-

work Technologies) [9], GREENET [10], have been created. In conclusion, the growth of energy

consumptions in ICT necessiates research on energy saving mechanisms for wireless networks.

1.1 Motivation and Basic Approaches

Design of energy efficient algorithms requires understanding of traffic dynamics, hardware

capabilities of small base stations as well as data and voice service quality thresholds. There are

many factors that affect mobile data usage. According to Jonsson et al. [11], monthly data traffic

depends on the throughput limitations by telecomunications company, user tariff plans, device

capabilities, display size and pixel quality of user device. Andone et al. [12] showed that age and

gender affect smart phone usage. Zhao et al. [13] identified 382 different usage patterns among

106,762 Chinese smart phone users. Considering these findings, significant spatial and temporal

variations can occur over the course of day.

Regardless of aforementioned statistics, existing cellular networks are statically planned and

their design relies on the peak traffic load. Besides, many energy-reduction techniques in literature

are based on average traffic demand. Marsan et al. [14] found an optimal time to switch off base

stations assumuing average traffic intensity has trapezoidal pattern during day and night. Similarly,

in [15] daily change in traffic intensity is modeled by cosine function. Although these approaches

are successful at saving energy, they may not be able to adapt short term traffic fluctuations. Be-
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sides being good candidate for boosting capacity by increasing frequency reuse, small base stations

have a low-power hardware which paves the way for flexible switch off/standby operation during

the inactivity periods. Taking advantage of the fast on/off adaptation of small base stations, it is

possible to design energy-saving mechanisms that are capable of adapting to both long term and

short term traffic changes.

An important aspect of wireless mobile traffic is that in some cases, user equipment can tolerate

modest delay before communication begins. First, we will try to determenine whether and when

this delay can be utilized to save energy. Then, we will explain large scale effects of delay tolerance

in terms of energy efficiency. Eyers and Schulzrinne [16] points out that %95 call set-up delay is

below 6-11 seconds in VoIP with a critical threshold of 25 seconds [17]. According to Galletta

et al. [18], response time of web site must be less 8 seconds in order to avoid leaving negative

impression to users. Also, they conclude that response time should be less than 4 seconds to keep

users interacting. In [19], 53% of mobile users leave sites if the response time exceeds 3 seconds.

So, critical threshold for initial access delay for web response is somewhat tight when users are

actively engaging with cell phone or tablet.

There is non-negligable background traffic in wireless mobile network. We define background

traffic to be traffic between base station and user equipment when user is not actively using smart

phone or tablet such as email, social media notifications. According to Meng et al. [20], between

33% and 40% of total traffic across the wireless interfaces of user equipment is background traffic.

Huang et al. [21] measured traffic from 20 users and studied screen-off radio energy consump-

tion. They found that 35.84 % of total traffic is background traffic corresponding to 58% of radio

energy consumption. They proposed a delay tolerant access scheme that opportunisticly offloads

background traffic to WiFi and saves energy. It is reasonable to assume that background traffic can

tolerate larger delays compared to the traffic occuring when user is active, and its proportion in all

data traffic during low load periods (e.g. night time) is higher than that of day time. Besides back-

ground traffic, there are other applications that make intermittent connections such as electronic

meter readers, rental electric bikes, and scooters.
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It is possible to turn small base stations off without distrupting active communications. In [22],

Moon et al. showed that after losing connectivity due to mobility, some popular applications can

still tolerate up to 5 minute delay, and seamlessly recover network connection. They also developed

a socket API that conforms to TCP, and transparently handles network mobility when there is

distruption of connection. In case small base stations are turned off to save energy, connection

failures can be avoided, and delay tolerance of background traffic can be managed in an energy

efficient manner.

Taking advantage of delay, not only a variety of user-cell association mechanisms but also

energy-efficient schemes can be developed. If user equipment defers its access to the small base

station, it may have the opportunity to find a closeby cell, which decreases its service time and

increases spectral efficiency. Then, more small base stations can be turned off in the small cell

networks compared to the case in which user equipment has no delay tolerance.

Conventional cell selection mechanisms are practical but often not optimal in terms of capacity

and energy-efficiency. Cell selection based on the instantaneous signal strength may not be optimal

[23] because signal strengh randomly changes due to fading and scattering. Associating user to the

nearest cell is another common practical method, which may cause imbalance in the distribution of

load. Besides, the algorithms for optimal user cell-association are computationally intensive and

do not take into consideration of short-term traffic fluctuations. It is necessary to design practical

access schemes for small cell networks which not only take advantage of user’s initial access delay

but also operate in a decentralized fashion.

In this dissertation energy efficiency of small cell networks are investigated under different

access delay margins tolerated by the user equipment. Unlike complex resource allocation, and

user-cell association strategies, the schemes introduced in the dissertation are kept rather practical

in order to analytically track the large scale effect of delay tolerance.
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1.2 Assumptions and Limitations

Throughout the dissertation, we made several assumptions regarding network topology, traffic,

user mobility and localization. We will provide succinct information underlying these assump-

tions. In the following Chapters, we will also provide more detailed discussion regarding these

assumptions.

We assumed that location distribuitons of small base stations and user equipments follow Pois-

son point process with parameters ρc, and ρu respectively. This assumption allows the analysis

of important performance indicators such as coverage probability, throughput, and delay-energy

tradeoffs, which will otherwise be intractable. We will give more detailed discussion regarding

network topolgy in Section 2.4.1.3.

User equipment initiates a service request at random Poisson intervals with rate λu. Service

time is either assumed to follow a distribution or computed by using Shannon’s capacity and size

of offloaded file. We clarify the modeling of service time in each chapter. For the sake of analytical

tractability, we omit the case of periodic arrivals.

The scenarios considering diverse traffic patterns are omitted and left as future work. However,

we briefly discussed possible ways our proposed algorithms can be extended when multiple traffic

patterns are in play.

It is also assumed that location of user equipment can be obtained with reasonable accuracy by

existing methods in literature [24, 25]. Having said that, for the user centric access schemes, we

assumed that UE can play active role in initiating and terminating connection with SBS based on

signal strength and distance to SBS.

Energy efficiency is not computed considering macrocell tier, we focused on energy efficiency

of small cell network. It is assumed that user equipment gives the priority to small cell when it

needs to receive service.

Frequency reuse is assumed throughout the dissertation. Performance of energy saving algo-

rithms can be futher improved considering frequency allocation along with proposed schemes. We

6



used Shannon’s capacity formula to comput wireless link capacity.

For simulation scnearios, we aim to evaluate peformance of algorithms at low, and medium

utilization levels. We choose the UE and SBS density so that utilization levels are met. Since the

range of SBS can scale from 10 m to 1km as shown in Table 2.1, range of possible UE and SBS

density is large.

1.3 Organization of the Dissertation

The scope of this dissertation is twofold: i) Development of cell selection strategies for user

equipment tolerant of initial access delay, ii) designing energy-saving algorithms for small cells.

The key design element of our access schemes and on/off algorithms is to combine initial access

delay with the hardware flexibility of small cells.

This dissertation deals with the design and analysis of energy-saving algorithms for small cells.

In Chapter 2, we provide a summary of the following subjects: i) metrics for energy-efficiency, ii)

power consumption models for small cells, iii) evaluation of energy-efficient schemes for small

cells.

In Chapter 3, we introduce a simple and practical delayed access scheme and analyze its effec-

tiveness in small cell networks with on/off capability. We analyze a simple energy-saving model

operating in a random fashion. On the network side, small cells turn on and off randomly while

user equipment makes a decision to connect to the closest available cell within the delay budget.

Also, the optimality conditions of this access decision will be discussed. Moreover, in terms of

transmit power of user equipment, we will show the contrast between two small cell networks,

wherein in the first scneario, a set of inactive cells are changing randomly and in the other scneario

topology remains static as a hexagonal grid.

In Chapter 4, a new metric that measures traffic load to the cell is defined. Based on this

metric, the traffic load distribution for a given small cell is obtained by a Gamma distribution

approximation. Our numerical results show that the network throughput, and energy-efficiency

can be improved considerably.
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In Chapter 5, stochastic geometry tools are used to analyze delayed access scheme in random

topology network. Distribution of coverage probability and average bitrate are derived. Optimal

transmission range maximizing bitrate and coverage probability are discussed. Results are verified

via simulations.

In Chapter 6, we offer a preliminary discussion about delay capacity tradeoff arising from the

applications that both use large bandwidth and impose high computational loads.

Conclusion part summarizes energy-efficient schemes discussed throughout the dissertation,

and points out possible venues to expand the research work.
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Chapter 2: Background and Literature Review

Small base stations are expected to play key role in expanding the capacity of wireless net-

work, and satisfying the growing traffic demand. With the advent of small base stations, the need

for careful network planning and optimization is also increased. In this chapter, we introduce

basic features and main challenges of small base stations with an emphasis on energy-efficiency

concerns. We will explain why small base stations are deployed and challenges small cell de-

ployment brings. We will also discuss energy-efficiency metrics, energy-consumption models, and

comparison of energy-efficient schemes.

2.1 Types of Small Base Stations

A small base station is a low power access point equipped with radio frequency (RF) compo-

nent. It can be both deployed indoors and outdoors. Advent of small cell started with the idea

of frequency reuse indoors. Kinoshita et al. [26] suggested that if frequency channels are reused

indoors with low power transmitters total required frequency bands can be decreased significantly.

Then, in 1996, Silventoinen et al. proposed home base station [27] which is an indoor base station

with small coverage that co-exists with macrocell provided that interference from macrocell is con-

trolled properly. 3rd Generation Partnership Project (3GPP) has released a number specifications

for small cells [28, 29, 30].

Small cells can operate in both licensed, unlicensed or shared spectrum [32]. We use small cell

Table 2.1: Small Cell Classification [31]

Cell type Range Deployment
Femtocell 10 m ∼ 50m Indoor
Picocell 100m ∼ 300m Indoor, Outdoor
Microcell 250m ∼ 1km Outdoor
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and small base station interchangeably. Small cells have a range of 10 meters up to a kilometer.

There are three kinds of small cells; femtocells, picocell, and microcells; listed in order of increas-

ing range. These terms are not standardized, and may have overlapping usage. Table 2.1 gives a

simple classification of small base stations based on range. Considering their on access control

mechanisms, small cells can be classified as follows:

• Open access: Cell access is granted to any user equipment belonging to the operator that

deployed the small cell. This type of cell is also called Open Subscriber Group(OSG).

• Closed access: Cell access is granted to only a subset of users by the small cell owner. This

type of cell is called Closed Subscriber Group (CSG).

• Hybrid access Access priority is given to CSG user, and limited resources are allocated to

non-CGS users.

We avoid focusing our study on single access mechanisms above. However, we envison that

user equipment may communicate with multiple small base stations in large scale deployment.

Small Cell Forum recently released a specification that enables an open, multivendor platform that

eases densification for all stakeholders [33]. Besides, hardwave of future small cells is expected to

support both licensed (LTE), and unlicensed bands (WiFi) [34]. Trend in the evolution of technol-

ogy indicates that small cells will have many other functionalities. So, instead of considering only

CSG type cells, we assumed that small cells are open access.

2.2 Metrics for Energy-Efficiency

In the literature, different energy-efficiency (EE) metrics (shown in Table 2.2) are proposed

at the component, base station and network levels [35]. The component level, the ratio of power

amplifier (PA) output power to input power known as ROI is used to denote the EE of the PA

component, and MIPS/W (millions of instructions per second per watt) or MFLOPS/W (millions

of floating point operations per second per watt) are used to calculate processing associated energy

consumption. At the base station (BS) level, there are several of EE metrics to evaluate the energy
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efficiency. For trade-off between energy consumption and spectral efficiency (SE), bits per second

per hertz per watt (bit/s/Hz/W) is defined. Also, bit times meter per second per hertz per watt

(b·m)/s/Hz/W measures energy efficiency when energy consumption, transmission range of the

base station, and spectral efficiency are all considered. At the network level, the EE metric is used

to evaluate the obtained service relative to the consumed energy. The services include subscribers

and the coverage range. Commonly, the ratio of number of subscribers served during the peak

traffic hour to power consumption is used for urban environments, and the ratio of area covered by

the network to the power consumption is used for rural areas. The consumed power per area unit

(W/m2) is used to evaluate the coverage EE.

Table 2.2: Energy Efficiency Metrics

EE Metrics Level Descriptions

MIPS/W or MFLOPS/W Component Used to calculate processing asso-
ciated energy consumption

bit/s/Hz/W Base station For trade-off between energy con-
sumption and spectral efficiency
(SE)

(b·m)/s/Hz/W Base station Taking into consideration energy
consumption, SE and the

W/m2 Network Used to evaluate the coverage EE

In large scale deployment, arhitecure of legacy base stations may not efficiently handle traffic

growth. Conventional base stations have two main components: baseband unit (BBU), and remote

radio head (RRU). Baseband unit carries out digital signal processing tasks. Remote radio head

converts analog signal from digital baseband signal, then feeds it to the antenna. It also digitizes

received RF signal. In dense networks, having dedicated BBU for each base station comes with

operational cost such as cost of power and cooling. To realize cost-effective deployment, baseband

units are aggregated in a pool [36], and remote radio heads are deployed at cell sites. Fiber links

are used for communicaton between RRU and BBU.

Except its size, the function of small cell is the same as macrocell. Because of this similar-

ity, the energy-efficiency (EE) metrics on the component level are suitable to both small cell and
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macrocell. As small cells are deployed with existing macrocell systems and use the same spectrum

with the macrocell, it is reasonable to evaluate EE of macro base stations together with the small

cell network. Besides, EE of small cell network needs to be analyzed considering the difference

between the small cell-supported service and macrocell-provided service. It is also necessary to

take the interference between small cell and the macrocell into account. For instance, the EE metric

for femto-macro heterogeneous networks is defined [37] as,

EE =
RMe +

∑n
i=1 RHe,i

PMe +
∑n

i=1 PHe,i
, (2.1)

where RMe denotes the average data rate provided by the macrocell with consumed power PMe,

RHe,i denotes the average data rate provided by the ith femtocell with consumed power PHe,i. (2.1)

considers the service rate and consumed power in both the macrocell and femtocell. However, the

calculation of the service rates of the macrocell and femtocells is a challenge because the macrocell

and femtocells overlay with each other, and the service rates are related to the detailed management

schemes, such as the resource allocation, interference cancellation, etc.

2.3 Power Consumption Models for Small Cells

In general, energy consumption of a wireless network is evaluated at two levels: operational

energy consumption and embodied energy consumption. The operational energy that is defined

as the amount of energy spent during a system’s operational lifetime varies with different con-

figurations such as load of the cell and RF power efficiency. It is generally accepted that most

power consuming component of base station is RF power amplifier. So, in parallel with evolving

communication technologies, there is also enourmous research and investment made every year

to improve the efficiency of RF power amplifier [38]. The embodied energy is defined as the to-

tal primary energy consumed in the work of making a product. Power consumption models and

detailed power consumption values for small cells are given in [39, 40]. Component wise power

consumption levels are given in Table 2.3.
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Table 2.3: Power Consumption of Femtocell [39]

Hardware component Energy Consumption (W)

Microprocessor and associated memory 2.2
FPGA associated and associated memory 2.5
Other hardware components 2
RF transmitter 1
RF receiver 0.5
RF power amplifier 2

Power consumption depends not only on the hardware but also on the communication technol-

ogy such as HSPA (high speed packet access), WiMAX, LTE. According to the model proposed

by Deruyck et al. [41], femtocell comsumes 10.5W, 10.0W, 9.7W for WiMAX, LTE and HSPA

respectively due to the difference in input power of antenna. So, typical femtocell consumes about

10W when fully active. Picocell and mircocell consumes 40W and 80W respectively [42] The

embodied energy of a cell is assumed to have a similar value to a mobile terminal which is 162 MJ.

For instance, assuming the lifetime of a femtocell is about 5 years, its embodied energy per sec is

about 1 W [43].

There are several power models with varying complexity. The simplest one is on-off model. In

this model a small cell is assumed to spend unit power in active mode, and zero power in off mode.

The model is useful for theoretical analysis. Auer et al. [40] proposed linear power consumption

model (2.2) This model is widely accepted and used with slight variations in the literature [44, 45,

46].

Ptot =


Nt x(P0 + ∆cPt x) if active mode

Nt xPs if sleep mode,
(2.2)

where Nt x is number of tranceivers, P0 is the static energy consumption excluding the tranceivers.

∆c is the load dependent energy consumption coefficient, and Ptx is the transmit power of small

cell. is the backhaul power consumption for the small cell. For example, for Nt x = 2,P0 = 4.8
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Pt x = 0.05 W , ∆c = 8, Ps = 2.9W , power consumption of LTE femtocell 10.4 W , and 5.8 in fully

active and sleep mode respectively. Also, if traffic load is zero (Pt x = 0), power consumption

of femtocell is 9.6 W . Relationship between power consumption and traffic load varies with base

station type. Since the coverage range of femtocell is small, Pt x is relatively small. So, traffic load

has less impact on overall power consumption. For marco cell, Pt x is large; hence, traffic load has

a significant impact on total power consumption.

Power consumption at different hardware components brings extra challenges and tradeoffs

in designing energy efficient algorithms. The linear power model is also useful for analysis and

it is more accurate than the on-off model. However, it may not reflect power consumption in

sleep mode accurately. Power savings in sleep mode depends on depth. As switching off more

components, energy savings proportionally increase. However, increase in energy savings comes

with a cost of reactivation delay. For femtocell, if RF unit is turned off only, energy savings are

about 40-50%. ([39, 40]). Vereecken et al. [47] proposed multiple sleep modes in decreasing

power consumption and increasing reactivation delay. They suggested on, stand-by, sleep and

offline with the information of corresponding power consumption and reactivation delays. Liu et

al. have measured power consumptions based on multiple operation modes and boot-up delays.

[42].

In this thesis, we assume small cell can be in sleep, idle, and active modes. In active mode,

we assume small cell has active communication with a user equipment. In idle mode, small cell is

active but does serve any user. We have slightly different approaches for sleep modes. In Chapter

3, we assume that radio part of small cell is turned off in sleep mode and there is no boot-up delay.

In Chapter 4, there are multiple sleep modes with associated boot-up delays (see Table 4.1).

- Active: The SBS is actively engaging in transmission with full transmit power.

- Idle: The SBS is active but not serving any user.

- Sleep: The SBS is in a sleep with only necessary hardware parts. Power consumption varies

depending on the components switched off. Sleep modes are clarified in chapter.
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- Off : The SBS is completely offline.

Last but not least, it is important to design an energy efficient scheme in which activation delay

does not adversely affect quality of service for both rapid and long term traffic fluctuations. To

this end, it is important to choose both length of the sleep period, and the hardware components to

deactivate in these sleep periods. To tackle this problem, it is proposed in [48] to turn off only the

transceiver part of base station for short sleep periods and shut down the entire system during long

sleep periods. Finally, average power cunsumption of small cell is computed by taking the product

power consumption levels and proportions of times that small cell is idle, active or in sleep mode.

We summarize small base station operation modes as follows

2.4 Evaluation of Energy-Efficient Schemes for Small Cells

In this section, we review energy-efficient schemes for small cell networks. We first classify

them based on their design objectives, and discuss briefly their advantages and limitations, and

consider system performance measures.

2.4.1 Classification of Energy-Efficient Schemes for SCN

We review energy efficient schems in several categories: power control schemes, dynamic

idle/sleep schemes. We also discuss deployment strategies. Power control schemes are mainly

designed for interference management. However, they still benefit energy efficiency as the antenna

transmit power is decreased.

2.4.1.1 Power Control Schemes

Although the main purpose of power control is to cancel or coordinate the interference (i.e.

decreasing the interference level in the vicinity of a small cell), power control schemes obviously

decrease the transmission power of small cell, and make them energy efficient. According to the

contexts on which power control schemes are based, we roughly classified them into receiving

power based, traffic load based, frame-utilization based, and global energy based schemes.
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Receiving power: Controlling transmit power of small cell based on the strength of received

power from user equipment is standardized by 3GPP. Standardization on the power control schemes

vary with the type of small cells. Therefore, without delving into much detail, we briefly discuss

the femtocells’ down link (DL) inter-cell interference cancellation (ICIC) strategy. In [37], two au-

tonomous power control (APC) schemes have been proposed. Small cells that have closed access

or hybrid accress policy bring the risk of interfering user equipments communicating with macro-

cell. A non-subscribed user in the vicinity of closed access cell (CSG cell) has to communicate

with macrocell; thus, it may receive strong interference because of shared spectrum. In this case,

the user equipment may become victim of high interference from CSG cell. Similarly, macrocell

can be exposed to interference from a closeby small cell user. To avoid the risk of interference

from closed access cell, a femtocell detects the existence of victim users interfered by the femto-

cell through measuring up link received power from a victim user; if the measured power is larger

than a pre-determined threshold, the femtocell believes that there at least exists a potential victim.

After that, 3GPP recommends several schemes to adjust the transmission power of the femtocell.

One method to avoid the interference is through reported reference signal received power (RSRP),

and reference signal received quality (RSRQ) measurements from subscribed user. Based on the

measurements small cell optimizes its transmit power so that predetermined thresholds for RSRQ

and RSRP are met. Similarly, small cell can decode RSRP from macrocell user. If RSRP from

the nearest macrocell user is poor, the transmit power of small cell set to lower value in order to

mitigate the downlink interference with macrocell user. Another way is to make use of GPS signal.

If small cell detects GPS signal well, it indicates that it is deployed outdoors, and there is a risk

of interfering macrocell users. So, transmit power of small cell should be small. Conversely, if

the GPS detection is poor, small cell is likely to be deployed indoors, or in a dead zone to extend

coverage. In that case, transmit power of small cell can be large. Suggested techniques are vali-

dated by simulations. To enhance the feasibility and performance of the recommended schemes,

in [49], a strategy for femtocell to appropriately determine the self-configured threshold is used to

autonomously trigger DL ICIC. Also, effective strategy to autonomously estimate the existence of
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indoor victim users is proposed and validated by simulation.

