
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Enhanced Branch-and-Bound Framework for a
Class of Sequencing Problems

Zizhen Zhang , Luyao Teng , Mengchu Zhou , Fellow, IEEE, Jiahai Wang , Member, IEEE, and Hua Wang

Abstract—In this paper, we propose an enhanced branch-and-
bound (B&B) framework for a class of sequencing problems,
which aim to find a permutation of all involved elements to min-
imize a given objective function. We require that the sequencing
problems satisfy three conditions: 1) incrementally computable;
2) monotonic; and 3) overlapping subproblems. Our enhanced
B&B framework is built on the classical B&B process by intro-
ducing two techniques, i.e., dominance rules and caching search
states. Following the enhanced B&B framework, we conduct
empirical studies on three typical and challenging sequencing
problems, i.e., quadratic traveling salesman problem, traveling
repairman problem, and talent scheduling problem. The com-
putational results demonstrate the effectiveness of our enhanced
B&B framework when compared to classical B&B and some
exact approaches, such as dynamic programming and constraint
programming. Additional experiments are carried out to analyze
different configurations of the algorithm.

Index Terms—Branch-and-bound (B&B), caching states, dom-
inance rules, dynamic programming (DP), talent scheduling
problem, traveling salesman/repairman problem.

I. INTRODUCTION

THE SEARCH techniques for solving combinatorial
optimization problems (COPs) have been widely studied

in the communities of artificial intelligence, industrial engi-
neering, and operations research during the last century. The
simplest and standard framework for solving COPs is to use
branch-and-bound (B&B) algorithms [3], [8], [14]. Its basic
idea is to systematically and implicitly enumerate all possible
candidate solutions, where large subsets of fruitless candidates

Manuscript received July 24, 2018; revised January 26, 2019; accepted
May 4, 2019. This work was supported in part by the National Science
Foundation of China under Grant 71601191 and Grant 61673403, and in
part by the Natural Science Foundation of Guangdong Province under Grant
2016A030313264. This paper was recommended by Associate Editor S. Song.
(Corresponding author: Luyao Teng.)

Z. Zhang and J. Wang are with the School of Data and Computer
Science, Sun Yat-sen University, Guangzhou 510275, China, and also
with the Guangdong Key Laboratory of Big Data Analysis and
Processing, Sun Yat-sen University, Guangzhou 510275, China (e-mail:
zhangzzh7@mail.sysu.edu.edu).

L. Teng and H. Wang are with the Centre for Applied Informatics,
Victoria University, Melbourne, VIC 3011, Australia (e-mail:
luyao.teng@live.vu.edu.au).

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
mengchu.zhou@njit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2916202

are discarded by using the relations between the values of
upper/lower bounds.

B&B also provides a general framework for many tra-
ditional heuristic approaches, such as bidirectional heuristic
search algorithm [9], A* [18], and iterative-deepening-
A* [24]. The implementation of a classical B&B algorithm
mainly depends on the specification of the following key
components [22]: 1) branching rules; 2) node selection rules;
3) node elimination rules; 4) dominance functions; 5) lower-
bound functions; and 6) upper-bound cost.

This paper investigates an enhanced B&B framework, which
is devoted to solving a class of sequencing problems (or
called permutation problems). Typically, a sequencing problem
of size n is a COP that tries to find a sequence π =
(π1, π2, . . . , πn) of the integer set N = {1, 2, . . . , n} sub-
ject to several constraints such that the cost c(π) associated
with sequence π is minimized (the maximization version of a
problem can be easily transformed to the minimization one).
We use � to denote the set of all possible sequences, where
|�| = n!. If some sequence π ∈ � leads to an infeasible
solution, we simply set c(π) = +∞.

The sequencing problems discussed in this paper are
required to satisfy the following conditions.

1) Incrementally Computable: For any sequence π =
(π1, π2, . . . , πn), there exist n incremental functions
c(πi;π1, π2, . . . , πi−1) for i = 1, 2, . . . , n, each measur-
ing the cost between element πi and the partial sequence
(π1, π2, . . . , πi−1), such that c(π) = c(π1)+c(π2;π1)+
c(π3;π1, π2) + · · · + c(πn;π1, π2, . . . , πn−1).

2) Monotonic: Each incremental function must be non-
negative, i.e., c(πi;π1, π2, . . . , πi−1) ≥ 0 for i =
1, 2, . . . , n.

3) Overlapping Subproblems: A sequencing problem
can be broken down into subproblems, where the
results of the subproblems can be stored to avoid
recomputing them again. As a typical example,
Koivisto and Parviainen [23] introduced a sequenc-
ing problem with degree d, where the incremen-
tal function c(πi;π1, π2, . . . , πi−1) only depends on
the elements in the set {πi−d+1, πi−d+2, . . . , πi} and
possibly the remaining i − d preceding elements in
{π1, π2, . . . , πi−d}. This type of sequencing problems
has the property of overlapping subproblems.

In fact, the first two conditions are very common in
almost every practical sequencing problem. Only the third
condition (overlapping subproblems) imposes some restric-
tion. Nevertheless, there are a number of practical sequencing

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Victoria University Eprints Repository

https://core.ac.uk/display/286776417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0320-9355
https://orcid.org/0000-0002-3872-4085
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0002-6961-7813
https://orcid.org/0000-0002-8465-0996

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

problems satisfying the above conditions, such as the well-
known traveling salesman problem and a kind of permu-
tation flow shop scheduling problems [6], [40], [41]. In
the rest of this paper, to avoid ambiguity, we specify
that a “sequencing problem” refers to the one meeting the
above conditions. To demonstrate the effectiveness of our
enhanced B&B framework, we apply it to solve three rel-
atively complicated sequencing problems, namely, quadratic
traveling salesman problem (QTSP) [12], traveling repair-
man problem (TRP) [17], and talent scheduling problem [10].
These problems have different degrees d with respect to their
overlapping subproblems. And all of them are NP-hard prob-
lems. In the literature, there are relatively few studies using
exact approaches to solve them. Therefore, B&B would be an
initial and standard option devoted to dealing with them. By
extensive experiments, we show that our approaches are able to
generate the optimal solutions for many benchmark instances
compared with other exact approaches, thereby indicating a
significant contribution to the literature in this field.

The contribution of this paper is threefold. First, our
enhanced B&B algorithm is built on the classical B&B algo-
rithm, which is a general framework for dealing sequencing
problems. Second, we introduce different dominance rules
and caching state strategies into classical B&B framework to
accelerate the search process. Finally, we apply the proposed
framework for solving three complex sequencing problems.
The results can serve as baselines for other exact or heuristic
approaches.

