
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Computer Graphics Technology Faculty
Publications Department of Computer Graphics Technology

2011

A case study in CAD design automation A case study in CAD design automation

Andrew G. Lowe

Nathan W. Hartman

Follow this and additional works at: https://docs.lib.purdue.edu/cgtpubs

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/286776081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cgtpubs
https://docs.lib.purdue.edu/cgtpubs
https://docs.lib.purdue.edu/cgt
https://docs.lib.purdue.edu/cgtpubs?utm_source=docs.lib.purdue.edu%2Fcgtpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract
Computer-aided design (CAD) software and

other product life-cycle management (PLM)
tools have become ubiquitous in industry during
the past 20 years. Over this time they have con-
tinuously evolved, becoming programs with
enormous capabilities, but the companies that
use them have not evolved their design practices
at the same rate. Due to the constant pressure of
bringing new products to market, commercial
businesses are not able to dedicate the resources
necessary to tap into the more advanced capabil-
ities of their design tools that have the potential
to significantly reduce both time-to-market and
quality of their products. Taking advantage of
these advanced capabilities would require little
time and out-of-pocket expense, since the com-
panies already own the licenses to the software.
This article details the work of a small research
team working in conjunction with a major tur-
bine engine manufacturer endeavoring to make
better use of the underutilized capabilities of
their design software. By using the scripting
language built into their CAD package for
design automation, knowledge-based engineer-
ing applications, and efficient movement of data
between design packages, the company was able
to significantly reduce design time for turbine
design, increase the number of feasible design
iterations, increase benefits from relational
modeling techniques, and increase the overall
quality of their design processes.

The design of turbine engines involves
creating, modeling, and documenting the devel-
opment of airfoil geometry for turbine, impeller,
and compressor blades. This process is highly
iterative due to the circular revisions made
between design and analysis groups chasing the
optimal airfoil shape and performance. Airfoil
blades are a crucial component within a turbine
engine, and their design covers many engineer-
ing disciplines such as thermodynamics and
statics. For both analysis and manufacturing,
these airfoils are modeled in a CAD system.
However, the complex shapes of airfoils make
this difficult. They are typically modeled using
b-splines or NURBS, and the development of
methods to do this has been ongoing for decades
(Corral, Roque, Pastor, & Guillermo, 2004;

Korakianitis & Pantazopoulos, 1993)). After
revisions are made, geometric data are often re-
engineered and recreated within the CAD sys-
tem. This process ranges from hours to days
because the current methods of creating the air-
foil models in the CAD system are not paramet-
ric, (i.e., the geometry is not associated with the
engineering definition of the airfoil after the
model is created). A turbine engine can contain
as many as of 20 different airfoils, so any
improvement in the time for one design iteration
will have a beneficial effect on the total design
process. In addition, additional benefits can be
realized depending on whether a turbine, com-
pressor, or fan blade is being designed, as the
geometric complexity of each part varies from
relatively simple to highly complex.

According to O’Brien et al. (2006), the
knowledge-based engineering (KBE) techniques
can make a substantial impact in the design of
engineering products. It is gaining prominence
as a major tool to speed up product development
by capturing knowledge from engineers and
designers and embedding that into software con-
figuration (Bermell & Fan, 2002; Prasad, 2005;
Rosenfeld, 1995). This knowledge is then used
to assist designers while they create products
within the CAD system (Hunter, Rios, Perez, &
Vizan, 2005). KBE systems are used to automat-
ically create objects (Clark, 2001; Sekiya,
Tsumaya, & Tomiyama, 1998), assist designers
while they create objects (Carleton, 2005), and
compare the cost versus efficiency of created
objects (Susca, Mandorli, & Rizzi, 2000).

The industrial research partner in this proj-
ect does its CAD design in Siemens PLM NX
and ports their models into assorted versions of
ANSYS and various other in-house applications
for analysis. At the beginning of the project the
design process was almost totally manual –
aerodynamics engineers would pass point cloud
data representing turbine airfoils to modelers
who would spend one or more full workdays
constructing a CAD model from the data. This
time encompasses only the airfoil itself and not
any of the turbine wheel attachment points or
internal cooling geometry. There were no stan-
dards in place, so each modeler created their

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

A Case Study in CAD Design Automation
Andrew G. Lowe and Nathan W. Hartman2

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

airfoils in their own way which complicated and
unnecessarily extended the time required for
design changes and additional design iterations.
Altering a turbine model would either require
adding the task to the queue of the original mod-
eler, each of whom works on several projects
concurrently, or enlisting an available modeler to
decipher the original modelers techniques and
make the necessary adjustments. Even in ideal
circumstances, the time to make a design change
would be roughly equal to the time required to
make the original model.