Traffic load: Based on geometric Voronoi diagrams, [50] Shin and Choi proposed a dynamic

power control algorithm according to data traffic estimation, which achieves good indoor coverage

and load balance in experiments.

Frame utilization: In [51], Mach and Becvar suggested frame-utilization based power control

scheme. In this scheme, femtocell decreases its transmit power, and uses more resources blocks

in LTE frame. To avoid interference, femtocell transmits with low power. This will cause number

of decoded bits per symbol to be lower. In other words, femtoell adopts lower modulation and

coding scheme (MCS) in expense of using larger frequency and time resources in LTE frame

while maintaining the same QoS for user equipment. This way the interference range and average

transmit power of femtocell are decreased.

Global energy approach: In [52], Chen et al. suggested a method solving an potimization

problem which is defined as maximizing aggregate network throghput in small cell network for

given bandwidth. Defining the problem as maximizing the sumrates over all users may seem

a solution. However, in practice, solution offers very low throughputs to some users, which is

unfair. A more reasonable appraoch is minimizing inverse of signal to interference plus noise

ratio (SINR), which can also be interpreted as minimising delay experienced per bit. To be mor

specific, small cell needs to be assigned a transmit power; having discrete values between 0 and

Pmax , a channel among a set of channels. Possible channel and power assigments have a large

space. To solve the problem, global energy function which is defined as 1/SINR and its sum over

all users is minimized by the Gibbs sampling technique. Gibbs sampling defines a joint distribution

function taking channel and power assigment values as parameters. Using this distribution, joint

distribution is obtained. Parameter values are updated iteratively until they converge. Efficiency of

global energy and Gibbs sampling solution is validated by simulation.

Although there are many publications concerning power control schemes for femtocell or

femto-macro heterogeneous networks, most of them focused on interference cancellation/coordination

but not energy efficiency [53, 54, 55]. When more and more femtocells are deployed, coverage re-
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gion of femtocells will overlap. It is necessary for neighboring femtocells to collaborate on power

control to cancel the interference and improve energy efficiency.

2.4.1.2 Dynamic On/Off Schemes

Small cells and macrocell differ in the traffic pattern. The coverage region of a small cell is

smaller than that of macrocell. A small cell commonly serves a few users, especially when it is

deployed indoors (i.e. femtocell). So, it is likely to be idle as there are no users requring service

during low traffic periods, On the contrary, macrocell, even in low traffic, is likely to serve a few

active users. Due to this difference, energy efficient schemes are tailored to suit traffic dynamics

and hardware capabilities of small cells. We review related litureture below.

Sniffer based: In [39], the authors proposed two dynamic idle mode schemes, “Idle Mode

Based on Noise Rise” and “Reducing Pilot Power When Idle”, which allow the femtocell’s trans-

mitter and associated processing to be switched off completely when the femtocell does not need to

support an active connection. System level simulations were run to demonstrate the effectiveness

of the schemes. Their efficiency is still unclear in open-access femtocells since if a user is in the

vicinity of multiple femtocells, the elevation of noise level might trigger multiple wake-ups unless

a central controller is used.

Traffic load based: In [56], a sleep mode scheme is proposed for a single femtocell. In this

scheme, a femtocell saves energy by aligning the listening windows of multiple mobile users. By

doing this, the femtocell sends data to mobile users at the same transmit intervals. Minimum and

maximum sleep intervals are defined, and adaptively changed based on traffic. Simulation results

indicate that sleep ratio can be increased by 20% by the proposed scheme while maintaining same

QoS level.

Localization: Using Markov Decision Processes (MDPs), Saker et al. [57] proposes optimal

sleep/wake up schemes for macro-femto heterogeneous networks, in which femtocells work in

open access mode and can offload traffic from the macrocell. The proposed sheme suggests that

when the macro-femto heterogeneous network is not highly loaded, macro base station can handle
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the traffic itself, and femtocells are switched off. As the load increases, one or more femtocells are

selected to be switched on. Simulation results indicate about 10% reduction in average consump-

tion of femtocell.

Active connection based: In [58], Vereecken et al. offered heuristic on/off scheme that makes

use of overlapping coverage regions of femtocells. It is assumed that topology of small cell net-

work, locations of users, and their bit rate demand are known. Initially, user and small cell ad-

jancency matrix is generated based communication range of small cells. The matrix gives the

information about the number of small cells that can serve a certain user. This information is used

to determine user’s alternative connections to its currently associated cell. If user is in range of

only one cell, the small cell that it is currently associated remains on. Then, small cells that serve

the most users are turned on until such that each user has at least one cell in its communication

range. The paper formulates integer program that minimizes number of on base stations. This

heuristic is shown to be close to the optimal solution. Intended sleep durations are much longer

than that of [56].

QoS constrained: In [59], the tradeoff between the energy-efficiency and the delay has been

investigated using the metric of effective capacity [60], which characterizes QoS in terms of bits

successfully communicated as a function of time with high probability. The problem is formulated

as finding the optimal sleep and idle periods so as to maximize the energy efficiency subject to the

effective capacity constraint, and solved by using genetic algorithms. Simulation results indicate

that energy efficiency (bits/joule) can be doubled through sleep modes.

The main focus of power control schemes is to manage interference, improve throughput and

conserve energy consumption while the radio frequency (RF) and hardware of small base stations

are always on; accordingly, the energy efficiency of power control schemes is limited. In contrast,

on/off schemes focus on designing various approaches to turn on/off the RF and some hardware

parts of small base stations, which could potentially save more energy but cause longer boot-up

delays than power control schemes. On the other hand power control schemes and idle/sleeping

schemes are complementary. Taking into consideration of the 3GPP standardization efforts [61]
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Figure 2.1: Classfication of energy-efficient schemes of small cell networks

for energy efficiency, both types of energy conservation schemes can be run Long Term Evolution

(LTE) systems.

2.4.1.3 Deployment Strategies

Small cells are designed to extend the coverage range of cellular networks and support higher

data rates in indoor, where the wireless signal is deeply deteriorated due to shadowing and multi-

path fading. Or, they can be deployed in outdoors, where traffic demand can be high such as

Stadiums, and crowded streets. Figure 2.2 shows a general deployment of femtocells in indoor

environments. We will first give an overview of relevant literature about small cell deployment

methods. Then, we will discuss our assumptions regarding small cell deployments.

The relationship between energy efficiency and deployment of small cells is investigated in

[63], where the energy-efficiency of downlink in marco-small cell heterogeneous networks is an-

alyzied. The analysis shows that there exists a ratio of optimal small cell-macro cell density that

maximizes the overall energy efficiency of heterogeneous networks. Considering the co-channel
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Figure 2.2: Femtocells deployed in the indoor environment [62]

interference and varying traffic demand, [64] evaluates the energy efficiency for heterogeneous

OFDM-based mobile networks, and shows that increasing deployment density through additional

small base stations may maximize a network’s energy efficiency when the traffic demand is suffi-

ciently large.

Although the assumption of random deployment of femtocells is somewhat reasonable, it is

still questionable whether this deployment causes inefficiencies in QoS and power consumption.

Inefficiencies in terms of high interference may also arise when small cells are deployed arbitrarily

close. Recent work [65], compares average throughput and power consumption when small cells

are randomnly placed with the strategy that places femtocells intelligently based on the position of

other femtocells in the building. With and without outdoor interference sources, optimal positions

to deploy the femtocell inside a room are derived. In case there are multiple femtocells in the

building, a reasonable heuristics is used for the deployment strategy.

In practice, location of base stations are carefully planned by the operators taking into con-

sideration of many factors such as traffic demand, line of sight, and enviromental concerns. So,

topologies of real cellular networks are neither perfect hexagons nor completely random [66].

To understand pros and cons of grid and random topologies, we made a simple simulation that

shows the transition from random topology to the perfect hexagons. In area A N small cells are
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(a) Initial random topology
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(b) Improved topology after 100 iterations
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(c) Near hexagonal topology

Figure 2.3: Simulation example with N = 100 cells showing how completely random topology
turns into near hexagons by iteratively changing inter-cell distance. Simulation starts with a ran-
dom topology as in (a). After 100 steps, topology forms as in (b) For large number of iterations,
topology is almost hexagonal as in (c)

22



placed randomly. Then, this random topology is improved in terms of intercell ditance. A new

small cell is placed randomly in area A. Then, pair of closest small cell is found. The one, whose

distance to second nearest base station is smaller is removed. This way, at each iteration, interell-

distance is improved. Figure 2.3 shows the transition of random topology into almost hexagonal

topology.

At each iteration, variance of inter-cell distance becomes smaller and minimum distance be-

tween closest pair becomes larger. Improvement in terms of inter-cell distance happens in two

ways. With high probability, a new added cell is not removed in random topology since it is more

likely that new cell is dropped at a sparse region than dense region.Thus, topology improves by

densification of sparse regions, and sparsification of dense regions. As the number of iterations

increase, voronoi cells with random size form into near hexagons.

Major disadvantage of random topology is that locations of small cells can be arbitrarily close.

In grid model, effect of co-channel interfernece is minimal; bringing better QoS in terms of

throughput. However, grid model is too idealized for large scale deployments because distance

between two cells may vary depending on physical constraints and demographics. Interference

is analyzed for a single user at fixed location in worst case scnenario [67]. Hard core point pro-

cesses (HCPP) ensure a minimum hard core seperation distance between any pair, but it is difficult

to analyze interference, delay-energy tradeoffs by using the complex expressions for the distance

distributions of HCPP and regular polygons. [68, 69].

Despite the aferementioned disadvantages, assumption of random topology is adopted in many

studies [70, 71, 72]. The reason is that the assumption of random distribution allows tractable

analysis of key performance measures such as SINR in large scale networks. Thefore, to obtain

energy-delay tradeoffs in dense deployments, we assume that small cells follow Homogenous Pois-

son Process (HPPP). Besides, despite the fact that cellular networks are designed to meet peak load,

there will be significant imbalance between available cell and traffic demand at off-peak hours due

to the daily population dynamics [73] in urban areas. We assume that random topology reason-

ably represents such imbalance, and can be improved with energy saving schemes that considers
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location of users, and cells and their communication range.

2.5 Conclusion

Energy efficiency in small cell networks is becoming more and more important with their de-

ployment at dense areas. In this chapter, we give a brief survey on this issue in terms of energy

efficiency metrics, energy consumption models, deployments, and energy saving schemes. Our

review shows that there are many interesting issues on the energy efficiency of small cell networks

to be investigated. We conclude that in dense deployments, it is crucial to have energy saving

schemes not only for small cells but also Wi-Fi access points (AP).Considering the dense deploy-

ment of Wi-Fi APs with large overlapping coverage, and the design trends [34] that small cells

will operate both in licensed and unlicensed bands, Wi-Fi APs have similar inefficiencies in terms

of energy waste at low traffic load (e.g. no use night times in office buildings). We belive that our

enegy saving methods that we discuss in following chapters also apply to Wi-Fi networks.
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Chapter 3: A Random On/Off Strategy for Saving Energy in Small Cell

Networks

New mathematical models are needed to gain insight into operation of small cells in large

scale networks due to the shift from planned hexagonal grids to irregular deployments. There is

rich literature about the analysis of signal to interference plus noise ratio (SINR) distributions,

and achievable bit-rates for randomly distributed networks [74, 75]. However, little guidance is

available for large scale behavior of energy efficent operation of small cells. From this respect, we

introduce a baseline energy saving model. In this model, small cell has several operation modes

including energy saving mode. Then, we analyze its large scale behavior in dense deployment. The

key role of the analysis functions as a proof of concept of possible energy savings via a delayed

access strategy. In the following, we give detailed description of the model, and analyze the model.

Then, we discuss the simulation results, and finally give directions for more advanced models. This

chapter is an extended version of work published in [76].

The rest of this chapter explains baseline models for cell selection, and analysis of on/off

schemes, and verification of results via simulation. After describing the model, we analyze the

probability distributions of small cell’s operation modes. On the user side, a simple delayed access

scheme is introduced. This scheme helps user equipment decrease average distance to the small

cell it communicates. Regarding this delayed access scheme several peformance measures are

also analyzed. We analyzed access probability distributions within predefined distance and range

is analyzed. Also, we derive distributions of transmit distance, and an optimal transmit range

that minimizes the average transmit distance. We discuss the bounds on transmit power gains by

comparing transmit distances with and without access delay. Finally, analytical results are verified

through simulation experiments.
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3.1 Random On/Off Model

In this part, the model for random on/off strategy is explained. The model has two main com-

ponents: energy-efficiency operation of small cell, and cell selection strategy of user equipment.

The model is called random due to probabilistic nature of time of switch-off decision and sleeping

period. Each small cell has a simple energy-efficiency operation. Operational modes of the cells

are sleeping, idle, and active. In the sleeping mode, antenna and maybe some baseband processing

units are switched off. Power amplifier, and FPGA is on. Thefore, small cell can switch from sleep

mode to idle mode quickly. In the idle mode, cell is ready to give service but not actively serving

any user. In active mode, small cell can give service up to C users simultaneously. Capacity C

depends on small cell type. For example, off the shelf femtocell can serve 4 to 6 users at a time

[77, 78]. For analytical tractability, we assume single sleep mode is employed and omit multi-level

sleep modes. State transition diagram is shown in Figure 3.1. Having said that, model can be

extended to energy a saving policy handling both short and long sleep periods by conditioning on

sleep time, and find the probabilities of being in long and short sleeps. Average power consumption

at long and short sleep periods can be computed.

A user equipment (UE) can delay its access in order to connect a closer small cell as shown

in Figure 3.2. During UE’s waiting, a closeby small cell can wake up and become available. This

enables the UE and small cell to decrease their antenna transmit powers on uplink and downlink,

and improves overall network energy efficiency. The longer a UE can wait, the more likely a closer

small cell will become available. In other words, a UE improves network energy efficiency and

transmission power at the expense of delay. We show that the transmit power of the UE and small

cell is greatly reduced when compared with a system that turns off a fixed set of small cells. Also,

we show that the average power consumption of a small cell can be decreased, while providing a

bounded transmit distance with a high probability.

UE has two access modes, namely rapid and delayed access. In the rapid access mode, a UE

may be connected to a further small cell if the nearest small cell is unavailable. We define the
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tolerable delay wt as the maximum time that a UE can wait before a connection begins. Threshold

distance Rth is defined as the distance within which UE is willing to initiate a connection with a

small cell without waiting.

We propose a second mode referred to as the delayed access mode, if a UE can defer its access

to small cell. In this mode, when a UE has a service request, it immediately initiates a connection

with the small cell provided that there is an available small cell within Rth distance. If not, the UE

waits for wt time units. During this time, if an small cell within Rth becomes available, the UE

accesses that small cell. If no small cell becomes available within a radius of Rth before tolerable

delay expires, UE connects to closest available small cell in the network. In this case, it is clear that

the available small cell is outside the threshold distance. Operation of the delayed access scheme

is summarized in Figure 3.3.

Distance based schemes are proposed in many studies. Fanghänel et. al [79] proposed a chan-

nel assigment algorithm based on Euclidean distance. Likewise, decision of user cell assocation is

made based on distance in [58]. Delayed access scheme assumes that UE is able to decide whether

or not cell is within its communication range, Rth. This decision can be made by measuring re-

ceived signal strength indication RSSI level.

Regarding the access strategy, rapid scheme is considered baseline and compared with delayed

access. From energy saving perspective, random on/off is considered a baseline and it is compared

with static cell topologies.

3.2 Analysis of State Probabilities and Approximate Access Delay Distribution

In this part, we derive the state probabilities of a small cell, and access delay distributions.

Our analysis encompasses the scenario where a small cell can serve multiple UEs simultaneously.

Theoretically, C can be arbitrarily large, and the model can be easily extended to C = ∞ case. We

give further discussion about selection of C in Section 3.2.1. Arrival rate λu represents aggregate

traffic load from user equipment. In our model, small cell has three operation modes, namely,

active, idle and sleep modes as shown in Figure 3.1. Each UE requests a service with the rate of
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Unavailable states

Available states

Sleep Idle 1 UE 2 UEs C UEs

Figure 3.1: State transition diagram of a small cell

Figure 3.2: Illustration of transmit distance in delayed access scheme. The UE has a service request
at time t. If the UE connects to small cell 1 immediately at time t, transmit distance will be Rout. If
the UE delays its access and connects to small cell 2 at t′, transmit distance will be Rin.
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Figure 3.3: Delayed access strategy planned by user equipment

λu, and the service time is exponential with mean 1/µ. After small cell completes its service, it

moves to the idle mode. Duration of the idle mode is exponential with λI. If a small cell does not

receive a service request in the idle mode, it moves to the sleep mode. Duration of the sleep mode

is also exponential with λS. For given traffic, UE density and small cell density, effective traffic

load is 1/λT, which represents the mean time between two service requests to a small cell. λT is

not an input parameter, but an internal parameter to be calculated. In other words, λT represents

aggregate traffic load to the single SBS from UE’s within its range. So, λT depends on user density,

cell density, arrival rate as well as service rate.

In practice, there are various traffic patterns with different QoS characteristics. For example,

regarding the arrival rate, traffic can be either periodic or aperiodic. It can be voice, data, or video

traffic. It may or may not require guaranteed bit rate. Combining different traffic patterns in a

single Makrov Chain is analytically intractable. Thefore, we prefered to use rather simple traffic

model and discuss its strengths and weaknesses. We consider user equipment generates a service

request at exponential intervals. Service request can be delayed up to wt seconds, and service time
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is exponential. The traffic can be a background traffic which is rather delay tolerant as discussed

in 1.1. Or, it can also be on-demand video traffic. So, user equipments downloads video segments

from server periodically, and fills up its buffer in its storage unit. When buffer level is below its low

threshold, user equipment downloads more video segments until its store unit is full. Depending

on how fast buffer is emptied, user equipment knows the deadline to start downloading next video

segments. Thefore, on demand video traffic is also delay tolerant. Although we made assumption

of Poisson arrivals and exponential service times, we believe our model can capture the delay and

energy efficiency tradeoffs.

Probability of sleep, idle, and active modes depend on the traffic generated by UEs, and density

of UEs and small cells. As traffic load increases, sleep mode probability decreases. Operation of

small cell is modelled as a Markov chain with three states.

The state-space is Ω = {S, I, Ai}| 1 ≤ i ≤ C where S, I, A are the events representing sleep,

idle active modes; similarly, ΠA, ΠS and ΠI are active, sleep and idle probabilities respectively.

The balance equations of the Markov chain [80] in Figure 3.1, can be written as

ΠS = ΠI
λI
λS
, (3.1)

ΠAi = ΠI
(λT/µ)

i

i!
, (3.2)

1 = ΠS + ΠI +

C∑
i=1
ΠAi (3.3)

The set of equations in (3.1), (3.2),(3.3) can be solved as a function of λT. Thus, the only

unknown in our Markov model is λT. To solve λT, we consider equilibrium condition, where rate

of service demand from UEs in the network is equal to the aggregate service rate. Then,

ρuλu = ρc(1 − ΠS − ΠI)

C∑
j=1

jµΠAj (3.4)

= ρc(1 − ΠS − ΠI)µΠI

C∑
j=1

j
[
λT
µ ]

j

i!
(3.5)
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Left hand side of Eq. (3.5) is rate of demand from UEs per unit area. In other words, the product

of density and arrival rate gives a measure of traffic in terms of number of arrivals per m2. This

traffic is met by the service rate on the right hand side. We have (1 −ΠS −ΠI) because only active

cells gives service. Finally, plugging the average number of served connections by active cells

using active state probabilities, equilibrium condition is satisfied. For C = 1, Eq. (3.5) deduces to

following expression:

ΠI =

[
1 +

λI
λS
+
λT
µ

]−1
, (3.6)

ΠA = ΠI
λT
µ
, (3.7)

ΠS = ΠI
λI
λS
. (3.8)

To find λT, we consider the average number of UEs for which a small cell provides service. Con-

sidering the fact that only active cell can give service to a UE, and balance of arrival and departure

rates in equilibrium, we have

ρuλu = ρcΠAµ. (3.9)

Plugging Eq. (3.7 ) into Eq. (3.9), we obtain

λT =
ρuλu
ρcΠI

. (3.10)

Inserting (3.6) into (3.10), we finally have

λT =
µλuρu

(
1 + λI

λS

)
ρcµ − ρuλu

. (3.11)
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Note that ρcµ is a measure of the service that is processed in unit area, and ρuλu is the service

request from UEs in unit area. For network stability, we need Cρcµ − ρuλu > 0, and network

utilization is given by ρuλu
ρcCµ . Note that network utilization does not depend on λS. Traffic demand

is satisfied if stability condition ρuλu
ρcCµ < 1 holds.

We can derive the access delay distribution using the small cell’s operational state distributions

that are provided in equations (3.6), (3.7). Access delay distribution is defined as the probability

that a small cell within Rth is available in wt time. The access delay not only depends on the state

of the small cell, but it also depends on the number of waiting users for non-zero wt . Here, we

give an approximate distribution for the access probability assuming that the competition between

UEs waiting for the same small cell is rare. Details regarding this approximation are given in the

following section.

Let β0 and βwt denote the probabilities that an small cell is idle immediately or will be idle

within a duration of wt, respectively. Then, using Eq. (3.7), for C = 1 we have

β0 ≈ 1 − ΠS − ΠA,

βwt ≈ 1 − ΠSe−wtλS − ΠAe−wtµ. (3.12)

By Poisson thinning property, available small cell density is βwtρc. Then, using (3.12), with a

delay budget of wt, the joint probability to access an small within a radius R around a UE is given

by

P (R < r, t < wt) = Pin(R,wt) ≈ 1 − e−βwt ρcπR2
, (3.13)

which gives the access-delay distribution. We will use Eq. 3.13 in Section 3.4.3 for the optimiza-

tion of transmission range.
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3.2.1 Number of Simultaneously Served UEs

It is useful to discuss the parameter C affects behavior of small cell. First, there is an upper limit

on the number of users that small can be served simulatenously [77, 78]. Depending on the traffic

load, UEs that have active connection with small cell also change. We discussed that it is possible

to obtain state probabilities using balance equations in (3.1, 3.2, 3.1), and (3.5). We assumed that

service time of active user have exponential distribution with parameter µ. In practice, if there are

multiple active users that are connected to the same small cell, service of each user depends on

how small cell allocates its frequency resources. At this point, it is necessary to make reasonable

assumption on C so that energy-delay tradeoff can be characterized successfully. In our study,

we consider that small cell network is underutilized. Consider a femtocell with three UEs. Each

UE has arrival rate λu = 1/300 s−1, and µ = 0.1. Clearly, femtocell utilization is 0.1. Assume

that femtocell is serving one UE. The probability that new service request arrives is 3λu
3λu+µ = 0.09.

