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Abstract 

Recharging Rational Number Understanding 

Lauren Kelly Schiller 

 

In 1978, only 24% of 8th grade students in the United States correctly answered whether 

12/13+7/8 was closest to 1, 2, 19, or 21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980). 

In 2014, only 27% of 8th grade students selected the correct answer to the same problem, despite 

the ensuing forty years of effort to improve students’ conceptual understanding (Lortie-Forgues, 

Tian, & Siegler, 2015). This is troubling, given that 5th grade students’ fraction knowledge 

predicts mathematics achievement in secondary school (Siegler et al, 2012) and that achievement 

in math is linked to greater life outcomes (Murnane, Willett, & Levy, 1995). General rational 

number knowledge (fractions, decimals, percentages) has proven problematic for both children 

and adults in the U.S. (Siegler & Lortie-Forgues, 2017). Though there is debate about which type 

of rational number instruction should occur first, it seems it would be beneficial to use an 

integrated approach to numerical development consisting of all rational numbers (Siegler, 

Thompson, & Schneider, 2011). Despite numerous studies on specific types of rational numbers, 

there is limited information about how students translate one rational number notation to another 

(Tian & Siegler, 2018).  

The present study seeks to investigate middle school students’ understanding of the 

relations among fraction, decimal, and percent notations and the influence of a daily, brief 

numerical magnitude translation intervention on fraction arithmetic estimation. Specifically, it 

explores the benefits of Simultaneous presentation of fraction, decimal, and percent 

equivalencies on number lines versus Sequential presentation of fractions, decimals, and 



 
 

percentages on number lines. It further explores whether rational number review using either 

Simultaneous or Sequential representation of numerical magnitude is more beneficial for 

improving fraction arithmetic estimation than Rote practice with fraction arithmetic. Finally, it 

seeks to make a scholarly contribution to the field in an attempt to understand students’ 

conceptions of the relations among fractions, decimals, and percentages as predictors of 

estimation ability.  

Chapter 1 outlines the background that motivates this dissertation and the theories of 

numerical development that provide the framework for this dissertation. In particular, many 

middle school students exhibit difficulties connecting magnitude and space with rational 

numbers, resulting in implausible errors (e.g., 12/13+7/8=1, 19, or 21, 87% of 10>10, 

6+0.32=0.38). An integrated approach to numerical development suggests students’ difficulty in 

rational number understanding stems from how students incorporate rational numbers into their 

numerical development (Siegler, Thompson, & Schneider, 2011). In this view, students must 

make accommodations in their whole number schemes when encountering fractions, such that 

they appropriately incorporate fractions into their mental number line. Thus, Chapter 1 highlights 

number line interventions that have proven helpful for improving understanding of fractions, 

decimals, and percentages.  

In Chapter 2, I hypothesize that current instructional practices leave middle school 

students with limited understanding of the relations among rational numbers and promote 

impulsive calculation, the act of taking action with digits without considering the magnitudes 

before or after calculation. Students who impulsively calculate are more likely to render 

implausible answers on problems such as estimating 12/13+7/8 as they do not think about the 

magnitudes (12/13 is about equal to one and 7/8 is about equal to one) before deciding on a 



 
 

calculation strategy, and they do not stop to judge the reasonableness of an answer relative to an 

estimate after performing the calculation. I hypothesize that impulsive calculation likely stems 

from separate, sequential instructional approaches that do not provide students with the 

appropriate desirable difficulties (Bjork & Bjork, 2011) to solidify their understanding of 

individual notations and their relations.  

Additionally, in Chapter 2, I hypothesize that many middle school students are unable to 

view equivalent rational numbers as being equivalent. This hypothesis is based on the 

documented tendency of many students to focus on the operational rather than relational view of 

equivalence (McNeil et al., 2006). In other words, students typically focus on the equal sign as 

signal to perform an operation and provide an answer (e.g., 3+4=7) rather than the equal sign as 

a relational indicator (e.g., 3+4=2+5). Moreover, this hypothesis is based on the documented 

whole number bias exhibited by over a quarter of students in 8th grade, such that students 

perceived equivalent fractions with larger parts as larger than those with smaller parts 

(Braithwaite & Siegler, 2018b). If middle school students are unable to perceive equivalent 

values within the same notation as equivalent in size, it seems probable that they might also 

struggle perceiving equivalent rational numbers as equivalent across notations. This is especially 

true in light of evidence that many teachers often do not use equal signs to describe equivalent 

values expressed as fractions, decimals, and percentages (Muzheve & Capraro, 2012). Chapter 2 

underscores the importance of highlighting the connections among notations by discussing the 

pivotal role of notation connections in prior research (Moss & Case, 1999) and the benefit of 

interleaved practice in math (Rohrer & Taylor, 2007). Finally, I propose a plan for improving 

students’ understanding of rational numbers through linking notations with number line 



 
 

instruction, as an integrated theory of numerical development (Siegler et al, 2011) suggests that 

all rational numbers are incorporated into one’s mental number line.  

Chapter 3 details two experiments that yielded empirical evidence consistent with the 

hypotheses that students do not perceive equivalent rational numbers as equivalent in size and 

that this lack of integrated number sense influences estimation ability. The findings identify a 

discrepancy in performance in magnitude comparison across different rational number notations, 

in which students were more accurate when presented with problems where percentages were 

larger than fractions and decimals than when they were presented with problems where 

percentages were smaller than fractions and decimals. Superficially, this finding of a 

percentages-are-larger bias suggests students have a bias towards perceiving percentages as 

larger than fractions and decimals; however, it appears this interpretation is not true on all tasks. 

If students always perceive percentages as larger than fractions and decimals, then their 

placement of percentages on the number line should be larger than the equivalent fractions or 

decimals. However, this was not the case. The experiments revealed that students’ number line 

estimation was most accurate for percentages rather than the equivalent fraction and decimal 

values, demonstrating that students who are influenced by the percentages-are-larger bias are 

most likely not integrating understanding of fractions, decimals, and percentages on a single 

mental number line. Furthermore, empirical evidence provided support for the theory of 

impulsive calculation defined earlier, such that many students perform worse when presented 

with distracting information (“lures”) meant to elicit the use of flawed calculation strategies than 

in situations without such lures. Importantly, integrated number sense, as measured by the 

composite score of all cross-notation magnitude comparison trials, was shown to be an important 

predictor of estimation ability in the presence of distracting information on number lines and 



 
 

fraction arithmetic estimation tasks, often above and beyond number line estimation ability and 

general math ability.  

The experiments reported in Chapter 3 also evaluated whether Simultaneous, integrated 

instruction of all notations improved integration of rational number notations more than 

Sequential instruction of the three notations or a control condition with Rote practice in fraction 

arithmetic. The experiments also evaluated whether the instructional condition influenced 

fraction arithmetic estimation ability. The findings supported the hypothesis that a Simultaneous 

approach to reviewing rational numbers provides greater benefit for improving integrated 

number sense, as measured by more improvement in the composite score of magnitude 

comparison across notations. However, there was no difference among conditions in fraction 

arithmetic estimation ability at posttest. The experiments point to potential areas for 

improvement in future work, which are described subsequently.  

Chapter 4 attempts to explore further students’ understanding of the relations among 

notations. For this analysis, a number of data sources were examined, including student 

performance on assessments, interview data, analysis of student work, and classroom 

observations. Three themes emerged: (1) students are employing a flawed translation strategy, 

where students concatenate digits from the numerator and denominator to translate the fraction to 

a decimal such that a/b=0.ab (e.g., 3/5=0.35). (2) percentages can serve as a useful tool for 

students to judge magnitude, and (3) students equate math with calculation rather than estimation 

(e.g., in response to being asked to estimate addition of fractions answers, a student responded, “I 

can’t do math, right?”). Moreover, case studies investigated the differential effect of condition 

(Simultaneous, Sequential, or Control) on students’ strategy use. The findings suggest that the 

Simultaneous approach facilitated a more developed schema for magnitude, which is crucial 



 
 

given that a student’s degree of mathematical understanding is determined by the strength and 

accuracy of connections among related concepts (Hiebert & Carpenter, 1992). 

 Chapter 5 concludes the dissertation by discussing the contributions of this work, avenues 

for future research, and educational implications. Ultimately, this dissertation advances the field 

of numerical cognition in three important ways: (1) by documenting a newly discovered bias of 

middle school students perceiving percentages as larger than fractions and decimals in 

magnitude comparisons across notations and positing that a lack of integrating notations on the 

same mental number line is a likely mechanism for this bias; (2) by demonstrating that students 

exhibit impulsive calculation, as measured by the difference in performance between situations 

where students are presented with distracting information (“lures”) meant to elicit the use of 

flawed calculation strategies and situations that do not involve lures; and (3) by finding that 

integrated number sense, as measured by the composite score for magnitude comparison across 

notations, is a unique predictor of estimation ability, often above and beyond general 

mathematical ability and number line estimation. In particular, students with higher integrated 

number sense are more than twice as likely to correctly answer the aforementioned 12/13+7/8 

estimation problem than their peers with the same number line estimation ability and general 

math ability. This finding suggests that integrated number sense is an important inhibitor for 

impulsive calculation, above estimation ability for individual fractions and a general 

standardized test of math achievement. Finally, this dissertation advances the field of 

mathematics education by suggesting instruction that connects equivalent values with varied 

notations might provide superior benefits over a sequential approach to teaching rational 

numbers. At a minimum, this dissertation suggests that more careful attention must be paid to 

relating rational number notations. Future work might examine the origins of impulsive 



 
 

calculation and the observed percentages-are-larger bias. Future research might also examine 

whether integrated number sense is predictive of estimation ability beyond general number sense 

within notations. From these investigations, it might be possible to design a more impactful 

intervention to improve rational number outcomes.  
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Chapter 1: Overview 

1.1 The Problem 

Many students are unable to see the implausibility of results such as 12/13+7/8=19/21 

(Gelman, 1991; Stafylidou & Vosniadou, 2004; Hecht & Vagi, 2010; Ni & Zhou, 2005). 

Students using simple estimation strategies should determine that the sum of two fractions that 

are each close to one (e.g., 12/13 + 7/8) yields a result of approximately two, not less than one. 

Errors on simple estimation tasks are problematic and commonplace. In 1978, only 24% of 8th 

grade students in the United States correctly answered whether 12/13+7/8 was closest to 1, 2, 19, 

or 21 (Carpenter et al., 1980). In 2014, only 27% of 8th grade students selected the correct answer 

to the same problem despite the ensuing forty years of effort to improve students’ conceptual 

understanding (Lortie-Forgues et al., 2015).  

Students make similar implausible errors with decimals and percentages. For example, 

43% of 5th grade students aligned the rightmost digit of addends to calculate 6 + 0.32= 0.38 

(Hiebert & Wearne, 1985). Again, simple estimation dictates that adding six and a number less 

than one would give a result that was slightly more than six, not less than one. Moreover, in a 

more recent study, the issue with decimal point alignment accounted for about half of the errors 

with decimal addition and subtraction for Australian middle school students (Lai & Murray, 

2014). Though the decimal point alignment problem diminishes with age, it persists at least into 

the high school years (Hiebert & Wearne, 1986).  

While less is known about the understanding of percentages (Tian & Siegler, 2018), 

estimations of percent cause difficulty for many students. Only 45% of 7th and 8th grade students 

correctly answered that 87% of 10 was less than 10 (Gay & Aichele, 1997). Additionally, only 
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69% of 11th grade students and 37% of 7th grade students indicated that 76% of 20 would be less 

than 20 in a multiple-choice question (Kouba et al., 1988).  

The struggles described in the preceding paragraphs reflect a lack of number sense. They 

are especially troubling because rational number understanding is linked to greater math 

outcomes. In particular, one’s ability to compute fractions is related to advanced mathematical 

outcomes even after controlling for several other cognitive abilities (Siegler, Duncan, Davis-

Kean, Duckworth, Claessens, Engel, Susperreguy, & Chen, 2012). A study of 6th and 8th graders 

demonstrated that fraction magnitude representations are important for understanding 

mathematics achievement scores, apart from fraction arithmetic fluency, when examining 

fraction magnitude knowledge, number line estimation, fraction arithmetic proficiency, and 

school mathematics achievement (Siegler et al., 2011). Additionally, computational estimation 

skills relate to math performance (Hanson & Hogan, 2000). Because math achievement is linked 

to greater life outcomes (Murnane, Willett, & Levy, 1995), and because rational numbers are 

essential for the workplace (Handel, 2016), this lack of number sense warrants attention. 

On a fundamental level, the errors described point to a disconnect between magnitude 

and space, as students struggle with understanding the direction of effects for operations with 

rational numbers. Specifically, many children struggle allocating attention to the magnitude of 

rational numbers, resulting in estimations with implausible results. As such, it is vital to 

understand how children incorporate conceptions of rational numbers in their numerical 

development and whether they can build a mental number line that includes all rational numbers.  

1.2 Theories of Numerical Development 

Numerical development is a complex cognitive process. Young human infants possess 

crude quantitative estimation ability (Dehaene, 2011; Xu & Arriaga, 2007); exact representations 
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of number are thought to be developed from an infant’s crude estimation ability as a 

consequence of culture (Piazza, Pica, Izard, Spelke, & Dehaene, 2013), with language playing a 

primary role in number development. While an intuitive sense of number is present at birth, 

children must gradually acquire a connection between number words and numerosity (Wynn, 

1992). During the first few years of life, children gradually understand “one” represents a 

quantity corresponding to one object, two represents two objects, and three represents three 

objects. Once a child understands four objects, they comprehend that any number refers to the 

quantity of the set. Thus, it seems children construct an understanding of whole numbers in 

succession, as if they are gradually building a mental number line.  

Consistent with this theory, mathematical cognition research suggests that whole number 

quantities are represented on a mental number line (Dehaene, 2011). Classic evidence for the 

mental number line hypothesis includes the spatial numerical association of response codes 

(SNARC) effect (Dehaene, Bossini, & Giraux, 1993) and the distance effect (Moyer & 

Landauer, 1967). The SNARC effect suggests small numbers are associated with the left side of 

space and larger numbers are associated with the right side of space. The result that individuals 

are quicker at indicating a small number with their left hand and a large number with their right 

hand than vice versa provides evidence of the SNARC effect (Dehaene et al., 1993). This link 

between number and space contributes to the hypothesis that people represent numerosity on a 

mental number line (Dehaene et al., 1993). Similarly, there exists a numerical distance effect, 

such that people are quicker and more accurate at comparing the magnitude of quantities when 

the ratio between the two numbers is larger (Moyer & Landauer, 1967). The numerical distance 

effect is present in the processing of both symbolic and non-symbolic quantities, as demonstrated 

by numerous behavioral studies.  
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If a mental number line must be constructed for whole numbers, it seems logical that 

children must also construct a mental number line that includes all rational numbers. However, 

the process of constructing a mental number line that includes fractions, decimals, and 

percentages is not as straightforward as whole numbers. Research has indicated that preschool 

children as young as three years old can calculate sums of fractions in a nonverbal task in a 

similar way to calculating nonverbal whole number sums (Mix, Levine, & Huttenlocher, 1999) 

and that students have rich knowledge of fractions outside of formalized school (Mack, 1990); 

however, it is not entirely clear how children incorporate rational numbers into their overall 

numerical development.  

One theory of numerical development suggests that an understanding of whole numbers 

interferes with learning of fractions, decimals, and percentages. For example, Hartnett and 

Gelman (1999) argue that fraction learning is hindered by an understanding of counting numbers, 

such that each number has a unique successor. They claim that because understanding of 

fractions is not consistent with counting principles, fractional representations are often 

misinterpreted in young children and that new conceptual structures need to be fostered (Hartnett 

& Gelman, 1999). Additionally, other researchers insist that there is a whole number bias which 

interferes with learning of fractions (Ni & Zhou, 2005; Stafylidou & Vosniadou, 2006). 

According to Ni and Zhou (2005), “the whole number bias thus refers to a robust tendency to use 

the single-unit counting scheme to interpret instructional data on fractions” (p. 28). This view of 

numerical development privileges whole numbers and suggests that the learning of whole 

numbers hinders the development of fraction understanding. For example, students might 

misapply knowledge of whole numbers by stating that 1/4 is larger when comparing fractions 

such as 1/3 and 1/4 because 4 is larger than 3, adding across numerators/denominators such as 
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computing 1/2 + 1/3 = 2/5, counting non-congruent parts in a shape and naming it as a specific 

fraction, and failing to conceive of numbers as being between 0 and 1 (Ni & Zhou, 2005). 

Another important area to consider in this theory of whole number bias is the relation between 

language and mathematical notation. Ni and Zhou (2005) argue that children’s difficulty with 

fraction symbols is “not merely a matter of not mastering the notations but it has more to do with 

the internal processes of conceptual restructuring” (Ni & Zhou, 2005, p. 47). In other words, in 

trying to conceptualize manipulation of various representations of fractions, children must begin 

to restructure their cognitive system by conceptualizing fractions as continuous quantities. 

On the other hand, a competing theory of numerical development suggests that there 

exists an integrated approach to acquisition of the concept of number across all rational numbers. 

For example, Case  and Okamoto (1996) proposed that the mental number line possibly includes 

whole numbers and rational numbers. In their view, children develop a counting schema with a 

motor routine and verbal tags. Children then map this routine onto conceptual categories and 

finally they are able to apply a newly “integrated structure, recursively, to the new numerical 

symbols they have acquired” (Case et al., 1996, p. 57). Additionally, Steffe (2001) proposed a 

reorganization hypothesis, suggesting that whole numbers do not hinder children’s 

understanding of fractions but that children must make accommodations in their whole number 

schemes when they encounter fractions. Similarly, Siegler and colleagues (2011) posit that the 

mental number line model has proven useful for understanding children’s concept of whole 

number but that this can also extend to understanding of fractions. They further suggest that an 

“integrated theory promises to broaden and deepen our understanding of numerical 

development” (Siegler et al., 2011, p. 292). As opposed to “whole number bias” claims which 

stipulate that whole numbers interfere with learning about fractions (Ni & Zhou, 2005), Siegler 
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and colleagues (2011) argue that difficulty in understanding fractions “stems from drawing 

inaccurate analogies to whole numbers rather than from drawing analogies between whole 

numbers and fractions per se” (p. 291). Properties of whole numbers such as having “unique 

successors, can be represented by a single symbol, are countable, never decrease with 

multiplication, never increase with division, and so on” do not apply to fractions (Siegler, Fazio, 

Bailey, & Zhou, 2013, p. 13). Therefore, it is beneficial to encourage children to draw correct 

analogies to whole numbers by teaching them that like whole numbers, “fractions can express a 

proportion of another number (3/5:1 ::  60:100 ::  60% of 100) or that fractions, like whole 

numbers, can provide absolute measures of quantity ( 6 in. = ½ foot = 1/6 yard)” (Siegler et al., 

2011, p. 291). Moreover, a critical assumption of the integrated theory of numerical development 

is that fraction magnitude understanding is vital for overall mathematics learning; therefore, 

rational numbers play a central role in numerical development, and theories that diminish their 

central role are “unnecessarily truncated” (Siegler et al., 2013, p. 13). Thus, “generating a mature 

understanding of rational numbers requires understanding both the one property that all rational 

numbers share-- that they have magnitudes that can be located and ordered on number lines—

and understanding that other properties that unite whole numbers do not unite rational numbers” 

(Torbeyns, Schneider, Xin, & Siegler, 2015, p. 3).  

Results from magnitude comparison across notations lend support to this theory of 

integrated numerical development. Hurst and Cordes (2016) demonstrated  that adults’ 

performance reveals ratio effects across notations (i.e., decimal compared to fractions, decimal 

compared to whole numbers, and whole numbers compared to fractions), which extended a line 

of previous research demonstrating significant response time ratio effects within notations (e.g., 

Moyer & Landauer, 1967; Meert, Gregoire, & Noel, 2010; DeWolf, Grounds, Bassok, & 
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Holyoak, 2014; Schneider & Siegler, 2010). Moreover, Hurst and Cordes (2016) found no 

evidence of biases, such as whole numbers being judged as larger than fractions, as response 

times, were similar whether the larger value was in fraction or whole number form. Hurst and 

Cordes (2016) argued that these results provided compelling support for an integrated sense of 

number, where all notations are represented on an integrated continuum. Moreover, eye-tracking 

data revealed longer fixation on more difficult trials, where the ratio between values being 

compared was smaller and thus more difficult. Taken together, behavioral and eye-tracking data 

on adult performance with comparison across notations (whole numbers, fractions, and decimals) 

suggested that adults represent these values on an integrated continuum, independent of notation. 

Given Siegler and colleagues’ (2011) theory of integrated numerical development, it seems 

likely that the mental number line encompasses all rational numbers, including fractions, 

decimals, and percentages. However, to my knowledge, there have been no studies examining 

magnitude comparison across fractions, decimals, and percentages, and very little is known 

about individuals’ understanding of percentages (Tian & Siegler, 2018).  

1.3 Difficulties with Rational Numbers 

Many children across different countries struggle with rational numbers, yet they are 

universally crucial for mathematics achievement (Torbeyns et al., 2014). Given that depth of 

understanding is associated with connections among related concepts (Hiebert & Carpenter, 

1992), it is essential to consider students’ difficulties with fractions and related forms (decimals 

and percentages) given the pivotal role of fraction magnitude knowledge in overall mathematics 

achievement.  

Siegler and Lortie-Forgues (2017) distinguish between two main sources of difficulty 

with rational numbers: inherent and culturally contingent sources of difficulty. According to 
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Siegler and Lortie-Forgues (2017), inherent sources of difficulty are universal and would be 

present regardless of the educational system, whereas, culturally contingent sources of difficulty 

are ones that involve instruction or learners’ prior knowledge.  

Inherent sources of difficulty include understanding that there is an infinite number of 

other numbers between any two rational numbers, there is an infinite number of ways to express 

any rational number (e.g., 3/5, 6/10, 36/60), and that longer trains of digits for whole numbers 

suggests a larger number but this is not the case for decimals (e.g., 0.123 versus 0.5) (Nesher & 

Peled, 1986; Resnick et al., 1989). Beyond the longer-train-of-digits-whole-number 

misconception, many children have difficulty with the role of 0 (Durkin & Rittle-Johnson, 2015). 

For example, students ignore the value of 0 to the right of the decimal point and treat the next 

non-zero digit as being in the tenths place (e.g., .08 would be treated as 0.8). As in the case of 

whole numbers, students might reason that putting a zero at the rightmost end of a train of 

decimal digits makes the magnitude larger (e.g., that .430 is larger than .43). Furthermore, the 

close relation between fractions and decimals might promote the fraction misconception with 

decimals (Resnick et al., 1989). Students exhibiting the fraction misconception inappropriately 

import knowledge of fractions to decimal magnitude judgment, where students might reason that 

a decimal number that has a digit in the thousandths place is smaller than a decimal number that 

has digits in the tenths place (e.g., 0.893 is less than .4 because thousandths are less than tenths). 

Additionally, relations between rational and whole number arithmetic are complex. For example, 

adding/subtracting fractions requires that the denominator remain unchanged provided there is a 

common denominator as in 3/5+4/5=7/5, but multiplication requires that multiplication is applied 

independently to the numerators and denominators as in 3/5*4/5=12/25. These complex relations 

often cause procedural problems such as adding numerators and denominators.  
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Moreover, the variety of interpretations for rational numbers themselves can cause 

difficulty (Behr, Lesh, Post, & Silver, 1983). According to Kieren (1976), rational numbers can 

be interpreted as different subconstructs: part-to-whole comparison, decimal, ratio, indicated 

division (quotient), operator, and measure of continuous quantities. Similarly, the essential 

feature of percentages in daily life centers around understanding the quantitative relationship 

between a part and a whole, expressed by the equation percentage = part/whole, which can be 

written as part= percentage x whole or whole= part/percentage, can be problematic due to the 

relational nature of equivalency (McNeil et al, 2006). Moreover, while much less is known about 

the understanding of percentages, we might be taking for granted that students understand the 

absolute magnitude of percentages. Ginsburg, Gal, and Schuh, (1995) discussed how adult 

learners who could justify their use of 100% as representing a whole were more likely to answer 

questions related to this quantitative relationship. Students also displayed more difficulty with 

computations when they could not justify that percent means part out of 100 (Lembke & Reys, 

1994). 

 Culturally contingent sources of difficulty include teacher knowledge, textbooks, and 

language (Siegler & Lortie-Forgues, 2017). For example, teachers in the US and Canada show 

strikingly weak conceptual understanding of rational number multiplication and division, and 

this is problematic because lack of general knowledge is related to poor understanding of how to 

teach these topics (Depaepe et al., 2015). Moreover, math textbook content has been shown to 

influence student learning, but students are often receiving less examples of more difficult 

problems (Braithwaite, Pyke, & Siegler, 2017). For example, Korean textbooks present far more 

fraction division than fraction multiplication problems, as compared to US textbooks, which did 

the opposite (Son & Senk, 2010). Beyond types of problems, there is an overemphasis on 
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instruction involving the rote procedure of inverting-and-multiplying in US textbooks, with little 

focus on understanding the meaning of division of fractions (Son & Senk, 2010; Ma, 1999).  

Language might also play a role in sources of difficulty, as teaching US children English 

versions of Korean fractional expressions which highlight the relational meaning of fractions was 

associated with increased performance (Paik & Mix, 2003). On that note, teachers often use 

inappropriate and mathematically inaccurate language when teaching about translation between 

rational numbers that could actually instill misconceptions or encourage a treatment of fractions 

as whole numbers (e.g., “north” or “nanny” to describe the numerator or “getting rid of the 

decimal” to write a decimal as a percent) (Muzheve & Capraro, 2012). Misconceptions might 

also arise from an emphasis on the part-whole interpretations of fractions (Ni & Zhou, 2005). 

While the approach of teaching children that 1/8 can be represented as one part of a pizza cut 

into 8 pieces has value due to its concreteness, this instructional approach does not encourage 

children to think about the fraction as 1/8 of the distance between 0 and 1 on the number line 

(Moseley, Okamoto, & Ishida, 2007). As a result, many elementary and middle school students 

hold misconceptions about fractions, such as not understanding that there are numbers between 0 

and 1 (Ni, 2001; Ni & Zhou, 2005). Similar, misconceptions are observed with decimals 

(Resnick et al., 1989; Durkin & Rittle-Johnson, 2015).   

This trend in US schools is strikingly different from instructional approaches in Japan 

and China that emphasize number line representations of fractions to a greater extent than in the 

US (Moseley et al., 2007). Furthermore, given the evidence of an integrated theory of numerical 

development for whole numbers and fractions (Siegler et al., 2011), it is not surprising that these 

countries also exhibit better understanding of fractions (Moseley et al., 2007). Additionally, pre-

segmented visual models can interfere with students’ abilities to understand fraction magnitude 
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by eliciting counting-based strategies rather than encouraging the use of an intuitive sense of 

number (Boyer, Levine, & Huttenlocher, 2008). Finally, instruction in the realm of percentages 

can “make the students’ concepts of percent less intuitive and more rule-driven, actually 

narrowing rather than expanding the strategies and the computational methods students use when 

working with percents” (Lembke & Reys, 1994, p. 256). 

1.4 Efforts to Improve Rational Number Understanding 

Efforts to improve rational number understanding have demonstrated that the 

measurement (or continuous) approach is more beneficial than a part-whole (or discretized) 

approach for fractions. Utilizing number lines as a visual model for rational numbers has proven 

especially useful. An intervention study aimed at improving at-risk fourth graders’ understanding 

of fractions explored two different approaches to instructional intervention: a measurement 

interpretation of fractions and a part-whole interpretation of fractions (Fuchs et al., 2013). The 

fourth grade students in this study were identified as at risk based on whole number calculation 

skills because they ranked below the 35th percentile prior to the intervention. This study involved 

a 12-week program where the intervention focused on a measurement interpretation of fractions, 

which consisted of “representing, comparing, ordering, and placing fractions on a 0 to 1 number 

line” (Fuchs et al., 2013, p. 687). On the other hand, the instruction of the control condition 

focused on calculation procedures and “part-whole understanding by using shaded regions and 

other manipulatives related to the area model” (Fuchs et al., 2013, p. 687). Post-assessments of 

fraction performance revealed that at-risk students in the intervention group performed better 

than their peers in the control condition. Furthermore, students’ understanding of fractions as 

measure mediated the effects of the intervention suggesting that a measurement interpretation of 

fractions is critical to developing students’ fraction knowledge. Finally, the study demonstrated 
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that a focus on fractions as measure narrowed the gap between at-risk and low-risk students; 

whereas, the control condition did not have the same effect in narrowing this gap. Many other 

studies have demonstrated the benefit of number lines to improve rational number understanding 

(e.g., Fuchs et al., 2014; Psycharis, Latsi, Kynigos, & others, 2007; Davydov & Tsvetkovich, 

1991; Fazio, Kennedy, & Siegler, 2016 ). Furthermore, studies comparing visual models have 

demonstrated an advantage of number lines over circular models or no model (Hamdan & 

Gunderson, 2017). Finally, instruction using the number line has been shown to improve 

students’ abilities performing operations with fractions (Sidney, Thompson, & Rivera, 2019). 

The benefit of the number line approach to improving number sense is not limited to 

fractions. Rittle-Johnson, Siegler, and Alibali (2001) demonstrated the benefit of utilizing 

number lines for improving both procedural and conceptual aspects of decimal knowledge. 

Moreover, number lines are a useful tool to counteract common misconceptions about decimals 

(Durkin & Rittle-Johnson, 2012); however, it should be noted that as whole number 

misconceptions diminished (e.g., longer decimal train signifies larger magnitude), a new 

misconception sometimes replaced the old one. Specifically, as students began to pay attention to 

the fractional component of the decimals, they noticed that the hundredth place value signified a 

smaller fractional part than the tenths place for example and this would lead them to incorrectly 

judge .84 as less than .3 because hundredths are smaller parts than tenths. Thus, it is important to 

monitor misconceptions and utilize number lines to guide students away from these flawed ideas 

that sometimes arise from interventions. 

While there is limited information about percentages, it seems plausible that number lines 

might also be a useful tool for this rational number notation, given its success with fractions and 

decimals. Moreover, a novel curriculum utilizing percentages as an entry into learning about 
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rational numbers and an emphasis on a measurement approach underscored the importance of 

number lines across notations (Moss & Case, 1999). I will discuss more about this pivotal study 

subsequently. However, it is important to note that all notations can be placed on the number line 

and equivalent values can be expressed in any form: fraction, decimal, and percentage. 

Ultimately, it appears that number lines provide a powerful tool for eliciting understanding of 

magnitude for rational numbers. 
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Chapter 2: Solidifying an Integrated Sense of Number 

The following sections discuss my theory that current instructional practices leave middle 

school students with limited understanding of the relations among rational numbers and promote 

impulsive calculation, the act of taking action with digits without considering the magnitudes 

before or after calculation. Students who impulsively calculate are more likely to render 

implausible answers on problems such as estimating 12/13+7/8 as they do not think about the 

magnitudes (12/13 is about equal to one and 7/8 is about equal to one) before deciding on a 

calculation strategy, and they do not stop to judge the reasonableness of an answer with an 

estimate after performing the calculation. I hypothesize that impulsive calculation likely stems 

from separate, sequential instructional approaches to instruction with different rational number 

notations that do not provide students with the appropriate desirable difficulties (Bjork & Bjork, 

2011) needed to solidify their understanding of individual notations and their relations.  

Additionally, this chapter describes the inability of many middle school students to view 

equivalent rational numbers as being equivalent in size. This idea is based on the documented 

tendency of many students to focus on the operational rather than relational view of equivalence 

(McNeil et al., 2006). In other words, students typically focus on the equal sign as signal to 

perform an operation and provide an answer (e.g., 3+4=7) rather than the equal sign as a 

relational indicator (e.g., 3+4=2+5). Moreover, this idea is based on the documented whole 

number bias exhibited by over a quarter of students in 8th grade, such that students perceived 

equivalent fractions with larger parts as larger than those with smaller parts (Braithwaite & 

Siegler, 2018b). If middle school students are unable to perceive equivalent values within the 

same notation as equivalent in size, it seems probable that they might also struggle perceiving 

equivalent rational numbers as equivalent across notations. This is especially true in light of 
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evidence that many teachers often do not use equal signs to describe equivalent fraction, decimal, 

and percent values (Muzheve & Capraro, 2012). Thus, Chapter 2 underscores the importance of 

highlighting the connections among notations by discussing the pivotal role of notation 

connections in prior research (Moss & Case, 1999) and the benefit of interleaved practice in 

math (Rohrer & Taylor, 2007). Finally, I propose a plan for improving students’ understanding 

of rational numbers through linking notations with number line instruction, as the integrated 

theory of numerical development (Siegler et al, 2011) suggests that all rational numbers are 

incorporated into one’s mental number line.  

2.1 Potential Reasons for a Lack of an Integrated Sense of Number 

Both children and adults exhibit poor understanding of rational numbers despite clear 

evidence in favor of a number line approach to rational number instruction (Carpenter et al., 

1980; Siegler & Lortie-Forgues, 2017). Moreover, on the 2017 NAEP, only 27% of 8th grade 

students were correct in identifying point A, B, and the midpoint between the two points for the 

figure below (Figure 1). Obviously, a disconnect between magnitude and space still exists 

despite educational research demonstrating the importance of a number line approach. 

 
Figure 1: Assessment item from the NAEP (2017) for 8th grade students in math. 

Yet, if many students struggle at understanding rational numbers, why do the vast 

majority of children across the United States pass math class? Perhaps, the very nature of how 

rational numbers are taught in isolation yields evidence of performance versus learning 

(Soderstrom & Bjork, 2015). In other words, instruction may alter student performance, 
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producing “temporary fluctuations in behavior or knowledge that can be observed and measured 

during or immediately after the acquisition process” (Soderstrom & Bjork, 2015, p. 176). 

However, these fluctuations in behavior or knowledge may not be those that reflect learning, or 

“the relatively permanent changes […] that support long-term retention and transfer” 

(Soderstrom & Bjork, 2015, p. 176). Typical rational number instruction covers fractions, 

decimals, and percentages in sequence (Common Core State Standards Initiative, 2010). 

Therefore, immediately after a unit on each topic students might exhibit correct performance on 

each topic but not conceptual understanding that is the type that supports long-term retention. 

Thus, students might exhibit understanding of fractions that often does not emphasize fraction 

magnitude but rather a part-whole interpretation of fractions (Moseley et al, 2007). Students 

might also demonstrate a basic understanding of decimals but likely rife with misconceptions 

(Resnick et al., 1989). Finally, students may be able to perform operations with percentages but 

exhibit a problematic understanding of percentages (Gay & Aichele, 1997). Ultimately, students 

may be able to perform operations with rational numbers without learning the individual 

notations themselves, much less their interconnections (Vamvakoussi & Vosniadou, 2010). 

Moreover, the translation between the notations is likely taught via rote memorization rather than 

as a meaningful cognitive activity (Wang & Siegler, 2013).  

Therefore, when students are presented with a task that presents misleading information, 

such as partitions that do not match the location of the sought after midpoint in Figure 1, student 

performance is easily manipulated by the type of assessment. Similarly, in Siegler and 

Thompson (2014), the relationship between mathematics achievement and fraction knowledge is 

lowered when children are met with potentially distracting partitions on number lines. The 

finding that student performance is easily manipulated with potentially distracting information 
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provides evidence that students likely do not have a good sense of magnitude. In other words, 

immediately after a chapter on fraction addition, students will perform the operation reasonably 

well. Still, after some time and, perhaps after being taught several other operations that might 

cause confusion, students exhibit behaviors that contradict reason, such as estimating that adding 

12/13+7/8= 19 or 21 or 19/21. In this case, students may exhibit incremental changes in 

performance but not the relatively permanent changes involved in learning, which are necessary 

for long-term retention and transfer (Soderstrom & Bjork, 2015). Thus, students are passed to the 

next grade, where teachers of older grades gripe about students still not understanding fractions 

after it has been taught since 3rd and 4th grade (Hoffer et al., 2007). 

While researchers debate about which notation is the best to initiate instruction to 

improve conceptual understanding (see Tian & Siegler, 2018 for a review), perhaps we are 

debating the wrong issue. Because procedural and conceptual knowledge have been shown to 

develop iteratively (Rittle-Johnson et al, 2001), translation between notations and conceptual 

understanding of each individual notation are likely to develop iteratively. In this vein, Moss & 

Case (1999) demonstrated that an experimental curriculum aimed at highlighting connections 

among the notations brought deeper conceptual understanding of rational numbers. In this 

experiment, the fourth-grade students in the treatment condition received intensive training on 

understanding continuous quantity, measurement, and equivalence among different 

representations (fractions, decimals, percentages) of rational numbers. The authors believe that 

deeper understanding of fractions was achieved by attempting “to move the children beyond the 

understanding of any single form of rational number representation toward a deeper 

understanding of the rational number system as a whole” (Moss & Case, 1999, p. 142). This 

echoes other work, which suggests that depth of understanding is indicated by the strength of 
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connections among related concepts (Hiebert & Carpenter, 1992. Furthermore, Moss and Case 

(1999) argue that starting with percentages and decimals before fractions enabled students to 

build on whole number knowledge in conceptualizing the rational number system in an intuitive 

way. Moreover, Wang and Siegler (2013) demonstrated that improving fraction magnitude 

knowledge can increase fraction understanding and notation translation. Thus, highlighting the 

shared magnitude of the notations can bring about better conceptual understanding of the 

individual notations and the translation process. On that note, teachers need to ensure that they 

are using an equal sign to denote the equivalent relationships between fractions, decimals, and 

percentages, as this can drastically affect students’ use of equal signs and perhaps their 

understanding of equivalence between the notations (Muzheve & Capraro, 2012). Ultimately, it 

seems that instruction that highlights the equivalence of rational numbers in different notations, 

rather than instruction in which the notations are presented separately and sequentially, 

maximizes benefits for students. 

Moreover, sequential instructional approaches do not afford students with desirable 

difficulties that provide an opportunity to fully integrate their conceptions of rational number. 

