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Summary 

TP53 is an essential tumor suppressor gene. It is inactivated in 50% of tumors, most 

frequently by missense mutations that result in the expression of a mutant p53 protein 

(mutp53). Mutp53 loses the ability to activate tumor-suppressive target genes and 

acquires pro-tumorigenic gain-of-function properties.  

An emerging strategy for treatment of cancers with missense p53 mutations is 

pharmacological restoration of wild-type p53 activity. Initial evidence that p53 

reactivation leads to tumor regression was obtained in mouse models where p53 loss 

was the initiating event. Many patient tumors, however, develop in the presence of wild-

type p53 and inactivate it only at later stages of evolution. To bypass p53-dependent 

tumor suppression such tumors acquire alterations in the p53 pathway that, in principle, 

could render p53 reactivation inefficient. To test this, we have modeled late-stage p53 

inactivation in mice. Surprisingly restoration of p53 in such late-inactivated tumors 

resulted in widespread apoptosis and superior survival of the animals. ARF gene 

alterations were identified as a cause of primary or acquired resistance that could be 

overcome by Mdm2 inhibitors. Together this study provided proof of concept that p53 

reactivation is an effective therapy option for tumors with late-stage p53 inactivation and 

identified ARF as a predictive biomarker. 

Among the many different missense mutations, cooperativity mutations represent a 

mechanistically unique class that often results in a partial loss-of-function (pLOF). As 

pLOF is a characteristic of many non-hotspot p53 mutations, we have tested if residual 

functions of two distinct p53 cooperativity mutants (p53E177R “RR” and p53R178E “EE”) 

may be exploited to induce cell death. Using embryonic development as a model, we 

have shown that Mdm2-deficiency results in constitutive stabilization of p53 cooperativity 

mutants and triggers massive apoptosis and embryonic lethality. This indicated that the 

apoptosis deficiency, characteristic for p53 pLOF mutants, can be rescued by inhibition 

of Mdm2. Studies of p53 cooperativity mutant mice confirmed that stabilization of mutp53 

by pharmacological or constitutive Mdm2 inhibition lowers the apoptotic threshold, 

sensitizes tumor cells to the pro-apoptotic activity of DNA damaging drugs, and 

generates a survival benefit under chemotherapy. This was even seen for the DNA 

binding-deficient cooperativity mutant EE, pointing at a critical role of non-transcriptional 

apoptotic functions in the context of chemotherapy. In parallel, p53EE was found to be 

incapable of suppressing tumor development, highlighting a differential role of p53’s non-

transcriptional apoptotic functions in tumor suppression and cancer therapy. Collectively, 

our investigation of two cooperativity mutants suggests that non-hot-spot p53 variants 

retain residual wild-type activities, that can be harnessed for cancer therapy.
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Zusammenfassung 

TP53 ist ein essentielles Tumorsuppressorgen, welches in über 50% aller Tumore inaktiv 

vorliegt. Häufig geschieht dies durch sogenannte Missense-Mutationen, welche zur 

Expression eines mutierten p53 Proteins führen. Mutp53 verliert zwar die Fähigkeit 

tumorsuppressive Zielgene zu aktivieren, gewinnt aber neue, pro-tumorale 

Eigenschaften hinzu. 

Ein neu aufkommender Therapieansatz um Tumorpatienten mit einer Missense p53 

Mutation zu behandeln, ist die pharmakologische Reaktivierung der p53-Wildtyp 

Funktion. Erste Anhaltspunkte, dass eine p53 Reaktivierung zu einer Tumorregression 

führen kann, wurden in Mausmodellen beobachtet, bei denen ein Verlust der p53 

Funktion das auslösende Ereignis der Tumorentstehung darstellt. Im Gegensatz dazu 

entwickeln sich Tumore in Patienten oftmals in Gegenwart von Wildtyp p53 und dessen 

Inaktivierung stellt einen späten Schritt in der Tumorevolution dar. Um tumorsuppressive 

Funktionen von p53 in solchen Tumoren zu umgehen, ist vorstellbar, dass diese Tumore 

Alterationen im p53 Signalweg erwerben, die eine Ineffizienz späterer p53 Reaktivierung 

induzieren. Um diese Annahme zu testen, haben wir eine späte p53 Inaktivierung in 

Maustumoren untersucht. Überraschenderweise konnten wir zeigen, dass eine 

Reaktivierung von p53 in diesen spät inaktivierenden Maustumoren zum Auftreten 

massiver Apoptose und zu einer erhöhten Überlebensrate der Tiere führte. Alterationen 

des Arf Gens wurden hierbei als Ursache primärer oder akquirierter Resistenz 

identifiziert, welche jedoch durch Mdm2-Inhibitoren überkommen werden konnten. 

Zusammenfassend belegt unsere Studie ein Konzept, in dem die Reaktivierung von p53 

auch in Tumoren mit einem späten Verlust der p53 Funktion eine effektive Therapie 

darstellt. Zudem haben wir in diesem Zusammenhang Arf als Biomarker identifizieren 

können. 

P53 Kooperativitätsmutanten stellen eine aus mechanistischer Sicht einzigartige Klasse 

innerhalb des Spektrums von p53 Missense Mutationen dar und resultieren in einem 

teilweisen Verlust der Funktion von p53 (sogenannte pLOF Mutanten). Typischerweise 

handelt es sich bei vielen non-hotspot Mutanten ebenfalls um pLOF Mutationen. In 

unserem Projekt haben wir die Fragestellung untersucht, ob sich die residuale Funktion 

zweier solcher Mutanten (p53E177R “RR““ und p53R178E “EE“) nutzen lässt um 

Apoptose von Tumorzellen zu induzieren. Als Modell haben wir dabei die embryonale 

Mausentwicklung gewählt. Dabei führte eine Defizienz von Mdm2 zu einer konstitutiven 

Stabilisierung der p53 Kooperativitätsmutanten, was mit massiver Apoptoseinduktion 

und embryonaler Lethalität einherging. Das Ergebnis impliziert, dass eine für p53 pLOF 

typische Apoptosedefizienz durch gleichzeitige Hemmung von Mdm2 überwunden 

werden kann. So zeigen Studien mit Mäusen, die eine p53 Kooperativitätsmutante 
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tragen, dass eine Stabilisierung von Mutp53, herbeigeführt durch pharmakologische 

oder konstitutive Hemmung von Mdm2, die Apoptoseschwelle herabsetzt. Tumorzellen 

werden so gegenüber DNA schädigenden Agenzien sensitiviert, was mit einem 

verbesserten Überleben der Tiere unter Chemotherapie einhergeht. Diese Beobachtung 

kann sogar für die DNA-bindungsdefiziente p53 Mutante “EE“ gemacht werden, was auf 

eine nicht transkriptionelle apoptotische Funktion von p53 im Zusammenhang mit 

Chemotherapie hinweist. Parallel haben wir gezeigt, dass diese “EE“ Mutante die 

Tumorentstehung per se nicht verhindern konnte. Somit scheinen nicht- transkriptionelle 

Eigenschaften von p53 eine differentielle Funktion bei Tumorentstehung versus 

Therapie zu spielen. Zusammenfassend zeigt unsere Studie an zwei 

kooperativitätsdefizienten p53 Mutanten, dass diese mit residualen tumorsuppressiven 

Funktionen ausgestattet sind, die für die Effizienz einer Chemotherapie ausgenutzt 

werden können. 
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1. Introduction 

1.1 p53 is a major tumor suppressor 

Cancer development involves two types of events: activation of oncogenes and 

inactivation of tumor suppressors (Weinberg 2014). Interference with activated oncogenic 

pathways is exploited by many anticancer drugs (e.g. BRAF, BCR-ABL, and EGFR 

inhibitors) (Luo et al. 2009). Tumor suppressors are frequently deleted, truncated or 

silenced so that restoration of their functions turned out to be challenging (Guo et al. 2014). 

TP53 is recognized as an essential tumor suppressor gene because it is mutated in about 

50% of tumors (Ahmed et al. 2010; Leroy et al. 2014; Donehower et al. 2019). Its product 

is a transcription factor that binds to DNA in response to various intrinsic or extrinsic cues: 

DNA damage, replicative stress, changes in metabolic and oxidative state, activation of 

oncogenic signaling pathways and regulates the activity of hundreds of genes by direct 

activation of transcription or indirect repression (Engeland 2018; Sullivan et al. 2018; 

Fischer 2017; Brady and Attardi 2010). p53 prevents spreading of damaged and 

genetically altered cells by inhibiting proliferation and activating irreversible cell cycle arrest 

(senescence) or cell death. Under conditions of moderate stress, p53 evokes pro-survival 

programs aimed to repair damage, preserve genomic integrity and return cells into 

proliferation (Levine 1997; Sullivan et al. 2018; Kaiser and Attardi 2018). 

1.2 p53 target genes 

p53 regulates transcription of a massive network of target genes. Besides bona fide targets 

which are activated by binding of p53 to their promoters, many genes are induced indirectly 

(Fischer 2017; Andrysik et al. 2017; Tonelli et al. 2017). Additionally, p53 indirectly 

suppresses numerous genes via the p21-DREAM pathway (Engeland 2018). Genes 

activated upon moderate stress (CDKN1A, CCNG1, GADD45) promote pro-survival 

programs protecting cells from killing: temporary cell cycle arrest, DNA repair, activation 

of anti-oxidative mechanisms (Gordon et al. 2018; Bieging and Attardi 2012). 

Transactivation of pro-apoptotic genes (e.g. BBC 3 (Puma), BAX, PMAIP, CASP3, 

P53AIP1) results in permeabilization of outer mitochondrial membrane (MOMP), 

cytochrome c release, activation of caspases and apoptosis (Haupt et al. 2003; Riley et al. 

2008). Other cell death mechanisms, such as necrosis and ferroptosis can also be 

triggered in a p53-dependent manner (Dixon et al. 2012; Le Jiang et al. 2015; Vaseva et 

al. 2012).  

An appropriate stress response requires tight control of p53’s functions which is attained 

by complex post-translational modifications of the protein that, in turn, determine its 

stability, intracellular localization, and interaction with other factors (Gu and Zhu 2012). 

Another regulatory mechanism relies on the diversity of promoter sequences of pro-

survival and pro-apoptotic genes. Pro-survival genes usually contain high-affinity p53 
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binding sites, which are readily and tightly bound by p53. Promoters of some important 

pro-apoptotic genes (BAX, CASP1, p53AIP1) contain low-affinity binding sites and can be 

bound only after overcoming a higher threshold level of p53 (Schlereth et al. 2010b; 

Schlereth et al. 2013). Thus, p53 concentration in the cell determines the spectrum of 

active target genes and defines cell fate: if p53 levels are below a particular threshold, 

cells undergo growth arrest; above the threshold apoptosis is induced (Kracikova et al. 

2013). 

Our group and others have established that an important property determining the binding 

spectrum and outcome of p53 activation is DNA binding cooperativity (Schlereth et al. 

2010a; Dehner et al. 2005). p53 binds to DNA in a cooperative manner: binding of 

monomers to DNA strongly promotes formation of tetramers. Tetramer formation is 

supported by protein-protein interactions (Weinberg et al. 2004). Interactions between the 

H1 helices of the DNA-binding domains are crucial for cooperative DNA binding. Mutations 

influencing cooperativity weaken binding with DNA and reduce p53-mediated tumor 

suppression (Schlereth et al. 2013; Schlereth et al. 2010a; Timofeev et al. 2013). 

1.3 Non-transcriptional functions of p53 

Although p53 primarily works as a transcription factor, p53 can also promote MOMP and 

cytochrome c release from isolated mitochondria, indicating that transactivation may be 

dispensable for apoptosis (Chipuk et al. 2004; Mihara et al. 2003). In recent years, several 

mechanisms of transcription-independent (cytoplasmic) activities of p53 have been 

discovered. In stressed cells, p53 sequesters anti-apoptotic proteins Bcl-xL and Bcl-2, 

thereby liberating pro-apoptotic tBid and Bax proteins from inhibition (Arima et al. 2005; 

Moll et al. 2006; Tomita et al. 2006). Moreover, p53 interacts with Bak on the mitochondrial 

membrane, disrupting its complex with inhibitory Mcl-1 and promoting Bak oligomerization 

and MOMP (Mihara et al. 2003; Leu et al. 2004). Finally, p53 directly induces a 

conformational change and oligomerization of Bax at the mitochondria via a “hit-and-run” 

mechanism (Chipuk et al. 2004). 

Both transcription-dependent and independent activities of p53 result in MOMP and 

apoptosis. Therefore, investigation of cytoplasmic functions requires models that separate 

them from nuclear activities. In vitro this was achieved by examining purified mitochondria, 

treatment of cells with inhibitors of nuclear export and transcription or by fusing p53 with 

signals for mitochondrial localization (Marchenko et al. 2000; Chipuk et al. 2004). Mouse 

models of transcriptionally-inactive p53 utilized overexpression of p53 fusions with 

transmembrane domains of Bcl-xL or Bcl-2 to enforce its mitochondrial localization (Talos 

et al. 2005; Palacios and Moll 2006). However, it remains unclear how relevant such 

cytoplasmic functions are in an organismal context and whether naturally-occurring p53 

mutants possess some of these activities. Therefore, novel more physiological animal 

models separating cytoplasmic and nuclear p53 functions would be of great value. 
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1.4 p53 regulation: Mdm2-p53 feedback loop, ARF 

In unstressed cells, p53 transcription and translation proceed constantly, but protein 

activity is inhibited by Mdm2 and Mdmx proteins (Marine and Jochemsen 2004). The E3-

ubiquitin-ligase Mdm2 ubiquitinates p53 thereby stimulating its nuclear export and 

proteasomal degradation (Haupt et al. 1997; Sane and Rezvani 2017; Tollini et al. 2014; 

Boehme and Blattner 2009). Additionally, Mdm2 and Mdmx bind to the transactivation 

domain of p53 and inhibit target gene activation (Kussie et al. 1996; Shan et al. 2012). The 

importance of Mdm2 as the main negative regulator of p53 is substantiated by the fact, 

that Mdm2-knockout mice die in utero at 3.5-5.5 days post coitum (dpc) due to excessive 

p53 activation (Jones et al. 1995; Luna et al. 1995). The Mdm2 encoding gene MDM2 is 

itself a p53 target gene. Elevated levels of p53, therefore, induce Mdm2 expression, which 

promotes p53 degradation (Wu et al. 1993). This negative feedback loop limits the duration 

of p53 accumulation after stress and protects cells from eventual killing. Mdm2-dependent 

degradation of p53 can be blocked by stress-induced mechanisms: DNA damage activates 

ATM/ATR-CHK2 kinases that phosphorylate p53 and Mdm2 leading to disruption of p53-

Mdm2 binding (Kruse and Gu 2009).  

The p53-Mdm2 feedback loop is essential for monitoring hyperproliferative signaling to 

safeguard cells from malignant transformation by activated oncogenes like Myc or Ras. 

Aberrant mitogenic signals lead to p53 activation via the ARF tumor suppressor. ARF 

protein (p14ARF in humans, p19Arf in mouse) is encoded by an alternative reading frame 

of the CDKN2A gene (Pomerantz et al. 1998). ARF sequesters Mdm2 in the nucleolus and 

inhibits p53 ubiquitination (Zhang et al. 1998; Pomerantz et al. 1998; Kamijo et al. 1998). 

Alterations in the CDKN2A/p14ARF gene are common in tumors with wild-type p53 (Mina 

et al. 2017; Zhang et al. 2018) underlining ARF’s importance for p53-mediated tumor 

suppression. 

1.5 TP53 mutations: not all mutants are equal 

Tumor suppressor genes are usually inactivated by deletions or truncating mutations 

leading to irreversible loss of protein expression (Levine et al. 2008). 

The unique feature of TP53 is that it is most frequently disabled by missense mutations 

and that the mutant p53 protein (mutp53) is retained by cancer cells, opening opportunities 

for using it as a target for therapy – for example, by restoration of its functions (Muller and 

Vousden 2013; Donehower et al. 2019). Most frequently, mutations hit the central DNA 

binding domain (DBD) of p53 (Petitjean et al. 2007). Among more than 2000 annotated 

mutations, 8 so-called hot-spot mutations (R175H, G245S, R248W, R273C, R273H, 

R282W, R248Q, and R249S) are found in nearly 30% of human tumors (Baugh et al. 

2018). The high frequency of hot-spot mutations prompted their extensive studies. The 

remaining 70% of tumors with p53 mutations harbor non-hotspot variants. Initially, all 
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mutations in p53 were considered to have a similar functional impact, but accumulating 

evidence suggests that p53 mutations represent a broad spectrum, or “rainbow” of 

mutations with different degrees of functional impairment (Sabapathy and Lane 2017; 

Manfredi 2019).  

It is well documented, that hot-spot mutations completely abrogate the transactivating 

activity of p53 (Kato et al. 2003; Jia et al. 1997; Olive et al. 2004; Lee et al. 2012). However, 

comprehensive profiling of non-hot-spot p53 mutants has shown, that some of them keep 

the ability to transactivate certain sets of target genes, being, therefore, partial loss-of-

function (partial-LOF) mutants (Kato et al. 2003; Campomenosi et al. 2001; Menendez et 

al. 2006; Jordan et al. 2010). For example, Jordan et al. identified 21 breast cancer-derived 

mutants, capable of activating p53 response elements in reporter assays. Similar results 

were obtained in our group for mutations causing hereditary cancer predisposition (Li-

Fraumeni syndrome) (Schlereth et al. 2010a; Ludwig et al. 1996). Whether residual 

transactivating activities of partial-LOF mutants can be augmented and exploited for 

cancer therapy is unknown and deserves further investigation. 

In addition, some p53 mutants (for example R175H, R273H, R248Q, R248W, and others), 

besides losing tumor-suppressive activities, can actively promote malignant growth (Muller 

and Vousden 2014; Kim and Lozano 2018). Mutation of a single TP53 allele is sufficient 

to compromise normal functions of the second wild-type TP53 allele via a dominant-

negative effect (DN-effect) (Vries et al. 2002; Boettcher et al. 2019; Srivastava et al. 1993). 

Mechanistically, mutp53 forms non-functional heterotetramers with wild type protein and 

stimulates its unfolding and aggregation (Ano Bom et al. 2012; Milner and Medcalf 1991; 

Milner et al. 1991). Although the DN-effect has been repeatedly demonstrated in an 

experimental settings (Boettcher et al. 2019; Giacomelli et al. 2018; Hegi et al. 2000), the 

relevance of this phenomenon for cancer patients is still unclear. Analysis of p53 pathway 

alteration in hundreds of tumor samples from the TCGA dataset has shown, that both 

copies of TP53 are inactivated in 90% of tumors, implying that the DN-effect is insufficient 

to completely suppress the remaining TP53 wild-type allele (Donehower et al. 2019). 

Besides the DN-effect, mutp53 can stimulate tumor growth via neomorphic oncogenic 

functions (gain-of-function, GOF) (Schulz-Heddergott and Moll 2018). Murine tumors 

expressing hot-spot p53 mutants are more aggressive and prone to metastasize as 

compared to p53-null tumors (Hanel et al. 2013; Lang et al. 2004; Loizou et al. 2019; Olive 

et al. 2004). Mutp53 has been shown to support invasion (Adorno et al. 2009; Muller et al. 

2013; Vogiatzi et al. 2016), increase migration (Dong et al. 2013; Vaughan et al. 2012), 

promote metastasis (Basu et al. 2018; Morton et al. 2010; Vogiatzi et al. 2016), induce 

drug resistance (Blandino et al. 1999; Buganim et al. 2006; Do et al. 2012; Hientz et al. 

2017) and exert other pro-tumorigenic effects (Zhou et al. 2019; Muller and Vousden 2014; 

Oren and Rotter 2010). Mutp53 can participate in aberrant interactions with transcription 
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factors and repressors followed by transcriptional dysregulation of non-canonical target 

genes (Chin et al. 1992; Frazier et al. 1998; Lee et al. 2000; Ludes-Meyers et al. 1996; 

Quante et al. 2012; Freed-Pastor et al. 2012). Moreover, mutp53 also interacts with other 

cellular proteins (e.g. PML, TopBP1, Pin1) to exert non-transcriptional activities (Freed-

Pastor and Prives 2012). 

A hallmark of mutp53 and prerequisite for gain-of-function is its constitutive stabilization in 

cancer cells (Terzian et al. 2008). Importantly, when mutant protein was introduced into 

normal non-transformed cells it was not accumulated emphasizing that mutp53 stability is 

not the inherent property of the protein, but is rather a product of a specific cellular 

environment (Frum and Grossman 2014; Terzian et al. 2008). One mechanism of mutp53 

stabilization involves chaperones: Hsp70 and Hsp90 which protect p53 from degradation 

by the ubiquitin ligases Mdm2 and CHIP (Blagosklonny et al. 1996; Li et al. 2011b; 

Whitesell et al. 1998). It was demonstrated, that genetic inactivation of mutp53 impaired 

tumor growth and prolonged survival of tumor-bearing mice (Weissmueller et al. 2014; 

Alexandrova et al. 2015). This suggested that accumulated mutp53 creates an oncogene-

like addiction and provided a rationale for the development of mutp53-destabilizing 

therapies. 

1.6 p53 as a therapy target 

Targeting of p53 gained lots of attention in recent years. Therapeutic strategies are divided 

into two categories: (1) targeting wild-type p53 and (2) targeting mutant p53.  

Targeting wild-type p53: Mdm2 inhibitors 

50% of tumors retain wild-type p53 but constantly degrade it (Donehower et al. 2019). The 

pivotal role of Mdm2 in degradation of wild-type p53 prompted the development of Mdm2 

inhibitors. The prototypical compound Nutlin-3a blocks the p53-binding pocket of Mdm2 

and induces p53 stabilization, activation of target genes and apoptosis (Tisato et al. 2017; 

Vassilev et al. 2004). Two Nutlin derivatives, RG7112 and RG7388, are being tested in 

clinical trials as a single agent or in combination with chemotherapy in patients with 

hematological malignancies, breast cancer and other tumor types (Andreeff et al. 2016; 

Khurana and Shafer 2019; Ray-Coquard et al. 2012; Tovar et al. 2013). Several other 

compounds disrupting the p53-Mdm2 interaction (e.g. MI-77301, AMG232, HDM201) have 

also entered clinical trials (Tisato et al. 2017). 

Therapy of tumors with p53 mutations with Mdm2 inhibitors is considered useless, even 

though clinical activity was documented in 2 patients with TP53 mutations in a Phase I trial 

of RG7112 (Andreeff et al. 2016).  

Targeting mutant p53 

It is well documented that experimental re-expression of wild-type p53 in mutp53 or p53-

null tumors results in tumor stagnation or regression (Wang et al. 2011; Larsson et al. 

2018; Feldser et al. 2010; Junttila et al. 2010; Ventura et al. 2007). Moreover, as already 



Introduction 

6 

 

mentioned, elimination of mutp53 disrupts the oncogene-like addiction and leads to 

improved survival in several animal models (Weissmueller et al. 2014; Alexandrova et al. 

2015; Vogiatzi et al. 2016; Schulz-Heddergott et al. 2018). These observations 

encouraged development of several strategies for targeting mutp53. 

Structural mutations in the p53 DNA binding domain result in protein unfolding and 

impaired DNA binding. Accordingly, one therapeutic strategy relies on the refolding of 

denaturated mutant p53 into its native conformation, thereby restoring wild-type-like 

properties. Theoretically, this can be accomplished with ligands that preferentially bind to 

the correctly folded protein and shift the equilibrium between unfolded and natively folded 

isoforms in favor of the latter (Bullock and Fersht 2001). This, in turn, promotes 

accumulation of correctly folded mutant protein and at least partial rescue of DNA binding. 

A first compound capable of refolding several p53 mutants and impairing xenograft tumor 

growth was CP-31398 (Foster et al. 1999). Further efforts led to the development of the 

most advanced p53-reactivating compound to date, PRIMA-1. PRIMA-1 is a quinuclidine 

that binds to cysteine residues of mutp53 and stabilizes the natively-folded polypeptide 

(Lambert et al. 2009). APR-246, a methylated pro-drug analog of PRIMA-1, is currently 

tested in clinical trials (Blandino and Di Agostino 2018). 

The other therapeutic approach targets the tumor addiction to mutant p53 by abrogating 

its constitutive stabilization. As mutp53 is strongly accumulated in tumors due to Hsp90-

dependent stabilization, targeting Hsp90-machinery either with Hsp90 inhibitors (17-AAG 

or ganetespib) or HDAC6 inhibitor (vorinostat) induces proteasomal degradation of mutp53 

and apoptosis in human cancer cells and improves survival of mice with tumors carrying 

R172H and R248Q mutations (Alexandrova et al. 2015; Alexandrova et al. 2017; Li et al. 

2011a). Patients with p53 GOF mutants may likely benefit from mutp53-destabilizing 

therapy. However, considering that GOF was documented for only a relatively small 

number of mutants so far, the potential utility of this approach for patients with other 

mutations remains unclear. 

In summary, alterations in the TP53 gene generate an immense diversity of functionally 

distinct mutant proteins. Each of them can be characterized by several parameters: the 

degree of function loss, the degree of DN-effect and degree of gain-of-function. 

Determining these properties for each mutant may help to find the optimal therapeutic 

strategy for a cancer patient using mutp53-reactivating or degrading compounds, Mdm2 

inhibitors or a combination of several drug classes. Unfortunately, most of the non-hotspot 

p53 mutants are only poorly characterized, so that extensive investigation of non-hot-spot 

mutants is important to advance personalized cancer treatments.  
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2. Loss of p53 function at late stages of tumorigenesis 

confers ARF-dependent vulnerability to p53 reactivation 

therapy 
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Andrea Nist, Marco Mernberger, Oleg Timofeev*, and Thorsten Stiewe* 
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2.1 Introduction 

Reactivation of mutp53 is an emerging therapeutic approach with proven efficacy in 

genetic mouse models (Xue et al. 2007; Ventura et al. 2007; Junttila et al. 2010; Feldser 

et al. 2010). A major limitation of these studies is that they utilized tumors that have 

developed in a p53-null background, where p53 loss was the initiating event. Although 

typical in animal models, such a situation is rare in cancer patients. Loss of p53 is obviously 

the initiating genetic lesion in individuals with Li-Fraumeni syndrome that carry germline 

TP53 mutations (Malkin et al. 1990). Driver mutations in TP53 are also typical for high-

grade serous ovarian carcinomas and a few other cancer types (Ahmed et al. 2010; Kuhn 

et al. 2012). However, in the vast majority of cancer types, p53 mutations happen later 

during tumor evolution (Rivlin et al. 2011). In the well-recognized model of colorectal 

tumorigenesis, TP53 mutations are among the latest genetic alterations, which drive the 

progression of benign adenomas towards aggressive carcinomas (Fearon and Vogelstein 

1990). Subclonal p53 mutations often expand in tumors relapsing after therapy, further 

suggesting that p53 mutations are rather late events in cancer progression (Amin et al. 