Considering utilization level, femtocells need to share transmission capacity about 1% of time.

Therefore, we assumed that in underutilized network, assuming C = 1, will not change energy-

delay tradeoffs. Finally, we leave analysys of different allocation schemes such as processor shared

queue as a future work.

Now, assume that SBS is able to serve infinitely many UEs simultaneousy by sharing its trans-

mission capacity. In this case, UE finds available SBS within its range immediately or in shorter

time at the expense of long service periods. Optimizing number of UEs to be served simultenously

with respect to traffic load can be investigated as a future work.

3.3 Relationship between Tolerable Delay and State Probability Distributions

Tolerable delay is not a parameter in the Markov model shown in Figure 3.1. Tolerable delay,

wt, is a deterministic value. Actual access delay however is random value between 0 and wt with

nonzero mass at edge points. In this part, we argue that probability of being idle, sleep or active

is invariant with respect to tolerable delay. To show that we start with a Theorem. Then, we show
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simulation results that justify our proof.

Theorem 1. Let R be a Poisson process and τ be a random shift value with unknown distribution,

with a range between 0 and W (τ ∈ [0,W]). Then, the shifted process R(τ) still has a Poisson

distribution.

Proof. Without loss of generality, assume τ takes discrete and finite number of values, N , between

0 and W , where δτ = W
N ,τ0 = 0, τi = iδτ. Assume also that τ = τ1 with probability p1, and τ = τ2

with probability p2 and so on, and
∑N

i=0 pi = 1. In this case, shifted process R(τ) is combination

of N + 1 shifted processes. (i.e. R(τ) = R(τ0) ∪ R(τ1).. ∪ R(τN ). Since the Poisson process is

stationary, each of the shifted processes are Poisson, and overall process is combination of Poisson

processes, so R(τ) is still Poisson. Regardless of the size of N, the process is still sum of shifted

Poisson processes.

Let t be the waiting time for a UE before receiving service. There are three possible cases for t

depending on the access time of the data equipment: i) UE accesses to the cell immediately (t = 0),

ii) UE accesses to a cell after tolerable delay time expires (t = wt), iii) UE has non-zero waiting

time that is less than maximum tolerable delay (0 < t < wt). In the first case, wt = 0 means that it

is not a parameter in the Markov chain since arrivals immediately receive service. Therefore, the

model holds. In the second case, access time of UE is delayed by wt time. In other words, case II

is a shifted process of case I. Since Poisson process is stationary, the arrival distribution in case II

is still Poisson. Finally, by Theorem 1, case III is also Poisson.

It is important to note that independent and random arrival locations will restore independence

of arrival times, thereby omitting wt in the Markov model. Delaying a connection changes distance

distribution (not the service time distribution). If the user cannot connect to a small cell within wt

time units, it will still connect to a further small cell in the network. With the delayed connection,

users will have the opportunity to connect to a closer small cell in the network, but service time in

both cases will still be exponential with 1/µ. Therefore, network utilization or probability of cell

being active will not change by the access time of the UE.
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Figure 3.4 shows that state probabilities are invariant to waiting time. Threshold distance is

chosen such that there are on average 5 cells around each UE. Mean sleep time, idle time, and

service time are 10 seconds. Simulation results are repeated for various sleep rates and waiting

times. We observe that wt does not change the state probabilities.
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Figure 3.4: Independence of network utilization from waiting time of UE. Simulation parameters:
ρu = 0.0012 /m2 , ρc = 0.0003/m2 , µ = 0.1 sec−1, λI = 0.1 sec−1, λS = 0.1 sec−1, C = 1.

3.4 Analysis of Transmit Distance Distributions

In this section, we analyze the distance distributions in rapid and delayed access schemes, and

derive near-optimal threshold distance that minimizes average transmit distance of UE. We also
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give a simulation example to validate the analytical findings and the optimality condition for the

threshold distance.

Obtaining the distance distributions is important because distance between a UE and a small

cell determines the path loss, and thus small cell’s transmit power. Using Friis’s well-known

transmission equation, transmit power of a small cell can be defined as

prx =
Hptx
Rα

, (3.14)

where ptx, prx, H, and α represent transmit power of an small cell, received power at UE, channel

gain, and the path loss exponent, respectively. For constant ptx and H, transmit power minimization

problem solely depends on Rα. Therefore, minimizing Rα is the key point in minimizing the

transmit power. In the remaining part of this section we analyze distribution of Rα in rapid and

delayed access schemes.

3.4.1 Rapid Access

Analysis of distance distribution in rapid access scheme is straightforward. Using the access

delay distribution in Eq. (3.13), probability that an small in radius R is immediately available is

given by

Pin(R,0) = 1 − e−β0ρcπR2
. (3.15)

Deriving the density function from Eq. (3.15),the mean of Rα is given by

36



E [Rα] = 2πβ0ρc

∫ ∞

0
rα+1e−β0ρcπr2

dr

= (β0ρcπ)
−α2 Γ(1 +

α

2
). (3.16)

3.4.2 Delayed Access

Analysis of the distance distribution in delayed access scheme is more involved compared to

rapid access. Let us consider two simple cases to understand how wt affects the transmit distance.

In the first case, wt is very small or zero. Then, the UE will transmit immediately to the nearest

available small cell, which is the same as in the rapid scheme. In the second case, wt is sufficiently

large so that the UE will be able to connect to a small cell within the range of Rth, if there is at

least one, even if the small cell is initially unavailable. Regardless of how large wt is, if the UE is

able to access a small cell within Rth, transmit distance is Rin, and otherwise Rout. Clearly, we have

Rin < Rth < Rout (see Figure 3.2). In remaining parts of this section, we derive the mean of Rαin and

Rαout conditioned on Rth.

For the sake of clarity, we start with a simple case to derive E[Rαin | Rth]. Assume there is one

small cell in the vicinity of UE. Then, distance distribution can be derived as,

P(Rin < r | Rth,n = 1) =
r2

R2
th
. (3.17)

To facilitate the analysis and capture a convex function of Rth, (3.17) can be used to derive an upper

bound on the expected value of Rαth in delayed access scheme. Using (3.17), expected value of Rαin

is given by

E
[ (

Rαin |Rth
)
|n = 1

]
=

∫ Rth

0

2rα+1

R2
th

dr =
2Rαth
α + 2

. (3.18)

Given that DE accesses a small cell within its threshold distance, we further condition on the
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access time t (i.e. elapsed time until access occurs). Then, E
[
Rαin |Rth

]
can be expressed as,

E
[
Rαin |Rth

]
= E

[ (
Rαin |Rth

)
|t = 0

]
q0

+E
[ (

Rαin |Rth
)
|t > 0

]
(1 − q0). (3.19)

where q0 is the conditional probability that waiting time is zero, hence q0 =
Pin(Rth,0)
Pin(Rth,wt)

. Conditioning

on the number of available small cell, we can rewrite (3.19) as,

E
[
Rαin |Rth

]
= q0

∞∑
n=1
E

[ ( (
Rαin |Rth

)
|t = 0

)
|n

]
Λ(n|n ≥ 1)

+ E
[ (

Rαin |Rth
)
|t > 0

]
(1 − q0)

≤ q0E
[ (

Rαin |Rth
)
|n = 1

] ∞∑
n=1
Λ(n|n ≥ 1)

+ E
[ (

Rαin |Rth
)
|n = 1

]
(1 − q0)

=
2Rαth
α + 2

(3.20)

whereΛ(n|n ≥ 1) = (β0ρcπR2
th)

ne−β0ρcπR2
th

n!(1−e−β0ρcπR2
th )

. Inequality holds since E
[ (

Rαin |Rth
)
|n = 1

]
≥ E

[ (
Rαin |Rth

)
|n > 1

]
.

To find the mean of Rαout, we consider a circle with radius y > Rth in which an available small

cell exists. Small cell exists in the area between two circles with radii Rth, and y. Then, the distance

distribution of Rout is given by,

P (R < y | R > Rth) = Pout = 1 − e−β0ρcπ(y
2−R2

th). (3.21)

Deriving density function from (3.21), the expected value of Rαout can be found as

E[Rαout |Rth] =

∫ ∞

Rth

yαd(Pout) =
eβ0v

(πβ0ρc)
α
2
Γ(1 +

α

2
, β0v), (3.22)

where v = ρcπR2
th, and Γ(s, x) =

∫ ∞
x ts−1e−tdt.
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3.4.3 Optimization of the Threshold Distance

Optimization of threshold distance is one of the key contributions in the paper. Expected value

of Rα conditioned on Rth is given by

E[Rα |Rth] = E[Rαin |Rth]Pin + E[Rαout |Rth](1 − Pin). (3.23)

Deriving the optimal Rth that minimizes (3.23) is cumbersome. However, it is possible to obtain

near optimal Rth in closed form for α = 2. Rewriting (3.23) for α = 2, we have

E[R2 |Rth] = E[R2
in |Rth]Pin(Rth,wt)

+ E[R2
out |Rth]

(
1 − Pin(Rth,wt)

)
≤

R2
th

2
Pin(Rth,wt)

+ (R2
th +

1
β0πρc

)
(
1 − Pin(Rth,wt)

)
. (3.24)

E[R2
out |Rth] can be easily derived from (3.22). The inequality is due to the bound in (3.20). After

substituting x ← R2
th, γ ← βwtπρc, φ← 1

β0πρc
in (3.24), we have

E[x] =
x
2
(1 − e−xγ) + (x + φ)e−xγ . (3.25)

Taking the derivative of (3.25) with respect to x, substituting exγ ≈ 1 + xγ + (xγ)
2

2 , and equating to

zero yields

R∗th ≈

√√√
2

βwtπρc

√
βwt

β0
− 1 , (3.26)

where R∗th denotes Taylor approximation to an optimal threshold distance. Taking second derivative

of (3.25) with respect to x, and substituting back x, γ, φ, one can show that second derivative is
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positive-definite. Therefore, global minimum exists for the upper bound we derived for (3.24). It

is expected that R∗th is sub-optimal due to the Taylor approximation, and the upper bound in (3.20).

Figure 3.5 shows the results for R∗th . We observe that (3.26) is reasonably close to the optimum

regardless of path loss exponent, and significantly improves the expected path loss. A gap between

simulation and approximate analysis is due to the upper bound in Eq. (3.20).
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Figure 3.5: Comparison of the theoretical and simulated results for the expected path loss versus
the threshold distance Rth. Dashed vertical line is Taylor approximation for R∗th. Simulation pa-
rameters: ρu = 0.003, ρc = 0.003 /m2, λS =

1
µ = wt = 0.1 sec−1, λI = 0.33 sec−1 λu = 0.01 sec−1

3.5 Energy Efficiency Enhancements and Optimality Conditions

A UE reduces its transmit distance to a small cell by the delayed access scheme. However,

it is still questionable whether or not UE can connect the nearest small cell in the delayed access

scheme. In other words, it is necessary to discuss the bounds on transmit power savings in delayed

access scheme because choosing the optimal threshold distance may not guarantee accessing the

nearest small cell even if the tolerable delay is sufficiently large. Considering average transmit

distance when all small cells are active as the optimum condition for UE small cell distance, we

find how close to the optimum the average transmit distance in our delayed access scheme is.

For a given path loss exponent α, we define transmit power gain G(α), which is the ratio of the
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transmit power of UE with and without delay. Transmit power is minimum if β0 = 1 in (3.12), i.e.

all small cells are available for service. Transmit distance is maximum when wt is zero and β0 < 1,

i.e. only a fraction of small cells is available. Comparing transmit distances for β0 = 1, and β0 < 1

for wt = 0 gives us an upper bound on G(α). Plugging (3.16) in (3.14) for both cases and taking

their ratio yields

G(α) ≤
(ptx)rapid

(ptx)min
=

(
1
β0

) α
2

. (3.27)

For the lower bound on G(α), we consider transmit power in rapid access and delayed access

schemes. Plugging (3.16) and (3.23) in (3.14), and taking their ratio yields

G(α) =
(ptx)rapid

(ptx)delayed
=
(E[Rα])
(E[Rα |Rth])

. (3.28)

Since G(α) increase with α. We consider free space as a special case (i.e., α = 2). Plugging

Eq. (3.26) in Eq. (3.28) yields

G(2) ≥
[
β0

(
e−2~

[
1 + (

2
βwt

− 1)~
]
+ ~

)]−1
, (3.29)

where ~ =
√

βwt
β0
− 1. Inequality is due to Eq. (3.24). For wt →∞, Eq. (3.29) becomes

1
β0

©«
(
e−2

√
β−1

0 −1
+ 1

) (√
β−1

0 − 1 + 1
)
− 1︸                                          ︷︷                                          ︸

≥ 1

ª®®®®®¬

−1

, (3.30)

hence G(2) ≤ 1
β0

. Eq. (3.30) implies that our delayed access scheme diverges from optimality as

the proportion of available small cells in the network decreases. This is expected since the sleep
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times are exponential, and a UE has no information about an small cell’s on/off schedule. Thus,

delayed access scheme is not expected to yield optimal gains.

Result that we obtained in Eq. (3.30) also indicates how much the frequency reuse can be

improved in the network with the delayed access since for α = 2, R2 is a unit measure for area.

Considering this, our delayed access scheme decreases interference by decreasing average transmit

power. We will discuss this in detail in Chapter 5.

3.6 Results and Discussions

In this section, we studied the performance of random on/off scheduling of small cells. We

evaluated the effect of access delay on network power consumption and transmission power of

UE. In these evaluations, we considered rapid access as the baseline, and compared its power

savings with the delayed access. We developed a discrete-time simulator in MATLAB to validate

our analytical model. We consider low network utilization (i.e., ρuλu
ρcµ
≤ 0.1) with ρc = 0.005 m−2,

ρu = 0.005 m−2, ρu = 0.005 m−2, λI = 0.01 s−1, λu = 0.01 s−1, 1/µ = 10 s−1. Parameters are

chosen to reflect high small cell density with respect to UE density. For example, ρu = 0.005

indicates that mean distance to small cell is 1√
ρu
≈ 14.14 m, which can be interpreted as a dense

femtocell deployment scenario. Arrival rate and service rate parameters are chosen so that network

utilization is low. Unlike voice traffic parameters used in [81], we consider traffic pattern that has

frequent inter-arrival and short session times. The rationale behind this choice is that background

traffic and data traffic is more likely occur compared to voice traffic. Similar results can be obtained

with different set of parameter values because comparison metrics in all scenarios, as we will

explain, do not depend on parameter values. For the sake of generality and graph clarity, useful

normalizations are also made.

We investigate how much small cell power consumption decreases as the tolerable delay in-

creases while providing bounded transmit distance with high probability. To have a meaningful

comparison, we consider the rapid access mode as a baseline where Rth is chosen so that Pin = 0.99

and wt = 0. After that, for the same Rth we increase both the fraction of off small cells in the net-
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work and the tolerable delay subject to the constraint that transmit distance of UE is guaranteed,

with high probability, to be within the same threshold distance. As a small cell, we consider fem-

tocell. We used power consumption model for femtocell in Section 2.3. Power levels in sleep, idle,

and active modes are 5.8 W, 9.6 W, and 10.4 W respectively.

Figure 3.6 shows that average power consumption of SBS decreases from 9.6 W to 6.3 W,

corresponding to 86% of achievable savings by turning off RF unit, and 35% of overall power

consumption compared to rapid access mode. If we decrease access probability Pin, required

tolerable delay to satisfy the probability constraint decreases. Hence, lower power consumption

level is achieved with less tolerable delay. We also observe in Figure 3.6 that tolerable delay for

Pin = 0.99 has long tail. This is due to exponential distribution. By designing on/off schedule with

deterministic rather than random sleep times, UE can access small cell with less tolerable delay,

which is left as future work.
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Figure 3.6: Variation of average power consumption of SBS at different access probabilities.
Threshold distance is the same in all scenarios.

In Figure 3.7, for a given ratio of sleeping small cells and tolerable delay, we show how much
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the transmit power decreases by the delayed access scheme. We consider three scenarios. First

scenario is random on/off mode, where small cells turn on and off in a short period. Second

scenario is permanent off mode, where sleeping small cells are static and does not change during

the simulation. Third scenario is the permanent off mode with hexagonal small cell topology. This

scenario is the same as the second scenario except that the small cell topology is hexagonal. The

reason to simulate hexagonal topology is to compare delayed access scheme with the case in which

UE-to-cell distance is minimized. Fraction of sleeping small cells is 80% in all scenarios.
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Results in Figure 3.7 show that the delayed access scheme decreases the transmit power by an

order of magnitude. We observe that the transmit power gain in the first scenario is higher than the

other scenarios. The hexagonal topology yields higher transmit power gains than random topology

since average distance between UE and small cell is minimized. The optimal gain curve represents

maximum achievable transmit power gains. In optimal case, all small cells are active hence average

transmit distance is minimum. Delayed access scheme in all scenarios does not guarantee optimal

transmit power gains because UE may access not the closest but any small cell within its threshold

distance irrespective of the length of tolerable delay. To achieve optimal transmit power gains, an

intelligent scheme is required in which an small cell shares its on/off schedule with the UEs in
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centralized or distributed way.

3.7 Conclusions and Future Work

Various cell access schemes and energy saving algorithms can be obtained by simply chang-

ing some of the model parameters, and decision criteria such as having deterministic sleep times

instead of random sleep periods, or turning off a cell that is least likely to be busy instead of a ran-

domly chosen one. Similarly, by changing the cell selection methods, different access schemes can

be developed. In the baseline access scheme, access decision only depends on threshold distance,

and waiting time. Taking into account the file size to be offloaded, or remaining waiting time and

estimated service time of data equipment, new cell selection techniques can be devised.

In this paper, we propose delayed access mechanism to improve energy efficiency of small

cells, and verify its performance via simulations. For the proposed access mechanism, optimal

threshold distance minimizing average distance between a DE and small cell is derived. For the

derived optimal threshold distance, further optimality conditions for transmit power and limita-

tions of our delayed access scheme are discussed. Random and hexagonal topologies are used to

demonstrate effectiveness of the proposed access scheme. Results show that the power consump-

tion of small cells can be decreased by 35%, and the antenna transmit power of small cells can

be decreased by several orders of magnitude by allowing initial access delays. Some of our fu-

ture work include development on/off schemes with deterministic sleep times, and development of

energy efficient collaboration protocols for small cells.
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Chapter 4: Load Based Sleep Algorithms For Small Cell Networks

Massive densification of small cell networks (SCNs) is commonly seen as one of the major pil-

lars of 5G wireless networks to cope with the ever-increasing mobile data traffic [82, 83]. For such

dense deployments of SCNs, developing dynamic cell management and user-access mechanisms

are crucial for saving energy at off-peak hours and for boosting the throughput of the network [84,

85]. Active cells not only consume energy, but also cause interference in the communication en-

vironment. Therefore, green and energy-efficient strategies that opportunistically place cells into

sleep mode becomes important for irregular cell locations, especially with dynamically varying

user distributions, spatial load, and traffic load.

In Chapter 3, we discussed simple solution approach to energy efficiency problem in detail.

Instead of leaving cells off during off-peak hours, we proposed changing sleeping small cells dy-

namically and taking advantage of delay budget of UE. We showed that both average transmit

distance, and average network power consumption can be decreased. In this chapter, we will ar-

gue that proper energy conserving schemes can be developed by estimating cell utilization, taking

advantage of hardwave flexibility of small cells and delay tolerance of UE.

Siomina and Yuan [86] modeled cell load as coupled non-linear function of UE-cell distance,

fading, interference, UE’s service demand, and load of neighboring cells. The properties of load

model are analytically derived, and numerical results are demonstrated for hexagonal topology.

Fehske and Fettweis [87] found formulation for cell utilization that considers location of users

and exponential service times. Similarly, Implicit formulation of the cell load is given, and energy

saving scheme based on traffic load is designed in [88]. In all these approaches, UE-cell association

is assumed to be static. While models are successful in accurately modeling utilization level of

cell, they may not be the best option in designing low-complexity energy saving schemes for

highly dense and complex random networks. As the network topology becomes large, implicit and
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detailed load formulations may bring computational overhead if they are used as design tool for

on/off decision in energy saving algorithms.

It is expected that dense deployment and random distribution of small cells will lead to coverage

overlapping, where UE may be in communication range of multiple small cells to offload data.

Therefore, it is possible to take advantage of overlapping areas and shut off the cells with the

lowest expected traffic utilization, especially at off-peak hours. Such overlapping also occurs in

macrocell tier. Marsan et al. [14] proposed energy saving operation of two neighboring towers

that belong to different operators and have overlapping area. However, their analytical approach

is limited to a pair towers.To design energy saving algorithms specifically for small cells, new

load models are necessary that consider not only the overlapping coverage, but also UE’s traffic

allocation to nearby cells due to changing UE-cell associations in sleeping modes.