Research on desirable difficulties in education draws upon research from motor learning; 

decades of research on motor learning have revealed that varied and mixed practice are better for 

overall performance, rather than blocked or fixed practice (for a review see Bjork & Bjork, 

2011). For example, Kerr & Booth (1978) demonstrated that children who practiced tossing a 

bean bag into a target from varied positions (2 feet and 4 feet away) performed better when 

tested at 3 feet away than children who practiced at a fixed position of 3 feet away (the exact 

distance they were tested on). Similar results were observed when children practiced tossing 

bean bags of different weights in an intermixed order rather than blocked by weight (Carson & 
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Wiegand, 1979). Drawing parallels to the field of motor learning, research on desirable 

difficulties in the realm of higher cognitive learning suggests that there is benefit of blocking 

topics and massed practice in the short term but retention is substantially worse (Bjork & Bjork, 

2011; Siegler & Stern, 1998); and yet, that is precisely the approach that is typical in this 

sequential approach to rational numbers. Moreover, Rohrer and Taylor (2007) demonstrated the 

benefits of spaced practice and interleaved topics in the domain of mathematics. One of the most 

striking findings from this study is that the students in the interleaved condition, where topics 

were mixed, appeared to do worse during the practice session than the students of the blocked 

condition that focused on one topic alone. However, when the students were tested later, the 

students in the mixed condition performed better than those in the blocked condition. Possibly, 

this same phenomenon is occurring after children complete separate units of instruction on 

rational numbers through a sequential approach. It might appear that students perform 

sufficiently on the individual notations but when they are tested at a later time they perform 

poorly. By contrast, students perform better when instruction highlights the connections between 

the notations, especially on tasks that provide students with misleading information (Moss & 

Case, 1999). Moreover, while rational numbers are revisited later in the curriculum, perhaps the 

instruction is not targeted at enhancing magnitude representation through varying the notation 

(i.e., students do not have ample opportunity to explore the absolute magnitude of 4/5 as 80% 

and as 0.8).  

Perhaps, this sequential approach to rational number instruction is not so dissimilar from 

the bean bag tossing example from the motor learning research studies mentioned earlier. In 

other words, practice at understanding the magnitude of fractions by themselves is a great start, 

but it might not be enough to provide the variable practice required for retention and transfer 
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(e.g., students might not utilize magnitude understanding to evaluate the implausibility of 

estimates such as 12/13+7/8=19/21). In line with this reasoning, Goode, Geraci, and Roediger 

(2008) demonstrated that practicing variations of a task might lead to better transfer than 

repeated practice of the same task in regards to anagram solutions. In this study, there were three 

conditions: same, varied, and different. The participants in the same condition practiced the same 

word three times and were later tested on that word (e.g., they practiced solving LDOOF three 

times and were tested on LDOOF). Those in the different condition practiced the same word 

three times and were later tested on a different word (e.g., they practiced solving DOLOF three 

times and were tested on LDOOF). The varied practice condition practiced three different 

versions of the word and was tested on a different word (e.g., they practiced solving DOLOF, 

FOLOD, OOFLD and were tested on LDOOF). Similar to the Rohrer & Taylor (2007) study, 

individuals in the repeated practice conditions (i.e., same and different conditions) appeared to be 

quicker at solving the anagrams during the three practice sessions but, at immediate post-testing, 

those in the varied condition solved a significantly greater proportion of anagrams than those in 

either of the repeated practice conditions. Goode and colleagues (2008) posit that the benefit of 

variable practice over repeated practice might be interpreted through the framework of schema 

theory (Schmidt, 1975) and elaborative processing (Battig, 1979; Shea & Zimny, 1983). In other 

words, varying the anagram allows an individual to generate a lexical schema for solving 

anagrams, and greater contextual interference during learning provides a better opportunity for 

elaborative processing, which leads to improved transfer.  

Relatedly, because current instructional approaches do not vary the notation of individual 

magnitudes, students are noticing the wrong aspects about the values. Thus, students make 

inaccurate hypotheses about the size of rational numbers and they have limited resources for 
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checking their hypotheses. By and large, students have not developed an appropriate schema by 

which they can interpret the magnitude of rational numbers; instead, they are paying attention to 

aspects of rational numbers that are superficial, rather than reflecting deep conceptual 

understanding of the structural pattern. Evidence of noticing the wrong aspects of rational 

numbers is apparent in misconceptions about fractions (e.g., Stafylidou & Vosniadou, 2006), 

decimals (e.g., Durkin & Rittle-Johnson, 2012), and percentages (e.g., Gay & Aichele, 1997). 

The critical feature of fractions, decimals, and percentages is their magnitude. Research has 

demonstrated that individuals possess an intuitive sense of approximate fractional magnitude 

(Fazio, Bailey, Thompson, & Siegler, 2014; Matthews & Chesney, 2015). However, the process 

for determining the symbol to magnitude correspondence does not seem so straightforward.  

Children tend to focus on the superficial aspects of rational numbers, rather than making 

meaning of the magnitudes. Research has shown that experts are able to focus on structural 

features of problems, whereas novices focus on superficial features (Chi, Feltovich, & Glaser, 

1981). Similarly, children are novices in the domain of rational numbers, focusing on superficial 

features of rational numbers in an attempt to make meaning of the magnitude or, perhaps because 

of how they were taught, they simply are not trying to make meaning of the magnitude. In other 

words, students see a fraction and they immediately think, “What do I do with this?” rather than 

“How big is this number?” Thus, children tend to think of rational numbers, not as quantities but 

as entities that need to be acted upon.  

Impulsive Calculation 

This tendency to take action with digits without considering the magnitudes before or 

after calculation is what I refer to as impulsive calculation. Students who impulsively calculate 

are more likely to render implausible answers on problems such as estimating 12/13+7/8 as they 
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do not think about the magnitudes (12/13 is about equal to one and 7/8 is about equal to one) 

before deciding on a calculation strategy, and they do not stop to judge the reasonableness of an 

answer with an estimate after performing the calculation. I hypothesize that at least one source of 

impulsive calculation is the separate, sequential instructional approaches in rational number 

instruction. These instructional approaches do not provide students with the appropriate desirable 

difficulties (Bjork & Bjork, 2011) to solidify their understanding of individual notations and their 

relations. Moreover, as I’ll discuss subsequently, impulsive calculation likely stems from 

instruction that has not provided students with ample opportunity to make inferences about the 

patterns observed with the notations themselves.     

Specifically, I argue that this tendency to impulsively calculate rather than map symbols 

onto magnitudes cannot arise solely from inherent difficulties with rational numbers. In other 

words, young children have a great deal of informal understanding of rational numbers (Mack, 

1990) that they could extend, but do not extend it to symbolic operations with the same problems 

(Mack, 1995). For example, a student was able to discuss that 1/8 of a pizza and another 1/8 of a 

pizza was the same as 2/8 of a pizza but yet when it came to the symbolic 1/8+1/8, the child said 

the sum was 2/16 because she imagined it being 1/8 of one pizza and 1/8 of another pizza, thus 2 

of the 16 parts (Mack, 1995). The problem here is that she is focusing on the parts of the symbols 

(i.e., 1 of 8 parts and another 1 of 8 parts is the same as 2 of 16 parts) and not understanding that 

the implicit whole is one. Thus, it should be interpreted as 1/8 of a whole and 1/8 of a whole is 

the same as 2/8 of a whole, which reflects multiplicative rather than additive thinking (Lamon, 

1999). Thus, the understanding of the multiplicative relation is essential, but this understanding 

may be lost when children work with symbols because of the way rational numbers are taught in 

isolation.  
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Though they may have rich intuitive understandings about fractions, children may not 

have enough opportunity to utilize inductive reasoning to make inferences about the patterns 

observed with symbols for rational numbers (e.g., n/6 is going to be smaller than n/5). A study of 

inductive reasoning with function finding for college students demonstrated that successful and 

unsuccessful problem solvers did not differ in the patterns that they observed but that “successful 

participants do not merely compute quantities; they analyze them” (Haverty, Koedinger, Klahr, 

& Alibali, 2000, p. 262). Moreover, successful problem solvers integrate pattern finding and 

hypothesis generation through translating a pattern into symbols (Haverty et al., 2000). Taking it 

a step further in line with what the authors suggest, perhaps early number sense is so intricately 

related to advanced mathematical outcomes because of this intricate link between noticing 

patterns and translation. Thus, an inductive understanding of fractions requires switching back 

and forth between finding a pattern with the digits to generating a hypothesis about magnitude. 

Specifically, understanding of magnitude involves “examination, modification, or manipulation 

of numerical instances for the purpose of understanding the quantity in question” (Haverty et al., 

2000, p. 259).  

In other words, instead of impulsively calculating when students encounter the symbol 

27/30, they should be reasoning that this number is close to 1. They might also pursue the idea 

that they can transform this number into a value that might make it easier for them to evaluate 

the magnitude more effectively. Putting the fraction in lowest terms might help them see that 

9/10 is the same as .9 or 90%, which is in line with their original hypothesis that 27/30 is close to 

1. Though students might initially falter when first encountering rational number symbols by 

focusing on the componential parts, this gradually diminishes from 4th to 8th grade, suggesting 

that perhaps related experiences encountering decimals, percentages, ratios, rates, proportions, 



24 
 

and rational number arithmetic are useful in helping students map magnitudes onto symbols 

(Braithwaite & Siegler, 2018b). Thus, appropriately interpreting the symbols of rational numbers 

involves mapping between non-symbolic intuitive understanding of these numbers and symbols; 

importantly, one is aided in this effort through the act of translation. In other words, individuals 

are able to check their hypothesis about the size of a particular value by weighing it against a 

translation of the value to another form. Fluid understanding of the connections among rational 

number notations equips individuals with tools to better analyze their ideas about magnitude. 

In sum, despite growing evidence of the importance of number lines, there exists a 

disconnect between magnitude and space, as students still struggle understanding the location of 

values on number lines (e.g., 2017 NAEP) and evaluating the direction of effects in regards to 

rational numbers (e.g., 12/13+7/8 cannot equal 19/21). Current instructional approaches 

emphasize the fraction, decimal, percentage sequence (Common Core State Standards Initiative); 

yet, instruction that highlights equivalency among the notations has been shown to provide 

greater benefit (Moss & Case, 1999) because conceptual understanding and translation 

procedures are likely to develop iteratively (Rittle-Johnson et al., 2001). Moreover, this 

sequential approach provides blocked rather than interleaved practice, which research has shown 

allows for better performance in the short-term but does not result in improved long-term 

learning (Rohrer & Taylor, 2007). Relatedly, focusing on one notation individually does not 

provide sufficient varied practice for accessing magnitude representations. Varied practice has 

been shown to be more effective than repeated practice in producing retention and transfer in 

other high-cognitive demand learning activities (Goode et al, 2008). Finally, students often 

notice the wrong aspects of individual notations, as evidenced by their numerous pervasive 

misconceptions (Resnick et al., 1989: Durkin & Rittle-Johnson, 2015; Stafylidou & Vosniadou, 
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2006; Gay & Aichele, 1997). Successful problem solvers translate observed patterns into 

symbols (Haverty et. al, 2000) and better magnitude knowledge is related to translation (Wang & 

Siegler, 2013). Thus, students need to be equipped with a method for translating a pattern they 

observe in one notation into a numeric symbol that helps them generate a hypothesis about 

magnitude. 

2.2 A Theoretical Instructional Plan 

These theories provide a case for implementing instruction that focuses on the relation 

between magnitude and space for all rational numbers to fully integrate understanding of rational 

number. Drawing on the literature on desirable difficulties, the instruction will involve a form of 

interleaved and varied practice, where the instruction will target improving rational number 

understanding over several weeks and will vary the symbolic notation daily. The fundamental 

aspects of instruction will include number lines, will recognize the difficulties that students have 

with concepts of equivalence, will carefully relate individual notations, and will use percentages 

as a strategy for linking rational number notations.  

I propose that number lines are a powerful tool to explicitly draw the connections among 

the magnitudes of equivalent fractions, decimals, and percentages. I argue that instruction should 

guide students to attend to the most important aspect of rational numbers and help them use 

interconnections among the rational number notations as a tool for monitoring their own 

understanding of magnitude. In other words, students should notice that their translation does not 

align with their original intuition when they compare their estimate for a fraction and its 

translation on the number line, such as when students look at  4/5 and then translate the fraction 

as .45 or 45%. The most concrete way for students to notice the connection among rational 

number notations is through the number line (Moss & Case, 1999). The connection between 
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what children are guided to notice and how they learn has been demonstrated with whole 

numbers (McNeil & Alibali, 2005) and fractions (Kellman et al, 2008). As discussed previously, 

number lines have proven quite useful in improving magnitude representation for fractions and 

decimals (e.g., Fuchs et al., 2013; Durkin & Rittle-Johnson, 2015). Moreover, highlighting the 

connection among notations has proven beneficial in bringing about better understanding of the 

rational number system as a whole (Moss & Case, 1999). Thus, simultaneously displaying the 

magnitudes of fractions, decimals, and percentages on number lines would likely bring about 

deeper understanding of the relation among the notations, as students notice that each notation 

occupies the same position on the number line relative to the endpoints.  

This understanding that equivalent values written in different notations occupy the same 

position on the number line is not something that can be taken for granted. This is especially true 

given that Braithwaite and Siegler (2018b) found that at least a quarter of 8th grade students 

estimated equivalent fractions with larger components as larger in size. It is likely that students 

will struggle understanding that equivalent values written in different notations occupy the same 

position on the number line, if students struggle with understanding that equivalent values 

written in the same notation are equivalent in size. Moss (2005) raised this issue when she wrote, 

“textbooks typically treat the notation system as something that is obvious and transparent and 

can simply be given by a definition at a lesson’s outset” (p. 319). Indeed, studies of textbooks 

have revealed differences in the treatment of the concept of equivalence as operational rather 

than relational view (McNeil et al., 2006). In other words, students typically focus on the equal 

sign as signal to perform an operation and provide an answer (e.g., 3+4=7) rather than the equal 

sign as a relational indicator (e.g., 3+4=2+5). This is problematic considering that algebra often 

involves the relational understanding of equivalence (e.g., 5x-2=3x+4). Textbooks emphasize the 
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operational rather than the relational view and student performance mirrors the textbooks’ 

treatment of equivalence (Li et al, 2008). Specifically, Chinese students that receive textbook 

input that stresses the relational nature of the equal sign perform better than US students whose 

instruction emphasizes the operational view of the equal sign (though we cannot take for granted 

other variables, such as culture). Even still, we are seeing that many students tend to only think 

about the equal sign in terms of performing an operation rather than the relational view of 

equivalence possibly due to textbook treatment of these concepts. Importantly, modifications to 

curriculum that emphasize the relational view results in better understanding of the concept of 

equivalence (McNeil, Fyfe, & Dunwiddie, 2015). Moreover, teachers do not use equal signs 

when expressing relationships between equivalent fractions, decimals, and percentages 

(Muzheve & Capraro, 2012). Even with an emphasis towards using multiple representations 

within the domain of fractions (e.g., fraction bars, number lines, and pie charts), it still is not 

entirely clear to students exactly how these representations are related to each other (Murray et 

al., 2015). This is troubling because ultimately we are seeing that children may not understand 

the relation between fractions, decimals, and percentages.  

Therefore, instruction should be aimed at promoting connections to foster depth of 

understanding. Because understanding involves incorporation of concepts into an internal 

network, degree of understanding is determined by the strength and accuracy of connections 

among related concepts (Hiebert & Carpenter, 1992). Students that have a superficial 

understanding of the relation among notations will not have the robust rational number 

understanding that educators desire. It is simply not enough to say that fractions, decimals, and 

percentages are related and expect that students will be able to ‘conceptually transcode’ among 

these different notations (Berch, 2017). For example, students that had weak or limited 
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understanding of place value were unable to conceptually transcode their understanding of place 

value when the task became misleading (Miura & Okamoto, 1989). In this study, children were 

given thirteen cubes, asked to place four in each of the three cups, and leave the remaining cube 

outside the cups. When shown an index card with the number ‘13’ printed on it, children that had 

weak understanding of place value explained that the one cube represented the ‘1’ digit and the 

three cups represented the ‘3’ digit. Similarly, students in Siegler and Thompson (2014) 

exhibited worse performance in the condition where they had to place a fraction on a number line 

that was partitioned and labeled with tenths over the condition where the number line did not 

have such partitions. Thus, superficial understanding on a numerical processing level can result 

in problems with conceptual transcoding among representations. Students need explicit 

instruction that carefully relates the notations especially because “virtually no time is spent in 

relating the various representations- decimals, fractions, percentages- to each other” (Moss, 

2005, p. 320).Furthermore, teachers often do not use equal signs with equivalent rational 

numbers, which may implicitly suggest the values are not equivalent (Muzheve & Capraro, 

2012). Ultimately, fluid understanding of the connections among fractions, decimals and 

percentages could lead to deeper understanding and superior performance (Moss & Case, 1999).  

Consistent with Moss and Case (1999), I suggest that percentages are central to helping 

students notice the relationships among the notations and integrate conceptions of magnitude. As 

such, students will be encouraged to draw upon their intuitions about percentages to inform their 

estimates of magnitude of decimals and fractions and use this knowledge to monitor their 

translation activity and placement of values on the number line. As compared to fractions and 

decimals, percentages are typically used to express relations between a part and a whole rather 

than absolute magnitudes. For example, Tian (2018) noted that textbooks often use addition and 
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subtraction of fractions and decimals (3/4+2/3 and .75 +.67) but rarely include problems 

involving addition of percentages (75% + 67%). However, just because percentages are not 

thought of in daily contexts as absolute magnitudes, does not mean that it is not useful to explore 

them as such. Thus, while percentages are typically described colloquially as a relation between 

part and whole, we can actually think about them as existing on a number line. Anchoring 

concepts of percent to a number line appears almost trivial because it essentially transforms the 

space between 0 and 1, to match a number line with whole numbers from 0 to 100, except the 

labels have a percent sign next to them. So, a number line of percentages essentially becomes a 

number line that taps whole number (or decimal) knowledge. One might argue that this could 

potentially confuse students by encouraging them to draw inappropriate connections between 

whole numbers and rational numbers, but the opposite seems more likely to be true. As discussed 

previously, students who were introduced to rational numbers through exploration of percentages 

first and who then examined how percentages relate to fractions and decimals exhibited greater 

rational number understanding than those who followed the typical fractions first sequence 

(Moss & Case, 1999). Moreover, Siegler and colleagues (2011) found that a common effective 

strategy to estimate a fraction is to translate “the fraction being estimated into a percentage of the 

distance between the two endpoints and then to use the percentage as if it were a whole number 

on a 0-100 number line. […] Improvements in number line estimation accuracy between 6th and 

8th grade seem partially attributable to the 8th graders, but not the 6th graders having been taught 

about percentages” (p. 291). Finally, research suggests that humans have intuitive access to non-

symbolic ratio magnitudes and this might support symbolic knowledge (Matthews & Chesney, 

2015). Clearly, making the connection between percentages and the other rational number 

notations seems both accessible and intuitive for students.  
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Chapter 3: Implementing and Evaluating the Instructional Plan 

3.1 Research Questions  

I seek to understand the current state of middle school students’ understanding of the 

relations among rational number notations and whether it is possible to help students integrate 

these conceptions of individual notations (Siegler et al, 2011) through daily, brief targeted 

instruction. Additionally, I seek to understand whether integrated number sense will support 

students in inhibiting impulsive calculation by helping them focus on magnitude before and after 

calculating. In particular, I seek to answer these questions: What are students’ perceptions about 

the relations among rational number notations? What is the effect of an integrated understanding 

of rational numbers on students’ ability to estimate in the presence of distracting information? 

What effect does Simultaneous versus Sequential instruction of notations have on solidifying 

rational number understanding?  

3.2 Hypotheses  

1) Integrated number sense adds explanatory power to mathematical outcomes:   

a) Middle school students do not perceive equivalent rational numbers as equivalent in size. 

b) Individual differences in integrated number sense predict students’ estimation ability in 

the presence of distraction. 

2) Number line instruction improves integrated number sense:  

a) Rational number review with number lines results in better outcomes than review without 

number lines. 

b) Simultaneous review of notations will improve outcomes, especially tasks that measure 

integrated number sense, more than Sequential review of notations.  
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3.3 Overview of the Project  

Introduction 

I conducted two experiments to investigate these questions. Experiment 1 was a pilot 

(n=43 students) to test instructional and assessment materials and determine whether it would be 

worthwhile to continue the investigation with a larger sample. Experiment 2 was based on 

Experiment 1 with three notable differences: (1) there were small modifications to the 

assessments and instruction based on learning gained from Experiment 1, (2) the sample size was 

substantially larger (n=264 students), and (3) the students’ teachers led the daily instruction as 

opposed to the lead researcher who led all instruction in Experiment 1. I selected 7th and 8th 

grade students for experiment participation for two reasons: (1) percentages are typically not a 

focus of mathematics education until 7th grade (Common Core, 2019), and (2) the experiments’ 

intervention was designed as a review of notations rather than teaching new material. 

Testing of the first hypothesis involved examination of pretest performance. Testing of 

the second hypothesis involved examination of improvement on a number of measures from 

pretest to posttest, with instruction taking place between assessments as designated by each 

class’s assigned condition. The following sections will provide an overview of (1) assessment 

tasks, (2) the instructional conditions, and (3) the rationale for the methodology of testing each 

hypothesis. After the overview, there are detailed sections for each Experiment covering the 

following: (1) the method and design of the experiment, (2) the rationale and procedure of the 

tasks, (3) the design of and procedures for the intervention, and (4) the analysis of the results.  

Overview of Assessment Tasks: 

Five assessment tasks were administered before and after the intervention. Two tasks 

assessed understanding of individual fractions: number line estimation with endpoints 0-1 and 
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number line estimation with endpoints 0-5. Two tasks assessed students’ understanding of 

relations among notations: magnitude comparison across notations and comparison of student 

performance placing equivalent fractions, decimals, and percentages on a decile number line (a 

line partitioned in tenths). One task assessed fraction arithmetic estimation.  

The tasks did not have substantial differences between Experiments 1 and 2 except for 

the fraction arithmetic estimation task, which differed due to an issue with data collection. These 

differences between the two fraction arithmetic tasks will be described in Experiment 2. Other 

tasks had minor changes for Experiment 2 (e.g., different fractions, decimals, and percentages 

presented in the problems) due to learning from Experiment 1. These adjustments are also 

explained in Experiment 2. 

In addition to the tasks, relevant standardized testing data and demographic information 

was obtained from the school districts. These data were combined with the pretest and posttest 

results to build a coherent picture of the results of Experiments 1 and 2.  

Overview of Instructional Conditions: 

The instructional conditions and the instruction were designed to investigate Hypothesis 

2: number line instruction improves integrated number sense. Three instructional conditions were 

developed: the Simultaneous condition, the Sequential condition, and the Control condition 

(Experiment 2 only). Specifically, this dissertation explores the benefits of Simultaneous 

presentation of fraction, decimal, and percent equivalencies on number lines versus Sequential 

presentation of fractions, decimals, and percentages on number lines. In Experiment 2, it further 

explores whether rational number review using either Simultaneous or Sequential representation 

of numerical magnitude is more beneficial for improving fraction arithmetic estimation than the 

Control condition, which involves Rote practice with fraction arithmetic. The instruction was 
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intended to be a brief 5-minute warm-up review activity at the beginning of class spread out over 

three weeks (15 lessons in total).  

 

The Rationale and Methodology for Testing Each Hypothesis  

Hypothesis 1: Integrated number sense adds explanatory power to mathematical outcomes   

The Integrated Theory of Numerical Development (Siegler et al, 2011) demonstrates that 

students’ understanding of fraction magnitudes is an essential part of numerical development. 

Siegler, Thompson, and Schneider (2011) further suggest that future research might explore 

students’ understanding of the relations among fractions, decimals, and percentages. However, to 

my knowledge, no research has explicitly examined the understanding of the relations among 

these notations or the role that understanding of the relations among notations plays in 

mathematical outcomes.  

I theorized that integrated number sense, characterized by understanding of the relations 

among notations, would add unique explanatory power to understanding individual differences in 

mathematical outcomes. This theory was derived from research indicating the importance of 

fraction magnitude representation in numerical development (Siegler et al, 2011) and research 

suggesting that depth of understanding involves making connections among related concepts 

(Hiebert & Carpenter, 1992). Thus, testing of Hypothesis 1 involves investigating whether 

students’ understanding of the relations among fractions, decimals, and percentages is predictive 

of math achievement on standardized tests, beyond the predictive power of fraction magnitude 

representations as found by Siegler, Thompson, and Schneider (2011). Specifically, the current 

study tested whether integrated number sense, as measured by the composite score of magnitude 

comparison across notations, adds unique explanatory power to the model explaining variance in 
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math achievement tests. Furthermore, the dissertation explored whether students struggle 

perceiving equivalent rational numbers as equivalent in size (Hypothesis 1a) and whether 

individual differences in integrated number sense predicts students’ estimation ability in the 

presence of distracting information (Hypothesis 1b).  

Hypothesis 1a:  Students do not perceive equivalent rational numbers as equivalent in size. 

Theoretically, students who do not have an understanding about how the different 

notations (fractions, decimals, and percentages) are related to one another should not perceive 

equivalent rational numbers as equivalent in size. As discussed previously, this hypothesis was 

based on the finding that a substantial number of middle school students did not perceive 

equivalent fractions as equivalent in size (Braithwaite & Siegler, 2018b). Hence, it was probable 

that they might also struggle perceiving equivalent rational numbers as equivalent across 

notations. Thus, it was predicted that students would differ in accuracy when placing equivalent 

fraction, decimal, and percentages on the number line (e.g., 1/19, .052, 5%). Specifically, I 

expected PAE for number line estimation accuracy of equivalent values to be best for 

percentages, followed by decimals, and worst for fractions. This ordering of performance 

accuracy was based on the idea that percentages can be seen as most closely related to whole 

numbers, followed by decimals, and then fractions. Additionally, the aforementioned decile 

number line was used rather than the typical 0-1 number line because I wanted to see whether the 

potentially distracting partitions would encourage students to abandon attention to magnitude. 

For example, students might place 5% at the midpoint because the 5/10 label distracts them.  

For similar reasons, it was also predicted that students would differ in their accuracy for 

magnitude comparison across notations, such that they would likely be more accurate on trials 

where percentages were larger if they were following a heuristic (e.g., percentages are larger). As 
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discussed previously, magnitude comparison has been utilized widely as a measure of magnitude 

representation but there have been no studies to date that have examined magnitude comparison 

across fractions, decimals, and percentages. Studies examining magnitude comparison across 

fractions, decimals, and whole numbers have suggested magnitudes are represented on an 

integrated continuum for adults (Ganor-Stern, 2013; Hurst & Cordes, 2016) and children (Hurst 

& Cordes, 2018). Therefore, I planned to examine accuracies across the six different categories 

of comparison trials (Percent>Fraction, Fraction>Percent, Percent>Decimal, Decimal>Percent, 

Fraction>Decimal, Decimal>Fraction).  

Hypothesis 1b: Individual differences in integrated number sense predict students’ estimation 

ability in the presence of distraction. 

Theoretically, students with integrated number sense would likely not exhibit impulsive 

calculation and students without integrated number sense are more likely to impulsively 

calculate, especially in situations that might elicit flawed calculation strategies. Earlier, I defined 

impulsive calculation as a tendency to take action with digits without considering the magnitudes 

before or after calculation. I reasoned that placing fractions on the decile number line could 

create a distracting situation where students without integrated number sense would estimate 

worse in favor of doing something with the digits in the fractions (i.e., students would exhibit 

impulsive calculation). This phenomenon was observed in Sielger & Thompson (2014), which 

found that number line estimation performance was significantly worse in the decile condition 

than a typical 0-1 number line estimation condition. Siegler & Thompson (2014) suggested the 

task might measure magnitude knowledge and the ability to inhibit potentially distracting 

landmarks.  
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This suggestion led to the development of hypothesis 1b, in which I theorize that 

integrated number sense helps students estimate better, even in the presence of distracting 

information. In other words, students who were distracted on the decile number line task did not 

have a solid sense of magnitude and the type of assessment easily manipulated their 

performance. To test this hypothesis, students placed fractions on both the 0-1 number line and 

the decile number line. Students were expected to perform significantly worse on the decile 

number line than the 0-1 number line, which would replicate findings of Siegler & Thompson 

(2014). Importantly, I hypothesized that integrated number sense, as measured by magnitude 

comparison across notations, would predict performance on the decile number line task (with the 

partitions serving as distracting information). In other words, individual differences in magnitude 

comparison across notations would predict fraction decile number line estimation, even after 

controlling for unlabeled 0-1 number line estimation and math achievement scores.  

Students were also expected to perform worse on estimating fraction arithmetic than their 

performance on estimating individual fractions (0-1 number line estimation). This result would 

replicate the finding of Braithwaite, Tian, & Siegler (2018), who found that students’ PAE was 

substantially worse for estimating the sums of fractions than individual fractions. Importantly, I 

predicted that integrated number sense, as measured by magnitude comparison across notations, 

would predict performance on fraction arithmetic estimation, even after controlling for unlabeled 

0-1 number line estimation and math achievement test scores. 

I chose not to examine the fraction arithmetic estimation part of this hypothesis in 

Experiment 1, given an issue with data collection to be described later. However, analysis of 

common student errors in Experiment 1 helped inform the multiple-choice design of the fraction 

arithmetic estimation task in Experiment 2. The new design of the fraction arithmetic estimation 
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task in Experiment 2 had the added benefit of constraining student answer choices in an 

important way. Answer choices involved lure trials and no lure trials to test student estimation 

abilities both in and without the presence of distracting information (i.e., one of the three answer 

choices included a lure answer such as adding across numerators and denominators or answer 

choices did not have an obvious lure). The structure of this design allowed me to examine 

whether there would be a difference in performance between lure and no lure trials, parallel to 

the difference between decile (labeled) and 0-1 number line (unlabeled) estimation. I theorized 

that integrated number sense would predict how students perform on these lure fraction addition 

estimation trials, above their standardized test scores, performance on no lure trials, and 0-1 

number line estimation performance.  

Finally, I also sought to investigate predictors of whether students would be correct with 

the infamous 12/13+7/8 problem (whether the sum is closest to 1, 2, 19, or 21?) (Carpenter et al, 

1980). Therefore, the 12/13 + 7/8 question was included in Experiment 2 and logistic regression 

was conducted to analyze it separately from the other tasks. Ultimately, I theorized that 

integrated number sense, as measured by magnitude comparison across notations, would be a 

significant predictor for accuracy with the 12/13 + 7/8 problem above 0-1 number line estimation 

and general math ability.  

 

Hypothesis 2: Number line Instruction improves integrated number sense 

a) Rational number review with number lines results in better outcomes than review without 

number lines. 

b) Simultaneous review of notations will improve outcomes, especially tasks that measure 

integrated number sense, more than Sequential review of notations.  
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 I predicted that improvement from pretest to posttest would result in  

Simultaneous>Sequential>Control for all five assessment measures: (1) number line 

estimation on lines with endpoints 0 and 1, (2) number line estimation with endpoints 0 and 5, 

(3) magnitude comparison across notations, (4) performance placing equivalent fractions, 

decimals, and percentages on a decile number line, and (5) fraction arithmetic estimation. In 

other words, students in the Simultaneous condition would make greater improvement over the 

Sequential and Control condition on all the above named measures. Moreover, the Sequential 

condition would make greater improvement over the Control condition on these same measures.  

The hypothesis that both number line experimental conditions (Simultaneous and 

Sequential) would make greater improvement over the Control conditions was based on the 

documented benefits of number line interventions in improving rational number magnitude 

representations (e.g., Fuchs et al, 2013; Fuchs et al., 2014; Psycharis, Latsi, Kynigos, & others, 

2007; Davydov & Tsvetkovich, 1991; Fazio, Kennedy, & Siegler, 2016; Sidney, Thompson, & 

Rivera, 2019; Rittle-Johnson, Siegler, & Alibali, 2001). The hypothesis that Simultaneous rather 

than Sequential review of notations will provide more integrated number sense was based on 

prior research that underscored the importance of highlighting the connections among notations 

(Moss & Case, 1999), the benefit of interleaved practice for review in math (Rohrer & Taylor, 

2007; Rohrer et al, 2019), and the integrated theory of numerical development (Siegler et al, 

2011), which suggests that all rational numbers are incorporated into one’s mental number line. 	

3.4 Experiment 1  

Experiment 1 was conducted to explore students’ conceptions of the relations among 

rational numbers and examine how students respond to instruction. Specifically, Experiment 1 
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was conducted to pilot-test instructional and assessment materials and determine whether to 

continue the investigation with a larger sample, which was done in Experiment 2.  

3.4.1 Method  

Participants 

Participants were 43 middle school students from a private school located in a middle-

class neighborhood in northern New Jersey. There were 22 8th grade students and 21 7th grade 

students. There were 24 boys and 19 girls. The experiment also included 27 6th grade students 

who were excluded from these analyses for two reasons: (1) there was only one class of 6th 

grade students, which would have resulted in an unbalanced experiment with far more students 

in one condition than the other as it wasn’t practical to assign half of the students to each 

condition, and (2) there was a concern that the 6th grade students did not have thorough 

instruction on percentages, meaning the instruction would be initial learning instead of review 

(the focus of this study). Since classes were grouped by ability, an attempt was made to assign 

classes to a condition that resulted in each condition having a mix of high and low achieving 

students. Two classes were assigned to the Simultaneous condition (N=21) and two classes to the 

Sequential condition (N=22). Testing was done via Qualtrics in a quiet classroom setting.  

Tasks 

Number line estimation 

Rationale: Number line estimation tasks using lines with 0-1 and 0-5 endpoints are 

widely used as a measure of individual fraction estimation ability (e.g., Siegler et al, 2011; 

Siegler & Pyke, 2013; Siegler & Thompson, 2014; Braithwaite, Tian, & Siegler, 2018). The 

fraction magnitude knowledge assessed by number line estimation tasks has been shown to be 

predictive of advanced mathematics outcomes (Siegler et al, 2012). Thus, I used number line 



40 
 

estimation tasks to measure students’ magnitude knowledge of individual fractions and as a 

predictor for explaining estimation ability. This was important for determining whether 

integrated number sense is more important than general fraction magnitude representation in 

predicting math outcomes (Hypothesis 1). 

Procedure: Adapted from the number line estimation task (Siegler & Pyke, 2013), 

students completed the number line task on a computer via Qualtrics. The students were 

presented number lines. For the 0 to 1 number line task, each number line had 0 at the left end, 1 

at the right, and the fraction to be estimated above the line. Students responded by moving the 

slider to the position on the line that they thought corresponded to the number being estimated 

and then clicked the computer’s track pad. After completing each problem, a new number line 

with a different fraction appeared, and the students repeated the process. To acquaint students 

with the slider procedure, the researcher first asked them to locate the practice fractions ½ and ¼. 

The instructor then asked if anyone needed clarification on the activity. Clarification involved 

explaining the directions individually to any students that asked a question. Feedback on 

accuracy was not provided. After the practice trials, students estimated the positions of 10 

fractions: 1/19, 2/13, 1/5, 1/3, 3/7, 7/12, 5/8, 3/4, 7/8, and 13/14. Two fractions were drawn from 

each fifth of the number line. Here as on all experimental tasks, presentation order of items was 

random, and no feedback was provided. 

The 0 to 5 number line task was identical, except the right endpoint was labeled 5, and 

the practice fraction was 7/2. Again, after the practice question, the instructor asked if any 

students needed clarification on the activity. Feedback on accuracy was not provided. Then, the 

students were randomly presented with 10 fractions to be estimated on the 0-5 number line task: 

1/5, 7/8, 11/7, 9/5, 13/6, 7/3, 13/4, 10/3, 9/2, and 19/4. 
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Decile Number Line Estimation (i.e., a number line labeled with tenths) 

 Rationale: I chose to use a decile number line instead of the typical 0-1 number line 

because I intentionally wanted to examine whether students attended to the digits in the fractions 

or maintained focus on magnitude when placing fractions on the decile number line. As part of 

my theory on impulsive calculation, I suggested that students often take action with digits and 

ignore the magnitudes of values. Research shows students struggle with placing values on a 

number line in the presence of visually distracting information. As such, a decile number line, a 

line partitioned and labeled by tenths, was used to examine student performance when placing 

fractions and their equivalent decimal and percent values on a decile number line as compared to 

a regular number line. Students in Siegler and Thompson (2014) were highly distracted when 

tasked with placing a fraction on the decile number line, as evidenced by worse performance. 

Similarly, Moss & Case (1999) discussed the importance of having students estimate magnitudes 

of values with a visually misleading task because even Piaget believed children needed to be 

presented with misleading tasks or else the assessment would just measure their ability to parrot 

instruction. Additionally, as discussed previously, students with limited or weak place value 

understanding demonstrated difficulty with basic numerical processing when presented with a 

visually misleading task and asked to describe the meaning of the digits in the number thirteen 

(Miura and Okamoto, 1989). Thus, the decile number line task was used to capture issues with 

students’ rational number processing given that a superficial understanding of numerical 

processing level can result in problems with conceptual transcoding among representations. 

Moreover, I theorized in Hypothesis 1 that students, who have integrated number sense, have a 

better developed schema for magnitude and, therefore, would not be distracted by the visually 

misleading partitions. 
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Furthermore, students placing equivalent fraction, decimal, and percent values on the 

same number line enables examining students’ understanding of the relations among notations 

without testing their procedural ability to translate between notations. In other words, students 

may not understand magnitude representations among notational forms but might get a correct 

answer without understanding magnitude by seamlessly executing a process for translating 

between fractions and decimals such as long division or an equivalent fraction strategy (e.g., 

4/5=80/100=0.80). Braithwaite and Siegler (2018) employed a similar methodology when they 

asked students to place equivalent fractions on number lines and found that fractions with larger 

componential parts would yield larger estimates for younger students (e.g., 16/20 would be 

judged as larger than 4/5). Therefore, the decile number line task seeks to assess whether there 

are differences in accuracy based on notation. Any differences observed in performance across 

notations would lend support to Hypothesis 1 about the lack of integrated number sense being 

reflected by perceiving equivalent values as not equivalent in size.  