2016; Prochazka et al. 2019; Rossi et al. 2014). 

Tumors retaining wild-type p53 need to bypass tumor-suppressive mechanisms by the 

acquisition of additional alterations. For example, disruption of the tumor surveillance by 

mutation or deletion of CDKN2A/p14ARF allows tumors to sustain high levels of oncogenic 

signaling without p53 activation (Mina et al. 2017; Sherr 1998). The importance of 

CDKN2A inactivation for disabling the p53 network is underlined by the mutual exclusivity 

of TP53 and CDKN2A mutations (Zhang et al. 2018). This trend is recapitulated in the Eµ-

Myc mouse, a model of Burkitt lymphoma: tumors expressing wild-type p53 frequently lose 

expression of Cdkn2a/p19Arf (homolog of human p14ARF) and, conversely, p19Arf 

deletion prevents p53-loss (Eischen et al. 1999). Importantly, ARF was proven to be 

indispensable for effective p53 reactivation in mouse models driven by p53-loss (Feldser 

et al. 2010; Junttila et al. 2010). Thus, if a tumor with wild-type p53 has blunted the p53 

response by inactivation of upstream or downstream pathways and has later acquired a 

p53 mutation, the reactivation of p53 in such a tumor is expected to be futile. In other 
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words, there is a possibility, that p53-reactivating therapy might be effective only in tumors, 

where p53-loss was the initiating lesion, and useless for cancers with late p53-loss. 

Therefore, it was of considerable interest to investigate, if tumors, which have developed 

in the presence of wild-type p53 and inactivated it at a late stage of their evolution, are 

sensitive to p53 reactivation.  

Important drawbacks of p53-reactivating drugs are their prominent off-target effects, 

raising considerable doubt that their mechanism of action operates through mutp53 repair. 

For example, APR-246 (PRIMA-1MET) was shown to deplete the cellular glutathione pool, 

induce increased production of reactive oxygen species (ROS) and kill tumor cells 

independently of p53 status (Liu et al. 2017; Teoh et al. 2016; Tessoulin et al. 2014; 

Yoshikawa et al. 2016). Moreover, conflicting data regarding APR-246 effects on mutp53 

level, mutp53 refolding, DNA binding and restoration of transactivating activity were 

reported (Perdrix et al. 2017). 

Since presently no compound is known that specifically repairs mutp53 without any off-

target effects, genetic models of p53 reactivation are of great value. In our study, instead 

of using p53-reactivating compounds, we took advantage of the well-established genetic 

model: the p53ERTAM mouse (Christophorou et al. 2005; Martins et al. 2006). In this model, 

p53 is fused with a modified ligand-binding domain of the estrogen receptor so that p53 

activity can be precisely regulated by the administration of the synthetic estrogen analog 

tamoxifen (TAM). In the absence of TAM, p53 is inactive and accumulates in the cell similar 

to p53 loss-of-function mutants. Addition of TAM leads to activation of p53 allowing to 

model sequential p53 loss and theoretically reactivation. 

2.2 Summary and discussion 

To model inactivation of p53 at late stages of tumorigenesis, we have established Eµ-Myc 

lymphomas by injecting hematopoietic stem cells from Eµ-Myc;Trp53ERTAM/TAM embryos 

into recipient mice fed with tamoxifen-supplemented chow (Fig. 1A). Lymphomas that 

developed in the transplanted animals (designated as p53ERTAM-ON) were 

indistinguishable from p53+/+ tumors and displayed down-regulated expression of p19Arf 

as characteristic for p53+/+ lymphomas (Fig. 1A, C, D). To model p53 inactivation, 

p53ERTAM-ON lymphomas were retransplanted into normally-fed recipients, giving rise to 

p53ERTAM-late-OFF lymphomas (Fig. 2A). p53ERTAM-late-OFF lymphomas were further 

retransplanted into cohorts of mice and p53 reactivating therapy was modeled by 

intraperitoneal administration of TAM. Surprisingly, reactivation of p53 in p53ERTAM-late-

OFF lymphomas resulted in improved survival or even complete cure of mice (Fig. 2C-F) 

with strong induction of p53 target genes and apoptosis (Fig. 2G, H).  

The superior response of p53ERTAM-late-OFF lymphomas to p53 reactivation was 

unexpected given the down-regulated ARF expression in p53ERTAM-ON lymphomas (Fig. 
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1C, D). As ARF inhibits Mdm2-mediated ubiquitination of p53, its loss induces p53 

degradation, which explains the frequent loss of Cdkn2a/p19Arf in p53-wild-type 

lymphomas (Schmitt et al. 1999). Moreover, ARF was shown to be essential for effective 

p53 reactivation in mouse tumors driven by loss of p53 (Feldser et al. 2010; Junttila et al. 

2010). Strikingly, examination of p53ERTAM-ON lymphoma samples before and after TAM 

removal revealed, that upon p53 inactivation ARF expression is quickly re-established (Fig. 

3A-D). ARF expression was lost in tumors relapsing after TAM-therapy, demonstrating that 

all ARF-proficient cells were killed by reactivation (Fig. 3E, F). To further support the 

relevance of ARF for p53 restoration therapy, we have generated p53ERTAM-late-OFF 

lymphoma cell lines. These cells responded to TAM with strong apoptosis and induction 

of p53 target genes, phenocopying our in vivo experiments (Fig. 4A-E). Prolonged 

treatment of these cells with a low dose of tamoxifen selected TAM-resistant 

subpopulations which carried an ARF gene deletion (Fig. 4 F, G; Fig.S3). Furthermore, 

shRNA-mediated knockdown of ARF in p53ERTAM-late-OFF cell line conferred TAM 

resistance (Fig. 4 I, J). Resistant cells could be resensitized to TAM by the Mdm2 inhibitor 

Nutlin, which mimics the action of ARF. (Fig. 4H).  

This provides evidence that during development of p53ERTAM-ON lymphomas ARF 

expression is down-regulated, allowing cells to sustain strong oncogenic Myc-signaling, 

avoid killing by p53, and progress to aggressive tumors even in the presence of wild-type 

p53. Upon late p53 inactivation, ARF is re-expressed and confers vulnerability to p53 

restoration. CDKN2A/p14ARF is commonly inactivated in p53 wild-type tumors either by 

irreversible genetic alterations or by more or less reversible epigenetic modifications such 

as promoter methylation (Robertson and Jones 1998) or Polycomb group (PcG) protein-

mediated repression (Zeng et al. 2011). We found no evidence of ARF locus deletions in 

our primary p53ERTAM-ON lymphomas (Fig.S3), as well as no consistent ARF-promoter 

methylation (Fig.S4). However, we have detected significantly increased levels of PcG 

protein-mediated histone modifications (H3K27me3 and H2AK119Ub) at the ARF locus in 

p53ERTAM-ON lymphomas (Supplementary Fig.S5), suggesting that PcG-mediated ARF 

repression may be responsible for the reversible defect in the Myc-ARF-Mdm2-p53 axis of 

p53 wild-type lymphomas.  

To test if our findings also apply to human cancer cells, we have chosen colorectal cancer 

cell lines (HCT116 and RKO) and engineered them to express TAM-switchable p53 by 

targeting the ERTAM-domain into the endogenous TP53 locus using CRISPR-mediated 

homologous recombination. Notably, in both cell lines p14ARF expression is undetectable. 

In HCT116 cells one CDKN2A allele is methylated and the other is mutated; in RKO cells 

both alleles are methylated (Burri et al. 2001; Esteller et al. 2000). Although we have 

successfully targeted the TP53 locus in both cell lines, converting their p53 to p53ERTAM 
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(Fig. 5A, B), and cultivated gene-edited cells for at least 20 passages in the absence of 

TAM, we have detected no decrease in viability upon addition of TAM and no ARF re-

expression (Fig. 5 B-D). Confirming the lack of ARF as a reason for failed p53-reactivation 

response, introduction of exogenous ARF protein, or mimicking of ARF function with 

Mdm2-inhibitors strongly decreased the proliferation of these cells (Fig. 5F-H). 

Our study provides evidence that tumors, which originate as p53-wild-type, can quickly 

become addicted to p53-loss and become vulnerable to p53 reactivation. The prerequisite 

for successful reactivation is that the p53 network is disabled not by downstream mutations 

(e.g. mutations of genes of the apoptotic pathway), but rather by inactivation of upstream 

effectors, such as ARF. The p53 network consists of hundreds of target genes, and 

multiple animal studies showed, that loss of one particular target gene, or even loss of the 

most of transactivating capacity, are not sufficient to completely disable p53-driven tumor 

suppression (Valente et al. 2013; Valente et al. 2016; Li et al. 2012; Timofeev et al. 2019). 

Therefore, inactivation of a single upstream effector like ARF is seemingly a more efficient 

way to bypass tumor suppression checkpoints. If this ARF inactivation is reversible as in 

our lymphoma model, it is conceivable, that p53-reactivating therapy is effective. If ARF is 

inactivated by deletion or poorly reversible silencing, p53-reactivating therapy alone might 

be ineffective, because oncogenic signaling cannot be sufficiently translated into p53 

stabilization. However, therapy efficiency may be achieved in combination with Mdm2 

inhibitors that stabilize p53 protein, mimicking the effect of ARF. We, therefore, conclude 

that p53 reactivating therapy is effective irrespective of whether p53-loss was the tumor-

initiating event or not. Furthermore, our findings identify ARF expression and mutant p53 

stabilization as potential biomarkers predicting sensitivity to p53-restoration therapy.  

2.3 Contribution statement 

In this project I have made the following contribution: 

- - establishment of the animal model by optimizing retroviral infections of hematopoietic 

stem cells and optimizing in vivo treatment protocols (Fig.1A, Fig. 2A).  

- ARF and p53 Western blots of primary lymphomas (Fig.S1). 

- performed in vivo experiments presented in Fig. 2F-H and Fig.3C, D 

- established lymphoma cell lines and performed all in vitro experiments with them 

(Fig.4) 

- established and performed mapping of Cdkn2a deletion and ChIP assays (Fig. S3, 

S5). 

- performed all experiments with human cell lines (Fig. 5 and Fig.S6) 

- performed microscopy 

- prepared and analyzed most of the data for the publication 

- participated in assembling figures and writing the manuscript  
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3. Inactivation of Mdm2 restores apoptosis proficiency of 

cooperativity mutant p53 in vivo 

Boris Klimovich, Thorsten Stiewe and Oleg Timofeev 

Accepted for publication in Cell Cycle 15 October 2019 

3.1 Introduction 

Hot-spot mutations in TP53 completely disable wild-type p53 functions and confer 

additional pro-tumorigenic activities to mutp53 (Freed-Pastor and Prives 2012). Non-

hotspot p53 mutations are found in 70% of mutp53 tumors and are poorly characterized. 

Several studies suggest, that many non-hotspot p53 variants are partial loss-of-function 

(partial-LOF) mutants that possess residual transcriptional activity (Kato et al. 2003; Kotler 

et al. 2018; Campomenosi et al. 2001; Jordan et al. 2010; Resnick and Inga 2003). For 

example, p53R172P, the murine ortholog of the human tumor-derived p53R175P mutant, can 

induce cell cycle arrest, but not apoptosis in vivo (Liu et al. 2004). Retention of some p53 

wild-type functions by p53 partial-LOF mutants may result in vulnerabilities that open new 

therapeutic windows. In addition, partial-LOF mutants are valuable experimental tools and 

numerous mouse models, mostly expressing non-naturally occurring mutants, have been 

used to dissect the complex nature of p53-mediated tumor suppression (Kenzelmann Broz 

and Attardi 2010; Li et al. 2012; Kaiser and Attardi 2018). 

In general, p53 mutants fall into two large classes. “Structural” mutations such as R175H 

and R249S destabilize the DBD of p53 and lead to protein denaturation. “Contact” 

mutations affect residues that directly contact DNA (e.g. R273, R278), thereby abrogating 

DNA binding (Olivier et al. 2010). Our group and others have recently characterized a 

separate class of p53 “cooperativity” mutations, that neither lead to protein unfolding, nor 

affect DNA-contacting residues. These mutations are located in the H1 helix of the p53 

DNA binding domain and affect residues E180 and R181. In the p53 tetramer these amino 

acids form salt bridges between adjacent subunits which stabilize the p53-DNA complex 

(Dehner et al. 2005; Schlereth et al. 2010a). Cooperativity mutations result in an altered 

degree of p53 binding to DNA and frequently demonstrate a partial-LOF phenotype. For 

example, E180R mutant can induce cell cycle arrest, but not apoptosis in human cells 

(Schlereth et al. 2010a). Cooperativity mutations account for approximately 34,000 cancer 

cases yearly (Leroy et al. 2014) warranting further investigations into their clinical 

relevance.  

A mouse strain carrying the p53E177R mutation (p53RR, corresponding to human E180R) 

was characterized in our group (Timofeev et al. 2013). Tumor suppression in these mice 

is intermediate between wild-type and p53-knockout animals, confirming the partial-LOF 

nature of this mutant. 
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Genetic deletion of Mdm2 in mice with wild-type p53 leads to early embryonic lethality due 

to apoptosis. Concomitant deletion of Trp53 completely rescues normal development 

(Jones et al. 1995; Luna et al. 1995). Partial rescue of embryonic development by Bax 

deletion, but not Cdkn1a/p21, implies that apoptosis is the main p53-dependent pathway 

responsible for embryonic lethality (Chavez-Reyes et al. 2003). Mouse models of hot-spot 

mutations R172H and R246S and the partial-LOF mutant R172P also rescue embryonic 

development of Mdm2-null mice (Abbas et al. 2010). Conversely, a hypomorphic p53neo 

allele, which retains less than 20% of wild-type transactivation activity, fails to rescue 

lethality of Mdm2-knockout embryos (Wang et al. 2011), showing that embryonic 

development is very sensitive tool to detect p53 mutants with residual functionality. Using 

this model, we have tested if the apoptosis-deficient partial-LOF mutant p53RR can exert 

residual lethal activities.  

3.2 Summary and discussion 

We have crossed heterozygous Mdm2Δ7-9 mice, containing a deletion of Mdm2 exons 7-9, 

with Trp53RR/RR mice to obtain double heterozygous progeny. Intercrossing of Mdm2+/Δ7-9; 

Trp53+/RR animals revealed a strong deviation in distribution of genotypes of newborns 

from the Mendelian ratio: in particular, no double homozygous (DH) Mdm2 Δ7-9/Δ7-

9;Trp53RR/RR pups were recovered (Fig. 1A), clearly indicating embryonic lethality of DH 

embryos. We have isolated embryos at various developmental stages and observed that 

p53RR significantly prolonged the embryonic development. Unlike p53 wild-type embryos, 

which die at 3.5-5.5 dpc, DH embryos looked normal until 7.5-8.5 dpc (Fig. 2A). After 9 

dpc, all embryos exhibited severe growth retardation and failed neural tube closure which 

led to embryonic death (Fig. 2C-F). Immunostaining of abnormal DH embryos revealed 

strong accumulation of p53 (Fig. 3A, B). Although p53RR can activate Cdkn1a/p21-

dependent cell cycle arrest (Timofeev et al. 2013), staining for the proliferation marker 

PCNA displayed no difference between DH and normal embryos, suggesting that impaired 

development is not a consequence of a p21-mediated block of proliferation (Fig. 2C, D). 

In line with this, genetic co-ablation of Cdkn1a did not prolong embryonic development or 

mitigate the observed developmental defects (Fig. 3), further suggesting that p21-

mediated cell cycle arrest and p21-DREAM-dependent gene repression are not causes of 

embryonic lethality. Surprisingly, all examined abnormal DH embryos were strongly 

positive for the apoptosis markers cleaved caspase 3 (CC3) and TUNEL. Importantly, we 

have detected clear signs of apoptosis already in 9 dpc DH embryos, which were abnormal 

but still alive and intact arguing that the observed apoptosis is a cause rather than 

consequences of embryonic lethality (Supp. Fig. 1 A, C, F). This finding was unexpected 

because p53RR has been shown deficient for binding promoters of pro-apoptotic genes 

and activation of apoptosis in response to various stimuli (Timofeev et al. 2013; Schlereth 
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et al. 2010a; Schlereth et al. 2013). Therefore, we have analyzed if apoptosis in DH 

embryos is accompanied by expression of pro-apoptotic genes. Besides activation of 

known non-apoptotic p53RR target genes (Cdkn1a, Ccng1, Aldh4a, Gls2, and Sesn2), we 

also detected substantial induction of the typical pro-apoptotic genes Bbc3 (Puma) and 

Bax (Fig. 5A). To explore the role of Mdm2 deficiency for apoptosis induction by p53RR, 

we treated p53RR/RR mouse embryonic fibroblasts (MEFs) with a combination of 

doxorubicin and Mdm2 inhibitor Nutlin. As expected and previously shown, treatment of 

p53RR/RR MEFs with any of the two compounds alone did not induce cell death (Fig. 5C). 

However, combined treatment of p53RR/RR MEFs induced pronounced apoptosis 

associated with activation of pro-apoptotic target genes (Fig. 5B, C). 

Taken together, our experiments revealed that massive accumulation of partial-LOF 

mutant p53RR due to genetic or pharmacological ablation of Mdm2 can partially 

compensate for a defect in cooperative DNA binding and restore apoptotic proficiency. We 

anticipate that stabilization of p53RR compensates apoptotic defect by mass action: the 

more protein resides in the cell, the higher is the probability that the low-affinity promoters 

of pro-apoptotic genes become bound and activated. 

In contrast to hot-spot p53 mutations which commonly lead to severely impaired 

transactivation and distorted interactions with other proteins, many non-hot-spot mutants 

are capable of transactivating small sets of target genes, suggesting that they keep native-

like conformation and preserve some natural protein-protein interactions (Menendez et al. 

2006; Resnick and Inga 2003). Our data imply that residual transactivating activities of 

such mutants could be boosted to enhance tumor cell killing with, for example, Mdm2 

inhibitors. 

3.3 Contribution statement 

In this project I have made the following contribution: 

- planned and performed breeding of animals 

- performed all experiments with embryos, including embedding, sectioning, and 

microscopy, as well as IHC quantification  

- prepared data and microphotographs 

- participated in assembling figures and writing the manuscript 
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4. Residual apoptotic activity of a tumorigenic p53 mutant 

improves cancer therapy responses 
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Commentary by James Manfredi: “p53 defies convention again: a p53 mutant that has 

lost tumor suppression but still can kill”, EMBO Journal 2019 (PMID: 31553097) 

 

4.1 Introduction 

In Klimovich et al. (Cell cycle, in press) we have demonstrated that the apoptosis-deficient 

cooperativity mutant p53RR (human E180R, murine E177R) exhibits unexpected lethal 

activity upon genetic or pharmacological depletion of Mdm2. Excessive stabilization of 

p53RR partially compensates for transactivation defect and leads to induction of pro-

apoptotic genes.  

Our group has described another cooperativity mutation, p53EE (human R181E, murine 

R178E) with completely abolished DNA binding (Schlereth et al. 2010a). Despite being 

entirely transcriptionally inactive, p53EE is natively folded, suggesting that some of its 

protein-protein interactions may be preserved (Dehner et al. 2005). To test if the 

transactivation-deficient p53 mutant possesses residual tumor-suppressive activity, we 

have generated a mouse with the Trp53R178E germline mutation and characterized the 

tumor susceptibility of these animals. 

4.2 Summary and discussion 

Confirming our earlier data for human p53EE (Schlereth et al. 2013), murine p53EE was 

unable to bind promoters of target genes and induce their transcription upon treatment 

with Nutlin or doxorubicin (Fig. 1A). Consequently, p53EE failed to induce typical stress-

response programs. Apoptosis and cell cycle arrest were undetectable in p53EE/EE-MEFs 

in response to treatment with doxorubicin or Nutlin and cells failed to undergo senescence 

upon expression of oncogenic Ras (Fig. 2A-C, Fig. EV2A, B). Thymus and spleen of adult 

p53EE/EE mice showed no apoptosis or blocked proliferation in response to gamma-

irradiation, similar to p53-knockout mice. Thus, p53EE is indistinguishable from the p53-

null allele in multiple cell types. However, prolonged passaging of p53EE/EE-MEFs resulted 

in a declined proliferation rate when compared to p53-null cells (Fig. EV3A). Moreover, 

p53EE cells demonstrated positive β-galactosidase staining – a characteristic sign of 
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senescence (Fig. EV3B). Western blotting revealed additional stabilization of the p53EE 

mutant protein in late-passage cells (Fig. EV3C), which was not accompanied by induction 

of p53 target genes (Fig. EV3D). Senescence in primary MEF cultures is commonly 

caused by oxidative stress (Liguori et al. 2018). Passaging of p53EE MEFs in hypoxic 

conditions rescued them from senescence implying a causal role of ROS (Fig. EV3H). To 

confirm the role of p53EE in senescence, we established isogenic p53EE MEF cell lines 

with CRISPR-Cas9-induced knockout of p53, which completely rescued cells from 

oxidative stress-induced senescence (Fig. EV3E). 

The senescent phenotype of MEFs gave a first hint that p53EE, despite being 

transcriptionally dead, possesses some residual anti-proliferative activities. To further 

elaborate this possibility, we investigated if p53EE rescues embryonic lethality of Mdm2-

knockout embryos, as we previously did for the p53RR mutant. Surprisingly, no newborn 

pups with the Mdm2Δ7-9/Δ7-9;Trp53EE/EE; genotype were recovered from matings, clearly 

indicating embryonic lethality (Fig. 3A). Double homozygous pups (Mdm2Δ7-9/Δ7-9;Trp53–/–) 

from control matings of Mdm2+/Δ7-9;Trp53+/– mice were born at the expected ratio (Fig. 3B). 

Strikingly, p53EE embryos were phenotypically indistinguishable from p53RR embryos 

(see previous report). They were developing normally until 8 dpc and displayed severe 

growth retardation and failed neural tube closure after 9 dpc (Fig. 3C). p53EE protein was 

strongly accumulated in embryos and this was accompanied by high levels of apoptosis 

(Fig. 3E). Thus, similar to p53RR, the cooperativity mutant p53EE also revealed residual 

lethal activities upon Mdm2 deletion.  

To investigate if lethal activities of p53EE could be pharmacologically engaged upon 

stabilization in the absence of Mdm2, we ectopically expressed p53EE in Mdm2Δ7-9/Δ7-

9;Trp53–/– MEFs and treated them with doxorubicin. Mdm2Δ7-9/Δ7-9;Trp53–/– MEFs were 

highly resistant to treatment, whereas induction of p53EE expression led to strongly 

increased levels of apoptosis (Fig. 4A). Importantly, and in contrast to what we had 

observed in p53RR cells, no induction of pro-apoptotic target genes was evident under 

treatment, implying that the lethal activity of p53EE is transcription-independent (Fig. 4B). 

Pharmacological inhibition of Mdm2 with Nutlin had a similar effect on E1A-immortalized 

p53EE/EE MEFs and strongly impaired cell growth under combined treatment with 

doxorubicin (Fig. 4C-D). In line with transcription-independent pro-apoptotic effects of wild-

type p53 at the mitochondria (Chipuk et al. 2004; Mihara et al. 2003), we observed 

mitochondrial localization for p53EE (Fig. 4I) suggesting that transcription-independent 

apoptosis can be activated by p53EE due to increased mitochondrial localization. 

To investigate whether p53EE can induce cell death also in human cancer cells, we have 

overexpressed human p53R181E in p53-null H1299 cells. Treatment of H1299-p53R181E cells 

with doxorubicin resulted in remarkably strong apoptosis, which was further enhanced by 

Nutlin (Fig. 5A, C). Just as in murine cells, apoptosis in human cells was accompanied by 
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mitochondrial localization of p53EE (Fig. 5E, F) without evidence for transcriptional 

activation of p53 target genes (Fig. 5D).  

Next, we investigated the role of the residual pro-apoptotic activity of the p53EE mutant in 

suppression of carcinogenesis. First, we aged cohorts of p53EE mice and revealed no 

difference in survival of Trp53−/− and Trp53EE/EE animals (Fig. 6A), indicating lack of 

protection form spontaneous tumorigenesis. To test if p53EE can counteract enforced 

expression of oncogenes, we crossed Trp53+/−, Trp53+/+ and Trp53+/EE animals with Eµ-

Myc mice, which develop B-cell lymphomas. Eµ-Myc;Trp53+/− and Eµ-Myc;Trp53+/EE 

animals succumbed to lymphoma equally rapid compared to Eµ-Myc;Trp53+/+ mice (Fig. 

6D), pointing at an inability of p53EE to prevent Myc-induced transformation. Finally, we 

established an acute myeloid leukemia (AML) model by injecting mice with hematopoietic 

stem cells (HSC) transduced with AML1-Eto9a and NRasG12D oncogenes (Zuber et al. 

2009). Mice transplanted with p53−/− and p53EE/EE HSC both developed leukemias with 

short latency (median survival 49 and 34 days respectively), significantly earlier than 

animals injected with p53+/+ HSC (95 days) (Fig. 6E). Taken together, these data indicated 

that p53EE is unable to protect animals from carcinogenesis. 