The remaining of this paper is organized as follows.
In Section II, we introduce a dynamic programming (DP)
approach for sequencing problems. In Section III, an enhanced
B&B framework is proposed. Section IV presents three prob-
lems in detail to instantiate the performance of the framework.
Finally, Section V concludes this paper.

II. DYNAMIC PROGRAMMING

The property of overlapping subproblems implies that
sequencing problems can be solved by using DP techniques.
We present the state transition functions in the following
expressions for solving the sequencing problems with d = 1
and d = 2, respectively

g1(X) =
{

c, if X = ∅
min
i∈X

{g1(X − {i}) + c(i; X − {i})}, otherwise (1)

where X is a subset of N, g1(X) denotes the minimal value
of all possible partial sequences composed of the elements in
X, c(i; X −{i}) returns the incremental cost of adding element
i into X − {i} as the last visited element, c is the boundary
constant

g2(i; X) =

⎧⎪⎨
⎪⎩

c(i), if X = {i}
min

j∈X−{i}
{g2(j; X − {i}) + c(j; X − {j, i})}

otherwise.
(2)

g2(i; X) involves one additional dimension indexed by i,
indicating the last visited element in X, c(i) is the boundary
cost function.

For the sequencing problems with degree d ≥ 3, their state
transition functions can also be easily obtained in the simi-
lar manner. In the following context, we use S to uniformly
represent some state of a sequencing problem, e.g., S = (X)

when d = 1 or S = (i; X) when d = 2.
By the property of overlapping subproblems, a DP approach

can generally reduce the search space from O(n!) to O(2n ·
nd−1). As an example, when n = 10 and d = 2, O(n!) =
3 628 800 � 10 240 = O(2n · nd−1). However, it has some
deficiencies.

1) The number of states increases exponentially as size
n and therefore memory availability becomes a serious
problem for storing all states.

2) The optimal solutions of the problem may be unreach-
able from some states, whose existence usually reduces
the efficiency of a DP approach.

The second deficiency can be alleviated by introducing an
admissible heuristic estimate [denoted by function h(S)] of
the cost from the current state S to the goal one. The function
h(S) must not overestimate the cost to the goal state. It is
also recognized as a lower-bound function of state S. Assume
that g(S) is the known cost at the current state S, the overall
cost estimate f (S) for the current state can be obtained by
f (S) = g(S) + h(S).

As an example, consider a traveling salesman problem,
which is a sequencing problem with degree d = 2. Suppose
that g(S) [here, S = (i; X)] denotes the minimal length of the
path that travels from the depot to vertex i and visits each
vertex in X exactly once. h(S) returns the estimated length of
the path that travels from vertex i to the depot and visits each
of the remaining vertices (i.e., N − X) exactly once. The well-
known 1-tree bound or assignment problem bound can be used
to approximate the value of h(S). If an upper bound U of the
sequencing problem is available, those states with f (S) ≥ U
can be safely discarded during the DP process.

The aforementioned DP process must explore the DP states
along with the increasing direction of the cardinality of set X.
Apparently, the DP approach is a typical search approach.
Another choice is to extend DP states in the ascending order
of function f (S), which can be viewed as a variant of the A*
approach [18].

III. ENHANCED BRANCH-AND-BOUND

In the previous section, we do not discuss how to deal
with the first deficiency of a DP approach. In fact, it becomes
impossible to keep every state in the memory for any sizable
problems. Therefore, the basic idea of our proposed method
is to memoize only a portion (by using the so-called hash
table or transposition table) of states during the search. The
states which are not memoized are handled by the branching
process.

There are several existing search approaches that can effi-
ciently make use of memories, such as memory-bounded
search [36] and iterative deepening search [34]. However,
both of them are not suitable for sequencing problems.
The memory-bounded search cannot guarantee to obtain
the optimal solution unless sufficient memory is provided.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ENHANCED B&B FRAMEWORK FOR CLASS OF SEQUENCING PROBLEMS 3

The iterative deepening search uses the search depth or the
heuristic function f (S) as a cutoff for each iteration. It con-
sumes very small amount of memory but does not leverage
the overlapping subproblems property.

In this section, we first briefly introduce the depth-first
search (DFS) for the sequencing problem and then propose
some techniques to enhance the search.

A. Depth-First Search

The DFS is a very fundamental B&B search strategy for
solving sequencing problems. Suppose that we aim to seek
an optimal sequence π∗ = (π∗

1 , π∗
2 , . . . , π∗

n). A typical B&B
process first determines the first k positions, denoted by a par-
tial sequence (π1, π2, . . . , πk), at level k of the search tree.
Next, it generates n − k branches, each trying to explore a
node by assigning a value to πk+1. At some tree node at level
k + 1, there is a known partial sequence (π1, π2, . . . , πk+1)

and a set of n−k −1 unordered elements. If a lower bound to
the best solution that contains this partial sequence is greater
than or equal to the global upper bound UB, then the B&B
node associated with πk+1 can be safely discarded. Once the
search process reaches a node at level n of the tree, a feasi-
ble solution is obtained and the current upper bound can be
updated accordingly.

B. Enhancement Techniques

The size of a DFS tree (i.e., the number of tree nodes) for
a sequencing problem could be as large as the factorial of n
in the worst case. In order to prune nodes effectively, on the
one hand, it is of importance to obtain a tight lower bound for
the corresponding search node. On the other hand, we should
try to eliminate nonpromising search nodes by making use of
the property of overlapping subproblems.

A DFS search process differs from DP or A* search pro-
cess. It may revisit a large number of subproblems. More
specifically, for two search nodes u1 and u2 associated with
two partial sequences, they may correspond to the same sub-
problem Psub, which can be represented by some DP state S.
Let g(u) be the known cost of the partial sequence associ-
ated with node u. If the subproblem Psub of node u1 has been
explored and g(u1) is greater than g(u2), then the exploration
of node u1 becomes superfluous due to its inability to lead
to an optimal solution. Nevertheless, in conventional DFS,
we have to continue to explore node u2, i.e., to revisit the
same Psub.

To avoid revisiting subproblems, when a DFS process
reaches some node u, it needs to determine whether g(u) is
greater than or equal to the corresponding state value g(S). If
so, node u must be dominated by some other node in DFS
tree and all branches originating from node u can be pruned.
However, in a DFS process, g(S) is not known unless all partial
sequences have been enumerated. Instead of using the exact
g(S), we keep track of the smallest upper bound of g(S),
denoted by ĝ(S). If g(u) ≥ ĝ(S), node u can be discarded;
otherwise, ĝ(S) is updated by g(u).