Procedure: Students placed 8 fractions and their equivalent decimal and percent on a 

decile number line (e.g., 1/19, 0.052, and 5%). Adapted from Siegler & Thompson (2014), 

students completed the decile number line estimation task on a computer via Qualtrics. Students 

were presented number lines, each with 0 at the left end and 1 at the right, with the line 

partitioned and labeled by tenths. The fraction, decimal, and percent to be estimated appeared 

above the line for the 0-1 number line task. Students responded by clicking on a location on the 

line that they thought corresponded to the number being estimated. Then, a new number line 

with a different value appeared, and the process repeated. The fraction values were specifically 

chosen to be distracting because the partitioning might promote encoding strategies that do not 

encourage attention to the magnitude of the value (e.g., a line partitioned into tenths does not 



43 
 

indicate where 6/17 should be in a simple way other than if it is translated to a decimal and then 

related to the tenths markers). The 8 fraction trials were matched with equivalent decimals and 

percentages for a total of 24 trials. (See Appendix A for all assessment items) 

 

Fraction Arithmetic Estimation 

 Rationale: Based on the integrated theory of numerical development (Siegler et al, 2011), 

I theorized that individuals who understand the relation among rational numbers would be less 

likely to make egregious errors with fraction arithmetic estimation (e.g., 1/3+1/3=2/6), which is 

in line with the first hypothesis. Moreover, it was also theorized that students who received 

number line training through a Simultaneous rather than Sequential approach would make 

greater improvement on fraction arithmetic estimation at posttest, which is in line with the 

second hypothesis. So, a measure was used that directly assessed students’ fraction arithmetic 

estimation. 

Procedure: Students were presented 20 problems, 10 for fraction addition and 10 for 

fraction subtraction, one at a time on a computer screen. Students were instructed not to compute 

the exact answer but to generate the nearest number to the answer, whether it be a fraction, a 

decimal, a percentage or a whole number. They were given 20 seconds to answer the question 

before the program automatically moved onto the next problem. They input their answer by 

clicking on a box and typing their response. (See Appendix A for all assessment items) 

 

Magnitude Comparison Across Notations  

Rationale: Magnitude Comparison within notation has been utilized widely in the field as 

a measure of magnitude representation for fractions, decimals, and whole numbers (DeWolf et 
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al., 2014; Meert et al., 2010; Moyer & Landauer, 1967; Schneider & Siegler, 2010). More 

recently, magnitude comparison across fractions, decimals, and whole numbers in both adults 

(Ganor-Stern, 2013; Hurst & Cordes, 2016) and children (Hurst & Cordes, 2018) has provided 

compelling evidence that all notations are represented on an integrated continuum (Siegler et al, 

2011). Thus, I sought to assess middle school students’ magnitude comparison ability across 

rational number notations (fractions, decimals, and percentages) as a measure of integrated 

magnitude representation. I chose to use percentages rather than whole numbers because little is 

known about percentages (Tian & Siegler, 2018) and understanding of percentage is an 

important linking representation between rational numbers (Moss & Case, 1999). Importantly, I 

reasoned that integrated number sense is likely to be higher if there is understanding of fractions 

and its interrelated concepts: decimals and percentages (Hiebert & Carpenter, 1992). Thus, I 

theorized in the first hypothesis, that students who represent magnitude along an integrated 

continuum would be able to select the larger value independent of notation and without any 

evidence of a heuristic (e.g., percent is larger than fraction). Furthermore, I planned to use 

overall performance accuracy as a measure of integrated magnitude representation similar to how 

Hurst and Cordes (2018) operationalized the composite score of comparisons across fractions, 

decimals, and whole numbers as rational number magnitude ability. 

Procedure: Students were presented with 24 comparison problems across rational 

number notations with identical or nearly identical digits (e.g., compare 4/5 versus 45%) to 

assess their integration of notations. I planned to examine how students performed across six 

category types (Fraction>Percent, Percent>Fraction, Decimal>Percent, Percent>Decimal, 

Fraction>Decimal, Decimal>Fraction) to determine whether students view rational numbers as 

equivalent in size. Theoretically, if students perceived rational numbers as equivalent in size 
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there should be no difference in performance between related trials (e.g., performance should be 

about the same if the percent is larger or smaller value when compared to fractions). Following 

analysis of pretest results, there was a concern that there might be some confounding factor with 

the selection of values for given trials. Thus, a revision was made to include 18 trials with 

identical digits as before and 18 trials were matched for magnitude across all notations with 

small, medium, and large differences between compared values (e.g., compare .40 versus 25%, 

2/5 versus .25, .4 versus 1/4, etc.). (See Appendix A for all assessment items) 

 

Standardized math achievement tests 

Rationale: It is common practice in the field to use standardized tests of math 

achievement as a necessary control for math general knowledge and as an outcome variable. For 

example, I wanted to examine whether other predictors explain estimation ability above general 

math knowledge.  

Procedure: I obtained the children’s percentile rank for the mathematics section of the 

TerraNova, a standardized test administered to private school students in New Jersey and private 

and public schools in other states around the country. The test was given toward the end of the 

students’ previous grade level, about a year before the study began. These tests served as 

measures of students’ overall mathematical ability.  

 

Student Demographic Information 

Rationale: It is common practice in the field to use relevant demographic information as 

control a control in certain analyses.  
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Procedure: The school provided relevant demographic information about students’ 

gender, disability status, and English Language Learning (ELL) status. This information was de-

identified and utilized as necessary controls and to examine any trends in the data across 

conditions.  

 

General Procedure 

Each student completed a pretest on the computer with the primary researcher during one 

math period. Most students completed the assessment in approximately 30 minutes. Then, 

students completed 15 daily warm-up activities as designated by their condition spread out over a 

little more than 3 weeks though not entirely successive days for each class due to school 

functions. The principle researcher delivered the instructions for the warm-up activity at the start 

of class and the regular classroom teacher taught the remainder of the class period. After 

completing 15 lessons of warm-up activities according to condition, students took a posttest that 

included half of the same items as the pretest and half new items (see Appendix A for all 

assessment items).  

 

General Overview for Lessons 1-15 

Students in the Simultaneous condition focused on equivalent fraction, decimal, and 

percent values throughout all lessons and students in the Sequential condition focused on specific 

notations by week (fractions for Lessons 1-5, decimals for Lessons 6-10, and percentages for 

Lessons 11-15). The Simultaneous condition received general review of fractions, decimals, and 

percentages in Lesson 1. The Sequential condition received general review of fractions in Lesson 

1, general review of decimals in Lesson 6, and general review of percentages in Lesson 11. 
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Students were provided feedback on their number line placement by receiving a “rational 

number ruler” to check the accuracy of the placement of the value. Lessons were approximately 

5 minutes, though slightly longer during initial activities. 

Part 1. Lesson 1-3 of the intervention involved:  

(1) General review of rational number concepts by condition with a scripted PowerPoint 

presentation  

(2) Opportunity to Estimate the Amount that was shaded in an area model (Simultaneous 

used a battery image and Sequential used a continuously shaded rectangle) 

(3) Practice partitioning the area model to determine precisely how much of the battery 

was shaded with a centimeter ruler 

(4) Students plotted this value on the number line (Simultaneous plotted the value on a 

fraction, decimal, percent number line and the Sequential condition plotted the value on a 

fraction number line) 

Part 2. Lessons 4-15 of the intervention did not present students with an area model. 

Instead, the students were presented with a value and then estimated its magnitude by 

shading a small area model to represent it and plotting the magnitude on the number line. 

 

Detailed Description of Instructional Interventions 

Part 1. Use of An Area Model  in Conjunction with Number lines 

The first three days of the intervention involved connecting area models to the number 

line. Day 1 of the intervention involved review of rational number concepts by linking an area 

model to the number line. Day 2 and Day 3 also included exploration of how an area model 

connected to number lines. The primary difference between the two conditions was that the 
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Simultaneous condition focused on highlighting the connection among the notations during 

review and the Sequential condition focused on individual notations separately and Sequentially 

over the course of three weeks. In other words, the Sequential condition focused solely on 

fractions during the first week, decimals during the second week, and percentages during the 

third week. No attempt was made to connect understanding among the notations in the 

Sequential condition; whereas, the primary goal of the Simultaneous condition was to link 

understanding among the notations. To make the connection among notations more salient for 

the Simultaneous condition, instructional materials used an image of a battery power indicator to 

encourage students to naturally draw connections between percent and fractions. This was 

similar to how Moss and Case (1999) tried to highlight the connection between percentages and 

fractions with a halving/splitting method for determining how full the beakers were. On the other 

hand, the Sequential condition utilized a simple rectangle (Figure 2). Finally, it is important to 

note, that the Simultaneous condition received review of all rational number concepts on the 

same day and reinforced throughout the entire intervention. Whereas, the Sequential condition 

received the review of rational number concepts in a Sequential order and reinforced only during 

the week of that notation being emphasized. In other words, the Sequential condition received 

review of the fraction concepts in Lesson 1 and reinforced fraction concepts throughout Lessons 

1-5, they received review of the decimal concepts in Lesson 6 and reinforced decimal concepts 

throughout Lessons 6-10, and a review of the percent concepts on Day 11 and reinforced percent 

concepts throughout Lessons 11-15. Moreover, students in the Sequential condition were 

encouraged to estimate with using only the designated notation of focus during each week, 

though many students in the Sequential condition gave percent estimates at times. Students were 

redirected to focus only on the notation of the week if they spoke about reasoning with a 
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different notation during a week designated as a particular notation (e.g., spoke about percent 

during the fraction week). 

 

Figure 2: Area model used in instruction by condition. Sequential condition (top) and 
Simultaneous condition (bottom). 

During these first three warm-up activities, students focused on estimating the amount of 

the figure that was shaded in by generating a number. Then, they used a centimeter ruler to 

partition the shape into equal parts to try to generate an exact number to represent the part that 

was shaded in. Students could not always generate an exact number, though the process of trying 

to determine a number was likely beneficial given research indicating the value of invention 

versus tell-and-practice (Schwartz, Chase, Oppezzo, & Chin, 2011). Immediately after trying to 

generate a value that could represent the shaded part of the image, students were instructed to 

work on placing a fraction on a number line marked with endpoints 0 and 1. In addition to 

placing a fraction on a number line, students in the Simultaneous condition also had to 

generate/place the equivalent decimal on a number line marked with endpoints 0 and 1. The 

decimal line was partitioned into ten parts and labeled by 0.1. Students in the Simultaneous 

condition also had to generate/place the equivalent percent on a number line with endpoints 0 

and 100%, partitioned into ten parts and labeled by 10%. All students were encouraged not only 

to label the value on the number line, but also to shade above the number line to represent the 

magnitude of that value. The purpose of shading above the number line was to remind them that 
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the value conveys an absolute magnitude and a physical location on the number line (Figure 3). 

Students in both conditions were encouraged to notice the position of the value relative to the 

endpoints, which involved noticing that the values were in equivalent locations across the 

fraction, decimal, and percent number lines in the Simultaneous condition only.  

 
Figure 3: Number line displayed in instructional presentation for 7/20 for both 

Simultaneous and Sequential Condition during Week 1. 

Finally, all students were provided with a “rational number ruler” to check the accuracy 

of their estimate. In other words, students were provided with a strip of paper that displayed a 

number line that was partitioned and labeled according to the value that was being estimated 

(Figure 4). It is important to note that the Sequential condition only received a “fraction ruler” 

during the week focused on fractions, a “decimal ruler” during the week focused on decimals, 

and a “percent ruler” during the week focused on percentages. Because the Simultaneous 

condition always was presented with partitioned decimal and percent number lines in their 

student activity book, the Simultaneous condition was only given a “fraction ruler.” 

 

 
Figure 4: Images of “Rational Number Rulers.” 

(A) “fraction ruler” (B) “decimal ruler” (C) “percent ruler.” 
 

(A) 

(B) 

(C) 
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Part 2.  

During Lessons 4-15 of the intervention, students practiced estimating a value and then 

placing it on the number line. The procedure for estimating a value was to either shade in a 

rectangle (Sequential condition) or battery power icon (Simultaneous condition) to represent the 

approximate size of the value. Instruction always encouraged students to think about known 

values to guide their estimates. Specifically, the instruction encouraged cross-notation thinking 

in the Simultaneous condition (e.g., 2/9 can be thought of as about 20% because I know that 2/10 

is 20% and I know 2/9 is going to be less than 50% because 4.5 is half of 9) and same notation 

thinking in the Sequential condition (e.g., 2/9 can be thought of as 2/10 and I know 2/9 is less 

than half because 4 1/2 is half of 9). Once students estimated the size of the value, they moved 

onto the number line activity. The students in the Simultaneous condition had to place the 

equivalent fraction, decimal, and percent on the corresponding number line, and the principle 

researcher highlighted understanding of percentages as critical for helping them make a better 

estimate of the fraction. On the other hand, students in the Sequential condition just placed a 

fraction on the number line (Lessons 1-5), just a decimal on the number line (Lessons 6-10), or 

just a percent on the number line (Lessons 11-15). Students in the Simultaneous condition were 

provided with a “fraction ruler” to check their estimates and students in the Sequential condition 

were provided with either a “fraction ruler,” “decimal ruler,” or “percent ruler” to check the 

accuracy of their estimates, according to what topic was being emphasized that week (e.g., 

Fractions covered Lessons 1-5, Decimals covered Lessons 6-10, and Percentages covered 

Lessons 11-15). The reason students in the Simultaneous condition did not also receive a 

“decimal ruler” or “percent ruler” was because students in the Simultaneous condition always 

had a decimal number line labeled with deciles and a percent number line partitioned and labeled 
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by 10% below the fraction number line in their activity book (Figure 5). An overview of the 

values involved in each lesson across condition is listed in Appendix B and an example of the 

difference in student activity book appears below (Figure 5). See Appendix B for more examples 

of student activity book pages across several lessons. Finally, all students were always asked to 

consider and write a response for the question: “What did you do to help you figure out a good 

answer?” 

 
Figure 5: Comparison of student activity book by condition: Simultaneous (left) and 

Sequential condition (right). Note: 5/8 activity page was shrunk to be compared adjacently. 

In sum, students in the Simultaneous and Sequential condition received practically 

identical instruction as a brief warm-up activity at the beginning of class. The primary difference 

was that the Simultaneous condition received review of each notation on the first day of 

instruction; whereas, the Sequential condition received review of each notation separately and 

sequentially (e.g., received review of fractions on day 1, review of decimals on day 6, and review 

of percentages on day 11). The Simultaneous condition provided three number lines daily (a 

fraction, a decimal, and a percent number line) and encouraged students to leverage 

understanding of equivalency among notations to be precise with placing equivalent values on 

the appropriate lines. The Sequential condition encouraged students to focus on one notation per 

week as they worked on being precise with placing values on a fraction number line for the first 

week, a decimal number line for the second week, and a percent number line for the third week.  
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Analyses 

Number line estimation task performance was measured using percent absolute error 

(PAE), defined as |Student’s Answer–Correct Answer|/Numerical Range. For example, a 

participant estimating 3/5 on a 0-1 number line at the location corresponding to 0.65 would result 

in a PAE of 0.5 (|0.65–0.6|/1 = .05). Therefore, lower PAE indicates higher accuracy.  

Magnitude comparison accuracy was measured using percent correct. Performance in 

across notation comparison in the six categories (Percent>Fraction, Fraction> Percent, 

Percent>Decimal, Decimal>Percent, Fraction>Decimal, Decimal>Fraction) was analyzed to 

detect trends in overall perception of the size of individual notations as it was hypothesized that 

students did not think about equivalent rational numbers as being equivalent in size. 

Additionally, performance across the different notations on the decile number line task 

was compared to determine whether there were differences in placing equivalent fraction, 

decimal, and percent values on the number line. If student performance was different across 

notations, this would provide further support of the hypothesis of rational numbers not being 

perceived as equivalent in size. 

Due to an issue with the testing format (described later), the open response answers for 

the arithmetic estimation task were examined and categorized based on the type of strategy the 

student employed to estimate the fraction addition and subtraction problems. Thus, I decided not 

to quantify student performance on the fraction arithmetic estimation task in the present study 

but to use student errors to inform the subsequent experiment.  

Because classes were grouped by ability, an attempt was made to match classes during 

assignment to condition based on ability level. A number of one-way ANOVAs were conducted 

to determine whether there were any differences across conditions in demographics (e.g., grade, 
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general ability, gender) or relevant measures. There were no differences with the exception that 

Percent Decile Number Line estimation was significantly worse in the Simultaneous condition at 

pretest (p=.022). Moreover, because the data included students nested within classes, multi-level 

analysis was considered. However, because the sample was insufficient with only two classes per 

condition (Maas & Hox, 2005), I proceeded by using students’ scores as the unit of analysis.  

Ultimately, paired t-tests were used to compare performance on the pretest and posttest 

within each condition, and change scores (i.e., difference in performance from pretest to posttest) 

were submitted to ANCOVA with condition as between-subjects factor and pretest score as 

covariate.  

3.4.2 Results 

Table 1 shows students’ performance on all tasks at pretest and post-test in the 

Simultaneous and Sequential conditions. 
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Table 1: Mean (standard deviation) performance on assessment tasks by condition 
and test time. Note: PAE denotes percent absolute error.  

 Sequential Condition  Simultaneous Condition 
 

Task 
 

Pretest Posttest Pretest Posttest 

0-1 Number line  
(No Partitions)  
PAE 

.13 (.15) .072 (.08) .17 (.15) .07 (.05) 

   
0-5 Number line  
(No Partitions)  
PAE 

.24 (.13) .21 (.11) .23 (.12) .24 (.14) 

   
Fraction Decile Number line 
(0-1 line partitioned and 
labeled by tenths) PAE 

.151 (.14) .114 (.10) .20 (.20) .11 (.09) 

   
Decimal Decile Number line 
(0-1 line partitioned and 
labeled by tenths) PAE 

.18 (.16) .12 (.14) .21 (.15) .09 (.15) 

   
Percent Decile Number line 
(0-1 line partitioned and 
labeled by tenths) PAE  

.03 (.05) .01 (.02) .09 (.11) .01 (.02) 

   
Integrated Magnitude 
Comparison (Across 
Notations)  
% Correct 

.69 (.15) .83 (.11) .76 (.15) .81 (.16) 

   
 

Number line Estimation (No Partitions, 0 to 1 endpoints) 

PAE on this task improved (i.e., decreased) in both the Sequential condition, t(21)=2.118, 

p=.046, d= .45 and the Simultaneous condition, t(20)=3.38, p=.003 d=.74. When change scores 

were submitted to ANCOVA with pretest scores as a covariate, there was no significant 

difference in improvement by condition (p>.05). This result indicates that, while each condition 

improved, the improvement was not substantially greater in one condition over the other.  
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Number line Estimation (No Partitions, 0 to 5 endpoints) 

PAE on this task did not improve in either the simultaneous or sequential conditions 

(p>.05). 

 

Fraction Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

PAE improvement on this task did not reach statistical significance in the Sequential 

condition t(21)=1.669, p=.110. However, PAE did improve (i.e., decrease) in the Simultaneous 

condition, t(20)=2.489, p=.022, d=.54. When change scores were submitted to ANCOVA with 

pretest scores as a covariate, there was no significant difference in improvement by condition 

(p>.05). Thus, improvement was not substantially greater in one condition over the other.  

 

Decimal Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

PAE improvement on this task did not reach statistical significance in the Sequential 

condition t(21)=1.654, p=.113. However, PAE did improve (i.e., decrease) in the Simultaneous 

condition, t(20)=2.543, p=.019, d=.55. When change scores were submitted to ANCOVA with 

pretest scores as a covariate, there was no significant difference in improvement by condition 

(p>.05). Thus, improvement was not substantially greater in one condition over the other. 

 

Percent Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

PAE improvement on this task did not reach statistical significance in the Sequential 

condition t(21)=1.70 p=.104. However, PAE did improve (i.e., decrease) in the Simultaneous 

condition, t(20)=3.276, p=.004, d=.71. It should be noted that this finding should be interpreted 
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with caution, as there was a significant difference in pretest scores, such that the average scores 

were worse in the Simultaneous condition than the Sequential condition. That being said, when 

change scores were submitted to ANCOVA with pretest scores as a covariate, there was no 

significant difference in improvement by condition (p>.05). Thus, improvement was not 

substantially greater in one condition over the other. 

 

Relation among Notations on Number line Performance 

The relative performance across decile number line estimation for the different notations 

(fractions, decimals, percentages) was analyzed using a repeated-measures analysis of variance 

(ANOVA) on PAE. There was a main effect of notation F(2, 84) = 12.190, p <.001, 𝜂! = .225, 

suggesting that students performed best on the percent decile number line estimation task 

(Mpercent=.06) compared to the fraction and decimal decile number line estimation. However, 

Bonferroni test for multiple comparisons demonstrated there was no difference in performance 

(p>.05) between fraction decile number line estimation (Mfraction=.18) and decimal decile number 

line estimation (Mdecimal=.20). 

 

Magnitude Comparison Across Notations 

Analyses were conducted for magnitude comparisons across all notation comparison 

problems as well as looking at specific notation comparison types (Percent>Fraction, Fraction> 

Percent, Percent>Decimal, Decimal>Percent, Fraction>Decimal, Decimal>Fraction). 

Across all Notation Comparison Problems: Percent correct in magnitude comparison 

across notations improved in the Sequential condition t(21)=-5.997, p<.001, d= 1.278; the 

students in the Simultaneous condition made marginal improvement t(20)=-1.982, p=.061, 
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d=.43. When change scores were submitted to ANCOVA with pretest scores as a covariate, there 

was a marginal significant difference in improvement favoring the Sequential condition (p=.08).  

Specific Notation Comparisons: To test the hypothesis that students do not think about 

equivalent rational numbers as being equivalent in size, I examined accuracy across trials to 

determine whether students perceive one notation as larger than another. Figure 6 displays 

students’ performance across the six categories of comparisons at pretest: Percent>Fraction, 

Fraction> Percent, Percent>Decimal, Decimal>Percent, Fraction>Decimal, Decimal>Fraction. 

At pretest, accuracy was 95% for items where percent is larger than the fraction, as compared to 

68% accurate for items where percent is smaller than fractions. Moreover, accuracy was 91% for 

items where the percent was larger than the decimal, as compared to 60% accurate for items 

where the decimal was smaller than the percent. Students were 86% accurate when the fraction 

was greater than the decimal and 54% accurate when the decimal was greater than the fraction. 

Paired t-tests were conducted to determine whether the difference between these categories of 

comparison were significant. Results demonstrated that middle school students have a bias 

towards perceiving percentages as larger than fractions/decimals and fractions as larger than 

decimals, as evidenced by statistically significant differences between mean scores for items 

where Percent>Fraction and Fraction>Percent (t(42)= 5.287, p<.001), Percent>Decimal and 

Decimal>Percent (t(42)= 4.937, p<.001) and Fraction>Decimal and Decimal>Fraction 

(t(42)=6.750, p<.001).  
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(A)                     (B)                      (C) 

Figure 6: Experiment 1 pretest accuracy for magnitude comparison across notations. 
The chart is segmented by students’ inferred biases of which notation is greater. The data 

includes all 7th and 8th grade students. The comparison types include: (A) Percent-to-Fraction 
Comparisons, (B) Percent-to-Decimal Comparisons, and (C) Fraction-to-Decimal 

Comparisons. 

Given the results, there was a concern that the percent is greater bias result was 

influenced by a confounding factor (e.g., the ratio between compared values was not equivalent 

across comparison types). As such, the posttest was modified to include more trials (24 at pretest 

and 36 at posttest). Furthermore, the posttest included half of the trials with comparisons across 

notations with identical digits (e.g., 3/5 versus 35%) and half with trials that were matched for 

magnitude across all notations with small, medium, and large differences between compared 

values (e.g., compare .40 versus 25%, 2/5 versus .25, .4 versus 1/4, etc.). The pretest only 

included identical digits and not trials that matched for magnitude across notations. The inclusion 

of these trials would help to control for absolute magnitude of values. Furthermore, I decided 

that a subsequent experiment would also include these modifications as part of the pretest design. 



60 
 

However, caution should be used in interpreting any pretest to posttest changes in the current 

experiment because the task was altered substantially in the aforementioned way from pretest to 

posttest. 

Figure 7 displays children’s performance across the six categories of comparisons at 

posttest: Percent>Fraction, Fraction> Percent, Percent>Decimal, Decimal>Percent, 

Fraction>Decimal, Decimal>Fraction. At posttest, accuracy was 83% for items where percent is 

larger than the fraction, as compared to 74% accurate for items where percent is smaller than 

fractions. Moreover, accuracy was 99% for items where the percent was larger than the decimal, 

as compared to 73% accurate for items where the decimal was smaller than the percent. Students 

were 85% accurate when the fraction was greater than the decimal and 78% accurate when the 

decimal was greater than the fraction. Paired t-tests were conducted to determine whether the 

difference between these categories of comparison were significant.  

Results demonstrated there was a marginally significant difference between P>F and 

F>P, such that middle school students have less of a bias towards perceiving percentages as 

larger than fractions in the posttest as a result of the intervention (t(42)= 1.933, p=.06). 

Additionally, there was a marginally significant difference between F>D and D>F, such that 

middle school students have less of a bias towards perceiving fractions as larger than decimals in 

the posttest as a result of the intervention (t(42)=1.833, p=.07). However, the bias of perceiving 

percentages as larger than decimals still held as there was a difference between P>D and D>P, 

such that students are more accurate when the percent is larger than the decimal (t(42)=5.56, 

p<.001). It is important to note that caution should be used in interpreting these changes from 

pretest to posttest due to the increased number of magnitude comparison trials and the 

modifications to the design of the measure after the pretest to control for magnitude across all 
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notations. The Magnitude Comparison Across Notations task would reflect these changes in both 

pretest and posttest for the subsequent experiment. 

 
(A)                     (B)                      (C) 

Figure 7: Experiment 1 posttest accuracy for magnitude comparison across notations. 
The chart is segmented by students’ inferred biases of which notation is greater. The data 

includes all 7th and 8th grade students. The comparison types include: (A) Percent-to-Fraction 
Comparisons, (B) Percent-to-Decimal Comparisons, and (C) Fraction-to-Decimal 

Comparisons. 

The students in the Simultaneous and the Sequential conditions followed a similar pattern 

of results at pretest – greater accuracy when the percent was larger than the fraction/decimal and 

greater accuracy when the fraction was larger than the decimal. One-way ANOVAs yielded that 

there was no difference in these biases by condition at pretest (p>.05 for all biases). However, 

the pattern of results was slightly different at posttest by condition for fraction-to-percent and 

fraction-to-decimal comparisons. Figure 8 displays side-by-side comparisons for Simultaneous 

and Sequential posttest results. For the fraction-to-decimal comparisons, there is no difference in 

performance whether one is larger than the other for the Simultaneous condition (t(20)=.309, 
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p=.761). There is a difference for the Sequential condition (t(21)=2.153, p=.043), such that 

accuracy is higher when the fraction is larger than the decimal. For the fraction-to-percent 

comparisons, there is a difference in performance whether one is larger than the other for the 

students in the Simultaneous condition (t(20)=2.216, p=.038), such that they perform better when 

the percent is larger. There is no Percent>Fraction bias for the students in the Sequential 

condition (t(21)=.130, p=.898).  

 
Figure 8: Experiment 1 posttest accuracy for magnitude comparison across notations 

by condition: Simultaneous (left) and Sequential (right).  

To better understand how these biases affected individual students, a ‘Bias Score’ was 

generated for each student on each bias (Percent greater than fraction, Percent greater than 

decimal, and Fraction greater than decimal). The Bias Score was defined as the difference in 

average performance between items congruent with the bias and items incongruent with the bias 

(e.g., performance on items where the percent was larger than the fraction minus performance on 

items where the fraction was larger than the percent). In other words, if a student was 90% 

accurate on items where the percent was larger than the fraction and 60% accurate on items 
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where the fraction was larger than the percent, the student would receive a bias score of 30% for 

the Percent>Fraction bias.  

Examination of Bias Score by condition at posttest (Figure 8) suggests that the 

Percent>Fraction bias is weakest in the Sequential condition at posttest. The mean difference in 

percentage points between P>F and F>P is 0 for students in the Sequential condition, as 

compared to 17 for students in the Simultaneous condition. When posttest Bias scores were 

submitted to ANCOVA with condition as between subject effect and controlling for pretest Bias 

scores, gender, and standardized achievement test, the effect of condition was significant F(1, 

36) = 7.964, p =.008, 𝜂! = .181, suggesting that the bias is considerably weaker in the 

Sequential condition at posttest.  

Examination of Bias Score by condition at posttest (Figure 8) suggests that the 

Percent>Decimal bias is weakest for students in the Simultaneous condition at posttest. The 

mean difference in percentage points between P>D and D>P is 24 for students in the 

Simultaneous condition, as compared to 30 in the Sequential condition. When posttest Bias 

scores were submitted to ANCOVA with condition as between subject effect and controlling for 

pretest Bias scores, gender, and standardized achievement test, the effect of condition was not 

significant F(1, 36) = .71, p =.405, 𝜂! = .019, suggesting that there is no difference in the 

strength of the bias at posttest between conditions. 

Examination of Bias Score by condition at posttest (Figure 8) suggests that the 

Fraction>Decimal bias is weakest in for students in the Simultaneous condition at posttest. The 

mean difference in percentage points between F>D and D>F is 2 for students in the 

Simultaneous condition, as compared to 12 for students in the Sequential condition. When 

posttest Bias scores were submitted to ANCOVA with condition as between subject effect and 



64 
 

controlling for pretest Bias scores, gender, and standardized achievement test, the effect of 

condition was not significant F(1, 36) = 1.069, p =.308, 𝜂! = .029, suggesting that there is no 

difference in the strength of the bias at posttest between conditions.  

Arithmetic Estimation Strategies 

The analysis of arithmetic estimation strategies was exploratory in nature rather than 

quantifiable for two reasons: (1) the format of the fraction arithmetic estimation task was open 

response via Qualtrics, resulting in difficulties for some students due to the unfamiliar format 

(e.g., many students were unsure of how to type a fraction value using a keyboard), and (2) it 

was a timed task, resulting often in incomplete answers. Therefore, the analysis focused on 

understanding the strategies students were using to estimate fraction addition and subtraction 

solutions by examining their responses. Since the instructors and principal researcher did not 

directly ask students about the strategies that they employed, the strategies students were 

employing cannot be determined with certainty. Although, there were many examples of clearly 

defined strategies that many students employed based on their responses. I decided to move 

ahead with the analysis given the systematic errors many students made in obtaining incorrect 

responses and because research has shown value in examining student work for understanding 

students’ mathematical activity (Kazemi & Franke, 2004).  

The most common and easily identifiable systematic-error strategies found in student 

estimation responses are the Across Strategy and the Hybrid Across Strategy. The other strategy 

that was unequivocally employed was the Calculate the Exact Answer Strategy, which does not 

reflect an error but rather a failure to provide an estimation. The Across Strategy involves 

treating numerators and denominators as whole numbers and adding/subtracting across 

numerators or denominators (e.g., 1/3+1/3=2/6). The Hybrid Across Strategy involves finding a 
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common denominator and then adding/subtracting across numerators (e.g., 1/3+1/3=2/9). The 

Calculate Exact Answer Strategy involves providing an exact answer for the problem with a 

common denominator (e.g., 8/10-1/9=62/90). Some students were accurate calculating the 

answer exactly in this manner but obviously their answers do not reveal whether they can 

estimate answers for fraction arithmetic.  

Table 2 displays the different types of systematic-error strategies students used to 

estimate the answer to fraction addition and subtraction problems. Also, there were some other 

strategies that were not used consistently throughout the task. These strategies are more difficult 

to define and cannot be verified without individual student reports on which strategies they used. 

As such, these inconsistent strategies are labeled in Table 2 with an asterisk due to being 

speculative in nature.  

The improvement from pretest to posttest will not be quantified due to difficulties 

characterizing the exact strategies each student used without individual student reports. 

However, it appears that the systematic-error strategies used were less frequent at posttest and 

that some students who used an inappropriate strategy at pretest (e.g., the Across Strategy) 

moved to more appropriate estimation strategies at posttest. This is just speculation and may 

warrant further investigation in future studies. Ultimately, the arithmetic estimation strategies 

task provided evidence of common flawed estimation strategies that students may systematically 

be using. The learning from Experiment 1 informed the design of a more appropriate fraction 

arithmetic estimation task for Experiment 2 discussed in the next section. 
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Table 2: Inferred Fraction Arithmetic Estimation Strategies at pretest in Experiment 1. 

Strategy Definition Example 
 

Across Strategy 
(inappropriate) 
 
 
 

Student adds across numerators and 
denominators 

5
8+

1
6 =  

6
14 

 

Hybrid Across Strategy  
(inappropriate) 
 
 
 

Find a common denominator and then add 
across the numerators 

5
8+

1
6 =  

6
48 

Calculate Exact Answer 
(often with egregious 
errors) 
 
 

Find a common denominator and calculate 
mentally 
 
 

8
10−

1
9 =   

62
90 

 

*First fraction  
Estimation 
Strategy 
 
 
 

Estimate the size of first fraction and 
add/subtract the numerator of the second 
fraction (often without regard for the size of 
the second fraction) 
 

5
8+

2
3 =  

7
8 

*Common Denominator 
Estimation Strategy 
 
 
 

Find a common denominator and make an 
educated estimate about what the numerator 
would be 
 

4
10+

2
8 =  

50
80 

*Percent Strategy 
 
 
 

Translate the fractions to percentages and 
estimate the answer as a percent 
 

5
6−

2
4 =  40% 

*Decimal Strategy 
 
 
 

Translate the fractions to decimal and 
estimate the answer as a decimal 
 

8
10+

1
9 =   .9 

*Fraction Strategy Transform the fractions into easier numbers 
to work with to arrive at a fraction solution 
that does not involve a common 
denominator, typically a canonical or 
benchmark fraction answer 
 

 
4
9−

1
5 =   

1
4 

 

*Speculative strategy: it is quite difficult to know for sure without student report 
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Individual differences in predicting estimation ability in the presence of distracting information 

The decile number line estimation task measures a student’s ability to attend to 

magnitude and estimate a fraction, decimal, or percent’s location on a number line in the 

presence of distracting information (i.e., decile partitions). This analysis seeks to test Hypothesis 

1, integrated number sense, by examining individual differences in estimation ability in the 

presence of potentially distracting information.  

Students performed worse on the decile number line task (PAE=.18) as compared to the 

unlabeled 0-1 number line task (PAE=.15), though the task was not significantly more distracting 

overall – a paired t-test demonstrated no difference in performance on number line estimation for 

labeled versus unlabeled number line PAE (t(42)=.997, p=.324). However, considering the 

documented potential for distraction (Siegler & Thompson, 2014), the PAE for placing fractions 

on the decile line was operationalized as how students perform on estimation in the presence of 

distraction. Thus, hierarchical linear regression (Table 3) was used to determine whether each 

additional variable explains additional variance. The following three variables were added to the 

model sequentially to determine whether they added more explanatory power to performance in 

placing fractions on the decile number line: 

1. Achievement score: The Achievement score, which is operationalized as the students’ 

percentile rank on the TerraNova standardized test of math achievement, was added 

to the model first to account for any predictive value of general math ability. The 

Achievement score was a significant predictor of performance on the decile number 

line task (Step 1, p<.001).  

2. 0-1 Number Line PAE: 0-1 Number line PAE (on an unlabeled 0 to 1 number line) 

was entered because it was hypothesized to be most closely related to how students 
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would perform on the Decile Number line task, given that how students perform on a 

0-1 number line should be the same as a 0-1 number line partitioned into tenths. 

However, the R2 change was not significant and both variables (unlabeled 0-1 number 

line estimation and Achievement) were non-significant (Step 2, p>.05 for both).  

3. Cross-Notation Comparison: Cross-Notation Comparison, magnitude comparison 

across notations, ability was entered last. Cross-Notation Comparison ability was 

calculated as a composite of the scores (i.e., average percentage correct) on 

comparisons that required students to compare between distinct notations (i.e., 

Fraction versus Decimal, Decimal versus Percent, and Percent versus Fraction). This 

variable was added to the model because it was theorized that integrated number 

sense would help students persevere in attending to magnitude in the presence of 

distraction. When it is added to the model, Cross-Notation Comparison is a 

significant predictor (Step 3, p<.001), and it adds 11% of explanatory power to the 

model predicting Decile Number line PAE. The fit of the final model is significant 

F(3,40)=4.152 p=.012, suggesting that when controlling for Achievement and 

Unlabeled 0-1 Number line estimation, Cross-Notation Comparison is the only 

significant predictor of decile number line PAE.  

The hierarchical linear regression analysis suggests that higher performance on the Cross-

Notation Comparison task is associated with better performance on the decile number line task 

when controlling for general math ability and unlabeled number line performance. This finding is 

consistent with the first hypothesis about integrated number sense, as indicated by performance 

on the magnitude comparison task, helps students fight their way through the distracting number 

line information. 
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Table 3: Hierarchical Linear Regression Analysis Predicting Fraction Decile Number 
Line PAE for Experiment 1.  

  
b 

(unstandardized) 

 
SE b 

 

 
𝛽 

(standardized) 
Step 1    
       Constant .315 .062  
      Achievement -.002 .001 -.328* 

Step 2    
       Constant .240 .085  
       Achievement -.001 .001 .210 
       Number line 0 to 1 PAE  .223 .178 .222 
    
Step 3    
       Constant .485 .133  
      Achievement .000 .001 -.045 
       Number line 0 to 1 PAE .089 .178 .089 
       Cross-Notation Comparison  -.403 .174 -.421* 
Note. R2=.11 For Step 1*; ∆R2=.035 for Step 2, ∆R2=.11 for Step 3* 
*p<.05, **p<.01, ***p<.001 
 
 
3.4.3 Discussion  

Summary 

 The results of this pilot study served to provide some evidence in support of the 

hypotheses for a few measures and set the stage for a larger experiment. Below is a summary of 

the results as they relate to each hypothesis followed by a short discussion of each of the results. 

An important caveat in interpreting the findings is that the nature of this experiment was 

exploratory, with the primary purpose being to pilot-test assessment and instructional materials. 

Some critical limitations of this initial experiment include the lack of a control group and 

assignment to conditions because students were grouped according to ability level. While an 

attempt was made to balance conditions based on ability, there was a difference by condition on 

one pretest measure (i.e., students in the Simultaneous condition performed significantly worse 
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at pretest on percent number line estimation). This difference between conditions could be 

problematic because it may reflect lack of a thorough understanding of percentage prior to 

instruction for the Simultaneous condition. Thus, any observed differences might have more to 

do with lack of thorough understanding at pretest than differences across instructional 

conditions. Finally, there was a substantial modification to the Magnitude Comparison Across 

Notations task between the pretest and the posttest, such that only 5 of the 36 posttest trials had 

appeared on the pretest. The modification to the Magnitude Comparison Across Notations task 

was made after pretest results yielded newly discovered biases. The modifications were made to 

control more closely for any potential confounding factors and to pilot-test the assessment with 

the intent of using the task for a subsequent study. Thus, caution must be exercised when 

interpreting improvement from pretest to posttest, since it is possible that the pretest may have 

been unbalanced and measuring different abilities than the posttest.  