Flexibility of small cells ease the realization of energy-conversing schemes. There is a rich

literature about energy-efficiency of small cells. Sumudu et al. [85] proposed game theoric ap-

proach to improve energy efficiency of ultra dense small cell networks. Li et al. [89] gave energy

efficiency analysis of small cells. Their model considers both small cells and macrocells. Relation-

ship between energy-efficiency and number of transmit antennas of base stations is studied. Soh

et al. [90] studied energy efficiency of small cell network with random and strategich sleep modes

that is based on traffic load. Merwaday and Guvenc [91] studied energy efficiency and spectral

efficiency of small cell and marcocell network which operates enhances interference coordiation,

and range expansion. However, energy savings can be further improved by dynamic switching

based on short-term service demand, and integrating energy-efficient sleep mode techniques with

flexible access strategies for UEs. For example, in [92], the geographical area is divided into mul-

tiple grids. In each grid area, a maximum number of SBSs is selected at times of peak traffic to

satisfactorily serve all users. In idle periods, a subset of these selected SBSs is kept active and

remaining SBSs are turned off. This strategy yields up to 53% energy savings in dense areas, and

23% in sparse areas. The difference is due to fact that number of cells that can be turned off in

dense areas are more compared with sparse areas.
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Delay tolerance of UE gives additional options for turning SBSs on and off. For example,

depending on the delay budget a central controller can turn on a nearby sleeping cell. While delay

tolerant networks (DTN) have been studied extensively in the literature in [93, 94, 95], it has not

been explored well in the context of energy-efficient SCNs, where placing certain small cells into

sleep mode can save energy at the cost of latency for certain users. In [96], traffic arriving at single

cell from multiple UEs are modeled as M/G/1 vacation queue with close-down and setup times.

Queue is analyzed rigorously, and optimal sleeping policy is designed. On-off scheme based on

accumulated tasks is proposed, and its delay-energy efficiency aspects are analyzed. Instead of

single cell, this chapter aims to explore UE’s delay tolerance in small cell network operating in

energy efficient manner.

This chapter is a rigorously extended version of [97, 98]. It studies energy-efficient on/off

scheduling (OOS) strategies for SBSs in next-generation 5G networks. Considering a user-centric

approach, a similar access mechanism discussed previously (see Figure 3.3) we propose a novel

load based OOS framework with a promise of more energy-efficient SCNs. Our main contributions

are:

– We propose a simple effective traffic load metric for dense SCNs. The traffic load of the

overall network is represented by a random load variable. We investigate the distribution

of this load variable, and derived analytical expressions of respective probability distribu-

tion function (PDF) and cumulative distribution function (CDF), which are verified through

extensive simulations.

– Towards achieving energy-efficient SCNs, we propose two load based (LB) OOS algorithms,

where certain fraction of SBSs with relatively lower load values are put into less energy con-

suming (i.e., sleeping) states for a random duration of time. In particular, we introduce

centralized LB (CLB) and distributed LB (DLB) as two novel on/off scheduling algorithms.

Although CLB needs the knowledge of instantaneous load values of all SBSs, DLB, instead,

relies on the CDF of the load requiring much fewer load samples. The numerical results ver-

ify that CLB and its computational-efficient alternative DLB have very close performance.
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– We also consider two benchmark OOS techniques, which are random on/off (ROO) and

wake-up control (WUC), in which central controller is assumed to have complete informa-

tion about on/off schedules and delay budget of UEs, and makes on/off decisions accord-

ingly. While ROO is a simple baseline algorithm [42], WUC is a more complex sophisti-

cated algorithm requiring full-control of the macro base station (MBS) dynamically. The

numerical results verify that CLB and DLB are superior to ROO, and have similar perfor-

mance as WUC. Furthermore, as the overall SCN traffic increases, WUC turns out to be less

energy-efficient than either CLB or DLB.

The rest of the chapter is organized as follows. Section 4.1 introduces the system model for

SCNs with dynamic on/off operation of SBSs. Section 4.2 analytically derives the traffic load

distribution for a given UE using a Gamma distribution approximation. Section 4.3 proposes the

centralized and distributed strategies to conduct on/off operation of SBSs. Section 4.5 presents

numerical results, and Section 4.6 concludes the chapter.

4.1 System Model

In this section, we first review the network model, then describe the novel load based model

for the network traffic, and finally describe the power consumption model of the SBSs.

4.1.1 SCN Model

We consider a very similar model to the one used in Chapter 3, with some differences. We

consider a densely packed SCN where low-power SBSs are operated to deliver mobile data to UEs

of interest. UEs generate traffic at random time intervals, and request to offload a file where the

file size and the service request intervals have exponential distribution with rates λF and λU. This

chapter intoduces file size parameter which was not used in previous chapter. Having said that, any

file size distribution can be assumed without making any change in the model. We will discuss this

in Section 4.2.4
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Considering that each UE is not involved in transmission all the time (due to exponentially

distributed service request times), the energy efficiency of the overall network can be improved

by putting some of the SBSs into less energy-consuming (i.e., sleeping) states. Leaving details

of sleeping states and the associated OOS strategies to Section 4.3, each SBS in sleeping states

is assigned with a random sleep time Ts, which follows exponential distribution with rate λS. A

slightly different delayed access strategy under consideration is given in Figure 4.1, which assumes

that any UE has tolerable delay of at most wt seconds (i.e., waiting time). If a UE with active service

request finds at least one available (i.e., idle) SBS within the threshold distance Rth and the waiting

time wt, it connects to the best (i.e., nearest) of these SBSs to offload its desired traffic. Otherwise,

it connects to MBS, and the current service request is assumed to be blocked at the SCN level.

In terms of interaction between UEs and SBSs, we assume that UEs do not know the location

of sleeping SBSs. But rather, UEs have the perfect knowledge of distance to each non-sleeping

SBSs, which can be estimated by monitoring and processing the downlink reference signals from

these SBSs. The association between UEs and SBSs is set up such that each SBS serves a single

UE at a time, and each UE does not change its SBS till the current service request is completely

fulfilled. Association multiple UEs with single small cell while considering the amount of data to

be transferred may be advantageous if the size of files tobe offloaded are small. Meantime, if UEs

that request service are located too closely, association to different SBSs lead to interfere unless

a central controller has careful frequency allocation strategy in SCN. However, if UEs are not too

close, association to different SBSs with delayed acccess have positive effect spectral efficiency.

At this point, more sophisticated UE-cell associations can be made by considering location of

UEs, frequency assigment strategy, file size to be transferred at each session, and delay budget of

UE. We leave this problem as a future work, and we assume that in underutilized network small

cells mostly engages with one user at a time. In addition, UEs use all available bandwidth once

connected to an SBS, and quickly finish their service resulting in short service times. We finally

note that SCN handles only the data traffic, and the voice traffic is handled efficiently by MBSs in

macrocell tier.
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Figure 4.1: Delayed access strategy of UEs in SCN. If there is no cell available in range, UE keeps
waiting. If a cell becomes available within Rth transmission begins. Otherwise, service request is
blocked.

4.1.2 SBS/UE Densities and Traffic Load

In this section, a new load metric is introduced. Key design consideration of the load metric is

that it allocates UE’s traffic load not only to the nearest cells but also a possible set of SBSs that

UE may connect within its communication range Rth as SBS are randomly distributed and their

availability changes due to being fully active or being in sleep mode. We define nc and nu as range-

dependent SBS and UE densities, respectively, which refer to average number of SBSs and UEs

within a circular area of radius Rth. Since location distribution for SBSs and UEs both follow HPPP,

the respective Poisson distribution with the range-dependent SBS and UE densities are defined

with the mean values νc = ρcπR2
th and νu = ρuπR2

th, respectively. The probability that nc SBSs and

nu UEs are present in the circular area of radius Rth are therefore given as pc(i)= P{nc = i} = νice−νc

i!

and pu( j)= P{nu = j} = ν
j
ue−νu

j! , respectively.
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We define the load factor for the jth UE as follows:

w j =


1

n( j) if n( j) > 0,

0 if n( j) = 0,
(4.1)

where n( j) is the number of SBSs that the jth UE can receive service (i.e., away by at most Rth).

Accordingly, load value Li for the ith SBS is defined to be the sum of load factors associated with

each UE off the ith SBS by at most a distance of Rth, and is given as follows:

Li =

∞∑
j=1

w j1(i, j), (4.2)

where 1(i, j) is the indicator function which is 1 if ith SBS and jth UE are within Rth distance, and

zero otherwise.

As an example, we consider a representative network given in Figure 4.2. Defining Si as the

indices of SBSs that ith UE can receive service, we have S1 = {1}, S2 = {1,2}, S3 = {1,2,3}, and

S4 = {2,3}. Using (4.1), load factors of UEs are computed as w1 = 1, w2 =
1
2 , w3 =

1
3 , w4 =

1
2 . The

respective load values of SBSs are then given using (4.2) by L1 = 1+ 1
2 +

1
3 =

11
6 , L2 =

1
2 +

1
3 +

1
2 =

4
3 ,

and L3 =
1
3 +

1
2 =

5
6 . It is important to note that actual average traffic load to the cell i is λUλFLi.

Since network is homogeneous (i.e. arrival rate and file size distributions are same for all UEs),

simplified load metric in (4.2) is sufficient.

We note that instantaneous load value of any SBS possibly varies with the blocked calls, UE-

SBS association policies, traffic patterns, and transmission rates in a particular UE-SBS topology.

Therefore, the load value of a SBS may not represent exact load distribution perfectly, but is

successful enough in giving a good measure of how much traffic any specific SBS handles. Last but

not least, the load computation in given example in Figure 4.2 is completely obtained in distributed

manner. Analysis of load distribution allows design of robust distributed sleep mode algorithms,

which will be discussed thoroughly in following sections.
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UE #1

UE #2

UE #3
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SBS #1

SBS #2

SBS #3

Figure 4.2: A representative network of 3 SBSs and 4 UEs. The arrows indicate the SBSs that each
UEs can receive service.

4.1.3 Power Consumption Model for SBSs

We now briefly present the power consumption model for an arbitrary SBS, which is an im-

portant measure while evaluating the energy efficiency of the overall network. Note that since

the transmission range of UEs is very limited, and respective delayed access strategy described in

Fig 4.1 is the same for all OOS strategies, average transmit power of UE is expected to be invariant

in all schemes. We therefore do not include the power consumption of UEs in this study, and take

into account power consumption of SBSs only.

Considering a standard BS architecture, we assume that the hardware is composed of three

blocks: microprocessor (i.e., to manage radio protocols, backhaul connection, etc.), field-programmable

gate array (FPGA) (i.e., to process necessary baseband algorithms), radio frequency (RF) front-end

(e.g., power amplifiers, transmitter elements, etc.) [42, 99, 100]. In order to obtain power saving

(i.e., sleeping) states, OOS strategies consider to turn off a fraction of SBSs not actively engaged

in transmission. This can be done by turning off some or all of the hardware blocks, where it takes

more time to boot up as more hardware blocks are turned off (i.e., deeper the state is).

In Table 4.1, we list the SBS states considered in this work together with respective boot-up
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Table 4.1: SBS States, Boot-Up Times, and Power Consumption Levels

SBS State Boot-up time (s) Power Consumption (%)
Active 0 100

Idle 0 50
Standby 0.5 50

Sleep 10 15
Off 30 0

times and normalized power consumption levels, which are available in the literature, [42, 99, 100]

The description and assumptions for the SBS states are as follows.

- Active: The SBS is actively engaging in transmission with full power.

- Idle: The SBS is ready to transmit immediately, but not transmitting currently. Hence, RF

front-end is not running, and the power consumption is therefore 50% of active state.

- Standby: In this light sleep state, the heater for oscillator is turned off intentionally, and RF

front-end is not running at all.

- Sleep: The SBS is in a deep sleep with only necessary hardware parts (power supply, central

processor unit (CPU), etc.) are up.

- Off : The SBS is completely offline.

Note that, the sleeping state should be put into either sleep or off states to achieve significant power

savings, where the respective minimum boot-up time is 10 seconds. Since any sleeping SBS should

be available right after its random sleep time Ts expires, it is not possible to put any SBS into either

sleep or off states if Ts < 10 seconds. We assume that such SBSs are put into standby state, as

shown in Table 4.2, to capture the effect of turning off procedure, and meet the requirement to

wake up immediately after Ts seconds. In addition, the power consumption during boot-up period

is equal to that of the standby state since that particular SBS does not actively communicate with

users.

Although deeper sleeping states provide more power savings, respective longer boot-up times

result in UE service requests being blocked more in SCN tier. To effectively handle this funda-
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mental trade-off between energy consumption and boot-up time, the optimal sleep state should be

selected based on UE’s delay tolerance, transmit range, and cell density. The decision of optimal

state and sleep duration is beyond the scope of this study. Instead, we prefer a simple rule which

puts each SBS into the deepest state as much as possible for maximum power savings and is given

below. Sleep times up to 30 seconds are stand-by or sleep which are determined by hardware lim-

itations. However, if the sleep time is greater than 30 seconds, then, SBS can be either in sleep or

off mode. Decision between sleep or off mode is made by minimum power consumption rule by

taking into consideration of both the power consumption during boot-up, pboot-up , and sleep mode

psleep.

Table 4.2: Sleep State Choice Based on Sleep Time (Ts)

Sleep State Sleep Time (Ts) (s)
Stand-by Ts ≤ 10

Sleep 10 < Ts ≤ 30
Sleep Ts > 30,10 pboot-up + (Ts − 10) psleep < 30 pboot-up
Off Ts > 30,10 pboot-up + (Ts − 10) psleep > 30pboot-up

4.2 Analysis of Traffic Load Distribution

In this section, we analyze the distribution of the load variable as a successful measure of the

actual traffic loads of SBSs. There are several studies in the literature where fitting distributions are

used instead of deriving exact distributions, especially for Poisson Voronoi cell topologies [101,

102, 103]. Following a similar approach, we analyze distribution of the load variable L by consid-

ering the Gamma distribution, which is verified to have satisfactory fitting performance.

The PDF of the gamma distribution can be expressed in terms of shape parameter kl and scale

parameter θl as follows:

f (x; kl, θl) =
θkl

l xkl−1e−θl x

Γ(kl)
, (4.3)

where Γ(·) is the gamma function [104]. Our goal is, therefore, to determine suitable expres-

55



sions of the gamma parameters kl and θl in terms of SCN parameters ρu, ρc, and Rth. When the

load variable L is assumed to be gamma-distributed with parameters kl and θl, the first and second

moments are given as

E[L] =
kl
θl
, E[L2] =

kl (1 + kl)

θ2
l

, (4.4)

and the parameters to be determined can be expressed as

kl = θlE[L], (4.5)

θl =
E[L]

E[L2] − E[L]2
. (4.6)

As a result, the first and the second moments of L completely specifies the desired fitting distribu-

tion, and the rest of our analysis is therefore devoted to finding these moments.

4.2.1 First Moment of Load Variable

The first moment of the load variable L for arbitrary SBS in the network is derived by focusing

on a representative sub-network shown in Figure 4.3(a). In this framework, the target SBS (for

which the load will be computed) is assumed to be located at the origin together with nc additional

SBSs and nu UEs, which are distributed randomly over a circular area of radius Rth.

The first moment of the load L can be expressed as a conditional sum over all possible number

of SBSs and UEs as follows:

E [L] =
∞∑

i=0

∞∑
j=0
E [L | nc = i,nu = j] pc(i) pu( j), (4.7)
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(b) Two UEs

Figure 4.3: A representative SCN involving a single SBS at the origin, and arbitrary UEs off by at
most Rth.

and using the load definition of (4.2) in (4.7) yields

E [L] =
∞∑

i=0

∞∑
j=0
E

[ j∑
k=1

wk |nc = i

]
pc(i) pu( j), (4.8)

=

∞∑
i=0

∞∑
j=0

j∑
k=1
E[wk |nc = i] pc(i) pu( j). (4.9)

We observe that the individual load factors in (4.9) (i.e., wk’s) are not necessarily the same

since the number of SBSs which are away from each UE by at most Rth may not be the same.

The expected values of the load factors are, however, the same (i.e., E[wk |nc = i]=E[w |nc = i] for

∀ k) since SBSs follow homogeneous Poisson Point process . We may therefore rearrange (4.9) to

obtain

E [L] =
∞∑

i=0

∞∑
j=0

j E[w |nc = i] pc(i) pu( j), (4.10)

=

∞∑
i=0
E[w |nc = i] pc(i)

∞∑
j=1

j pu( j). (4.11)

Realizing that the last summation in (4.11) is the definition of the expected value for the number
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of users (i.e., nu), which is Poisson distributed with rate νu, we obtain

E [L] = νu

∞∑
i=0
E[w |nc = i] pc(i), (4.12)

which reduces to the problem of finding average traffic load contributed by a single UE.

In order to compute the average load factor conditioned on the number of cell (i.e., E[w |nc = i]),

we choose an arbitrary UE that is off the origin (i.e., the target SBS of interest) by a distance r

with r ≤ Rth, as shown in Figure 4.3(a). Because any user can only receive service from the cells

separated by at most a distance of Rth, the cells that contribute into the load factor are those lying

in the overlapping area Ao(r) and the user exclusion area Ae(r), as shown in Figure 4.3(a). These

areas can be expressed parametrically as follows

Ao(r) = 2r2 − θ +
1
2

sin(2θ), (4.13)

Ae(r) = πR2
th − Ao(r), (4.14)

where θ = cos−1
(

r
2Rth

)
is also depicted in Figure 4.3(a).

The conditional load factor involved in (4.12) could be expressed as follows

E[w |nc = i] =
∫ Rth

0
E[w |r,nc = i] fr(r)dr, (4.15)

where fr(r) = 2r/Rth. The average load factor in (4.15), which is conditioned on the distance r and

the number of cells i (i.e., located within a circle of radius Rth around the origin), can be expressed

as a sum in the form of a binomial expansion as follows

E[w |r,nc = i] =
i∑

k=0

(
i
k

)
E[w |r,nAo(r) = k]pAo(r)

k(1 − pAo(r))
i−k, (4.16)

where nAo(r) stands for the number of cells in the overlapping area Ao(r), and pAo(r) is the probabil-

ity of an SBS being in Ao(r). Since SBSs follow Poisson distribution, we have pAo(r)= Ao(r)/πR2
th.
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In addition, each term in the summation of (4.16) considers a case in which k SBSs exist in the

overlapping area Ao(r) out of a total of i SBSs off the origin by at most the distance Rth.

While computing the average load expression at the right side of (4.16) by employing the

definition given in (4.1), one should take into account k SBSs from the overlapping area Ao(r), v

SBSs from the user exclusion area Ae(r), and the single cell located at the origin as follows

E[w |r,nAo(r) = k] =
∞∑
v=0

1
k + v + 1

P
{
nAe(r) = v

}
=

∞∑
v=0

[νe(r)]v e−νe(r)

(k + v + 1) v!
, (4.17)

where nAe(r) is the random variable representing the number of SBSs in the user exclusion area

Ae(r), which follows the Poisson distribution with rate νe(r)= ρc Ae(r)= νc − ρc Ao(r). Finally,

employing (4.15)-(4.17) and fr(r)= 2r/Rth in (4.12), the first moment of L is obtained as follows:

E [L] =
2νu
Rth

∞∑
v=0

∞∑
i=0

i∑
k=0

νi
ce−νc

(k+v+1)i!v!

(
i
k

) ∫ Rth

0
[νe(r)]v e−νe(r)pAo(r)

k(1−pAo(r))
i−krdr, (4.18)

which is a function of the UE density νu, the SBS density νc, and the threshold distance Rth.

4.2.2 Second Moment of Load Variable

Following the same approach of (4.7), the second moment of L can be written as

E
[
L2] = ∞∑

i=0

∞∑
j=0
E
[
L2 |nc = i,nu = j

]
pc(i) pu( j),

=

∞∑
i=0

∞∑
j=0
E


( j∑

k=1
wk

)2 ���� nc = i
 pc(i) pu( j), (4.19)
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which can be written after some manipulation as follows

E
[
L2] = ∞∑

i=0

∞∑
j=0

( j∑
k=1
E

[
w2

k |nc = i
]
+

j∑
k=1

j∑
l=1
l,k

E[wkwl |nc = i]
)

pc(i) pu( j)

=

∞∑
i=0

∞∑
j=0

(
j E

[
w2 |nc = i

]
+ j( j − 1)E [wkwl |nc = i]

)
pc(i)pu( j) (4.20)

for any k, l with k , l. Following the discussion in obtaining (4.12) from (4.11), and employing

first and second-order statistics of the Poisson distribution, we have

∞∑
j=1

j( j − 1) pu( j) = E
[
n2

u
]
− E [nu] = νu

2, (4.21)

and (4.20) accordingly becomes

E
[
L2] = νu

∞∑
i=0
E

[
w2 |nc = i

]
pc(i)︸                          ︷︷                          ︸

E1

+ ν2
u

∞∑
i=0
E [wkwl |nc = i] pc(i)︸                             ︷︷                             ︸

E2

. (4.22)

The expectation E[w2 |nc = i] in (4.22) can be computed following the steps of (4.15)-(4.17)

together with the modified version of (4.17) given as

E[w2 |r,nAo(r) = k] =
∞∑
v=0

[νe(r)]v e−νe(r)

(k + v + 1)2 v!
, (4.23)

and the first expression at the right hand side of (4.22) becomes

E1 =
2νu
Rth

∞∑
v=0

∞∑
i=0

i∑
k=0

νi
ce−νc

(k+v+1)2i!v!

(
i
k

) ∫ Rth

0
[νe(r)]v e−νe(r)pAo(r)

k(1 − pAo(r))
i−krdr . (4.24)

However, computation of the second expectation in (4.22) is cumbersome due to the correlation

between the individual load factors wk and wl .

Because the expectation E[wkwl |nc = i] requires a second-degree analysis, we modify Fig-

ure 4.3(a) by adding a second user, and obtain Figure 4.3(b). This new coordinate system has a
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SBS located at the origin, as before, and two UEs off this cell by random distances r1 and r2, both

of which have the common distribution with fr(r)= 2r/Rth. We may have various orientations for

relative positions of two UEs in Figure 4.3(b), and therefore introduce a new variable ω which

describes the difference of user angles with respect to the origin.

Note that ω is actually the difference of two uniform random variables distributed between 0

and 2π. The distribution of ω is therefore given as [105]

g(ω) =


ω

2π(2π + 1)
if ω ∈ [−2π,0],

1 − ω
4π2 if ω ∈ [0,+2π].

(4.25)

The second-order expectation of interest could be accordingly written as

E[wkwl |nc = i] =

Rth∫
0

Rth∫
0

2π∫
−2π

E [wkwl | r,ω,nc = i] fr(r1) fr(r2) g(ω) dω dr1 dr2, (4.26)

which is counterpart of (4.15) in the first moment computation, and where r = [r1 r2].