We apply the memoization technique to record the
information of states. However, due to the memory insuffi-
ciency, we can only memoize a bounded number of states. In
this case, a critical problem is how to manage an exponen-
tial number of states by using a limited amount of memory.
Intuitively, we would like to memoize those important states
only. For other less important states, the associated search
nodes are continued to explore. This reduces the efficiency
of the search process but still ensures the optimality of the
results.

During a DFS process, states are associated with search
nodes in the search tree. Some states may be encountered
aperiodically, which motivates us to use memory caching tech-
niques. If we regard a transposition table (the table used
to store the information of states) as a high-speed cache of
machines and regard the exploration of nodes as accessing
a main storage device, then we can reference from memory
caching techniques to sequencing problems. In Section III-D,
we elaborate in detail several caching strategies embedded into
the enhanced B&B framework.

Another method to prevent the search from revisiting sub-
problems is to apply dominance rules on each node u. If a
search process is able to find another node u′ associated with
a state that is the same as node u and g(u) > g(u′), then node u
can be pruned. We discuss how to design dominance checkers
in Section III-C.

The general framework of the enhanced B&B is presented
in Algorithm 1. In line 10, operator “⊕” combines the current
state with a new element to form a new state. In line 12,
the cost of the partial sequence π is calculated. In line 13,
a lower-bound function of estimating S′ is invoked. Function
stateInCache in line 18 checks whether the state is in the
transposition table or not. Function isDominated in line 25
invokes the dominance checks to examine the current node.
Function cachingState in line 31 applies caching strategies to
memoize the state.

C. Dominance Rules

Dominance rules are widely applied in solution proce-
dures for a variety of COPs [19]. Suppose that a node
u = (π1, π2, . . . , πl) is related to a state S, we want to
check if there exists another node u′ = (π ′

1, π
′
2, . . . , π

′
l)

that is also related to S and dominates node u. For a
sequencing problem with degree d, state S is denoted by
(πl−d+2, πl−d+3, . . . , πl; {π1, π2, . . . , πl}). To identify a node
u′, we first set π ′

i = πi for every i ∈ {1, 2, . . . , l} and then ran-
domly permute (π ′

1, π
′
2, . . . , π

′
l−d+1). If we can find a node u′

with g(u′) < g(u), u must be a dominated node. Obviously,
there are (l − d + 1)! possible permutations for an individual
state. Hence, it may require a huge amount of computational
effort to enumerate all of them. To resolve this issue, a wise
strategy is to heuristically seek a possible u′ by using dom-
inance checkers. Now, we present four simple dominance
checkers that are used to identify node u′.

1) Forward-Shift: Shift the (l − d + 1)th element imme-
diately before the kth (k = 1, 2, . . . , l − d) element in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 1 Enhanced B&B Framework for the Sequencing
Problem
Input:

l: depth of the search tree
π : partial sequence
S: state
z: known cost of the partial sequence

Procedure: search(l, π, S, z)
1: if l = n + 1 then
2: if z < UB then
3: UB := z;
4: best_solution := π ;
5: end if
6: return;
7: end if
8: for each i /∈ {π1, . . . , πl−1} do
9: πl := i;

10: S′ := S ⊕ {πl};
11: π := (π1, . . . , πl−1, πl);
12: g := z + c(πl; π1, . . . , πl−1);
13: h := lower_bound(S′);
14: f := g + h;
15: if f ≥ UB then
16: continue;
17: end if
18: if stateInCache(S′) then
19: if g ≥ ĝ(S′) then
20: continue;
21: else
22: ĝ(S′) := g;
23: end if
24: end if
25: if isDominated(π) then
26: continue;
27: end if
28: t1 := clock(); // record system time before the subroutine
29: search(l + 1, π, S′, g);
30: t2 := clock(); // record system time after the subroutine
31: cachingState(S′, g, t1, t2);
32: end for

the partial sequence. This checker examines l−d partial
sequences (i.e., nodes).

2) Backward-Shift: Shift the kth (k = 1, 2, . . . , l − d)
element immediately after the (l − d + 1)th element.

3) Swap: Swap the kth element (k = 1, 2, . . . , l − d) with
the (l − d + 1)th element.

4) 2-Opt: For each k = 1, 2, . . . , l−d, reverse the segment
(πk, πk+1, . . . , πl−d+1).

Note that after setting π ′
i = πi for each i = {1, 2, . . . , l},

all dominance checkers mainly focus on adjusting the position
of element π ′

l−d+1. This is because the position of element π ′
i

(1 ≤ i ≤ l − d) can be checked at the previous levels of the
DFS tree. Fig. 1 illustrates the applications of the above four
dominance checkers for a sequencing problem with degree
d = 2.

Generally speaking, if a dominance checker performs k
moves, k partial sequences should be evaluated. The evalu-
ation time is generally proportionate to the length of a partial
sequence, i.e., l. Therefore, a dominance checker roughly con-
sumes O(klα) = O(l2α) time, where α is the unit operation
time. Such time complexity is moderate for a dominance rule.
One can certainly design more complex checkers. However,

(a)

(b)

(c)

(d)

Fig. 1. Four dominance checkers for the sequencing problem with d = 2.
(a) Forward-shift checker. (b) Backward-shift checker. (c) Swap checker.
(d) 2-opt checker.

they may require more computational time without bringing
in more node elimination.

In some cases, a dominance checker can be fur-
ther accelerated. Take the forward-shift checker as an
example, where l = 5 and d = 2. The origi-
nal partial sequence is (π1, π2, π3, π4, π5). Each forward-
shift results in (π1, π2, π4, π3, π5), (π1, π4, π2, π3, π5),
and (π4, π1, π2, π3, π5). Observe that the adjacent partial
sequences only differ in two positions of elements. Thus, for
particular problems, e.g., traveling salesman problem, we can
calculate the difference between adjacent partial sequences
instead of re-evaluating them, thereby reducing the overall
computational time.