 

Hypothesis 1: Integrated Number Sense 

The analysis indicates that understanding of the relations among notations may be an important 

aspect of numerical development beyond fraction magnitude representation alone. As part of the 

integrated theory of numerical development, Siegler, Thompson, and Schneider (2011) posited 

that fraction magnitude representation is central to numerical development. However, I argue 

that fraction magnitude representation alone may not tell the whole story when determining why 

many students make implausible errors with fraction arithmetic estimation (e.g., 

12/13+7/8=19/21). This theory is supported by research documenting that students perform 

worse on estimating sums of fractions than on estimating fractions individually (Braithwaite, 

Tian, & Siegler, 2018). Therefore, some students might be able to reason about magnitudes of 
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individual fractions when the task explicitly asks them to do so. However, many students do not 

apply this knowledge. Understanding of fractions and its related forms (decimals and 

percentages) is likely a better indicator of magnitude representation because depth of 

understanding is characterized by strength of connections among related concepts (Hiebert & 

Carpenter, 1992). Moreover, a focus on analysis of quantity distinguishes successful problem 

solvers (Haverty et al, 2000). Therefore, students with integrated number sense, or an 

understanding of how fractions, decimals, and percentages are related to one another, are better 

equipped with tools to evaluate magnitude. Indeed, it appears that integrated number sense 

provides more explanatory power than fraction magnitude representations alone in how students 

deal with situations that could potentially cause them to lose focus on magnitude.  

a) Students do not perceive equivalent rational numbers as equivalent in size.  

i. Many students do not view equivalent rational numbers as equivalent in size, as 

evidenced by worse performance when the percentage is the smaller than the 

fraction/decimal and when fractions are smaller than decimals. 

ii. The bias towards perceiving percentages as larger than fractions/decimals is not 

evident when students place equivalent values written in the three notations on the 

number line (e.g., if students always thought percentages were larger, then they 

would place the percent value as larger than the fractions/decimals). However, 

students demonstrated a high degree of accuracy with placing percentages on the 

number line and less accuracy placing fractions and decimals on the number line.  
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b) Individual differences in integrated number sense predict estimation ability in the 

presence of distraction. 

i. A decile number line was selected as a distracting task based on documented 

worse performance on this task than on an unlabeled 0-1 number line (Siegler and 

Thompson, 2014). Integrated number sense, as operationalized as the composite 

score on Magnitude Comparison Across Notations, was the only significant 

predictor of the accuracy of placing fractions on the decile number line, when 

controlling for 0-1 number line estimation and standardized math scores. 

ii. Due to the aforementioned issues with the fraction arithmetic estimation task in 

Experiment 1, I did not have another measure of how students perform in the 

presence of distraction. Thus, it remains to be seen whether integrated number 

sense will also help students inhibit implausible errors (e.g., 12/13+7/8=19/21).   

Hypothesis 2: Improving Integrated Number Sense 

Based on the assumption that integrated number sense was important, I sought to try to improve 

integrated number sense through two different number line interventions. I reasoned that both 

would help improve outcomes but that the Simultaneous Condition would result in greater 

improvement over the Sequential Condition. The results did not support the hypothesis overall 

but did on some measures. However, more research needs to be done because it is unclear 

whether any differences can be attributed to effects of the intervention, since the experimental 

design involved an attempt to assign classes to condition by ability rather than random 

assignment to condition. Summary of results from Experiment 1 that were relevant to Hypothesis 

2 are outlined below. The section starts with a simplified chart of the measures and whether 

students in each condition made Significant, Not Significant (NS), or Marginally Significant 
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(MS) improvement from pretest to posttest. Finally, the third column details whether the 

Simultaneous or the Sequential Condition led to greater improvement in students’ performance. 

Table 4: Simplified summary of findings comparing improvement within and 
between conditions for Experiment 1.  

 
Task 

 
Sequential 

Improvement 

 
Simultaneous 
Improvement 

 

 
Significant 

Improvement 
over the other 

condition 
 

0-1 Number line  
(No Partitions)  
PAE 

Significant Significant NS 

    
0-5 Number line  
(No Partitions)  
PAE 

NS NS NS 

    
Fraction Decile Number line (0-1 
line partitioned and labeled by 
tenths) PAE 

NS Significant NS 

    
Decimal Decile Number line (0-1 
line partitioned and labeled by 
tenths) PAE 

NS Significant NS 

    
Percent Decile Number line (0-1 
line partitioned and labeled by 
tenths) PAE  

NS Significant NS 

    
Integrated Magnitude Comparison 
(Across Notations)  
% Correct 

Significant Marginally 
Significant 

(p=.06) 

Marginally 
Significant in 

favor of 
Sequential 

over 
Simultaneous 

(p=.08) 
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a) Review of rational number notations with number lines improves outcomes  

i. 0-1 number line estimation improved for both conditions (though I did not have a 

control condition in Experiment 1; thus, it is difficult to know whether it is 

number line review per se that drove any improvements).  

b) The Simultaneous versus Sequential review of notation is better for math outcomes  

i. Consistent with the hypothesis, students in the Simultaneous condition made 

significant improvement from pretest to posttest on all decile number line tasks, 

where the students in the Sequential condition did not make significant 

improvement. This suggests that students in the Simultaneous condition are able 

to estimate better in the presence of distracting information (i.e., decile partitions). 

However, this improvement is not substantially greater. Moreover, it is important 

to note that there was a significant difference by condition at pretest in percent 

number line estimation, such that Simultaneous students performed worse. Thus, 

Simultaneous students may have had greater opportunity for gain on this measure.  

ii. Contrary to the hypothesis, the students in the Sequential condition made 

significant improvement and students in the Simultaneous condition only made 

marginally significant improvement on the Magnitude comparison across notation 

task (p=.06). Additionally, the students in the Sequential condition made 

marginally greater improvement in Magnitude Comparison across notations 

(p=.08). However, an important caveat is that the posttest task was changed 

substantially such that only 5 of the 36 posttest comparison trials had appeared on 

the pretest. Moreover, when the modifications are excluded from the analysis, 

there is no significant difference in improvement by condition controlling for 
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pretest scores (p=.477). Additionally, it is important to note again that students in 

the Simultaneous condition were significantly worse at pretest on percent number 

line estimation. Thus, it is highly likely that students in the Simultaneous 

condition did not have a thorough understanding of percent prior to instruction. 

Consistent with the Hypothesis 1a that students do not perceive rational numbers as 

equivalent in size, middle school students demonstrated a bias towards perceiving percentages as 

larger than fractions and decimals at pretest. In other words, students were more accurate when 

the percentages were larger than fractions and decimals than when the percentages were smaller 

than fractions and decimals. Additionally, they demonstrated a bias towards perceiving fractions 

as larger than decimals in this sample at pretest. At posttest, the percent is larger than decimal 

bias persisted, though the other two biases weakened. The fact that these biases are still 

somewhat present in the data following three weeks of number line training suggest that these 

skewed perceptions might be a real phenomenon. Though this finding is consistent with research 

suggesting that students have difficulties with concepts of equivalence in general (McNeil et al, 

2006), there is no documented evidence of these biases in the literature. Thus, it is important to 

test whether any of these biases will replicate in another sample.  

Also, though I did not ask students to translate values directly, I utilized equivalent 

fraction, decimal, and percentage values for the decile number line task to determine whether 

there might be a mismatch between students’ perception of size for equivalent rational numbers 

(Hypothesis 1a). Consistent with the hypothesis that students do not perceive rational numbers as 

equivalent in size, is the difference in PAE on the decile number line task where students placed 

equivalent fraction, decimal, and percent values on a line with endpoints 0-1 that was partitioned 

and labeled by tenths (PAEpercent=.06, PAEfraction=.18, PAEdecimal=.20). In other words, students 
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were better at placing percentages on the decile number line than placing their equivalent 

fractions and decimals on the same number line. There was no difference in performance in 

placing fractions and decimals on the decile number line. The finding that students were highly 

accurate with placing percentages on the number line and not as accurate in placing their 

equivalent decimals/fractions provides additional support that students do not think about 

equivalent rational numbers as being equivalent in size. In particular, it suggests that students’ 

representations of magnitude for percent are likely most transferrable to new contexts (Moss & 

Case, 1999), which is one of the essential features of the instructional approach to rational 

number review in the Simultaneous condition in the current study.  

Moreover, consistent with the first hypothesis about the importance of integrated rational 

number sense (Siegler et al, 2011) in predicting estimation ability, Cross-Notation Comparison, 

was found to predict fraction estimation ability in the presence of distraction on the decile 

number line. I argued that estimation involves both attending to magnitude of individual values 

and attending to magnitude of combining two values to perform an arithmetic operation. 

Moreover, I posited that the decile number line task is particularly informative of how students 

perform in the presence of distraction because the tenths partitions do not aid in placing a value 

on the number line in any meaningful way unless the fractional value is translated to a decimal 

(Siegler & Thompson, 2014). The finding that performance was (not-significantly) worse on the 

fraction decile number line task than on the unlabeled number line task is consistent with the 

finding that students with weaker knowledge of place value perform worse in the presence of 

distracting information (Miura & Okamoto, 1989). The result that integrated rational number 

sense added unique explanatory power above and beyond general math ability and number line 
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estimation ability suggests that students who have an integrated sense of rational number are 

better able to persevere in attending to magnitude in potentially distracting situations.  

Furthermore, consistent with the second hypothesis about the superiority of the 

Simultaneous condition, students in the Simultaneous condition made significant improvement 

on all decile number line tasks (including fraction, decimal, and percent trials); whereas, the 

students in the Sequential condition did not make significant improvement in these tasks. An 

important caveat is that students in the Simultaneous condition were worse at pretest on the 

percent decile number line task. Thus, it is possible that the students in the Simultaneous 

condition may have had greater opportunity for gains on this task. Since there was not a control 

condition, it is possible that simply another three weeks of school contributed to these 

differences in performance however.  

Several results were inconsistent with the hypotheses. For example, there was no 

difference in improvement by condition for any of the measures, when change scores were 

submitted to ANCOVA with pretest scores as a covariate. Students in the Sequential condition 

made marginally significantly more improvement on Magnitude Comparison across notations 

than the students in the Simultaneous condition, which is also inconsistent with the hypothesis. 

Though, it is important to note that caution should be used in interpreting any changes from 

pretest to posttest with the magnitude comparison across notations task. Specifically, I increased 

the number of trials at posttest from 24 to 36 trials. I also adapted the task to control for 

magnitude across all notations and to better control for the ratios between compared values. 

Ultimately, the posttest trials only included 5 out of 36 trials that had appeared on the pretest. 

Furthermore, when the 31 modified items are excluded from the analysis, there was no 

significant difference in improvement by condition controlling for pretest scores (p=.477).  
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Moreover, the results about reduction of cross-notation bias were slightly mixed. After 

number line training, the Percent is larger than fraction bias and the Fraction is larger than 

decimal bias weakened though the conditions likely made separate contributions to the 

weakening of these biases. In other words, the Simultaneous condition facilitated a weakening of 

the bias in the fraction-to-decimal comparisons (though it was not statistically significant), 

whereas, the Sequential condition facilitated a weakening of the bias in the percent-to-fraction 

comparisons (which was statistically significant).  

Relatedly, an important point to remember when considering differences between the 

Simultaneous and Sequential condition in this study is that classes were grouped according to 

ability level. Though an attempt was made to match ability levels when assigning classes to 

condition, it is difficult to know whether differences in condition were due to condition alone or 

whether there might be some other unknown factor at play related to the sample. For example, 

students in the Simultaneous condition performed worse on the percent decile number line task 

than the students in the Sequential condition at pretest. Thus, any differences observed in 

magnitude comparisons involving percent may have to do with less general knowledge about 

percentages in that condition.  

I had hoped to examine the effects of condition on fraction arithmetic estimation ability 

and examine individual differences in predicting this type of estimation. However, because of the 

aforementioned issues with typing responses during the timed activity via Qualtrics, I opted to 

pursue an exploratory rather than quantitative investigation of fraction arithmetic estimation with 

this data set, focusing on strategies students employed. Given that I did not ask students to report 

the specific strategies that they used, I analyzed student answers for potential evidence of 

specific strategies. Three common types of answers that appeared repeatedly in student responses 
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that indicated what strategies were being employed were: Adding Across, where students added 

across numerators and denominators (e.g., 1/2+1/3=2/5); Hybrid Across, where students found a 

common denominator and then added the numerators (1/2+1/3=2/6); and calculating exactly, 

where students calculated the answer exactly with a common denominator (e.g., 1/2+1/3=5/6). 

There were some other strategies that I was able to classify, but since I did not have student 

reports of the strategies they employed, I could not verify that these were the strategies that were 

actually being employed and thus, I listed them as speculation. Perhaps, future research might 

explore some of these strategies I speculated that students were employing but that is beyond the 

focus of this dissertation. Despite the issue with the open response format of this fraction 

arithmetic task, it seemed that true estimation ability was severely lacking and students exhibited 

impulsive calculation rather than estimation (e.g., using a flawed calculation strategy or 

calculating exactly). However, an open question was still whether students that could calculate 

the answers exactly could actually estimate. In other words, students that calculated the exact 

answers could have done so procedurally without thinking about the magnitude of the individual 

values. Despite Common Core’s (2019) emphasis on students being able to judge the 

reasonableness of fraction arithmetic answers, it appeared that virtually no students knew how to 

estimate because they either used a flawed strategy or they calculated the exact answer. As far as 

I could tell, there was only one student that I classified as a true estimator at pretest. Therefore, it 

seems largely unclear whether students could actually estimate rather than impulsively calculate.  

With the small sample sizes in each condition and the fact that an attempt was made to 

balance conditions with high and low achieving students due to classes being grouped by ability 

levels, it is unclear whether instructional conditions were the primary driving force in any 

differences observed. Moreover, it is important to note that caution should be used in interpreting 
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any changes from pretest to posttest with the magnitude comparison across notations task 

because of the difference in number of items on the two tests. I also adapted the task to control 

for magnitude across all notations and to better control for the ratios between compared values. 

Ultimately, the posttest trials only included 5 out of 36 trials that had appeared on the pretest.  

Still, this initial study provided some evidence that review of rational numbers through daily 

number line training was valuable for improving students’ abilities to estimate in the presence of 

distraction. Additionally, the current study yielded some novel findings about students’ 

understanding of the relation among rational numbers. Therefore, I performed a second study 

with a larger sample size and other methodological improvements. 

3.5 Experiment 2 

Experiment 1 suggested further exploration was warranted, particularly of students’ 

understanding of the relations among notations and whether instruction can improve this 

understanding. Experiment 2 had several goals: (1) to test whether results obtained in 

Experiment 1 replicate with a significantly larger sample that is randomly assigned by classes to 

condition, (2) to modify the pretest, posttest and instruction based on the limitations of 

Experiment 1 (e.g., instruction was done by the lead researcher with a small sample size), and (3) 

to add a Control condition where students underwent rote practice of addition and subtraction of 

fractions without the use of number lines as a warm-up. Students in the Control condition used 

the same fraction values from the exercises completed by students in the Simultaneous and 

Sequential conditions.  

Experiment 2 was designed to account for potential issues in Experiment 1. The Control 

condition was used to rule out the possibility that simply another three weeks of math instruction 

was a contributing factor to any observed gains. The students’ regular classroom instructors were 



81 
 

used to alleviate concerns over the effect I may have had on the outcomes. For example, as a 

former educator and researcher in the field, I may possess greater theoretical and practical 

understanding that might affect the teaching moves (Empson & Jacobs, 2008) that were 

implemented during instruction in Experiment 1. It is also possible that perhaps the novelty of a 

new instructor could be driving any effects.  

The use of the students’ regular classroom instructors had the added benefit of 

determining whether an educator who is not a researcher in the field can implement the 

instructional intervention effectively. Moreover, care was taken to ensure fidelity to instructional 

conditions, including professional development before the intervention and ongoing daily 

support. Furthermore, overhead slides with scripted text were provided to ensure that students in 

each condition were exposed to the appropriate instruction and content. Finally, teachers were 

unaware of the hypotheses involved in this experiment.  

The content of the Simultaneous and Sequential conditions in Experiment 2 was nearly 

identical to Experiment 1, except for one important change: the use of area models in student 

work and classroom presentations. In Experiment 1, the area model was an image of a battery 

power indicator for the Simultaneous condition and the area model was a plain rectangle with 

continuous shading for the Sequential condition. There was a concern that the contextual nature 

of a battery power indicator rather than an image of a shaded rectangle introduced experimental 

variation with contextualization versus without it (Cox & Griggs, 1982; Pollard & Evans, 1987). 

Thus, any differences observed between the Simultaneous and Sequential conditions in 

Experiment 1 may have had less to do with the timing and order of the presentation of materials 

and more to do with the contextual scenario of a battery power indicator versus a simple 
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rectangular area model. Based on this concern, the determination was made to use the image of 

the battery power indicator in both the Simultaneous and Sequential conditions.  

Modifications were made to the format of the arithmetic estimation task to better 

determine whether students can evaluate the reasonableness of an estimate for fraction arithmetic 

by providing students with three choices rather than an open response format. The open-response 

format in Experiment 1 was problematic because typing fraction responses on a computer was 

unfamiliar to them . Moreover, the timed nature seemed to encourage students to adopt a strategy 

(e.g., attempt to calculate exactly, add numerators and denominators, etc.) and maintain the 

strategy throughout the task. In other words, it was not always clear if students could evaluate the 

reasonableness of an answer and perhaps the timed nature of the task did not allow them to 

utilize a particular strategy, then evaluate the estimate, and finally type the result. In providing 

multiple-choice answers, I sought to determine whether students could judge the reasonableness 

of given answers This choice has practical significance because Common Core standards (2019) 

suggest using “benchmark fractions and number sense of fractions to estimate mentally and 

assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, 

by observing that 3/7 < 1/2". Moreover, I utilized the multiple choice nature of this task to 

determine whether having an answer that employed a flawed strategy that elicited impulsive 

calculation resulted in worse performance than when answer choices did not elicit impulsive 

calculation. Answer choices that might elicit impulsive calculation involved an estimate with a 

flawed approach such as adding across numerators and denominators (e.g., answers like 19/21 

for problems like 12/13+7/8 versus round benchmark numbers such as 1/3,1/2, 1, etc.). All of 

these changes will be described in length in the Method section that follows. 
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3.5.1 Method 

Participants 

Participants were 264 middle school students across 19 classrooms, taught by 5 

classroom teachers recruited from a middle-income public school district in northern New 

Jersey. For assignment to condition, stratified random assignment was conducted such that each 

teacher’s 3 general education classes were randomly assigned to one of three conditions 

(Simultaneous, Sequential, and Control). Therefore, this design could partially control for 

teacher effect since each teacher taught each of the conditions. Teachers also taught an inclusion 

class, where there were several students with special needs and the possible inclusion of other 

struggling students without special needs. Each inclusion class was randomly assigned to 

Simultaneous, Sequential, or Control. Thus, there were 2 Simultaneous, 2 Sequential, and 1 

Control inclusion class. Finally, in discussing with the school district, we opted not to include the 

advanced classes in the study because these classes were on an accelerated track, where they 

were covering 9th and 10th grade content material rather than middle school content. There was a 

concern that the instructional content of the intervention would not be beneficial to students and 

would detract from their accelerated schedule. Relatedly, the school district also opted to exclude 

the self-contained special education classes, where students have more significant cognitive and 

behavioral problems. Administrators were concerned that the content would not meet the specific 

needs of the students in these classes. Finally, one classroom teacher opted not to participate in 

the study. So, in total there were 7 Simultaneous classes, 7 Sequential classes, and 5 control 

classes, where consent/assent was received from all but 2 students. Due to attrition with some 

students not having taken the posttest, the final sample size was 252 (93 students in the 

Simultaneous condition, 85 in the Sequential condition, and 74 students in the Control 
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condition). Testing was done via Qualtrics in a quiet classroom setting. Instruction occurred in 

students’ regular math classrooms by the regular math teacher.  

 

Tasks 

Number line estimation 

No Modifications from Experiment 1: The format and content of this task was identical to 

Experiment 1, where students were tasked with placing fractions on a number line from 0 to 1 

and placing fractions on a number line from 0 to 5. 

 

Decile Number Line Estimation (i.e., 0-1 line labeled with tenths) 

Modifications and Rationale: The format of this task was identical to Experiment 1, 

where students were tasked with placing fractions, decimals, and percentages on a 0-1 number 

line partitioned and labeled by tenths. The only difference with this task was a slight variation in 

the fractions, decimals, and percentages that were estimated on the number line. In Experiment 1, 

students were more accurate with placing fractions such as 2/7 on the decile number line than 

other fractions such as 6/17. I hypothesized that this observed difference had to do with a flawed 

fraction to decimal translation strategy, where students were concatenating some digits from 

fractions such that a/b=0.ab and using this decimal value to place the fraction on the decile 

number line. For example, 2/7 when translated to decimal form using this flawed translation 

strategy (a/b=0.ab) is quite close to .27 (versus the actual answer of .286). Many of the students 

placed the fraction 2/7 precisely at 0.27 and PAE for this item was a lot lower than that for other 

items. On the other hand, 6/17 when translated to decimal form (0.35) is quite far away from .67, 

which was where most of the students placed the fraction 6/17 on the decile line.  
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Based on these observations from Experiment 1, I selected fractional values whose 

decimal value is quite far from the hypothesized translation error (e.g., the numerical distance 

between 6/17 translated through the flawed approach (.67) and the actual decimal value (.35) is 

.32). Thus, I purposely selected the fractions in this task to yield a high PAE for individual items 

if they were using this hypothesized flawed translation strategy (Table 5). In this way, the task 

design ensured that students could not get close to the right answer using the a/b=0.ab flawed 

approach. In other words, if a student placed 2/7 at 0.27 because they were using the a/b=0.ab 

strategy, then their accuracy would actually be quite high for that trial even though they were 

using a flawed approach because their PAE would be .02 for that trial.  

Table 5: Values Selected for Fraction Decile Number Line Trials, hypothesized flawed 
translation, and resulting PAE if hypothesized flawed translation is employed.  

Fraction 
Decile 

Number Line 
Trial 

Hypothesized  
Flawed Translation 

Resulting PAE if 
hypothesized flawed 

translation is used 

1/19 0.19 0.14 
9/20 0.92 0.47 
9/17 0.97 0.44 
6/17 0.67 0.32 
5/6 0.56 0.27 

8/14 0.84 0.27 
9/15 0.95 0.35 
4/5 0.45 0.35 
 

Fraction Addition Estimation 

Modifications and Rationale: Instead of the open response format from Experiment 1, 

students were presented with 24 multiple choice fraction addition estimation problems. Through 

this methodology, I constrained students’ strategy use by not allowing them to calculate the exact 

answer because none of the answer choices included the exact answer. This methodology had the 
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benefit of assessing whether students were able to judge the reasonableness of an estimate for 

fraction arithmetic, as outlined by Common Core Standards (2019). Furthermore, I was able to 

determine whether students would gravitate towards answers that employed flawed calculation 

strategies when answer choices with such “lures” were present or not. An example of a fraction 

“lure” is “What is the best estimate for 1/5+1/2: 2/7, 1/3, or ¾?” In this example, 2/7 is a lure 

because it is the result of employing the flawed Across Strategy from Experiment 1, where 

students add across the numerators and denominators. An example of a fraction “no lure” item is 

“What is the best estimate for 2/10+2/4: 1/5, 1/3 or 2/3?” In this example, the answer choices 

involve answer choices that are more like benchmark fractions and do not include components 

that are the sums or products of the individual digits of the addends, such as 4/14 in this case. I 

reasoned that if students were less accurate when trials contained “lures” than when trials did not 

contain “lures,” this would provide evidence of what I call impulsive calculation. I defined 

impulsive calculation as taking action with the digits without thinking about the values. Thus, I 

predicted that students would be more accurate on trials that contained “no lures” than trials that 

contained “lures,” because it would not allow them to impulsively calculate. Moreover, I 

reasoned that students would be more likely to select the “lure” than the other wrong answer on 

the “lure trials.”  

Procedure: Across the 24 trials, there were 12 with “lure” responses and 12 with “no lure 

responses.” The 12 problems with “lure” responses included 3 with “across lures,” 3 with 

“hybrid lures,” 3 with “decimal lures,” and 3 with “percent lure” responses. The 12 problems 

with “no lure” responses included 6 problems with fraction responses that consist of “round 

number” fractions that do not elicit lures, 3 problems with decimal responses that do not elicit 

lures, and 3 problems with percent responses that do not elicit lures (e.g., a decimal lure for 
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7/8+2/3 is .9 because the answer involves adding the numerators and placing a decimal next to 

the sum). Students were instructed not to compute the exact answer but to select the best estimate 

for the given problems. They were given 20 seconds to answer the question before the program 

automatically moved onto the next problem. They recorded their estimate by clicking on the 

multiple choice item response that they thought best estimated the sum. Additionally, I also 

included the 12/13+7/8 estimation problem with answer choices 1,2,19,21 (Carpenter et al, 1980) 

to be analyzed separately to determine how aligned performance of this population is to past 

performance and determine whether there are any individual differences that predict ability to 

answer the estimation problem correctly (See Appendix A for all assessment items). 

 

Magnitude Comparison across Notations 

Modifications and Rationale: The format of the Magnitude Comparison Across Notations 

task was identical to the posttest of Experiment 1, such that students were presented with 36 

comparison problems across rational number notations. As a reminder, the Experiment 1 posttest 

was slightly different from the Experiment 1 pretest because I wanted to control for confounding 

factors. Therefore, there were 18 magnitude comparison trials that required comparison of values 

with identical or nearly identical digits (e.g., compare 4/5 versus 45%) and 18 trials that were 

matched for magnitude across all notations between compared values (e.g., compare .40 versus 

25%, 2/5 versus .25, .4 versus 1/4, etc.). The problems were carefully selected so that there were 

equal numbers of items in each of 6 categories: Fraction>Percent, Percent>Fraction, 

Decimal>Percent, Percent>Decimal, Fraction>Decimal, and Decimal>Fraction. The posttest for 

Experiment 2 contained half of the same comparison items and half novel items (See Appendix 

A for all assessment items).  
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Standardized math achievement tests 

Modifications and rationale: The only difference from Experiment 1 is the type of 

standardized math test (Experiment 1 used TerraNova and Experiment 2 used PARCC) because 

these were the schools’ test of choice for standardized testing. Thus, in Experiment 2, students’ 

scores from the mathematics section of the PARCC, the standardized test typically administered 

to public school students in New Jersey, were obtained from the school. The test was given 

toward the end of the students’ previous grade level, about a year before the study began. Scores 

on the PARCC range from 650-850. These test scores served as measures of students’ overall 

mathematical ability.  

 

Student Demographic Information 

No Modifications from Experiment 1: Relevant demographic information about students’ 

gender, disability status, and English Language Learning (ELL) status were collected from the 

district along with the standardized test scores. This information was de-identified and utilized as 

necessary controls and to examine any trends in the data across conditions.  

 

General Procedure 

Prior to the start of the study, the teachers received professional development on how to 

implement the instruction for all conditions, including a demo lesson with students that were not 

included in the study. To ensure that teachers did not carry over strategies from one condition to 

another, scripted lessons with overhead slides were provided and teachers were directed to 

maintain fidelity to the conditions with on-going daily support provided by the principal 

researcher.  
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Classes completed a pretest on the computer with the primary researcher and their regular 

classroom teacher during one math period. Most students completed the assessment in 

approximately 30 minutes. Then, spread out over a little more than 3 weeks, largely though not 

entirely on successive days (the non-successive days being due to school functions), students 

completed the15 warm-up activities as designated by their condition. The regular classroom 

teachers taught all brief warm-up activity lessons. After students completed the 15 lessons of 

warm-up activities according to condition, they took a post assessment that included half of the 

same items as the pretest and half new items. 

Student work was collected and classes were observed randomly throughout the three 

weeks to ensure fidelity of instruction to the conditions. Student work was organized in a booklet 

and was collected and redistributed daily. At the end of the three weeks, the researcher collected 

the booklets to be coded for analysis (Examples of Student Workbook Pages in Appendix B). 

Feedback was provided daily by giving the correct answers to the whole class, together with 

explanations of how the answer was arrived at and why it was correct. Each instructional 

condition will be described in more detail subsequently. Following the completion of the 

intervention, the students completed the post-assessment on a computer during a single 30-

minute session. The post-assessment included the same number line and fraction arithmetic 

estimation tasks with half familiar problems and half novel problems (See Appendix A for all 

assessment items). The researcher also randomly selected students from each condition for a 

clinical interview about their rational number understanding within 1-2 weeks of the post-

assessment. The clinical interview involved items from the Rational Number Test utilized by 

Moss & Case (1999), questions regarding number line estimation strategies, and a question on 
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fraction arithmetic estimation (Appendix A). Analysis of the interviews in conjunction with other 

data sources will be discussed in Chapter 4. 

 

Instructional Procedures 

Each day for three weeks, the students encountered a quick instructional activity at the 

beginning of each class, which varied according to their condition: Simultaneous, Sequential, or 

Control condition.  

For the Simultaneous and Sequential conditions, the instructional procedures in 

Experiment 2 were identical to those in Experiment 1 except for the use of area models in 

student work and classroom presentations. In Experiment 1, the area model was an image of a 

battery power indicator for the Simultaneous condition and the area model was a plain rectangle 

with continuous shading for the Sequential condition. A concern was that the contextual nature 

of a battery power indicator rather than an image of a continuously shaded rectangle introduced 

too much experimental variation. In other words, perhaps the differences that were observed 

between the Simultaneous and Sequential conditions had more to do with a contextual scenario 

of a battery power indicator rather than a simple rectangular area model and less to do with the 

instructional materials. Based on this concern, I opted to utilize the image of the battery power 

indicator in both the Simultaneous and Sequential conditions. Thus, overhead slides and student 

activity books included images of battery power indicators for any partitioning or estimation 

activities with area models in both the Simultaneous and Sequential condition.  

Students in the Control condition engaged in rote review of fraction addition/subtraction 

utilizing the same values from the other two conditions over the course of three weeks. The 

students in the Control condition engaged in activities for the same amount of time as the 



91 
 

Simultaneous and Sequential conditions, approximately five minutes per day, for 15 classes in 

total. This activity was chosen because number line training was hypothesized to be more 

important than mere practice with fraction arithmetic for improving fraction addition estimation. 

To maintain consistency across conditions, teachers were also provided with scripted review of 

fraction addition/subtraction and daily review lessons accompanying overhead slides. 

Importantly, discussion about estimation or use of different notations was excluded from any 

warm-up activities in the control condition. The Control condition focused on practice of fraction 

addition/subtraction procedures alone. The reason for this was to test the hypothesis that the 

number line conditions, specifically the Simultaneous condition, would be more beneficial in 

improving student estimation ability with fraction arithmetic at posttest over rote practice with 

fraction arithmetic alone. Typically in school, children are not provided with an opportunity to 

practice estimation of fraction arithmetic but they are often provided with additional rote practice 

with fraction arithmetic. I hypothesized that practice alone with fraction arithmetic was not 

enough to improve their estimation abilities for adding fractions. Therefore, the hypothesis was 

tested by determining whether the intervention aimed at improving number sense was more 

beneficial for improving fraction arithmetic estimation than rote practice with fraction arithmetic.  

 

Analyses 

Performance on all number line estimation tasks (endpoints 0-1, 0-5, and decile number 

line) was measured using percent absolute error (PAE), defined as |Participant’s Answer–Correct 

Answer|/Numerical Range. For example, if a participant was asked to estimate 3/5 on a number 

line marked with endpoints 0 and 1 and marked the location corresponding to 0.65, PAE for that 

trial would be |0.65–0.6|/1 = .05, where lower PAE indicates higher accuracy.  
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Magnitude comparison accuracy was scored as percent correct. Performance across 

notation comparison in the six categories (Percent>Fraction, Fraction> Percent, 

Percent>Decimal, Decimal>Percent, Fraction>Decimal, Decimal>Fraction) was analyzed to 

detect trends in overall perception of the size of individual notations to explore whether the 

results about biases found in Experiment 1 are replicated in Experiment 2. 

Given that the data included students nested within classes, the intraclass correlation 

(ICC) value was computed based on the unconditional mean model (i.e., no predictor). The ICC 

results of the outcome variables were small on measures (p<0.05), indicating that the proportion 

of between classroom variance is small compared to the total variance. Furthermore, preliminary 

analysis found no significant differences on the outcomes of interest between classrooms and 

other student demographics (e.g., gender). With the non-significant results and an insufficient 

number of classrooms (N=19, split among three conditions) for multi-level analysis (Maas & 

Hox, 2005), I used students’ scores as the unit of analysis. 

Thus, paired t-tests were used to compare performance on the pretest and posttest within 

each condition, and change scores (i.e., difference in performance from pretest to posttest) were 

submitted to ANCOVA with condition as between-subjects factors and pretest score as a 

covariate.  

3.5.2 Results 

Table 6 shows students’ performance on all tasks at pretest and posttest in the 

Simultaneous, Sequential, and Control conditions.  
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Table 6: Mean (standard deviation) performance on assessment tasks by condition 
and test time. Note: PAE denotes percent absolute error.  

 Sequential  
Condition 

Simultaneous 
Condition 

Control  
Condition 

 
Task 
 

Pretest Posttest Pretest Posttest Pretest Posttest 

0-1 Number line  
(No Partitions)  
PAE  

.08(.07) .07(.05) .10 (.10) .07 (.07) .09 (.09) .09(.09) 

    
0-5 Number line  
(No Partitions)  
PAE 

.18(.10) .18(.08) .21 (.11) .21(.11) .18(.10) .18(.10) 

    
Fraction Decile 
Number line (0-1 line 
partitioned and labeled 
by tenths) PAE 

.21(.12) .15(.10) .21(.13) .16(.12) .21(.13) .19(.12) 

    
Decimal Decile 
Number line (0-1 line 
partitioned and labeled 
by tenths) PAE 

.14(.14) .07(.09) .12(.14) .06(.09) .12(.13) .09(.12) 

    
Percent Decile Number 
line (0-1 line 
partitioned and labeled 
by tenths) PAE  

.05(.08) .04(.04) .05 (.06) .04 (.05) .05(.07) .06(.09) 

    
Magnitude Comparison 
(Across Notations)  
% Correct 

.78(.17) .82(.14) .79(.18) .85(.14) .78(.17) .81(.16) 

     
 

Number line Estimation (No Partitions, 0 to 1 endpoints) 

Paired t-tests within condition demonstrated that PAE on this task improved (i.e., 

decreased) in both the Sequential condition, t(84)=2.158, p=.034, d=.22 and the Simultaneous 

condition, t(92)=3.395, p<.001 d=.35. PAE on this task did not improve in the Control condition 

p>.6. When difference scores were submitted to ANCOVA with condition as between subject 
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effect and pretest score as a covariate, the effect of condition was significant F(2, 249) = 3.93, p 

=.021, 𝜂! = .031, and Bonferroni adjustments for multiple comparisons demonstrated that 

improvement was considerably greater in the Simultaneous than the Control condition (p=.017). 

There was not a difference between the Sequential and Control condition (p=.225) or between 

the Simultaneous and Sequential condition (p=.973).  

 

Number line Estimation (No Partitions, 0 to 5 endpoints) 

PAE on this task did not improve (i.e., decrease) in any of the conditions. When 

difference scores were submitted to ANCOVA with condition as between subject effect and 

pretest score as a covariate, there was no significant difference in improvement by condition 

(p>.05). 

 

Fraction Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

Paired t-tests within condition demonstrated that PAE on this task improved (i.e., 

decreased) in both the Sequential condition, t(84)=5.027, p<.001, d=.53 and the Simultaneous 

condition, t(92)=5.178, p<.001 d=.54. PAE on this task marginally improved in the Control 

condition p=.063. When change scores were submitted to ANCOVA with pretest scores as a 

covariate, there was no significant difference in improvement by condition (p>.05). 

 

Decimal Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

Paired t-tests within condition demonstrated that PAE on this task improved (i.e., 

decreased) in the Sequential condition, t(84)=4.476, p<.001, d=.5, the Simultaneous condition, 

t(92)=4.255, p<.001 d=.44, and the Control condition t(74)=2.01, p=.048, d=.23. When change 
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scores were submitted to ANCOVA with pretest scores as a covariate, there was no significant 

difference in improvement by condition (p>.05). 

 

Percent Decile Number line (Partitioned and labeled by tenths, 0 to 1 endpoints)  

Paired t-tests within condition demonstrated that PAE on this task marginally improved 

(i.e., decreased) in the Simultaneous condition, t(92)=1.899, p=.061, d=.2 . PAE on this task did 

not improve in the Sequential or Control condition. When change scores were submitted to 

ANCOVA with pretest scores as a covariate, the effect of condition was significant F(2, 249) = 

3.301, p =.038, 𝜂! = .026, and Bonferroni adjustments for multiple comparisons demonstrated 

that improvement was marginally greater in the Simultaneous than the Control condition 

(p=.058). There was not a difference between the Sequential and Control condition (p=.1) and 

the Simultaneous and Sequential condition (p=1.0).  

 

Relation among Notations on Number line Performance  

In addition to investigating how students performed on individual number line measures, 

I also investigated the relative performance across number line estimation for the different 

notations (Fraction Decile Number line, Decimal Decile Number line, Percent Decile Number 

line) using a repeated-measures analysis of variance (ANOVA) on PAE. There was a main effect 

of notation (reporting the Huynh-Feldt correction for a violation of sphericity), F(1.95, 515.29) = 

187, p <.001, 𝜂! = .415, suggesting that performance was best for the percent decile number 

line estimation (Mpercent=.05), next best for the decimal decile number line estimation 

(Mdecimal=.13), and worst for the fraction decile number line estimation (Mfraction=.21).  
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Average performance for each notation (fraction, decimal, and percent) was calculated to 

examine whether performance improved from pretest to posttest by condition. Thus, I generated 

a variable called average decile performance, which averaged PAE across the fraction, decimal, 

and percent decile number line tasks. When change scores were submitted to ANCOVA with 

average pretest scores as a covariate, there was a significant difference in improvement by 

condition F(2, 249) = 6.86, p =.001, 𝜂! = .052, and Bonferroni adjustments for multiple 

comparisons demonstrated that improvement in the Simultaneous (p= .004) and Sequential 

condition (p=.003) were significantly greater than the Control condition. There was no difference 

between the Simultaneous and Sequential condition on improvement (p=1.0).  