In order to compute the expectation at the right side of (4.26), we need to consider various

geometric orientations of two UEs around the origin, as in Figure 4.4. Among them, Case-I has a

circular triangular overlapping area whereas Case-II and Case-III specify non-triangular overlap-

ping areas. While the condition for the existence of a circular triangle area and respective area

formulations are given in [106], the non-triangular areas should be computed by employing (4.13).

In order to express the term E[wkwl | r,ω,nc = i] in the form of multinomial expansion, we need

to take into account the number of constituent areas (i.e., N) forming the circular area of radius

Rth around the origin (i.e., where the SBS is located). Note that the expectation in (4.26) assumes

i + 1 SBSs in this circular region. Indeed, N is a function of the angle ω given in Figure 4.3(b),

and all 3 cases sketched in Figure 4.4 occurs for a certain set of ω values [106]. Based on these

3 orientations in Figure 4.4, Case-I and Case-II have N = 4 constituent areas while Case-III has
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Figure 4.4: Relative orientations of two UEs around a single SBS.

N = 3. As a counterpart of (4.16), the desired expansion could therefore be given as

E[wkwl | r,ω,nc = i] =
i∑

m1=0
· · ·

i−
N−2∑
v=0

mv∑
mN−1=0

E[wkwl | r,ω,n(r,w) = m] f (m; p(r,w)), (4.27)

where n(r,w) is the vector of the number of SBSs in each of the constituent areas, p(r,w) is the

vector of multinomial probabilities associated with each of these areas, and m is the vector of

summation indices. Each term of the summation in (4.27) corresponds to a unique distribution of

the total of i SBSs over the constituent areas. Specifically, the number of SBSs in the constituent

area Av(r,w) is nv(r,w) = mv for v = 1,2, . . . ,N with
∑N

v=1 mv = i.

The probability mass function (PMF) in (4.27) is given as

f
(
m; p(r,w)

)
= i!

N∏
v=1
(mv!)−1

N∏
v=1

pAv (r,w)
mv, (4.28)

where pAv (r,w) is the individual probability entry of p(r,w) associated with the constituent area

Av(r,w), and is therefore given to be pAv (r,w) = Av(r,w)/πR2
th owing to the uniform distribution of

SBSs in space. Note that mv SBSs in Av(r,w) can be placed in mv! different ways, and this makes∏N
v=1 mv! considering all constituent areas. Since the total of i SBSs can be ordered in i! different

ways, i!
∏N

v=1(mv!)−1 in (4.28) takes into account all possible relative SBS placements.

Following the philosophy behind (4.17), and employing the PMF in (4.28), the expectation in
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the summation of (4.27) can be computed as follows

E[wkwl | r,ω,n(r,w)] =
∞∑

v1=0

∞∑
v2=0

∞∑
vc=0

P
{
ne,c(r,w) = vc

} 2∏
s=1

P
{
ne,s(r,w) = vs

}
no,s(r,w) + vs + vc + 1

, (4.29)

=

∞∑
v1=0

∞∑
v2=0

∞∑
vc=0

[
νe,c(r)

]vc e−νe,c(r)

vc!

2∏
s=1

[
νe,s(r)

]vs e−νe,s(r)

vs!
(
no,s(r,w) + vs + vc + 1

) , (4.30)

where ne,c(r,w) and ne,s(r,w) are the number of SBSs in the common exclusion area Ae,c(r,w) and

distinct exclusion area Ae,v(r,w) for the sth UE, respectively, which follow the Poisson distribution

with rates νe,c(r)= ρc Ae,c(r) and νe,s(r)= ρc Ae,s(r), respectively, with s = 1,2. We show all the

exclusion and overlapping areas in Table 4.3 for the orientations considered in Figure 4.4.

Table 4.3: Overlapping and Exclusion Areas

Case-I Case-II Case-III

Ae,c(r,w) S5 S5
Ao,1(r,w) S1

⋃
S2 S1

⋃
S2 S1

⋃
S2

Ae,1(r,w) S6 S5 S4
Ao,2(r,w) S1

⋃
S3 S1

⋃
S3 S1

Ae,2(r,w) S7 S6 S6

Note that no,s(r,w) in (4.29) is a given (i.e., deterministic) value representing the number of

SBSs in the overlapping area Ao,s(r,w), with s = 1,2. More specifically, no,s(r,w) is the sum of the

entries of n(r,w) associated with the constituent areas forming Ao,s(r,w), which are explicitly given

in Table 4.3 for s = 1,2. As an example, we have no,1(r,w) = n1(r,w) + n2(r,w) and no,2(r,w) =

n1(r,w) + n3(r,w) for Case-I, where ni(r,w) is the number of SBSs in the area Si for i = 1,2,3.

As a particular case, since Ae,c(r,w) does not exist for Case-II, (4.30) simplifies to

E[wkwl | r,ω,n(r,w)] =
∞∑

v1=0

∞∑
v2=0

2∏
s=1

[
νe,s(r)

]vs e−νe,s(r)

vs!
(
no,s(r,w) + vs + 1

) . (4.31)

63



Combining (4.26)-(4.30), we finally obtain E2 appearing in (4.22) as follows

E2 =
4ν2

u

R2
th

∞∑
i=0

∞∑
v1=0

∞∑
v2=0

∞∑
vc=0

νi
ce−νc

Rth∫
0

Rth∫
0

2π∫
−2π

i∑
m1=0

. . .

i−
N−2∑
v=0

mv∑
mN−1=0

[
νe,c(r)

]vc e−νe,c(r)

vc! m1! . . .mN !

N∏
v=1

pAv (r,w)
mv

×

2∏
s=1

[
νe,s(r)

]vs e−νe,s(r)

vs!
(
no,s(r,w)+vs+vc+1

) g(ω) r1r2 dω dr1dr2, (4.32)

which is also a function of densities νu and νc, and the distance Rth.

As a result, the respective parameters k1 and θ1 of the fitting gamma distribution can be com-

puted using the first order moment E[L] given in (4.18), and the second order moment E[L2] given

in (4.22) (i.e., the sum of (4.24) and (4.32)), based on the relations given in (4.5) and (4.6). The

CDF of load distribution can therefore be written as

FL(x) = P{L < x} = e−νu + (1 − e−νu)

∫ x

0+

θk1
1
Γ(k1)

yk1−1e−θ1ydy, (4.33)

where first term represents the void probability, P{L = 0} (i.e., no user is around the SBS). Using

(4.33), the respective PDF of load distribution can be written as

fL(x) =


e−νu if x = 0,

(1 − e−νu)
θkl

l
Γ(kl)

xkl−1e−θl x if x > 0.
(4.34)

4.2.3 Effect of Localization Error

In practice, the UE-cell distance may not be measured accurately. In this section, we discuss

the scenarios in which load distribution under erroneous measurements may still hold, or needs

further analysis. We argue that as long as UE’s spatial distribution remains HPPP, the load distri-

bution holds. For example, assume the widely used Gaussian error, eL with zero mean and standard

deviation σ, (eL ∼ N(0, σ)), and update (x, y) locations as (x+eL, y+eL). A 2-dimensional Poisson

Process can be considered combination of two 1-dimensional Poisson processes corresponding to
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x- and x-coordinates, which are independent. Without loss of generality, assume for now location

error is only on x-axis and constant le. Let ple is the probability that error to occur. According

to our error model, ple =
1√

2πσ2.
e−

x2
2σ2 . Now, random x coordinates forms of two subsets of UEs

with densities ple ρu, and (1 − ple)ρu corresponding to erroneous x coordinates, and perfectly mea-

sured x-coordinates respectively. Process of erroneous x coordinates is in fact a Poisson processes

shifted by le, which is still Poisson due to stationarity of Poisson processes. It is clear that due to

superposition property, the combined processes still form Poisson Process. The same reasoning

applies regardless of the size of error. Finally, we note that in case the localization errors are cor-

related or dependent, the load distribution needs further analysis due to the fact that stationarity

property of Poisson process no longer holds.

4.2.4 Modeling Traffic Load Under Diverse Traffic Patterns

Macrocells were initially planned to handle voice traffic, and motivation behind deployment of

small cells is to meet increasing data traffic demand. In our model, we considered homogeneous

traffic pattern. However, the simple load metric in the study may be still useful for modeling non-

homogeneous traffic patterns. We discuss two cases: i) Each UE generate different traffic patterns

but aggregate traffic load from UEs are same, ii) There are different type of UEs with high and low

traffic demand. For the first case, we argue that our analysis still holds. On the other hand, second

case requires further analysis.

We just give some insight here, and made appropriate changes to clarify the model. In case

each UE generates two types of traffic, say, UE uploads short and long size files with means F̄ F̄2

at λU1 , λU2 rates. From Erlang’s perspective traffic is product of arrival rate and holding time. The

holding time (i.e. service time) increases in proportion to file size. So, we can re-define the load

factors of UE with n( j) neighboring cells as
λu1 F̄1
n( j) ,

λu2 F̄2
n( j) . Then, the aggregate traffic load factor of

UE having n( j) neighbors will be
λu1 F̄1+λu2 F̄2

n( j) . Since λu1 F̄1 + λu2 F̄2 is constant, it factors out from

Eq. (4.2). Then, first and second moments of weighted traffic loads are (λu1 F̄1 + λu2 F̄2)E[L], and

(λu1 F̄1 + λu2 F̄2)
2E[L2]. It is clear that with such approach, load distribution can still be obtained.
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In case, there are different types of UEs such as intense users having high service demand with

density ρu1 , and low profile UEs with density ρu2 , load metric still can be used. Let aggressive

users have service request with rate λu1 with mean file size F̄h, and let low profile users have service

requests λu2 with mean file size with mean file size F̄l . For each traffic types, fitting distribution

parameters can be found using the similar method by applying weights ρu1λu1 F̄h, ρu2λu2 F̄l . Then,

tje sum of the two load distributions may be analyzed. Two distributions may be correlated due to

common cell topology; therefore, calculation of the sum of the load distributions arising from each

type of UE may be challenging problem.

4.3 Load Based On/Off Scheduling

In this section, we study on off scheduling (OOS) strategies with a goal of having more energy-

efficient SCNs. In this respect, we first consider a random OOS algorithm (i.e., ROO) to set up a

simple benchmark to evaluate performance of smarter OOS strategies. We then propose two novel

load based OOS algorithms, which are called centralized locad based (CLB) and distributed load

based (DLB), and establish a good compromise between energy-efficiency and network through-

put. Finally, we also consider a more sophisticated OOS strategy, which is called wake-up control

scheme (WUC), where the central controller has the full capability to wake up any sleeping SBSs.

We assume that the percentage of sleeping SBSs are fixed in all the OOS algorithms under

consideration for the sake of a fair comparison. As a result, for each sleeping SBS to wake up, the

OOS algorithms choose the best idle SBS to turn off. Depending on the specific OOS algorithm, the

set of sleeping SBSs may dynamically change as the turn-off and turn-on events occur repeatedly.

We also assume that any UE can get service from the available SBSs, which are either currently

idle or become idle within the waiting time period, as discussed in Section 4.1.1. In particular,

ROO, CLB, and DLB strategies assume no capability at the central controller to wake up a sleeping

SBS during its random sleep time. The WUC strategy, however, assumes that the central controller

can give order to wake up a sleeping SBS to make it available within the waiting time (i.e., where

it would otherwise not become available).
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4.3.1 Random On/Off Scheduling

In this strategy, a central controller (e.g., macrocell) turns off randomly selected idle cell, and

assigns a random sleep time for each SBS having been turned off. Each sleeping SBS wakes up

automatically after its sleep time expires, and the central controller decides which SBS to turn off

in return. The overall procedure is given in Algorithm 1.

Algorithm 1 Random On/Off Scheduling (ROO)
1: Input: The sleep time of ith SBS has expired
2: SBSnextToSleep ← ROO(i,Sall) . Sall is the set of all SBSs
3: turn off SBSnextToSleep
4: procedure ROO(i,Sall) . ROO algorithm
5: Sidle ← find1≤`≤|Sall |( state(Sall(`)) == idle )
6: j ← rand(1, |Sidle |)
7: return Sidle( j)
8: end procedure

4.3.2 Centralized Load Based (CLB) On/Off Scheduling

The centralized locad based (CLB) can be considered to be the load based alternative of random

on/off (ROO), which operates in a centralized fashion as described in Algorithm 2. In CLB, the

central controller turns off the SBS with the minimum instantaneous load value computed using

Eq. (4.2) as a response to each SBS that has just waken up.

Note that the algorithm needs the load values of idle SBSs only to make on/off decision. Mean-

time, UE shares its instantaneous load factor with the idle and active cells because of two reasons:

i) each active cell may return to idle status after completion of the transmission and may be avail-

able within wt time, ii) density of non-sleeping cells (i.e., idle and active) do not change and

therefore, distribution of load can be obtained, which allows implementation of on/off decision in

distributed manner. Computing load distribution of only idle cells is very challenging since the set

of idle cells dynamically change.
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Algorithm 2 Centralized Load Based On/Off Scheduling (CLB)
1: Input: The sleep time of ith SBS has expired
2: SBSnextToSleep ← CLB(i,Sall) . Sall is the set of all SBSs
3: turn off SBSnextToSleep
4: procedure CLB(i,Sall) . CLB algorithm
5: Sidle ← find1≤`≤|Sall |( state(Sall(`)) == idle )
6: compute L` by (4.2) for ` = 1, . . . , |Sidle |
7: j ← argmin1≤`≤|Sidle |

L`
8: return Sidle( j)
9: end procedure

4.3.3 Distributed Load Based On/Off Scheduling

The DLB algorithm is a distributed version of the centralized CLB algorithm, where the overall

operation does not need a central controller. In the DLB approach, whenever a sleeping SBS is

about to wake up (i.e., after expiration of its random sleep time), that specific SBS is designated

to be the decision-maker to decide the next SBS to be turned off. The decision-maker SBS first

determines all its idle first-hop neighbours (i.e., within a distance of at most Rth) as the candidate

SBSs to be turned off. The instantaneous load values of the candidate SBSs are then collected (e.g.,

via BS-BS communication using X2 backhaul link [107]), and the idle SBS with the minimum

instantaneous load is chosen by the decision-maker SBS as the one to turn off next.

An important feature of DLB is the mechanism specifying when to stop searching candidates

in a wider neighborhood. To this end, the algorithm checks the following relation

1 − (1 − P{L < Lmin})
|S(k+1)| < κ (4.35)

where Lmin is the minimum instantaneous load associated among the cells traversed up to k hops,

and κ is a threshold probability. Given the cardinality of |S(k + 1)| idle cells at next hop, k + 1,

(4.35) checks the probability of finding a cell with a lower load than that of Lmin. Note that (4.35)

can be computed readily using the analytical load CDF in (4.33). If inequality of (4.35) is correct,

then the algorithm stops searching for a better candidate SBS, and decides to turn off the current

candidate. Otherwise, the algorithm widens its search to second-hop neighbours (i.e., those in 2Rth
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distance). Likewise, algorithm continues to widen its search till it becomes less likely to find an

SBS with a lower load than that of the existing candidate (i.e., for which (4.35) turns out to be

true). The complete procedure is given in Algorithm 3.

Algorithm 3 Distributed Load Based On/Off Scheduling (DLB)
1: Input: The sleep time of ith SBS has expired
2: SBSnextToSleep ← DLB(i, κ)
3: turn off SBSnextToSleep
4: procedure DLB(i,κ) . DLB algorithm
5: Lmin ←∞, k ← 1
6: while 1 − (1 − FL (Lmin)})

|S(k+1)| > κ do
7: S← find1≤`≤|Sall |( distance(Sall(`),Sall(i)) ≤ kRth ) . Sall is the set of all SBSs
8: Sidle ← find1≤`≤|S|( state(S(`)) == idle )
9: compute L` by for ` = 1, . . . , |Sidle |

10: j ← argmin1≤`≤|Sidle |
L`

11: Lmin = L j
12: k ← k + 1
13: end while
14: return Sidle( j)
15: end procedure

The distribution of load changes as the SBSs are turned on and off. Consider two networks

where fixed proportion of SBSs are switched off randomly, and by load based on algorithms. Let

LR be random load variable of SBS operated by random on/off algorithm, and let LLD random load

variable of SBS operated by load based on/off. It is clear that

P{LLD < l} < P{LR < l} ⇐⇒ 1 − P{LLD < l} > 1 − P{LR < l} (4.36)

⇐⇒ (1 − P{LLD < l})|S | > (1 − P{LR < l})|S |

⇐⇒ 1 − (1 − P{LLD < l})|S | < 1 − (1 − P{LR < l})|S |

Therefore, stopping condition in (4.35) is still valid stopping condition for the networks operated

by load based algorithms. Tighter bound on (4.35) can be found by utilizing order statistics of load

distribution, which is left to a future work.
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4.3.4 Wake-up Control Based On/Off Scheduling (WUC)

We finally consider a more complex approach, which is called wake-up control (WUC) and

given in Algorithm 4. This algorithm is, indeed, very similar to the CLB algorithm, except that the

central controller now has the full control to wake up any sleeping SBS, even before the respective

sleep time expires. This way, any of the UE service requests, which could not otherwise be met by

available idle SBSs, might be handled by incorporating the sleeping SBSs. To do so, the candidate

sleeping SBSs should be within the communication range of the UE, and be able to wake up within

the tolerable delay of that UE holding the current request. More specifically, the boot-up time of

the candidate sleeping SBSs (given in Table 4.1) should end within the tolerable delay. Note that

once the central controller places a wake-up order for the nearest candidate SBS, it is classified

as reserved to avoid placing another wake-up order for the same SBS (for another UE request).

Although this approach decreases the blocking probability of SCN, the energy consumption is

likely to increase since sleeping SBSs getting wake-up orders cannot remain in their low-power

consumption states.

4.3.5 Evaluation of Computational Complexity of Algorithms

In this section, we investigate the computational complexity of the OOS schemes considered

in this work. To this end, we assume a large circular area with a radius of kmRth such that

A= π (kmRth)
2. This area is populated with Nc SBSs and Nu UEs such that and ρc =

Nc
A and ρu =

Nu
A .

Let ΠI, ΠS, and ΠA are the probability of any SBS being in the idle, sleep, and active modes, re-

spectively. The computational complexity of each OOS scheme can then be given as follows.

4.3.5.1 ROO Algorithm

In the ROO algorithm, the computational complexity is equivalent to the time complexity of

generating a random number, which is O(1).
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Algorithm 4 Wake-up Control Based Service Request Handling (WUC)
1: Input: UE service request arrival at tnow . tnow is the current time
2: tdeadline ← tnow + wt
3: while tnow ≤ tdeadline do
4: SBSbest =WUC(tdeadline, tnow,Sall) . Sall is the set of all SBSs
5: update tnow
6: end while
7: if SBSbest == ∅ then
8: service request is blocked
9: else

10: associate UE to SBSbest
11: end if
12: procedure WUC(tdeadline, t) . WUC algorithm
13: S← find1≤`≤|Sall | ( distance(Sall(`),UE ) ≤ Rth )
14: Scandidate ← find1≤`≤|S| ( t + bootupTime(S(`)) ≤ tdeadline )
15: if Scandidate == ∅ then
16: return ∅
17: else
18: j ← argmin1≤`≤|Scandidate |

distance(Scandidate(`),UE )
19: return Scandidate( j)
20: end if
21: end procedure
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4.3.5.2 CLB Algorithm

In the CLB algorithm, the central controller chooses the SBS among the set of all idle SBS,

which is ΠINC . Sorting SBSs based on their loads, and selecting the minimum one has a worst case

complexity of O((ΠINC)
2), which is smaller than O((1−ΠS)

2N2
C) since ΠI = 1−ΠS −ΠA < 1−ΠS.

4.3.5.3 LBD Algorithm

In the LBD algorithm, the local breadth-first search (BFS) is bounded either by the maximum

search range kSRth, or by the load-based stopping criterion given by (4.35) before reaching the

maximum search range. In the worst case scenario, local BFS therefore reaches the maximum

search range. The upper bound on the computational complexity can then be found without con-

sidering the load-based stopping criterion. Assuming that NS be the mean number of traversed idle

SBSs during the local BFS, we have

NS ≤ ρcΠI(kSRth)
2, (4.37)

< ρc(1 − ΠS)(kSRth)
2 = (1 − ΠS)

(
ks

km

)2
Nc, (4.38)

where (4.37) is formulated based on the observation that the load-based stopping criterion may be

satisfied before the maximum search range is reached.

It is well-known that the BFS has a time complexity of O(NS + ES), where ES is the number

of edges, or, equivalently, the number of neighborhoods between the SBSs. We need the average

degree of SBSs, (i.e. average number of SBSs within SBS’s communication range) , νcLBD , to

compute ES. Note that the sum of load factors for each UE is 1 by definition of (4.1). Except UE’s

with no neighboring SBS, sum of load factors UEs is equal to the sum of load values of cells. If

we assume that no SBS is turned off,

(1 − e−νc )Nu ≈

Nc∑
i=1

L(i), (4.39)
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where (1 − e−νc ) is due to the UEs having no SBS in the communication range. If A is very large

(4.39) holds with equality. So approximation sign is due to the edge effects. Similarly, if ΠS

proportion of the SBSs are turned off randomly

(1 − e−νc(1−ΠS))Nu ≈

Nc(1−ΠS)∑
i=1

L(i), (4.40)

<

Nc(1−ΠS)∑
i=1

LLBD(i), (4.41)

where (4.41) is due to the fact that the LBD algorithm keeps the SBSs having larger load values in

idle mode. We therefore observe that the only way for the approximation to hold is to increase νc

at the left side of (4.40). The average SBS degree therefore increases with LBD. and νcLBD satisfies

(1 − ΠS)νc ≤ νcLBD ≤ νc. (4.42)

A bound on ES can then be obtained as

ES =
1
2

NS∑
i=1

degree (i) (4.43)

= E[NS]E[SBS degree] (4.44)

<
1
2
νcLBD(1 − ΠS)

(
ks

km

)2
Nc (4.45)

<
1
2
νc(1 − ΠS)

(
ks

km

)2
Nc (4.46)

=
1
2
(1 − ΠS)

k2
s

k4
m

N2
c , (4.47)

where coefficient 1
2 in (4.43) is due to counting each SBS twice for single SBS neighborhood.