Since p53EE lacks tumor-suppressive potential despite strong p53EE protein expression 

in tumors, we speculated that the transcription-independent pro-apoptotic activities of 

p53EE observed in vitro are spared from selection pressure and preserved in tumors. To 

test this possibility, we established cell lines from p53-wild-type, p53-null, and p53EE Eµ-

Myc lymphomas and treated them with the cyclophosphamide analog mafosfamide (MAF) 

in vitro. As expected, p53+/+ cells were rapidly killed by MAF, whereas p53-null lymphomas 

were highly resistant to treatment (Fig. 7A). Knockdown of p53EE rescued p53EE-cells from 

MAF cytotoxicity, confirming that killing was mediated by the p53EE mutant (Fig. 7B). 

Moreover, chemotherapy of mice carrying p53EE lymphomas resulted in exceptionally good 

response rates and disease control as compared to p53-null lymphomas (Fig. 7D-F). To 

further corroborate this finding, we tested responses to combined chemotherapy with 

cytarabine and doxorubicin in the AML model. Animals transplanted with p53-wild-type 

leukemia cells showed robust response, significantly prolonged survival and a 20% 

complete cure rate. p53-/- leukemias cells rapidly progressed under chemotherapy, which 

provided little to no survival benefit. Importantly, animals carrying p53EE-leukemias 

responded to therapy and demonstrated significantly improved survival (Fig. 7G, H). 

Our results obtained from multiple in vitro and in vivo models reveal remarkable properties 

of the p53EE mutant. On one hand, it is completely deficient for transactivation which is 

believed to be indispensable for tumor suppression (Brady et al. 2011; Jiang et al. 2011). 

In line with this, we were unable to detect any tumor-suppressive activities of p53EE in 

spontaneous and two oncogene-driven animal tumor models. On the other hand, lethality 

of Mdm2Δ7-9/Δ7-9;Trp53EE/EE embryos clearly revealed cytotoxic activity of p53EE upon 
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excessive stabilization driven by Mdm2 loss. In support of this finding, we observed 

massive induction of apoptosis by DNA-damage and ROS-induced stress upon genetic or 

pharmacological ablation of the Mdm2-p53EE interaction. p53EE-mediated apoptosis was 

not accompanied by detectable target gene activation. Transcription-independent ability of 

p53 to induce apoptosis via interactions with anti-apoptotic proteins Bcl-2 and Bcl-xL 

(Mihara et al. 2003) and pro-apoptotic Bax (Leu et al. 2004; Chipuk et al. 2004) is well 

documented. In line with this, p53EE was accumulated on mitochondria and interacted 

with Bcl-2 family members (Fig. 5F). 

We have translated our in vitro findings into two preclinical cancer models and documented 

the superior response of p53EE-expressing tumors to chemotherapy. These data suggest 

that missense mutations of p53 do not necessarily result in poor chemotherapy response. 

Of note, p53EE mutation does not naturally occur in human cancers. While hot-spot 

mutations are known to disrupt both transcription-dependent and independent activities of 

p53 due to denaturation (Mihara et al. 2003), there is a reasonable possibility, that selected 

non-hotspot mutants retain some of the native interactions and can elicit transcription-

independent apoptosis, as does p53EE. Supporting such a possibility, the tumor-derived 

cooperativity mutant p53R181L was able to induce apoptosis in H1299 cells upon treatment 

with doxorubicin or its combination with Nutlin (Fig. 5H, I). 

Our findings from this and previous report (see above) imply that apoptotic defects in two 

cooperativity mutants p53E177R and p53R178E can be compensated by genetic or 

pharmacological depletion of Mdm2. Interestingly, lethal activities, unleashed by these two 

mutant proteins rely on distinct mechanisms. Apoptosis activated by p53R178E is 

transcription-independent, whereas cell death induced by p53E177R is accompanied by 

activation of pro-apoptotic target genes. We conclude that the apoptosis defect in the two 

partial-LOF non-hotspot mutants is not absolute and context-dependent. It is therefore 

conceivable that cell death pathways can be re-engaged by these and potentially many 

other p53 mutants. 

As noted before, one of the emerging strategies for the treatment of mutp53-expressing 

tumors relies on its degradation (Sabapathy and Lane 2017). Our findings imply that this 

approach may be suitable for mutants with strong GOF effects but may be 

counterproductive for mutants which retain residual pro-apoptotic activities. Indeed, we 

revealed no GOF activities of p53EE in animal models but convincingly demonstrated that 

p53EE-driven apoptosis strongly depends on mutant stabilization (Fig. 4H). Therefore, 

inducing degradation of p53EE or similar mutants may result in an impaired chemotherapy 

response. 

Our data advocate the need of comprehensive investigation of non-hot-spot p53 mutations 

in order to improve clinical decision making based on p53 status. 
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4.3 Contribution statement 

In this project I have made the following contribution: 

- AML model: established protocols for HSC isolation and infection, optimized 

irradiation and bioimaging protocols, performed AML therapy experiments, optimized 

chemotherapy regime, planned and performed all animal experiments with this model, 

collected samples and performed analysis (Fig 6E; Fig 7 G, H)  

- participated in animal experiments with Eµ-Myc lymphoma model (Fig 7D, E) 

- planned and performed all experiments with respect to embryonic lethality in Mdm2-

knockout mice 

- established lymphoma cell lines and performed in vitro experiments with them (Fig.7A, 

B) 

- established cell lines with ectopic overexpression of p53EE (MEFs and H1299) and 

performed experiments with them (Fig. 5A-C, Fig. 4A, B) 

- performed CRISPR-mediated knockout of p53 in MEFs and proliferation assays with 

these cells (Fig. EV3E) 

- analyzed and prepared data for figures 

- participated in manuscript writing 
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5. Summary and perspectives 

5.1 p53 reactivation therapy is effective in tumors with late-stage p53 

inactivation 

In the current work, we have explored various aspects of the problem of targeting of 

mutp53 for cancer therapy. Over the past several decades, significant progress in 

understanding of mutant p53 biology has been made (Levine and Oren 2009; Freed-Pastor 

and Prives 2012). However, translation of these findings into clinical practice is hampered 

by challenges with pharmacological targeting of mutp53 (Levine 2019). Considerable 

research efforts have led to the development of several promising strategies. Clinical trials 

with p53-reactivating drug APR 246  are underway: 9 phase 1-3 clinical trials with APR 246 

are currently listed at clinicaltrials.gov (Perdrix et al. 2017). Mutp53-degradation therapy 

with Hsp90 inhibitors has also reached clinical investigation (Ray-Coquard et al. 2019). 

An important obstacle for further clinical development is the lack of predictors for clinical 

benefit of any of these therapies. Effective restoration of the wild-type functions in mutant 

p53 with drugs like APR 246 requires the integrity of the downstream effector pathways. If 

mutation in p53 is the initiating event in cancer development, downstream pathways stay 

unaffected and may be engaged by reactivated p53. Many tumors inactivate p53 at the 

late stages of malignant growth. In such conditions, additional alterations inactivating p53-

mediated pathways are strongly supported by selection. Reactivation of p53 in tumors with 

multiple alterations downstream or upstream of p53 may be worthless. It is therefore 

plausible, that only tumors where p53-loss was the initiating driver lesion may be sensitive 

to p53-reactivating therapy. 

In our first report, we have explored if p53-reactivating therapy is effective in tumors, which 

arise in the presence of active p53 (Klimovich et al. 2019). Using the refined genetic mouse 

model of p53 reactivation, we discovered that inactivation of p53 in established aggressive 

tumors leads to fast acquisition of addiction to p53-loss and, consequently, makes cancer 

cells vulnerable to p53 restoration. Mechanistically, effective p53 reactivation in our model 

relies on ARF, which is reversibly inactivated during tumor development and is quickly re-

expressed after p53 loss. The paramount importance of the ARF-Mdm2-p53 axis in cancer 

suggests that our findings may be applicable to a broader range of human tumors. As 

noted above, genetic alteration in any single gene of the p53 network is insufficient to 

completely disable tumor suppression. On the contrary, inactivation of the single upstream 

effector ARF allows to bypass tumor surveillance. In our experiments, temporary silencing 

of ARF by PcG-mediated histone modifications was quickly reversed after p53 inactivation. 

PcG-mediated repression of CDKN2A locus has been shown in human tumor cells (Jacobs 

et al. 1999; Kia et al. 2008; Li et al. 2011c; Zeng et al. 2011; Bracken et al. 2007) and 

primary tumors (Meseure et al. 2016; Yap et al. 2010). It is reported, that inhibitors of the 
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polycomb repressive complex 2 (PRC2) component EZH2 can induce ARF derepression 

(Marchesi and Bagella 2016; Sun et al. 2016). Thus, EZH2 inhibitors can theoretically 

boost p53-reactivation responses. PRIMA-1 indeed showed strong synergy with the EZH2 

inhibitor DZNep in p53-mutant thyroid cancer cell lines (Cui et al. 2014). 

But CDKN2A/p14ARF is also frequently inactivated by promoter methylation (Burri et al. 

2001). In both colorectal cell lines used in our study, CDKN2A is disabled by this 

mechanism. p53 loss in these cells did not lead to ARF re-expression and therefore p53 

reactivation was inefficient. The same is expected for tumors with ARF promoter 

methylation. However, re-expression of the silenced CDKN2A locus under treatment with 

demethylating agents or their combination with HDAC inhibitors has been documented 

(Badal et al. 2008; Esteller et al. 2000; Coombes et al. 2003; Cameron et al. 1999). Thus, 

even if the ARF promoter is methylated, tumors may, in principle, be resensitized to p53 

reactivating therapy by demethylating drugs. In case that CDKN2A/p14ARF is irreversibly 

silenced or disabled by mutation, Mdm2 inhibitors may be used to mimic ARF functions as 

shown in our experiments (Izetti et al. 2014; Liu et al. 2013). 

Our data provide proof-of-principle that p53 reactivation is a feasible therapeutic approach 

for a broad spectrum of tumors with p53 mutations, independently of the timing of p53-

loss. 

5.2 Partial loss-of-function p53 mutants are actionable therapy targets 

Missense mutations in TP53 generate a “rainbow” of >2000 mutants. Growing evidence 

suggests, that p53 mutants are unequal. Some non-hot-spot mutants are partial-LOF and 

therefore may make tumors susceptible to distinct therapeutic modalities. Recently 

described cooperativity mutants frequently demonstrate a partial-LOF. We, therefore, took 

advantage of two distinct cooperativity mutations to explore their residual tumor-

suppressive activities. Our experiments revealed that both mutants (p53RR and p53EE) 

induce massive apoptosis under conditions of genetic or pharmacological Mdm2 

inactivation, indicating that the apoptosis defect typical for partial-LOF mutants may be 

rescued by Mdm2 inhibition.  

The ability of p53 to induce apoptosis depends on several factors: p53 protein levels in the 

cell, the duration of elevated p53 expression and intrinsic apoptotic sensitivity of the cell 

(apoptotic threshold) (Kracikova et al. 2013; Purvis et al. 2012; Le Pen et al. 2016). In our 

experiments, Mdm2 inhibition resulted in prolonged elevation of mutant p53 levels and 

lowering of the apoptotic threshold. Interestingly, apoptosis induced by the two 

cooperativity mutants relies on distinct mechanisms. Stabilization of p53RR partially 

restores binding to promoters of pro-apoptotic genes whereas accumulation of p53EE 

leads to increased mitochondrial localization, interaction with Bcl-2 family members and 

transcription-independent apoptosis. It is tempting to speculate that both transcription-

dependent and independent mechanisms may be engaged by partial-LOF mutants upon 
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excessive stabilization. Transcription-independent pro-apoptotic activity exerted by p53EE 

mutant is of particular interest. Although cytoplasmic apoptogenic role of p53 has been 

extensively documented in vitro, its importance for tumor suppression in vivo is rather 

elusive. Two reports have demonstrated, that targeting of p53 to mitochondria by 

overexpressing p53 fused to transmembrane domains of Bcl2 and Bcl-xL induced 

apoptosis in Eµ-Myc lymphomas in vivo (Talos et al. 2005; Palacios and Moll 2006). 

However, substantial drawbacks of the existing models for p53’s extra-nuclear activities 

are non-physiological expression levels and enforced localization of the protein. Moreover, 

these models do not clarify whether cytoplasmic activities can counteract primary tumor 

development. p53EE demonstrates normal subcellular localization, trafficking, and stress 

response kinetics, and has expression levels similar to mutants from naturally-occurring 

tumors (Timofeev et al., 2019, Fig. 4I, EV4). Therefore the p53EE (Trp53R178E) mouse 

represents a valuable expansion of the toolbox of p53 mutations, as pointed out by James 

Manfredi in his „News and Views” column in EMBO Journal (Fig. 1) (Manfredi 2019). This 

model allowed us to investigate extra-nuclear functions of p53 in a physiological in vivo 

context that was unachievable before. We provide evidence, that p53EE does not delay 

onset of spontaneous and oncogene-driven tumors, which strongly suggests that 

transactivation is indispensable for tumor suppression. Importantly, this finding further 

implies that cytoplasmic proapoptotic mechanisms are ineffective in tumor suppression, 

therefore remain unaffected during tumor development and result in actionable 

vulnerabilities associated with p53 non-hotspot mutants.    

  

Figure 1. (A) – wild-type p53 mediates a full set of responses, mainly via transactivation of target 

genes. Hot-spot mutation completely inactivate tumor-supprissive functions (B) and acquire 

neomorphic oncogenic functions (C). Certain non-hotspot mutants selectively retain some 

activities, beinig partial-LOF (D). Our results expand the complexity of the paradigm: p53R181E  

completely lacks transactivating ability, but retain strong non-transcriptional apoptotic activity, 

being a valuable model for extra-nuclear functions of p53 (E) (from Manfredi, 2019). 
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Our data call for focusing on such vulnerabilities during development of mutp53 targeting 

strategies. Unfortunately, most screening efforts aim to identify compounds restoring the 

transactivating functions of mutp53. Studies of p53RR and other cooperativity mutants 

have demonstrated, that p53 with partially impaired DNA interactions preferentially binds 

to the promoters of pro-survival genes (CDKN1A, CCNG1 etc.) (Schlereth et al. 2013). 

Therefore, incomplete recovery of transactivation by suboptimal p53-reactivating 

compounds will result in preferential induction of cell cycle arrest and senescence but not 

apoptosis. Although therapy-induced senescence is shown to effectively promote tumor 

clearance under chemotherapy (Kahlem et al. 2004), multiple studies have demonstrated, 

that senescence may also lead to cancer cell reprogramming, formation of a pro-

tumorigenic microenvironment and consecutive tumor relapse (Dökümcü and Farahani 

2019; Lee and Schmitt 2019; Schosserer et al. 2017; Milanovic et al. 2017). From this 

perspective, compounds which specifically reactivate transcription-independent 

proapoptotic activities of p53 mutants might have considerable therapeutic advantages. 

Mdm2 inhibitors were designed for tumors with wild-type p53 and are generally deemed 

useless for treatment of mutp53-tumors. This consideration is supported by the fact, that 

acquisition of p53 mutations or upregulation of Mdm2 and Bcl-xL are known mechanisms 

of resistance to Mdm2 inhibitors (Cinatl et al. 2014; Chapeau et al. 2017). We have 

demonstrated that Mdm2 inhibitors unleash the apoptotic potential of cooperativity 

mutants, advocating the use of Mdm2 inhibitors together with other drugs. Synergy of 

Mdm2 inhibitors with many approved drugs (e.g. cytostatics, kinase inhibitors, HDAC 

inhibitors) has already been demonstrated for p53 wild-type cells (Hoe et al. 2014). 

Whether some of these combinations can also improve killing of mutp53-expressing 

tumors remains to be determined. Manipulating the apoptotic threshold of cancer cells with 

BH3 mimetics could potentially improve their apoptotic response induced by partial-LOF 

mutants even further (Montero and Letai 2018). Importantly, clinical activity was 

documented in 2 patients with TP53 mutations in Phase I trial of RG 7112 (Andreeff et al. 

2016), indicating that certain p53 mutants may indeed respond to Mdm2 inhibitors.  

A potential danger of treating mutp53-tumors with Mdm2 inhibitors is that the treatment 

may boost oncogenic GOF activities due to additional mutant stabilization. How many non-

hot-spot mutants possess GOF properties is currently unknown. Our experiments clearly 

demonstrate a lack of any pro-tumorigenic GOF activity for p53EE: tumor spectra and 

survival in p53EE/EE mice was very similar to p53-/- and no increase in metastasis frequency 

was observed (Timofeev et al., 2019, Fig 6A; Appendix Tables S1 and S2). It is plausible, 

that GOF effects are less widespread than generally assumed and confined to small sets 

of hot-spot mutations only. In line, a recent report failed to identify GOF properties for any 

of the hot-spot mutants in AML cells in vivo, suggesting that GOF effects are mutant- and 

context-specific (Boettcher et al. 2019). 
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The observation that some tumors exhibit an addiction to GOF activities of mutp53 

provided a rationale for the development of p53-degradation therapy with Hsp90 inhibitors 

(Alexandrova et al. 2015; Ray-Coquard et al. 2019). Since GOF activity is not a universal 

trait of mutp53, therapeutic agents triggering p53 degradation may be effective only 

against a small subset of tumors. In case of mutants analogous to p53EE and p53RR, 

administration of such compounds together with chemotherapy would even be detrimental, 

because the chemotherapy response relies on a strongly stabilized mutant. 

Improvement of clinical decision making based on p53 mutation status requires extensive 

characterization of the p53 “mutome” in respect of LOF, GOF and DN-properties. For this 

purpose, the sensitivity of tumor cells harboring hundreds of different mutants to multiple 

treatments and drug combinations in various contexts needs to be assessed. Recent 

advances in next-generation sequencing made it possible to phenotypically profile 

thousands of p53 mutants in parallel (Kotler et al. 2018; Giacomelli et al. 2018; Boettcher 

et al. 2019). In these studies, p53 mutants were assayed for their ability to inhibit growth 

either under normal culture conditions or under Nutlin treatment. The R181E mutant was 

present in one of the three datasets and classified as “common cancer missense” 

(phenotype scores R181E=0,98; R175H=1,025 wt=0,036, PHANTM algorithm) even 

though our extensive analysis clearly identified residual wild-type activities for this mutant 

(Giacomelli et al. 2018). It can be anticipated that R181E is not the only mutant with 

residual cytotoxic activity that high-throughput screens have overlooked. We propose that 

existing screening protocols must be optimized to identify partial-LOF variants with higher 

precision. 

Collectively, our data encourage to expand the development of p53-targeting strategies 

beyond current frameworks taking into account mutant p53 functional heterogeneity for 

personalized precision medicine. 
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7. Appendix 

Lists of abbreviations 

ARF Alternative reading frame 

ATR Ataxia Telangiectasia And Rad3-Related Protein 

BAX BCL2-Associated X Protein 

BBC3/PUMA BCL2 Binding Component 3 

CC3 Cleaved caspase 3 

CDKN1A/CDKN2A Cyclin-Dependent Kinase Inhibitor 1A (p21) / 2A (p14ARF/p16) 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

DN-effect Dominant-negative effect 

GOF Gain-of-function 

Hsp70 Heat Shock Protein 70 kDa 

Hsp90 Heat Shock Protein 90 kDa 

LOF Loss-of-function 

Mdm2 Mouse double minute 2 homolog 

MEFs Mouse embryonic fibroblasts 

MOMP Mitochondrial outer membrane permeabilization 

mRNA messenger RNA 

Mutp53 Mutant p53 

NOXA/PMAIP1 Phorbol-12-Myristate-13-Acetate-Induced Protein 1 

PTEN Phosphatase And Tensin Homolog 

qPCR quantitative polymerase chain reaction 

shRNA short hairpin RNA 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 
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Cancer development is driven by activated oncogenes and loss of

tumor suppressors. While oncogene inhibitors have entered routine

clinical practice, tumor suppressor reactivation therapy remains to be

established. For the most frequently inactivated tumor suppressor

p53, genetic mouse models have demonstrated regression of p53-

null tumors upon p53 reactivation. While this was shown in tumor

models driven by p53 loss as the initiating lesion, many human

tumors initially develop in the presence of wild-type p53, acquire

aberrations in the p53 pathway to bypass p53-mediated tumor

suppression, and inactivate p53 itself only at later stages during

metastatic progression or therapy. To explore the efficacy of p53

reactivation in this scenario, we used a reversibly switchable p53

(p53ERTAM) mouse allele to generate Eμ-Myc–driven lymphomas in

the presence of active p53 and, after full lymphoma establishment,

switched off p53 to model late-stage p53 inactivation. Although

these lymphomas had evolved in the presence of active p53, later

loss and subsequent p53 reactivation surprisingly activated p53 tar-

get genes triggering massive apoptosis, tumor regression, and long-

term cure of the majority of animals. Mechanistically, the reactiva-

tion responsewas dependent on Cdkn2a/p19Arf, which is commonly

silenced in p53 wild-type lymphomas, but became reexpressed upon

late-stage p53 inactivation. Likewise, human p53 wild-type tumor

cells with CRISPR-engineered switchable p53ERTAM alleles responded

to p53 reactivation when CDKN2A/p14ARF function was restored or

mimicked with Mdm2 inhibitors. Together, these experiments pro-

vide genetic proof of concept that tumors can respond, in an ARF-

dependent manner, to p53 reactivation even if p53 inactivation has

occurred late during tumor evolution.

p53 | tumor suppressor gene | reactivation therapy | Mdm2 | Arf

Cell fusion experiments in the 1960s showed that fusion of
normal cells with tumor cells results in a nonmalignant

phenotype (1). This not only provided the experimental evidence
for the existence of tumor suppressor genes, but also suggested
restoration of tumor suppressors as a tumor therapy. Today, stim-
ulated by the clinical success of oncogene-targeted drugs, there
is a regained interest in therapeutic targeting of defective tumor
suppressors, in particular the most frequently mutated tumor
suppressor p53.
The tumorigenic potential of p53 mutations correlates with

the loss of p53’s physiological function as a DNA binding tran-
scription factor (loss of function, LOF) (2, 3). In addition, a subset
of p53 missense mutations is known to confer neomorphic activi-
ties that promote tumor progression and therapy resistance (gain
of function, GOF) (4, 5). Strategies aimed at repairing the LOF
are technically challenging, but promise to be a universal therapy
approach for a broad spectrum of cancer patients. The best-known
compound for reactivating mutant p53 (mutp53) is PRIMA-1
which, in the form of PRIMA-1MET/APR-246, is currently evalu-
ated in clinical trials up to phase III (6). Other compounds aim at
reactivating specific p53 missense mutants (7, 8) or nonsense
mutants by promoting transcriptional readthrough (9). A major

concern with all small molecule approaches are off-target effects,
which have been documented broadly for mutp53-reactivating
compounds, questioning whether observed therapeutic responses
are caused by off-target activities rather than mutp53 reactivation
(5, 10, 11).
As there is currently no sufficiently specific compound available

to reactivate a p53 LOF mutant to a fully functional wild type,
genetically defined models for reactivation therapy have proven
essential to establish proof-of-principle evidence for mutp53 as a
suitable target for therapeutic reactivation. For example, mutp53
reactivation was modeled by fusing the ligand binding domain of a
modified estrogen receptor to the C terminus of p53 (p53ERTAM),
thereby rendering p53 switchable at the protein activity level with
tamoxifen (TAM) (12, 13). In the absence of tamoxifen (TAM),
p53ERTAM is inactive (OFF state) and accumulates similarly to
cancer-derived p53 mutants (12). TAM switches p53ERTAM to the
ON state, resulting in p53 target gene activation (12). TAM
treatment thereby models therapy of p53-mutated tumor cells with
p53-reactivating small molecule compounds (12–14). Lymphomas
that developed in Eμ-Myc transgenic p53ERTAM mice in the ab-
sence of tamoxifen, i.e., in the p53 OFF state, rapidly regressed
upon activation of p53ERTAM with tamoxifen. Together with other
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Mouse studies demonstrating regression of p53-null tumors

following reinstatement of functional p53 have fueled the de-

velopment of p53 reactivating drugs. However, successful p53

reactivation responses have only been formally demonstrated in

tumor models where p53 inactivation served as the initiating

event. Our study provides the first proof-of-principle evidence

that p53 inactivation at late stages of tumorigenesis can also

generate a vulnerability to p53 reactivation. However, this is

dependent on intact ARF function highlighting ARF as a potential

biomarker for p53 reactivation responses in tumors with late-

stage p53 inactivation. It furthermore suggests the use of

Mdm2 inhibitors as ARF mimetics for sensitizing ARF-deficient

tumors to p53-reactivating drugs.
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studies in independent mouse models (15–18), this firmly estab-
lished the therapeutic potential of p53 reactivation and provided
critical support for further research into the development of
mutp53-reactivating drugs.
An important caveat to these experiments is their focus on

tumors that have developed in a p53-compromised background
where p53 loss served as an initiating driver of tumorigenesis
(13, 15–18). p53 mutations are certainly driver mutations in Li-
Fraumeni syndrome patients, who suffer from hereditary cancer
susceptibility because of germline p53 mutations (19), and in cer-
tain sporadic cancer types such as high-grade serous ovarian cancer
where p53 mutations are found already in the earliest pre-
malignant cells (20). In other cancer entities, the timing of p53
mutations during tumor evolution is highly variable and often oc-
curs only at later stages of tumor development (21, 22). For ex-
ample, according to the prevailing multistep progression model for
colorectal cancer, p53 mutations occur only late at the adenoma-
to-carcinoma transition (23). Furthermore, recent tumor genome
sequencing studies identified widespread subclonal p53 mutations
in p53 wild-type tumors that expand during metastatic progression
or therapy relapse, implicating them as a cause of therapy failure
(21, 24–26). It is therefore of considerable clinical interest to explore
whether tumors that have initially evolved in the presence of wild-
type p53—but inactivated p53 at later stages of tumorigenesis—are
similarly dependent on persistent p53 loss as tumors originating
from a p53-compromised precursor cell.
This question is far from trivial as p53 wild-type tumors usually

acquire aberrations in the p53 pathway. For example, TCGA tu-
mors without p53 mutations are significantly enriched for copy-
number deletions affecting the CDKN2A alternative reading frame
(ARF) encoding the p14ARF protein (27). This observation on
cancer patients is experimentally well recapitulated by the Eμ-Myc
lymphoma model in mice: p53 wild-type lymphomas frequently
lack expression of the murine CDKN2A/p14ARF homolog Cdkn2a/
p19Arf and, vice versa, enforced Cdkn2a/p19Arf loss protects from
p53 inactivation (28, 29). Importantly, several mouse models
identified Cdkn2a/p19Arf to be essential for tumor regression upon
p53 reactivation (13, 17, 18). If a p53 wild-type tumor cell with
inactive p14ARF/p19Arf (in short ARF) acquires a secondary p53
mutation at a late stage of tumorigenesis, p53 reactivation would
therefore be expected to be ineffective. In other words, p53
reactivation as a therapeutic strategy would only be effective if the
p53 mutation has been the initiating driver lesion, but not in cases
where the p53 mutation has occurred at later stages of tumor
evolution on the background of other p53 pathway aberrations.
To explore whether tumors with late stage p53 inactivation

respond to p53 reactivation, we genetically modeled late-stage p53
inactivation and therapeutic reactivation in mice and human tumor
cells using the reversibly switchable p53ERTAM (12). Our results
confirm that ARF alterations prevent a p53ERTAM reactivation
response in tumor cells with late-stage p53ERTAM inactivation as
predicted. However, we also observed that Myc-driven lymphomas
with active p53ERTAM down-regulated ARF, but restore ARF
expression upon p53ERTAM inactivation and thereby become
susceptible to p53ERTAM reactivation. ARF expression in tumors
with late stage p53 mutations could therefore serve as a potential
biomarker for predicting p53 reactivation responses and Mdm2
inhibitors could be exploited as ARF mimetics to sensitize ARF-
deficient p53-mutated tumor cells to p53 reactivation.