D. Caching Search States

As mentioned in Section III-B, we use cache to store a
portion of states as well as their best known values ĝ during
a DFS process. In general, the cache is composed of C cache
lines or blocks, each containing B items. If an item requires K
memory units, the entire cache occupies K × B × C memory
units in total. The structure of a state recorded in an item
includes 〈SI, g, t1, t2〉, where:

1) SI: the state identifier. For example, each state can
be mapped into a unique integer, which is called an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ENHANCED B&B FRAMEWORK FOR CLASS OF SEQUENCING PROBLEMS 5

identifier. Using a state identifier can facilitate the
comparison of two states;

2) g: the best known value of a state, i.e., ĝ(S);
3) t1: the timestamp of entering into the recursive function

search(l, π, S, z);
4) t2: the timestamp of exiting the recursive function

search(l, π, S, z).
The introduction of timestamps t1 and t2 is to record the

time when a search process enters and leaves the subtree
rooted at current search node. For example, in C/C++, t1 and
t2 can be obtained by invoking the system function clock().
Therefore, the difference between t2 and t1 can be used to
measure the difficulties in exploring this subtree. That is, the
value of t2 − t1 can be approximately viewed as the amount
of computational effort consumed to explore the current state.

We adopt hashing mechanisms to map states to cache
blocks. Because of a huge number of states and limited cache
size, hash collisions may happen when different states are
assigned by the hash function to the same cache block. Thus,
we need to design some cache replacement strategies to man-
age the data in the cache. If an item is to be stored in a block
that is already occupied by another item, i.e., a hash collision
occurs, the cache replacement strategy should decide whether
the new item replaces the existing one in the block or is just
discarded.

To deal with hash collisions, we propose the following three
cache replacement strategies, which are inspired by [5].

1) Least Recently Used (LRU): LRU is a very popular
caching strategy. It keeps track with the timestamp when
an item is recorded (i.e., the value of t2). When a new
item is to be cached, it replaces the LRU item in the
corresponding block. LRU works in a manner that a
state recorded more recently has a higher probability
of occurring in the near future.

2) Greedy: Greedy strategy discards the item with the
largest value of ĝ(S) in the block. The reason for intro-
ducing this strategy is that a smaller value of the state
stored in the cache is likely to eliminate more nodes
during the search process.

3) Least Expensive (LE): This strategy discards the item
with the smallest t2 − t1. Note that we use t2 − t1 to
measure the expense of exploring the nodes associated
with state S. The rationale behind this is to preserve
those states that are very time consuming to explore.

The pseudocodes of these caching strategies are provided in
Algorithm 2, where hash(S) is a hash function that maps state
S to a unique integer as a state identifier SI. For example, if S
contains an n-cardinality set, then we can use an n-bit binary
number to generate SI. Variable index is the assigned cache
block with respect to SI.

It is worth noting that the efficiency of a caching tech-
nique depends on the frequency of hash collisions and the
computational effort of re-exploring search nodes [32]. While
the frequency of hash collisions seems to be difficult to con-
trol for all the strategies, LE is the most accurate method
to estimate the re-exploration time among these strategies.
The experimental results given in Section IV are consistent
with this.

Algorithm 2 Caching State Strategies
Cache parameters:

C: No. cache lines or blocks
B: No. items in a block
strategy: cache replacement strategy

Function: cachingState(S, g, t1, t2)
1: SI := hash(S);
2: index := SI mod C;
3: j := 0;
4: switch (strategy)
5: case LRU:
6: for i := 1 to B − 1 do
7: if cache[index][i].t2 < cache[index][j].t2 then
8: j := i;
9: end if

10: end for
11: if t2 > cache[index][j].t2 then
12: cache[index][j] := 〈SI, g, t1, t2〉;
13: end if
14: case Greedy:
15: for i := 1 to B − 1 do
16: if cache[index][i].g > cache[index][j].g then
17: j := i;
18: end if
19: end for
20: if g < cache[index][j].g then
21: cache[index][j] := 〈SI, g, t1, t2〉;
22: end if
23: case LE:
24: for i := 1 to B − 1 do
25: if cache[index][i].t2 − cache[index][i].t1

< cache[index][j].t2 − cache[index][j].t1 then
26: j := i;
27: end if
28: end for
29: if t2 − t1 > cache[index][j].t2 − cache[index][j].t1 then
30: cache[index][j] := 〈SI, g, t1, t2〉;
31: end if
32: end switch

IV. EMPIRICAL STUDIES

To show the effectiveness of the enhanced B&B framework,
we introduce three example sequencing problems and, respec-
tively, implement algorithms for them. The first problem is
QTSP [12]. The second one is TRP, which is also termed min-
imum latency problem [4]. The third one is talent scheduling
problem [7]. These three problems are the sequencing prob-
lems with degree d = 3, d = 2, and d = 1, respectively. We
can apply the proposed solution framework to solve them. It is
worth noting that B&B may not be the best solution method
for exactly solving these problems. However, it would be a
great choice to provide baseline results for other approaches.

All the algorithms are implemented in C++. They are tested
on a variety of benchmark instances, which can be down-
loaded at: https://www.github.com/zhangzizhen/E-BNB. All
the experiments are run on a Linux server with Intel Xeon
2.66-GHz processor, and 8-GB memory.

A. Experiments on QTSP

QTSP is the problem of finding a route with the minimum
cost, where the cost is obtained by summing up the product
of every two adjacent edges in the route. Mathematically, let

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 2. Example of the route cost calculation for QTSP and TRP.

N = {1, 2, . . . , n} be a set of n (n ≥ 3) nodes and c(i, j) be
the distance between node i and node j. Then, the cost of a
possible route (r1, r2, . . . , rn) is calculated by

n−2∑
i=1

c(ri, ri+1) · c(ri+1, ri+2)

+ c(rn−1, rn) · c(rn, r1) + c(rn, r1) · c(r1, r2). (3)

Fig. 2 illustrates how to calculate the cost of a five-
node route. QTSP is strongly NP-hard [42]. It is motivated
by the applications of permuted Markov model [11] and
permuted variable length Markov model [45] in bioinfor-
matics. We study the minimization version of QTSP [31].
Fischer et al. [12] proposed the exact and heuristic approaches
to solve QTSP. As they mention, their B&B algorithm cannot
solve the instance with n greater than 20 when a PC with
an Intel Core i7 2.67-GHz CPU and 12-GB RAM is used.
Fischer and Helmberg [13] proposed a cutting plane method
to solve QTSP. Their implementation builds on SCIP and
CPLEX. Experiments conducted on the instances with sizes
5 <= n <= 25 show that 195 out of 360 instances can be
optimally solved. In [35], the asymmetric version of QTSP is
addressed. A B&B approach is proposed which can solve the
instances with n ≤ 25 (executed on a PC with an Intel Core i5
2.30-GHz CPU and 6-GB RAM).