 

Magnitude Comparison Across Notations 

 Analyses were conducted for magnitude comparison across all notation comparison 

problems as well as looking at specific notation comparison types (Percent>Fraction, 

Fraction>Percent, Percent>Decimal, Decimal>Percent, Fraction>Decimal, Decimal>Fraction). 

Across All Notations Comparisons: Paired t-tests within condition demonstrated that 

overall percent accuracy on Magnitude Comparison across Notations improved in the Sequential 

condition, t(84)=-2.901, p=.005, d=.31, the Simultaneous condition, t(92)=-4.475, p<.001 d=.46, 

and the Control condition t(73)=-2.978, p=.004, d=.35. When difference scores were submitted 

to ANCOVA with condition as a between subject effect and pretest score as a covariate, the 

effect of condition was significant suggesting greater differential improvement according to 

condition F(2, 251) = 3.109, p =.046, 𝜂! = .024.  Bonferroni adjustments for multiple 

comparisons demonstrated that improvement was considerably greater in the Simultaneous 

condition than the Sequential (p=.03) and Control conditions (p=.04). 
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Specific Notations Comparisons:  To test the hypothesis that students do not think about 

equivalent rational numbers as being equivalent in size, I examined accuracy across trials to 

determine whether students perceive one notation as larger than another as in Experiment 1. 

Figure 9 displays students’ performance across the six categories of comparisons at pretest: 

Percent>Fraction, Fraction> Percent, Percent>Decimal, Decimal>Percent, Fraction>Decimal, 

Decimal>Fraction. This analysis yielded a similar pattern of results to Experiment 1 except for 

the lack of a difference between fraction>decimal and decimal>fraction performance.  

 
(A)                     (B)                      (C) 

Figure 9: Experiment 2 pretest accuracy for magnitude comparison across notations. 
The chart is segmented by students’ inferred biases of which notation is greater. The data 

includes all 7th and 8th grade students. The comparison types include: (A) Percent-to-Fraction 
Comparisons (B) Percent-to-Decimal Comparisons (C) Fraction-to-Decimal Comparisons. 

At pretest, overall accuracy was 89% for items where percent is larger than the fraction, 

as compared to 67% accurate for items where percent is smaller than fractions. Moreover, 

accuracy was 91% for items where the percent was larger than the decimal, as compared to 78% 
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accurate for items where the decimal was smaller than the percent. Students were 74% accurate 

when the decimal was greater than the fraction and 73% accurate when the fraction was greater 

than the decimal. Paired t-tests were conducted to determine whether the difference between 

these categories of comparison were significant. Results replicated the finding that middle school 

students (N=264) have a bias towards perceiving percentages as larger than fractions/decimals  

Specifically, paired t-tests revealed differences between mean scores for items where 

Percent>Fraction and Fraction>Percent (t(263)= -11.227, p<.001) and Percent>Decimal and 

Decimal>Percent (t(263)= -6.864, p<.001). However, unlike in Experiment 1, the bias towards 

perceiving fractions as larger than decimals did not exist in this sample, as there was not a 

significant difference between mean scores for Fraction>Decimal as compared to 

Decimal>Fraction (t(263)=-.686, p=.493). 

 Since these biases have not been documented previously in the literature, I carefully 

examined the fraction, decimal, and percent values themselves to determine whether there could 

be some other confounding variable to explain these results. For example, I found that the mean 

value of percentage across all trials (M=0.405) was slightly less than the mean value of 

fractions/decimals across these same trials (M=0.407). This slight difference does not explain 

why students perceived percentages to be larger because in actuality they were slightly smaller 

on average. Furthermore, the ratios between values across trials comparing fractions/decimals to 

percentages was on average slightly larger when the fraction or decimal was the correct answer 

(M=2.99) than when the percent was the correct answer (M=2.41). Decades of research on 

magnitude comparison suggest that it is easier for individuals to select the larger value as the 

ratio between two values increases. In other words, it is easier to select the larger value for 40 vs. 

20 than 21 vs. 20 because the ratio between the first two values is 2 and the ratio between the 
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second two values is 1.05. Thus, it theoretically should have been easier for students to select the 

fraction/decimal as the larger value in comparisons to percentages because the ratio between the 

values was larger on average when the correct answer was a fraction/decimal compared to a 

percent. For example, the ratio between 52% vs. 2/5 and the ratio between 5/6 vs. 65% is about 

the same (1.3 and 1.28 respectively), suggesting that these trials are of approximately equal 

difficulty level. Yet, there was a difference in performance when the percent was the larger value 

(89.4%) than when the fraction was the larger value (50.2%). Even on trials where the ratio 

between values compared was identical because it used identical magnitudes but in different 

notations, there were discrepancies in performance. For example, accuracy was very high for the 

comparison of 40% vs. 1/4 (M=91%) as compared to quite low performance for the comparison 

of equivalent values where the larger value is written in fraction form 2/5 vs. 25% (M=63%). 

Additionally, it could be that what was being measured is actually just general magnitude 

comparison ability rather than cross notation ability (i.e., if a student knows that 1/10 is a number 

close to 0, than the probability is high that the other number is likely larger). If this is the case, 

then the magnitude comparison task measured how students could relate at least one value to the 

endpoints of 0 and 1. Thus, performance would be better if at least one value was close to an 

endpoint. However, I examined performance on comparison tasks where one of the values was 

greater than or equal to .8 or less than or equal to .2. Performance was slightly worse when one 

of the values contained a value within .2 of the endpoints (M=77.06%) as compared to trials with 

no values within .2 of the endpoints (M=78.2%). Thus, we can likely exclude the explanation 

that students were using knowledge of extreme values and guessing with a high degree of 

accuracy that the other value was smaller or larger. In sum, we can likely exclude a number of 

explanations that might explain the results. 



100 
 

To determine whether condition had an effect on weakening these biases, I calculated a 

‘Bias score’ for each student, which was the difference between related categories (i.e., the 

difference between mean accuracy for Percent>Fraction and Fraction>Percent items and the 

difference between mean accuracy for Percent>Decimal and Decimal>Percent items). 

Theoretically, the difference between scores for items involving Fraction>Percent and 

Percent>Fraction should be about 0 because students should perform equally well on items 

whether the notation is larger or smaller than another notation. For example, students should 

perform equally well on items where the larger value is a percent (e.g., 2/5 vs. 52%) and where 

the larger value is a fraction (e.g., 25% vs. 2/5). Inspection of the bar graph for pretest scores 

(Figure 9) demonstrates that the difference between Fraction>Decimal and Decimal>Fraction is 

about 0, and indeed there is no statistically significant difference between mean scores for these 

items as discussed previously. Thus, I will not focus on Bias scores in fraction-to-decimal 

comparisons because there doesn’t appear to be a bias. However, there is a great discrepancy 

between scores on items where the percent is greater than the fraction/decimal and, as discussed 

previously. At pretest, all conditions followed the same general pattern of perceiving percent as 

greater than fraction and percent as greater than decimal. One-way ANOVAs were conducted to 

determine whether there was a difference in ‘Bias scores’ by condition at pretest, but this was not 

the case (p>.05 for both biases).  

Examination of Percentage is Greater than Fraction Bias by condition at posttest (Figure 

10) suggests that the bias was weakest for students in the Simultaneous condition at posttest 

because the mean difference in percentage correct between P>F and F>P is 17, as compared to 

20 in the Sequential condition, and 24 in the Control condition. When posttest Percentages are 

Larger than Fraction (P>F) Bias scores were submitted to ANCOVA with condition as between 
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subject effect and controlling for pretest bias, gender, and standardized achievement test the 

effect of condition was marginally significant F(2, 231) = 2.714, p =.068, 𝜂! = .023, suggesting 

that P>F bias is weakest in the Simultaneous condition at posttest.  

 
Figure 10: Experiment 2 posttest accuracy for the Percent is Greater than Fraction Bias 

(percent-to-fraction comparisons) by condition.  

Examination of Percent is greater than Decimal Bias by condition (Figure 11) suggests 

that the bias is weakest for students in the Control condition at posttest. The mean difference in 

percentage points between P>F and F>P for students in the Control condition is 15, as compared 

to 18 for the Simultaneous condition, and 17 for the Control condition. When posttest Percent 

greater than Decimal (P>D) Bias scores were submitted to ANCOVA with condition as between 

subject effect and controlling for pretest bias, gender, and standardized achievement test F(2, 

228) = .526, p =.592, 𝜂! = .005, the effect of condition was not significant suggesting that these 

differences among conditions in P>D bias are not significant.  
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Figure 11: Experiment 2 posttest accuracy for the Percent is Greater than Decimal Bias 

(percent-to-decimal comparisons) by condition. 
 

Finally, the effect of condition on improving Fraction>Percent items for students of high 

and low ability was examined, since there was a marginal difference by condition in the Percent 

is greater than Fraction Bias but not the Percent is greater than Decimal Bias. Theoretically, 

students of high ability would likely be at ceiling and not show very much improvement, 

whereas students with low ability would likely make greater improvement. Students of high 

ability were defined as those above the mean at pretest for Fraction>Percent items and students 

of low ability were those below the mean at pretest for Fraction>Percent items. Fraction>Percent 

performance was chosen as a discriminating measure since most students did much worse on 

these items than on the Percent>Fraction items. Further analysis of the Fraction>Percent items 

enabled a focus on an area that had the greatest potential for improvement. The low performing 

group improved more than the high-performing group (F(1,246)=51.986, p<.001) and students in 
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the Simultaneous condition improved more than those in the other conditions overall controlling 

for pretest ability (F(2,246)=5.041, p=.007). Figure 12 displays profile plots by ability and 

condition. For high performers, the condition had no effect (F(2,246)=.055, p= .947). For low 

performers, the condition predicted greater improvement (F(2,246)= 8.100, p<.001). 

Specifically, pairwise comparisons with Bonferroni adjustment for multiple comparisons 

demonstrated that the low performing students in the Simultaneous condition improved more 

than the low students in the Sequential (p=.004) and Control conditions (p=.001). This finding 

suggests that the Simultaneous condition was the most influential for improving low performers’ 

accuracy with fraction>percent items at posttest. For these low performing students, mean 

improvement in Fraction>Percent was .30 (SD=.34) p<.001, d=.88 for the Simultaneous 

condition, .13 (SD=.29), p=.007, d=.42 for the Sequential condition, and .10(SD=.24) p=.009, 

d=.42 for the Control condition.  

 
Figure 12: Experiment 2 profile plot of performance on items when the Fraction is 

Greater than Percent in Magnitude Comparison by ability (low versus high performers), 
condition, and test time. 
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This is an important finding as improved fraction>percent performance indicates that the 

percent is greater than fraction bias is less influential at posttest for children who performed 

poorly at pretest. Additionally, performance on fraction>percent items at pretest is one of the 

most closely related measures to performance on the fraction addition estimation lure items 

(.378). This correlation between fraction>percent items and fraction addition estimation is 

exceeded only by standardized tests of achievement (.388) and Magnitude Comparison Across 

Notations (.407), which encompasses F>Percent because it is a composite score across all 

comparison types. Table 7 displays correlations for variables of interest. Finally, it is important 

to note that the Fraction> Percent mean for these low performers improved from .32 to .61, 

which was just slightly below the pretest mean for all students. Thus, the Simultaneous 

Condition brought the lowest performing students up to the level of the average students after the 

intervention. 
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Table 7: Correlations for variables of interest at pretest for Experiment 2. 

Measure 
 

1 2 3 4 5 6 7 

1. F>P Items 
Accuracy 
 
 

-       

2. Fraction 
Addition Lure 
Estimation 
 

.378** -      

3. PARCC 
scores 
 
 

.468** .388** -     

4. Cross-
Notation 
Comparison 
Accuracy 
 

.810** .407** .562** -    

5. 0-1 Number 
line PAE 
 
 

-.490** -.274** -.559** -.547** -   

6. Fraction 
Decile Number 
line PAE 

-.558** -.360** -.476** -.620** .438** -  

7. Decimal 
Decile Number 
line PAE 

-.389** -.195** -.400** -.482** .322** .383** - 

8. Percent 
Decile Number 
line PAE 

-.333** -.264** -.260** -.413** .235** .287** .285** 

         **. Correlation is significant at the .01 level 

Fraction Addition Estimation  

All students did quite poor on fraction addition estimation at pretest with accuracy just 

slightly greater than chance given three multiple-choice options (M=34%, SD=15%). At posttest, 

performance was about the same (M= 33%, SD=18%) and there were no significant differences 
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by condition. Thus, contrary to the hypothesis, condition had no effect on fraction arithmetic 

estimation.  

However, the fraction addition estimation task was also utilized to measure whether 

students exhibit impulsive calculation. Theoretically, students should do worse on items where 

there was a fraction lure than items without a lure because the trials elicited calculation without 

thinking about magnitude. Lure trials involved an answer choice with a flawed strategy (e.g., 

what is the best estimate for 1/5+1/2: 2/7, 1/3, or ¾?, where 2/7 is an “across lure”). No lure 

trials involved all answer choices with round benchmark fractions (e.g., What is the best estimate 

for 2/10+2/4: 1/5, 1/3 or 2/3?). Results revealed that there was a difference in performance at 

pretest between items where fraction addition estimation had a fraction lure and when there was 

no fraction lure. In particular, students were 41% accurate on “No Lure” items as compared to 

34% accurate on “Lure” items, t(261)=-3.687, p<.001. Furthermore, wrong answers were 

statistically significantly more likely to be a lure than the other wrong answer t(255)=6.136, 

p<.001. This lends some support to the theory about students exhibiting impulsive calculation.  

 

Individual differences in predicting estimation ability 

In addition to the improvements on the measures described earlier, I also wanted to 

examine individual differences in predicting estimation ability, particularly in the presence of 

potentially distracting information. In this analysis, I focused on estimation ability in the 

presence of distraction at both the level of an individual value (decile number line estimation) 

and at the level of combination of values (fraction addition estimation with lure answer choices 

and a special focus on the infamous fraction addition estimation problem 12/13+7/8 from 

Carpenter et al, 1980).  
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Individual Values- Based on the findings from Siegler and Thompson (2014) that 

demonstrated weaker performance for number line estimation on lines that were partitioned and 

labeled by tenths, I theorized that the decile number line could create a potentially distracting 

situation. Students that have weak understanding of the holistic value of a fraction might focus 

on the numerator or the denominator rather than focus on the magnitude of the fraction. In 

particular, the first hypothesis suggested that integrated rational number sense would help 

students persevere in attending to magnitude during situations that could potentially be 

distracting such as number lines that were partitioned and labeled by tenths.  

Indeed, performance was significantly worse on the decile number line task (PAE=.21) as 

compared to the unlabeled 0-1 number line task(PAE=.09) (t(263)=15.738, p<.001), suggesting 

the task was sufficiently distracting. Hierarchical linear regression (Table 8) was used to 

determine whether each additional variable explains additional variance in predicting fraction 

decile number line estimation. The following three variables were added to the model to 

determine whether they added more explanatory power to performance in placing fractions on 

the decile number line:  

1. PARCC Score: The PARCC score, the standardized test of math achievement, 

was added to the model first to account for any predictive value of general math 

ability. PARCC score was a significant predictor of performance on the decile 

number line task (Step 1, p<.001).  

2. 0-1 Number Line Estimation: Number line PAE (on an unlabeled 0 to 1 number 

line) was entered next because it was hypothesized to be most closely related to 

how students would perform on the Decile Number line task. Theoretically, how 

students perform on a number line with endpoints 0 and 1 should be the same as a 
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number line with endpoints 0 and 1 that is labeled by tenths. Both Unlabeled 

Number line estimation and PARCC scores were predictive of Decile Number 

line PAE (Step 2, p<.001 for both).  

3. Cross-Notation Comparison: Cross-Notation Magnitude Comparison was entered 

last. Cross-Notation Comparison was calculated as a composite of the scores (i.e., 

average percentage correct) on comparisons that required students to compare 

between distinct notations (i.e., Fraction versus Decimal, Decimal versus Percent, 

and Percent versus Fraction). When it was added to the model, Cross-Notation 

Comparison was a significant predictor (Step 3, p<.001) and it added 14% of 

explanatory power to the model predicting Decile Number line PAE.  

Importantly, when controlling for PARCC and Cross-Notation Comparison Ability, 

Unlabeled Number line estimation was no longer a significant predictor of (p>.05) decile number 

line PAE. Examination of the standardized beta coefficients in Table 8 suggests that Cross-

Notation Comparison was the most important predictor of Decile Number Line PAE in the final 

model, above and beyond standardized test of achievement and unlabeled number line PAE. This 

suggests that higher performance on the Cross-Notation Comparison task was associated with 

better performance on the decile number line task, controlling for general math ability and 

unlabeled number line performance. This seems consistent with the hypothesis of better skill at 

integrating the three notations, as indicated by performance on the Cross-Notation Comparison 

task, helps students fight their way through the distracting number line information. 
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Table 8: Hierarchical Linear Regression Analysis predicting Fraction Decile Number 
Line PAE for Experiment 2. 

 b 
(unstandardized) 

SE b 𝛽 
(standardized) 

Step 1    
       Constant 2.631 .286  
       PARCC -.003 .000 -.476*** 

Step 2    
       Constant 1.881 .341  
       PARCC -.002 .000 -.335*** 
       Number line 0 to 1 PAE .369 .097 .252*** 
    
Step 3    
       Constant 1.270 .318  
       PARCC -.001 .000 -.155* 
       Number line 0 to 1 PAE  .134 .092 .092 
       Cross-Notation Comparison -.362 .048 -.480*** 

Note. R2=.226 For Step 1***; ∆R2=.044 for Step 2***, ∆R2=.140 for Step 3*** 
*p<.05, **p<.01, ***p<.001 
 Combination of values- Similar to examining what predicts ability to persevere in 

attending to magnitude of fractions at the individual level, I also wanted to examine what 

predicts ability to attend to magnitude of more than one fraction in situations that might be 

misleading. Thus, I explored what predicted students’ ability to estimate addition of fractions 

with lure item choices. For example, a fraction addition estimation task with lure responses 

would ask students to select the best estimate for 1/5+1/2 from these choices: 2/7, 1/3, or ¾. The 

answer choice 2/7 would be the “lure” response in the aforementioned problem because it 

encourages students to calculate across numerators and denominators rather than focus on 

magnitude. Thus, hierarchical linear regression was conducted to investigate individual 

predictors of fraction lure arithmetic estimation (Table 9). The following four variables were 

added to the model to determine whether they added more explanatory power to the variance in 

performance in estimating fraction arithmetic sums, where 1 of the 3 answer choices had a “lure” 

choice: 
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1. PARCC score: The PARCC score, the standardized test of math achievement, was added 

to the model first to account for any predictive value of general math ability. PARCC 

score was a significant predictor of performance on the decile number line task (Step 1, 

p<.001).  

2. No Lure Estimation Performance: Next, how students performed on fraction arithmetic 

estimation was added because, theoretically, how students performed on fraction 

arithmetic estimation without lures should most closely predict how students perform on 

fraction arithmetic estimation problems with lures. No lure trials involved simple 

benchmark fraction choices like 1/3, 3/8, or 3/4. By contrast, lure trials involved an 

answer choice with a “lure” such as 2/7 for 1/2+1/5, where the lure is derived from a 

calculation involving a flawed calculation strategy. Thus, it was entered into the model 

after the standardized measure of achievement (PARCC scores). Performance on “No 

Lure” fraction estimation significantly predicted performance on “Lure” estimation trials 

(Step 2, p<.001).  

3. 0-1 Number Line Estimation: Next, Number line estimation ability (0 to 1) was added to 

the model, as it has been shown to be an indicator of advanced mathematics outcomes 

(Siegler et al., 2012) and individual fraction estimation ability theoretically should predict 

how students estimate sums of fractions. However, Number line estimation ability did not 

add more explanatory power to the model (Step 3, p>.05) and it was not a significant 

predictor (p>.05).  

4. Cross-Notation Comparison: Cross-Notation Comparison Ability was included last as a 

measure of integrated number sense. Cross-Notation Comparison Ability is the composite 

score for all magnitude comparison across notation trials. I hypothesized that integrated 
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number sense allows students to persevere in attending to magnitude, especially in 

situations that may be distracting (Hypothesis 1). This analysis demonstrated that Cross-

Notation Comparison is a unique predictor of fraction addition estimation ability in the 

presence of distracting answer choices (Step 4, p<.001).  

Importantly, the standardized coefficient beta for Cross-Notation Comparison (.294) suggests 

that Cross-Notation Comparison is the most important predictor in estimation ability, even above 

general mathematical ability (PARCC scores). When accounting for other variables, Number 

Line Estimation PAE (performance on 0-1 unmarked number lines) is no longer a significant 

predictor of estimation ability.  

Table 9: Hierarchical Linear Regression Analysis predicting Fraction Addition 
Estimation for Experiment 2. 

 b 
(unstandardized) 

SE b 𝛽 
(standardized) 

Step 1    
       Constant -3.597 .614  
       PARCC .005 .001 .382*** 

Step 2    
       Constant -3.344 .603  
       PARCC .005 .001 .348*** 
       Fraction No Lure  .248 .068 .214*** 
           
Step 3    
       Constant -2.930 .734  
       PARCC  .004 .001 310*** 
       Fraction No Lure  .243 .068 .209*** 
       Number line 0 to 1 PAE -.204 .206 -.070 
           
Step 4    
       Constant -2.170 .734  
       PARCC  .003 .001 .200** 
       Fraction No Lure  .237 .066 .205*** 
       Number line 0 to 1 PAE .081 .211 .027 
       Cross-Notation Comparison .447 .109 .294*** 

Note. R2=.146 For Step 1***; ∆R2=.044 for Step 2***, ∆R2=.003 for Step 3, 
∆R2=.053 for Step 4***                                      *p<.05, **p<.01, ***p<.001 
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Additionally, I explored separately whether there might be individual differences in 

performance that can predict whether students are correct or incorrect with the 12/13+7/8 

estimation problem (Carpenter et al, 1980). Since this problem has been studied repeatedly since 

it was asked in 1978 and there has been little improvement (Lortie-Forgues et al., 2015), I 

wanted to test whether the theory that integrated number sense (as measured by Cross-Notation 

Comparison) predicts accuracy with this problem. In this analysis, I controlled for other 

important measures of mathematical ability such as PARCC scores (standardized test of math 

achievement) and Number line estimation PAE (on 0 to 1 unmarked number lines). I reasoned 

that general math ability should be important for estimation skills and magnitude representations 

for individual values should be predictive of estimating sums of two fractions.  

At pretest, students were asked to select the best estimate for 12/13+7/8: 1, 2, 19, or 21. 

Of the 210 students that answered the question, 33% selected the correct answer 2, 63% chose 19 

or 21, and 4% chose 1 as their answer choice. It is important to note that the original problem 

12/13+7/8 (Carpenter et al, 1980) was posed to 8th grade students. However, since the 

performance of the 8th grade students alone (N=135) was not different from the overall 

performance (M=33% correct), the following analysis includes all 7th and 8th grade students. 

Table 10 displays mean values for other predictors by problem accuracy. As discussed 

previously, PARCC scores can range in values from 650-850, PAE refers to the percent absolute 

error, and Cross-Notation (CN) Comparison ability is scored as mean percentage correct across 

all comparison trials. According to Table 10, students that were right had a mean PARCC score 

of 758.5, 0-1 Number line PAE of .1, and Cross-Notation (CN) Comparison score of 88% 

accuracy; students that were wrong had a mean PARCC score of 748.3, PAE of .15, and Cross-

Notation (CN) Comparison score of 75% accuracy. 
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Table 10: Descriptive statistics by estimate accuracy (right or wrong) for the 12/13+7/8 
estimation problem. 

Estimate 
 

Total Sample 
(N) 

PARCC 
(SD) 

0-1 PAE 
(SD) 

CN-
Comparison  

(SD) 
 

Right 
 

70 758.5 (17.3) .10 (.06) .88 (.13) 

Wrong 140 748. 3 (19.4) .15 (.09) .75 (.17) 

Summary 210 751.7 (19.3) .14 (.09) .79 (.17) 
 

 

Logistic regression was applied with accuracy for the 12/13+7/8 estimation problem as 

the dependent variable (coded 0=wrong and 1=right). Predictors included PARCC score 

(standardized test of achievement), Number line Estimation PAE (on 0 to 1 unmarked number 

lines), and Cross-Notation Comparison (composite score for magnitude comparison trials across 

fractions, decimals, and percentages). According to the model (Table 11), the log odds of a 

student being correct with selecting an appropriate estimate was positively correlated with Cross-

Notation Comparison (p=.001) but not with the other predictors. In other words, the higher the 

Cross-Notation Comparison score, the more likely that the student would select the right answer 

controlling for other measures. The odds of selecting the right estimate for the problem were 

2.024 (=e0.705; Table 11) times greater for higher scores of Cross-Notation Comparison.  

The inferential goodness-of-fit test is the Hosmer-Lemeshow (H-L) test yielded a 𝜒!(8) 

of 3.80 and was insignificant (p>.05), suggesting that the model was fit well to the data.  
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Table 11: Logistic Regression Predicting Accuracy for 12/13+7/8 Estimation Problem  

Predictor 𝜷 SE 𝜷 Wald’s 𝝌𝟐 df p 𝒆𝜷 
 

Constant -.856 .170 25.335 1 <.001 .425 
zPARCC .132 .206 .413 1 .520 1.141 
zPAE (0-1 line) -.225 .266 .716 1 .397 .799 
zComparison .705 .220 10.230 1 .001 2.024 

 
Test    𝝌𝟐 df p  

 
Overall model evaluation 
        Likelihood ratio test 29.381 3 <.001  
Goodness-of-fit test 
       Hosmer & Lemeshow 3.80 8 .875  

 

Thus, we can infer that integration of notations as measured by the cross-notation 

comparison score is an important predictor for fraction addition estimation, above typical 

measures of math ability such as standardized tests of achievement or even fraction number line 

estimation. In other words, students that are of equal ability levels as measured by a standardized 

test of achievement and fraction number line estimation but perform better on selecting the larger 

of two values across notations are over two times more likely to select the appropriate estimate 

for this fraction addition estimation problem. 

3.5.3 Discussion 

Summary 

Number line estimation tasks (0-1,0-5, and a decile number line), magnitude comparison 

across notations, and fraction addition estimation were used to (a) better characterize how middle 

school students process magnitude information for fractions, decimals, and percentages and (b) 

investigate how magnitude understanding across distinct notations may be differentially 

implicated in the relation between rational number ability and estimation. Two approaches to 
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review of rational numbers were evaluated to determine whether there might be superior benefits 

of one instructional approach for review of rational numbers and whether one aids in improving 

estimation ability. The motivation for evaluating these two approaches was based on a theory of 

integrated numerical development (Siegler et al, 2011). Furthermore, I theorized that current 

approaches to instruction on fractions, decimals, and percentages leave students with limited 

understanding of the relation among notations (Moss & Case, 1999). Thus, classes of middle 

school students were randomly assigned to three different conditions (Simultaneous, Sequential, 

or Control) to determine whether there might be superior benefits of one instructional approach 

in solidifying or “recharging” rational number understanding. 

In the following section, I summarize the hypotheses and the results that provide 

evidence in support or against the hypotheses. Finally, the section concludes with a brief 

discussion of the findings.  

Hypothesis 1: Integrated Number Sense 

The analysis of Experiment 2 also indicated that understanding of the relations among 

notations is another important aspect of numerical development, apart from fraction magnitude 

representations alone. In the integrated theory of numerical development, Siegler, Thompson, 

and Schneider (2011) posited that fraction magnitude representation is central to numerical 

development. However, I argue that fraction magnitude representation alone does not tell the 

whole story when determining why many students make implausible errors with fraction 

arithmetic estimation (e.g., 12/13+7/8=19/21). Instead, it appears that integrated number sense, 

an understanding of how fractions, decimals, and percentages are related to one another, provides 

more explanatory power in how students attend to magnitude in situations that could be 

potentially distracting situations. Beyond distracting situations, the correlation between the 
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standardized measure of math achievement and integrated number sense is strong (r=.562, 

p<.001), similar to the strength of its correlation with fraction estimation on a 0-1 number line 

(r=-.559, p<.001). Therefore, integrated number sense as measured by magnitude comparison 

across notations is an important skill worthy of attention. In particular, the data provided 

evidence that there is a lack of integrated number sense in middle school students. Moreover, 

individual differences in integrated number sense explain variance in estimation ability.  

a) Students do not perceive equivalent rational numbers as equivalent in size. 

i. Many students do not view equivalent rational numbers as equivalent in size, as 

evidenced by worse performance when a percentage is the smaller value 

compared to fractions/decimals 

ii. Students do not exhibit the bias towards perceiving percentages as larger than 

fractions/decimals in all situations. Specifically, students did not estimate 

percentages as larger than their equivalent fractions and decimals. In fact, their 

decile number line performance with equivalent values across the three notations 

demonstrated greatest accuracy with percentages, followed by decimals, and then 

fractions. 	

b) Individual differences in integrated number sense predict students’ estimation ability in 

the presence of distraction  

i. Performance data within subjects provided evidence of impulsive calculation in 

the presence of distracting information, such that performance was higher in the 

non-distracting situations. In other words, students performed better on the 0-1 

number line estimation task as compared to fraction decile number line estimation 

(with potentially distracting partitions). Students also performed better on fraction 
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arithmetic estimation when answer choices had no lures as compared to fraction 

arithmetic estimation accuracy when one answer choice was a lure (e.g., adding 

across numerators and denominators). Moreover, wrong answer choices were 

more likely to be the lure choice than the other wrong answer.  

ii. Integrated number sense, as operationalized as the composite score on Magnitude 

Comparison Across Notations, was the most important predictor of placing 

fractions on the decile number line, above 0-1 number line estimation and 

standardized math scores. 

iii. Integrated number sense was the most important predictor of fraction arithmetic 

estimation with lure answer choices, even when controlling for their performance 

with trials that did not include lures, their standardized test of math achievement, 

and their 0-1 number line estimation ability. Moreover, 0-1 number line 

estimation ability was not a significant predictor in the model.  

iv. Logistic regression suggested that integrated number sense predicted higher 

accuracy with the 12/13+7/8 estimation problem, when math achievement test 

scores and 0-1 number line estimation ability are held constant. 	

Hypothesis 2: Improving Integrated Number Sense 

Based on findings about the importance of integrated number sense from Experiment 1, 

the current study tested a Simultaneous approach to number line instruction to determine if it 

resulted in greater outcomes over the Control condition. I reasoned that a Simultaneous and a 

Sequential number line intervention would improve outcomes over the Control condition but that 

the Simultaneous Condition would result in greater improvement for students over the Sequential 

Condition. Performance of students in the Simultaneous condition was not unequivocally better 
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than the other conditions. However, the results leaned in support of the hypothesis in an 

important way, suggesting that the intervention modestly improved integrated number sense. The 

findings point to avenues for future research and improved educational interventions. Table 12 

provides a simplified summary of whether students in each condition made Significant, Not 

Significant (NS), or Marginally Significant (MS) improvement from pretest to posttest. Finally, 

the third column details whether Simultaneous (Sim.), Sequential (Seq.), or Control (Con.) 

condition made substantially greater improvement over the other conditions. 

Table 12: Simplified summary of findings comparing improvements between 
conditions for Experiment 2  

 
Task 

 
Sequential 

Improvement 

 
Simultaneous 
Improvement 

 

 
Control 

Improvement 

Significant 
Improvement 

over other 
conditions 

0-1 Number line  
(No Partitions)  
PAE 

Significant Significant NS Significant for 
Sim. over Con. 

    
0-5 Number line  
(No Partitions)  
PAE 

NS NS NS NS 

     
Fraction Decile Number 
line (0-1 line partitioned 
and labeled by tenths) PAE 

Significant Significant Marginally 
Significant 

(p=.06) 

NS 

     
Decimal Decile Number 
line (0-1 line partitioned 
and labeled by tenths) PAE 

Significant Significant Significant NS 

     
Percent Decile Number line 
(0-1 line partitioned and 
labeled by tenths) PAE  
 

NS Marginally 
Significant 

(p=.06) 

NS Marginally 
Significant for 
Sim. over Con. 

 
Average Decile 
Performance across the 3 
Notations 

Significant Significant NS Significant for 
Sim. over Con. 
Seq. over Con. 

 
Integrated Magnitude 
Comparison (Across 
Notations)  
% Correct 

Significant Significant Significant Significant for 
Sim. over  

Seq. & Con. 
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a) Number line instruction will be beneficial over the Control instruction 

i. Supporting the hypothesis, improvement in students’ average performance across all 

fraction, decimal, and percent decile number line estimation was considerably greater 

in the Simultaneous and Sequential condition over the Control condition. 

ii. In some cases, the students in the Simultaneous condition made greater improvement 

than the Control condition; however, in these same cases, the students in the 

Sequential condition did not make greater improvement over the Control. The 

measures where Simultaneous improvement (but not Sequential) was greater than the 

Control were: 0-1 number line estimation and Percent Decile number line estimation 

(marginally significant improvement).  

iii. Contrary to the hypothesis, there was no difference on 0-5 number line estimation, the 

individual fraction and decimal decile number line estimation, or fraction arithmetic 

estimation at posttest 

b) The Simultaneous review will improve outcomes over Sequential review of notations 

i. The students in the Simultaneous condition made the greatest improvement in 

Magnitude Comparison Across Notations from pretest to posttest above the 

Sequential and Control conditions. Moreover, the lowest performing students in the 

Simultaneous condition made substantially greater improvement than the low 

performing students in the other conditions.  

ii. Aforementioned cases where students in the Simultaneous condition made greater 

improvement over Control, but the students in the Sequential did not make 

improvement over control also provided support of the hypothesis that the 
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Simultaneous is preferred over the Sequential approach (0-1 number line estimation 

and Percent Decile number line estimation) 

iii. Contrary to the hypothesis, the Simultaneous condition was not greater than the 

Sequential and Control condition on the other measures (0-5 number line estimation, 

fraction arithmetic estimation, fraction/decimal decile number line estimation).  

 

Consistent with the hypothesis that students do not perceive rational numbers as 

equivalent in size, Experiment 2 replicated the finding from Experiment 1 that middle school 

students demonstrate a bias towards perceiving percentages as larger than fractions and decimals. 

In other words, students were more accurate when the percentages were larger than fractions and 

decimals than when the percentages were smaller than fractions and decimals. Also, consistent 

with the hypothesis that students do not perceive rational numbers as equivalent in size, is the 

difference in PAE on the decile number line task for equivalent values (Mpercent=.05, 

Mdecimal=.13,Mfraction=.21). For this task, students placed equivalent fraction, decimal, and percent 

values on a line with endpoints 0-1 that was partitioned and labeled by tenths. For example, 

students were most accurate placing 35% on the decile number line, followed by .35, and finally 

6/17. Moreover, Experiment 2 posttest results demonstrated that students do not perceive 

equivalent rational numbers as equivalent in size, as many students still demonstrated a bias 

towards perceiving Percentages as larger than Fractions and Decimals.  

Unlike Experiment 1, there was no bias towards perceiving fractions as larger than 

decimals in this sample at pretest. It is possible that this discrepancy was due to the sample in 

Experiment 1 being less proficient with decimals, as this fraction>decimal bias was non-existent 

at posttest following review of rational numbers in Experiment 1. This explanation is likely 
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given that performance on the decimal decile number line estimation task and fractional decile 

number line estimation task was about the same in Experiment 1. This finding is different from 

the finding in Experiment 2, which demonstrated that it was easier for students to place decimals 

than fractions on a decile number line. As discussed previously, there are many varied 

misconceptions that students hold about decimals (Nesher & Peled, 1986; Resnick et al, 1989, 

Durkin & Rittle-Johnson, 2015). It seems likely that many students in Experiment 1 might have 

been basing their magnitude comparison across notations choices primarily on decimal 

misconceptions such as interpreting shorter train as smaller number (e.g., students might have 

been interpreting .8 as .08). This shorter-train misconception would lead them to select the 

fraction as the larger value on trials that included single-digit decimals. Another possibility is 

that the format of the pretest in Experiment 1 only included identical or nearly identical digits 

and did not include items that match across equivalent values as in Experiment 2 (e.g., 2/5 vs. 

25%, 40% vs. ¼, 2/5 vs. .25, etc.). The lack of this control could have had an impact on skewing 

the data in this way. As discussed earlier, there was no difference in performance by condition at 

posttest in Experiment 1 when these modifications were excluded from the analysis.  

Consistent with the hypothesis about the superiority of the Simultaneous review of 

rational numbers, students in the Simultaneous condition made greater improvement than the 

Sequential and Control condition in Magnitude Comparison across notations. In particular, the 

low performing students made substantial gains in Fraction>Percent items over the Sequential 

and Control conditions with an effect size of Cohen’s d=.88. This is consistent with other 

number line training interventions that have been particularly helpful for low-performing 

students (e.g., Fuchs et al, 2013). Additionally, students in the Simultaneous condition made 

significantly greater improvement on 0-1 number line estimation and marginally greater 
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improvement on Percent Decile Number line estimation than the students in the Control 

condition. Moreover, the difference between Sequential and Control condition for these 

measures was not significant. However, the hypothesis did not hold for all of the measures, as 

student improvement in the Simultaneous condition was not significantly greater than the 

students in other conditions in all cases. Additionally, there was no improvement in fraction 

arithmetic estimation by condition, as overall estimation ability was about at chance.  

Finally, consistent with the hypothesis about the importance of integrated number sense, 

an examination of individual differences in predicting estimation ability demonstrated that 

integrated number sense was a significant predictor of estimation ability in the presence of 

distraction. Integrated number sense was operationalized as the composite score for magnitude 

comparison across notations. The analysis focused on estimation ability in the presence of 

distraction at both (1) the level of an individual value (decile number line estimation) and (2) at 

the level of combination of values (fraction addition estimation with lure answer choices and a 

special focus on the 12/13+7/8 fraction addition estimation problem from Carpenter et al, 1980). 