Results

Generation of Tamoxifen-Switchable p53ERTAM Lymphomas. The
p53ERTAM knockin mouse provides a unique opportunity to
reversibly switch p53 at the protein activity level with TAM
(12). To engineer lymphomas with early or late p53 inactivation,
hematopoietic stem cells were obtained from the liver of Eμ-
Myc;Trp53ERTAM/TAM embryos at embryonic day 13.5 (E13.5),
transduced with luciferase for monitoring lymphomagenesis and

transplanted into lethally irradiated recipient mice. Transplanted
mice were fed either normal or TAM-supplemented chow, giving
rise to Eμ-Myc lymphomas with inactive (early OFF) or active
(p53 ON) p53ERTAM, respectively (Fig. 1A). Comparative
gene expression profiling of Eμ-Myc;Trp53+/+ (p53+/+) and
Eμ-Myc;Trp53−/− (p53−/−) lymphomas identified ARF to be
the most differentially expressed gene (Fig. 1B). Early-OFF
lymphomas expressed equally high ARF mRNA and protein
levels as p53−/− lymphomas (Fig. 1 C and D). In contrast, ARF
was undetectable in both p53-ON and p53+/+ lymphomas, in-
dicating that in the presence of TAM p53ERTAM lympho-
mas bypass p53-mediated tumor suppression just like p53+/+

lymphomas via ARF inactivation (Fig. 1 C and D and SI Appendix,
Fig. S1A). Of note, p53ERTAM protein was almost undetectable in
p53-ON lymphomas, but strongly expressed in early-OFF lym-
phomas (Fig. 1D and SI Appendix, Fig. S1A), reminiscent of the
stabilization of mutant p53 proteins in human cancer tissues (4).

Late-Stage p53 Inactivation and Reactivation Therapy. To model
late-stage p53 inactivation, p53-ON Eμ-Myc lymphomas from
moribund TAM-fed mice were transplanted into normally fed
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Fig. 1. Generation of Eμ-Myc;p53ERTAM lymphomas with active p53. (A)

Scheme illustrating the experimental outline. HSC, hematopoietic stem cells

from fetal liver. (B) Volcano plot depicting fold change in gene expression

(log2FC) and significance (−log10P) for Eμ-Myc;p53+/+ and Eμ-Myc;p53−/− lym-

phomas (n = 4 each). (C) ARF mRNA expression of lymphomas with indicated

p53 genotype and activity status. Expression of individual lymphomas is shown

normalized to β-actin as ΔCt (mean ± SD, 1-way ANOVA with Tukey’s multiple

comparisons test). (D) Immunostaining of ARF and p53 (CM5) for lymphomas

with indicated p53 genotype and activity status.
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recipients, switching p53ERTAM to the OFF state and thereby
generating lymphomas with late-stage p53 inactivation (late
OFF) (Fig. 2A). Survival of mice with late-OFF lymphomas was
significantly shorter than for p53-ON lymphomas and similar to
early-OFF lymphomas (Fig. 2B), indicating that late-stage p53
inactivation can render Eμ-Myc lymphomas more aggressive.
To explore whether late-OFF tumors respond to p53 reac-

tivation, p53-ON Eμ-Myc lymphomas were retransplanted into
cohorts of normal-fed mice and monitored by bioluminescence
imaging (BLI). When the animals showed first signs of disease in
BLI, they were treated for 1 wk with daily injections of TAM to
switch p53ERTAM to the ON state as a model for treatment with a
p53 reactivating drug. Already 2 d after initiation of treatment,
stagnation of lymphoma growth was detectable (Fig. 2C). Photon
flux as a surrogate marker of lymphoma burden progressively de-
creased over the following days (Fig. 2 C and D). When TAM was
administered to animals that showed full-blown lymphoma, the
treatment more than doubled median survival (vehicle: 4 d, TAM:
9.5 d, P < 0.0001, Fig. 2E) similar to what has been reported for
lymphomas that had evolved in the absence of active p53 (13). We
observed equivalent reactivation responses for late-OFF lympho-
mas generated from 3 independent primary p53-ON lymphomas
(SI Appendix, Fig. S2A). p53−/− lymphomas failed to profit from
TAM treatment (SI Appendix, Fig. S2B), confirming that the TAM
effect in late-OFF lymphomas is p53 mediated and therefore on
target. When mice were treated already 4 d after transplantation,
TAM even cured the majority (80%) of animals (Fig. 2F). In
contrast, control mice that received oil injections rapidly pro-
gressed and reached a median survival of just 18 d following
transplantation (Fig. 2F). TAM-treated late-OFF lymphomas
showed induction of canonical p53 target genes peaking at 3 h

(Fig. 2G) and massive and progressive apoptosis over 3 to 7 h
following TAM injection (Fig. 2H). In parallel, p53ERTAM protein
levels decreased, consistent with the lower half-life of active p53
(Fig. 2H). We conclude, that late-OFF Eμ-Myc lymphomas, which
have developed in the presence of active p53ERTAM and were
later switched to a p53-inactive state, regress when p53ERTAM is
reactivated, indicating that they have rapidly become addicted to
p53 inactivation.

Late-OFF Lymphomas Reactivate p19ARF. Regression of late-OFF
lymphomas upon TAM treatment was rather unexpected, consid-
ering that Eμ-Myc lymphomas, which have originated in the
presence of active p53, commonly blunt p53-mediated tumor
suppression by losing ARF expression (Fig. 1B) (28, 29). As ARF
is induced by oncogenes such as Myc and stabilizes p53 by inhib-
iting Mdm2-mediated ubiquitination (30), ARF loss promotes p53
degradation and enables tumor cells to survive and expand in the
presence of wild-type p53 despite high oncogenic signaling flux.
Intriguingly, although p53ERTAM and ARF were expressed at
low levels in p53-ON lymphomas, late-OFF lymphomas showed
ARF up-regulation at the protein and mRNA level along with
p53ERTAM accumulation (Fig. 3 A and B and SI Appendix, Fig.
S1B). In fact, ARF up-regulation and p53ERTAM stabilization
were evident in p53-ON lymphomas already 3 d after TAM
withdrawal and increased further within the next days (Fig. 3 C
and D). Consistent with an absence of ARF gene deletions or
promoter methylation (SI Appendix, Figs. S3 and S4), this in-
dicated that the defect in the Myc-ARF-Mdm2-p53 pathway
of p53-ON Eμ-Myc lymphomas is reversible, which allows tumor
cells to rapidly rewire the signaling network and reengage this
pathway as soon as p53ERTAM is inactivated by TAM withdrawal.
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Mechanistically, wild-type p53 is known to repress the p19Arf
promoter by recruitment of Polycomb group (PcG) proteins as
part of a negative regulatory feedback loop (31), that has also been
described for human p14ARF (32). In line with disruption of
negative feedback upon loss of p53, we observed significantly re-
duced PcG protein-mediated histone modifications at the ARF
gene locus of late-OFF versus p53-ON Eμ-Myc lymphomas as an
explanation for the observed increase in ARF mRNA levels and
consequent stabilization of p53ERTAM (SI Appendix, Fig. S5).

p19Arf Loss Causes Resistance to p53 Reactivation. These observa-
tions suggested that the reengagement of the Myc-ARF-Mdm2-
p53 pathway in late-OFF Eμ-Myc lymphomas is responsible for
the therapeutic effect of acute p53ERTAM reactivation. In sup-
port of this, late-OFF lymphomas that had relapsed after TAM
treatment displayed loss of ARF expression along with reduced
p53ERTAM levels (Fig. 3 E and F). To formally test the role of
ARF for the reactivation response, a late-OFF lymphoma was
explanted in culture where the cells responded to TAM treatment
with loss of viability (Fig. 4A), induction of apoptosis (Fig. 4 B–D),
and transactivation of bona fide p53 target genes similar to
p53+/+ lymphoma cells under chemotherapy (Fig. 4E). The few
late-OFF lymphoma cells that survived TAM treatment in vitro
could be expanded and yielded reactivation/TAM-resistant late-
OFF lymphoma cell populations. Similar to late-OFF lymphomas
that have relapsed in vivo (Fig. 3 E and F), TAM-resistant lym-
phoma cell cultures showed significantly reduced ARF expression
at the mRNA and protein levels (Fig. 4 F and G). Genetic analysis
revealed a deletion in the ARF gene locus comprising exons 2 and
3 that was not detectable before TAM treatment (SI Appendix, Fig.
S3B). As all TAM-resistant cultures contained the same deletion,
we concluded that an ARF-deleted subclone was present in the
original lymphoma and selected under TAM treatment. This il-
lustrates that a genetic, nonreversible loss of ARF results in re-
sistance to p53ERTAM reactivation. Moreover, when we “repaired”
the ARF-Mdm2-p53 pathway in TAM-resistant cells using the
Mdm2 inhibitor Nutlin-3a to mimic the Mdm2-inhibitory function
of ARF, sensitivity to TAM was restored (Fig. 4H), formally
proving that ARF loss was responsible for resistance to TAM-
induced p53ERTAM reactivation.
To further validate the role of ARF for the reactivation re-

sponse, we experimentally reduced ARF expression in late-OFF
Eμ-Myc lymphoma cells by RNA interference. Tet-inducible
ARF knockdown blunted the induction of p53 target genes by
TAM (Fig. 4I) and conferred a survival advantage resulting in
the rapid overgrowth of ARF-depleted (dsRed-positive) cells
under TAM treatment (Fig. 4J). In contrast, late-OFF lymphoma
cells expressing a control shRNA were completely killed by
TAM. Together, this further attests to the critical role of a
functional ARF-Mdm2-p53 signaling pathway for a successful
therapeutic reactivation response of late-stage p53-inactivated
(late OFF) Eμ-Myc lymphomas.

p14ARF-Dependent p53 Reactivation Response in Human p53ERTAM

Tumor Cells. To explore p53 reactivation in human tumor cells
with late-stage p53 inactivation, we chose colorectal cancer as a
model where, according to the well-accepted multistep pro-
gression model, p53 inactivation is most frequently a late event
(23). HCT116 and RKO cells are colorectal adenocarcinoma cells
that have retained wild-type TP53. Similar to most other TP53
wild-type cell lines, both lack p14ARF expression. In HCT116 cells,
one ARF allele is mutated, the other is epigenetically silenced by
promoter methylation (33); in RKO cells both alleles are methyl-
ated (34). To reversibly inactivate the endogenous TP53 gene in
these cell lines, we inserted the tamoxifen-responsive ERTAM

cDNA into TP53 exon 11 using CRISPR/Cas9-induced homology-
directed repair (Fig. 5A). Successful targeting was confirmed for
single-cell clones by sequencing genomic DNA (Fig. 5A) and de-
tection of the p53ERTAM fusion protein instead of the wild-type
p53 in Western blots (Fig. 5B). As single cells were clonally ex-
panded in the absence of TAM, the HCT116_p53ERTAM and
RKO_p53ERTAM cell lines had undergone at least 20 population
doublings in the p53-OFF state. Nevertheless, different from late-
OFF lymphomas, HCT116/RKO_p53ERTAM cells showed com-
parably low p53 protein levels as the parental cell lines and the
epigenetically silenced ARF alleles were not reexpressed (Fig. 5B).
Of note, mimicking the Mdm2-inhibitory function of ARF
with Nutlin-3a strongly stabilized p53ERTAM in both cell lines
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for ARF and p53 (CM5) expression by (E ) Western blot and (F ) immuno-

histochemistry. Late-OFF lymphomas from vehicle-treated mice are shown

for comparison. Images are representative of multiple samples from 3 mice

of each treatment group.
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(SI Appendix, Fig. S6A), supporting that the low p53ERTAM

expression level is caused by lack of ARF-mediated Mdm2 in-
hibition. Consistent with the critical role of p53ERTAM accumu-
lation for the reactivation response of late-OFF lymphomas, TAM
failed to inhibit proliferation of HCT116/RKO_p53ERTAM (Fig. 5
C and D). Confirming the lack of ARF as a cause, Tet-inducible
reexpression of ARF or treatment with different Mdm2 inhibitors
(Fig. 5 E–H and SI Appendix, Fig. S6 B–F) sensitized HCT116/
RKO_p53ERTAM cells to TAM. Together these results from hu-
man colorectal cancer cells confirm the data obtained on murine

Eμ-Myc lymphomas and reinforce the conclusion that a thera-
peutic reactivation response of tumors with a late-acquired loss of
p53 function will depend on ARF status.

Discussion

In light of the regained interest in therapeutic p53 reactivation, our
findings provide proof of principle that tumor cells which have
evolved in the presence of nonmutated active p53 can rapidly
adapt and become addicted to p53 inactivation. Reinstatement of
functional p53 could therefore be an effective approach even if

mockTAM
0

0.5

1.0

1.5

R
el

at
iv

e 
su

rv
iv

al

****

0

20

40

60

80

An
ne

xi
n 

V+
 [%

]

**

mockTAM
0

20

40

80

FI
TC

-V
AD

-F
M

K+
 [%

]

****

mockTAM

60 Cdkn1a

Puma

Bax

Noxa

mdm2

Gls2

14-3-3

Aldha4

Dram1

Sesn2

Ddit4

Phlda3

Ccng1

Noxa

Mx2

p53ERTAM late-OFF
TAM [h]

p53+/+
MAF [h]

0 0.5 1 1.5 2 3 0 6

min max

p53–/– p53+/+

cleaved
caspase-3

actin

0

p53ERTAM late-OFF

2 4 6 7 M M
AF

TA
M

M
AF

TA
MTAM [h]

AR
F 

m
R

N
A 

ex
pr

es
si

on
[

C
t] 

  

p53ERTAM

late-OFFp5
3–

/–
p5

3+
/+ R1 R2 R3 R4

**** ****
****

****

****

ns

P
-25

-20

-15

-10

-5

0

ARF

actin

p53ERTAM late-OFF
R1 R2 R3 R4P

0 5 10
0.0

0.5

1.0 TAM
mock

R
el

at
iv

e 
su

rv
iv

al

Nutlin-3a [ M]

Puma

Noxa

Mdm2

Sesn2

Tet
TAM

– – + +
– + – +

min max

p53ERTAM late-OFF
TtRMPVIR-shARF

day 1 day 3

TAM+Tet

dsRed (shARF)

Tet 

p53ERTAM late-OFF TtRMPVIR-shARF

dsRed (shARF)

A B C

D

E F

J

G

IH

Fig. 4. p19ARF loss causes resistance to p53 reactivation in vitro. (A) Survival of late-OFF lymphoma cells treated for 24 h with 4-OHT (TAM) relative to mock (n = 4).

(B and C) Percentage of (B) Annexin V-positive (n = 3) or (C) active caspase-positive cells treated for 5 h with 4-OHT (TAM). (D) Western blot for cleaved caspase-3

(Asp175) of Eμ-Myc lymphoma cells with indicated p53 status treated with 4-OHT (TAM) or 3 μg/mL mafosfamide (MAF). (E) Expression of p53 target genes

measured by RTqPCR in late-OFF lymphoma cells treated with 4-OHT (TAM) compared to Eμ-Myc;p53+/+ lymphoma cells treated with 3 μg/mL MAF. Depicted is the

row-wise min-max scaled mean mRNA expression (n = 3). (F) ARF mRNA expression normalized to β-actin shown as ΔCt for late-OFF lymphoma cell lines: parental

(P) and TAM-resistant (R1–R4). Eμ-Myc;p53−/− and Eμ-Myc;p53+/+ lymphoma cells are shown for comparison. One-way ANOVA with Tukey’s multiple comparisons

test. (G) Western blot of parental and TAM-resistant late-OFF lymphoma cells. (H) Nutlin-3a overcomes TAM resistance of late-OFF lymphoma cells. Shown is survival

following 24-h treatment with Nutlin-3a ± TAM relative to untreated. (I and J) Late-OFF lymphoma cells were transduced with a construct for Tet-inducible

coexpression of ARF-shRNA and dsRed. (I) Expression of p53 target genes measured by RTqPCR following treatment with Tet and TAM as indicated. Depicted is the

row-wise min-max scaled mean mRNA expression (n = 3). (J) Flow cytometry of dsRed expression following 1 to 3 d of treatment with Tet ± TAM. All graphs show

mean ± SD and 2-sided, unpaired t tests unless indicated otherwise. **P < 0.01, ****P < 0.0001; ns, not significant.

3‘UTR

3‘UTRERTAM

GGTCTTCTTGTTCCCCACTGACA
CCAGAAGAACAAGGGGTGACTGT

exon 11

intron 10

PAM sgRNA

E G P D S D L E P S A G

GAAGGGCCTGACTCAGACCTCGAGCCATCTGCTGGA 

donor

p53

actin

p53ERTAM

40

50

65

80

ARF 

HCT116 RKO

ER
TA

M

pa
r

H
19

75

15

ER
TA

M

pa
r

0 1 2 3 4 5
Time [days]

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

] HCT116_p53ERTAM

mock
TAM

FD
R

q=
0.

81
2

0 1 2 3 4 5 6 7
Time [days]

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

] RKO_p53ERTAM

mock
TAM

FD
R

q=
0.

86
3

HCT116_p53ERTAM

pInd-p14ARF

mock
TAM

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

]

0 1 2 3 4 5
Time [days]

FD
R

q=
0.

07
6

HCT116_p53ERTAM

pInd-p14ARF

Tet
Tet+TAM

0 1 2 3 4 5
Time [days]

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

]

FD
R

q<
0.

00
01

HCT116_p53ERTAM

Nutlin
Nutlin+TAM

0 1 2 3 4 5
Time [days]

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

]

FD
R

q<
0.

00
01

RKO_p53ERTAM

Nutlin
Nutlin+TAM

0 1 2 3 4 5 6 7
Time [days]

0

50

100

R
el

at
iv

e 
pr

ol
ife

ra
tio

n 
[%

]

FD
R

q<
0.

00
01

A

B

C

D

E G

F H

Fig. 5. p14ARF-dependent p53 reactivation response in human p53ERTAM tumor cells. (A) Scheme for CRISPR/Cas9-mediated insertion of ERTAM domain into the

TP53 gene of human p53 wild-type tumor cells. (Bottom) Validation of correct insertion by Sanger sequencing. (B) Western blot of parental and p53ERTAM-edited

HCT116 and RKO cells for ARF and p53 (DO1). H1975 cells with endogenous p53R273H mutation are shown for comparison. (C and D) Proliferation of p53ERTAM-

edited cells in response to TAM. (E and F) Proliferation of HCT116_p53ERTAM cells with Tet-inducible expression of ARF in response to TAM in the absence (E) and

presence (F) of Tet. (G and H) Proliferation of p53ERTAM-edited cells treated with Nutlin-3a ± TAM. (C–H) In all graphs, day 0 is the start of TAM treatment. All

proliferation curves were normalized to the confluence of non–TAM-treated reference cells at the end of the time course and shown as mean ± SD. Statistical

significance was assessed with multiple 2-sided t tests in combination with false discovery rates (FDRs). Reported are FDR q-values for relative proliferation at the

end of the observation period.

22292 | www.pnas.org/cgi/doi/10.1073/pnas.1910255116 Klimovich et al.

D
o
w

n
lo

a
d
e
d
 b

y
 g

u
e
s
t 
o
n
 J

a
n
u
a
ry

 1
4
, 
2
0
2
0
 



inactivation of p53 is not the initiating driver lesion and has oc-
curred late during tumorigenesis. This was not expected as it is
generally believed that p53 wild-type tumors are enriched for p53
pathway alterations that bypass p53-mediated tumor suppression
and would similarly blunt a p53 reactivation response. In principle,
such aberrations can hit p53 downstream effectors. However, the
tumor suppressor response of p53 is highly pleiotropic (35). No
single or compound mouse knockout of specific p53 target genes
has recapitulated the dramatic tumor predisposition that charac-
terizes p53-null mice (36). Even p53 mutants deprived of most of
their transactivation function can retain remarkably potent tumor
suppressor activity (36–38). It is therefore unlikely that mutations
affecting single arms of the p53 response undermine a p53 reac-
tivation response. Alterations in upstream effectors such as ARF,
on the other hand, could be more critical and it has been shown
previously for tumors, which have developed in a p53-compromised
background, that successful p53 reactivation is dependent on
oncogene-driven up-regulation of p19Arf and that p53-null tumors
with ARF deletions or insufficient oncogenic signaling are resistant
to p53 restoration (17, 18). In line with this, our study also dem-
onstrates that a successful reactivation response depends on ARF
expression. Based on the results in the p53ERTAM model, it can be
speculated that a p53 loss-of-function mutant might not be suffi-
ciently stabilized if ARF is deleted, mutated, or irreversibly silenced
and that Mdm2 inhibitors could serve as ARF mimics to boost
the effect of mutant p53 reactivating drugs in this scenario.
Consistent with this concept, it was shown that Mdm2 inhibitors
synergistically enhance the activity of small-molecule stabilizers of
conformationally unstable p53 mutants and readthrough-promoting

drugs for p53 nonsense mutants (39, 40). For p53 reactivation to
be therapeutically effective, it therefore does not seem to be crit-
ical whether p53 was inactivated at the onset of malignant trans-
formation or at later stages, as long as strong oncogenic signals are
present and transmitted via ARF to stabilize p53. ARF expression
along with stabilization of mutant p53 should therefore be con-
sidered as potential biomarkers for tumors susceptible to p53
reactivation approaches.

Materials and Methods

p53ERTAM late-OFF lymphoma cells, mimicking late-stage p53 inactivation,

were generated from Eμ-Myc;p53ERTAM/TAM [B6.Cg-Tg(IghMyc)22Bri/JThst;

B6;129Sv-Trp53tm1Gev/JThst] fetal liver cells. For p53 reactivation experiments,

cohorts of B6-albino mice were transplanted with late-OFF lymphoma cells,

treated for 7 d with daily i.p. injections of tamoxifen (100 μL of 10 mg/mL

solution in corn oil) or vehicle and monitored by BLI. A detailed description of

the materials and methods used in this study is provided in SI Appendix. All

animal experiments were performed according to the German Animal Welfare

Act and approved by the Regional Board of Giessen.
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Inactivation of Mdm2 restores apoptosis proficiency of cooperativity mutant
p53 in vivo

Boris Klimovich, Thorsten Stiewe *, and Oleg Timofeev*

Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany

ABSTRACT

TP53 mutations are found in 50% of all cancers and mutated TP53 status is considered poor for
treatment. However, some TP53 mutations exhibit only partial loss-of-function (LOF), meaning
they retain residual transcriptional and non-transcriptional activities that are potentially beneficial
for therapy. Earlier we have characterized a knock-in mouse model for the partial LOF mutant
Trp53E177R (p53RR). Reduced DNA binding cooperativity of this mutant led to the loss of p53-
dependent apoptosis, while p53 functions in cell cycle control, senescence, metabolism, and
antioxidant defense remained intact. Concomitantly, tumor suppression was evident but strongly
compromised compared to wild-type mice. Here we used the Trp53E177R mouse as a model to
investigate whether residual functions of mutant p53 can be engaged to induce cell death, which
is considered the most desirable outcome of tumor therapy. We made use of Mdm2 knock-out in
developing embryos as a sensitive tool for detecting remaining p53 activities. Genetic ablation of
Mdm2 led to embryonic lethality in Trp53E177R/E177R homozygotes at days 9.5–11.5. This effect was
not rescued by concomitant p21-knockout, indicating its independence of p21-mediated cell cycle
arrest. Instead, immunohistochemical analysis showed widespread apoptosis in tissues of defec-
tive embryos accompanied by persistent accumulation of p53RR protein. This led to partial
restoration of the mutant’s proficiency in transcriptional induction of the pro-apoptotic genes
Bbc3 (Puma) and Bax. These data indicate that increased quantity can compensate for qualitative
defects of p53 mutants and suggest that Mdm2-targeting (potentially in combination with other
drugs) might be effective against cells bearing p53 partial LOF mutants.
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Introduction

Among all tumor suppressor genes, TP53 is the

most recognized one. Also known as the “guardian

of the genome”[1], it is activated upon DNA

damage and other stresses and drives a plethora

of cellular programs, ranging from temporary cell

cycle arrest to apoptosis that either ensure repair

and survival of damaged cells or promote their

elimination – depending on the cell type, damage

level and intensity of stress signal [2]. Loss of p53

activity makes cells vulnerable to malignant trans-

formation, therefore a partial or complete inacti-

vation of the p53-dependent network takes place

in virtually all human cancers. Approximately 50%

of tumors retain wild-type p53 but manage to

blunt its functions by blocking up- or downstream

pathways involved in p53-mediated responses; in

another half of cancer cases p53 itself is hit by

mutations [3]. Unlike other tumor suppressor

genes, p53 is only rarely affected by nonsense or

frame-shift mutations – more than 70% of all

genetic alterations found in TP53 are missense

mutations and most of them are located in the

DNA-binding domain (DBD) [4]. The majority

of such mutations result in functional inactivation

of p53. Some codons are hit with an extraordinary

frequency, like the positions R175, G245, R248,

R249, R273, and R282 – so-called “hotspot” muta-

tions [5]. Together they represent approximately

30% of all missense TP53 mutations found in

tumors, but the frequency for each of them does

not exceed 6%[6]. For some hotspot mutations,

oncogenic “gain of function” (GOF) properties

have been demonstrated, as they convert p53 into

an oncogene: instead of suppressing tumorigen-

esis, mutant protein enhances metastasis, pro-

motes genomic instability and supports survival
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of cancer cells under therapy [7]. However, the

bulk of p53 mutants remains poorly characterized

and the frequency of GOF variants is presently

unclear. Nevertheless, several high-throughput

screens demonstrated that the degree of functional

inactivation and residual activities are very diver-

gent between different mutants [8,9].