(4.44) is due to independent locations of SBSs in HPPP. (4.45) follows from (4.38). Finally, (4.46)

is due to (4.42).

SBS reaches average of νcΠI SBSs immediately, which has mean sorting complexity (νcΠI)
2. If

stopping condition (4.35) is not satisfied, further SBSs reached by range expansion will be added.
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Since the initial sorting is done, adding a new load value to a sorted array has linear complexity

with array size. Besides, in our algorithm, maximum search range can expanded at most by Rth at

one time. If current search range is (i − 1)Rth, and algorithm is reaching new idle SBSs’ in iRth

range, expected sorting complexity O(SLBD can be written as

O(SLBD) = (νcΠI)
2 +

kS∑
i=2

∞∑
j=0

∞∑
t=1

t−1∑
m=0
( j + m)pc( j)pc(t) (4.48)

= (νcΠI)
2 +

kS∑
i=2

∞∑
j=0

∞∑
t=1

(
jt +

t(t − 1)
2

)
pc( j)pc(t)

= (νcΠI)
2 +

kS∑
i=2

[ ∞∑
j=0

∞∑
t=0

jtpc( j)pc(t) +
∞∑

j=0
pc( j)

∞∑
t=0

1
2

t(t − 1)pc(t)
]

(4.49)

where pc( j) is Poisson with mean (i−1)2ΠIνc. Since between radius (i−1)Rth and iRth, (2i−1)ΠIνc,

there are (i2 − (i − 1)2)νcΠI SBSs, pc(t) is Poisson with mean (2i − 1)νcΠI. pc( j) and pc(t) are

independent due to disjoint areas. Then, (4.49) can be rewritten as

O(SLBD) = (νcΠI)
2 +

kS∑
i=2

[
(2i3 − i2)(ΠIνc)

2 +
1
2
((2i − 1)2 (νcΠI)

2)
]

(4.50)

= (νcΠI)
2 + (νcΠI)

2
kS∑

i=2
(2i3 + i2 − 2i +

1
2
)

≈ O(k4
S (νcΠI)

2) (4.51)

= O(k4
SΠ

2
I

N2
c

k4
m
) < O((1 − ΠS)

2
(

kS
km

)4
N2

c )

Note that the DLB algorithm has a reasonable complexity for k4
s

k4
m
� 1 since it becomes more likely

to find an SBS with sufficiently low load value without having to search through the entire SCN.

Note that we our complexity analysis considers worst case bounds for sorting and inserting. For

example, if central controller keeps a pre-sorted list of load values, finding SBS with minimum

load value has log
(
(1 − ΠS)NC

)
. Investigating tighter bounds is left as a future work.
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Figure 4.5: Updating load values when UEs move

4.3.5.4 WUC Algorithm

In the WUC algorithm, central controller wakes up an SBS within the communication range of

UE, which takes O(ΠSνc)=O(ΠS
Nc
k2

m
) steps.

4.4 Adaptation of Load Based Algorithms to User Mobility

Load values can be effectively updated in distributed manner If UE moves from one location to

another, SBS can recognize that UE moved out of its range by controlling uplink control signals.

Similarly, UE can update its new load factor by processing downlink signals from SBS whitin its

communication range. In Figure 4.5, UE1 moves out of the range of SBS1. Load factor of UE does

not change. w1 = w1′ = 1, L1 = L1′ −w1′ =
11
6 − 1 = 5

6 , and L3 = L3′ +w1 =
5
6 + 1 = 11

6 . We

use a prime symbol to represent prior values of load and load factors. Load values can be updated

without additional signaling.

In case of mobility, centralized load based algorithm can work without change. However,

depending on the mobility model, distributed load based algorithm may or may not work. If UEs
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move randomly, Poisson property still hold, so distribution of load can be obtained. However, if

the mobility model has specific rules aimed to represent human behavior, stationarity of Poisson

process may no longer hold. In this case, analyzing load distribution becomes challanging.

4.5 Simulation Results

In this section, we present numerical results for the performance of proposed load definition

in representing the actual traffic load of SCN, and novel load based OOS strategies. In particular,

performance of the novel CLB and DLB algorithms are evaluated in comparison to the ROO and

WUC algorithms as the benchmark OOS strategies, and the static topology without dynamic OOS

approach.

We assume a circular area with a radius of 250 m for the deployment of UEs and SBSs, and

the results are averaged over 1,000 iterations and 10,000 seconds of simulation time. In terms of

overall SCN traffic, we consider two main scenarios: low network utilization (1%) and (relatively)

high network utilization (20%). Rationale behind the low and relatively high network utization

is to leave enough room to effectively apply OOS strategies. For utilization levels above 20%,

more and more SBSs would be occupied all the time. Turning off SBSs at high utilization levels

is detrimental for QoS. For delayed access scheme, we assume a sufficiently large but reasonable

UE delay tolerance of 60 sec (as well as zero tolerable delay), which enables WUC algorithm to

attain its best performance, and, hence, the performance gap between WUC and other strategies

becomes apparent. All the simulation parameters for low and high utilization scenarios are listed

in Table 4.4.

4.5.1 Performance Metrics

In the performance analysis, we consider the following criteria.

- Blocking probability: The fraction of rejected service requests among all, which is basically
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due to sleeping or occupied (i.e., actively transmitting) SBSs, which is given as

Pblock =
number of rejected service requests

total number of service requests
. (4.52)

- Average throughput: The total number of bits transmitted averaged over the total simulation

time, which is also normalized with respect to the number of users as follows

RSCN =
total number of transmitted bits

number of users × simulation time
(bps). (4.53)

The number of transmitted bits in (4.53) is given by the Shannon capacity formula as follows

R = BW log2 (1 + SINR) , (4.54)

where BW is the transmission bandwidth, and SINR is the signal-to-interference-plus-noise

ratio. We assumed frequency reuse in SCN network. Bandwidth is used to compute the

throughput of UE. If the allocated bandwidth is large, our algorithms can still operate without

any change. Assuming the association between ith UE and jth SBS, the respective SINR at

the UE side is defined as follows

SINRi j =
d−αi j∑̀

, j

d−αi` + 1/SNR
, (4.55)

where di j is the distance between ith UE and jth active SBS, α is the path loss (PL) exponent,

and SNR is the signal-to-noise ratio.

- Normalized Energy Efficiency: The amount of energy consumed for each transmitted bit

averaged over the total simulation time, which is also normalized by the number of users
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and the maximum power Pmax associated with the active state.

EE =
RSCN

total energy consumption
× Pmax (bps/joule). (4.56)

Note that the power consumption of an SBS at each state is given in Table 4.1 as the frac-

tion of the maximum power Pmax, and we therefore use these power levels while comput-

ing (4.56).

4.5.2 Load Distribution Verification

In Figure 4.6, we depict the CDF and PDF of the SCN traffic load for range-dependent UE den-

sities of νu = {3,5,10}, where extensive simulation results are provided along with the analytical

results computed using (4.33). We observe that the analytical results nicely match the simulations

for all three UE densities, which verifies the respective derivation in Section 4.2. Accuracy of

approximate distribution depends on achievable precision of load values which ultimately depends

the precision of load factor. Precision of load improves as load factor can take small values. When

number of UE around SBS is small, load factor is high. Therefore, as we increase UE’s range,

the load factor of UE becomes smaller, and the approximate load distribution converges to the

exact load distribution. We, therefore, start observing approximate load distribution matches with

simulation results as the average number of UEs around cell increases.

In Figure 4.7, the simulation results shows the load distribution under erroneous location mea-

surements. Standard deviation of error is σ = Rth
% of error

100 . We observe that the load distribution

does not change by Gaussian error.

4.5.3 Low Utilization Performance

In this subsection, we consider the performance of OOS strategies under a low network uti-

lization scenario, where the UE service request rate and average file size are 1/λU = 1000 s and

1/λF = 1 MB, respectively. Together with the UE and SBS densities given in Table 4.4. Respective
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Table 4.4: Simulation Parameters

Parameter Value
Cell density (ρc) 0.0005 m−2

User density (ρu) 0.0005 m−2

Service request rate (λU) {0.001,0.01} s−1

Average file size (1/λF) {1,2} MB
Sleep rate (λS) {0.001,0.002} s−1

Tolerable delay (wt) {0,60} s
Threshold distance (Rth) 50 m
Bandwidth (BW) 1 MHz
Signal-to-Noise Ratio (SNR) 20 dB
Threshold probability for DLB (κ) 0.3
Maximum search range for DLB 3 × Rth
Path loss exponent (α) 2
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Figure 4.6: Analytical and simulation results for load distribution for range-dependent UE densities
of νu = {3,5,10} and ρc/ρu = 1.
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network utilization is on the order of 1% based on the utilization results in Figure 4.8.

In Figure 4.9, we present blocking probability results for all the algorithms under consideration

against varying on-ratio (i.e. fraction of non-sleeping SBSs). In particular, we take into account

the effect of sleep rate λS (or equivalently sleep period 1/λS) and waiting time wt by assuming

1/λS ∈ {500 s,1000 s,∞} and wt ∈ {0,60 s}. Note that 1/λS→∞ corresponds to a scenario with no

dynamic OOS events, i.e., topology of non-sleeping SBSs does not change once it is initialized at

the beginning. We therefore describe the respective load based algorithm simply with LB since

either centralized or distributed strategy (i.e., in CLB and DLB) is only applicable with dynamic

on/off events occurring after initialization.

We observe in Figure 4.9 that the blocking probabilities for any OOS algorithm decrease as

either more SBSs become available (i.e., increasing on ratio), or tolerable delay gets larger (i.e.,

more room to meet UE service requests). In particular, the load based CLB and DLB perform much

better than the random scheme ROO in terms of achieving less blocking events (i.e., rejected UE

requests). Note that CLB and DLB actually have the same performance for any choice of on ratio,

and we therefore referred to this common performance as CLB/DLB. This equality underscores the

power of DLB especially for large-scale SCNs in the sense that DLB does not need information of

all SBSs (i.e., in contrast to CLB) to decide the next SBS to turn off, and is hence more efficient

to implement. Considering a wide range of reasonable non-sleeping SBS fractions (i.e., greater

than 0.5 for a realistic SCN), CLB/DLB is shown to attain the performance of more complex

WUC scheme, where ROO still falls short of that level. For 1% network utilization, load based

algorithms still have an on-ratio of 0.5. On the other hand, WUC allows 0.1 on ratio for same

blocking probability . It’s clear that optimization of sleep time may ensure much higher energy

saving. While maintaining same QoS it may be possible to design more sophisticated algorithms

considering both sleep time, and load to achieve further energy savings.

In Figure 4.9, the response of random and load based algorithms to the choice of sleep period

1/λS and waiting time wt are observed to have some interesting differences. Assuming zero tol-

erable delay (i.e., wt = 0), the blocking probability of random scheme ROO does not change at all
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Figure 4.7: Analytical and simulation results for load distribution for range dependent UE densities
of νu = 5 and ρc/ρu = 1. Rth = 56.4. Localization error(%) = {0, 30, 50} σ = {16.9, 28.2}.
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Figure 4.8: Network utilization along with on ratio (i.e., fraction of non-sleeping SBSs) for
1/λS ∈ {500 s,1000 s,∞} and wt ∈ {0,60 s}. Low network utilization of 1% (i.e., 1/λU = 1000 s
and 1/λF = 1 MB).
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Figure 4.9: Blocking probability Pblock along with on ratio (i.e., fraction of non-sleeping SBSs)
for 1/λS ∈ {500 s,1000 s,∞} and wt ∈ {0,60 s} assuming low network utilization of 1% (i.e.,
1/λU = 1000 s and 1/λF = 1 MB). Term no dynamic indicates that either random or load based
decision is initially made, and SBS do not turn on and off

along with 1/λS even considering the no dynamic OOS case (i.e., 1/λS→∞). When we consider

nonzero tolerable delay (i.e., wt = 60 s), we start observing significant performance improvement in

ROO along with decreasing 1/λS, where the best performance occurs at 1/λS = 500 s. On the other

hand, load based CLB/DLB achieves significantly better performance for 1/λS = {500 s,1000 s} (as

compared to no dynamic OOS case) even under zero tolerable delay condition. When a nonzero

tolerable delay (i.e., wt = 60 s) is further assumed, the best performance is even superior to that

of the zero tolerable delay, but the respective performance gap remains marginal. As a result,

CLB/DLB is more robust to delay intolerance while random scheme ROO requires longer toler-

able delays for performance improvement. In addition, applying OOS dynamically is useful for

ROO only when the delay tolerance is sufficiently large. If delay budget with respect to sleeping

time is too small, UE will not be able to take advantage of delay. On the other hand, dynamic OOS

improves performance of CLB/DLB in both delay tolerant and intolerant SCNs.

In Figure 4.10, we present the respective network throughput and normalized energy efficiency

results. We observe that the network throughput performance in Figure 4.10(a) shows closely
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Figure 4.10: Average throughput and normalized energy efficiency along with on ratio (i.e., frac-
tion of non-sleeping SBSs) for 1/λS ∈ {500 s,1000 s,∞} and wt ∈ {0,60 s} assuming low network
utilization of 1% (i.e., 1/λU = 1000 s and 1/λF = 1 MB).
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related behavior to the blocking probability results (i.e., network throughput increases with de-

creasing blocking probability, and vice versa). In particular, we observe no significant average

throughput loss when as many as 40% of SBSs are in sleeping states. On the other hand, the aver-

age throughput of ROO keeps decreasing continuously as more SBSs are put into sleeping states,

which finally reads as high as 20% throughput loss for non-sleeping SBSs fraction of 40%.

The normalized energy efficiency results in Figure 4.10(b) involve some interesting conclu-

sions as follows. 1) Energy efficiency of ROO is worse than that of CLB/DLB whereas CLB/DLB

is as energy-efficient as the more complex WUC scheme for non-sleeping SBS fractions greater

than 30%. 2) Although ROO attains the maximum throughput only under nonzero tolerable delay

(see Figure 4.10(a)), the maximum energy efficiency can be achieved under both zero and nonzero

tolerable delays. In particular, while the maximum energy efficiency of ROO is invariant to sleep

period under nonzero tolerable delay, the best sleep period turns out to be λS→∞ under zero

tolerable delay. As a result, the energy efficiency for ROO under zero tolerable delay gets maxi-

mized when OOS scheme is not applied dynamically (i.e., no on/off events after initialization). 3)

Although network throughput for CLB/DLB is maximized for 1/λS ∈ {500 s,1000 s} with a signif-

icant gap between the no dynamic OOS case (i.e., λS→∞), the energy efficiency gets maximized

only for 1/λS = 1000 s under any choice of tolerable delay. Regardless of the particular tolerable

delay in CLB/DLB, assigning short sleep time is therefore as energy inefficient as keeping SBSs in

sleep states for very long, which identifies an optimal sleep period in between.

In Figures 4.9, and 4.10, deterministic sleep periods are compared with exponential sleep peri-

ods. In case of having a deterministic sleep period for each cell, the sleeping cell will be in one of

these sleep modes with probability one according to our simple rule in Table 4.2. On the contrary,

random sleep periods ensure that cell can be in any sleeping mode in various sleep lengths with

non-zero probability. So, selection of the random period does not bias results in favor of load based

algorithms, it actually demonstrates that load based algorithms can efficiently handle varying sleep

periods, and sleep modes while decreasing overall network power consumption. In other words,

instead of evaluating the performance of load based algorithms at fix deterministic periods, intro-
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ducing randomness into sleep periods enables testing robustness of the algorithms in a large set of

sleeping periods.

4.5.4 High Utilization Performance

We now consider a high network utilization scenario with the UE service request rate of

1/λU = 100 s and the average file size of 1/λF = 1 MB. The respective utilization is on the order of

20% as shown in Figure 4.11 We assume a representative finite sleep time period together with no

dynamic OOS case, i.e., 1/λS ∈ {1000 s,∞}, together with both zero and nonzero tolerable delays,

i.e., wt ∈ {0,60 s}. In Figure 4.9, we present blocking probability results along with on ratio. As

before, we observe that the performances of CLB and DLB are much better than that of ROO, and

are the same as that of WUC whenever at least 50% of the SBSs are non-sleeping. In addition,

performane of DLB has a close to that of CLB, as before. We also observe that the performance

of any OOS algorithm improves together with either nonzero tolerable delay, or applying dynamic

OOS (i.e., 1/λS = 1000 s instead of 1/λS→∞) on top of that. Regardless of the particular OOS

strategy, the blocking probabilities are observed to be higher than those in Figure 4.9 as the fraction

of non-sleeping SBSs decreases, which is due to the increased network utilization.

In Figure 4.13, we demonstrate the average throughput and normalized energy efficiency per-

formances against on ratio. As before, the average throughput results in Figure 4.13(a) indicate

that the performance of CLB and DLB are much better than that of ROO, and are the same as WUC

for a broad range of non-sleeping SBS fractions (i.e., greater than 0.5). In particular, the average

throughput of either CLB or DLB remains almost unchanged even when 50% of the SBSs are put

into sleeping states, while the respective loss in ROO throughput appears to be between 10%-30%

for the same on ratio. Note that the average throughput results in Figure 4.13(a) are much higher

as compared to that of Figure 4.10(a) owing to the increased network utilization. In addition, the

average throughput increases for all the OOS algorithms as UEs become more delay tolerant.

We also present the respective normalized energy efficiency results in Figure 4.13(b) for this

high utilization scenario. We observe that the energy efficiency of CLB and DLB gets maximized
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Figure 4.11: Network utilization along with on ratio (i.e., fraction of non-sleeping SBSs) for
1/λS ∈ {500 s,1000 s,∞} and wt ∈ {0,60 s}. High network utilization of 20% (i.e., 1/λU = 1000 s
and 1/λF = 1 MB).
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Figure 4.12: Blocking probability Pblock along with on ratio (i.e., fraction of non-sleeping
SBSs) for 1/λS ∈ {1000 s,∞} and wt ∈ {0,60 s} assuming low network utilization of 20% (i.e.,
1/λU = 100 s and 1/λF = 2 MB).
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Figure 4.13: Average throughput and normalized energy efficiency along with on ratio (i.e., frac-
tion of non-sleeping SBSs) for 1/λS ∈ {1000 s,∞} and wt ∈ {0,60 s} assuming low network utiliza-
tion of 20% (i.e., 1/λU = 100 s and 1/λF = 2 MB).
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Figure 4.14: Effect of localization error in SCN along with on ratio (i.e., fraction of non-sleeping
SBSs) for 1/λS = 1000 s and wt = 60 s assuming high utilization of ≈ 20% (i.e., 1/λU = 1000 s
and 1/λF = 2 MB), Rth = 50, σ = {12.5, 25}.

with the nonzero tolerable delay (i.e., wt ∈ 60 s), which is superior to not only ROO but also more

sophisticated WUC scheme. This interesting result indicates that although the average network

throughput is maximized (through decreasing blocking probabilities) by the deliberate wake-up

control mechanism of WUC, the resulting scheme becomes less energy-efficient. In other words,

while the network rejects a smaller number of UE requests by further incorporating the sleeping

SBSs, the overall network starts consuming more power since not all SBSs are allowed to complete

their full sleep period. As a result, the energy efficiency of WUC deteriorates and falls even below

ROO under certain settings. We therefore conclude that, in contrast to low utilization scenario,

the energy efficiency of WUC can be poor under high network utilization, although the associated

average throughput might still be the best.

Figure 4.14 shows that load based algorithms still save energy but increasing localization error

cause UEs to consider further cells closer, which decreases the throughput, increases average ses-

sion period, increases cell utilization. Due to this proportion of blocked service requests increase.
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4.6 Conclusion

In this chapter, we considered OOS strategies to implement energy-efficient SCNs. In particu-

lar, we propose a novel load definition for the SCN traffic, and derived its approximate distribution

rigorously. Two novel load based OOS algorithms ( CLB and DLB) are also proposed together

with two benchmark strategies ROO as a simple baseline and WUC as the most sophisticated. We

show that CLB and DLB perform better than ROO, and have similar performance as compared

to WUC under low traffic periods when proportion of on SBS are around 50%. We also observe

that when the proportion of on SBSs is below 0.2, WUC performs significantly better. As a future

work, it is necessary to design energy saving algorithms that take into consideration of not only

traffic load but also sleep time based on number UEs around SBS. We finally show that the perfor-

mance of CLB can be efficiently attained by DLB in a distributed fashion relying on the statistics

of the traffic load. As a future work, traffic load model can be extended to capture diverse mobile

usage patterns. Besides, wake-up control and load based schemes can be extended by considering

mobile power consumption, and macrocell serving capacity in mid-traffic and high-traffic profiles.

Moreover, algorithms determining optimal sleep state and sleep duration based on load metric can

be developed.
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Chapter 5: Capacity and Energy-Efficiency Analysis of Delayed Access

Scheme

The advent of small base stations (SBSs) offers not only opportunities in terms of high capacity

and flexibility but also challenges. One important challange is their irregular topology. Therefore,

it requires new methods to accurately analyze, signal to interference ratio (SIR), and signal to

interfrence plus noise ratio (SINR). Despite that the Wyner model has been widely adopted to

analyze SINR, Xu et al. [108] argues that accuracy of the Wyner model highly depends on the

number of interferers. If there is a large number of interferers, model is precise, if not, the Wyner

is quite inacurate.

In this chapter, we made use of the assumption of random SBS distribution from a different

perspective to analyze delayed access scheme. if UE can delay its transmission time, it may have

the opportunity to decrease the distance to the SBS, which can be translated as both higher SINR

and bitrate. Especially in large scale SBS deployments, it is worth modeling relationship between

UE’s access delay and SINR level and similar key metrics.

There is a rich literature on the analysis of SINR distribution in random networks using stochas-

tic geometry. Andrews et al. derived [74] tractable expressions of coverage probability and bit-rate

of a user in a random location. In [75], control signals are muted to improve SINR and save power

in an adaptive manner. In [109], bit-rate and energy efficiency (EE) analysis of random cellular

networks are given. Then, EE maximization algorithms are offered.