The results of the current study demonstrate that performance was worse on the decile number 

line than the unlabeled number line, which is consistent with the results of Siegler and Thompson 

(2014). Similarly, the results demonstrate that performance was worse on the fraction addition 

estimation task where trials contained lure responses than trials that did not contain lure 

responses (e.g., those that contained “lure choices” such as 4/6 for an estimate of the sum of 

2/3+2/3 because it is derived from adding the numerators and denominators). Moreover, wrong 

answers were most likely to be lure answer choices than the other wrong answer. Thus, as I 

expected, performance was worse on tasks that could be potentially distracting lending support to 

the theory about students exhibiting impulsive calculation. At both the individual level (decile 
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number line) and the combination of values level (fraction arithmetic with lure choices), 

accuracy with magnitude comparison across notations added unique explanatory power to the 

variance in estimation ability. In particular, holding general math ability and number line 

estimation ability constant, the log odds of selecting the correct estimate for the 12/13+7/8 

problem were more than twice as likely for higher levels of magnitude comparison across 

notations. An important caveat is that students may have been using some form of a 

compensatory strategy in this magnitude comparison task that avoided actually comparing across 

notations (e.g., locating a value as being close to 0 or 1 and then guessing with a high degree of 

accuracy that the other value was either smaller or larger). However, it is unlikely this was the 

case because performance was about equal whether the comparisons contained an extreme value 

or not. Thus, it is possible though perhaps unlikely, that it is mere comparison ability rather than 

Cross-Notation Comparison ability per se that is yielding the predictive explanatory power in 

estimation. Future research might include both within notation and across notation comparisons 

to tease apart better the contributions of general comparison ability versus cross-notational 

comparison ability. Even still, the finding that magnitude comparison across notations is 

predictive of estimation ability is especially important when considering that the students in the 

Simultaneous condition made the greatest gains in magnitude comparison across notation. The 

next chapter examines Experiment 2 data from multiple sources, including interview data.  
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Chapter 4: Analysis of Qualitative Data in Conjunction with 

Quantitative Data 

Given that little is known about students’ understanding of the relation among fractions, 

decimals, and percentages (Tian & Siegler, 2018), in this section, I attempt to investigate 

students’ understanding of the relations among these notations through a grounded theory 

approach (Glaser, 1992; Glaser & Strauss, 1967; Strauss, 1987). Grounded theory is particularly 

well suited to inductively build theories from data in areas lacking a substantial body of 

literature. Thus, I am drawing upon grounded theory (Glaser, 1992; Glaser & Strauss, 1967; 

Strauss, 1987), in conjunction with analysis of student work, notes from classroom observations, 

quantitative data, and 23 student interviews, to posit theories about students’ understanding of 

estimation and the relations among rational number notations. 

4.1 Method 

Participants and Setting 

Forty 7th and 8th grade students were randomly selected for interviews after the 

completion of the Experiment 2 posttest. Interview consent forms were sent home with students 

who agreed to participate. Several students declined to participate; for these students, another 

student was randomly selected in their place. Interviews were only conducted after receiving 

parental consent and ensuring proper assent through the appropriate Institutional Review Board 

protocol. Because the posttest was administered during the two weeks prior to the end of the 

school year, there was a limited amount of time in which to conduct interviews; however, I was 

able to conduct interviews with all students who returned a consent form and agreed to 

participate (N=23). The sample of interview participants contained a mix of students from the 

Control condition (N=7), the Simultaneous condition (N=9), and the Sequential condition (N=7). 
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While student selection was random, the final sample was not a random sample given that 

several students did not agree to participate and 17 others agreed to participate but did not return 

their consent forms. Ultimately, I tried to maintain random selection of interview candidates by 

randomly selecting additional students after others declined. The purpose of this was to ensure 

that the sample of participants was as representative as possible, so that the findings could 

potentially transfer to new contexts.  

The interviews were conducted either in a quiet classroom or library. The interviews were 

not recorded due to concerns from the school district about audio or video recording. All students 

were provided with a packet of problems containing ample space on which to document their 

mathematical activity; these packets were utilized as part of the analysis in lieu of recordings. 

The principal researcher also took detailed notes and recorded all student responses in a de-

identified digital spreadsheet. 

Interview Protocol 

After ensuring receipt of parental consent, assent was obtained as per the Institutional 

Review Board protocol. The contents of the interview included three parts: (1) questions adapted 

from Moss & Case’s (1999) assessment items involving fractions, decimals, and percentages; (2) 

discussion of number line estimation strategies; and (3) fraction arithmetic estimation strategies 

(see Appendix A for full interview protocol). The principal researcher read each question to the 

students; students recorded their work for each question in the problem packet and explained 

their thinking about the strategies used to solve the problems. As part of the interview, students 

also placed fractions on a 0-1 number line and a 0-1 decile number line via Qualtrics and were 

asked to explain their strategies. Finally, they discussed how they would estimate 12/13+7/8. The 

questions were decided in advance, but because the interview was semi-structured, I asked some 



126 
 

follow-up questions to better understand what students were thinking. These follow-up questions 

varied by participant. In total, there were 23 interviews; each lasted between 20-30 minutes.  

Data Analysis Methods 

This investigation used a grounded theory approach. Grounded theory involves breaking 

down the data and creatively conceptualizing it in a new way, constantly comparing data to other 

forms of data until theories emerge (Glaser, 1992; Glaser & Strauss, 1967; Strauss, 1987). These 

theories are gradually refined as new pieces of data are examined. Thus, upon the completion of 

the interviews, interview and quantitative data were compiled for these 23 students and trends 

were examined. In many cases, the principal researcher did not know the student’s assigned 

condition during the interview, but the principal investigator was not completely unaware of each 

student’s condition assignment. That being said, the first stage of the analysis attempted to ignore 

condition assignment. A constant comparative method was used while (1) looking at each piece 

of data for general trends in measures and student explanations and (2) looking across student 

performance in comparison to their explanations. In particular, the method involved (a) 

generating categories and comparing incidents to these specific categories; (b) synthesizing 

categories and their properties; (c) contextualizing the theory; and (d) writing the theory (Glaser 

& Strauss, 1967, p. 105). Thus, it was important to stay very close to the data initially, 

questioning and comparing whether pieces of information are consistent with categories; then 

once all individual data elements were analyzed, theories were able to move from low-level 

abstract theory to more high-level theory (Strauss & Corbin, 1998). Furthermore, the large 

interviewee sample size (N=23) and diverse types of data sources (e.g., interview data, 

quantitative data, classroom observations, student work) allowed triangulation of theory and 

perspective (Glaser, 1992).  
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Finally, an attempt was made to understand the effects of condition (Simultaneous, 

Sequential, Control) in facilitating any changes from pretest to posttest interview for the decile 

number line task, given its importance understanding numerical processing in the presence of 

distraction (Hypothesis 1a). However, given that project constraints did not allow for interviews 

at pretest, the strategies students were using at pretest are unknown, and thus, it is difficult to 

analyze micro-changes occurring in student thinking as a result of condition. That being said, 

aggregated data has often concealed diversity in patterns of performance in the area of numerical 

cognition (Braithwaite & Siegler, 2018b; Siegler, 1987, 1989). Thus, case studies were used to 

examine individual students who were distracted at pretest and interviewed at posttest. This case 

study analysis consisted of examining the trajectories of students of approximately equal ability 

level (as measured by their standardized tests of achievement) and combining their pretest to 

posttest results with the explanations of their thinking from the interviews.  

4.2 General Findings 

Three theories emerged from the data using a grounded theory approach: 

1. Flawed translation strategy: Students use left-to-right whole number and decimal 

strategies for fractions, resulting in inappropriately concatenating values (a/b = 0.ab) 

2. Percent as a tool: Using a percent estimation strategy (e.g., 7/12 is a little more than 50%) 

for fractions may inhibit students’ use of flawed strategies and help them maintain focus 

on magnitude. 

3. Estimation is not valued: Students perceive mathematics as involving calculation rather 

than estimation for rational numbers. 

These theories are important because they shed new light on the focus of inquiry of this 

dissertation about understanding the relation among notations. In particular, these theories 
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suggest that difficulties with rational numbers may stem from an inability to appropriately 

evaluate magnitude of fractions based on flawed translations and a lack of belief about the 

importance of considering their magnitudes. Moreover, it lends support to the hypothesis that 

instruction aimed at improving integrated number sense might be beneficial for improving 

mathematics outcomes because estimating a fraction’s magnitude as a percent proved 

particularly useful for students. Perhaps, an even simpler intervention could be to have students 

estimate all fraction values as percentages and use those rough approximations as a means to 

evaluate the answers to fraction arithmetic problems. In other words, students might reason that 

12/13+7/8 is approximately 90%+90%, which is approximately equal to 180% or 1.8 (the correct 

answer is actually 1.798). More details will be described in subsequent sections.  

Additionally, the case studies provided greater understanding about the effects of condition 

in improving students’ ability to attend to magnitude. Four students of equal ability levels as 

designated by their math achievement score were analyzed as case studies because their pretest 

fraction decile number line estimation performance (PAE >.3) suggested that they were using the 

flawed translation strategy (a/b=0.ab) at pretest. One other student was included in this case 

study analysis because their standardized scores were borderline “exceeding expectations,” yet 

the student had the worst PAE on the decile number line task. Analyzing these students’ 

quantitative data and comparing it to their interview data provided comprehensive information 

about how the conditions affected their ability to maintain attending to magnitudes. In particular, 

it seems that the Simultaneous condition was beneficial for improving the diversity of 

appropriate strategies that the students had for evaluating magnitude and improvement on 

fraction arithmetic estimation when there were no “lure” answer choices.  
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 The following sections discuss the three theories that emerged from the data: flawed 

translation strategy, percent as a tool, and estimation is not valued. The final section highlights 

case studies to examine the effect of condition in fostering attention to magnitude.  

 

Flawed Translation Strategy involves a/b to 0.ab concatenation of values 

In Experiment 1, the majority of students selected the location of .67 for the placement of 

6/17 on the 0-1 number line that was partitioned into tenths. Thus, students concatenated a digit 

from the numerator and the denominator to place a fractional value (a/b) at the location 0.ab on 

the labeled number line. Experiment 2 found the same pattern of results. Table 13 displays the 

fractional values presented, the hypothesized student response (i.e., the concatenated wrong 

answer), the percent that selected the hypothesized wrong answer, the percent that selected the 

right answer, the mode, and overall accuracy. The hypothesized wrong answer appears as the 

mode 5 out of 8 times (5 out of 6 times for all values that do not have a denominator that can be 

easily multiplied to a power of 10).  

Table 13: Descriptive Statistics for Fraction Decile Number Line Trials 

Decile 
Number 

Line 
Trial 

Hypothesized 
Incorrect 
Answer 

Mode 

Percent 
selected the 

hypothesized 
incorrect 
answer 

Percent 
selected 

the 
correct 
answer 

1/19 0.19 .01, .19 8.2% 6.7% 
9/20 0.92 0.45 2.7% 21.6% 
9/17 0.97 0.97 8.6% 1.5% 
6/17 0.67 0.67 14.8% 3.4% 
5/6 0.56 0.9 5.7% 1.5% 
8/14 0.84 0.84 9.1% 3% 
9/15 0.95 0.95 11.9% 10% 
4/5 0.45 0.8 9.3% 43.7% 
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Figure 13 displays the distribution of responses for 6/17 on the decile number line. It 

appears that the most responses are around .67 (the hypothesized wrong answer) and .35 (the 

actual magnitude). The pattern of results with frequency of results peaking at the hypothesized 

wrong answer and to a lesser degree at the actual answer (Figure 13) are similar to the results of 

the other values students translated inappropriately.  

 

 

Figure 13: Frequency distribution of responses for placing 6/17 on the Decile Number 
line. Note: the mode is 0.67, but the actual magnitude of 6/17=0.35 

What do students say? Analysis of student explanations during interviews suggested a 

reliance on interpreting the magnitude through translating from a/b to 0.ab or left-to-right 

processing of the symbol. For example, when asked to place 6/17 on the number line from 0 to 1 

labeled and partitioned by tenths, a student described the reasoning as you must “go to the 6 and 

then over more for the 17.” Similarly, another student placed 3/5 on the number line at .35 and 

reasoned, “it’s in the 3 range and in the middle,” suggesting that 3/5 should be placed between .3 

and .4 and in the middle of the .3 to .4 range. Even apart from the number line, students, when 
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asked to translate 1/8 to a decimal and percent, described the translation process as “1/8 is small 

so it is .08 and 8%.” In essence, the 1 tells you it is a small number that is near 0 and less than .1 

and the 8 tells you where to put it in that range.  

Why might the flawed translation strategy exist? Many students’ pattern of activity 

mirrors a similar pattern of activity with other notations when interpreting the magnitude of a 

value from its written symbol. In whole numbers, the first number indicates the numerical range 

on a macro level, and the subsequent numbers provide even more fine-grained location 

information. For example, interpreting the magnitude of the symbol ‘617’ involves 

understanding that the 6 refers to the six hundreds range (one must locate a range between 600 

and 700); the 1 refers to the teens range (one must partition the space between 600 and 700 

further to find the 610-620 range); and the 7 refers to the ones (one must partition the space 

between 610 and 620 even further to find the appropriate location). The processing of magnitude 

becomes more and more specific as a student interprets the symbol from left to right. Decimals 

are processed in a similar manner with partitioning getting more fine-grained as the student reads 

from left to right. To find .617 on the number line, the student would have to locate the .6 to .7 

range, then the .61 to .62 range, and then place the .617; granted, decimal processing is not as 

straightforward for many students given their misconceptions about decimal magnitude (Resnick 

et al. 1989; Durkin and Rittle-Johnson, 2015). However, students often have little difficulty 

processing two-digit decimal magnitude using this strategy. Even digital clocks are read “six-

seventeen” for 6:17 from left to right. Implicit in the understanding of telling time is that the first 

number tells that the time is between 6 and 7 o’clock, and the second number provides specific 

detail as to where it is between 6 and 7 o’clock.  
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On the other hand, the numerical values in fractions need to be processed in a different 

fashion than the left-to-right processing of whole numbers and decimals. Students cannot 

interpret the fraction 6/17 as being between 6 and 7 and then use the 17 to provide specific detail 

as to where it is between 6 and 7. Yet, in many cases, it is possible to read a fraction (a/b) and 

concatenate digits from the numerator and denominator to translate it as a decimal (i.e., 0.ab) and 

obtain a correct or very near correct answer for the actual magnitude of the value (e.g., 3/8 is 

0.38). Thus, concatenating digits from a fraction’s numerator and the denominator can often 

provide a “ballpark” fraction to decimal translation. However, the strategy fails in many cases 

such as 4/5, where translating the value using this flawed strategy to .45 provides a vastly 

different interpretation of magnitude from the correct one (.8). Thus, the interpretation of 

magnitude for fraction symbols marks a monumental departure from the interpretation of 

magnitude for other notational symbols students have encountered. Students’ persistence in 

interpreting the magnitude of fractions through a left-to-right (i.e., a/b=0.ab) approach is 

consistent with Ganor-Stern’s (2013) interpretation that decimals “might be represented more 

similarly to multi-digit numbers than to unit fractions, as they are similar to multi-digit numbers 

in their numerical characteristics as well as in their notation, with both numbers written 

horizontally. Such greater similarity enables an easy mapping of decimal fractions on the same 

mental number line with whole numbers” (p. 305). And indeed, performance is slower and less 

accurate for locating fractions on number lines than decimals, such that decimal performance is 

more similar to integers (Iuculano & Butterworth, 2011).  

Presenting students with intentionally misleading situations can reveal information about 

student understanding of concepts and procedures regarding the interpretation of magnitude. For 

example, students with limited place value understanding are distracted when visual displays 
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highlight the digits rather than the magnitude (Miura & Okamoto, 1989). In Miura and 

Okamoto’s study, students were given 13 cubes and 3 cups, directed to place 4 cubes in each 

cup, and shown a card with 13 written on it. Students with weak understanding of place value 

described the 1 digit as representing 1 cube and the 3 digit as representing the 3 cups filled with 

4 cubes rather than the total magnitude of 13 cubes. Similarly, many students in Experiments 1 

and 2 demonstrate weaker understanding of fraction magnitude because the a/b to 0.ab fraction 

to decimal translation does not match the appropriate magnitude (e.g., 3/5 does not equal 0.35). 

Thus, understanding the magnitude of a written symbol involves the coordination of concepts 

and procedures governing the interpretation of the notation. While this dissertation begins to 

shed light on students’ translation procedures, particularly the flawed concatenation strategy, 

more work needs to be done to (1) better understand the situations in which students might use 

this flawed approach and (2) develop a deeper understanding of how instruction could be 

designed to minimize the use of flawed translation strategies for fractions.  

 

Percent as a tool 

Another discovery that emerged from the data was the finding that using a percent 

estimation strategy for fractions may have inhibited students’ use of flawed strategies and helped 

them maintain focus on magnitude. In other words, students who thought about the magnitude of 

a fraction as a percent (e.g. 12/13 is approximately 90%) were better able to maintain focus on 

magnitude in potentially distracting situations. Similarly, Moss and Case (1999) showed that 

highlighting the connections among fractions, decimals, and percentages helps students develop 

a more thorough understanding of magnitude. Students need to understand the various 

interpretations of fractions and how to interpret the size of a fraction (Behr et al, 1983; Kieran, 
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1976). Translation between percentages and fractions can be a useful tool for interpreting the 

magnitude of a fraction (Moss & Case, 1999); however, not much research exists in this area. 

Using percent as an estimation tool for attending to magnitude could help students resist 

the temptation to use a flawed translating strategy for a fraction. For example, students who may 

use a flawed translation strategy for 4/5 (i.e., would select 0.45 as an equivalent decimal) could 

reason that 4/5 is greater than 50%, thereby identifying that the decimal equivalent cannot be 

0.45 since 45% is less than 50%. Interviewed students (N=23) identified percent as a strategy for 

number line estimation more often in the Simultaneous condition than the Sequential or Control 

Condition (p=0.002). In particular, 78% of interviewed students from the Simultaneous condition 

used a percent strategy at least once, as compared to 14% in the Sequential condition and 0% in 

the Control condition. The percent strategy appears to have had a stronger effect on students who 

were distracted by the decile number line task at pretest. For example, one student described 

“eyeballing” number line estimation by thinking about the fraction as a percent that is larger than 

50% and probably closer to 75-85%.  

Finally, it is important to note that nearly all students attended well to percent magnitude 

at pretest even in the presence of distracting information (the decile partitions) on the decile 

number line. This result even applied to students who performed poorly at pretest on the decile 

number line task for fractions or decimals. Also, 83% of all students in the Sequential condition 

(N=85) spontaneously mentioned percent at least once in their student activity book in lessons 

that focused on fractions or decimals. These findings show that percent may be a more intuitive 

way to think about rational numbers (Moss & Case 1999) and perhaps could be used as a tool to 

encourage students to think about the magnitude of rational numbers as numbers rather than 

concentrating on the part-whole approach to fractions. In other words, students might be taught 
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to estimate with fractions by thinking about them as percentages (e.g., 12/13+7/8 is 

approximately 90%+90%, which is 180% or 1.8) 

 

Estimation is not valued 

The interview data revealed that students do not equate estimation with mathematics. For 

example, a student responded, “I can’t do math, right?” when asked to estimate addition of 

fractions instead of performing rote calculations. In other words, many students see math as the 

calculation of an exact answer alone and that it does not involve critically thinking about an 

approximate answer. Furthermore, students appeared confused by the request to estimate when 

adding fractions, asking, “Don’t you have to solve it though?”  

Interviews with students yielded a particularly striking interpretation: fractions are not 

numbers that can be used to estimate. Most students were quite adamant they did not “know how 

to take a guess” because “you’d have to find the common denominator.” Common Core 

Standards (2019) recommend that students “use benchmark fractions and number sense of 

fractions to estimate mentally and assess the reasonableness of answers. For example, recognize 

an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2.” Yet, many students had very 

little idea that estimation with fractions was even possible, let alone something that they might 

do to recognize incorrect results when doing their math homework. Given most students were 

confused at the request to estimate with fractions when explicitly asked to estimate, it is highly 

unlikely students will estimate on their own to evaluate the reasonableness of their solutions.  

Despite a push towards incorporating more measurement approaches to fraction 

instruction in the US (Common Core Standards, 2019), many students walk away with more 

emphasis on procedures than concepts. Moreover, student performance on the fraction arithmetic 
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task in Experiments 2 resulted in students generating a correct response only slightly greater than 

chance. As such, it appears that whatever estimation practices are occurring (if any) in the 

classroom are not helpful for students. The intervention attempted to encourage more estimation 

by involving a 5-7 minute warm-up activity once per day over the course of three weeks. The 

intervention yielded some promising results given the short time frame; however, it has only 

begun to scratch the surface of understanding how students view the connections between 

rational number notations and how an intervention might help students employ estimation skills 

with rational numbers.  

 

4.3 Case Studies 

Case studies on specific students were used to examine individual student performance 

on multiple measures across time and explored whether their interviews could provide additional 

insight on how the instructional condition affected the posttest outcomes. Specifically, I 

concentrated the analysis on interviewed students, who performed poorly on the labeled number 

line task, suggesting they used a flawed strategy (e.g., students who scored above .3 at pretest).  

Students with similar standardized test of achievement scores were used so that students 

with similar overall ability levels could be compared. Therefore, case studies focused on four 

students of low average ability, designated as “approaching expectations” according to their 

PARCC scores. Additionally, a student of above average ability level, designated as “met 

expectations” according to their PARCC score, was examined because their decile number line 

score was one of the worst at pretest (PAE=0.42), which was surprising given their PARCC 

score bordered on “exceeding expectations.”  
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The students focused on in the first part of the analysis are Control-A, Simultaneous-A, 

Simultaneous-B, and Sequential-A. Table 14 displays their performance on some measures 

involving distraction (decile number line and lure fraction addition estimation accuracy) and no 

distraction (0-1 number line estimation and no lure fraction addition estimation). 

Table 14: Descriptive statistics by test time for each case study student from Experiment 2.  

Student information Unlabeled 
0-1 Line 

PAE 

Fraction 
Decile 0-1 

Line 
PAE 

 

“No Lure” 
Fraction 
addition 
accuracy 

“Lure” 
fraction 
addition 
accuracy 

Students 
 

Gender PARCC Pretest Posttest Pretest Posttest Pretest Posttest Pretest Posttest 

Control-A F 746 .04 .05 .37 .21 .40 .09 .25 .25 
Simultaneous-A F 741 .20 .03 .33 .09 .50 .36 .30 .40 
Simultaneous-B M 730 .39 .49 .35 .37 .17 .58 .25 .25 
Sequential-A F 722 .08 .20 .33 .31 0.0 .25 .36 .33 
Simultaneous-C M 780 .03 .04 .42 .03 .45 .83 .58 .70 

Note: The number line estimation tasks are scored in PAE and the Fraction Addition Estimation is scored in percent 
correct. 
 

Control Student compared to Simultaneous Student that Improved on the Decile Task 

Comparing Control-A to Simultaneous-A, both students tested similarly at pretest on the 

decile number line task. Examination of their actual responses indicated that these students may 

have been using the a/b=0.ab flawed translation strategy discussed previously (e.g., 5/6=0.56). 

Additionally, both students were heavily biased towards perceiving percentages as greater than 

fractions. Accuracies on items for both students were identical (P>F= 67% and F>P=17%). At 

posttest, both students improved their fraction decile number line PAE score but Simultaneous-A 

made a greater improvement. Careful examination of their actual responses demonstrated that 

Control-A mostly maintained the a/b=0.ab flawed strategy but Simultaneous-A did not, 

suggesting that perhaps the condition helped Simultaneous-A revise their decile number line 
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estimation strategy to a more appropriate one. Indeed, during the number line portion of the 

interview, Simultaneous-A utilized more diverse number line estimation strategies including a 

correct translation strategy (not the flawed approach); whereas, Control-A employed limited or 

flawed number line estimation strategies. Furthermore, Simultaneous-A improved from 17% 

accuracy on F>P magnitude comparison items to 100% accuracy and from 67% accuracy on P>F 

items to 100% accuracy. Both students performed better on the no-lure fraction addition 

estimation items than the lure fraction addition estimation items at pretest. However, both 

students exhibited no change or worse performance at posttest, with the exception of 

Simultaneous-A who made a slight improvement on lure fraction addition items (from 30% 

accuracy to 40% accuracy). Simultaneous-A provided no answer for all of the “Across lure” 

fraction arithmetic estimation trials. As mentioned previously, students had 20 seconds to 

respond before the program moved onto the next fraction arithmetic estimation problem. It seems 

that Simultaneous-A may have run out of time during “Across lure” trials at posttest. Thus, the 

Simultaneous Condition likely helped Simultaneous-A avoid immediately selecting the lures; 

although, it is not clear Simultaneous-A would have selected the correct answer if given more 

time. The 0 to 5 number line task continued to prove problematic for both students, as evidenced 

by their inappropriate reasoning about the 0 to 5 number line task during interviews. 

Simultaneous Student who Did Not Improve on the Decile Number Line Task  

While Simultaneous-A showed a fair amount of improvement on the fraction decile 

number line task, Simultaneous-B scored slightly worse on this task at posttest. The interview 

responses yielded many procedural explanations such as performing long division, moving over 

decimal points, and cross simplifying. Simultaneous-B often employed an inappropriate strategy 

or used the strategy incorrectly (e.g., dividing 5 by 4 instead of 4 by 5 for 4/5). Examining 
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Simultaneous-B’s pretest scores in connection with interview data yielded a more holistic picture 

of Simultaneous-B’s mathematical behaviors. For example, Simultaneous-B’s fraction decile 

number line performance was very poor (PAE=0.35) and unlabeled number line performance 

was worse (PAE=0.39). By contrast, Simultaneous-B’s pretest score for placing decimals on the 

decile labeled number line was quite good (PAE=0.003). This sharp contrast in performance 

indicates that Simultaneous-B understands how decimals are related to decimal fractions but 

does not understand how fractions are related to decimal fractions. Thus, it is likely that 

Simultaneous-B attempted to use an algorithm such as long division (albeit very poorly) to 

determine where the fraction value should be placed for both the decile-partitioned and unlabeled 

number line tasks at pretest and posttest. Even though Simultaneous-B did not improve on the 

fraction labeled number line items, he improved considerably from pretest to posttest on non-lure 

fraction estimation items (17% to 58%). The 58% accuracy on non-lure fraction addition 

estimation items is well above chance and the group mean (33%), which would not have been 

predicted based on his performance on some of the other measures. However, it is important to 

note that the fraction arithmetic estimation task is the only timed task. Perhaps this time 

constraint did not allow him time to apply rules or algorithms, allowing him to focus on 

magnitude. Perhaps the Simultaneous condition was beneficial in improving his intuition for 

magnitude when he was not actively trying to apply algorithms.  

Sequential Student that was Distracted on the Decile Number Line Task at Pretest 

Similar to Control-A and Simultaneous-B, Sequential-A made no practical improvement 

on the decile number line task and consistently described using flawed procedures for estimating 

the values of fractions on the number line. For example, when describing her strategy for placing 

3/5 on the decile number line, Sequential-A explained that the 3 tells her it goes between 3/10 
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and 4/10 and the 5 tells her that it goes in the middle of that range. The explanation of her 

strategy matched her behavior, as she placed the value at .35 (as opposed to the correct location 

at .6). Her responses on both pretest and posttest are consistent with this a/b=0.ab translation 

strategy (e.g., placing 2/3 at .23 and 9/15 at .95 on the decile number line). Sequential-A made 

some improvement on the fraction estimation non-lure items but her performance (25%) was still 

below chance for a task involving three answer choices.  

Simultaneous Student of High Ability who was Distracted at Pretest 

Siegler & Thompson (2014) discussed how the correlation between standardized test 

scores and PAE weakened in the decile number line condition. They further posited that a 

potential reason for the weakening correlation is that students did not really understand the 

magnitude of the values. Thus, in addition to focusing on students of similar ability levels, a case 

study was developed for an above average student (PARC=780) who performed poorly on the 

decile number line condition. Of the students that were interviewed, Simultaneous-C’s 

performance was one of the worst on the decile number line (PAE=0.42). Given the constraints 

of Experiment 2, students were not interviewed at pretest. Thus, it can only be inferred what 

Simultaneous-C’s difficulties might have been at pretest. At pretest, he was fairly consistent with 

constraining his estimate of each fraction to between 0 and 1/10 (e.g., he placed 4/5 at 0.08). 

Notably, there was one exception where he accurately placed 9/20 at .45, suggesting that he was 

confused about decimals and/or he did not understand the relation between fractions and 

decimals. Improvement was 0.39 on the fraction decile number line estimation task, suggesting 

that it was no longer distracting for him and the decile number line was potentially helpful for 

him in estimating the magnitude. During the interview, Simultaneous-C discussed a variety of 

strategies for number line estimation, including frequent use of percentage as an estimation tool. 
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Additionally, Simultaneous-C’s overall fraction addition estimation abilities improved from 52% 

accuracy at pretest to 77% at posttest. Thus, the intervention was likely fruitful in helping 

Simultaneous-C solidify the relations among rational number notations, and this solidification of 

understanding transferred to fraction addition estimation.  

How Do Case Studies Fair in Transferring Skills to a New Model? 

Finally, since a good deal of weight was placed on number lines in this analysis, the 

performance of these five students was examined on another spatial model: a circle. As part of 

the student interviews, some questions from Moss & Case’s (1999) interview protocol were 

included that asked students to shade circles that were already partitioned. One question asked 

students to shade ¾ of a circle partitioned into eighths, and the other asked students to shade .3 

of a circle partitioned into fifths. Of the five students in this analysis, three students, 

Simultaneous-A and Simultaneous-C and Control-A, were the only students who appropriately 

shaded ¾ of the circle partitioned into eighths and explained that ¾ is equivalent to 6/8. None of 

the students accurately shaded .3 of the circle that was partitioned into fifths. However, 

Simultaneous-A and Simultaneous-C were the only ones to provide an explanation that differed 

from I shaded “3 because 0.3 has number 3 in it.” For example, Simultaneous-A explained that 

she knew that .3=30/100=30%, but she wasn’t sure how to shade the circle to show that so she 

just shaded 3 parts. Simultaneous-C did long division for .3/5 to find 0.06 and then shaded what 

she described as .06 of the circle. Thus, Simultaneous-A and Simultaneous-C’s knowledge of 

number lines did not fully transfer to the context of circles, yet their understanding of the relation 

between fractions/decimals in this new context was likely at an emerging stage. 
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4.4 Discussion 

In conclusion, three theories emerged from the data using a grounded theory approach: 

students are using a flawed translation strategy (a/b=0.ab), percent is a useful tool for students to 

evaluate the magnitude of fractions, and students do not value estimation with fractions. These 

three theories are important because they shed new light on the importance of integrated number 

sense. In particular, these theories suggest that difficulties with rational numbers may stem from 

an inability to appropriately evaluate magnitude of fractions based on flawed translations. It is 

possible that students are learning spurious associations between instances where translations 

done with the flawed approach yield approximate answers. This may even perpetuate a lack of 

belief about the importance of considering the magnitudes of fractions because students cannot 

be sure why these translation strategies may work in some cases and not in others. Moreover, it 

lends support to the hypothesis that instruction aimed at improving integrated number sense 

might be beneficial for improving mathematics outcomes because estimating a fraction’s 

magnitude as a percent proved particularly useful for students. 

Finally, the case studies suggested that the Simultaneous condition seemed to provide a 

means for students to triangulate their understanding of magnitude through thinking about a 

value as a fraction, decimal, and percent. This is a useful way to think about magnitude because 

understanding involves incorporation of concepts into an internal network, whereby the degree 

of understanding is determined by the strength and accuracy of connections among related 

concepts (Hiebert & Carpenter, 1992). Thus, the daily, 5-7 minute intervention over the course of 

three weeks likely had some influence in deepening the strength of connections among rational 

number notations, helping students who were easily distracted at pretest. At the very least, it 
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appears that future research in this area is warranted, perhaps including an intervention over a 

more prolonged period of time.  
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Chapter 5: General Discussion 

In this concluding chapter, I discuss the contributions of this work, avenues for future 

research, and educational implications. Ultimately, this dissertation advances the field of 

numerical cognition by expanding upon Siegler, Thompson, and Schneider’s (2011) integrated 

theory of numerical development by demonstrating that (1) students’ integrated number sense, or 

understanding of the relations among fractions, decimals, and percentages, accounts for 

substantial variance in mathematical outcomes beyond that explained by fraction magnitude 

representations and tests of math achievement and (2) number line-based review of rational 

numbers can improve students’ integrated number sense. In particular, the findings related to the 

hypotheses are the following: 

Hypothesis 1: Integrated number sense adds explanatory power to mathematical outcomes 

Data from this dissertation support the first hypothesis in three important ways: (1) by 

documenting a newly discovered bias of middle school students perceiving percentages as larger 

than fractions and decimals in magnitude comparisons across notations and positing that a lack 

of integrating notations on the same mental number line is a likely mechanism for this bias; (2) 

by demonstrating that students exhibit impulsive calculation, as measured by the difference in 

performance between situations where students are presented with distracting information 

(“lures”) meant to elicit the use of flawed calculation strategies and situations that do not involve 

lures; and (3) by finding that integrated number sense, as measured by the composite score for 

magnitude comparison across notations, is a unique predictor of estimation ability, often above 

and beyond tests of math achievement and number line estimation. In particular, students with 

higher integrated number sense are more than twice as likely to correctly answer the 12/13+7/8 

estimation problem discussed at the beginning of and throughout this dissertation than their peers 
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with the same number line estimation ability and math achievement scores. This finding suggests 

that integrated number sense is the most important inhibitor for impulsive calculation, above 

estimation ability for individual fractions and general math ability.  

Hypothesis 2: Number line instruction aimed at improving integrated number sense is beneficial 

This dissertation advances the field of mathematics education by suggesting instruction 

that connects equivalent values with varied notations might provide superior benefits over a 

separate and sequential approach to reviewing rational numbers. At a minimum, this dissertation 

suggests that more careful attention must be paid to relating rational number notations.  

Limitations and new directions 

Future work might examine the origins of impulsive calculation and the observed 

percentages-are-larger bias. Future research might also examine whether integrated number 

sense is predictive of estimation ability beyond general number sense within notations. From 

these investigations, it might be possible to design a more impactful intervention to improve 

rational number outcomes. 

5.1 Introduction 

Siegler, Thompson, and Schneider (2011) posited an integrated theory of numerical 

development, which placed fraction magnitude understanding as central in numerical 

development. In particular, the study found that differences in magnitude knowledge correlated 

highly with individual differences in fraction arithmetic ability and with math achievement test 

scores. The researchers alluded to the idea that fraction magnitude representations may be related 

to ability to translate among fractions, decimals, and percentages. However, there have been no 

studies to date that have investigated the relation among fractions, decimals, and percentages. I 

theorized that integrated number sense would be just as important, if not more important, than 
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individual fraction magnitude representations. This hypothesis was based on research indicating 

that depth of understanding is characterized by the strength of connections among related 

concepts (Hiebert & Carpenter, 1992). Therefore, students that have a stronger understanding of 

fraction magnitude would also have a strong sense of how its varied notations (fractions, 

decimals, and percentages) are related. In this dissertation, integrated number sense was 

operationalized as percent accuracy with comparing magnitudes across notations (e.g., 2/5 vs. 

25%, 40% vs. .25, 2/5 vs. .25). Consistent with the hypothesis about its importance in math 

outcomes, integrated number sense was highly correlated with math achievement tests (r=.562, 

p<.001), similar to the strength of the correlation between math achievement tests and fraction 

estimation on a 0-1 number line (r=-.559, p<.001). Replicating Siegler et al (2011), 0-1 number 

line estimation was an important predictor in hierarchical regression analyses accounting for 

31% of the variance in math achievement scores (F(1,244)=110.66, p<.001). Importantly, 

Integrated Number sense added 10% further variance  (F(2,243)=83.27 p<.001). These results 

suggest that fraction magnitude understanding alone does not explain the whole story in regards 

to mathematical outcomes; understanding the relations among fractions, decimals, and 

percentages also plays a crucial role in numerical development. Furthermore, as will be 

discussed later, integrated number sense is more important than fraction number sense alone for 

inhibiting implausible errors with fractions.  

The following sections will discuss three findings related to the first hypothesis about the 

importance of integrated number sense in explaining mathematical outcomes. In particular, the 

sections focus first on problems that arise from lack of integrated number sense: percentages-

are-larger bias and impulsive calculation. The third section will focus on how individual 
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differences in integrated number sense predict students’ estimation ability in potentially 

distracting situations.  

Finally, the fourth section of this chapter focuses on findings related to the second 

hypothesis about improving integrated number sense through number line instruction. 

Specifically, discussion centers on how the Simultaneous condition offered benefit over the 

Sequential and Control conditions in improving integrated number sense. This section will 

conclude with general mathematics education recommendations. 

5.2 The Percentages-are-larger bias and the Relation Among Notations 

The studies presented in this dissertation are the first to examine magnitude comparisons 

among fractions, decimals, and percentages. The paragraphs below discuss how the dissertation 

adds to the field of numerical cognition by documenting a newly discovered bias of middle 

school students perceiving percentages as larger than fractions and decimals in magnitude 

comparisons across notations. Moreover, I posit that a lack of integrating notations on the same 

mental number line is a likely mechanism for this bias. In particular, the following sections 

review the rationale for the hypothesis about students perceiving equivalent rational numbers as 

equivalent in size based on previous literature and reviews background on prior cross-notation 

comparison studies. Furthermore, the next sections summarize the finding of the percentages-

are-larger bias and how possible confounding explanations can be excluded. Moreover, 

subsequent sections discuss the theory of how lack of integrating notations on the same mental 

number line is a likely mechanism for this bias. Finally, this section suggests that magnitude 

comparison across notations could potentially be utilized by the field as a measure of integrated 

number sense and how future studies should also include within notation comparisons. 
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I hypothesized that middle school students do not think about rational numbers as being 

equivalent in size. This hypothesis was based on previous work that suggested students do not 

understand the fundamental connections among notations in the number system (Moss & Case, 

1999). This hypothesis was also based on the documented tendency of many students to focus on 

the operational rather than relational view of equivalence (McNeil et al., 2006). Furthermore, this 

hypothesis was based on the documented whole number bias exhibited by over a quarter of 

students in 8th grade, such that students perceived equivalent fractions with larger parts as larger 

than those with smaller parts despite years of instruction on equivalent fractions (Braithwaite & 

Siegler, 2018b). If middle school students are unable to perceive equivalent values within the 

same notation as equivalent in size, it seems probable that they might also struggle perceiving 

equivalent rational numbers as equivalent across notations. This is especially true in light of 

evidence that many teachers often do not use equal signs to describe equivalent fraction, decimal, 

and percent values (Muzheve & Capraro, 2012). Therefore, I reasoned that middle school 

students would exhibit difficulty with comparing fractions, decimals, and percentages.  