Missense mutations affecting the p53 DBD are

typically classified as either DNA contact mutations

affecting residues involved in binding DNA or struc-

tural mutations that thermodynamically destabilize

the conformation of the DBD [10]. DNA binding

cooperativity mutations represent a new third class

of mutations that affect interactions between DBDs of

four p53 monomers, bound to DNA. These interac-

tions are maintained by ionic bonds between

H1 helices located within the DBD, which are not

involved in contact with DNA but play an essential

role in stabilization of the p53-DNA complexes

[11,12]. Double salt bridges established between two

oppositely charged amino acids (Glu180 and Arg181

in human p53) provide the structural basis for DNA

binding cooperativity, which determines the ability of

p53 tetramers to recognize and bind specific DNA

sequences, thus shaping p53’s transcriptional activity

[13–15]. In contrast to structural and DNA-contact

mutations, cooperativity mutations that affect the cri-

tical R180 and E181 residues have no or little effect on

theDBD structure itself [13]. Cooperativity mutations

are detected in spontaneous tumors and in hereditary

cancer (Li-Fraumeni syndrome) and can lead to selec-

tive apoptosis defects [15]. Despite not being

mutational hot-spots, cooperativity mutations are

estimated to account for 34,000 cancer cases

per year world-wide [3]. Recently we have described

mouse models for the p53 cooperativity mutations

E177R and R178E (p53RR and p53EE, corresponding

to human E180 and R181 codons) [16,17]. The R178E

mutation abolishes cooperative interactions between

p53 monomers and therefore renders p53 entirely

deficient in DNA binding, recapitulating mutations

that lead to a severe loss of function. In contrast,

E177R substitution leads to a reduced interaction

between H1 helices and results in a complete defi-

ciency in p53-dependent activation of pro-apoptotic

genes, whereas regulation of genes involved in the

control of the cell cycle, oxidative defense and meta-

bolism remains intact or only slightly affected [18].

Importantly, tumor-suppressive functions of p53RR

were dramatically impaired, making mice a suitable

model for studying tumorigenic p53 mutations with

partial loss of function.

Mdm2 and Mdm4 (MdmX) are major negative

regulators of p53. These homologous proteins share

C-terminal RING-finger domains that are necessary

for the formation of Mdm2-Mdm4 heterodimers,

but only Mdm2 possesses E3 ubiquitin ligase activity

and can mono- and poly-ubiquitinate p53 protein

thus controlling its intracellular localization and sta-

bility, respectively [19]. In addition, Mdm2 and

Mdm4 can inhibit transcriptional activity of p53 via

binding to its N-terminal transactivation domain

[20]. In turn, Mdm2 transcription is regulated by

p53, which represents a negative feedback loop

mechanism that restrains p53 activity in normal

cells [19]. Oncogenic stress mobilizes the ARF

tumor suppressor protein which sequesters Mdm2

and thus leads to stabilization and activation of p53

[21]. When tumor cells retain wild-type p53, its level

is usually kept low due to loss of ARF or overexpres-

sion of Mdm2, which provides a therapeutic window

for using Mdm2 inhibitors in cancer treatment, aim-

ing at the restoration of tumor-suppressive p53 func-

tions in tumor cells. In the last two decades, multiple

Mdm2 inhibitors were developed and tested in pre-

clinical studies and early clinical trials [22]. Mutant

p53 protein levels are typically high in tumor cells

which indicates uncoupling from the ARF-Mdm2

regulatory circuit and suggests at least partial loss

of p53’s tumor-suppressive functions. Therefore, the

use of Mdm2 inhibitors is considered unbeneficial

for treatment of tumors with mutant p53. Instead,

alternative methods such as restoration of native

conformation, disaggregation or destabilization are

being tested [23]. Although specific accumulation of

p53 in cancer cells makes the mutant protein

a tempting target for therapy, insufficient knowledge

of vulnerabilities created by different mutants ham-

pers the development of such approaches.

Genetic ablation of Mdm2 in mice causes early

embryonic lethality (3.5–5.5 dpc) due to massive

apoptosis, whereas simultaneous disruption of the

Trp53 gene completely rescues the lethal phenotype

[24–26]. Moreover, inactivation of the pro-apoptotic

p53 target Bax prolongs the development ofMdm2-

null embryos up to day 6.5 [24], but knock-out of the

cell cycle regulator Cdkn1a (p21) had no rescue

effect [27]. These data underscore p53-dependent
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apoptosis as the primary lethal activity that must

be inhibited by Mdm2 during embryogenesis.

Importantly, typical p53 hotspot mutations R172H

and R246S (corresponding to human R175H and

R249S, respectively) and rare partial loss of function

R172P (human R175P) mutant rescued embryonic

lethality of Mdm2 knock-out mice [28,29]. In con-

trast, the hypomorphic p53neo allele that retained

only about 16% of wild-type Trp53 gene expression

did not [30], indicating that the Mdm2 knock-out

model can be used for identification of even subtle

residual lethal activities of mutant p53. Here we used

the Trp53E177R (p53RR) mouse to test if Mdm2-

targeting approaches can drive a therapy-relevant

response in cells with partial LOF mutants that are

defective for p53-dependent apoptosis.

Materials and methods

Animals

The Trp53LSL-RR (p53LSL-RR) and Trp53RR (p53RR)

mice with conditional expression of Trp53E177R

mutant allele were described elsewhere [16]. For

embryonic lethality studies, we usedMdm2Δ7−9 (129-

Mdm2< tm1.2Mep>) mice that lack exons 7–9 [31].

These mice were obtained from the NCI Mouse

Repository (Frederick, USA) and mated with

Trp53LSL-RR/LSL-RR (not expressing p53 and used as

the p53 knock-out control, further indicated as

Trp53―/―) or Trp53RR/RR homozygote animals to gen-

erate double heterozygous Mdm2Δ7−9;Trp53+/RR and

Mdm2Δ7−9;Trp53+/― mice for intercrossing. The p21/

Cdkn1a knock-out mice (129S2-Cdkn1a<tm1Tyj>)

were obtained from the Jackson Laboratory. All

mouse experiments were approved by the local autho-

rities and performed in accordance with the German

Animal Welfare Act (Deutsches Tierschutzgesetz).

Cell culture and apoptosis assay

Mouse embryonic fibroblasts were isolated at 13.5

dpc using standard protocols and kept at low oxy-

gen conditions (5% O2). MEF were immortalized

using the E1A.12S adenoviral oncogene, infections

and transfections were performed as described ear-

lier [16]. Cells were cultured in DMEM (Gibco,

Life Technologies) with 10% fetal calf serum

(Sigma-Aldrich), supplemented with 100 U/ml

penicillin and 100 μg/ml streptomycin (both

from Gibco, Life Technologies). E1A MEFs were

treated with 400 ng/ml doxorubicin for 16 h and

collected for RNA isolation.

Isolation of embryos and whole-mount

immunostaining

Whole-mount PECAM-staining was performed as

described [32] with modifications. All solutions

were filtered through 0.45 µM filters. Embryos

were isolated, deposited in 12 well plates, fixed for

1.5 h in cold 4% buffered formalin, washed

3 × 10 minutes in 0.1% Tween-20 in PBS (PBST).

All steps were performed upon gentle agitation.

Catalase was inactivated by incubation in 50 mM

NaN3 in PBST (20 min, RT). Endogenous peroxi-

dase was blocked with 3% H2O2 + 50 mM NaN3 in

PBST (20 min, RT). After washing with PBST

(3X10 min, RT) embryos were blocked in PBST

supplemented with 10% normal goat serum (NGS)

and 0.5% bovine serum albumin (BSA) for 1.5 h

(RT). Embryos were incubated in anti-PECAM

antibodies (MEC 13.3, BD Pharmingen, 553370,

1:300 in PBST, 1% NGS, 0.5% BSA) for 24–48 h

(+4°C). Embryos were washed (PBST, 0.5% BSA,

6 × 1 h, RT) and incubated with secondary anti-

bodies (donkey anti-rat HRP-conjugate (Rockland,

612-703-120) 1:500 in PBST, 1% NGS, 0.5% BSA

overnight (+4°C). After washing with PBST, 0.5%

BSA (6x30 min, RT) embryos were incubated in

TBTI buffer (10 mM imidazole, 0.2% BSA in

PBST) for 1 h at RT. All further steps were per-

formed in the dark. Solution was replaced with

DyLight-488-tyramide amplification solution

(1:100 in TBTI + 0.0015% H2O2) for 2 h at RT.

Embryos were washed with PBST overnight (+4°C).

Embryos were cleared as described [33]. Briefly,

embryos were incubated in 25% formamide + 10%

PEG 8000 solution (1 h), and then in 50% forma-

mide + 20% PEG 8000 (two times). Embryos were

imaged with a Zeiss stereo microscope. Synthesis of

tyramide conjugate was performed as follows: stock

solution A (10 mg/ml DyLight-488-NHS ester

(Thermo Fisher Scientific, 46402 in dimethylforma-

mide (DMF) and solution B (10 mg/ml tyramine-

HCl (Sigma Aldrich, T2879 in DMF supplemented

with 7.2 M trimethylamine (Sigma Aldrich, T0886)

were prepared. Then 100 µl of solution A wasmixed
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with 15.6 µl of solution B and incubated for 2 h in

the dark at RT. Afterward, 884 µl of 100% ethanol

was added to obtain a working tyramide amplifica-

tion solution.

Immunohistochemistry

Embryos were fixed overnight in 4% buffered for-

malin, washed with PBS and stored until further

processing in 70% ethanol. For embedding,

embryos were sequentially treated as follows: 80%

EtOH 5 min, 95% EtOH 2 × 5 min, 100% EtOH

1 × 5 min, 100% EtOH/Roticlear (Roth) 1:1 5 min,

Roticlear – 5 min. Then embryos were incubated

sequentially in 3 vessels with paraffin for 5 min

(65°C) and embedded immediately after. 5 μm

thick sections were mounted to SuperFrost glass

slides (Thermo Fischer Scientific) and processed as

described earlier[16]. The following antibodies and

dilutions were used: anti-p53 (NCL-p53-505, Leica

Microsystems, 1:1000), anti-cleaved caspase-3

(#9661, Cell Signaling, 1:100), anti-PCNA (sc-56,

clone PC10, Santa Cruz Biotech, 1:100), anti-

mouse CD31/PECAM-1 (#553370, clone MEK

13.3, BD Pharmingen). Apoptosis was detected

with the DeadEnd TM colorimetric TUNEL

System (Promega).

IHC quantification

Staining intensity was quantified using Aperio

ImageScope software and a positive pixel count

algorithm v9. For each embryo at least 10 regions,

covering in total > 50% of the whole section area

were randomly selected from several sections at

10x magnification. 3 embryos of each genotype

were quantified for every staining. The positivity

index was calculated as the ratio of positive pixels

over the total number of pixels in regions used for

quantification. Statistical significance was assessed

using ANOVA with Holm-Sidak multiple compar-

ison test.

Cellular fractionation and western blotting

Nuclear and cytosolic fractions were prepared as

follows: cells were collected and resuspended in 2–3

volumes of Buffer A (10 mMHEPES pH 7.9, 10 mM

KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM

β-mercaptoethanol) supplemented with protease

inhibitors, and incubated for 10 minutes on ice.

Then 10% NP-40 was added to a final concentration

of 0.25%. Cells were passed through a 27G needle

5–10 times, nuclei were pelleted by centrifugation

(500xg, 10 min). The cytoplasmic fraction was col-

lected and re-centrifuged for 10–15minutes. Nuclear

fractions were washed 3 times in 5–10 volumes of

Buffer A and pelleted by centrifugation. Nuclei were

lysed with 1–2 volumes of Buffer C (20 mM HEPES

pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA,

1 mM β-mercaptoethanol) and soluble fraction was

collected by centrifugation (10000xg, 10 min).

Mitochondrial fractions were isolated using

Mitochondria Isolation Kit for Cultured Cells

(Thermo Scientific) as described by the manufac-

turer. For Western Blotting 50 µg of total protein

were resolved on 4-12% NuPAGE polyacrylamide

gels (Invitrogen). After wet transfer to Hybond-P

nitrocellulose membrane (GE Healthcare) antigens

were detected using the following antibodies: anti-

p53 (NCL-p53-505, Leica Microsystems, 1:2000),

anti-PCNA (PC10, #sc-56, 1:1000), anti-Bak

(At8B4, Abcam, 1:250), anti-Tom20 (FL-145, #sc-

11415, 1:100). Specific immunocomplexes were

detected with secondary anti-mouse or anti-rabbit

IgG-HRP (GE Healthcare, 1:5,000) and SuperSignal

ECL kit (Thermo Fisher).

PCR and RTqPCR

Genotypes of mice, isolated embryos and embryonic

tissues were identified by PCR using following pri-

mers: 5ʹTCTTTGTGAAGGAACCTTACT3ʹ; 5ʹCAT

TCATCAGTTCCATAGGTT3ʹ; 5ʹCCCTGAGAAG

AGCAAGGC3ʹ, 5ʹAACCAGATCAGGAGGGTCA

C3ʹ for genotyping of p53RR; 5ʹCGCCACCA

GAAGAGAAACCT3ʹ; 5ʹTGTCCCTATGTACCTG

TCTCACT3ʹ; 5ʹGTATTGGGCATGTGTTAGACT

GG3ʹ; 5ʹCCTGGATTTAATCTGCAGCACTC3ʹ for

genotyping of Mdm2; 5ʹATCAGCAGCCTCTGTT

CCAC3ʹ; 5ʹGTCTAGCTCCGGCATTCTCG3ʹ; 5ʹA

CTCCATGTCTCCAGCCTCT3ʹ for genotyping of

p21. For PCR genotyping, tail tips or tissues were

lysed overnight at 55°C in PBND buffer (10 mM

Tris-HCl pH 8.3, 50 mM KCl, 2.5 mM MgCl2,

0.45% NP-40, 0.45% Tween-20) supplemented with

8 U/ml proteinase K (AppliChem). Proteinase was

heat-inactivated at 95°C for 10 min. For reverse
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transcription quantitative PCR (RTqPCR), RNA was

isolated from cells or whole embryos using the

RNeasy Mini kit (Qiagen) according to the manu-

facturer’s protocols. Isolated embryos were con-

trolled microscopically to ensure the absence of

resorption and intactness of tissues. cDNA was

synthesized from 0.5–1 μg of total RNA with

the SuperScript VILO cDNA Synthesis Kit

(Invitrogen). Gene expression was assessed on

a LightCycler-480 (Roche) using the ABsolute

QPCR SYBR Green Mix (Thermo Scientific). Data

were analyzed with the ΔΔCt method using β-actin

as a reference gene for normalization. Sequences of

primers used for RTqPCR were described ear-

lier[16].

Flow cytometry

Flow cytometry analysis was performed on the

Accuri C6 flow cytometer (BD Biosciences). For

analysis of apoptosis Annexin V-APC (MabTag)

kit was used according to the manufacturer’s

protocol. Cell viability was determined by stain-

ing of freshly collected cells with 0.2μg/ml pro-

pidium iodide (PI) in PBS in non-permeable

conditions.

Results

P53RR does not rescue embryonic lethality

caused by deletion of Mdm2

We used heterozygous mice with a deletion of exons

7–9 of theMdm2 locus (Mdm2Δ7−9)[31] which were

bred with homozygous Trp53E177R/E177R (RR) mice

to generate double heterozygous Mdm2+/Δ7−9;

Trp53+/RR animals. The double heterozygous proge-

nies were viable and we used them for further

breeding. When we genotyped newborn mice

obtained from intercrossing of double heterozygous

Mdm2+/Δ7−9; Trp53+/RR animals, we observed a clear

deviation from the expected Mendelian distribution:

notably, no double homozygous Mdm2Δ7−9/Δ7−9;

Trp53RR/RR mice were born alive (Figure 1(a)).

Similar results were obtained upon breeding of

Mdm2+/Δ7−9; Trp53RR/RR animals to each other

(Figure 1(c)), indicating that the double homozygous

Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos die in utero. In

contrast, upon crossing of double heterozygous

Mdm2+/Δ7−9; Trp53+/― mice used as the control,

double homozygous offspring was obtained with

a frequency only insignificantly deviating from the

expected one (Figure 1(b)). This data clearly indi-

cated that the cooperativity mutant p53RR, similar

to wild-type p53 and different from other partially

inactive or cancer-associatedmutants such as R172P,

R172H, and R246S, exhibits lethal activity in the

absence of Mdm2.

Double homozygous mdm2Δ7−9/Δ7−9; Trp53RR/RR

embryos show severe developmental defects

We have previously demonstrated that p53RR is

deficient for induction of apoptosis and transcrip-

tional activation of apoptosis-related genes such as

Puma, Noxa, and Bax [16] in response to DNA

damage. We, therefore, expected survival of double

homozygous Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos

beyond the terms observed in p53 wild-type back-

ground (3.5–5.5 dpc). We started collecting

embryos from 6.5 dpc and did not observe any

abnormalities until day 7.5–8.5 (Figure 2(a) and

not shown). Strikingly, at 9–9.5 dpc the majority

of double homozygous embryos displayed severe

developmental defects and after day 11 no normal

embryos with this genotype were recovered

(Figure 2(b,c), Suppl. Figure 1(a)). Also, no living

double homozygous embryos were found at later

developmental stages. At day 9 dpc (TS 14) pro-

nounced defects in neural tube closure and forma-

tion of brain vesicles of Mdm2Δ7−9/Δ7−9; Trp53RR/RR

embryos were evident (Suppl. Figure 1(a)), which

became further aggravated at day 9.5–10.5 and were

accompanied with growth retardation (Figure 2(c)).

Hemizygous Mdm2Δ7−9/Δ7−9; Trp53RR/― embryos

displayed the same morphological abnormalities

(Suppl. Figure 1(b)). Notably, the double homozy-

gous embryos that were found alive (heart

beating) at day 10.5–11.5 looked pale and bloodless

(Figure 2(c,d)). The yolk sac of those embryos had

a clearly reduced number of large blood vessels and

abnormal structure of the capillary network

(Figure 2(e)). Similar defects were detected in

whole-mount Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos

stained with antibodies to the endothelial marker

Pecam-1 (Figure 2(f)).
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Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos die with

signs of apoptosis

To investigate the pathological phenotype of double

heterozygous embryos in more detail, we used intact

embryos with no signs of resorption for immunohis-

tochemical staining. First, we analyzed p53 protein

levels. As expected, in all analyzed samples collected

at 9–10.5 dpc (TS 14–17) we observed a strong accu-

mulation of p53RR protein, particularly in the neu-

roepithelium, limb buds, and somites, whereas in the

cardiac tissues the p53 level was markedly lower

(Figure 3(a,b) and Suppl. Figure 2(b). The p53RR

protein retains the ability to induce expression of the

Cdkn1a gene and therefore is proficient in mounting

cell cycle arrest [16]. The abnormal phenotype of

Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos was reminiscent

of that published for Mdm4 deficient mice which die

at 7.5–10.5 dpc because of cessation of proliferation by

p21-mediated cell cycle arrest [34]. We hypothesized

that accumulation of p53RR may lead to high

expression of p21 and loss of proliferative potential

resulting in developmental aberrations and death of

Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos. However,

quantitative analysis of PCNA staining that is
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Figure 1. p53RR does not rescue embryonic lethality caused by deletion of Mdm2. (a) Observed and expected genotype distribution
of newborn offspring from matings of Mdm2+/Δ7−9;Trp53+/RR mice (total number of pups n = 144; contingency test P = 0.032). (b)
Observed and expected genotype distribution of newborn offspring from matings Mdm2+/Δ7−9; Trp53+/− mice (total number of pups
n = 137; contingency test P = 0.3044). (c) Observed and expected genotype distribution of newborn offspring from matings Mdm2+/
Δ7−9; Trp53RR/RR mice (total number of pups n = 187; contingency test P < 0.0001).
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commonly used as a marker for proliferating cells

revealed no difference between normal Mdm2+/Δ7−9;

Trp53RR/RR and abnormal Mdm2Δ7−9/Δ7−9;

Trp53RR/RR embryos (Figure 3(c,d)). Abnormalities

in development of embryonic vasculature can result

in insufficient blood supply and acute ischemia,

which in turn can lead to necrotic cell death.

However, we have not seen typical microscopic signs

of necrosis such as swelling of cells and membrane

rupture in tissues of double homozygous embryos.

Instead we observed widespread apoptosis, especially

in the neuroepithelial tissues, as suggested by chro-

matin condensation, nuclear DNA fragmentation

(TUNEL) and caspase-3 cleavage (CC3), which

started approximately at 9 dpc and progressively

increased at later stages (Figure 3(e,g) and Suppl.

Figure 2(c,f)). Importantly, tissues with weak staining

for p53 protein also demonstrated low levels of apop-

tosis (Figure 3(a,e,g)), indicating that high levels of

p53 protein may be responsible for apoptosis. This

a
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Mdm2-/-;Trp53RR/RR
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Mdm2+/-;Trp53RR/RR

N A N A N A
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E10.5 46 15 1 20 1 0 9

E12.2 21 2 2 4 7 0 6*

Stage Number

Mdm2 genotype
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Figure 2. Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos show severe developmental defects. (a) Representative images of E7.5 embryos
demonstrating absence of developmental abnormalities in Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos at this stage. (b) Phenotype analysis
of Trp53RR/RR embryos with different Mdm2 genotypes reveals developmental defects in Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos starting
from E9.5. N – normal, A – abnormal morphology. Asterisk – embryos were partially resorbed. (c) Representative images of Trp53RR/
RR embryos with hetero- and homozygous Mdm2 deletion at stages E9.5 (TS15, upper panel) and E10.5–11 (TS18, bottom panel)
show progressive growth retardation, abnormal head morphology and neural tube closure defects (arrow) in Mdm2Δ7−9/Δ7−9;Trp53RR/
RR embryos. (d) Representative image of Mdm2+/Δ7−9 and Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos at stage E11.5, (TS19) with the intact
(upper panel) and opened (bottom panel) embryonic envelope demonstrates a “bloodless” phenotype of the Mdm2Δ7−9/Δ7−9;Trp53RR/
RR embryos. (e) Representative picture of PECAM-1 (endothelial marker) staining in whole mount yolk sac samples shows a reduced
number of large blood vessels and decreased branching of the capillary network (zoom-in) in homozygous Mdm2Δ7−9/Δ7−9;Trp53RR/RR

embryos (bottom panel). (f) Representative picture of Pecam-1 staining in whole mount embryos shows a reduced branching in
blood vessel network and abnormal head morphology of homozygous Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos.
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Figure 3. Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos die with signs of apoptosis. (a,b) Representative immunohistochemical (IHC) staining of
Mdm2+/Δ7−9 and Mdm2Δ7−9/Δ7−9;Trp53RR/RR E10.5 embryos using anti-p53 antibodies. Right panel: different tissues shown at high
magnification (1,3 – neuroepithelial, 2 – heart, 4,5 – somites, 6 – mesenchyme). Strong accumulation of p53 protein is evident in all
tissues except the heart in Mdm2Δ7−9/Δ7−9;Trp53RR/RR samples. (b) – quantification of IHC staining in 3 embryos for each genotype, 10
random fields of view covering in total >50% of the section area, ANOVA test. (c,d) IHC staining of proliferating cells nuclear antigen
(PCNA) in a serial section from the same samples as in (a). Right panel: different tissues shown at highmagnification (1 –mesenchyme, 2 –
heart, 3,4 – neuroepithelial, 5,6 – somites). (d)- quantification of PCNA staining, done as in (b), shows a slight reduction in PCNA levels in
Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos, ANOVA test. (e,f) IHC staining of apoptosis marker cleaved caspase 3 (CC3) in a serial section from the
same samples as in (a). Right panel: different tissues shown at high magnification (1,3 – neuroepithelial, 2 – heart, 4,5 – somites/limb bud,
6 –mesenchyme). Note apoptosis in neural tissues and limb bud ofMdm2Δ7−9/Δ7−9;Trp53RR/RR embryo. (f) – quantification of IHC staining
in 3 embryos for each genotype, done as in (b), ANOVA test. (g,h) Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling
(TUNEL) assay in a serial section from the same samples as in (a). Right panel shows the same sites as in (e). Note only a small foci of
apoptosis in neural tissue of the normal Mdm2+/Δ7−9;Trp53RR/RR embryo, whereas massive apoptosis is observed in multiple tissues of the
abnormal double homozygous Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryo. (h) – quantification of IHC staining, done as in (b), ANOVA test.
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was entirely unexpected, given that all our previous

experiments had demonstrated a complete loss of

p53-dependent apoptosis in human and mouse

p53RR cells that was explained by a defect of p53RR

in binding and transactivating pro-apoptotic target

genes [1,5,16]. To analyze this surprising finding in

more detail, we examined different tissues at 9.5 and

10.5 dpc (magnification panels in Figure 3(a,e,g) and

Suppl. Figure 2(c)) of intact embryos and quantified

p53, TUNEL and CC3 staining at these stages. As

shown in Figure 3(f,h) and Suppl. Figure 2(f), we

consistently observed a strong accumulation of p53

and increase of apoptosis inMdm2Δ7−9/Δ7−9; Trp53RR/

RR embryos. Moreover, we detected a direct correla-

tion between p53 protein and apoptosis levels (Suppl.