The company was interested in the capabili-
ties of Knowledge Fusion (KF), a scripting lan-
guage built into the NX CAD package to auto-
mate, standardize, and streamline this process. It
had several objectives in mind for the prospec-
tive KF application. The first was to reduce the
overall design process time by automating the
repeated tasks involved in creating the initial air-
foil CAD model from the aero engineer's point
cloud data. The second was to reduce the time
required for design changes and design itera-
tions. By building on objectives one and two, it
hoped to standardize the process, both to reduce
the likelihood of costly errors in the existing
fully manual process and to have consistent
models suited to more efficient or automated
importation and meshing in analysis software.

Initial requirements were for a KF applica-
tion capable of reading the raw point cloud data
provided by the aero engineers and automatically
generating a solid model to which a modeler
could add the necessary geometry for attachment
points and internal cooling. Ideally the applica-
tion would be user friendly enough that the aero
engineers, who have no CAD training, would be
able to generate the initial airfoil model them-
selves and verify that the solid model conforms
to their design intent before passing the model
off for final modeling, analysis, and production,
a capability they did not currently have. If the
application proved robust in generating the initial
airfoil solid, additional capability would be
added to the application allowing for automation
of additional features, including framework for
internal cooling geometry, representations of
thermal coatings, and NX-specific settings to
conform to company design policy and to make
the final modeler's job easier.

Project Background
Knowledge Fusion (KF) is a procedural,

object-oriented scripting language built into the

NX CAD package. Generic Windows-style
menus and dialog boxes can be created and tied
into KF applications with UI Styler, a user inter-
face design tool also built into NX. KF applica-
tions run from simple text files, so they do not
need to be compiled on each computer they are
to be used with. This makes distribution of the
applications throughout a corporation a simpler
matter, and it also gives a company the ability to
store the application files on a server to which
employees can point their copy of NX and run
the application without having to download the
files.

KF offers most of the basic capabilities one
would expect from a programming language –
conditional logic, looping, file input/output,
basic math, text parsing and string manipulation.
The language's vast function library allows the
user to call virtually every action available in
NX's traditional graphical user interface. With
basic programming architecture and the large
library of geometry-related functions, a KF
application can create automatically almost any
model a trained human could design by hand
(Golkar, 2006).

Program Capabilities
The automated turbine design application

was developed in stages by a series of small
research teams and individuals, each building
upon the work of the previous researchers and
adding features as each stage was determined to
be robust enough for production. The initial
application would only read in the point cloud
data and create the solid model, but through suc-
ceeding iterations all desired capability was
added and determined to be stable.

Solid Model Generation

The company for which the application was
designed uses a handful of proprietary file for-
mats for their turbine point cloud data depend-
ing upon the application used to design the tur-
bine and the location at which it was designed.
Each format is roughly similar regarding the
way the points are organized. The airfoil points
are divided into sections, each laterally ringing
the airfoil. Some formats use a fixed number of
sections, others support a dynamic number.
Three separate parsing functions were developed
to read in the data and store them in a consistent
manner to avoid costly and inefficient repeti-
tions of modeling functions within the body of
the program.

3

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

4

The user interface requires the user to select
the appropriate file format before the data is fed
to the program. At that point the parser ignores
any existing header data, then reads and stores
the points in a three-dimensional array (referred
to as lists in KF), the top-level array holding an
array of points for each section. The application
then loops through the list, drawing a spline
through each array of section points. Each spline
is stored as an element in a new array, which is,
in turn, looped through by one of NX's multi-
section solid operations using each spline as a
guide to create the airfoil solid. Due to the com-
plex curvature of turbine airfoils and the neces-
sity of absolute smoothness and precision in the
model, several multi-section solid functions had
to be evaluated by the research team and the
company's modelers before an appropriately
precise and robust operation was found (Farin,
1997).

Layering and Coloring

The partner corporation has strict modeling
guidelines regarding the development of models.
Each type of reference and final geometry has to
be placed on a different layer in NX both to
avoid graphical cluttering of the final model and
to make modifications and design changes easier
as the part file circulates through different mod-
elers during its design. For the airfoil generation
application to be useful in a production context,
the models it creates must conform to these stan-
dards. When every point, line, surface or solid is
created, the application puts it on the appropriate
layer. There is a set of default layers built into the
program, but these can be changed before model
generation through the user interface.