Prior research investigating cross-notation comparison abilities has had important 

limitations. Previous studies investigated magnitude understanding of fractions and decimals, 

suggesting decimal notation might be easier for adults when accessing magnitude information 

(DeWolf, Grounds, Bassok, & Holyoak, 2014; Hurst and Cordes, 2016). Furthermore, research 

suggests that decimals are represented more similarly to integers than unit fractions (Ganor-

Stern, 2013). Other studies examined relative performance across fractions, decimals, and whole 

number comparisons and how these magnitude representations contribute to pre-algebra ability 

in students (Hurst & Cordes, 2018). However, most studies utilized decimals with equal number 

of digits, making the comparisons an almost trivial task because of the potential for participants 
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to ignore the decimal point and treat the values as whole number comparisons rather than 

decimal comparisons (e.g., 0.12 compared to 0.22 being viewed as 12 compared to 22). 

Comparing decimals with an equal number of digits may not provide an accurate depiction of 

students’ numerical processing of decimals given students have many misconceptions about 

decimals such as longer train signifies greater value (e.g., Nesher & Peled, 1986; Resnick et al, 

1989; Durkin & Rittle-Johnson, 2015).  

There is documented evidence of the importance of fractions for math outcomes (Siegler 

et al., 2012) and support for a theory of numerical development that integrates all rational 

numbers (Siegler, Thompson, Schneider, 2011), but little is known about the relations among 

notations. Yet, it is known that understanding involves the incorporation of concepts into an 

internal network, whereby the degree of understanding is determined by the strength and 

accuracy of connections among related concepts (Hiebert & Carpenter, 1992). Therefore, fluid 

understanding of the connections and relations among fractions, decimals and percentages 

indicates deeper understanding and superior performance (Moss & Case, 1999). While there is 

some information about comparison across fractions and decimals (e.g., Hurst & Cordes, 2016), 

much less is known about comparison across fractions, decimals, and percentages. Before 

debating which notation is best to learn first (Tian & Siegler, 2018), we must first understand 

how children conceptualize the relation among all notations.  

The studies presented in this dissertation contribute to the literature on students’ 

understanding of the relations among notations by being the first to examine magnitude 

comparisons across fractions, decimals, and percentages. Ganor-Stern (2013) suggested fractions 

and decimals are represented along the same mental number line. Ganor-Stern (2013) goes on to 

posit that the specific notation of fractions might be what distinguishes them from decimals 
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given that decimals are represented more similarly to multi-digit whole numbers than unit 

fractions. As such, representing magnitudes of fractions requires overcoming the violation of a 

positive linear relationship between the components of the digits and the holistic magnitude of 

the value (e.g., 1/9<1/8, but 9>8; whereas, 0.9>0.8).  

The studies presented in this dissertation expand on Ganor-Stern’s work by asking middle 

school students to make judgments about the size of values with identical digits written in 

different notations; the results indicate that many middle school students do not think about 

equivalent rational numbers as being equivalent in size. Half of the trials compared values with 

identical or nearly identical digits (e.g., compare 4/5 versus 45%). The other half were matched 

for magnitude across all notations with small, medium, and large differences between the 

compared values (e.g., compare .40 versus 25%, 2/5 versus .25, .4 versus 1/4, etc.). Results of 

Experiments 1 and 2 showed that many middle school students do not think about equivalent 

rational numbers as being equivalent in size; instead, the experiments showed students have a 

bias towards perceiving percentages as larger than fractions and decimals. In other words, 

students were more accurate at deciding when a percentage was greater than a fraction or 

decimal and less accurate when a percentage was smaller than the fraction or decimal. I call this 

phenomenon the percentages-are-larger bias. 

I examined whether there might be a confounding factor that could explain the 

percentages-are-larger bias but concluded that these explanations could likely be excluded. For 

example, I examined whether students perceived percentages to be larger due to the percentages 

presented being larger on average across trials; however, the percentages presented were slightly 

smaller on average. I examined whether the ratios between percent and fraction or decimal might 

be larger when the percent is larger (making those trials easier to compare) given that research 
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suggests magnitude comparisons are easier involving higher ratios between the values being 

compared. However, the ratios were similar when the percent is larger than the fraction/decimal 

and when the percent is smaller than the fraction/decimal. I examined whether students were 

using a compensatory strategy by locating an “extreme” value as close to either 0 or 1 and 

guessing with a high degree of probability that the other value is larger or smaller than the 

extreme value. However, answer accuracy did not improve when one of the values was close to 

the endpoints. Considering that confounding explanations for these results are unlikely based on 

the analysis, I will focus on exploring the mechanism by which the percentages-are-larger bias 

occurs. 

The percentages-are-larger bias demonstrates an error in student noticing consistent with 

other errors that students make with rational numbers. Evidence of noticing the wrong aspects of 

rational numbers is apparent in misconceptions about fractions (e.g., Stafylidou & Vosniadou, 

2006), decimals (e.g., Durkin & Rittle-Johnson, 2015), and percentages (e.g., Gay & Aichele, 

1997). The discrepancy in performance between percent-to-fraction and percent-to-decimal 

comparisons such that performance is significantly worse if the percent is smaller than the other 

notation in Experiment 1 and 2 provide cross-notation evidence of errors in student noticing. 

Perhaps, the explanation of this result is not just that they think percentages are larger than 

fractions/decimals but that the familiar 0-100 whole number format of the percent activates the 

whole number bias (Ni & Zhou, 2005), where students use the single-unit counting scheme to 

interpret rational numbers. Thus, students import knowledge of whole numbers to the 

comparison between percentages and fractions/decimals, making it more difficult for them to 

correctly select the percentage as smaller than the fraction or decimal. Colloquially, children 

think of percent as more similar to whole numbers (Ginsburg, Gal, & Schuh, 1995). For 
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example, students make statements such as “I got a 100 on my test” rather than emphasizing the 

part-whole relation, “I got all of the problems right, of all of the problems that were asked.” 

Thus, when tasked with comparing a percent to a fraction, likely a task they have never 

encountered before given the separate sequential approach that is typical in education, students 

activate a mental number line schema for whole numbers. Essentially, students seem to have a 

separate number line for fractions and decimals from their mental number line for whole 

numbers, or at the very least, imagine all of the fractions/decimals as falling below 1%. 

Therefore, students may notice that percentages are treated more colloquially as similar to whole 

numbers but this may lead them to make errors in judgment of absolute magnitude.  

The theory that the percentages-are-larger bias stems from students drawing connections 

between percentages and whole numbers is consistent with prior research demonstrating that 

whole number schemes coopt attention to magnitude. For example, Boyer, Levine, and 

Huttenlocher (2008) demonstrated that children possess intuitive sense of proportional 

relationships but student performance is diminished when displays are discretized (an area model 

has partitions) versus continuous (an area model has no partitions). Boyer and colleagues (2008) 

suggest that “young children go wrong in reasoning about proportions when the knowledge they 

have acquired about counting to compare set sizes gets in the way of their intuitive, relative 

visual comparison, proportional-reasoning processes” (p. 14). This suggests that when activities 

appear most similar to whole numbers, children will activate a whole number scheme and 

operate within this whole number scheme. Thus, in the case of Boyer et al (2008), it wasn’t that 

children did not have an understanding of proportional relationships but that the partitions in the 

displays elicited an impulse to count rather than a focus on the proportional relationship. 

Therefore, when students see fraction-to-percent and decimal-to-percent comparisons, it is likely 
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that children are activating whole number mental schemas. Instead of approaching the cross-

notation comparison rationally by imagining a number line that includes fractions, decimals, and 

percentages, students show a preference to select percentages as the larger value because they are 

viewed as most similar to whole numbers. 

Superficially, this finding of a percentages-are-larger bias suggests students have a bias 

towards always perceiving percentages as larger than fractions and decimals; however, it appears 

that this interpretation is not true on all tasks. An important point to highlight is that students in 

the current study were not distracted when placing percentages on the decile number line. 

Theoretically, it could have been distracting for students to view a number line partitioned and 

labeled by tenths. In other words, the partitioning of the lines could have lead students to place 

the value 5% at five-tenths because the partitioning encouraged them to count over five tick 

marks. However, that is not the case as the overall PAE for percentage was quite low (PAE=.05). 

Thus, students were able to estimate in the presence of distraction because likely they have a 

schema that suggests that 5% is a small number, close to 0. In fact, only 4% of students had a 

percent decile number line estimation PAE that was slightly higher than their fraction number 

line estimation PAE. If students actually perceived percentages as larger than their equivalent 

fractions and decimals, then we would expect to see that percentages would be placed slightly 

higher on the number line. In other words, we would expect that students would place 35% 

higher than 6/17 on the same number line. This is precisely what occurred when Braithwaite and 

Siegler (2018a) analyzed differences in performance when they asked students to place 

equivalent fractions on the same number line. They found that students actually placed 

equivalent fractions with larger componential parts (e.g., 16/20) in a location that was higher 

than their estimate for the equivalent fraction with smaller componential parts (e.g., 4/5).  
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So, how do we reconcile these conflicting findings? In this concluding chapter, I argue 

that perhaps just claiming that students have a bias towards perceiving percentages as larger than 

fraction/decimals is not sufficient that it must be viewed in context. Students are selecting 

percentage as larger because they are importing whole number strategies and viewing the percent 

as more similar to whole numbers. Thus, the mechanism for this bias is a lack of correctly 

integrating the notational forms on the same mental number line. Students that perform well on 

this task understand that the implicit whole in all comparisons is one. In other words, comparing 

3/5 versus 35% involves understanding that the value being compared is 3/5 of 1 and 35% of 1. 

While this may seem commonsensical, it is a fundamental understanding of the relation among 

fractions, decimals, percentages, and whole numbers. To be successful at this task, individuals 

must constrain their representation of the compared magnitudes as being between 0 and 1, 

forcing the individual to integrate representations of the notations onto a single number line. In 

this vein, Siegler et al (2011) stressed the importance of encouraging children to draw correct 

analogies to whole numbers by teaching them that like whole numbers, “fractions can express a 

proportion of another number (3/5: 1:: 60: 100:: 60% of 100) or that fractions, like whole 

numbers, can provide absolute measures of quantity ( 6 in. = ½ foot = 1/6 yard)” (p. 291). Thus, 

we need to keep track of what whole we are relating the values to because 20% off versus $5 off 

sounds like quite a difference if the cost of the item is $100 but the 20% coupon saves less than 

the $5 coupon if the cost of the item is $15. In the aforementioned example, 20% versus $5 both 

activate whole number schemes, potentially leading to the erroneous conclusion that 20% off 

would be a better deal if you did not know the initial cost of the item. Perhaps, this is why 

advertisers often use percentages to describe discounts, though I am unaware of any particular 

academic research on the topic.  
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Similarly, I argue that students who do well on the magnitude comparison task are able to 

maintain focus on the “of what” or the implicit whole. In comparing 45% and 4/5, 45% may 

sounds like a lot but if the “of what” is 1 then that isn’t very much and 4/5 of 1 is substantially 

greater. This idea is consistent with Boyer et al (2008)’s claim that their finding of less accuracy 

in the discrete condition “does not necessarily mean that children are unable to code part-whole 

relationships, but rather, that parts may be more salient than the wholes” (p. 11). Given that the 

task of the current study was designed purposely to include identical or nearly identical digits, 

the task frees up resources that might otherwise be focused on components of the different 

values. In other words, magnitude comparisons across notations with unique digits (e.g., 3/4 

versus 56%) could potentially induce some sort of strategy focusing on one of the components of 

the values. Other attempts at thwarting participants’ use of componential strategies include 

sequential presentation of values being compared (Ganor-Stern, 2013). Given the advantage of 

the task design of the current study that utilizes mostly identical digits, it helps exclude 

explanations that could have something to do with the components and leaves as a primary 

explanation an assessment of whether they understand the implicit whole as being one. Or taking 

it a step further, they must understand that the whole could be any other value X, as long as the 

“of what” is the same. In other words, the larger value will always be 4/5, as long as the “of 

what” is the same (i.e., the answer will still be 4/5 if the question is which is larger 4/5 of X 

versus 45% of X). This task has the benefit of the whole being unseen, as the implicit whole in 

this task is 1. Another variation that could be done is to vary the whole (e.g., the shirt is $50, 

what is the better deal 3/5 or 35% off). However, I imagine the results would be quite similar or 

perhaps even more exaggerated given children’s difficulties with evaluating direction of effects 

with fractions, decimals, and percentages (e.g., Gay & Aichele, 1997; Hiebert & Wearne, 1985; 
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Gelman, 1991). Thus, the magnitude comparison across notations task as I have designed it 

likely does assess whether students can integrate fractions, decimals, and percentages on the 

same mental number line.  

Students who exhibit the percentages-are-larger bias ignore the fact that fractions, 

decimals, and percentages share a critical feature: their magnitude can be represented on a 

number line. Research has demonstrated that individuals possess an intuitive sense of 

approximate rational number magnitude (Fazio, Bailey, Thompson, & Siegler, 2014; Matthews 

& Chesney, 2015; Boyer et al, 2008). Research has also shown that experts are able to focus on 

the structural features of problems, whereas novices focus on the superficial features (Chi et al., 

1981). In a similar way, children are novices in the domain of rational numbers, focusing on 

superficial features of the rational numbers in an attempt to make meaning of the magnitude or, 

perhaps because of how they were taught, they simply are not trying to make meaning of the 

magnitude. In other words, students see a fraction and they immediately think, “What do I do 

with this?” rather than “How big is this number?” Or, in the case of what was observed in the 

cross-notation comparisons, students activate magnitude for familiar 0-100 whole numbers. 

Therefore, students who exhibit the percentages-are-larger bias have not developed the 

appropriate number line schema that incorporates fractions, decimals, and percentages.   

Importantly, the composite score for magnitude comparison across notations yields 

information about the degree to which students have integrated fractions, decimals, and 

percentages on the same mental number line. The operationalization of cross-notation 

comparison ability as a measure of integrated number sense is similar to prior research (Hurst & 

Cordes, 2018); yet it should be noted that the current work utilized percentages rather than whole 

numbers in cross-notation comparisons. The magnitude comparison task of the current study has 
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the benefit of examination of fraction magnitude representations and both of its related forms: 

decimals and percentages. It should also be noted that since I did not assess translation ability 

directly nor did I include within notation comparisons, we should interpret the claim that rational 

number comparison across notations is an indicator of integrated number sense with caution. As 

discussed previously, I examined whether there might be some confounding factor that could 

explain these results such as using extreme values to guess, comparisons when percent was 

larger were easier, or percentages were on average larger but these explanations could likely be 

excluded. Therefore, students who struggled were likely attempting to compare across notations 

but they did not properly integrate notations on the mental number line. The interpretation that 

magnitude comparison across notations measures integrated number sense is consistent with 

several others who theorize that the mental number line possibly includes whole numbers and 

rational numbers (Case & Okamoto, 1996; Steffe, 2001, Siegler et al., 2011). All of these 

researchers posit that children must in some way integrate their understanding of whole numbers 

with other forms of rational numbers, making accommodations to their whole number schemes 

as they encounter more varied forms of numbers. The current work suggests that magnitude 

comparison across notations provides a measure for determining integrated number sense, or the 

degree to which students have integrated notations on a mental number line. 

Perhaps, the reason why fraction magnitude knowledge is such a strong predictor of 

algebra knowledge (Siegler et al, 2012) has something to do with maintaining this relational 

understanding of the part (fraction) and the implicit whole (1). In other words, half of a 12 inch 

sandwich is going to be bigger than half of a 6 inch sandwich but if we are talking about half as 

an absolute measure, the implicit whole is one. Thus, integrating this understanding necessarily 

integrates understandings of fractions and whole numbers on a mental number line (Siegler et al, 
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2011). Though the origin of the relation between fraction knowledge and algebra is beyond the 

scope of this dissertation, my interpretation that integration of rational numbers is related to 

relational reasoning is consistent with Hurst & Cordes (2018).  Results suggested cross-notation 

comparison ability with fractions, decimals, and whole numbers predicted pre-algebra ability 

above and beyond grade and rational number arithmetic skill (Hurst & Cordes, 2018). The pre-

algebra assessment of Hurst & Cordes (2018) specifically measured students’ abilities to relate 

quantities (e.g., 6-4+3=? + 3). This theory that the ability to relate quantities without computing 

results is a driving force in algebra has also been described previously (DeWolf, Bassok, & 

Holyoak, 2015).  

In the dissertation, I claim that students tend to think of rational numbers, not as 

quantities but as entities that need to be acted upon. This tendency to do something with the 

digits, ignoring the magnitude of the values is what I refer to as impulsive calculation. I’ll focus 

more specifically on the concept of impulsive calculation in the next section but considering its 

effect in the context of understanding equivalence has value here. This idea that students 

impulsively calculate rather than relate quantities was shown in student interviews of the current 

study, when students suggested that estimation involved not being able to “do math.” 

Furthermore, it is reminiscent of Haverty and colleagues’ (2000) suggestion that those who are 

successful at the algebraic function finding task “do not merely compute quantities; they analyze 

them” (p. 262). Thus, students that understand concepts of equivalence among notations are also 

able to understand equivalence in the form of determining a missing value (e.g., 6-4+3=? + 3) 

(Hurst & Cordes, 2018). However, the limitation to Hurst and Cordes (2018) as well as the 

current one, is that they did not specify whether it is specifically the cross-notation comparison 

ability over general comparison ability within notation that is driving the relationship between 
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cross-notation comparison ability and pre-algebra ability. That being said, the current study had 

the advantage of using percentages rather than whole numbers and, therefore, requires that 

participants compare values by relating them to the same implicit whole. Given that performance 

was worse when the percentages were smaller than the compared fractions/decimals, it is likely 

that many students did not integrate notations on the same mental number line but instead treated 

percentages as whole numbers. Again, this provides evidence in support of my claim that 

magnitude comparison across fractions, decimals, and percentages measures integrated rational 

number sense.  

Future research should include within notation (e.g., Fraction vs. Fraction) and across 

notation (e.g., Fraction vs. Percent) comparisons for individual participants to understand more 

specifically children’s understanding of the relation among rational numbers. Another potential 

avenue for research could include determining whether students correctly decide that equivalent 

values written in different notations are equivalent to one another or whether the percent is larger 

bias also holds (e.g., students indicate that 2/5 and 40% are equivalent or whether they maintain 

that 40% is larger because it is a percent). Finally, the Cross-Notation Comparison task as I have 

designed it has the potential to be utilized in the field as a measure of integrated number sense. 

Siegler et al (2011) posited an integrated theory of numerical development but did not provide a 

measure of the degree to which students understand the relation among notations. With future 

testing, it is possible that this magnitude comparison across notations task could provide a 

measure to assess the degree to which students have integrated notations.  

In conclusion, the current study found that children do not perceive equivalent rational 

numbers as equivalent in size as evidenced by differing performance placing equivalent fraction, 

decimal, and percentages on a decile number line. Moreover, there were great discrepancies in 
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performance on magnitude comparisons across notations whether the percent value was smaller 

or larger than the fraction or decimal, suggesting that the values were not viewed on the same 

scale. In the next section, I focus on the phenomenon of impulsive calculation.  

5.3 Impulsive Calculation: A Failure to Focus on Magnitude 

The current work demonstrates that students often exhibit impulsive calculation with 

fractions. Earlier, I defined impulsive calculation, as the act of taking action with digits without 

considering the magnitudes before or after calculation. Students who impulsively calculate are 

more likely to render implausible estimates on problems such as estimating 12/13+7/8 as they do 

not think about the magnitudes (12/13 is about equal to one and 7/8 is about equal to one) before 

deciding on a calculation strategy, and they do not stop to judge the reasonableness of an answer 

with an estimate after performing the calculation. The dissertation demonstrated that students 

exhibit impulsive calculation, as measured by the difference in performance between situations 

where students are presented with distracting information (“lures”) meant to elicit the use of 

flawed calculation strategies and situations that do not involve lures. Specifically, there were two 

pairs of measures that directly contrasted lure versus no lure performance: (1) student 

performance on a fraction decile number line was compared to their performance on number 

lines without these potentially distracting partitions/labels and (2) student performance on 

fraction arithmetic estimation with and without lure answer choices. Ultimately, the comparison 

of individual performance on these two pairs of measures in conjunction with interview data 

suggested that impulsive calculators are more prone to making errors on lure problems. 

Furthermore, this difference in performance on tasks with lures versus without lures raised the 

possibility of systematic error with processing fraction magnitudes. 
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Prior research has documented a decrement in performance when situations utilize lures 

that might elicit whole number counting schemes. Numerous studies have demonstrated that 

concepts of quantity both discrete and continuous are quite intuitive, even in infants (Xu & 

Arriaga, 2007; Boyer, Levine, & Huttenlocher, 2008; Mack, 1990). Yet, the problem lies in how 

children integrate these intuitive understandings with symbols (Mack, 1995). Since children 

learn to count first, whole numbers schemes are the basis by which they must accommodate all 

other notations. Thus, when children encounter an unfamiliar or potentially taxing mathematical 

situation, their first instinct is to draw upon whole number schemes. This was observed in 

children’s tendencies to count rather than focus on magnitude in the discrete but not continuous 

conditions of Boyer et al (2008). Similarly, worse performance was observed on the decile 

number line task than a 0-1 number line task in Siegler and Thompson (2014) and in this 

dissertation. Relatedly, performance was worse on estimating sums of fractions on the number 

line than performance on estimating individual fractions on number lines (Braithwaite, Tian, & 

Siegler, 2018). Thus, students are highly distracted in situations that elicit an activation of whole 

number schemes.  

The present study, however, offered new insight into the phenomenon of how students 

are distracted on the decile number line task; it was not just that students were distracted but that 

they were distracted in a very specific way, such that they demonstrated a lack of integrating 

understanding of rational numbers with whole numbers. In placing fractions on a decile number 

line in the current study, many students interpreted the digits of a fraction in precisely the way 

that they interpret the magnitude of whole numbers, decimals, and even, digital clocks- 

horizontally. In other words, they began by processing the numerator first and then the 

denominator (e.g., the ‘3’ in 3/5 tells you the value should be placed between .3 and .4 and the 
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‘5’ tells you it is in the middle of the range), when they should be processing the value 

holistically. Thus, poor performance on the distracting number line task demonstrates a 

phenomenon that I refer to as impulsive calculation. This impulsive calculation refers to the act 

of taking action with digits without considering the magnitudes. Instead of reasoning about 6/17 

as being less than half because half of 17 is approximately 8 and 6/17 is clearly smaller than 

8/17, students take action with the digits without thinking about magnitudes. So, while they may 

reason appropriately on an unmarked number line because the task encourages them to reason 

about magnitude, a task that provides distracting information elicits impulsive calculation and 

diminishes their ability to reason relationally, thus placing the value in an implausible location, 

greater than half. Specifically, many students were likely performing a translation a/b=0.ab in 

their impulsive calculation. This is different from the interpretation that students get confused in 

focusing on either the numerator or the denominator but that students who struggle are focusing 

on both but not in the way that is necessary to access magnitude. 

The current studies suggest that students are making a systematic error in relating rational 

numbers. The interviews with students that were distracted by the decile number line are 

particularly revealing at the numerical processing level because it suggests that many students 

might actually be processing the magnitude of the fraction symbols through a flawed horizontal 

approach (e.g., students reasoned that to locate 3/5 on the number line, one should go to the 

three-tenths range and then it is in the middle of that range, thus placing the value at .35). Even 

flawed translations that were done separately from the decile number line mirrored this pattern. 

For example, one student described the translation process as “1/8 is small so it is .08 and 8%” 

during the random sample of posttest interviews. In essence, the numerator tells you it is a small 

number that is near 0 and less than .1 and the 8 tells you where to put it in that range. While this 
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reasoning is severely flawed, it is only problematic in some cases. For example, 3/8 when 

translated to a decimal through this flawed a/b=0.ab approach is 0.38, which is the actual 

magnitude of the fraction with rounding. Many fraction to decimal translations done with the 

a/b=0.ab approach yield results somewhat close to the actual magnitude of the value and it is 

possible that children might interpret these differences as reflective of rounding since many 

prospective teachers have misconceptions about rounding (Burroughs & Yopp, 2010). So, it is 

possible that students are implicitly learning a flawed translation strategy, which would not be 

totally unusual given evidence of children learning spurious associations in mathematics 

(Braithwaite & Siegler, 2018a). Thus, students might be making systematic errors in relating 

fractions, decimals, and percentages that sometimes yield approximate magnitudes.  

This adds new insight to Nesher and Peled’s (1986) observation that when asked “to 

write 3/4 in decimal form some wrote 3.4, 0.3, or 0.34” (p. 75). It is not just that they are 

confused at making the coordination between the size of the part and the number of parts in 

question as suggested by Nesher and Peled (1986) but some students are relying on a left-to-right 

numerical processing of the digits, as they do with all other numbers. Thus, students are 

concatenating digits from the numerator and denominator to match this left-to-right processing 

(a/b=0.ab). In some cases, this flawed translation strategy (a/b=0.ab) actually helps students get 

in the “ballpark” of the right magnitude (e.g., 3/8=0.38). Indeed, quantitative results 

demonstrated that the mode for the most frequently selected location for fractions on the decile 

number line was the hypothesized flawed translation result in 5 out of 6 cases, where the 

denominator could not be easily multiplied into a power of ten. In other words, I hypothesized 

that students in Experiment 2 would place the fraction 6/17 at .67 on the decile number line and 

this was the most frequent response, where 14.8% of students in the sample placed it in that 
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exact location. This finding is consistent with Ganor-Stern’s (2013) suggestion that decimals are 

more similar to multi-digit whole numbers and Moss and Case’s (1999) suggestion that 

percentages are intuitive for linking students’ conceptions of whole number magnitude to 

fractions and decimals. Moreover, it is reminiscent of Ganor-Stern’s (2013) suggestion that 

properly representing magnitude of fractions requires overcoming the violation of “principles of 

the decimal system, that is, the positive linear relation between the components magnitude and 

the holistic magnitude of the number”  (p. 305). This is different from the interpretation that 

students get confused in focusing on either the numerator or the denominator but that students 

who struggle are focusing on both but not in the way that is necessary to access magnitude.  

Given that I did not ask all students to translate values from fractions to decimals directly, 

it is important to take caution in interpreting this finding. Future work might ask participants to 

translate values directly or perhaps simply ask participants to decide whether a translation is 

close to the value or not (e.g., Is 0.35 a good estimate for 3/5: yes or no?; Is 0.27 a good estimate 

for 2/7: Yes or no?). Even still, the fact that some students’ number line estimation ability is 

easily manipulated based on the assessment type is suggestive that perhaps their understanding 

of the magnitude of fractions is actually weaker than originally thought. This idea is consistent 

with a body of research that differentiates performance versus learning (Soderstorm & Bjork, 

2015). A similar phenomenon was observed when young students were introduced to a 

distracting situation involving place value of whole numbers, when students with superficial 

knowledge of place value described the digits in the number ‘13’ as representing, ‘1’ cube and 

‘3’ cups filled with the remaining cubes rather than the actual quantity of the set (Miura & Case, 

1989). In line with this reasoning, Moss & Case (1999) discussed the importance of utilizing 

visually misleading tasks to assess understanding, as they discussed that even Piaget believed 
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that children needed to be presented with misleading tasks or else the assessment just measures 

their ability to parrot instruction. Thus, distracting tasks can provide a powerful lens for 

examining deep rather than superficial understanding.  

Beyond the level of an individual fraction, the current study measured this impulsive 

calculation through a multiple choice format for the fraction addition estimation task where half 

of the trials included one lure choice (e.g., “What is the best estimate for 1/5+1/2: 2/7, 1/3, or 

¾?”, where 2/7 is an “across lure”) and half of the trials did not include a lure choice (i.e., 

answer choices were specifically chosen not to include potential lures). The direct comparison 

between student performance on fraction addition estimation with lure fraction choices versus 

choices without a fraction lure suggests that students can estimate slightly better when they are 

not allowed to give into impulsive calculation. Thus, we are observing a parallel phenomenon in 

accessing magnitude at the level of individual fractions and accessing magnitude at the level of 

combination of fractions. The bipartite structure of fractions is very difficult for students to 

access magnitude information and, particularly, when students must do so in the presence of 

distraction. These findings are similar to the results of Boyer, Huttenlocher, and Levine (2008) 

that demonstrated that children’s difficulties reflect a tendency to focus on matching the units of 

the problem and the choice alternatives. Thus, any potential source of distraction can result in 

students abandoning attention to magnitude in favor of focusing on the digits. Boyer and 

colleagues (2008) suggest that children may have intuitions about magnitude but then counting 

gets in the way of their proportional reasoning. This same phenomenon is observed when 

students add across numerators and denominators to arrive at implausible answers (e.g., 

2/3+2/3=4/6); in this case, the impulsive calculation outweighs logic. 
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Impulsive calculation might partially explain why students’ estimation ability for sums of 

fractions was worse than their estimation ability for individual fractions, where over half the 

trials violated the direction of effects for estimating addition of fractions such that students were 

no more accurate than if they selected the midpoint in each trial that (Braithwaite, Tian, & 

Siegler, 2018). It seems likely that the vast majority of students in the Braithwaite and colleagues 

(2018) study were using a flawed strategy (e.g., adding across numerators/denominators) to 

estimate the answers to fraction addition problems. This was observed in student answers in 

Experiment 1 and student explanations of their strategies during interviews in Experiment 2. 

Students might be able to procedurally represent the magnitude of fractions by themselves on the 

number line (e.g., 12/13 and 7/8) by partitioning an unlabeled number line for each fraction but 

impulsive calculation takes over when they have to interpret a fraction arithmetic addition 

problem (e.g., 12/13+7/8) and represent the sum on a number line. In other words, students who 

impulsively calculate do something with the digits without considering the magnitude of the 

individual values prior to calculation. 

   It might be worthwhile to remind students of the implicit whole involved in estimating 

fraction arithmetic. For example, it might be beneficial to remind students that 1 is the implicit 

whole (12/13 of 1 + 7/8 of 1= ?). During the random sample of interviews, this discussion was 

helpful in getting students who impulsively calculated their estimate as 19/21 to reason 

appropriately. Moreover, it might also be worthwhile to encourage students to estimate the value 

of a fraction with a percent (e.g. 12/13+7/8 is approximately 90% of 1+90% of 1). Future work 

might explore whether emphasizing the relational nature of fractions to whole numbers is helpful 

in inhibiting impulsive calculation.  
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In sum, impulsive calculation involves taking action with digits without thinking about 

the magnitude of values. Impulsive calculation was observed in discrepancies between pairs of 

measures that directly contrasted lure versus no lure performance: (1) student performance on a 

fraction decile number line was compared to their performance on number lines without these 

potentially distracting partitions/labels and (2) student performance on fraction arithmetic 

estimation with and without lure answer choices. Ultimately, the comparison of individual 

performance on these two pairs of measures in conjunction with interview data suggested that 

impulsive calculators are more prone to making errors on lure problems. In the next section, I 

focus on individual predictors of estimation ability, specifically the importance of this integrated 

cross-notation ability in inhibiting impulsive calculation. 

5.4 Integrated Number Sense: Individual Predictor of Estimation Ability 

In this dissertation, I hypothesized that integrated number sense enables students to 

inhibit impulsive calculation and maintain focus on magnitude during estimation. The current 

data suggest that integrated number sense, operationalized as the composite score for magnitude 

comparison across fractions, decimals, and percentages, was a significant and unique predictor of 

estimation ability on potentially distracting tasks that might elicit impulsive calculation 

oftentimes over and above their performance on standardized tests of math achievement and 

general number line estimation skill. This discussion focuses on estimation ability in the 

presence of distracting aspects that might elicit impulsive calculation at both the level of an 

individual value (decile number line estimation) and at the level of combination of values 

(fraction addition estimation with lure answer choices and a special focus on the 12/13+7/8 

fraction addition estimation problem from Carpenter et al, 1980).  
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Drawing upon prior research, I hypothesized that a decile number line might elicit 

impulsive calculation. In Siegler and Thompson (2014), students in the decile number line 

condition performed worse on number line estimation than students in the unlabeled 0-1 number 

line condition. Therefore, I theorized that the decile number line was creating a potentially 

distracting situation for students that have little integrated number sense, forcing them to lose 

focus on the magnitude of the fraction. Results from Experiment 1 demonstrated that fraction 

estimation was worse in the decile number line than unlabeled 0-1 number line for individual 

participants, replicating the Siegler and Thompson (2014) finding within subjects. However, it 

was not significantly worse because many students were actually quite accurate on certain trials 

and less accurate on other trials. For example, I noticed that many students appeared to be 

translating fractions to decimals as a/b=0.ab (e.g., 2/7=0.27, which yields a very low PAE 

because the actual magnitude is 0.285 for that fraction). Therefore, for Experiment 2, I purposely 

selected fractional values that would yield a particularly high PAE if the students were using this 

a/b=0.ab flawed strategy to place values on the decile number line (e.g., 5/6=0.56, which yields a 

high PAE because the actual magnitude is 0.833 for that fraction). I wanted to ensure that 

students were not able to be somewhat accurate with their number line placement for the wrong 

reasons (e.g., using the flawed a/b=0.ab would yield a low PAE of 0.02 for the flawed translation 

2/7=0.27). In Experiment 2, paired t-tests demonstrated a significant difference between 

individual PAEs on unlabeled 0-1 number line and the fraction decile number line task, such that 

performance was worse on average for the fraction decile number line task. Thus, the task 

elicited impulsive calculation, such that students took action with the digits without regard for 

the magnitude of the values. Specifically, their responses suggested systematic error with 

translating fractions to decimals as a/b=0.ab.  
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Importantly, integrated number sense helped students inhibit impulsive calculation and 

persevere in attending to magnitude during the potentially distracting decile number line task. I 

theorized that students with integrated number sense would be less likely to impulsively calculate 

because their number sense reflects understanding of connections among related concepts 

(Hiebert & Carpenter, 1992). Indeed, hierarchical linear regression suggested that integrated 

number sense, operationalized as magnitude comparison across notations, added unique 

explanatory power to the model predicting performance on the decile number line task, above 

and beyond number line estimation on an unlabeled line with endpoints 0-1. Moreover, the large 

absolute value for the standardized beta coefficient suggested that integrated number sense was 

the most important predictor of how students performed on this distracting task above other 

predictors in the model. Therefore, integrated number sense is more predictive of whether 

students will be distracted than would be predicted by their magnitude representations for 

individual fractions or their standardized measure of math achievement.  

Thus, depth of understanding can be assessed by whether misleading information affects 

performance and the degree to which related concepts are understood. Siegler and Thompson 

(2014) speculated that conditions that weaken magnitude encoding (e.g., decile number line) are 

reflective of individual differences in ability to “inhibit distracting landmarks as well as 

magnitude knowledge” (p. 55). In support of the hypothesis, the current study suggests that 

integrated number sense enables students to fight their way through distraction and maintain 

focus on magnitude. This finding is consistent with research on learning versus performance 

(Soderstorm & Bjork, 2015), such that performance on the decile task might actually provide a 

clearer depiction of magnitude learning at a numerical processing level. It is possible that 

number line representation alone does not provide the full picture of students’ understanding of 
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fraction magnitude. In a similar way, a student that understands 3+2=5 but does not understand 

that 5-3=2 has a less strong concept of the relation among magnitudes. This makes sense because 

depth of understanding is determined by the strength of connections among related concepts 

(Hiebert & Carpenter, 1992). Therefore, a task that asks students to demonstrate understanding in 

a scenario that is distracting or unfamiliar is likely to deliver a clearer portrayal of the depth of 

their understanding. 

 Integrated number sense provides students with a well-developed schema to call upon in 

these types of situations that might be distracting. The schema that students are able to call upon 

is the mental number line that includes all rational numbers. In any type of reasoning, individuals 

try to access a schema for which they know that might help them in a given situation (Anderson, 

1983). Children who do not have a schema or weaker schema for a particular situation are at a 

disadvantage for solving a problem. Indeed, research has suggested that reasoning is better when 

children have an appropriate schema to draw upon than when it is decontextualized (Cox & 

Griggs, 1982; Pollard & Evans, 1987). I argue that integrated rational number sense provides the 

best schema for interpreting magnitude: the number line. When the number line includes all 

rational numbers, individuals are able to leverage the intuitive concepts of percent (Moss & 

Case, 1999; Fazio et al, 2014; Matthews & Chesney, 2015). Using percent as an evaluative tool 

enables students to maintain focus on magnitude, particularly in situations that might heighten 

the saliency of the componential parts of fractions. Students that have an integrated schema are 

able to call upon a well-developed number line that has both a horizontal and vertical dimension. 

Their understanding of magnitude involves an understanding that there are infinite numbers 

between numbers (Vamvakoussi & Vosniadou, 2010) and there are an infinite number of ways to 

describe each spot on the number line (e.g., 4/5=8/10=16/20= 80%=.8=.80=.800, etc.).  
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In line with this reasoning, we see that integrated number sense again plays a pivotal role 

in estimation of fraction addition. In particular, the fraction addition estimation task was 

designed purposely to elicit impulsive calculation. A multiple choice format was used for the 

fraction addition estimation task where half of the trials included one lure choice (e.g., “What is 

the best estimate for 1/5+1/2: 2/7, 1/3, or ¾?”, where 2/7 is an “across lure”) and half of the trials 

did not include a lure choice (i.e., answer choices were specifically chosen not to include 

potential lures). This task was designed strategically to measure whether students could estimate 

sums of fractions when they did not have an option to select typical impulsive calculation 

responses (e.g., adding across numerators and denominators or finding a common denominator 

and adding numerators). Indeed, students were more accurate when there were no lures than 

when there were lure answer choices and wrong answer choices were most likely to be lures than 

just a wrong answer, which provided support for my theory of impulsive calculation. 

Importantly, integrated number sense was a unique predictor of performance on fraction 

arithmetic estimation with lures controlling for general math ability and their performance on 

trials without lures. Thus, integrated number sense again plays a critical role in situations that 

students might typically be inclined to disregard magnitude information.  

Notably, fraction number line (0-1) estimation is not a significant predictor of fraction 

addition estimation, when controlling for general math ability and performance on no lure trials. 