We try to apply our enhanced B&B to deal with QTSP.
By our definition, QTSP belongs to a sequencing problem
with d = 3. Assume that node 1 is the starting node (in fact,
any node can be selected as the starting node). The DP state
transition function is

g(j, i; X) =

⎧⎪⎪⎨
⎪⎪⎩

c(1, i) · c(i, j)
if X = {i, j | i, j = 2, . . . , n, i �= j}

mink∈X−{i}{g(k, j; X − {i}) + c(k, j) · c(j, i)}
otherwise.

The final optimal solution can be obtained by

min
i,j,k∈N,i�=j�=k

g(j, i; N) + c(j, i) · c(i, 1) + c(i, 1) · c(1, k). (4)

A lower bound of a search node at tree level l should
be designed. Suppose that this search node corresponds to
some partial route (π1 = 1, . . . , πl−1, πl) and the set of
remaining undetermined nodes is � = {θ1, . . . , θn−l}. The
basic idea of a lower-bound function is to estimate the low-
est cost for any sequence of �. Assume that these n − l
nodes and the costs of associated n − l + 1 edges are fixed,
as shown in Fig. 3. All the costs are stored in an increas-
ingly sorted array a = (a1, . . . , am), where m = n − l + 1.

Fig. 3. Illustration of finding a lower bound of a search node for QTSP.

We would like to seek a permutation P of {1, . . . , m} such
that z = ∑m−1

i=1 aP(i) · aP(i+1) is minimal, then it can pro-
vide a lower bound for any array a. It is easy to verify that
when P = (m, 1, m − 2, 3, . . . , 4, m − 3, 2, m − 1), the resul-
tant sequence, i.e., (am, a1, am−2, a3, . . . , a4, am−3, a2, am−1),
can result in the smallest value of z. This sequence is con-
structed by first putting two largest elements on both sides of
the sequence, then putting two smallest elements adjacent to
the largest ones, and so on, so forth, until all the elements
have been filled in.

To obtain array a, the costs of m = n − l + 1 edges must be
determined. However, the costs are related to the organization
of undetermined nodes in � and thus array a is varied. We use
the following method to generate an increasingly sorted array
b satisfying bi ≤ ai for every i = 1, . . . , m. Then applying the
above construction method on b can generate a lower bound.

First, find a minimum spanning tree which spans the nodes
with respect to the set �. Second, the costs on a total of
n − l − 1 edges of the minimum spanning tree are stored in
the sorted array b. Third, find the smallest cost edge between
π1 and �, denoted as e1. Similarly, obtain the smallest cost
edge between πl and �, denoted as e2. Finally, the costs of
edges e1 and e2 are also included in the sorted array b. In fact,
this method is essentially the idea of 1-tree bound adopted in
the traveling salesman problem. Calculating the lower bound
takes O(n2) time, which is determined by finding a minimum
spanning tree.

Other components of the enhanced B&B algorithm for
QTSP are implemented by following Algorithm 1. We inves-
tigate 9 QTSP instances (e.g., burma14 and ulysses16) for
the experiments, which are directly replicated from the classic
TSP benchmark instances. The parameters used in the algo-
rithm are set as follows: cache size C = 220, block size B = 1,
and LE strategy is applied. The setting of C is a reasonable
number that our machine can offer.

Table I presents the optimal solution cost, the number of
expanded search nodes, and the running time of each instance.
As we can see, QTSP is a difficult COP that the enhanced
B&B algorithm can solve the instances with n ≤ 30 in rea-
sonable computational time. As a comparison, another B&B
algorithm proposed in [12] can only solve the instance with
size n up to 20.

We also numerically analyze the impacts of different
enhancement techniques on the algorithm performance. The
instances with n ≤ 20 are selected for the experiment. In
Table II, the column “D” refers to the B&B armed with dom-
inance checkers, the column “C” shows the results for the
B&B using state caching with C = 220, B = 1, and LE. The
columns “D+C(i)” for i = {20, 18, . . . , 10} present the results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ENHANCED B&B FRAMEWORK FOR CLASS OF SEQUENCING PROBLEMS 7

TABLE I
COMPUTATIONAL RESULTS FOR THE QTSP INSTANCES

of B&B enhanced by dominance checkers and state caching
with C = 2i, B = 1, and LE. Therefore, we have eight versions
of the B&B algorithms in total. The value of each instance i in
each column j is calculated by Ei,j/ minj{Ei,j}, where Ei,j is the
number of nodes explored by the jth version of the algorithm
on the ith instance. From the table, we can find that both of
the dominance checkers and caching technique play important
roles in accelerating the search. If there is no state caching,
the number of expanded nodes increases several times. If the
dominance checkers are excluded, the number of expanded
nodes can be raised dramatically. When both two techniques
are presented, the number of expanded nodes grows gradually
as the cache size decreases.

We further test the impacts of different caching strate-
gies on the algorithm performance. The instances ulysses16
and ulysses22 are selected for this purpose. For each
instance, 54 caching configurations, namely, the combina-
tions of three cache replacement strategies, three block sizes
(i.e., B = 1, 4, 16), and six cache sizes (i.e., B × C =
210, 212, 214, 216, 218, 220), are tested. After obtaining the
results, we calculate the ratio of the number of expanded nodes
under each configuration to the corresponding minimum base-
line. The ratios are depicted in Fig. 4. From Fig. 4(a) and (b),
larger cache sizes can lead to better results in terms of nodes
expanded, especially on the large size instance ulyssess22. The
number of blocks B does not affect the performance of the
algorithm significantly. In conclusion, the effects of LRU and
LE strategies are comparable when the cache size is large.
Greedy strategy does not perform well on instance ulyssess22.

B. Experiments on TRP

TRP is a variant of the traveling salesman problem in which
the objective is to minimize the sum of the arrival time at each
node. The arrival time at a node, also called the latency, is
the total distance before reaching the node. TRP has a lot of
applications and has been extensively studied by a number of
researchers [2], [15], [27], [28], [44].

TRP is defined on a complete weighted graph. Let N =
{1, . . . , n} be a set of n (n ≥ 2) nodes and c(i, j) be the dis-
tance between nodes i and j. We assume that the repairman is
initiated at node 1. The cost of a route (r1 = 1, r2, . . . , rn) is
given by

n−1∑
i=1

(n − i) · c(ri, ri+1). (5)

Fig. 4. Impacts of different caching strategies on the performance of the
enhanced B&B algorithm for QTSP. (a) Instance ulysses16. (b) Instance
ulysses22.

The above equation indicates that the repairman does not
need to return to the starting node (see Fig. 2 for the illus-
tration). TRP is a sequencing problem with d = 2. The DP
equation can be written as follows:

g(i; X) =

⎧⎪⎨
⎪⎩

d1,i · (n − 1), if X = {i|i = 2, . . . , n}
min

j∈X−{i}
{g(j; X − {i}) + c(j, i) · (n − |X|)}

otherwise.