Due to the sheer volume of geometric
data that the application creates, it was deemed
necessary to alleviate potential visual clutter
by making each piece of geometry noticeably
different from the rest. The same command that
allows for specific layer placement of newly
generated geometry also allows the color to
be controlled. Similar to the layering capability,
default colors are stored for each piece of
geometry, but these can be changed through
the user interface. The layered geometry also
reduces visual clutter, since the user can quickly
hide construction or other geometry without
being familiar with the feature tree generated
by the application.

Face Tagging and Finite Element Analysis (FEA)
Integration

The partner company is developing an auto-
mated CAD/FEA integration, discussed in detail
in the BENEFITS section, that relies on named
or "tagged" faces for automated meshing. When
the initial solid model is generated, the operation
is repeated with the added specification that the
generated geometry be a surface instead of a
solid, effectively wrapping the solid airfoil in a
geometrically identical blanket. The hub and tip
surfaces are then cut away from the initial sur-
face wrap using the uppermost and lowermost
section splines. Each point cloud file type has
the potential to describe each section with a dif-
fering number of points, so the points in each
section that represent the border between the
four vertical faces must be identified based on
the type of file in which they are contained.
Once identified, the border points are saved in
arrays where the program loops through them to
create cutting splines running from the hub to
tip of the airfoil. The surface wrapping the air-
foil vertically is split into four individual faces
using these splines as references. Each face is
named using a convention recognized by the
automated meshing program.

Internal and Coating Geometry

The turbine portion of an engine operates at
very high temperatures, often exceeding the
melting point of the metal of the airfoils, so
some turbine airfoil designs include hollow
internal geometry for cooling or a spray-on coat-
ing of a thermal-resistant compound (Newman,
2002). The coating can add weight and thickness
that affects results of mechanical and aerody-
namic analysis, and the internal cooling geome-
try is often complex, requiring significant time
to model. Both could benefit from automation.

After the initial airfoil solid is created, the
application's user interface can be reopened and

Leading Edge

Airflow

Suction Side

Pressure Side

Trailing Edge

Figure 1: The key vertical faces of a
turbine airfoil.

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

5

the user can select whether the blade will be
solid, hollow, coated, uncoated, or any combina-
tion thereof. If a solid or coated blade type is
selected, the user is prompted to load a text file,
referred to as a wall file, which contains thick-
ness data for the selected operation. As shown in
Figure 1, every wall file has offset information
for both the coating and cooling geometry
grouped by section and face (leading edge, suc-
tion side, trailing edge, pressure side). Each sec-
tion is grouped by face, and each group of face
data contains several pairs of numbers; one for
the distance the coating or cooling geometry is
offset from the original sections, and one that
defines where on the face the offset will be
located, expressed as a percentage of the face's
total length.

To create the coating geometry, the program
loops through each section spline of the original
solid, and then through each face of each sec-
tion. For each face, the program loops through
the coating data in the wall file and offsets
points outward from the original spline based on
the thickness data provided; it then stores the
offset points in an array. Once all the points are
stored, they are looped through, section-by-sec-
tion, and a new spline is drawn through them.
The splines then are used to create a solid that
represents the coating.

Creation of the cooling geometry operates
on very similar principles, but with some added
complexity. The coating offset thickness is by
nature uniform, but the offsets for internal
geometry are variable to allow for tailoring of
the cooling properties as well as the physical
strength of the resultant hollow blade. During
initial design, a solid would be created from the
cooling offset splines to hollow out the airfoil
solid, but it was found in testing that modelers
could finalize the complex internal geometry
faster without the solid or a hollow blade, just
using the cooling offset splines as references.
The coating splines are visible in green outside
the airfoil solid. The blue splines represent the
hollow core as shown in Figure 2.

Gas Path Representation

All geometry in a turbine engine will at
some level reference the path air takes through
the compressors, into the combustion chamber,
and out through the turbines. This is referred to
as the gas path, and the splines that represent it
would essentially be the highest level skeleton
model for a completely relationally modeled

turbine engine. A tool for generating the gas
path inside the turbine model was built into the
airfoil generation application. The users may
select whether they wish to display the hub
annulus, tip annulus, or both through the user
interface, and they are then prompted to load a
text file. The text file contains a series of simple
x,y,z points (typically 100-150) that the program
loops through to create a spline.