Figure 2d,e). Collectively, these data pointed to p53RR

as the cause of cell death.

Genetic ablation of Cdkn1a does not provide

even partial rescue of embryonic lethality

Apart from transactivating tumor-suppressive target

genes, p53 also activates the p21-DREAM pathway

and thereby indirectly represses dozens of genes

involved in cell proliferation and survival, which

might lead to developmental defects, embryonic

death, and secondary apoptosis [35]. Importantly,

p53RR retains the ability to induce p21 and therefore

engages the p21-DREAMpathway for gene repression

[18]. We reasoned that if embryonic lethality was

caused by activation of the p53-p21-DREAM path-

way, knock-out of p21/Cdnk1a should provide at least

partial rescue of developmental defects.We, therefore,

generated triple transgenicMdm2Δ7−9/Δ7−9;Cdkn1a–/–;

Trp53RR/RR mice and bred them to obtain triple-

homozygous offspring. However, we detected no tri-

ple homozygotes upon genotyping of newborn pups

obtained from such matings (Figure 4(a)). In fact,

genetic inactivation of p21 did not provide even

partial rescue of the lethal Mdm2-null phenotype –

Mdm2Δ7−9/Δ7−9;Cdkn1a–/―;Trp53RR/RR embryos died

at E9.5–10.5 dpc with the same morphological

abnormalities as observed in Mdm2Δ7−9/Δ7−9;

Trp53RR/RR mice – developmental retardation,

impaired blood supply, neural tube closure defects

(Figure 4(b,c,d). It suggested that the observed

abnormal phenotype was caused primarily by

a mechanism distinct from the lack of proliferation

or p21-DREAM mediated gene repression.

Like Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos, triple

homozygous embryos expressed very high levels of

p53 protein (Figure 4(e)). Moreover, also in

Mdm2Δ7−9/Δ7−9;Cdkn1a–/―;Trp53RR/RR embryos we

detected high levels of apoptosis in neuroepithelial

tissues and somites as indicated by TUNEL assay,

similar to double homozygous samples (compare

Figures 4(f) and 3(g)). Although it is unclear, whether

p53-induced apoptosis or developmental defects

caused the embryonic lethality, these data show that

the apoptosis defect of p53RR, previously reported for

newborn and adult tissues following DNA damage

[16], was rescued in embryonic cells by loss of Mdm2.

High levels of mutant p53RR protein can

partially compensate for the cooperativity defect

The apoptosis deficiency of p53RR is caused by

weakened interactions between p53 monomers that

result in a compromised ability to bind promoters of

many pro-apoptotic target genes [15,18,36]. To ana-

lyze expression of p53-dependent genes in embryos,

we bredMdm2+/Δ7−9; Trp53RR/RR mice and collected

embryos at 10.5 dpc. All embryos were genotyped for

Mdm2 and used for isolation of RNA. As expected,

quantitative PCR analysis of Mdm2-deficient

embryos showed a strongly elevated expression of

Cdkn1a, Ccng1, Aldh4a, Gls2, and Sesn2 genes that

have been demonstrated earlier as p53RR targets in

human and mouse cells [16,18] (Figure 5(a), left

panel). Surprisingly, we also detected significant

upregulation of pro-apoptotic Bbc3 (Puma) and

Bax transcripts, which was comparable to activation

levels observed in p53 wild-type MEFs after treat-

ment with doxorubicin, used as a positive control

(compare Figure 5(a), right panel and Figure 5(b)).

This finding was unexpected because in our earlier

experiments we did not detect any increase in

expression of Puma or Bax in p53RR cells after

irradiation or doxorubicin treatment [16]. The valid-

ity of our previous findings was confirmed by the

lack of Bbc3 and Bax induction in doxorubicin-

treated p53RR MEFs (Figure 5(b)). Because of the

very limited amount of embryonic tissues, we

decided to use readily available mouse fibroblasts

(MEFs) to further analyze the mechanisms of apop-

tosis triggered by p53RR. Recently, the combination

of Mdm2 inhibitor Nutlin-3a and doxorubicin was

shown to evoke apoptotic activity, mediated by
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direct mitochondrial functions, of the entirely DNA

binding-deficient cooperativity mutant R178E [17].

To check if p53RR MEFs are sensitive to such

a combination of drugs, we analyzed apoptosis and

overall cell death in treated cells using flow cytome-

try and found p53RR cells to be highly apoptotic in

these conditions (Figure 5(c)), whereas treatment

with Nutlin-3a or doxorubicin alone had no effect.

Figure 4. Genetic ablation of Cdkn1a fails to rescue embryonic lethality. (a) Observed and expected genotype distribution of
newborn offspring from matings of Mdm2Δ7−9/Δ7−9;Cdkn1a–/–;Trp53RR/RR mice (total number of pups n = 48; contingency test
P = 0.001). (b) Phenotype analysis of Cdkn1a–/–;Trp53RR/RR embryos with different Mdm2 genotypes shows the onset of development
defects at the same stage (E9.5 – E10.5) as in Mdm2Δ7−9/Δ7−9; Trp53RR/RR embryos. N – normal, A – abnormal morphology. Asterisk –
embryos were partially resorbed. (c) Representative images of Cdkn1a–/–;Trp53RR/RR embryos with hetero- and homozygous Mdm2
deletion at stage E10.5 (TS17-18) show same phenotypic abnormalities as in Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos. (d) Representative
image of an Mdm2Δ7−9/Δ7−9;Cdkn1a–/–;Trp53RR/RR embryo shows neural tube closure defects (arrows) in cranial (left) and caudal
(right) parts of the embryo. (e) Representative IHC staining of E10.5 embryos for p53 shows strong accumulation of p53 protein in
Mdm2Δ7−9/Δ7−9;Cdkn1a–/–;Trp53RR/RR samples. Right panel: different tissues shown at high magnification (1,3 – neuroepithelial, 2 –

heart, 4,5 – somites/limb bud, 6 – mesenchyme). (e) TUNEL assay in a serial section from the same samples as in (E). Note the
enhanced apoptosis in neuroepithelial tissues and somites of Mdm2Δ7−9/Δ7−9;Cdkn1a–/–;Trp53RR/RR embryos.
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Importantly, apoptosis was associated with

transcriptional activation of proapoptotic target

genes Bbc3 and Bax, similarly as observed in

Mdm2Δ7−9/Δ7−9;Trp53RR/RR embryos (Figure 5(d)).

Of note, combination treatment also induced Bbc3

and Bax in p53-null MEFs, but to significantly lesser

extent (Figure 5(d)). It is possible that the apoptotic

activity of p53RR mutant was also supported by
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Figure 5. High levels of mutant p53RR protein can partially compensate for the cooperativity defect. (a) mRNA expression analysis
(RTqPCR) of p53 target genes in Trp53RR/RR embryos with indicated Mdm2 genotypes. Shown are expression values normalized to β-
actin, normal n = 7, abnormal n = 4. (b) RTqPCR analysis of the expression of pro-apoptotic p53 target genes Bbc3 (Puma) and Bax in
primary Trp53+/+, Trp53RR/RR and Trp53–/ – MEFs after 16 h treatment with 400 ng/ml doxorubicin. Shown are technical triplicates. In
(a) and (b) * P < 0.05, ** P < 0.01, ns – not significant, error bars represent SD, two-tailed Mann Whitney test. (c) Quantification of
apoptosis detected by flow cytometry with Annexin-V and non-permeable PI staining in Trp53+/+, Trp53RR/RR and Trp53–/– E1A-
imortalized MEFs upon 16 h treatment with 10 μM Nutlin-3a, 400 ng/ml doxorubicin or a combination of both. (d) RTqPCR
quantification of p53 target genes in E1A-MEFs from (c) upon treatment with Nutlin-3a and doxorubicin. Each dot indicates one
biological replicate, ANOVA test. (e) Representative western blot of cytosolic, nuclear and mitochondrial fractions from primary MEFs
(untreated and treated with 400 ng/ml doxorubicin), probed with anti-p53 antibodies. PCNA and Tom20 antibodies were used as
fractionation controls.

CELL CYCLE 11



transcription-independent mechanisms because we

detected p53RR protein in mitochondrial fractions

(Figure 5(e)). Taken together, these data suggest that

massive stabilization of p53RR protein – either due

to complete genetic inactivation of Mdm2 or upon

its pharmacological inhibition complemented with

cytotoxic stress can partially compensate for the

defect in DNA binding cooperativity and restore

apoptotic proficiency of the mutant.

Discussion

Cooperativity mutations belong to a third and

distinct class of p53 missense mutations affecting

the DBD. They are found as sporadic cancer muta-

tions and also as germ-line mutations giving rise

to hereditary cancer susceptibility [15]. They are

estimated to account for approximately 34,000

cancer cases per year world-wide [3]. In contrast

to p53 “hotspot” mutations, cooperativity muta-

tions commonly do not result in a complete loss

of DNA binding but rather cause a partial loss of

function. In particular, reduction in cooperative

interactions between p53 monomers severely

impairs the ability of p53RR to bind and transac-

tivate pro-apoptotic target genes, whereas induc-

tion of cell cycle arrest and senescence along with

other homeostatic p53 functions are only weakly

affected [15,18,16]. Such a selective loss of p53-

induced apoptosis has also been observed for

many other non-hotspot p53 mutants [8,37–41],

making p53 cooperativity mutants a valuable

model to study the consequences of a partial loss

of p53 activity for tumorigenesis or cancer therapy.

Here we report the surprising observation that the

apoptosis deficiency of the cooperativity mutation

p53RR was overcome by the loss of Mdm2.

Although it is unclear whether the enhanced apop-

tosis is the main reason for embryonic lethality

caused by p53RR, this genetic model demonstrated

that a p53 mutant, deficient for apoptosis in other

settings, can exert lethal activity. Recently, also using

the Mdm2 knock-out model, we have shown that

another cooperativity mutant Trp53E177R (p53EE)

can induce embryonic lethality [17]. The Trp53E177R

(p53RR) andTrp53R178E (p53EE) knock-inmice with

cooperativitymutations have different phenotypes as

the DNA binding and transcriptional activity of p53

is affected to a different degree: whereas p53EE is

fully deficient in DNA binding and devoid of direct

transcriptional activity, p53RR is only partially

compromised regarding DNA binding and transac-

tivation resulting in a selective loss of transcription-

dependent apoptosis. As a consequence, substantial

differences between these mutants in p53-dependent

response and tumor suppression were observed

[16,17]. Interestingly, although both mutations

strongly affect transactivation of p53-dependent

apoptotic genes and render cells apoptosis-deficient,

our data show that this deficiency is not absolute and

can be compensated, yet by different mechanisms:

while p53EE mutant induces apoptosis indepen-

dently of regular transcriptional activity, p53RR

seems to engage both mitochondrial and transcrip-

tion-mediated pathways, as suggested by a restored

ability to induce proapoptotic Puma/Bbc3 and Bax

expression. One reasonable explanation for this

unexpected finding could be that in developing

embryos an abnormal accumulation of p53RR trig-

gered by the loss of Mdm2 can compensate for the

cooperativity defect and in combination with endo-

genous stress signals mobilize accumulated p53 to

transactivate pro-apoptotic targets. The ability of

wild-type p53 to trigger apoptosis is known to be

dependent on at least three factors: the expression

level of p53, the duration of increased p53 expression

and the intrinsic apoptotic sensitivity of cells, i.e. its

apoptosis threshold [42–45]. Embryonic cells have an

exceptionally low apoptosis threshold, explained at

least in part by high levels of mitochondrial priming

[46]. In the case of Mdm2Δ7−9/Δ7−9;Trp53RR/RR

embryos, p53RR protein is massively and constitu-

tively stabilized because of the lack of Mdm2 as the

major negative regulator of p53. We speculate that

the sustained high-level expression of p53RR restores

binding to pro-apoptotic gene promoters by simple

mass action: the more protein is available, the higher

is its probability to bind DNA. The elevated expres-

sion of Puma/Bbc3 and Bax in Mdm2Δ7−9/Δ7−9;

Trp53RR/RR embryos and MEFs treated with Mdm2

inhibitor Nutlin-3a combined with doxorubicin also

supports this hypothesis. We, therefore, assume that

the combination of these factors in Mdm2-deficient

embryos suffices to rescue the transcriptional apop-

tosis defect of p53RR cells.

Furthermore, p53 possesses transcription-

independent cytotoxic activity [47]. Several studies

have shown that p53 drives mitochondrial apoptosis
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via direct interaction with Bcl2 family proteins: it

inhibits anti-apoptotic members (Bcl2, BclxL, Mcl1)

and activates pro-apoptotic Bak and Bax, leading to

mitochondrial outer membrane permeabilization

[48–50]. Interestingly, it has been reported that the

Mdm2 inhibitor Nutlin-3a can enhance the non-

transcriptional pro-apoptotic functions of p53 and

treatment of chronic lymphocytic leukemia cells

with nutlin induces a more robust non-

transcriptional than transcription-dependent apopto-

tic response [51,52]. Thus, activation of non-

transcriptional apoptosis by targeting Mdm2 may

contribute to and support the lethal activity of p53

mutants with impaired transcriptional functions.

Whereas hotspot mutations that severely affect the

DNA-interaction interface or global structure of p53

were shown to reduce both transcriptional and non-

transcriptional apoptosis [53], non-hotspot mutants

may retain some of these functions. In support of this,

the Trp53R178E (p53EE) cooperativity mutant is cap-

able of inducing mitochondrial apoptosis in the

absence of target gene activation [17]. It is therefore

conceivable also for p53RR that residual non-

transcriptional cell death activities further contribute

to the apoptosis observed inMdm2Δ7−9/Δ7−9;Trp53RR/

RR embryos and E1A MEFs treated with nutlin and

doxorubicin. In line with this hypothesis we detected

p53RR in mitochondrial fractions (Figure 5(e)).

It has been shown for wild-type p53 that the

amount and dynamics of p53 protein accumulation

determine the shape and outcome of the stress

response [43–45,54,55]. Intriguingly, our results

identify the well-established apoptosis deficiency of

cooperativity mutants as a relative, context-

dependent defect that, in principle, can be overcome

by interventions which increase the level and dura-

tion of mutant p53 expression or lower the cell-

intrinsic apoptosis threshold. It is tempting to spec-

ulate that the residual transcriptional activities

described for numerous other p53 mutants could

be boosted therapeutically, for example with Mdm2

inhibitors, to drive pro-apoptotic target gene expres-

sion beyond the apoptosis threshold. Such efforts

might be supported with compounds such as BH3

mimetics which lower the apoptosis threshold. As

many cancer-associated p53 mutants, even those

with residual transcriptional activity, are highly

accumulated in tumor cells, it might be possible to

identify proper stimuli to limit the apoptotic

response to cancer cells while sparing normal cells.
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Residual apoptotic activity of a tumorigenic p53

mutant improves cancer therapy responses
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Abstract

Engineered p53 mutant mice are valuable tools for delineating p53

functions in tumor suppression and cancer therapy. Here, we have

introduced the R178E mutation into the Trp53 gene of mice to

specifically ablate the cooperative nature of p53 DNA binding.

Trp53R178E mice show no detectable target gene regulation and, at

first sight, are largely indistinguishable from Trp53�/� mice.

Surprisingly, stabilization of p53R178E inMdm2
�/� mice nevertheless

triggers extensive apoptosis, indicative of residual wild-type activi-

ties. Although this apoptotic activity suffices to trigger lethality of

Trp53R178E;Mdm2
�/� embryos, it proves insufficient for suppression

of spontaneous and oncogene-driven tumorigenesis. Trp53R178E

mice develop tumors indistinguishably from Trp53�/� mice and

tumors retain and even stabilize the p53R178E protein, further

attesting to the lack of significant tumor suppressor activity.

However, Trp53R178E tumors exhibit remarkably better chemother-

apy responses than Trp53�/� ones, resulting in enhanced eradica-

tion of p53-mutated tumor cells. Together, this provides genetic

proof-of-principle evidence that a p53 mutant can be highly

tumorigenic and yet retain apoptotic activity which provides a

survival benefit in the context of cancer therapy.
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Introduction

The TP53 gene, encoding the tumor-suppressive transcription factor

p53, is mutated in about half of all human cancers. The presence of

TP53 mutations correlates in many cancer types with enhanced

metastasis and aggressiveness, reduced responses to chemothera-

peutic drugs, and, thus, a poor prognosis (Robles et al, 2016; Sabap-

athy & Lane, 2018). More than 85% of all amino acid positions were

found to be mutated in cancer patients, generating a “rainbow” of

> 2,000 distinct missense variants (Sabapathy & Lane, 2018). Muta-

tions cluster in the central DNA binding domain (DBD), suggesting

that tumorigenesis selects against p530s DNA binding function

(Muller & Vousden, 2014; Stiewe & Haran, 2018). In support of this,

mutant frequency was found to directly correlate with loss of trans-

activation function (Kato et al, 2003). However, TP53 mutations

show a remarkable preference for missense mutations, although

DNA binding can be disrupted equally well by nonsense or frame-

shift mutations. Furthermore, missense mutants are unstable in

normal unstressed cells, but become constitutively stabilized in

tumors by Hsp90 which protects mutant p53 from degradation by

Mdm2 and CHIP (Terzian et al, 2008; Alexandrova et al, 2015). The

preferential selection of missense mutants together with their exces-

sive stabilization therefore points at additional mechanisms that

promote tumor development beyond a mere loss of DNA binding

activity: Missense mutants exhibit dominant-negative effects on

remaining wild-type p53 and display neomorphic properties that—

like an oncogene—actively drive tumor development to a metastatic

and drug-resistant state (Freed-Pastor & Prives, 2012; Muller &

Vousden, 2014; Kim & Lozano, 2018; Stiewe & Haran, 2018).

Missense mutations therefore enhance tumor development and

progression in three ways: the loss of wild-type-like DNA binding

activity (loss of function, LOF), dominant-negative effects on wild-

type p53, and the gain of new tumor-promoting oncogenic proper-

ties (gain of function, GOF) (Stiewe & Haran, 2018).

p53 missense mutants are broadly classified as either “struc-

tural” or “DNA contact” mutants (Bullock & Fersht, 2001). Struc-

tural mutants destabilize the inherently low stability of the DBD

resulting in its denaturation at body temperature and therefore

likely affect also those non-transcriptional functions which are

mediated by the DBD through, for instance, protein–protein

interactions. In contrast, DNA contact mutants affect single
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DNA-interacting residues and retain an intact native fold (Bullock

& Fersht, 2001). We and others have previously described a new

class of non-structural mutations affecting the DBD surface resi-

dues E180 and R181 which form a reciprocal salt bridge between

two adjacent p53 subunits in the tetrameric DNA-bound complex

(Klein et al, 2001; Kitayner et al, 2010). This salt bridge is essen-

tial for p53 to bind DNA in a cooperative manner so that muta-

tions at these sites are referred to as cooperativity mutations

(Dehner et al, 2005; Schlereth et al, 2010a). Despite being no

mutational hot-spots, cooperativity mutations at residues E180 and

R181 are estimated to account for 34,000 cancer cases per year

(Leroy et al, 2014). Importantly, distinct cooperativity mutations

reduce p53 DNA binding to different extents without changing the

overall DBD structure determined by NMR spectroscopy (Dehner

et al, 2005). Of all mutations of the double salt bridge, the R181E

mutant disrupts formation of the intermolecular salt bridge most

effectively (Schlereth et al, 2010a). Although R181E retains a

native fold, it is entirely DNA binding deficient as assessed by

electrophoretic mobility shift assays and genome-wide chromatin

immunoprecipitation analysis (Dehner et al, 2005; Schlereth et al,

2010a, 2013). In R181E, the double salt bridge residues 180 and

181 are both glutamic acid (E), so that we refer to this mutant in

short as “EE”.

Mutations engineered into the mouse Trp53 gene locus are valu-

able tools to delineate in vivo tumor suppressor functions in tumori-

genesis and cancer therapy (Bieging et al, 2014; Mello & Attardi,

2018). Besides mutations derived from cancer patients, especially

non-naturally occurring mutations of post-translational modification

sites (Sluss et al, 2004; Slee et al, 2010; Li et al, 2012) or functional

domains (Toledo et al, 2006; Brady et al, 2011; Hamard et al, 2013;

Simeonova et al, 2013) have yielded substantial mechanistic insight

into the pathways required for tumor suppression. To explore the

relevance of DNA binding cooperativity for p530s anti-tumor activi-

ties, we therefore generated the “EE” mouse carrying the human

R181E-equivalent R178E mutation at the endogenous Trp53 gene

locus. Cistrome and transcriptome analysis confirms the EE mutant

as DNA binding deficient in vivo. Phenotype analysis demonstrates

a knock-out-like appearance characterized by undetectable p53

target gene regulation and widespread, early-onset tumorigenesis,

indicating that DNA binding cooperativity is essential for DNA bind-

ing and tumor suppression in vivo. Surprisingly, the EE mutation—

different from the p53-knock-out—does not rescue the embryonic

lethality of the Mdm2 knock-out and triggers massive apoptotic cell

death providing support for residual cytotoxic activities upon consti-

tutive stabilization. An essential role of caspases, localization of EE

to the mitochondria, and sensitization to mitochondrial outer

membrane permeabilization point toward the intrinsic apoptosis

pathway as the cause of cell death. Importantly, apoptosis was also

triggered in vitro and in vivo by DNA-damaging chemotherapy of

tumor cells expressing constitutively or pharmacologically stabilized

EE. This translated into improved survival under chemotherapy.

Similar results were obtained with the human R181L cooperativity

mutant, which has been recurrently identified in cancer patients.

Together, these findings highlight that mutant p53, in principle, can

retain residual apoptotic activities that are insufficient to prevent

tumorigenesis and not efficiently counter-selected during tumor

evolution. Stabilization of such a p53 mutant in combination with

chemotherapy is capable to trigger mutant p53-mediated

cytotoxicity resulting in improved anti-cancer responses and

increased survival.

Results

p53EE is deficient for DNA binding and target gene activation

We previously showed that the DNA binding cooperativity mutant

p53R181E (EE) fails to bind p53 response elements in vitro and when

exogenously expressed in p53-null cells (Schlereth et al, 2010a,

2013). To address how ablation of DNA binding cooperativity

affects p53 functions in vivo, we generated a conditional knock-in

mouse, carrying the R178E (EE) mutation in exon 5 of the endoge-

nous mouse Trp53 gene locus (Fig EV1A–D). DNA binding defi-

ciency of the EE mutation in the context of the mouse p53 protein

was confirmed by electrophoretic mobility shift assays using nuclear

extracts of homozygous p53EE/EE mouse embryonic fibroblasts

(MEFs) and a high-affinity, consensus-like p53 response element

(Fig EV1E). Next, DNA binding was assessed genome-wide by

sequencing chromatin immunoprecipitated with a p53 antibody

from MEFs under untreated conditions and following p53 stabiliza-

tion with the Mdm2 inhibitor Nutlin-3a (Nutlin) (ChIP-seq, Fig 1A).

We identified a total of 468 p53-specific peaks in Nutlin-treated

p53+/+ MEFs (Figs 1A and EV1F). Validating the quality of the

ChIP-seq, these peaks were strongly enriched for the p53 consensus

motif at the peak center and significantly annotated with multiple

Molecular Signatures Database (MSigDB) gene sets related to p53

function (Fig 1B and G). Only 3 peaks were identified in Nutlin-

treated p53EE/EE MEFs that were, however, also called in p53�/�

MEFs and therefore considered non-specific (Fig EV1F). Thus, the

p53 binding pattern observed in p53EE/EE MEFs was indistinguish-

able from p53�/� MEFs, irrespective of Nutlin treatment, and there-

fore validated the p53EE mutant expressed from the endogenous

Trp53 gene locus to be DNA binding deficient in cells.

When global gene expression was profiled by RNA-seq, Nutlin

exerted a significantly stronger effect on global gene expression in

p53+/+ versus either p53EE/EE or p53�/� MEFs, while Nutlin effects

on p53EE/EE and p53�/� cells showed no significant difference

(Fig EV1H). Furthermore, we observed in p53+/+ but not in p53EE/EE

or p53-null MEFs a strong Nutlin-inducible expression of a p53

signature including both bona fide p53 pathway genes (MSigDB

HALLMARKS_P53_PATHWAY) and non-canonical targets previously iden-

tified to be critical mediators of tumor suppression (Figs 1C and

EV1I) (Brady et al, 2011). Gene set enrichment analysis (GSEA)

showed a highly significant enrichment of a p53 target gene signa-

ture (MSigDB P53_DOWNSTREAM_PATHWAY) in p53+/+ cells compared

to either p53EE/EE or p53�/� MEFs, but no enrichment in p53EE/EE

versus p53�/� MEFs (Fig 1D). The same was observed for multiple

other p53-related gene sets (Fig 1D). The lack of p53 target gene

activation in p53EE/EE MEFs was confirmed also under conditions of

DNA damage induced with doxorubicin (Fig 1F). Western blots

revealed increased p53 expression in p53EE/EE versus p53+/+ MEFs,

which was further augmented by Nutlin or doxorubicin—yet in the

absence of detectable expression of the p53 targets p21 and Mdm2

(Fig 1G and H). We conclude from these data that the murine

p53EE mutant lacks detectable sequence-specific DNA binding and

p53 target gene activation.
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p53EE fails to induce apoptosis, cell cycle arrest, and senescence

In response to various types of stress, wild-type p53 elicits cell cycle

arrest and senescence mediated by transcriptional activation of

target genes, such as Cdkn1a/p21. Consistent with the inability of

p53EE to induce target genes, p53EE/EE and p53-null MEFs compara-

bly failed to undergo cell cycle arrest in response to doxorubicin-

triggered DNA damage (Fig 2A) or to enter senescence upon

enforced expression of oncogenic Ras (Fig EV2A) or in vitro passag-

ing (Figs 2B and EV2B).