In Chapter 3 of this thesis, we introduced a simple access scheme. A slightly different access

scheme is also adopted in Chapter 4 (see Figure 4.1 and Figure 3.2). In Chapter 3, it is shown

that advantage of access delay becomes prominent in small cell networks operating under energy-

saving policy since access delay gives UE the opportunity to receive service from a closeby cell
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in an energy-saving mode instead of connecting a distant SBS. We showed in Chapter 4 that de-

pending on the length of UE’s tolerable delay, a nearby SBS in sleep mode can be awakened and

blocking probability can be reduced significantly.

Despite the useful findings regarding the access delay, the energy-delay, and capacity-delay

tradeoff inherent in this asccess scheme is not well investigated. So, we bring attention to the effect

of delayed access scheme on key performance metrics of small cells. We analyze energy-efficiency

improvement by delaying the user equipment’s (UE) access to a SBS. It is shown how UE’s delayed

access strategy affect SINR distribution. Obtaining the trade-off between access delay and bit-rate

may be of importance for emerging ultra-reliable and low-latency communications (URLLC) [110,

111].

The findings in this chapter are partly published in [112]. Contributions of this chapter are: 1)

Expression of coverage probability and transmit rate of a user are derived as a function of transmit

range and delay tolerance; 2) For the delayed access scheme, it is shown that there exists optimal

threshold distance maximizing coverage probability for target SINR; 3) An efficient numerical al-

gorithm is developed that optimizes bit-rate by computing the optimal threshold distance for given

tolerable delay; 4) It is shown that considerable improvement in energy-efficiency of small cell

network can be achieved by the delayed access scheme. Besides the theoretical work, it is believed

that analyzing the access delay vs SINR distribution gives insight into the design of protocols for

delay tolerant applications.

Section 5.1 of this chapter gives a quick recap of system model with an emphasis on its dif-

ferences from prior models. In Section 5.2, we analyze the distributions of coverage probability

of UE as a function of predefined range and delay. In Section 5.3, we derive average achievable

bit-rate in UE’s access scheme. Section 5.4 derives optimal transmit range that maximizes the cov-

erage probability, and suggest a numerical algorithm to maximize average bit-rate for given delay

budget. In Section 5.5, we briefly discuss energy-efficiency improvement by comparing a UE’s

connection with and without access delay. Section 5.6 provides numerical results that validate our

analysis and Section 5.7 concludes the chapter.
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5.1 Network Model

In this section, the downlink model of the small cell network is described. Since the network

model is very similar to the models used in previous chapters, we prefer highlighting differences.

At any given time probability of sleep, idle and active cells are ΠS, ΠI, and ΠA, respectively.

In order to preserve ergodicity of the network, we assume these probabilities do not change. In

the active mode, an SBS gives data service to one UE with exponential service time with mean

1/µ. Similarly, duration of the sleep mode is also exponential with λS. Once sleep period expires,

a sleeping cell becomes idle and avaible for service. Similarly, when the active period of cell

finishes, it becomes idle. By knowing the probabilities of the transitions from sleep to idle, and

active to idle for individual cell, it is possible to model the postive effect of delay in terms of SINR.

We assume that from UE’s pespective, proportion of average idle, active, and sleep SBSs are

fixed. UE “sees” fixed proportion of active, idle, and sleep SBSs. In other words, from UE’s

perspective, SCN is ergodic. So, after a SBS completes its service for UE, it moves to the idle

mode, and idle cell that is randomly chosen switches to active mode. UE measures received signal

strength when UE decides to initiate connection according to delayed access scheme. If delay

budget is very large with respect to sleep time, and range of UE’s small, active SBS’s switch to

idle mode, proportion of active SBSs will decrease. Hence, UE will experience very high SINR.

In practice, it is clear that the random distribution of sleep cell is not the best choice as shown

in Chapter 4, given delay tolerance level, switch-on and switch off decisions can be made by

intelligent scheme. Therefore, improvements achieved by delayed access scheme in randomly

operated network highlights the minimum possible achievements in energy efficiency.

We model the wireless channel by a standard propagation model with path loss exponent α >

2 and Rayleigh fading with unit mean. In the typical case, the received power at a receiver is

Ptx gir−α, where Ptx(i) is transmission power of SC i, ri is the distance between UE and SBS i, and

gi is the small-scale fading gain following exponential distribution with mean 1/ζ . Interference

power at a receiver is the sum of the received powers from all active base stations excluding the
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SBS that UE is associated with. Then, signal to interference and noise ratio is

SINR =
Ptxhr−α∑

i∈ΦA\{bo} Ptxgir−α + σ2 , (5.1)

where σ2 is the noise power of the additive noise, ΦA denotes Homogenous Poisson Point Process

for the active cells, and h is the small-scale fading gain associated with the channel between the

user of interest and its serving SBS. We assume all active SBSs have constant transmit power, and

interference from idle cells is negligible.

5.2 Analysis of Coverage Probability

In this section, we analyze the coverage probability of downlink transmission with delayed

access in small cell networks. Analysis of coverage probability is important because it is highly

critical for operators to sustain, with high probability, SINR levels above a threshold value that is

acceptable for signal quality. Coverage probability defined as;

Pc = P(SINR > γ), (5.2)

where γ is the threshold SINR. By conditioning on the distance between UE and small cell, Pc can

be written as

Pc =

∫ ∞

0
P(SINR > γ |r) fr,w(r)dr, (5.3)

where fr,w(r) is the probability density function of the distance to nearest idle cell and w is the

tolerable delay. Let t be the access time of user to the cell. Clearly we have t ∈ [0,w].

5.2.1 Distance Distribution to the Nearest Available Cell

Distance to the nearest cell can be evaluated by three independent events: immediate ac-

cess within threshold distance (IA), delayed access within threshold distance (DA), access outside
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threshold distance (AO). Threshold distance is the communication range within which UE is will-

ing to initiate commucation wiht SBS. The distance to the nearest base station is r . Then, the tail

distribution of r in 2-D Poisson process can be written as:

P[R < r] = P[ BS closer than r ] = 1 − e−πρcr2
, (5.4)

and pdf of r is

fr(r) = 2πρcr2e−πρcr2
. (5.5)

In case of IA, number of idle cells Poisson distributed with mean NI = ΠIρ f πR2
th for given Rth.

Conditioning on number of idle cells outside an inner circle with radius r within transmission

range, tail distribution of distance to the nearest idle cell can be written as

P(R > r |Rth, IA) =

∑∞
i=1

[
1 − r2

R2
th

] i

1 − e−NI

e−NI N i
I

i!
(5.6)

=
1

1 − e−NI

(
e
−NI

r2

R2
th − e−NI

)
.

Distance distribution is independent of the density of small cells in case of DA event. Due to

random distribution of sleep, active cells, and the memoryless property of exponential distribution,

any cell within R may become available irrespective of length of waiting time. Then, distance

distribution to the cell is

P(R > r | Rth,DA) = 1 −
r2

R2
th
. (5.7)

In case of OA, CDF of distance to the nearest cell is

P(R > r |Rth,OA) =
e−ρcπ(r2−R2

th)

e−NI
. (5.8)
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After taking the derivative of (5.6)-(5.8) with respect to r , pdf of distance can be formed as:

fRth(r) =



e−ΠIρcπr2
ΠIρc2πr

1−eΠIρcπR2
th

: IA, (t = 0)

2r
R2

th
: DA, (0 < t < w)

e−PiIρcπr2
ΠIρc2πr

eΠIρcπR2
th

: OA, (t = w)

. (5.9)

The probability distribution of distance to nearest cell is not only a function of idle cell density

but also the waiting time. Taking into consideration of tolerable delay and by the UE’s access time

t to the small cell, the respective probabilities of IA, DA, AO events can be written as

P (IA) = 1 − e−ΠIρcπR2
th (5.10)

P (DA) = e−ΠIρcπR2
th − e−βwρcπR2

th (5.11)

P (OA) = e−βwρcπR2
th, (5.12)

where βw is the probability that a cell is either available or will become available within tolerable

delay time w (i.e., β0 = ΠI), which can be easily derived as

βw = 1 − ΠAe−µwt − ΠSe−λSwt . (5.13)

95



5.2.2 Distribution of Coverage Probability

Coverage probability can be found by conditioning on distance. Using piece-wise density

functions in (5.9), and (5.10)-(5.12), we can re-write (5.3) as

P(SINR > γ) =∫ Rth

0
P(SINR > γ |r) fRth |IA(r, t)dr × P (IA)

+

∫ Rth

0
P(SINR > γ |r) fRth |DA(r, t)dr × P (DA)

+

∫ ∞

Rth

P(SINR > γ |r) fRth |OA(r, t)dr × P (OA) , (5.14)

The coverage probability conditioned on the distance as in (5.3) can then be derived as follows:

P(SINR > γ |r) = P
{

Ptxhr−α

PtxIΦA + σ
2 > γ

}
= EIΦA

[
P

{
h >

γrα

Ptx

(
PtxIΦA + σ

2
)}]

= EIΦA

[
exp

(
−
ζγrα

Ptx

(
PtxIΦA + σ

2
))]

= e−
ζγrασ2

Ptx LIΦA
(ζγrα), (5.15)

where LIΦA
(s) is the Laplace transform of IΦA conditioned upon the transmit distance r . For

LIΦA
(s), we have

LIΦA
(s) = EΦA

[
e−s

∑
i∈ΦA gir−αi

]
= EΦA

[∏
i

e−sgir−αi

]
= exp(−ΠA2πρc

∫ ∞

0

(
1 − Egi

[
−sgiz−αi

] )
)zdz

= exp
(
−ΠAπρcr2γ

2
α

∫ ∞

0

dz

1 + z
α
2

)
. (5.16)
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Third equality is due to E[
∏

x∈Φ f (x)] = e−
∫
R2 (1− f (x)ρdx [113]. In the last equality of (5.16), we

plug s = ζγrα. As a special case for α = 4, one can easily find,

LIΦA
(ζγr4) = e−ΠAρcr2√γπ2/2. (5.17)

We can further derive closed-form solutions with and without white noise.

5.2.3 Special Cases

Theorem 2. For α = 4, σ2 = 0, coverage probability is

Pc =
β0

η + β0

+
(
e−β0νc − e−βwνc

) [
1
ηνc
− e−ηνc

{
β0

η + β0
+

1
ηνc

}]
, (5.18)

Proof. It can be easily seen that (6.13) and (5.15) becomes equal when σ2 = 0. Then, by inserting

(5.10)-(5.12), and (6.13) into (5.14), we have:

Pc = β0

∫ νc

0
e−u(β0+η)du

+
1
νc

∫ νc

0
e−ηudu

(
e−β0νc − e−βwνc

)
+
β0e−βwνc

e−β0νc

∫ ∞

νc

e−(η+β0)udu, (5.19)

where η = ΠA
√
γπ/2, and νc = ρcπR2

th. After some algebraic manipulations, coverage probability

becomes

Pc =
β0

η + β0

+
(
e−β0νc − e−βwνc

) [
1
ηνc
− e−ηνc

{
β0

η + β0
+

1
ηνc

}]
. (5.20)
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Similarly, interference with noise (α = 4) can be derived as in 5.20. Plugging (6.13) in (5.15),

then, substituting (5.10)-(5.12), (5.15) into (5.14), coverage probability is derived as:

Pc =
1
σ

√
πPtx
ζγ

(
ΠIπρcK1

[
1
2
− K3(1 − e−(βw−β0)νc )

]
+

1
R2 K2(K4 −

1
2
)(e−β0νc − e−βW νc )

)
, (5.21)

where K1−4 are given by:

K1 = e
(ΠA
√
γπ/2−ΠI)

2(ρcπ)2Ptx
4ζγσ2 , (5.22)

K2 = e
(ΠA
√
γπ2)2Ptx

16ζγσ2 , (5.23)

K3 = Q
( 2σ
ρcπ

√
ζγ

Ptx

(
νc +
(ΠAγπ/2 + ΠI)(ρcπ)

2Ptx

4ζγσ2
) )
, (5.24)

K4 = Φ

(
2ζγσ2

Ptx

(
R2 +

prmAρcγπ
2R2

thPtx

4ζγσ2

))
. (5.25)

5.3 Average Bit Rate for Delayed Access

In this section, we derive the average achievable bit-rate as a function of threshold distance and

waiting time by using the respective probabilities of IA, DA and OA (5.10)-(5.12). For capacity,

we used Shannon’s capacity bound, which is widely used in many studies. To be more precise,

we derive expected value of log2(1+SINR), which gives us achievable capacity in terms of bits/hz.

Conditioning on access types depending on waiting time of DE, we have

τ = E [log2(1 + SINR)] = E [log2(1 + SINR) | IA]P(IA)

+ E [log2(1 + SINR) |DA]P(DA)

+ E [log2(1 + SINR) |OA]P(OA). (5.26)
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For each access type (i.e. IA, DA, or OA),conditional expectation needs to be derived. Here, we

start with average bitrate if UE connects to the cell immediately:

E
[
log2(1+SINR) | IA

]
=∫ Rth

0
fIA(r, t)

∫ ∞

0

ln(1+γ)
ln(2)

fγ |r(γ)dγdr, (5.27)

where fIA is the density function of distance when DE connects immediately, and fγ |r(γ) is the

conditional density function of SINR given that distance betwen user and transmitting cell is r . In

the inner integration in (6.14), we can write the conditional pdf using the tail distribution of SINR

in (5.15). Then, we have:

τ =
1

ln(2)

∫ Rth

0
fIA(r, t)

∫ ∞

0
ln(1+γ)d (P (SINR > γ |r)) dr

=
1

ln(2)

∫ Rth

0
fIA(r, t)

∫ ∞

0

P (SINR > γ |r)
1 + γ

dγdr (5.28)

=
1

ln(2)

∫ ∞

0

(∫ Rth

0

P (SINR > γ |r)
1 + γ

fIA(r, t)dr
)

dγ. (5.29)

The second equality of (6.15) is due to change of variables in the inner integration. After changing

the order of integration in third equality, the inner integration becomes equivalent to (5.14). Fol-

lowing similar procedure for E [log2(1 + SINR ) |DA], and E [log2(1 + SINR ) |OA], and plugging

them in (5.26), we can obtain the capacity as:

τ =
1

ln(2)

∫ ∞

0

P (SINR > γ)

1 + γ
dγ . (5.30)

5.4 Optimization of Bit Rate and Coverage Probability for Delayed Access

In this section, we optimize the coverage probability and average bit rate with respect to thresh-

old distance. Before delving into analytical details, it is helpful to explain why an optimal threshold

distance exists. Consider two extreme cases of small and large threshold distances. In the first case,
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it is not likely that UE finds an idle cell within its threshold distance, causing waste of delay bud-

get. For a large threshold distance, a user is very likely to access an idle cell without much delay,

causing minimal use of delay budget. None of these choices yields optimal coverage probability

with respect to waiting time. Therefore it is necessary to adjust threshold distance with respect to

given delay budget.

5.4.1 Optimization of Coverage Probability

In this section, we optimize coverage probability with respect to a given tolerable delay by

adjusting the threshold distance. For analytical tractability, we made several assumptions. First,

we assumed that noise power is negligible when compared with interference power. Second, we

assumed cells can adjust their coverage range by increasing or decreasing their transmit power.

Notice that coverage probability in (5.20) is not a function of transmit power. In other words, UE’s

access strategy does not affect interference power.

For the analysis, we only considered a special case of α = 4. To find threshold distance Rth

that maximizes coverage probability, we first take the derivative of (5.20) respect to νc. We then

obtain:

dPc
dνc
= β0e−(β0+η)νc

−
1

ηνc
2

(
e−β0νc − e−βwνc − e−(β0+η)νc + e−(βw+η)νc

)
+

1
ηνc

(
− β0e−β0νc + βwe−βwνc + (β0 + η)e−(β0+η)νc

− (βw + η)e−(βw+η)νc
)
+
β0(βw + η)

β0 + η
e−(βw+η)νc . (5.31)

After substituting second order Taylor expansion for e−β0νc , e−βwνc , e−(β0+η)νc , e−(βw+η)νc , deriva-
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tion in (5.31) reduces to quadratic form of m1νc
2 + m2νc + m3, where m1, m2, m3 are

m1 = β0

(
(β0 + η)

2

2
+
(βw + η)

3

2(β0 + η)

)
m2 =

3
2
(β0 − βw)(β0 + βw + η)) − β0

(
β0 + η +

(βw + η)
2

β0 + η

)
m3 = 2(βw − β0) + β0

(
1 +

βw + η

β0 + η

)
. (5.32)

Let ∗1, ∗2 be the roots of the quadratic quadratic equation in (5.32). Since βw > β0, we have

m1 > 0, m2 < 0, m3 > 0, and thus ∗1, ∗2 are both positive. Then, candidate threshold distances R∗th1
,

R∗th2
are

√
∗1
πρc

,
√

∗2
πρc

. Finally, among the two threshold distances, we choose the one satisfying

second derivative test. To satisfy maximum condition, the second derivative of (5.32) necessitates

νc <
m2

2m1
, which is met by the smaller root.

Lemma 1. Optimal threshold distance that maximizes the coverage probability is a decreasing

function of γ.

Proof. We have γ ∼ η2. From (5.32), it is clear that m1 ∼ Θ(η
3), m2 ∼ Θ(η

2), m3 ∼ c, where c is a

constant. Then, the roots
−m2±
√

m2
2−4m1m3

2m1
are decreasing with respect to η.

5.4.2 Optimization of Bit-rate

Optimizing the bitrate with respect to threshold distance is not easy to derive analytically.

Therefore, we developed an efficient numerical algorithm that computes the optimal threshold

distance according to the bitrate.

Algorithm initializes with an upper and a lower bound of threshold distance Ru, Rl respectively.

Simply, we choose Rl = 0. Derivation of upper bound can be done based on the threshold distance

maximizing the coverage probability. We observe from Eq. (5.30) that maximizing the coverage

probability for given SINR value is strongly related to maximizing bitrate. Then, without loss of

generality we can rewrite Eq. (5.30) in a discrete form as lim∆γ→0
∑∞

i=1
P(SINR>γi)

1+γi ∆γi. Let R∗i be

the optimal threshold distance for P(SINR > γi). Then, by choosing optimal thresholds R∗i , sum
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of the bit rates corresponding to each γi is maximized. By lemma 5.4.1, we have R∗i > R∗j , where

i < j. Finally by choosing arbitrarily small γ value, an upper bound can be defined. After we

define Rl, Ru, we can easily find the optimal threshold distance by following Algorithm 5.

Algorithm 5 Algorithm to find optimal Rth for bitrate.
Initialize parameters ε, Rl = 0, Ru, ∆R = Ru
while ∆R > ε do

Set R = (Rl + Ru)/2 and find search direction by computing bitrates rR+ε, rR−ε
if rR+ε > rR−ε then

Rl ← R
else

Ru ← R
end if
∆R← |R − (Ru + Rl)/2|

end while

Note that Algorithm 1 has a precision parameter ε. At each iteration, candidate threshold

distance is chosen as the average value of upper and lower bounds of Rth. Also, search direction is

determined by checking the bit-rates in ε−neighborhood of R. The algorithm eventually stops and

converges after Θ(log(Ru

ε )) steps.

5.5 Energy Efficiency Analysis

In this part, we consider the trade-off between energy-efficiency and delay. Energy-efficiency

is measured as the amount of transmitted bits per unit time per unit bandwidth per Watt (i.e.

bits/s/Hz/Watt). Then energy-efficiency is

EE(ρc, βw) =
τ(ρc, βw)

B ×Mean power consumption of a cell
,

where B is the bandwidth. Without loss of generality, we assume SBS uses all available bandwidth

during transmission. In order to compare energy efficiency of a cell with and without delay, we
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define the normalized energy efficiency as

EEN =
EE(ρc, βw)

EE(ρc, β0)
, (5.33)

which measures relative scale of improvement in the energy-efficiency with respect to the condition

with no access delay (i.e., t = 0).

5.6 Simulation and Discussions

In this part, we verify the accuracy of our analysis by Monte-Carlo simulations. We generate

uniformly distributed random variables for x- and y- coordinates of small cells in a large circle.

Cells are independently marked as either idle, active or sleeping with probabilities ΠI, ΠA and ΠS,

respectively. Simulation parameters are listed in Table 5.1.

Table 5.1: Simulation Parameters.

Parameter Value
Small Cell density (ρc) 0.005 per m2

Tolerable delay (wt) 10 sec−1

Small Cell Transmission Power (Ptx) 23 dBm
Thermal Noise Power (σ2) -104 dBm

Path loss exponent (α) 4
Average sleep/active time (λS) 10 sec
Average sleep/active time (µ) 10 sec

In Figure 5.1, coverage probability derived in Eq. (5.20) is verified via simulations. We observe

that choosing optimal threshold distance with respect to SINR threshold has significant importance.

Especially at low SINR levels, the selection of threshold distance becomes crucial. We observe

that coverage probability at 0 dB SINR is almost doubled by choosing proper threshold distance.

Especially for delay tolerant data applications, and for intermittent connections, delayed access

mechanisms can sustain high coverage probability and improves energy efficiency.
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Figure 5.1: Coverage probability at different SINR thresholds with no noise. Threshold distance
with respect to given threshold SINR is close to optimum. The small gap between approximation
and optimal value is due to Taylor approximation. Tolerable delay wt = 1/λS.

Figure 5.2 shows capacity increase with respect to threshold distance. Tolerable delay is nor-

malized by the sleeping time. Depending on the fraction of sleep and idle cells, and the improve-

ment in capacity is almost tripled. Capacity gain depends on the transmit power gain. In fact, it

is shown in Chapter 3 that transmit power gain is a function of the idle cell density. If the idle

cell density is small with respect to active and sleep cell densities, potential transmit power gain is

large. In theory, idle cell density can be arbitrarily small compared to active and sleep cell density.