Benefits
Time Savings

The first and most obvious benefit of
automating a process is reduced time for execut-
ing that process. Surveys indicated that the typi-
cal modeler would take from 5 to 8 hours to cre-
ate a solid model from Computational Fluid
Dynamics (CFD) point cloud data. Using the
automated airfoil generation tool, modelers were
able to create the same airfoil in a uniform and
consistent manner in 4 to 6 minutes. Members
of the research team with more familiarity with
the application would routinely generate airfoils
in two minutes or less. The company estimates
use of the KF tool will save approximately three
quarters of a million dollars in direct costs alone
on a single engine project.

The time savings created by the tool extend
farther through the design process than the cre-
ation of the initial turbine model. Before the
automated airfoil generation tool was put into
production use, any change to an airfoil design
would encounter a bottleneck in the modeling
department. Each modeler works on multiple
projects, and multiple parts per project, so a
design change would have to be queued into the
original modeler's current tasks, which would
create a period of up to two weeks between a
change in design from engineering and analysis

Figure 2: The leading edge of a hollow
coated airfoil model done by the KF
application. Curves digitally enhanced
to aid visibility.

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

6

where nothing could be done with the design.
The dead time could be reduced by finding a
modeler with available time to make a design
change, but that modeler would have to waste
considerable time deciphering the original mod-
eler's techniques to make the appropriate
changes. Even if the original modeler were
immediately free to execute design changes, if
the change was in the original CFD definition,
the airfoil the model would have to be rebuilt
virtually from the ground up. Not only would
the modeler have to reinvest the 5 to 8 hours
required to make the initial airfoil solid, but the
additional time necessary to re-model attached
geometry dependant on the airfoil, such as inter-
nal cooling slots or external features for mount-
ing the blade to a turbine wheel.

By automating the process and making air-
foil models the same way every time, any mod-
eler can update the model just as efficiently as
the modeler that originally created it. The tool
requires no knowledge of CAD to operate, so a
modeler would not be required to update the
model provided robust relational modeling tech-
niques were used to create cooling and turbine
wheel attachment geometry. Using the applica-
tion, an engineer could run analyses on several
different design iterations in a single day with-
out having to utilize a modeler for each design
change.

Increased Iterations

Another benefit for reducing process execu-
tion time is the ability to run more design itera-
tions in equal or less time for equal or less cost.
As stated previously, the airfoil generation appli-
cation was designed so the KF code would stay
embedded with the part file after the application
was run, allowing the user to re-run the program
at any time, even after more geometry had been
added, either by re-selecting the application
though the NX menus, or by double-clicking on
any of the geometry it creates. When the appli-
cation is reopened, the user may replace any of
the text files that define the automatically creat-
ed geometry and the application will update all
relevant geometry using the new text files.
Because the geometry is updated and not delet-
ed and recreated, any geometry added to the
model that relationally references the applica-
tion's geometry will also update.

There is much more than just an airfoil in a
final turbine blade model. The initial airfoil
model is purposely made longer on both the hub

and tip ends to ensure that the part of the airfoil
that will be used has contiguous curvature, so
both ends must be trimmed. Complex internal
cooling geometry is added when necessary, and
geometry defining the blade's attachment point
to the turbine wheel (often referred to as a "fir
tree" because of its uncanny resemblance to a
profile view of a Christmas tree) must be added,
as well. Since it is not feasible to manually rede-
fine the many thousands of points that define
the CFD definition of the airfoil, a modeler
would have to start from scratch, creating a new
initial airfoil and rebuilding all the aforemen-
tioned geometry with each new design iteration
created. With the airfoil generation KF applica-
tion, that time investment is still required for the
initial iteration, but subsequent iterations require
only that the appropriate text files be changed,
reducing the time required for additional itera-
tions from days or weeks to a matter of minutes.

Robust relational solid modeling techniques
are key for this process to work in a production
context. Any piece of geometry not relationally
referencing either the KF application geometry
or another piece of geometry that relationally
references it will not update with the rest of the
model and could take longer to fix that it would
have to create it from scratch. Because of geo-
metrically complex nature of turbine blades, the
type of relational referencing must be tested for
robustness on updating. Several of the compa-
ny's modelers were tasked with developing a
standardized, documented, and robust method of
modeling the additional geometry. At their
request, a handful of axial and radial splines
were added to the application to make fully rela-
tional modeling easier. Using the modeling tech-
niques the partner company developed, final,
fully modeled turbine blades can be completely
controlled by the KF application's text files.