Besides cell cycle arrest, p53 is capable of inducing apoptotic cell

death upon severe DNA damage. While immortalization with adenovi-

ral E1A.12S strongly sensitized p53+/+ MEFs to apoptosis, E1A-expres-

sing p53EE/EE and p53-null MEFs remained refractory to apoptosis

induction by genotoxic damage or Nutlin (Fig 2C). Likewise, p53EE/EE

thymocytes were as resistant as p53-null cells to apoptosis triggered by

ionizing radiation, despite retaining the ability to undergo p53-indepen-

dent apoptosis thereby excluding a general failure of the apoptosis

machinery (Fig 2D). The apoptosis defect corresponded with a

deficiency in transactivating not only Cdkn1a/p21 but also the key

pro-apoptotic target genes Pmaip1/Noxa and Bbc3/Puma (Fig 2E).

Of note, we have previously reported a similar but more selective

apoptosis defect in p53RR mice carrying the E177R (RR) cooperativ-

ity mutation (Fig EV2C) (Timofeev et al, 2013). p53RR forms a

p53WT-like salt bridge with p53EE which enables formation of

stably DNA-bound and transcriptionally active p53EE/p53RR

heterotetramers (Fig EV2C) (Dehner et al, 2005; Schlereth et al,

2010a, 2013). We therefore crossed p53EE/EE mice to p53RR/RR mice

and obtained compound p53EE/RR animals that launched an apop-

totic DNA damage response like p53+/+ animals in thymocytes

ex vivo (Fig EV2D) and upon whole-body irradiation in vivo

(Fig EV2E). Rescue of the apoptosis deficiency of p53EE/EE mice by

the equally apoptosis-defective p53RR mutant proves that the p53EE

loss-of-function phenotype is directly linked to the inability to form

the salt bridge responsible for cooperative DNA binding and in turn

further excludes global DBD misfolding or secondary local structural

alterations at the DNA binding surface as an underlying cause.

Like p53WT and the hot-spot mutant p53R172H (Terzian et al,

2008), p53EE was undetectable in vivo by immunostaining in all

tissues analyzed, but rapidly stabilized in response to whole-body

ionizing radiation (Fig EV2F). This suggests that the elevated p53EE

protein level observed in MEF cultures (Fig 1G and H) reflects a

stabilization in response to unphysiological culture stress. p53 stabi-

lization upon whole-body irradiation triggered waves of cell cycle

inhibition and apoptosis in intestinal crypts and other radiosensitive

organs of p53+/+ animals (Figs 2F–I and EV2G and H). None of

these effects were recorded in p53EE/EE or p53-null mice (Figs 2F–I

and EV2G and H), indicating a complete defect of p53EE regarding

classical p53 effector functions in vivo.

Constitutive p53EE stabilization triggers

ROS-dependent senescence

When passaging p53EE/EE MEFs for longer time periods, we noted that

—unlike p53�/� MEFs—the proliferation rate of p53EE/EE MEFs even-

tually declined and the cells started to express the senescence marker

SA-b-galactosidase (Fig EV3A and B). This was accompanied by a

progressive increase in p53EE protein levels, but without the increased

expression in p53 target genes that was detectable in p53+/+ MEFs

(Fig EV3C and D). Spontaneous (Fig EV3C) or CRISPR-enforced

(Fig EV3E) deletion of p53EE caused senescence bypass resulting in

immortalization. Senescent p53EE/EE MEFs exhibited strongly elevated

levels of mitochondrial ROS (Fig EV3F). Oxygen reduction from ambi-

ent to physiological levels promoted immortalization (Fig EV3G and

H), implying ROS as the trigger of senescence in response to p53EE

accumulation. However, there was no evidence for a p53WT-like inhi-

bition of aerobic glycolysis (Warburg effect) and shift toward oxidative

phosphorylation by p53EE which could explain an increased ROS

production (Fig EV3I). Instead, we observed a somewhat reduced

oxidative ATP production under basal conditions and significantly

impaired spare respiratory capacity upon mitochondrial uncoupling,

suggesting an inhibitory effect of p53EE on mitochondrial functions

(Fig EV3I). In line, the mitochondrial DNA content of p53EE/EE MEFs

was significantly decreased, especially at late passages (Fig EV3J).

A common regulator of ROS defense, oxidative phosphorylation,

and mitochondrial biogenesis is the transcription factor Nrf2 (nu-

clear respiratory factor 2) (Dinkova-Kostova & Abramov, 2015).

Basal and ROS-triggered expression of anti-oxidative Nrf2 target

genes was diminished in p53EE/EE MEFs (Fig EV3K and L), strongly

suggesting that p53EE inhibits Nrf2 activity similar as other p53

mutants (Walerych et al, 2016; Liu et al, 2017; Merkel et al, 2017).

We therefore postulate that the Nrf2-inhibitory activity of p53EE

sensitizes to ROS-induced senescence.

p53EE is unable to rescue the lethality of Mdm2-null mice

In light of the senescence induced by progressive accumulation of

p53 upon long-term cultivation (Fig EV3), we further explored

◀
Figure 1. p53EE is deficient for DNA binding and target gene activation.

A p53 ChIP-seq in MEFs of the indicated genotype treated with or without 10 lM Nutlin-3a (Nutlin) for 16 h. Shown are 2 kb regions surrounding the summit of the

468 p53 binding peaks called in Nutlin-treated p53+/+, but not p53�/� or p53EE/EE MEFs. For p53EE/EE MEFs, three independent replicates are shown.

B De novo motif search using MEME-Chip was performed on the 468 p53 binding peaks (as in A). The best hit motif is reported with corresponding E-value and logo

(upper part). Graphs depict a CentriMo enrichment analysis for the best MEME motif (middle) and for known transcription factor binding sites (bottom). The top

two hits are shown with corresponding E-values.

C RNA-seq was performed with MEFs of the indicated genotype untreated or treated with 10 lM Nutlin for 16 h. Shown are all Nutlin-regulated genes from the

MSigDB gene set HALLMARKS_P53_PATHWAY with a mean log2FC≥1 in p53+/+ cells. Shown are the z-transformed RNA expression values (FPKM).

D, E RNA-seq data were subjected to gene set enrichment analysis (GSEA). Shown are enrichment plots for the indicated set of p53 downstream genes in pairwise

comparisons of Nutlin-treated MEFs with the indicated p53 genotypes. (E) Summary of GSEA results for p53-related gene sets. NES, normalized enrichment score;

nom P, nominal P value.

F Reverse transcription–quantitative PCR (RT–qPCR) analysis of p53 target genes in MEFs treated for 24 h with 1 lg/ml doxorubicin (Doxo). Shown are expression

values normalized to b-actin as mean � SD (n = 6). P values were calculated by 2-way ANOVA with Sidak’s multiple comparisons test.

G, H Western blots of protein lysates prepared from MEFs treated for 24 h with (G) 10 lM Nutlin or (H) 0.4 lg/ml Doxo.
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whether p53EE exerts anti-proliferative or cytotoxic activities when

constitutively stabilized by Mdm2 knock-out. Genetic ablation of

Mdm2 in mice causes early embryonic lethality due to massive

apoptosis initiated as early as E3.5, whereas simultaneous disruption

of the Trp53 gene rescues the lethal phenotype (Jones et al, 1995;

Montes de Oca Luna et al, 1995; Chavez-Reyes et al, 2003).
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Embryonic lethality of Mdm2 knock-out animals is also rescued by

p53 missense mutations such as Trp53R246S and Trp53R172H that

mimic human hot-spot mutants p53R249S and p53R175H, respectively

(Lee et al, 2012). Moreover, the apoptosis-deficient mutant p53R172P

also rescued Mdm2�/� embryos, but the newborn mice showed

severe developmental defects and died soon due to ROS-dependent

hematopoietic failure (Abbas et al, 2010). Surprisingly, we observed

a clear deviation from the expected Mendelian distribution in inter-

crosses of double heterozygous Trp53+/EE;Mdm2+/� animals.

Notably, no Trp53EE/EE;Mdm2�/� pups were born alive, indicating

that those embryos died in utero (Fig 3A). In contrast, upon breeding

Trp53+/�;Mdm2+/� mice as controls, viable double homozygous

offspring was obtained as expected (Fig 3B). Trp53EE/EE;Mdm2�/�

embryos displayed severe developmental defects starting at days

E9.5-10.5 (Fig 3C and D), and no living Trp53EE/EE;Mdm2�/�

embryos were recovered after day E12.5 (Fig 3D). Immunohisto-

chemical analysis of tissue sections revealed strong accumulation of

p53 protein in Trp53EE/EE;Mdm2�/� embryos compared to Trp53EE/EE;

Mdm2+/� controls accompanied by high levels of apoptosis

(Fig 3E). We conclude that Trp53EE/EE;Mdm2�/� embryos survive

approximately 1 week longer than Trp53+/+;Mdm2�/� embryos

which further underlines the functional defect of p53EE. Importantly,

the failure of p53EE to completely rescue Mdm2-deficient embryos

from lethality distinguishes p53EE from the p53 knock-out and

reveals residual cytotoxic activities of p53EE with severe biological

consequences in vivo.

However, the lethality of Trp53EE/EE;Mdm2�/� embryos

contrasted with the lack of any detectable cytotoxic activity of the

Mdm2 inhibitor Nutlin in p53EE/EE MEFs (Fig 2C). Of note, Nutlin

specifically disrupts the interaction between p53 and Mdm2 leading

to p53 stabilization, but does not inhibit many other Mdm2 func-

tions, such as its p53-independent metabolic role in ROS detoxifi-

cation (Riscal et al, 2016). As the p53EE-mediated senescence in late

passage cultures was linked to both p53 accumulation and ROS

(Fig EV3), we hypothesize that the lethality of Trp53EE/EE;Mdm2�/�

embryos also results from the combination of p53EE stabilization

and increased ROS, which are both consequences of Mdm2 ablation.

Pharmacological inhibition of Mdm2 unleashes cytotoxic

activities of p53EE

This prompted us to investigate whether accumulation of p53EE

caused by loss of Mdm2 sensitizes cells to doxorubicin whose cyto-

toxicity involves ROS- and DNA damage-dependent mechanisms

(Trachootham et al, 2009; Huang et al, 2011). Because of the

embryonic lethality, we could not establish Trp53EE/EE;Mdm2�/�

MEFs and used Trp53�/�;Mdm2�/� (DKO) MEFs ectopically

expressing p53EE from a tetracycline-activated promoter instead

(DKO-tetEE). As expected, in the absence of tetracycline the DKO-

tetEE MEFs were as resistant to doxorubicin as the parental DKO

cells but showed significantly elevated levels of apoptosis in

response to doxorubicin treatment following induction of p53EE

expression (Fig 4A). In compliance with the DNA binding deficiency

of p53EE, this was not accompanied by transcriptional activation of

key pro-apoptotic p53 target genes (Fig 4B).

Next, we tested whether pharmacological inhibition of Mdm2

with Nutlin has a similar effect on E1A-MEFs with endogenous

expression of p53EE. While Nutlin or doxorubicin alone had no or

minimal effects on p53EE/EE MEFs, combined treatment of p53EE/EE

cells with Nutlin and doxorubicin caused significant, p53-dependent

reduction in proliferation and survival (Fig 4C and D). Similar cyto-

toxic activity was also observed when doxorubicin was combined

with other Mdm2 inhibitors (Fig 4E), excluding toxic off-target

effects of Nutlin as an explanation. Cell death involved cleavage of

Parp and caspase-3, but upregulation of p53 target genes was not

detectable (Fig 4F and G).

The Hsp90 inhibitor ganetespib, which targets mutant p53 for

proteasomal degradation, efficiently degraded p53EE in E1A-MEFs,

highlighting a role for Hsp90 in p53EE stability (Fig 4H). p53EE

degradation itself was not associated with apoptosis, indicating that

E1A-MEFs are not dependent on p53EE. In line with the role of

Mdm2 for ganetespib-induced mutant p53 degradation (Li et al,

2011), p53EE degradation by ganetespib was prevented when

administered simultaneously with Nutlin (Fig 4H). Pre-treatment

with ganetespib, however, led to p53EE degradation and efficiently

counteracted the apoptosis induced by sequential treatment with

Nutlin plus doxorubicin, thereby validating stabilized p53EE as the

mediator (Fig 4H).

As wild-type p53 exerts direct, non-transcriptional, pro-apoptotic

effects at the mitochondria (Mihara et al, 2003; Chipuk et al, 2004;

Leu et al, 2004; Le Pen et al, 2016), we tested for mitochondrial local-

ization of p53EE (Fig 4I). Remarkably, mitochondrial fractions of

untreated p53EE/EE MEFs contained p53 at levels similarly high as

p53+/+ cells following doxorubicin treatment. The amount of mito-

chondrial p53EE increased even further under doxorubicin treatment.

The increased amount of p53EE at the mitochondria could therefore

provide a plausible explanation for the sensitivity of p53EE/EE MEFs to

apoptotic stimuli even in the absence of p53 target gene activation.

◀
Figure 2. p53EE fails to induce apoptosis, cell cycle arrest, and senescence.

A Proliferation of primary MEFs. Cells were treated o/n with 0.2 lg/ml doxorubicin (Doxo) and pulse-labeled with 32 lM 5-bromo-2-deoxyuridine (BrdU), fixed and

processed for flow cytometry analysis. n = 4.

B Long-term proliferation assay with primary MEFs of indicated genotypes. +/+ and �/�: n = 3; EE/EE: n = 6.

C MEFs were immortalized with the adenoviral oncogene E1A.12S (E1A MEF) and treated with 0.4 lg/ml Doxo for 17 h. Apoptosis (annexin V) was quantified by flow

cytometry. +/+ and �/�: n = 3; EE/EE: n = 6. Western blots show expression of E1A and b-actin as loading control.

D Primary thymocytes were irradiated ex vivo with 6 Gy or treated with 1 lM dexamethasone as a control for p53-independent apoptosis. Cell survival relative to

untreated samples was analyzed using CellTiter-Glo assay (Promega). n = 11 for each time point and genotype.

E mRNA expression analysis (RT–qPCR) of p53 target genes in thymocytes 6 h after 6 Gy irradiation. Shown are expression values normalized to b-actin.

F–I Mice of indicated genotype were subjected to 6 Gy whole-body irradiation and pulse-labeled with 120 mg/kg BrdU 2 h before sacrifice at different time points.

Small intestines were stained for (F) apoptosis (TUNEL) and (G) proliferation (BrdU); scale bars 50 lm. Red arrowheads highlight TUNEL-positive apoptotic cells. (H,I)

Quantification for n = 3 mice/genotype (150 crypts/mouse).

Data information: All data are shown as mean � SD. P values were calculated by 2-way ANOVA with Sidak’s multiple comparisons test.
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Residual apoptotic activities of mutant p53 in human cancer cells

To test whether p53EE is also capable of inducing apoptosis in

human cancer cells, we generated a human p53-null H1299 lung

cancer cell line with stable Tet-inducible expression of the human

p53R181E (p53EE) mutant. Overexpression of p53EE rendered H1299

cells, which express only barely detectable levels of Mdm2, sensitive

to doxorubicin, and addition of Nutlin further augmented this effect

(Fig 5A). Cell death was inhibited by Q-VD-OPh, a blocker of

caspase-dependent apoptosis, but not by the ferroptosis inhibitor

ferrostatin as a control (Fig 5B). Annexin V staining revealed a p53-

dependent increase in apoptotic cells under combined doxorubicin

and Nutlin treatment, confirming the observed cell death as apop-

totic (Fig 5C). p53EE-mediated apoptosis in H1299 cells occurred in
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Figure 3. Lethality of p53EE embryos in the absence of Mdm2.

A Observed and expected genotype distribution of newborn offspring from mating Mdm2
+/�Trp53EE/+ mice (total number of pups n = 185; contingency test P = 0.0029).

B Observed and expected genotype distribution of newborn offspring from mating Mdm2
+/�Trp53+/� mice (total number of pups n = 435; contingency test P = 0.912).

C Representative picture of an E9.5 Mdm2
�/�Trp53EE/EE embryo (right) displays characteristic phenotypic abnormalities compared to an Mdm2

+/�;Trp53EE/EE embryo (left).

D Phenotype analysis of Trp53EE/EE embryos with different Mdm2 genotypes reveals developmental defects in Mdm2
�/�Trp53EE/EE embryos starting from E9.5.

E IHC for p53 and cleaved caspase-3 shows strong accumulation of p53EE protein and massive apoptosis in Mdm2
�/�Trp53EE/EE compared to Mdm2

+/�;Trp53EE/EE

control embryos.
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the absence of detectable p53 target gene activation (Fig 5D). Prox-

imity ligation experiments demonstrated a specific co-localization of

p53EE with the outer mitochondrial membrane protein Tom20 in

untreated and, even more, in doxorubicin-treated cells (Fig 5E and

F). p53EE co-localization was also observed with the Bcl-2 family

members Bcl-xL, Bcl-2, and Bak (Fig 5F), which were previously

shown to specifically interact with wild-type but not mutant p53

(Mihara et al, 2003; Leu et al, 2004; Pietsch et al, 2008). Mitochon-

drial activities of wild-type p53 “prime” mitochondria to mitochon-

drial depolarization by BH3 peptides (Montero et al, 2015; Le Pen

et al, 2016). In support of a direct mitochondrial apoptotic priming

activity, p53EE expression sensitized H1299 cells to mitochondrial

depolarization by BID BH3 peptides (Fig 5G).

The apoptotic activity of p53EE raised the question of whether

p53 mutants in cancer patients can also retain apoptotic activity.

Although p53EE (R181E) is not found in cancer patients, various

other cooperativity mutations have been recurrently identified as

somatic cancer mutations and account for an estimated 34,000 new

cancer cases each year (Leroy et al, 2014). R181 mutations were

also reported as germline alterations associated with a family

history of cancer, identifying them as bona fide driver mutations

(Frebourg et al, 1992; Leroy et al, 2014). In particular, R181L was

among the first p53 cancer mutants reported to be specifically defi-

cient for binding and activating pro-apoptotic target genes while

retaining regulation of other genes such as CDKN1A and MDM2

(Ludwig et al, 1996; Schlereth et al, 2010a). Consistently, R181L

failed to induce apoptosis when overexpressed irrespective of Nutlin

treatment (Fig 5H). However, R181L—like p53EE—effectively trig-

gered apoptosis when combined with doxorubicin and Nutlin

(Fig 5H). As with p53EE, apoptosis occurred without activation of

the key pro-apoptotic p53 target gene Puma (Fig 5I). In contrast, the

R175P mutant, which also lacks the ability to transactivate pro-

apoptotic target genes but belongs to the class of structural muta-

tions (Rowan et al, 1996; Liu et al, 2004), failed to trigger apoptosis

in the presence of doxorubicin and Nutlin (Fig 5H). We conclude

that, in principle, also cancer mutants can trigger apoptosis when

stimulated sufficiently with Nutlin and doxorubicin in a manner

depending on the identity of the individual mutant.

p53EE fails to suppress tumor development

To investigate the role of DNA binding cooperativity for tumor

suppression, we aged cohorts of EE mutant mice. Surprisingly,

despite evidence for residual apoptotic activity of p53EE (Figs 3–5),

homozygous p53EE/EE and hemizygous p53EE/� mice developed

tumors very rapidly resulting in a short median survival of 150 and

128 days, respectively (Fig 6A). This was not significantly different

from p53�/� animals. Heterozygous p53EE/+ showed an intermedi-

ate median survival of 519 days that was not significantly altered as

compared to p53+/� mice (Fig 6A). The lack of a difference in

survival between p53EE/+ and p53+/� mice, despite evidence for a

dominant-negative activity of p53EE in overexpression studies (Sch-

lereth et al, 2010a), is reminiscent of mice heterozygous for the hot-

spot mutants R172H and R270H and consistent with the hypothesis

that dominant-negative effects might require prior mutant p53 stabi-

lization (Lang et al, 2004; Olive et al, 2004).

As previously reported for p53�/� animals, the tumor spectra of

p53EE/EE and hemizygous p53EE/� were dominated by thymic

lymphoma (Fig 6B; Appendix Table S1). Additional tumor types

were B-cell lymphomas, sarcomas, and testicular tumors

(Appendix Table S1). The tumors of p53EE/+ were similar to those

of p53+/� mice and mostly non-thymic lymphomas, sarcomas, and

several types of carcinoma (Fig 6B, Appendix Table S2).

Unlike what has been reported for the p53 hot-spot mutants

R172H or R270H, we did not observe an increase in metastatic

tumors in p53EE/EE and p53EE/� compared to p53�/� and p53+/�

mice (Appendix Table S1), suggesting a lack of GOF properties of

the EE mutant. For hot-spot mutants, constitutive stabilization was

identified as a prerequisite for GOF effects (Terzian et al, 2008).

Similar as described for tumors in R172H-mutant mice (Terzian

et al, 2008), we noted varying levels of p53EE expression in sponta-

neous tumors arising in p53EE/EE or p53EE/� mice, with a high frac-

tion (67%) of p53EE/EE tumors exhibiting p53EE stabilization

comparable to p53-mutated human cancer samples (Figs 6C and

EV4 and EV5). This indicates that the absence of a pro-metastatic

GOF cannot be explained by a lack of constitutive p53EE stabiliza-

tion and suggests that p53EE, similar to p53 mutants like R246S or

◀
Figure 4. Pharmacological inhibition of Mdm2 unleashes cytotoxic activities of p53EE.

A Mdm2
�/�Trp53�/� (double knock-out, DKO) MEFs were transduced with pInducer20-p53EE lentivirus to enable tetracycline (Tet)-inducible expression of mouse

p53EE. Induction of p53EE sensitized cells to apoptosis induced by 24-h treatment with 1 lg/ml doxorubicin (Doxo) as detected by flow cytometry for annexin V.

B mRNA expression of p53 target genes was measured in cells from (A) relative to b-actin by RT–qPCR following treatment with Tet � 1 lg/ml Doxo. Expression of

the pro-apoptotic p53 target genes Bbc3 (Puma) and Bax is not significantly induced. n = 6.

C Proliferation of MEFs with indicated genotypes was analyzed by live-cell imaging in the presence of 10 lM Nutlin-3a (Nutlin) and/or 0.05 lg/ml doxorubicin

(Doxo). Shown is the median confluence � SEM (n = 12).

D, E Cell viability assays for MEFs with indicated genotypes treated with Mdm2 inhibitors � 0.4 lg/ml Doxo. n = 3.

F Western blot of E1A-MEFs with indicated genotypes treated with 10 lM Nutlin � 0.4 lg/ml Doxo for 18 h reveals induction of apoptosis (cCasp-3, cleaved

caspase-3; cParp, cleaved Parp) in double-treated p53EE/EE MEFs in the absence of p53 target gene (p21, Mdm2) activation. *10 h 0.4 lg/ml Doxo; **10 h 0.2 lg/ml

Doxo.

G mRNA expression of p53 target genes was measured in E1A MEFs of indicated genotype relative to b-actin by RT–qPCR following combined treatment with 10 lM

Nutlin and 1 lg/ml Doxo. n = 12.

H Western blot of p53EE/EE E1A-MEFs with indicated genotypes treated for 18 h with 10 lM Nutlin, 0.4 lg/ml Doxo, and 30-100-500 nM ganetespib as indicated.

Comb, combined treatment with 3 drugs for 18 h. Pre, pre-treatment with ganetespib for 24 h followed by combined treatment with Nutlin and doxorubicin for

18 h.

I Western blot of cellular fractions from unstressed and Doxo-treated MEFs of indicated genotype identifies p53EE protein in the mitochondrial fraction. PCNA and

Tom20/Bak are shown as nuclear and mitochondrial marker proteins.

Data information: All data are shown as mean � SD unless indicated otherwise. Significance was tested between the two cell lines or treatments. P values were

calculated by 2-way ANOVA with Sidak’s multiple comparisons test.
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G245S (Lee et al, 2012; Hanel et al, 2013), lacks the pro-metastatic

GOF activity described for R172H and R270H (Olive et al, 2004).

To explore whether p53EE can counteract oncogene-

induced tumorigenesis in a genetically more defined setting, we

crossed p53EE animals with El-Myc mice which serve as a

well-characterized model of Burkitt-like B-cell lymphoma (Adams

et al, 1985). Loss of p53 is known to strongly accelerate lymphoma

development in this model (Schmitt et al, 1999). We observed that

El-Myc;p53EE/+ mice survived markedly shorter than El-Myc;

p53+/+ but not significantly longer than El-Myc;p53+/� mice
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(Fig 6D). Likewise, in a model of acute myeloid leukemia induced

by co-expression of the AML1/ETO9a (AE9) fusion oncoprotein and

oncogenic NrasG12D (Nras) (Zuber et al, 2009), we observed fast

malignant transformation of p53EE/EE hematopoietic stem cells

(HSCs) and disease progression. Recipient mice transplanted with

AE9+Nras-transduced p53EE/EE or p53�/� HSCs succumbed to AML

with indistinguishably short latency and significantly earlier than

mice transplanted with AE9+Nras-transduced p53+/+ HSCs

(Fig 6E). Notably, distinct from heterogenous p53EE stabilization in

spontaneous tumors (Figs 6C and EV5), p53EE was highly accumu-

lated in all lymphomas from El-Myc;p53EE/+ mice and in all

AE9+Nras;p53EE/EE AML samples (Fig 6F and G). As stabilization of

mutant p53 involves protection from Mdm2-mediated degradation

(Terzian et al, 2008), the uniform p53EE accumulation might be

explained by the exceptionally strong oncogenic signaling through

enforced expression of Myc and mutant Nras which inhibits Mdm2

via p19Arf (Zindy et al, 1998).