(6)

The final optimal solution is determined by

min
i∈N−{1} g(i; N − {1}). (7)

To obtain a lower bound of a partial route (π1, . . . , πl) with
the undetermined node set � = {θ1, . . . , θn−l}, we apply the
following method similar to that of QTSP. First, find the min-
imum spanning tree on � and record the resultant tree edges.
Next, find the smallest edge cost between πl and �. Then, sort
a total of m = n − l edges in ascending order of their costs,
resulting in a sorted array a. Finally, a valid lower bound is
given as

∑m
i=1(m − i + 1) · ai, which takes O(n2) to compute.

The final parameter setting of the enhanced B&B algorithm
for TRP is as follows: C = 220, B = 1, and LE strategy
is employed. We compare our results with the existing exact
approaches in the literature, which are DP approach [43] and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
COMPARISON ON THE RATIOS OF EXPANDED NODES FOR EIGHT VERSIONS OF B&B ALGORITHMS FOR QTSP

TABLE III
COMPUTATIONAL RESULTS FOR THE TRP INSTANCES

integer programming (IP) approach [29]. The processor is
Pentium 4 2.4 GHz for DP and Sun UltraSparc III 1 GHz
for IP, respectively. Fifteen TRP instances are introduced to
evaluate the performance of different algorithms.

The computational results are shown in Table III. Our algo-
rithm can solve all these instances, while DP and IP can only
solve 4 and 9 instances as reported in [29] and [43], respec-
tively. Our algorithm consumes much less computational time
than DP and IP. Although our machine is more powerful (but
less than 10 times faster according to the Super-PI test) than
theirs, it cannot account for the dramatic difference in speed.
Thus, the results verify the superiority of our algorithm in
solving the TRP instances.

The component impact analysis is conducted following
the same manner used in Section IV-A. Table IV presents
the detailed results. The sign “–” indicates that the optimal
solution cannot be attained after 3 h of computation time.
From this table, we can see that when the problem size is
small (e.g., n ≤ 26), B&B with only state caching (col-
umn “C”) explores the minimum number of nodes. This is
because the dominance checkers eliminate search nodes in
a search tree, but it appears that the exploration of these
search nodes may sometimes be helpful in a B&B process,
since it provides a ĝ(S) value for the corresponding state
and ĝ(S) can be used for pruning. When n grows large,
the dominance checkers exert their power in pruning more
search nodes.

We also carry out the experiments on the effects of different
caching strategies. For each TRP instance, 54 configurations,
the same as those proposed in Section IV-A, are tested. We
average the node expanded ratio of every instances under each
configuration, and plot all the ratios in Fig. 5. From this figure,
fewer search nodes are expanded when larger cache size is

Fig. 5. Impacts of different caching strategies on the performance of the
enhanced B&B algorithm for TRP.

used. LE performs slightly better than Greedy and LRU when
the cache size is large.

C. Experiments on Talent Scheduling Problem

The talent scheduling problem tries to find an optimal
sequence of scenes {s1, . . . , sn} for a set of actors {a1, . . . , am}
so as to minimize the total cost. Each scene s has a duration
d(s) and requires a given subset of actors to participate in.
Each actor a has a daily wage c(a) and is paid from the first
day of his/her first scene to the last day of his/her last scene.

Table V presents an example of the problem. There are 12
scenes to be shot by 6 actors. In Table V(a), the character
“X” (resp., “.”) in the ith row and the jth column indicates
that actor ai does (resp., does not) participate in scene sj.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ENHANCED B&B FRAMEWORK FOR CLASS OF SEQUENCING PROBLEMS 9

TABLE IV
COMPARISON OF EXPANDED NODES FOR EIGHT VERSIONS OF THE B&B ALGORITHM FOR TRP

TABLE V
EXAMPLE OF THE TALENT SCHEDULING PROBLEM. (a) INPUT OF AN

INSTANCE. (b) ONE SOLUTION TO THE INSTANCE

(a)

(b)

Table V(b) gives one solution to the instance, where the shoot-
ing sequence is (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12).
The character “–” means that the actor does not participate
in the scene but is waiting for filming. The actor still gets
pay for this status. Therefore, the overall cost for this shoot-
ing sequence is 604. The optimal solution of this instance
is (s5, s2, s7, s1, s6, s8, s4, s9, s3, s11, s10, s12), which has the
smallest cost 434.

The talent scheduling problem is a sequencing problem with
d = 1. A DP algorithm is proposed to solve it [10]. Another
approach is related to constraint programming (CP) [37].
In [33], an IP model is presented. They show that only very
small-scale instances, e.g., n = 10 and m = 5, can be opti-
mally solved by CPLEX. They also presented an enhanced
B&B algorithm, which is exactly the application of our
proposed solution framework. Detailed procedures of these
methods are omitted in this paper for succinctness.

Table VI presents the results of CP, DP, and the proposed
algorithm on seven benchmark instances originated from real

Fig. 6. Impacts of different caching strategies on the performance of the
enhanced B&B algorithm for the talent scheduling problem.

practice [7], where m is the number of actors and n is the num-
ber of scenes. All instances are solved to optimality by these
three approaches. The results show that the proposed algo-
rithm consumes much less computational time and produces
one to two orders of magnitude fewer search nodes than CP
and DP. Note that the results of CP are produced on a PC
with 1.7 GHz Pentium M processor, and the results of DP are
produced on a machine with Xeon Pro 2.4 GHz processor.

Another set of benchmark instances for the talent schedul-
ing problem are introduced by [10]. They randomly generate
100 instances for each combination of n ∈ {16, 18, 20, . . . , 64}
and m ∈ {8, 10, 12, . . . , 22}, leading to a total of 200 groups.
We select the first 5 instances in each group (1000 instances
in total), and conduct experiments using different caching
strategies. For each instance, we execute the enhanced B&B
algorithm with a time limit of 3 min. Fig. 6 shows the num-
ber of instances optimally solved under each of 54 algorithm
configurations (3 caching strategies, B = 1, 4, 16, and B × C
in the range of 210 – 220). This figure reveals that the cache
size is a critical factor for the efficiency of the enhanced B&B
algorithm. LE leads to the best results compared to LRU and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE VI
COMPUTATIONAL RESULTS FOR THE TALENT SCHEDULING INSTANCES

Greedy; 880 out of 1000 instances are optimally solved. When
B × C ≥ 218, LRU performs worse than Greedy.