Increased Process Control and Quality

Turbine blades have a high degree of geo-
metrical complexity and require skilled model-
ers to model them effectively. In the past, once
aero engineers finalized the design of their air-
foil in a CFD program, they were forced to pass
their point cloud file to a modeler to create the
CAD file, who would in turn pass the model on
to analysts for FEA and so on until production.
It was assumed that the CAD model would con-
form to the aero engineer's design intent, but
there was no process in place to establish this
empirically. Since the multi-section solid opera-
tion that creates the airfoil model uses the point

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

7

cloud section as a reference, the model would be
valid at those points, but the validity of the sur-
faces between the sections was in question.

The airfoil generation KF application
removes virtually all the modeling skill required
to create the initial solid. By distributing the
application with a simple two-page user guide to
aero engineers, the engineers were able to create
the initial airfoils themselves. A separate KF
application referred to as the Point-Body
Comparison tool (PBC) was distributed as well.
The PBC accepts a point cloud text file in the
same format that the airfoil generation tool uses,
then prompts the user to identify the pressure
side, suction side, leading edge and trailing edge
faces on the airfoil solid. When the application
runs, it creates each point, measures the distance
between it and the appropriate face, then colors
the point based on its distance – ranging from
blue, representing little or no difference, to red,
representing larger differences. The result is an
easy-to-interpret graphical representation of the
solid model's conformity to original CFD design
intent. By using the airfoil generation tool to
create the initial airfoil, then exporting a new
point cloud file representing the same airfoil but
with sections in different places, now an aero
engineer can verify that an airfoil model con-
forms to the original design intent before it ever
leaves their control.

Quality issues surrounding that transfer of
data between departments and employees also
arose when the company was using an all-manu-
al modeling process. Due to a lack of process
documentation and the variety of dissimilar
modeling techniques, it was not uncommon for
necessary operations such as movements in the
coordinate system or flipping of models to be
done by one employee, then passed to another
employee who would perform the operation
again, sometimes resulting in costly errors. The
airfoil generation application and the develop-
ment of the relational modeling techniques that
accompanied it not only standardized the model-
ing process, but also made it much easier for the
company to rigidly define the roles of each
employee in the design process, always perform-
ing each modeling operation at the proper time,
always performing each translation and flip at
the proper time.

Efficient Analysis Integration

Analysis is just as important to an effective
product as the initial model itself, and like mod-

eling, creating a robust mesh for FEA can be
just as manually labor-intensive as creating
CAD geometry. Just as each CAD modeler
tends to employ a unique technique for creating
a model, analysts tend to create meshes in their
own way, which can lead to small differences in
the final output. To both remedy this potential
problem and to speed the design cycle, the part-
ner company is interested in developing a
method for automated meshing. Its method
relies on indentifying four key vertical surfaces
and two key horizontal surfaces on the airfoil to
be used as references in the meshing operation.
The vertical surfaces are the pressure side, suc-
tion side, leading edge, and trailing edge. The
horizontal surfaces are the hub and tip.

The combination of the airfoil generation
application's face tagging plus fast, text-file
based design iterations and the company's devel-
opment of an automated meshing tool makes for
an incredibly fast analysis and optimization
process. An analyst can sit down with a variety
of CFD point clouds or wall file data or both,
make a model for each desired combination,
mesh and analyze them in batch and interpret
the resultant data. The only factor significantly
limiting the number of designs they can analyze
in a day is the speed of the computer running
the FEA program. The company estimates that
the combination of the KF application and FEA
integration will save approximately $3.7 million
in direct costs on a single engine project.

Conclusion
Through thorough testing and evaluation,

automated CAD design via built-in scripting
tools has proven to be an effective way of reduc-
ing design time, increasing the number of feasi-
ble design iterations, increasing the quality of
processes and the company's control over them,
and enhancing integration with other automated
processes outside of CAD. The turbine engine
manufacturer has deemed the KF application
robust and reliable and has recently put it into
production on a current engine project.