We also observe that optimal ranges with respect to different delay values are close. However, as

UE’s tolerable delay increases, optimal range also decreases because UE is able to find a closeby

SBS by waiting longer. SBS density is for dense femtocell deployment so average distance to SBS

is 1√
ρc
≈ 14 m. If we decrease the density, we expect tolerable delay to play a more significant

role in maximizing throughput.
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Figure 5.2: Transmission rate for varying threshold distances and delay. Small vertical lines show
optimal threshold distance computed by our algorithm.

Figure 5.3 shows the improvements of the network energy efficiency with respect to delay.

Specifically, simulation starts with delay intolerant condition, i.e., βw = β0 = 0.1. As the tolerable

delay increases, the proportion of cells that become available, either in time or immediately, βw,

the energy-efficiency of network improves. At high or moderate traffic it is detrimental to turn off

cells due to the possibility of degrading quality of service. Because of this, we evaluated network

energy efficiency only at low traffic utilization (i.e., ΠA = 0.1). For simulation, we kept density of

active cells small and fixed and changed the density of sleeping and idle cells. We observe that as

the density of sleeping cells with respect to the density of idle cells increases, energy-efficiency of

the small cell network also increases significantly.
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Figure 5.3: Normalized energy efficiency with respect to cell availability along with
ϑ=ΠS/ΠI ∈ {0.01,1,2,4,8} and ΠA = 0.1.

5.7 Conclusion

In this chapter, delayed access mechanism is analyzed in large scale network considering the

metrics such as energy efficiency, coverage probability, and average bit-rate. Analysis is verified

via simulations. Optimal threshold distance maximizing the coverage probability is derived. An

efficient numerical algorithm that optimizes threshold distance with respect to the delay budget is

developed. Energy-efficiency of the small cell network is assessed by comparing UE’s connection

to the cell with and without delay. Results show that delayed access strategy can be utilized for data

applications that can tolerate an initial access delay. By delaying UE’s access, energy-efficiency

of the network can be increased significantly at low traffic utilization. Some of our future work in-

clude designing on/off schemes with deterministic sleep times, and development of energy efficient

protocols for small cell networks.
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Chapter 6: Delay Spectral Efficiency Tradeoff in Emerging Applications

Using Edge Service

Some CPU hungry applications hold the potential to dominate wireless traffic; thefore, their

effect on small cell networks needs to be investigated. According to the forecast reports, number

of virtual reality (VR) and augmented reality (AR) devices sold will reach about 99 million in

2021 [114]. VR/AR industry will reach $108 billion [115]. Virtual reality and augmented reality

applications require high computation sources which are envisioned to be met by edge comput-

ing services. What is more, available off-the shelf (i.e. HTC Vive, Oculus Rift) may operate at

2160x1200 resolution and 90 fps. Amount of traffic load may require up to 5.2 Gbps, which is far

above the supported speeds in the current wireless infrastructure. [116]. Moreover, offshore oilrigs

generate about 500 GB data in a week. Commercial jet airplanes generate 10 TB data in a 30

minute period during flight [117]. Shay states [118] due to bandwidth limitations only 20% of data

can be processed at cloud platform. So, there is a risk that wireless network may be overloaded

because of huge amounts of data transfer to remote processing units.

Dynamics in wireless medium such as noise, physical obstacles, traffic fluctuations challenge

the seamless operation of VR applications. At high traffic load period or during bad channel

conditions, tight delay constraints of these applications may not be met. For example, although

milimeter wave channels can achieve Gbs speeds, their drastic attenuation due to temporary and

stationary blockages is a big concern to realize remote rendering for VR applications. Therefore,

local processing is necessary to guarantee quality of service need of computer intensive applica-

tions. Moreover, due to requiring high speed, network operators may limit VR applications during

high traffic periods for the sake of fairness and avoidance of congestion, favoring the usage of local

processing.
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There are many studies regarding edge/fog processing. In [119], an energy optimal task offload

schme is introduced. Gilbert-Elliott (GE) model (i.e., two state markov chain for low and high

gains), is considered for the wireless link. In [116], an experiment set-up that remotely renders of

VR frames is tested. Results are evaluated for line of sight scnenario in milimeter wave channel.

In [120], VR system is assumed to be capable of connecting multiple access points equipped with

antenna using milimeter wave frequencies. Frame caching and multi point transmission is offered

to resolve the latency in case of high attenuation in milimeter wave links. In [121], a solution to

remote the processing problem with reliabilty constraints is offered. It is assumed that UE can

offload to multiple edge processors simultaneously, and burden on wireless links can be lifted by

cacheable contents such as object detection results, which can be used at a later time.

In Chapters 3, and 4, our main objective was to make small cell networks energy effiecent.

Energy conservation is achieved by turning cells off and utilizing user equipment’s access delay.

In Chapter 5, delay capacity tradeoff is analyzed. The scope of this chapter aims to give a modest

analysis about the impact of bandwidth hungry and CPU intensive applications on small cell net-

works. Specifically, we consider computer intensive tasks that are either processed local CPU or at

edge server. If tasks are processed locally, there will be delay due to limited processing capability

of user equipment. There will be various delays in case of remote processing such as transmis-

sion delay, queuing delay at cloudlet (i.e., mechanisms for authentication, access control, pricing,

resource allocation), and processing delay at edge/fog processor. There is fundamental tradeoff

between delay and bandwidth due to increasing traffic volume of applications that consume large

bandwidth, and require high processing service.

Section 6.1 discusses details of our system model. In Section 6.2, performance evaluation of

local processing and spectral efficiency of small cell network are analyzed. Finally, simulation

results are discussed in Section 6.3.
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local
processing

remote
processing

Figure 6.1: Operation of local computing at the UE versus edge computing through small cell
network. CPU-intensive tasks can be computed either locally at the UE or remotely at the edge/fog
depending on the tolerable delay of the tasks.

6.1 System Model

In this section, we introduce the system model. UEs have computationally intensive tasks such

as VR, AR frames which can be processed either locally or remotely at edge server (see Figure

6.1). Tasks arrival follows a poisson process with rate λu. Distribution of UEs and SBSs are HPPP

as in previous prior chapters. Each task can tolerate a delay with rate λW. Task arrivals join to

the internal queue, and wait to be processed locally. Only tasks that are not processed within a

tolerable delay are transmitted to the edge server.

If the task is not processed locally and tolerable delay expired, UE immediately offloads the

task to edge server by accessing the nearest idle cell in the small cell network. We do not employ

delayed access strategy because it will introduce additional latency. Besides, all small base stations

are on. The rationale behing keeping all SBS fully powered is to meet strict performance and
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Figure 6.2: Operation of UEs that process delay-sensitive tasks. Tasks whose tolerable delay
expires leave the queue.

tight delay requirements of VR applications. Utilization of network will be medium or high, and

therefore not suitable to apply energy saving schemes.

Service time of task has mean 1/µl if processed locally. The local CPU is modelled as M/M/c

queue with impatience as shown in Figure 6.2. Total end-to-end delay is assumed following ex-

ponential distribution with mean 1/µf . Note that end-to-end delay is comprised of various delay

components such as buffering delay at uplink scheduler, task upload period, buffering delay at edge

server, processing period at edge server, downlink buffering delay, and downlink transmission pe-

riod. Distributions of these delays depend on utilization of wireless network, edge computing

resources and type of task that requires remote processing. According to [120], acceptable latency

for typical VR application is about 25 ms.

It requires a very complex analysis to model end-to-end delay due to various latency compo-

nents. Therefore, we focus our model to specific problem or virtual reality. Considering typical VR

application, UE offloads location coordinates to the edge, and VR frame is generated at edge pro-

cessor. Therefore, the size of uploaded data is small with respect to frame size to be downloaded.

It is even possible to predict head movements [122] so that sum of the delays at uplink scheduler

and task upload period can be considered small. When the computing resources are sufficient, the

prominent delay component is the downlink transmission. We expect that 1/µf ≤ 1/µl when task

download time is reasonably small and edge computing resources are sufficient. When the channel

conditions are bad, or network resources are diminished, the end-to-end response time is longer

than local processing time.
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6.2 Analysis of M/M/c Queue and Sectral Efficiency of Small Cell Network

In this section, details of the analysis of the model is given. First, the queuing model in Fig-

ure 6.2 is analyzed. The aim of this analysis is simply to find the proportion of tasks that were

completed within tolerable delay time. Tasks that are not completed in tolerable delay time are

sent to the edge server through the small cell network. We analyze spectral efficiency of small cell

network due to traffic load of uncompleted tasks.

6.2.1 Analyisis of M/M/c Queue With Exponential Impatience

Using equilibrium conditions, state probabilities of the queue shown in Figure 6.2 can be de-

rived as follows:

pn =


λnu

n!µn p0 n < C,

λnu
µC−1(C−1)

∏n−C
k=0 (cµ+kλW)

p0 n ≥ C,
(6.1)

where

p0 =

[
C−1∑
i=0

λn
u

n!µn +

∞∑
n=C

λn
u

µC−1(C − 1)
∏n−C

k=0 (cµ + kλW)

]−1

. (6.2)

6.2.1.1 Proportion of tasks computed locally

It is necessary to find the fraction of tasks computed locally and the remaining tasks computed

remotely. To find that, we further analyze the queue in Figure 6.2. Let qn be the conditional

probability that the arriving task “sees" the queue in state n, and successfully receives service

within its tolerable delay. It is obvious that qi = 1 for 0 ≤ i ≤ C − 1. For n = C, we have

qn =
Cµ

Cµ+λW
. In more general case (i.e., C ≥ n), we want qn = P{Sn < W | n}, where Sn is the sum

of n exponential random variables with Cµ, Cµ+λw, Cµ+2λw,...,Cµ+(n−1)λw rates. Distribution
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of the sum of n exponentials is given by [123]:

fSn = fX1+X2+..+Xn =

(
n∏

i=1
θi

)
n∑

j=1

e−θ j t∏n
j,s;s=1(θs − θ j)

, (6.3)

where Θn = [Cµ,Cµ + λw, ..,Cµ + (n − 1)λw]. Then,

qn =

∫ ∞

0

(∫ w

0
fSn(x)dx

)
λwe−λwwdw

=

(
n∏

i=1
θi

)
n∑

j=1

∫ ∞
0

(∫ w

0 e−θ j xdx
)
λwe−λwwdw∏n

j,s;s=1(θs − θ j)

=

(
n∏

i=1
θi

)
n∑

j=1

1
(λw + θ j)

∏n
j,s;s=1(θs − θ j)

(6.4)

and finally, considering each arrival we have:

PR =

∞∑
n=0

P{Sn < W | n}pn (6.5)

6.2.1.2 Delay Distribution

In this part, we derive the distribution of the delay experienced at the queue. The distribution

of delay can be found by conditioning on whether the UE receives service. Let R be the event that

UE receives service. Then, we may write:

P(T < t) = P(T < t |R)(1 − PB) + P(T < t |Rc)PB, (6.6)

112



which after some algebratic manipulation can be rewritten as:

P(T < t) = P(S < t |S < W)(1 − PB) + P(W < t |W < S)PB

=

(
1 −

∞∑
r=0

P(Sr > t |Sr < W)γr

)
(1 − PB)

+

(
1 −

∞∑
r=0

P(W > t |W < Sr)γ
c
r

)
PB , (6.7)

where γn =
qnpn
(1−PB)

and γc
n =

(1−qn)pn
PB

. On the other hand, P(Sn > t |Sn < W) is the conditional tail

probability that an arriving request finds n tasks in the system and receives service no earlier than

t. Then, we have:

P(Sn > t |Sn < W) =
P(t < Sn < W)
P(Sn < W |n)

=

∫ ∞
t

[∫ w

t fSn(x)dx
]
λwe−λwwdw

P(Sn < W |n)

=
1
qn

n∑
j=1

1∏n
s=1,j,s(θs − θ j)

e−t(θ j+λw)

θ j + λw
. (6.8)

Similarly, we obtain P(W > t |W < Sn) by conditioning on the sum of delays as follows:

P(W > t |W < Sn) =
P(t < W < Sn)

P(Sn > W)

=

∫ ∞
t

(∫ w

t λwe−λw xdx
)

fSn(w)dw

1 − qn

=
1

1 − qn


n∏

j=1
θ j

 ×
n∑

j=1

λwe−(θ j+λw)t

θ j(θ j + λw)
∏(θk−θ j )

k, j,k=1

. (6.9)
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6.2.1.3 Average Queuing Delay

Average delay, E[D] due to queuing delay can be derived by conditioning on whether the UE

receives service locally or remotely, as follows:

E[D] = E[S |S < W](1 − PB) + E[W |S > W]PB

=

(
∞∑

i=1
E[Sn |Sn < W]γn

)
(1 − PB) +

(
∞∑

i=1
E[W |W < Sn]γ

c
n

)
PB .

We obtain the conditional expectation E[S |Sn < W], and E[W |W < Sn] by integrating (6.8) and

(6.9), respectively, with respect to t.

6.2.2 Spectral Efficiency Analysis

In this section, we analyze how spectral efficiency of small cell network changes with respect

to the delay tolerance of the application. Measure of spectral efficiency is b/s/Hz. First, we give an

intuitive explanation how spectral efficiency changes with delay tolerance of task, and then explain

derivations.

Intuitively, if tolerable delay is very large, ( 1
λW
→ ∞), all tasks will be processed locally, and

thus utilization level at SBS, ΠA → 0. On the other hand, if 1
λW
→ 0, ΠA will attain its maximum,

causing high interference and low spectral efficiency in the small cell network. So, we first set up

relationship λW and ΠA. Then, we find the bitrate that UE at random location can achieve from

nearest available SBS.

Our analysis is very similar to capacity analysis discussed in Sections 5.2.2, and 5.3. The

difference is that the task is to be processed remotely, UE does not wait and connect. Instead UE

uploads the task to the nearest idle cell in the network. We first find the coverage probablity, then

using Shannons’ capacity formula, we measure spectral efficiency in the network.

Coverage probability is already defined in Eq. (5.3). If UE connects to the nearest idle cell,

probability density function of the distance to the nearest idle cell can be written as
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fR(r) = 2πΠIρ f re−πΠIρ f r2
. (6.10)

In order to find ΠI, we rewrite the equilibrium condition in (3.9) as

ρuλu(1 − PR) = ρcΠAµf, (6.11)

where PR is the proportion of locally processed task found in (6.5). Since, we do not employ energy

saving strategy and focus on only spectral efficiency analysis, ΠS = 0, and ΠI + ΠA = 1. So, ΠI is

found. We plug ΠI in (6.10) and pdf of distance is found. Since UE immediately connects to the

nearest idle cell, (6.10) is simplified form of (5.9). Immediate access (IA) occurs with probability

one. Then, substituting (6.10) into (5.14), we have

P(SINR > γ) =

∫ ∞

0
P(SINR > γ |r) fR(r)dr, (6.12)

where P(SINR > γ |r) is equivalent as (5.15). Laplace transform (i.e. s = ζγrα ) in (5.15) for

α = 4 is

LIΦA
(ζγr4) = e−pAρfr2√γπ2/2. (6.13)

Plugging ( 6.13) into (5.15) gives P(SINR > γ |r). Substituting P(SINR > γ |r) into (6.12) com-

pletes the derivation of coverage probability.

To measure spectral efficiency, we derive the bitrate. To be more precise, we find expected

value of log2(1 + SINR) under the assumption that Shannon’s capacity is achievable. The average
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bitrate if UE connects to the cell immediately can be written as:

E
[
log2(1 + SINR)

]
=

∫ ∞

0
fR(r)

∫ ∞

0

ln(1+γ)
ln(2)

fγ |r(γ)dγdr, (6.14)

where fγ |r(γ) is the conditional density function of SINR given that distance betwen user and

transmitting cell is r . In the inner integration in (6.14), we can write conditional pdf using the tail

distribution of SINR in (5.15). Then, we may write:

C =
1

ln(2)

∫ ∞

0
fR(r)

∫ ∞

0
ln(1+γ)d (P (SINR > γ |r)) dr

=
1

ln(2)

∫ ∞

0
fR(r)

∫ ∞

0

P (SINR > γ |r)
1 + γ

dγdr (6.15)

=
1

ln(2)

∫ ∞

0

(∫ ∞

0

P (SINR > γ |r)
1 + γ

fR(r)dr
)

dγ. (6.16)

The second equality of (6.15) is due to change of variables in the inner integration. After changing

the order of integration in third equality, the inner integration reduces to (6.12), and final expression

becomes

τ =
1

ln(2)

∫ ∞

0

P (SINR > γ)

1 + γ
dγ . (6.17)

6.3 Discussion

6.3.1 Verification of Distributions

In Figure 6.3, we explain probabilities analyzed in Sections 6.2.1.1 and (6.2.1.2) for C ∈

{1,2,3}. We assumed that UE can handle a few CPU intensive applications at a time because

of its limited CPU speed. In fact, even one application such as VR can use up CPU cycles of UE.

Extensive simulations are provided and analytical results are computed using (6.5) and (6.9). We

observe that the analytical results nicely match the simulations for all three processing capability

levels. Unlike edge processor, number of applications UE can handle, C, is small for local proces-
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Figure 6.3: (a) Probability that taks is not processed in local CPU within tolerable delay time
and offloaded to edge processor. (b) Delay distribution of tasks that are computed locally for UE
1/λW = 10 1/λu = 50 ms, 1/µl = 40 ms, number of simultaneously processed tasks C ∈ {1,2,3}.

sor due to limited CPU power, which may be entirely exhausted by high processring requirement

of tasks.

6.3.2 Delay Spectral Efficiency Tradeoff

In this part, we discuss the results of spectral efficiency analysis. We employ the same wireless

channel model introduced in Section 5.1. The remaining system parameters are given in Table

6.1. We consider two cases, namely; moderate utilization and high utilization cases. In both cases,

average task arrival period from UE is 100 ms. Mean end-to-end response time from edge server

is 30 ms. Average local task processing period varies from 30 ms to 90 ms. These parameters

corresponds network utilization of 30% and 90% ( i.e. ρuλu
ρcCµf

= {0.3,0.90}) in moderate and high

utilization cases respectively. If all tasks are processed locally, utilization at the queue modeling

local CPU is maximum 90% (i.e. ρuλu
ρcCµl

= 0.90). By choosing these parameters set, we aim to

observe change in spectral efficiency with the delay tolerance.

In Figure 6.4, we observe the spectral efficiency versus delay trade-offs. Tolerable delay is

normalized with end-to-end remote processing delay. We observe that spectral efficiency in low
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Table 6.1: Simulation Parameters

Parameter Value
Small cell density (ρc) 0.0005 m−2

User density (ρu) {0.0005,0.0015} m−2

Task arrival rate (λU) {0.01} ms−1

Mean end-to-end delay (1/µf) 30 ms
Mean local processing time (1/µl) (1/µf) × {1,2,3}
Mean tolerable delay ( 1

λW
)

[
0, 1

µf

]
ms

Path loss exponent (α) 4
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Figure 6.4: Spectral efficiency - delay tradeoff in moderate and high networ utilizations.

utilization is higher than that of high utilization. This is due to UE being more likely to receive

service from a closeby SBS. We observe in both cases that local processing is favorable when

mean local processing time is nearly equal to end-to-end resoponse time ( 1
µl
= 1

µf
). Normally, we

expect that 1
µl
� 1

µf
; however, due to attenuation in mmWave channels, and scarcity of bandwidth

to sustain high speed in 4G channels, end-to-end delay of remote processing may be comparable to

local processing period. In that case, we observe that local processing is a good choice to improves

spectral efficiency of small cell network.
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6.4 Conclusions and Future Work

In this chapter, we shed light into spectral efficiency and delay tradeoff regarding the CPU

intensive applications serviced by edge/fog units. We observed that if the propagation delay is

large, and end to end response time is long, local processing of tasks is favorable to improve

spectral efficiency of small cell networks. On the other hand, if end-to-end delay is small, local

processing with delay tolerance at UE has marginal improvement on spectral efficiency of network.

New protocols that make a dynamic decision between local or remote processing are necessary.

Such protocols can be designed by taking into consideration of the available bandwidth, end-to-

end response time, and traffic load.

Our simulation and analysis give preliminary results on spectral efficiency and delay tradeoff.

Spectral efficiency-delay and energy efficiency-delay tradeoffs can be evaluated by simulations

with deterministic arrival times instead of Poisson arrivals and constant delay tolerance.
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Conclusions

In this thesis we offered several solutions to operate small cell networks in an energy

efficient manner, and analyzed capacity-delay tradeoffs. Our main result is that when the traffic

load is low, delay tolerant traffic of user equipment can be utilized to design energy saving

schemes, and improving spectral efficiency. In dense deployments, simple traffic load based

algorithms can decrease small cell energy consumption significantly. However, it can be further

decreased by optimizing sleep time with respect to traffic load, user and SBS densities.

In Chapter 3, energy-efficient operation of small cells is treated as a Markov chain, which is then

used to analyze the associated energy savings. In particular, a simple delayed access scheme is

introduced for user equipment. Subsequently, the thesis investigates various aspects of delay such

as delay-average power consumption, delay-transmission power relationships.

Chapter 4 introduces a novel and practical traffic load metric for SCN. Statistical properties of the

load metric are extracted by finding its fitting distribution. Then, the load metric is used to design

centralized and distributed energy saving schemes. The performances of these schemes are

evaluated by comparing two benchmark algorithms in low and mid traffic periods.

Chapter 5 analyses the impact of UE’s delayed access on an SCN’s coverage probability and

bitrate. Assuming that the locations of SBSs’ follow a homogeneous Poisson process, coverage

probability and capacity are derived using stochastic geometry methods. The analysis further

allows us to obtain optimal transmission range of UE that maximizes coverage probability with

respect to given delay tolerance.

Chapter 6 investigates delay spectral efficiency trade-off in edge applications. Local processing
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delay is modelled as an M/M/c queue with impatience and statistical properties of the queue such

as distribution and mean of queuing delay, are analyzed. Tasks in the queue that are not processed

within delay budget time are uploaded to edge server. Analysis of the queue allows us to measure

relationship between network utilization and tolerable delay of the task. After network utilization

is obtained, further analysis is made to obtain bitrate; showing the spectral efficiency-delay

tradeoff.
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