V. CONCLUSION

In this paper, we proposed a unified B&B framework for a
class of sequencing problems. The B&B is enhanced by well-
designed dominance checkers and state caching strategies. We
implement algorithms following this framework to solve three
representative sequencing problems, namely, QTSP, TRP, and
talent scheduling problem. Extensive experiments are con-
ducted based on the benchmark instances of these problems.
The results show that the enhanced B&B algorithms are supe-
rior to some of the existing exact approaches in the literature,
thereby well demonstrating the effectiveness of our proposed
framework.

It is worth noting that our framework is applicable to
those small-scale but complicated sequencing problems, while
it would be more suitable to apply other exact or heuris-
tic approaches to handle large-scale problems. For the future
research, we can apply the proposed enhanced B&B to find
the optimal solutions of other practical sequencing prob-
lems, e.g., disassembly sequencing problem [16], [20], [39],
heterogeneous traveling salesman problem [21], [26], [30],
and block relocation problem [38], [46]. In addition, more
advanced searching techniques, such as different branching
rules [1], problem-specific dominance checkers, incremental
bounding [25], and other caching methods, can be studied for
further improving the performance of the proposed framework.

REFERENCES

[1] T. Achterberg, T. Koch, and A. Martin, “Branching rules revisited,” Oper.
Res. Lett., vol. 33, no. 1, pp. 42–54, 2005.

[2] S. Arora and G. Karakostas, “Approximation schemes for minimum
latency problems,” SIAM J. Comput., vol. 32, no. 5, pp. 1317–1337,
2003.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi, Complexity and
Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Heidelberg, Germany: Springer, 2012.

[4] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan,
and M. Sudan, “The minimum latency problem,” in Proc. 26th Annu.
ACM Symp. Theory Comput. (STOC), Montreal, QC, Canada, 1994,
pp. 163–171.

[5] D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. Van Den Herik,
“Replacement schemes for transposition tables,” ICCA J., vol. 17, no. 4,
pp. 183–193, 1994.

[6] J. Carlier and I. Rebaï, “Two branch and bound algorithms for the permu-
tation flow shop problem,” Eur. J. Oper. Res., vol. 90, no. 2, pp. 238–251,
1996.

[7] T. C. E. Cheng, J. E. Diamond, and B. M. T. Lin, “Optimal scheduling
in film production to minimize talent hold cost,” J. Optim. Theory Appl.,
vol. 79, no. 3, pp. 479–492, 1993.

[8] H.-D. Chiang and T. Wang, “A novel TRUST-TECH guided branch-and-
bound method for nonlinear integer programming,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 45, no. 10, pp. 1361–1372, Oct. 2015.

[9] D. De Champeaux, “Bidirectional heuristic search again,” J. ACM,
vol. 30, no. 1, pp. 22–32, 1983.

[10] M. G. de la Banda, P. J. Stuckey, and G. Chu, “Solving talent schedul-
ing with dynamic programming,” INFORMS J. Comput., vol. 23, no. 1,
pp. 120–137, 2011.

[11] K. Ellrott, C. Yang, F. M. Sladek, and T. Jiang, “Identifying transcription
factor binding sites through Markov chain optimization,” Bioinformatics,
vol. 18, no. S2, pp. S100–S109, 2002.

[12] A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Molitor, and I. Grosse,
“Exact algorithms and heuristics for the quadratic traveling salesman
problem with an application in bioinformatics,” Discr. Appl. Math.,
vol. 166, pp. 97–114, Mar. 2014.

[13] A. Fischer and C. Helmberg, “The symmetric quadratic traveling
salesman problem,” Math. Program., vol. 142, nos. 1–2, pp. 205–254,
2013.

[14] C. A. Floudas and P. M. Pardalos, State of the Art in Global
Optimization: Computational Methods and Applications, vol. 7.
New York, NY, USA: Springer, 2013.

[15] A. García, P. Jodrá, and J. Tejel, “A note on the traveling repairman
problem,” Networks, vol. 40, no. 1, pp. 27–31, 2002.

[16] X. Guo, S. Liu, M. Zhou, and G. Tian, “Disassembly sequence
optimization for large-scale products with multiresource constraints
using scatter search and Petri nets,” IEEE Trans. Cybern., vol. 46, no. 11,
pp. 2435–2446, Nov. 2016.

[17] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its
Variations, vol. 12. New York, NY, USA: Springer, 2006.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, Jul. 1968.

[19] A. Jouglet and J. Carlier, “Dominance rules in combinatorial
optimization problems,” Eur. J. Oper. Res., vol. 212, no. 3, pp. 433–444,
2011.

[20] T. Kellegöz and B. Toklu, “An efficient branch and bound algo-
rithm for assembly line balancing problems with parallel multi-manned
workstations,” Comput. Oper. Res., vol. 39, no. 12, pp. 3344–3360, 2012.

[21] S. Kim and I. Moon, “Traveling salesman problem with a drone sta-
tion,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 1, pp. 42–52,
Jan. 2019.

[22] W. H. Kohler and K. Steiglitz, “Characterization and theoretical com-
parison of branch-and-bound algorithms for permutation problems,” J.
ACM, vol. 21, no. 1, pp. 140–156, 1974.

[23] M. Koivisto and P. Parviainen, “A space-time tradeoff for permutation
problems,” in Proc. 21st Annu. ACM-SIAM Symp. Discr. Algorithms,
2010, pp. 484–492.

[24] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artif. Intell., vol. 27, no. 1, pp. 97–109, 1985.

[25] C.-M. Li, Z. Fang, H. Jiang, and K. Xu, “Incremental upper bound for
the maximum clique problem,” INFORMS J. Comput., vol. 30, no. 1,
pp. 137–153, 2017.

[26] J. Li, M. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored traveling sales-
man problem,” IEEE Trans. Cybern., vol. 45, no. 11, pp. 2390–2401,
Nov. 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ENHANCED B&B FRAMEWORK FOR CLASS OF SEQUENCING PROBLEMS 11

[27] Z. Luo, H. Qin, and A. Lim, “Branch-and-price-and-cut for the multiple
traveling repairman problem with distance constraints,” Eur. J. Oper.
Res., vol. 234, no. 1, pp. 49–60, 2014.

[28] C. Ma, J. Zhang, Y. Zhao, M. F. Habib, S. S. Savas, and B. Mukherjee,
“Traveling repairman problem for optical network recovery to restore
virtual networks after a disaster,” IEEE/OSA J. Opt. Commun. Netw.,
vol. 7, no. 11, pp. B81–B92, Nov. 2015.