Such automation also opens the door for
further enhancements to the design process.
Development of similar applications is possible
for most engine components, and could auto-
mate most modeling required in an engine proj-
ect. By using text files to control important
engineered data in tandem with robust relational
modeling techniques, it would be possible to
achieve the company's goal of total gas path

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

References

Bermell, P., & Fan, I. (2002). A KBE System for the Design of Wind Tunnel Models Using Reusable
Knowledge Components. Paper presented at the VI International Congress on Project Engineering.
Barcelona, Spain.

Carleton, S. (2005). Design rationale in a knowledge-based computer-aided design environment.
Unpublished master’s thesis. Purdue University, West Lafayette, IN.

Clark, A. L. (2001). A solid modeling services architecture for KBE applications. ACM Symposium
on Solid Modeling and Applications: Proceedings of the sixth ACM symposium on Solid Modeling
and Applications. Retrieved from ACM Portal database.

Corral, Roque, Pastor, & Guillermo. (2004). Parametric design of turbomachinery airfoils using
highly differentiable splines. Journal of Propulsion and Power, Vol. 20(2), 335-343.

Farin, G. E. (1997). Curves and surfaces for computer aided geometric design. San Diego, CA:
Academic Press.

Golkar, M. (2006). Development of Knowledge-Based Engineering Support for Design and Analysis
of Car Components Using UGS NX-Knowledge Fusion. Lulea University of Technology.

Hunter, R., Rios, J., Perez, J. M., & Vizan, A. (2005). A functional approach for the formalization of
the fixture design process. International Journal of Machine Tools & Manufacture, 46, 683-697.

Korakianitis, T., & Pantazopoulos G. I. (1993). Improved turbine-blade design techniques using
4th-order parametric-spline segments. Computer-Aided Design, Vol. 25(5), 289-299.

Newman, D. (2002). Interactive aerospace engineering and design, aircraft propulsion, New York:
McGraw-Hill.

O’Brien, W., et al. (2006). Using knowledge-based solid modeling techniques and airfoil design data:
A case study in developing an airfoil seed part generator. Proceedings of The 2006 IJME -
INTERTECH Conference, Union, NJ, October 19 – 21, 2006.

Park, J., Park, S., Hwang, I., Moon, J., Yoon, & Y., Kim, S. (2004). Optimal blade system design of a
new concept VTOL vehicle using the Departmental Computing Grid system. School of Aerospace
and Mechanical Engineering, Seoul National University, Seoul, Korea.

Phillips, R. E. (1997). Dynamic objects for engineering automation. Communications to the ACM,
40(5). Retrieved from ACM Portal database.

Prasad, B. (2005). What Distinguishes KBE from Automation. COE NewsNet. Retrieved from
http://www.coe.org/newsnet/Jun05/knowledge.cfm#1.

8

design and engine reuse. By total use of relation-
al modeling with the gas path as the highest
level reference, an existing engine model could
be reused on a new project. The gas path could
be changed to alter the overall sizes and airflow,
and text files controlling airfoils and combustor
geometry could be changed to meet new thrust
and efficiency requirements. This, combined
with quick iterations and automated analysis
time-to-market, has the potential to drastically
reduce overall time-to-market.

Andrew Lowe is a graduate student at the
Purdue University Department of Computer
Graphics Technology. He has worked with a
variety of industry partners doing research into
the integration of Virtual Reality, automation,
and emerging technologies with CAD and the
design process.

Nathan W. Hartman is an Associate
Professor and Assistant Department Head in the
Department of Computer Graphics Technology
at Purdue University, West Lafayette, Indiana.
He is a member of the Gamma Rho Chapter of
Epsilon Pi Tau.

T
h

e
J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Rosenfeld, L. (1995). Solid modeling and knowledge-based engineering. In D. LaCourse (Eds.),
Handbook of solid modeling (pp. 9.1-9.11). New York: McGraw-Hill.

Sekiya, T., Tsumaya, A., & Tomiyama, T. (1998). Classification of knowledge for generating engi-
neering models: A case study of model generation in finite element analysis. Research in Artifacts,
Center for Engineering, University of Tokyo, Japan.

Spitz, W., Golaszewski, R., Berardino, & F., Johnson, J. (2001). Development cycle time simulation
for civil aircraft. NASA Langley Technical Report Server. Retrieved from ACM Portal database.

Susca, L., Mandorli, & L., Rizzi, C. (2000). How to represent intelligent components in a product
model. Department of Industrial Engineering, University of Parma, Italy. Department of Mechanical
Engineering, University of Ancona, Italy.

9

	A case study in CAD design automation
	v37n1 - A Case Study in CAD Design Automation