This is not surprising given students’ estimation ability for sums of fractions was worse than 

their estimation ability for individual fractions, where over half the trials violated the direction of 

effects for estimating addition of fractions; students were no more accurate than if they selected 

the midpoint in each trial (Braithwaite, Tian, & Siegler, 2018). It seems likely that the vast 

majority of students in the Braithwaite and colleagues (2018) study were using a flawed strategy 
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(e.g., adding across numerators/denominators) to estimate the answers to fraction addition 

problems, which is what I observed in student answers in Experiment 1 and student explanations 

of their strategies during interviews in Experiment 2. Students might be able to procedurally 

represent the magnitude of fractions by themselves on the number line (e.g., 12/13 and 7/8) by 

partitioning an unlabeled number line for each fraction. However, impulsive calculation takes 

over when they have to interpret a fraction arithmetic addition problem (e.g., 12/13+7/8) and 

represent the sum on a number line. Thus, students who impulsively calculate do something with 

the digits without considering the magnitude of the individual values and it is this sum that they 

place on the number line. 

This finding that integrated rational number sense predicts fraction arithmetic estimation 

parallels the results of Hurst and Cordes (2018), which demonstrated the predictive power of 

magnitude comparison across fractions, decimals, and whole numbers in another domain: pre-

algebra. In their experiment, they operationalized pre-algebra ability as understanding of 

equivalence (e.g., find the number that goes in this box 6-4+3= _ +3, finding the value for c in 

c+c+4=16). In the tasks that Hurst and Cordes (2018) operationalized as pre-algebra ability, it is 

essential that individuals (especially those without formal algebra knowledge) can persevere in 

estimating a guess for the unknowns and checking the accuracy of their guess. These tasks could 

also be highly distracting for children with no formal algebra knowledge. In order to be 

successful in the aforementioned pre-algebra task, the students must not only compute quantities, 

but “analyze them” (Haverty et. al, 2000, p. 262). Students with an integrated sense of number 

are better equipped to do so because they can call upon a well-structured schema: the number 

line. Ultimately, fluid understanding of the connection among rational number notations equips 

individuals with tools to better analyze their ideas about magnitude. 
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Finally, I began the dissertation discussing how only 24% of 8th grade students in the US 

correctly decided that 12/13+7/8 was closest to 2, where the others selected either 1, 19, or 21 

(Carpenter et al, 1980). This finding that the majority of students selected answers that lacked 

any sort of logic was replicated forty years later with very little improvement (Lortie-Forgues et 

al, 2015). I theorized that a lack of integrated number sense might explain these results and thus, 

included the 12/13+7/8 estimation problem to be analyzed separately. When examining 

predictors of whether students would get the infamous estimation problem right or wrong, 

logistic regression suggested that integrated number sense, as measured by magnitude 

comparison across notations, is an important predictor for fraction addition estimation. Integrated 

number sense was a more important predictor than typical measures of math ability such as 

standardized tests of achievement and fraction number line estimation. In other words, students 

that are of equal ability levels as measured by a standardized test of achievement and fraction 

number line estimation but perform better on selecting the larger of two values across notations 

are over two times more likely to select the appropriate estimate for a fraction addition 

estimation problem.  

Perhaps, a reason for this could be that a standardized test of math achievement and 

number line estimation do not accurately assess whether students have an integrated sense of 

number, such that they understand the relation among fractions, decimals, percentages, and all 

rational numbers as being a part of the same number line. It could be that students who perform 

well on the cross-notational magnitude comparison task have internalized the understanding of 

fractions as numbers rather than entities to be acted upon. On the other hand, it seems that some 

students can get by in school by memorizing procedures for arithmetic operations and can 

provide an estimate for a single fraction on a number line task. However, most students are 
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unable to dissociate from a procedure to provide an appropriate estimate for fraction addition. 

Instead, these students give into impulsive calculation, as 94% of students that got the 12/13+7/8 

estimation problem wrong in this dissertation selected either 19 or 21, which is the result of 

adding either the numerators or the denominators together and clearly lacking any sort of 

reasoning about fraction magnitude. Thus, students that have higher integrated number sense are 

able to maintain focus on magnitudes of individual values when estimating fraction arithmetic. 

Because understanding is determined by the strength and accuracy of connections among 

related concepts (Hiebert & Carpenter, 1992), students that do well on the magnitude comparison 

task are able to view the values as sharing the same number line, where the various notations can 

name the same magnitude in a different way. Taking it a step further, students that can flexibly 

translate among notations to compare the magnitude of values are probably able to do so when 

they are asked to estimate the answer to a fraction addition problem. In other words, students 

might think of 12/13+7/8 as 0.9+0.9 (or 90% of 1+ 90% of 1), which helps them realize the sum 

is about 2. An important caveat to this interpretation is that we can only make inferences about 

translation ability from students’ performance on magnitude comparison across notations 

because it did not assess translation ability directly. Additionally, because I did not include 

within notation comparisons (e.g., fraction versus fraction), it could be that what I have 

operationalized as integrated number sense is actually just magnitude comparison in general 

rather than a measure of integration. Future work should examine whether comparison across 

notations is more predictive of estimation ability than just comparison across individual notations 

within the same participants. Even still, these findings suggest that magnitude comparison is a 

more important predictor for estimation ability in the presence of distraction than individual 
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fraction magnitude representation. The next section discusses the differences between conditions 

and provides general math education recommendations based on the findings in this dissertation.  

5.5 Review of Rational Numbers and Educational Implications 

While researchers debate about which notation is the best to initiate instruction to 

promote better conceptual understanding (see Tian & Siegler, 2018 for a review), I argued in this 

dissertation that perhaps we are debating the wrong issue. Because procedural and conceptual 

knowledge develop iteratively (Rittle-Johnson et al, 2001), translation between notations and 

conceptual understanding of each individual notation are likely to develop iteratively. Reviewing 

rational numbers through a Simultaneous approach was hypothesized to provide more integrated 

number sense, which would transfer to better estimation ability, than a Sequential approach. 

Thus, in addition to examining children’s understanding of the relation among notations, the 

current study explored whether it is possible to improve this understanding by testing two 

experimental conditions (Simultaneous versus Sequential) compared to a Control condition. In 

the Simultaneous condition, students worked on simultaneously placing a fractional value and its 

equivalent decimal and percent value on individual fraction, decimal, and percent number lines 

that were printed one below another in their student activity book. Students were instructed to 

utilize understanding of other notations to help them be precise in placing values on the number 

lines and were directed to notice that equivalent values occupy the same space on the number 

line relative to the endpoints. The Sequential condition received the same review of rational 

numbers except there was no emphasis on connecting the notations but instead students were 

directed to focus on placing fractions on a number line for the first week, decimals on a number 

line for the next week, and percentages on the number line for the last week. Students in the 



176 
 

Control condition practiced addition and subtraction of fractions by rote with the same values 

utilized in the other two conditions. 

The current study demonstrated that a brief number line warm-up at the start of class for 

three weeks improved children’s number line estimates of individual fractions, which replicates 

improvements in number line estimation of other brief intervention studies (e.g., Fazio et al., 

2016). The fact that students in both the Simultaneous and Sequential conditions made 

significant improvement on fraction number line estimation is important because it might 

indicate that less time is actually required for improvements in fraction magnitude knowledge. 

Students in the Sequential condition only worked on fraction magnitudes for approximately 25 

minutes over the course of five class sessions. This idea is consistent with other intervention 

studies that demonstrated gains in fraction magnitude knowledge over short periods of time (e.g., 

Fazio et al, 2016;). However, it should be noted that the students in the Sequential condition 

showed significant improvement in their fraction number line estimation two weeks after they 

concluded their number line training with fractions (i.e., the fraction number line estimation 

ability of the students in the Sequential condition was essentially measured as a delayed 

posttest). Perhaps, another explanation for this improvement at delayed testing was that students 

were still very much involved in number line training over the course of those two weeks but in a 

different capacity- number line training with decimals and percentages. Importantly, it should be 

noted that while students in both the Simultaneous and Sequential condition made significant 

improvement within condition, only the students in the Simultaneous condition made 

substantially greater improvement on 0-1 number line estimation over students in the Control 

condition.  
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Additionally, consistent with the hypothesis about the superiority of the Simultaneous 

condition, students in the Simultaneous condition made significantly greater improvement than 

the Sequential and Control condition in Magnitude Comparison across notations. In particular, 

the low performing students made substantial gains in Fraction>Percent items over the 

Sequential and Control conditions with a relatively large effect size (Cohen’s d=.88). The 

improvement in magnitude comparison across notations is important for at least two reasons. 

First, it suggests that helping students notice the connection among fractions, decimals, and 

percentages could promote an integrated understanding of number (Siegler et al, 2011). Second, 

because magnitude comparison ability was the largest predictor of estimation ability in the 

presence of distraction, it seems possible that this type of instruction might offer more lasting 

benefits for learning (Bjork & Bjrok, 2011). For example, the Simultaneous condition helped 

students make greater improvement in magnitude representation even in the absence of a spatial 

model. There is definitely a difference in representing values on a number line versus utilizing a 

mental model of the number line or perhaps some other strategy to compare the magnitudes of 

values (see for a review Schneider, Thompson, & Rittle-Johnson, 2018). I posit that the superior 

Magnitude Comparison ability of students following Simultaneous condition training is evidence 

of transfer of learning (Bjork & Bjork, 2011), as none of the conditions explicitly practiced 

comparison of values. Therefore, students may have improved their schema for magnitude by 

incorporating fractions, decimals, percentages, and whole numbers on the same mental number 

line. Regardless of the strategy that students may or may not have been using to complete the 

magnitude comparison task, the results demonstrated that improvement in the magnitude 

comparison performance from pre- to posttest was considerably greater for students in the 

Simultaneous condition. Instruction in the Simultaneous condition highlighted the connection 
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among notations. This finding is especially important, given that magnitude comparison was 

found repeatedly to be an important predictor of estimation ability in these analyses. Though 

there were no differences at posttest in estimation ability, it seems possible that over time 

students might improve their estimation abilities as they integrate rational number sense more 

fully. This theory is consistent with research demonstrating superior conceptual understanding 

following instruction that highlights the connection among notations (Moss & Case, 1999; Moss, 

2005; Kalchman, Moss, & Case, 2001). However, it is also possible that the number line 

instruction for individual values alone may not be sufficient for improving fraction arithmetic 

estimation. This idea is consistent with students’ difficulties generalizing number line estimation 

for individual fractions to sums of fractions (Braithwaite, Tian, & Siegler, 2018).  

Moreover, to the best of my knowledge, the current study was the first to directly 

compare a Simultaneous versus Sequential approach to reviewing rational number 

understanding. In this dissertation, I argue that current educational approaches that emphasize 

separate and Sequential instruction of fractions, decimals, and percentages do not provide 

students with an opportunity to fully integrate their conceptions of rational number and that a 

Simultaneous approach would be preferred. Moss & Case (1999) demonstrated a superior 

advantage of an experimental curriculum that simultaneously highlighted the connections among 

notations over a business as usual control. However, their intention was not to directly compare 

the Simultaneous versus Sequential approach per se but to emphasize the connections among 

notations. Furthermore, their study examined initial learning rather than review of rational 

numbers and it was highly constructivist in nature (e.g., students were exploring rational 

numbers through inventing concepts of percent with containers of water). This kind of 

constructivist exploration was obviously very valuable, as students outperformed their peers in a 
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business as usual control condition. However, the curriculum required a significant amount of 

time spent planning and additional considerations involved in classroom management given the 

resources required.  

The goal with this project was to test a brief, low cost warm-up activity aimed at 

improving rational number understanding that educators could implement daily without 

additional specialized knowledge or time intensive preparation. For example, Rohrer and 

colleagues (2019) demonstrated a simple adjustment that could be made in reviewing middle 

school math concepts: worksheets that applied an interleaved approach were better than 

worksheets that provided a blocked approach to review. This dissertation directly compared a 

Simultaneous versus Sequential number line approach to reviewing rational numbers. It was 

hypothesized that the Simultaneous approach would provide a more solidified understanding of 

rational number. While both the Simultaneous and Sequential condition individually made 

greater improvement on measures over the Control condition in most cases, the differences 

between the Simultaneous and Sequential condition were not significant except in the case of 

Magnitude Comparison across notations. There could be at least two explanations for this: there 

is little advantage of one number line condition over the other or it could be that students in the 

Sequential condition spontaneously linked notations by themselves. For example, analysis of the 

student activity packets demonstrated that 83% of students in the Sequential condition mentioned 

percent at least once in their packet in lessons that did not explicitly ask them about percent. It is 

possible that the image of a battery power icon, where charge is typically measured in 

percentage, naturally primed students to think about percent. From an educational perspective, it 

is promising that 83% of students in the Sequential condition made the connection between 

percentages and fractions/decimals at least once because research suggests that a focus on 



180 
 

percentage is an intuitive linking representation among notations (Moss & Case, 1999). From a 

research perspective, on the other hand, the analysis of the comparison between the 

Simultaneous and Sequential conditions may have been contaminated by students making these 

connections. Future research will have to be careful about how to control for this effect or 

perhaps a more appropriate test of the Simultaneous versus Sequential approach is at the initial 

stages of learning, where students likely have little formal knowledge of percent.  

Given that potentially percent was utilized as a tool to link the notations for students in 

both the Simultaneous and Sequential conditions (unintentionally for the Sequential condition), it 

helps reconcile some of the findings of a recent study (Malone et al 2019) with the current one. 

Malone et al (2019) found that an intervention that integrated fraction and decimal 

understandings was not more beneficial over just a fraction alone intervention. This appears to 

stand in opposition to Moss and Case (1999) and the Simultaneous condition of the current 

study, which integrated notations. However, the common thread between Moss and Case (1999) 

and the current study that is lacking in the Malone et al (2019) study is the focus on percent as a 

tool for linking notations. It is very possible that the conflict in findings about integrated 

instruction are due to the absence of percentage in the Malone et al (2019) study. The absence of 

percentage in Malone et al (2019) contrasts sharply with its central role in both Moss and Case 

(1999) and the current one. Case studies and interviews suggested that students used percent as a 

tool for interpreting magnitude in the current study. Moreover, analysis of student performance 

at pretest in the current study suggested that performance on fraction>percent items was one of 

the most closely related measures of performance on fraction addition estimation, exceeded only 

by standardized test of achievement and the composite magnitude comparison score. Relatedly, 

low performing students in the Simultaneous condition made substantially greater gains in 
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fraction>percent comparisons than the other conditions. Thus, while fraction-to-decimal 

comparisons are important, understanding of the relation between fraction and percent appears to 

be a critical driving force in integrated rational number understanding.  

Ultimately, the current study provided evidence that a daily brief warm-up activity to 

review rational numbers has some benefits and at the very least cannot hurt, especially given 

research documenting children’s difficulties with rational numbers (e.g., Lortie-Forgues et al, 

2015; Resnick et al, 1989, Durkin & Rittle-Johnson, 2015, Gay & Aichele, 1997) and the 

importance of fraction magnitude knowledge in advanced math outcomes (Siegler et al, 2012). 

That being said, the Simultaneous intervention was not perfect and did not resolve all of the 

students’ difficulties with rational numbers. Also, it is possible that 5 minutes per day over three 

weeks simply was not enough time to correct children’s persistent misunderstandings about 

rational numbers (Lortie-Forgues et al, 2015), when 4-5 years of previous instruction have 

essentially confused them. The quantitative and qualitative results suggest that students in the 

Simultaneous condition may have begun to modify their mental number line to include all 

rational numbers but perhaps it was only in the initial stages. Also, it is possible that the 

Simultaneous condition did not introduce enough variability with the notations. In other words, 

instead of always presenting a fraction that they had to translate into decimal and percent 

notation and represent all on the number line, the instruction could have presented them with a 

decimal or a percent that needed to be simultaneously represented in the other notations. This 

likely would have caused more elaborative processing (Battig, 1979; Shea & Zimny, 1983), 

which could have lead to greater understanding of the connection among notations. Moreover, 

instruction could have also incorporated varying notation during estimation of fraction arithmetic 

(e.g. estimate the answer to 12/13 + 90%). Varying the notation directly during estimation of 
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fraction arithmetic could have provided students with specific direction on how to use their 

emerging understanding of the relation among rational numbers. Another potential issue with the 

instruction is that it only involved numbers between 0 and 1, thus constraining children’s 

understanding of the relation among notations across the entire number line. Future research 

might examine the effects of the Simultaneous condition over several months of warm-up 

activities and/or more daily practice opportunities perhaps through technology incorporating 

these instructional changes. At the very least, this study suggests that there is some proof of 

concept that needs some modifications before further investigation takes place. 

General Mathematics Education Recommendations 

In addition to evaluation of a Simultaneous versus Sequential approach to review of 

rational numbers, this dissertation sheds light on several more general educational implications. 

The finding that students do not think about rational numbers as being equivalent in size suggests 

that teachers need to be mindful about using equal signs to describe equivalent values and be 

mindful about the language they use during instruction (Muszheve and Capraro, 2012). For 

example, teachers should be careful with comments that allude to rote procedural activity such as 

removing the decimal or getting rid of the percent sign to translate between notations and making 

the fraction ‘bigger’ when really describing equivalent fractions with larger components.  

Beyond these cautionary words, educators should strive to stimulate discussions on the 

connections among notations. Educators might engage students in conversations about relations 

among notations by asking questions such as, “What is the better coupon: 20% off or $5 off?” 

Teachers could extend this conversation to whether one needs to know the initial cost of the 

object to know which is more 35% off or 3/5 off. Educators might also engage in conversations 

about why students think particular notations are used for different purposes in our daily lives. 
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For example, why do we typically talk about batting averages as decimals (e.g., colloquially, “he 

bats three-hundred”) when we talk about basketball free throw shooting statistics as percentages? 

(Likely because batting 30% does not sound great and also because the thousandth place 

provides more discrimination among players’ performance). There are lots of questions like 

these that are ripe fruit for discussion; emphasis should be placed on describing that though we 

might typically use one notational form, any equivalent number could be used. 

Additionally, it is worth explicitly calling attention to the (a/b=0.ab) flawed translation 

strategy that sometimes works. An educator could begin a discussion by saying that another 

student at a different school used this procedure and it gives approximately the right answer and 

challenge students to determine whether it works all of the time. Also, give students number 

lines that are already partitioned into tenths or thirds or another variation and ask them to locate 

fractions, decimals, and percentages on it. Engage in discussion about the differences in 

determining where each notation is on the number line (e.g., the digits of decimals and 

percentages are processed horizontally, whereas fractions must be processed holistically).  

Finally, the striking differences between fraction performance on items that involve 

distraction as compared to those without distraction suggest that impulsive calculation is very 

real; students tend to think about fractions as entities to be acted upon rather than numbers. 

Perhaps, a way to combat this impulsivity is to utilize percent as tool. Percentage is an intuitive 

form of rational number that could help link the notations (Moss & Case, 1999; Matthews & 

Chesney 2015). Instead of this impulsive calculation when they encounter the symbol 27/30, 

students should be reasoning that this number should be close to 1 because if this were the 

amount of battery charge they had on their cellphone it would be almost 100% fully charged. 

They might also pursue the idea that they can transform this number into a value that might make 
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it easier for them to evaluate the magnitude more effectively. Putting the fraction in lowest terms 

might help them see that 9/10 is the same as .9 or 90%, which is in line with their original 

hypothesis that 27/30 is close to 1.  

Estimation should be an integral part of mathematics; however, student interviews 

suggested estimation is not valued for rational numbers despite Common Core recommendations. 

Moreover, student performance on fraction arithmetic estimation in the current study suggested  

students’ understanding of estimation in practice has very little power. As such, educators should 

be striving to model estimation with think-aloud procedures and incorporate more number sense 

discussions connected to number lines into daily instruction. Ultimately, this dissertation 

suggests that helping students understand the relations among fractions, decimals, and 

percentages might be key to recharging rational number sense.  
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Experiment 1 
Task 1: Fraction Arithmetic Estimation 
Part A) Addition Estimation Test Directions: For this task, you need to estimate the sum of a few 
fraction addition problems. Do not compute the exact answer. For each problem, generate the nearest 
number that you can to the sum. It could be a fraction, a decimal, a percentage, or a whole number - 
whatever you think is closest. The software will automatically move you to the next problem within a few 
seconds so please estimate and input your answer quickly. 

 
Pretest Posttest 

Practice: 
5/10+ 1/7 
4/10 +2/8 

 
Test Items: 

4/8+1/6 
5/10+1/6 
8/10+1/9 
9/10+1/9 
¾+ 1/3 
3/5+1/2 
5/6+2/4 
5/7+2/3 
¾+2/3 
¾+4/6 

5/10+1/8 
4/9+1/5 

Practice: 
5/10+ 1/7 
4/10 +2/8 

 
Test Items: 

4/8+1/6 
5/9+1/10 
8/10+1/9 
8/10+2/9 
¾+ 1/3 
3/5+1/2 
5/6+2/4 
2/3 +1/2 
¾+2/3 

4/5 + 4/7 
 

 
Part B) Subtraction Estimation Test. Directions: For this task, you need to estimate the difference 
of a few fraction subtraction problems. Do not compute the exact answer. For each problem, generate 
the nearest number that you can to the difference. It could be a fraction, a decimal, a percentage, or a 
whole number - whatever you think is closest. The software will automatically move you to the next 
problem within a few seconds so please estimate and input your answer quickly.  
 

Pretest Posttest 
5/10-1/7 
4/10-2/8 
4/8-1/6 
5/10-1/6 
8/10-1/9 
9/10-1/9 
¾-1/3 

3/5-1/2 
5/6-2/4 
5/7-2/3 
¾-2/3 
¾-4/6 

5/10-1/7 
4/9-1/5 
4/8-1/6 
4/10-1/4 
8/10-1/9 
8/10-2/9 
¾-1/3 

2/3-1/2 
5/6-2/4 
3/4-3/5 
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Experiment 2 (Revised from Experiment 1)  
Task 1: Fraction Arithmetic Estimation  
Directions: Select the best estimate for the following problems 

 
Practice Problems 

Pretest Item Answer Choices Posttest Item Answer Choices 
1
2+

1
3 

 

 
1
2     

2
5     

3
4 

 

1
2+

1
3 

 

 
1
2     

2
5     

3
4 

 
5
10+

1
4 

 

60%, 30%, 100% 5
10+

1
4 

 

60%, 30%, 100% 

 
Lure: Fraction Across Answer Choices 

Pretest Item Answer Choices Posttest Item Answer Choices 
5
6+

2
4 

 

7
10         

1
3       1

1
4 

 

5
6+

2
4 

 

7
10         

1
3       1

1
4 

 
3
4+

1
10 

 

4
14         1

1
4           

9
10 

 

2
7+

3
5 

 

5
12         1

1
4       

9
10 

 
1
5+

1
2 

 

2
7         

1
3       

3
4 

 

2
3+

1
8 

 

3
11         

1
4       

8
10 

 
 

Lure: Fraction Hybrid Across Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 

 
3
5+

8
9 

 

 
11
45         2      1

1
2 

 

 
3
5+

8
9 

 

 
11
45         2      1

1
2 

 
 

2
9+

3
5 

 

 
5
45         

4
18       

4
5 

 

 
3
7+

2
5 

 
 

 
5
35         

2
4       

8
10 

 

 
3
4+

2
10 

 

 
5
40         1

1
2       1 

 

 
3
4+

2
10 

 

 
5
40         1

1
2       1 
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Lure: Decimal Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 
 

7
8+

2
3 

 

 
. 9        2.0     1.5       

 

 
7
8+

2
3 

 

 
. 9        2.0     1.5       

 

 
2
3+

2
5 

 

 
. 4        1.7      1.0 

 

 
3
8+

2
3 

 
 

 
. 5        1.5      1.0 

 

 
2
9+

2
5 

 

 
. 4        .2      .6 

 

 
1
3+

4
10 

 

 
. 5        .75      1.0 

 

 
 

Lure: Percent Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 

 
5
6+

1
4 

 

 
60%        25%      100% 
 

 
3
5+

1
2 

 
 

 
47%        75%      100% 
 

 
1
3+

3
5 

 

 
48%        25%      90% 

 

 
1
3+

3
5 

 

 
48%        25%      90% 

 

 
1
3+

1
7 

 

 
20%        100%        50%       
 

 
1
3+

1
7 

 

 
20%        100%        50%       
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No Lure: Fraction Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 

 
3
5+

2
3 

 

 
1
4         

7
10       1

1
4 

 

 
3
5+

2
3 

 

 
1
4         

7
10       1

1
4 

 
 

5
9+

1
3 

 

 
1
2        1

1
2      1 

 

 
2
5+

1
2 

 
 

 
4
10        1

1
2     1 

 

 
3
8+

1
3 

 

 
1
10         

2
5       

3
4 

 

 
2
9+

4
7 

 
 

 
1
10         

1
3       

8
10 

 

 
4
5+

2
3 

 

 
1
2         2      1

1
2 

 

 
4
5+

2
3 

 

 
1
2         2      1

1
2 

 
 

2
10+

2
4 

 

 
1
5         

1
3       

2
3 

 

 
2
6+

2
4 

 
 

 
1
5         

1
2       

8
10 

 

 
3
7+

5
9 

 

 
3
4         1      1

1
2 

 

 
3
7+

5
9 

 

 
3
4         1      1

1
2 

 
 
 

No Lure: Decimal Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 

 
5
6+

3
4 

 

 
. 9        2.0  1.5       

 

 
5
6+

3
4 

 

 
. 9        2.0  1.5       

 

 
3
4+

3
10 

 

 
. 8             1.5 1.0 

 

 
5
6+

2
10 

 

 
. 3        1.5 1.0      

 

 
2
4+

1
9 

 

 
. 10    .25    . 60       

 

 
2
7+

2
5 

 

 
. 5        1.0 . 75       
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No Lure: Percent Answer Choices 
Pretest Item Answer Choices Posttest Item Answer Choices 
 

4
6+

2
4 

 

 
25%        75%      100% 

 

 
1
4+

6
7 

 
 

 
75%        30%      100% 

 
4
5+

1
7 

 

 
20%        60%      90% 

 

 
4
5+

1
7 

 

 
20%        60%      90% 

 

 
1
10+

1
3 

 

 
5%        75%      40% 

 

 
1
10+

1
3 

 

 
5%        75%      40% 
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Experiment 1 
Task 2: Mixed Comparison 
 
Directions: For this task, you will compare fractions, decimals, and percentages. Please try your 
best to select the larger value QUICKLY. 
 
Select the larger value: 
 
Pretest Items 

F>D D>F F>P P>F D>P P>D 

3/5 vs. .35 .97 vs. 7/9 ½ vs. 21% 72% vs. 4/7 .51 vs. 15% 42% vs. 24 

4/6 vs. .4 .8 vs. 5/8 ¾ vs. 43% 85% vs. 5/8 .4 vs. 4% 63% vs. .3 

6/7 vs. 6 .9 vs. 4/9 3/5 vs. 35% 97% vs. 7/9 .85 vs. 58% 71% vs. .17 

¾ vs. .34 .62 vs. 2/6 2/5 vs. 25% 52% vs. 2/5 .9 vs. 19% 21% vs. .1 

 
 
Posttest Items 
F>D D>F F>P P>F D>P P>D 
2/5 vs .25 
 

¼ vs .4 
 

2/5 vs 25% 
 

40% vs ¼ 
 

.40 vs 25% 
 

40% vs .25 
 

.35 vs 3/5 
 

.6 vs 7/20 
 

35% vs 3/5 
 

7/20 vs 60% 
 

35% vs .6 
 

.35 vs 60% 
 

3/8 vs .08 
 

8/100 vs .38 
 

3/8 vs 8% 
 

38% vs 8/100 
 

.38 vs 8% 
 

.08 vs 38% 
 

.67 vs 6/7 
 

.52 vs 2/5 
 

65% vs 5/6 
 

52% vs 2/5 
 

13% vs .31 
 

42% vs .24 
 

.5 vs 5/6 
 

1/5 vs .51 
 

3/4 vs 43% 
 

1/5 vs 51% 
 

58% vs .85 
 

.47 vs 74% 
 

¾ vs .34 
 

.83 vs 3/8 
 

45% vs 4/5 
 

3/8 vs 83% 
 

.4 vs 4% 
 

51% vs .15 
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Experiment 2 (Revised from Experiment 1) 
Task 2: Mixed Comparison 
 
Directions: For this task, you will compare fractions, decimals, and percentages. Please try your 
best to select the larger value QUICKLY. 
 
Select the larger value: 
 
Pretest Items 

F>D D>F F>P P>F D>P P>D 
2/5 vs .25 

 
¼ vs .4 

 
2/5 vs 25% 

 
40% vs ¼ 

 
.40 vs 25% 

 
40% vs .25 

 
.35 vs 3/5 

 
.6 vs 7/20 

 
35% vs 3/5 

 
7/20 vs 60% 

 
35% vs .6 

 
.35 vs 60% 

 
3/8 vs .08 

 
8/100 vs .38 

 
3/8 vs 8% 

 
38% vs 8/100 

 
.38 vs 8% 

 
.08 vs 38% 

 
.67 vs 6/7 

 
.52 vs 2/5 

 
65% vs 5/6 

 
52% vs 2/5 

 
13% vs .31 

 
42% vs .24 

 
.5 vs 5/6 

 
1/5 vs .51 

 
3/4 vs 43% 

 
1/5 vs 51% 

 
58% vs .85 

 
.47 vs 74% 

 
¾ vs .34 

 
.83 vs 3/8 

 
23% vs 2/3 

 
3/8 vs 83% 

 
.4 vs 4% 

 
51% vs .15 

 
 
 
Posttest Items 

F>D D>F F>P P>F D>P P>D 
2/5 vs .25 

 
¼ vs .4 

 
2/5 vs 25% 

 
40% vs ¼ 

 
.40 vs 25% 

 
40% vs .25 

 
.45 vs 4/5 

 
.8 vs 9/20 

 
45% vs 4/5 

 
9/20 vs 80% 

 
45% vs .8 

 
.45 vs 80% 

 
3/8 vs .08 

 
8/100 vs .38 

 
3/8 vs 8% 

 
38% vs 8/100 

 
.38 vs 8% 

 
.08 vs 38% 

 
.67 vs 6/7 

 
.52 vs 2/5 

 
65% vs 5/6 

 
52% vs 2/5 

 
2% vs .21 

 
31% vs .13 

 
.4 vs 4/6 

 
3/7 vs .73 

 
3/4 vs 43% 

 
7/9 vs 97% 

 
58% vs .85 

 
.47 vs 74% 

 
2/3 vs .23 

 
.94 vs 4/9 

 
45% vs 4/5 

 
2/7 vs 72% 

 
.4 vs 4% 

 
61% vs .16 
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EXPERIMENT 1 & 2 
TASK 3:  
0 to 1 Number Line Estimation: 
Directions: For this task, you need to slide the indicator to estimate a fraction on a number line 
from 0 to 1. Please try to be as accurate as possible.  
 
Please slide to estimate the fraction on the number line. 
Practice: ½ , ¼ 
Pretest: 1/19, 2/13, 1/5, 1/3, 3/7, 7/12, 5/8, 3/4, 7/8, and 13/14 
Posttest: 1/19, 1/7, 1/5, 3/11, 3/7,8/14, 5/8, 7/9, 7/8, and 14/15 
 
TASK 4:  
0 to 5 Number line Estimation:  
Directions: For this task, you need to slide the indicator to estimate a fraction on a number line 
from 0 to 5. Please try to be as accurate as possible.  
 
Please slide to estimate the fraction on the number line. 
Practice: 7/2 
Pretest: 1/5, 7/8, 11/7, 9/5, 13/6, 7/3, 13/4, 10/3, 9/2, and 19/4 
Posttest: 1/5, 7/8, 13/7, 12/7, 13/6, 8/3, 13/4, 11/3, 9/2, and 18/4 
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Experiment 1 
 
TASK 5: Distraction Number line Task 
Directions: For this task, you will place values on a labeled number line. 
 

 
 
Select the approximate location for: 
 
Pretest 

Fraction Decimal Percent 
1/19 
3/16 
2/7 
6/17 
4/9 
4/7 
5/8 

11/13 
 

0.052 
0.1875 
0.285 
0.35 
0.444 
0.57 
0.625 
0.8461 

5% 
19% 
29% 
35% 
44% 
57% 
63% 
85% 

 
 
Posttest 

Fraction Decimal Percent 
1/19 
3/16 
6/17 
11/13 
3/4 
5/6 
5/18 
9/15 

0.052 
0.1875 
0.35 

0.8461 
.750 
.83 
.277 
.600 

5% 
19% 
35% 
85% 
75% 
83% 
28% 
60% 
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Experiment 2 (Revised from Experiment 1) 
 
TASK 5: Distraction Number line Task 
Directions: For this task, you will place values on a labeled number line. 
 

 
 
Select the approximate location for: 
 
Pretest 

Fraction Decimal Percent 
1/19 
6/17 
9/20 
9/17 
8/14 
9/15 
4/5 
5/6 

0.052 
0.35 
.450 
.53 

.5714 
.600 
.8 

0.8333 

5% 
35% 
45% 
53% 
57% 
60% 
80% 
83% 

 
Posttest 

Fraction Decimal Percent 
1/18 
6/17 
8/20 
7/13 
8/14 
9/15 
2/3 
5/6 

0.056 
0.35 
.4 
.54 

.5714 
.600 
.666 

0.8333 

6% 
35% 
40% 
54% 
57% 
60% 
66% 
83% 
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Experiment 2 - Interview Protocol 
Part 1: Explain your strategy for solving the problems  
(Adapted from Moss & Case,1999) 

1) Fifteen blocks spilled out of a bag. This was 75% of the total number of blocks. How 
many blocks were in the bag to begin with? Explain. 

2) What fraction of the distance has Mary traveled from home to school? What is that as a 
percent? Explain. 

  
3) Can you tell me a number that comes between .3 and .4? Can you tell me a number that 

comes between 1/3 and ¼? Explain. 
4) How much is 1% of four dollars? Explain. 
5) Find ¾ of a pizza. (circle partitioned by eighths) Explain. 
6) What is 1/8 as a decimal/percent, how do you know? Explain. 
7) How much is 2/3 of 6/7? Can you draw a picture to explain how you got the answer? 

Explain. 
8) Look at this number line. What number is marked by the letter A? What number is 

marked by the letter B?  Explain. 
 

 
9) Could these be the same amount, .06 of a tenth and .6 of a hundredths? Yes or no. 

Explain. 
10) How should you write thirty-five hundredths as a decimal? How should you write 

seventy-five thousandths as a decimal? Explain. 
11) Shade 0.3 of a circle. (circle partitioned by fifths) Explain. 
12) How would you write 6% as a decimal? Fraction? Explain. 

 
 
Part 2: Explain your strategy for placing these on the number line 
0 to 1 number line:1/19, 3/7, 7/8 
0 to 5 Number line: 1/5, 7/3, 19/4 
0 to 1 decile line: 6/17, 3/5, 5/6 
 
Part 3:  
Estimate: 12/13+7/8 
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Appendix B. Sample Instructional Materials 
Overview of Numerical Values for each Condition  

 Simultaneous Sequential Control 
Directions Write the fraction as a 

decimal and percent. Label 
values on their respective 
number lines. 

Label value on the number 
line. 
 

Solve the fraction arithmetic 
problem. Show your work. 

Lesson Day 
for Values  

1. 4/5 
2. 3/10 
3. 5/8 
4. 2/25 
5. 7/20 
6. 27/30 
7. 4/7 
8. 17/19 
9. 15/25 
10.  2/9 
11. 14/20 
12. 7/8 
13. 34/50 
14. 5/6 
15. 4/11 

1. 4/5 
2. 3/10 
3. 5/8 
4. 2/25 
5. 7/20 
6. 0.9 
7. 0.571 
8. 0.8947 
9. 0.22222 
10. 0.6 
11. 70% 
12. 68% 
13. 87.5% 
14. 83.3% 
15. 36.4% 

1. 4/5 +3/10 
2. 5/8+2/25 
3. 2/25+7/20 
4. 4/5+7/20 
5. 3/10+2/25 
6. 27/30-4/7 
7. 17/19-5/8 
8. 15/25-3/10 
9. 4/5-15/25 
10. 5/8-2/9 
11. 7/8-4/5 
12. 7/8+5/6 
13. 5/6-14/20 
14. 14/20-34/50 
15. 4/11+5/6 

Question 
In Student  
Packet 

What did you do to help you 
figure out a good answer? 

What did you do to help 
you figure out a good 
answer? 

What did you do to help you figure 
out a good answer? 
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Sample Student Activity - Simultaneous Condition (Typical Throughout Lessons 1-15) 
Directions: Estimate the value by shading in an approximate battery icon for the value. Write the 
fraction as a decimal and percent. Label values on their respective number lines. 
 
Estimate: Shade in the battery icon below to show your estimate of the value. 

 
 
Fraction: !

!
 

 
Decimal: __________________  

 
Percent: ___________________ 

 
 
 
What did you think about to help you figure out a good answer? 
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Sample Student Activity - Sequential Condition (Typical of Week 1) 
Directions:  Estimate the value by shading in an approximate battery icon for the value. Label 
value on the number line. 
 
Estimate: Shade in the battery icon below to show your estimate of the value. 

 
 
Fraction: !

!
 

 
 
 
What did you think about to help you figure out a good answer? 
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Sample Student Activity - Sequential Condition (Typical of Week 2) 
Directions:  Estimate the value by shading in an approximate battery icon for the value. Label 
value on the number line. 
 
Estimate: Shade in the battery icon below to show your estimate of the value. 

 
 
Decimal: 0.571 

 
 
 
 
What did you think about to help you figure out a good answer? 
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Sample Student Activity - Sequential Condition (Typical of Week 3) 
Directions:  Estimate the value by shading in an approximate battery icon for the value. Label 
value on the number line. 
 
Estimate: Shade in the battery icon below to show your estimate of the value. 

 
 
Percent: 68% 

 
 
 
 
What did you think about to help you figure out a good answer? 
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Sample Student Activity - Control Condition (Typical Throughout Lessons 1-15) 
Arithmetic- Day 3 
Directions:  Solve the fraction arithmetic problem.  
 
Problem: 
 

 !
!"

  + !
!"

       
 
 
 
 
 
 
 
What did you think about to help you figure out a good answer? 
 
 
 
 
 
 
 
 
 
------------------------------------------------------------------------------------------------------------------- 
Arithmetic- Day 6 
Directions:  Solve the fraction arithmetic problem.  
 
Problem: 
 

 !"
!"

  - !
!
       

 
 
 
 
 
What did you think about to help you figure out a good answer? 
 
 
 
 
  
 