[29] I. Méndez-Díaz, P. Zabala, and A. Lucena, “A new formulation for the
traveling deliveryman problem,” Discr. Appl. Math., vol. 156, no. 17,
pp. 3223–3237, 2008.

[30] X. Meng, J. Li, M. Zhou, X. Dai, and J. Dou, “Population-based
incremental learning algorithm for a serial colored traveling sales-
man problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 2,
pp. 277–288, Feb. 2018.

[31] A. Oswin et al., “Minimization and maximization versions of the
quadratic travelling salesman problem,” Optimization, vol. 66, no. 4,
pp. 521–546, 2017.

[32] W. Pugh, “An improved replacement strategy for function caching,” in
Proc. ACM Conf. LISP Funct. Program., 1988, pp. 269–276.

[33] H. Qin, Z. Zhang, A. Lim, and X. Liang, “An enhanced branch-and-
bound algorithm for the talent scheduling problem,” Eur. J. Oper. Res.,
vol. 250, no. 2, pp. 412–426, 2016.

[34] A. Reinefeld and T. A. Marsland, “Enhanced iterative-deepening search,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 7, pp. 701–710,
Jul. 1994.

[35] B. Rostami, F. Malucelli, P. Belotti, and S. Gualandi, “Lower bounding
procedure for the asymmetric quadratic traveling salesman problem,”
Eur. J. Oper. Res., vol. 253, no. 3, pp. 584–592, 2016.

[36] S. Russell, “Efficient memory-bounded search methods,” in Proc. 10th
Eur. Conf. Artif. Intell., 1992, pp. 1–5.

[37] B. M. Smith, Caching Search States in Permutation Problems
(LNCS 3709). Heidelberg, Germany: Springer, 2005, pp. 637–651.

[38] S. Tanaka and K. Takii, “A faster branch-and-bound algorithm for the
block relocation problem,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1,
pp. 181–190, Jan. 2016.

[39] G. Tian, M. Zhou, and P. Li, “Disassembly sequence planning consider-
ing fuzzy component quality and varying operational cost,” IEEE Trans.
Autom. Sci. Eng., vol. 15, no. 2, pp. 748–760, Apr. 2018.

[40] K. Wang, H. Luo, F. Liu, and X. Yue, “Permutation flow shop scheduling
with batch delivery to multiple customers in supply chains,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 48, no. 10, pp. 1826–1837, Oct. 2018.

[41] S.-Y. Wang and L. Wang, “An estimation of distribution algorithm-based
memetic algorithm for the distributed assembly permutation flow-shop
scheduling problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 1, pp. 139–149, Jan. 2016.

[42] B. Woods and A. Punnen, “A class of exponential neighbour-
hoods for the quadratic travelling salesman problem,” arXiv preprint
arXiv:1705.05393, 2017.

[43] B.-Y. Wu, Z.-N. Huang, and F.-J. Zhan, “Exact algorithms for the min-
imum latency problem,” Inf. Process. Lett., vol. 92, no. 6, pp. 303–309,
2004.

[44] Z. Zhang, H. Qin, W. Zhu, and A. Lim, “The single vehicle routing
problem with toll-by-weight scheme: A branch-and-bound approach,”
Eur. J. Oper. Res., vol. 220, no. 2, pp. 295–304, 2012.

[45] X. Zhao, H. Huang, and T. P. Speed, “Finding short DNA motifs using
permuted Markov models,” J. Comput. Biol., vol. 12, no. 6, pp. 894–906,
2005.

[46] W. Zhu, H. Qin, A. Lim, and H. Zhang, “Iterative deepening A* algo-
rithms for the container relocation problem,” IEEE Trans. Autom. Sci.
Eng., vol. 9, no. 4, pp. 710–722, Oct. 2012.

Zizhen Zhang received the B.S. and M.S. degrees in
computer science from the Department of Computer
Science, Sun Yat-sen University, Guangzhou, China,
in 2007 and 2009, respectively, and the Ph.D. degree
in management sciences from the City University of
Hong Kong, Hong Kong, in 2014.

He is currently an Associate Professor with the
School of Data and Computer Science, Sun Yat-sen
University. His current research interests include
computational intelligence and its applications in
production, transportation, and logistics.

Luyao Teng received the B.S. degree from Monash
University, Melbourne, VIC, Australia, in 2012 and
the M.S. degree from the University of Melbourne,
Melbourne, in 2014. She is currently pursuing the
Ph.D. degree in information and mathematical sci-
ence with Victoria University, Melbourne.

Her current research interests include computa-
tional intelligence, pattern recognition, and machine
learning.

Mengchu Zhou (S’88–M’90–SM’93–F’03)
received the Ph.D. degree in computer and systems
engineering from Rensselaer Polytechnic Institute,
Troy, NY, USA, in 1990.

He joined the New Jersey Institute of Technology,
Newark, NJ, USA, in 1990, where he is currently
a Distinguished Professor. He has over 800
publications, including 12 books, over 400 journal
papers (over 360 in IEEE TRANSACTIONS), 12
patents, and 28 book-chapters. His current research
interests include Petri nets, intelligent automation,

Internet of Things, big data, Web services, and intelligent transportation.
Mr. Zhou was a recipient of the Humboldt Research Award for U.S.

Senior Scientists from Alexander von Humboldt Foundation, the Franklin
V. Taylor Memorial Award, and the Norbert Wiener Award from IEEE
Systems, Man and Cybernetics Society for which he serves as the VP for
Conferences and Meetings. He is the Founding Editor of IEEE Press Book
Series on Systems Science and Engineering and the Editor-in-Chief of the
IEEE/CAA JOURNAL OF AUTOMATICA SINICA. He is a fellow of the
International Federation of Automatic Control, the American Association for
the Advancement of Science, and the Chinese Association of Automation.

Jiahai Wang (M’07) received the Ph.D. degree in
computer science from the University of Toyama,
Toyama, Japan, in 2005.

In 2005, he joined Sun Yat-sen University,
Guangzhou, China, where he is currently a Professor
with the Department of Computer Science. His cur-
rent research interest includes computational intelli-
gence and its applications.

Hua Wang received the Ph.D. degree in computer
science from the University of Southern Queensland
(USQ), Toowoomba, QLD, Australia, in 2004.

He was a Professor with USQ from 2011
to 2013. He is a full-time Professor with the
Centre for Applied Informatics, Victoria University,
Melbourne, VIC, Australia. He has over 200 peer-
reviewed research papers mainly in data security,
data mining, access control, privacy, and Web
services, as well as their applications in the fields
of e-health and e-environment.