Taken together, these data show that p53EE is inadequate to

counteract spontaneous and oncogene-induced tumorigenesis in

mice, proving DNA binding cooperativity to be absolutely essential

for tumor suppression by p53 even in the presence of residual apop-

totic functions.

p53EE confers survival benefit under chemotherapy

The lack of detectable tumor suppressor activity implies that the

residual apoptotic activities are not effectively counter-selected

during tumorigenesis and can be retained by cancer mutants—the

R181L cooperativity mutant being one example (Fig 5H). In fact,

p53EE was even constitutively stabilized in various tumor types

arising in p53EE/EE mice (Fig 6), indicating escape from Mdm2-

mediated degradation. We therefore explored whether this accumu-

lation of p53EE suffices to sensitize tumor cells to cytotoxic stress

and provide a therapeutic window for tumor treatment. First, we

investigated whether p53EE influences the response of El-Myc

lymphoma cells to mafosfamide (MAF), a cyclophosphamide (CTX)

analogue active in vitro. We established lymphoma cell lines from

El-Myc mice with different p53 genotypes (p53+/+, p53+/�, and

p53+/EE). Lymphomas from p53+/EE mice (and p53+/� mice)

showed the expected loss of the wild-type allele and strongly

expressed p53EE as described above (Fig 6F). In comparison with

the rapid and strong response of p53+/+ lymphoma cells to MAF

treatment, induction of apoptosis started in p53EE cells only after

6 h and gradually increased up to significantly elevated levels of

60–70% at 24 h, whereas p53-null lymphoma cells showed no

response (Fig 7A). To test whether the increased sensitivity of

p53EE lymphoma cells is directly p53EE-mediated, the lymphoma

cells were transduced with a Tet-inducible, red fluorescence protein

(RFP)-coupled shRNA to knockdown p53EE expression. RFP-posi-

tive, i.e., p53 shRNA-expressing, lymphoma cells became signifi-

cantly enriched under MAF treatment in a dose-dependent manner,

identifying the enhanced cytotoxic response of p53EE lymphoma

cells as directly p53EE-mediated (Fig 7B). In support of a non-tran-

scriptional mechanism, the cytotoxic response was not preceded by

an upregulation of p53 target genes (Fig 7C).

Next, we transplanted primary lymphomas into syngeneic recipi-

ents. After lymphomas became palpable in the peripheral lymph

nodes, each cohort was divided into two groups—one was subjected

to a single injection of 300 mg/kg CTX, and the second was left

untreated (Fig 7D). Independent of p53 genotype, the disease

progressed rapidly with similar kinetics in untreated control mice,

whereas all treated animals responded well to CTX therapy and

went into clinical remission. In line with previous studies (Schmitt

et al, 1999, 2002b), p53�/� lymphomas rapidly relapsed in all mice,

which resulted in a very modest median survival benefit of 19 days.

In contrast, all mice transplanted with p53+/+ lymphomas

remained in complete remission during the whole period of observa-

tion (90–180 days after treatment). Importantly, the chemotherapy

was also effective for treatment of p53EE lymphoma, provided a

median survival benefit of 30 days, and—even more compelling—

yielded a complete tumor-free remission in 36% of animals (Fig 7D

and E). To monitor the therapy response quantitatively, we

measured residual disease in the spleen with a sensitive qPCR copy

number assay for the El-Myc transgene of moribund lymphoma

mice and non-transgenic littermates as positive and negative

controls, respectively (Fig 7F). Tumor load in mice with p53+/+

lymphoma decreased by > 3 orders of magnitude within 24 h after

treatment and dropped below the detection limit by 7 days, consis-

tent with the uniform long-term clinical remission in this cohort. In

line with the delayed apoptotic response of p53EE lymphoma cells

in vitro (Fig 7A), we observed only a slight, but significant, decline

in tumor load at 24 h in p53EE compared to p53�/� lymphoma

◀
Figure 5. Residual apoptotic activities of mutant p53 in human cancer cells.

A, B Cell death measured by flow cytometry using propidium iodide exclusion in human lung adenocarcinoma H1299 cells with Tet-inducible expression of human

p53EE. Cells with overexpression of human p53EE mutant display a trend of increased cell death after treatment with 0.5 lg/ml Doxo. This effect is enhanced by

addition of Nutlin and blocked by the pan-caspase inhibitor QVDOph, but not the ferroptosis inhibitor ferrostatin-1 (Ferr) as control. (A) n = 3; (B) n = 2.

C Apoptosis analysis using annexin V staining in cells from (A). n = 3.

D mRNA expression analysis (RT–qPCR) of p53 target genes following treatment with 0.5 lg/ml Doxo � 10 lM Nutlin. KO, Tet-induced H1299-pInd cells; EE,

Tet-induced H1299-pInd-p53EE cells; WT, H460 cells. mRNA expression was normalized to b-actin; n = 3.

E Proximity ligation assay for p53 with Tom20 in indicated untreated (Mock) or Doxo-treated (0.1 lg/ml, 24 h) H1299 cells following Tet induction. Shown are

representative cells with PLA signals (red) counterstained with DAPI (blue).

F Quantification of proximity ligation assays for p53EE with Tom20, Bcl-2, Bcl-xL, and Bak in H1299 cells. Doxo treatment (0.1 lg/ml, 24 h) as indicated. Plotted is the

average number of PLA signals per cell for 10 fields of view.

G Mitochondrial membrane potential of control and p53EE-expressing H1299 cells in the absence and presence of increasing concentrations of BID BH3 peptide.

Treatment with the mitochondrial depolarizer CCCP is shown as a positive control; n = 3.

H Apoptosis measured by flow cytometry using annexin V in H1299 cells with Tet-inducible expression of the indicated human p53 mutants; n = 3.

I mRNA expression analysis (RT–qPCR) of p53 target genes normalized to b-actin; n = 3.

Data information: All data are shown as mean � SD. Significance was tested by 2-way ANOVA with Sidak’s multiple comparisons test.

Source data are available online for this figure.
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mice. By 7 days, however, tumor cells had become undetectable in

3 of 5 p53EE lymphoma mice, indicating molecular remission,

whereas p53�/� lymphoma cells remained detectable in all animals

of the p53�/� group.

To validate in a second independent model that p53EE enhances

the chemotherapy response in vivo, we transplanted syngeneic recipi-

ent mice with AE9/Nras-driven acute myeloid leukemia cells with dif-

ferent p53 genotypes and monitored disease progression by

bioluminescence imaging (Fig 7G). p53+/+ leukemia cells responded

well to a standard chemotherapy protocol with cytarabine (AraC)

combined with doxorubicin, which yielded a significant survival bene-

fit (Fig 7G and H). p53�/� leukemia rapidly killed the transplanted

animals irrespective of therapy. In striking contrast, chemotherapy

controlled progression of p53EE/EE leukemia remarkably well, which

translated into a significantly improved survival (Fig 7G and H).

Discussion

Our results obtained with the R178E cooperativity mutation in dif-

ferent mouse cancer models illustrate that a p53 mutant can be as

inefficient as a p53 knock-out allele in preventing tumor develop-

ment and yet retain residual apoptotic activity. Taken together, this

indicates that residual apoptotic p53 functions on their own are

unable to counteract tumorigenesis, are therefore not efficiently

counter-selected, and can be retained by mutant p53 during tumor

evolution. Importantly, these residual cytotoxic activities can be

triggered by chemotherapeutics to induce a survival benefit,

especially when mutant p53 is constitutively or pharmacologically

stabilized. Superior chemotherapy responses in p53-mutated versus

p53-deficient tumors challenge the current view that a p53 missense

mutation invariably signals a worse prognosis than a gene deletion.

p53WT is capable of inducing cell death through multiple path-

ways including apoptosis, necrosis, and ferroptosis. The cytotoxic

activity of p53EE is apoptotic in nature as shown by caspase cleav-

age (Figs 3E and 4F and H), phosphatidylserine externalization

(Figs 4A and 5C and H), and blockage by caspase inhibitors, but not

ferroptosis inhibitors (Fig 5B). p53WT induces apoptosis by tran-

scriptional upregulation of pro-apoptotic target genes such as

PUMA, NOXA, and BAX in combination with non-transcriptional

mechanisms mediated through protein–protein interactions with

Bcl-2 family members, which lowers the threshold for engaging the

mitochondrial apoptosis pathway (Mihara et al, 2003; Chipuk et al,

2004; Leu et al, 2004; Le Pen et al, 2016). The lack of detectable

DNA binding and target gene regulation by p53EE suggested that its

pro-apoptotic activity relies primarily on the non-transcriptional

pathway, and we demonstrate that p53EE efficiently localizes to the

mitochondria (Figs 4I and 5E and F), interacts with Bcl-2 family

members (Fig 5F), and primes cells to mitochondrial depolarization

by BH3 peptides (Fig 5G). In addition, we provide evidence that

p53EE, similar to other p53 mutants, interferes with Nrf2 transcrip-

tional activity, which is critical not only for ROS defense, but also

for the respiratory function of mitochondria, their biogenesis, and

integrity (Dinkova-Kostova & Abramov, 2015). It is therefore tempt-

ing to speculate that direct activities of p53 at the mitochondria and

indirect effects through Nrf2-inhibition synergistically prime the

mitochondria and lower the apoptotic threshold. Nevertheless, we

cannot formally exclude that p53EE under conditions of maximal

stimulation induces pro-apoptotic target genes to a degree that is

below our detection limit. As embryonic development is very sensi-

tive to deregulated p53 activity, residual transcriptional activity of

p53EE could in principle explain the Trp53EE/EE;Mdm2�/� embry-

onic lethality. And indeed, it was shown that a single hypomorphic

Trp53neo allele (Trp53neo/�) that shows ~7% activity is compatible

with Mdm2�/� embryonic development, whereas Trp53neo/neo

homozygosity, yielding ~16% activity, already triggers embryonic

lethality (Wang et al, 2011). However, deregulated p53 can cause

embryonic lethality by multiple pathways including apoptosis,

ferroptosis, or cell growth arrest (Jiang et al, 2015; Moyer et al,

2017). Whether Trp53neo/neo;Mdm2�/� embryos die by apoptosis

was not reported. In general, low p53 levels or reduced p53 DNA

binding cooperativity primarily activates homeostatic survival func-

tions, while only strongly elevated and prolonged expression levels

shift the cellular response to apoptosis (Chen et al, 1996; Vousden &

Lu, 2002; Vousden & Lane, 2007; Schlereth et al, 2013; Timofeev

et al, 2013). This is mechanistically explained by higher affinity and

torsionally more flexible p53 response elements in target genes regu-

lating, for example, cell proliferation (Murray-Zmijewski et al, 2008;

Riley et al, 2008; Schlereth et al, 2010b, 2013; Jordan et al, 2012)

and a higher target gene expression threshold for triggering apopto-

sis (Kracikova et al, 2013). If p53EE regains residual transcriptional

activity upon massive stimulation, it would be difficult to envision

why this resulted in apoptosis instead of cell cycle arrest (Figs 3–5).

Last but not least, the charge inversion associated with the arginine

to glutamic acid substitution in p53EE might affect protein–protein

interactions that are responsible for its pro-apoptotic activity.

However, the same pro-apoptotic activity is seen for the charge-

neutralizing R181L mutation (Fig 5H), excluding the negatively

charged glutamic acid residue as the underlying cause. Altogether,

we therefore favor the hypothesis that p53EE triggers apoptosis

primarily through non-transcriptional mechanisms.

From a clinical perspective, it will be interesting to investigate

which p53 mutants in cancer patients display residual apoptotic

activity, as p53EE is not a naturally occurring mutation. Since

◀
Figure 6. p53EE fails to suppress tumor development.

A Kaplan–Meier survival plots for mice with indicated genotypes, number of mice, and median survival. Right panel, analysis of survival differences using the log-rank

(Mantel–Cox) test.

B Spectra of malignant tumors found in mice with indicated genotypes (p53�/� n = 16; p53EE/� n = 24; p53EE/EE n = 37; p53+/� n = 28; p53EE/+ n = 17).

C p53 immunohistochemistry (IHC) in representative spontaneous tumors; scale bars 25 lm.

D Kaplan–Meier survival plots for El-Myc transgenic mice with different p53 genotype.

E Kaplan–Meier survival plots for wild-type recipient mice transplanted with AML1/ETO9a + NrasG12D-transduced fetal liver cells (5 donors/genotype).

F, G p53 IHC for representative samples from (D) and (E) illustrates constitutive stabilization of p53EE in cancer cells; scale bars 25 lm.

Data information: Survival differences were analyzed using the log-rank (Mantel–Cox) test. Multiple survival curves were compared by ordinary ANOVA with Tukey’s

multiple comparisons test.
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protein–protein interactions with Bcl-2 family members that account

for non-transcriptional apoptosis by p53WT (Mihara et al, 2003;

Chipuk et al, 2004; Leu et al, 2004; Le Pen et al, 2016) are disrupted

by many cancer-derived p53 mutations, such mutations are believed

to be “dual hits” which simultaneously inactivate both DNA binding-

dependent and non-transcriptional mechanisms of p53-triggered

apoptosis (Mihara et al, 2003; Tomita et al, 2006). However, this

has only been shown for a small subset of mainly hot-spot mutants

and cannot be directly extrapolated to the entire, functionally and

structurally highly diverse, spectrum of > 2,000 distinct p53 muta-

tions observed in cancer patients. The p53EE mutant provides

evidence that transcriptional and non-transcriptional apoptotic func-

tions can be genetically separated. Remarkably, the selective loss of

p53 DNA binding in the presence of intact non-transcriptional apop-

totic activity is just as efficient to promote tumorigenesis as the

complete loss of p53 (Fig 6A, D and E), suggesting that the non-tran-

scriptional activity of p53 is insufficient to prevent tumor develop-

ment on its own. Of note, this does not exclude a supportive role of

mitochondrial p53 functions for transcription-dependent apoptosis

and is compatible with the model of mitochondrial priming by p53

that sensitizes to p53-induced target genes encoding the BH3-only

proteins Puma and Noxa (Chipuk et al, 2005; Le Pen et al, 2016).

While the most common hot-spot mutants are thermodynamically

destabilized and therefore structurally denatured, many non-hot-spot

mutants retain the ability to regulate some bona fide p53 target genes

like p21 (Ludwig et al, 1996; Rowan et al, 1996; Campomenosi et al,

2001). The ability to bind p53 response elements in target promoters

implies sufficient structural stability to engage also in p53WT-like

protein–protein interactions. We therefore anticipated that non-tran-

scriptional apoptotic activities are retained primarily among non-

hot-spot mutants, especially those with only a partial loss of DNA

binding activity (Campomenosi et al, 2001). Several cooperativity

mutants that together account for an estimated 34,000 cancer cases

per year (Leroy et al, 2014) have selectively lost the ability to trans-

activate pro-apoptotic target genes (Ludwig et al, 1996; Schlereth

et al, 2010a). Here, we have examined the R181L mutant that has

been identified as both a somatic and germline mutation in cancer

patients. Consistent with previous reports that R181L has a selective

apoptosis defect (Ludwig et al, 1996; Schlereth et al, 2010a), we

failed to detect apoptosis upon R181L overexpression (Fig 5H).

However, just like with p53EE, genotoxic doxorubicin treatment

revealed substantial pro-apoptotic activity, supporting the concept

that a tumorigenic p53 mutant like R181L can retain residual apop-

totic functions and support chemotherapy responses.

Intriguingly, the R175P mutant, which resembles the R181L mutant

in its selective loss of pro-apoptotic target gene regulation (Ludwig

et al, 1996; Rowan et al, 1996; Liu et al, 2004), failed to enhance apop-

tosis under identical conditions of doxorubicin treatment (Fig 5H). A

possible explanation is that R175 is crucial for the structural integrity

of the L2-L3 loop which interacts not only with the minor groove of

DNA response elements but also with Bcl-2 family members (Cho et al,

1994; Bullock et al, 2000; Mihara et al, 2003; Tomita et al, 2006; Hagn

et al, 2010). In contrast, R181 is solvent-exposed and R181 mutations

do not affect the DBD 3D structure (Dehner et al, 2005). It is therefore

tempting to speculate that in particular, cooperativity mutants of the

H1 helix, which interfere with DNA binding but do not affect the inter-

action interface with DNA and Bcl-2 family members, have retained

non-transcriptional apoptotic activity. A more detailed systematic anal-

ysis of the more than 2,000 different cancer mutants is needed to vali-

date this hypothesis and possibly reveal further cancer mutants with a

similar phenotype.

Recent studies have revealed that tumors can be addicted to pro-

survival GOF activities of mutant p53 and respond to mutant p53

depletion with tumor regression (Alexandrova et al, 2015). Mutant

p53-destabilizing drugs, such as the Hsp90 inhibitor ganetespib, are

therefore considered a promising approach for treatment of p53-

mutated tumors, and a first clinical trial combining chemotherapy

with ganetespib for p53-mutated ovarian cancer patients has been

initiated (Alexandrova et al, 2015; Bykov et al, 2018; Sabapathy &

Lane, 2018). However, mouse models for the R246S (equivalent to

human R249S) and humanized G245S mutants have shown that p53

mutations can be highly tumorigenic without exhibiting appreciable

GOF activity (Lee et al, 2012; Hanel et al, 2013). The p53EE mutant

does not significantly decrease the latency of tumor development or

enhance the incidence of metastatic tumors compared to p53 knock-

out mice (Fig 6A; Appendix Tables S1 and S2). There was a trend

for increased incidence of non-lymphoid tumors in homozygous

p53EE mice, but this was not statistically significant (Fig 6B), lead-

ing us to conclude that p53EE does not exhibit the strong GOF activ-

ities observed for some hot-spot mutants. When tumors are not

dependent on a mutant p53 GOF, its destabilization is expected to

be therapeutically ineffective. More importantly, however, our data

◀
Figure 7. p53EE confers survival benefit under chemotherapy.

A Apoptosis in El-Myc lymphoma cells of indicated genotype was measured by flow cytometry (FITC-VAD-FMK staining) at indicated time points after treatment

with 3 lg/ml MAF. Significance was calculated versus untreated. n ≥ 5.

B Enrichment of p53 shRNA-expressing El-Myc;p53EE lymphoma cells under MAF treatment. Non-silencing control shRNA served as control. n = 3.

C mRNA expression of p53 target genes was measured relative to b-actin by RT–qPCR following treatment of El-Myc lymphoma cells of indicated genotype with

3 lg/ml MAF. n≥3.

D, E Kaplan–Meier survival plots for cyclophosphamide-treated versus untreated control mice transplanted with El-Myc lymphoma cells of indicated genotype at day

0. Treatment started ~10 days later when peripheral lymph nodes became palpable. The time course of the experiment is illustrated in a scheme. (E) Summary of

data from (D). Survival differences were analyzed using the log-rank (Mantel–Cox) test.

F Residual disease in the spleen of mice from (D) was quantified 24 h and 7 days after therapy using a quantitative PCR assays with primers specific to the El-Myc

transgene (present only in lymphoma cells). Shown is the copy number of the El-Myc transgene relative to a control locus present in all cells. Untreated El-Myc

mice (Myc tg) were used as positive control. Non-transgenic mice (no Myc tg) served as negative controls to define the detection limit. Significance was tested by

t-test (two-sided, unpaired).

G Representative bioluminescence imaging (BLI) pictures of mice transplanted with AE9+Nras AML cells. Day 0 indicates the start of combination therapy with

cytarabine (AraC) + doxorubicin (Doxo).

H Kaplan–Meier survival plots for animals from (G). Statistical significance of differences calculated by log-rank (Mantel–Cox) test between treated El-Myc;p53EE/EE

AML and all other groups is indicated in the table. C, untreated control; T, therapy (AraC+Doxo).

Data information: All data are shown as mean � SD. Significance was tested by 2-way ANOVA with Sidak’s multiple comparisons test unless indicated otherwise.
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imply that a combination of chemotherapy with mutant p53 destabi-

lizing drugs could even turn out counterproductive or dangerous

when chemotherapy-sensitizing effects are abolished by removal of

the p53 mutant. In support of this, degradation of p53EE by ganete-

spib did not result in tumor cell death by itself and effectively coun-

teracted the pro-apoptotic effect of combined doxorubicin and

Nutlin treatment (Fig 4H).

Instead, our data suggest that tumors which contain a p53 mutant

with residual apoptotic activity might require the opposite strategy.

Chemotherapy responses of p53EE cells were enhanced in combina-

tion with Nutlin-3a or other Mdm2 inhibitors (Fig 4D and E).

Enforced overexpression of the human p53EE (R181E) or the cancer

mutant R181L strongly sensitized human lung cancer cells to

chemotherapy-induced apoptosis, and this was further boosted by

Nutlin-3a (Fig 5H). Similarly, lymphoma and leukemia cells with

massive constitutive stabilization of p53EE displayed superior

chemotherapy responses to p53-deficient tumor cells resulting in

improved animal survival (Fig 7). Mutant p53-stabilizing therapies

with Mdm2 inhibitors might therefore support chemotherapeutics to

trigger the residual cytotoxic activities that have not been efficiently

counter-selected during tumorigenesis. In fact, the first clinical stud-

ies with Mdm2 inhibitors have observed clinical responses also in a

few patients with p53 mutations (Andreeff et al, 2016). Even though

Mdm2 inhibitors were originally designed for patients with wild-type

p53 tumors, they might eventually offer therapeutic benefit also for

some p53-mutated cancer patients. Of course, a caveat to the treat-

ment with mutant p53 stabilizing compounds is that pro-metastatic

or pro-survival GOF activities might be boosted. The most promising

therapy strategy for p53-mutated tumor patients will therefore

strongly depend on the functional properties of the p53 mutant.

Although it remains to be seen, which and how many p53 mutants

have retained apoptotic activity during tumor evolution, our data call

for more comprehensive investigations into the functional diversity

of p53 mutations to make p53 mutation status more useful for clini-

cal decision making.

Materials and Methods

Animals

For generation of the Trp53LSL-R178E knock-in mouse, we used the

targeting vector for the Trp53LSL-R172H mouse, which was kindly

provided by Tyler Jacks (Olive et al, 2004). The vector was modified

by QuikChange Multi Site-Directed Mutagenesis (Stratagene) to

carry only the mutation GCG->CTC in exon 5 of Trp53, resulting in

a Arg->Glu substitution at codon 178 (Fig EV1A). The complete

targeting vector was verified by Sanger sequencing. The linearized

targeting vector was transfected by electroporation of 129/SvEv

(129) embryonic stem cells. After selection with G418 antibiotic,

surviving clones were expanded for PCR analysis to identify recom-

binant ES clones and verify the presence of the R178E mutation by

Sanger sequencing. ES cell clones were further validated by South-

ern blot for correct 50 and 30 homologous recombination using SspI

digest in combination with the 30 probe and XbaI digest with the 50

probe (Fig EV1B). A correctly targeted ES cell clone was microin-

jected into C57BL/6 blastocysts. Resulting chimeras with a high

percentage agouti coat color were mated to wild-type 129/SvEv

mice to generate F1 heterozygous offspring. Tail DNA was analyzed

as described below from pups with agouti coat color (Fig EV1C and

D). Additional mutations were excluded by sequencing of all exons

and exon–intron boundaries in the Trp53 gene. ES cell cloning, blas-

tocyst injection, and breeding of chimeras for germline transmission

were done at inGenious Targeting Laboratory (Stony Brook, USA).

Knock-in mice were kept on a pure 129Sv background.

In 129S/Sv-Trp53LSL-R178E mice, expression of the Trp53 gene is

blocked by a transcriptional stop cassette, flanked by loxP sites (lox-

stop-lox, LSL). The homozygous Trp53LSL-R178E/LSL-R178E mice lack

p53 protein expression. Trp53LSL-R178E/LSL-R178E mice, and embryonic

fibroblasts isolated from these mice, were used as isogenic p53-null

(Trp53�/�) controls in all experiments. For generation of knock-in

mice expressing the p53EE mutant protein, we crossed heterozygous

Trp53+/LSL-R178E mice with Prm-Cre transgenic animals (129S/Sv-Tg

(Prm-cre)58Og/J; Jackson Laboratory). In double transgenic males,

the Prm1-Cre allele mediates excision of the LSL cassette in the male

germline. These males were used for breeding with wild-type 129/Sv

females to obtain constitutively recombined Trp53+/R178E mice,

which were then intercrossed to generate homozygous knock-in and

wild-type Trp53+/+ (control) animals. In aging cohorts, mice were

monitored on the daily basis and sacrificed when they reached

objective criteria for a humane endpoint that were defined before

the onset of the experiment.

To study lethality of Mdm2 knock-out, we used heterozygous

Mdm2D7-9 (Mdm2<tm1.2Mep>) mice that lack exons 7–9. These

mice were obtained from the NCI Mouse Repository (Frederick,

USA) and crossed with Trp53EE/EE homozygotes to obtain double

heterozygous Trp53+/EE;Mdm2+/D7–9 animals for intercrossing.

Genotypes of mice, isolated embryos, and embryonic tissues were

identified by PCR. Primer sequences are listed in Table EV1.

All mouse experiments were performed in accordance with the

German Animal Welfare Act (Deutsches Tierschutzgesetz) and were

approved by the local authorities.

Murine lymphoma model

For generation of Burkitt-like B-cell lymphoma, heterozygous

females with different p53 genotypes were crossed to transgenic

B6.Cg-Tg(IghMyc)22Bri/J males (Jackson Laboratory; Adams et al,

1985). Primary lymphomas were obtained from El-Myc mice with

p53+/+, p53+/�, and p53+/EE genotypes, and 500,000 cells were

transplanted into syngeneic recipients via tail vein as described in

the literature (Schmitt et al, 2002a). After lymphomas became palpa-

ble as enlarged peripheral lymph nodes, mice were separated into

two groups—one group was treated with a single intraperitoneal

dose of 300 mg/kg cyclophosphamide (Cell Pharm, Hannover,

Germany), and another group was left untreated. Samples were

collected 6 h, 24 h, and 7 days after therapy. In both groups, mice

were monitored on the daily basis for up to a maximum of 4 months

and sacrificed when they reached objective criteria for a humane

endpoint that were defined before the onset of the experiment.

Murine acute myeloid leukemia (AML) model

Primary AML with different p53 genotypes was generated as

described (Zuber et al, 2009). In brief, fetal liver cells were isolated

from p53+/+, p53�/�, and p53EE/EE embryos at E14-16. Retroviral
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plasmids encoding the AML1/ETO9a fusion oncogene (co-expressed

with GFP) and NRasG12D oncogene (co-expressed with firefly luci-

ferase) were kindly provided by J. Zuber (Zuber et al, 2009). Recom-

binant retroviruses were packaged in Platinum-E cells (Cell Biolabs).

After four rounds of infection with the two retroviral vectors mixed

1:1, transfection efficiency was analyzed by flow cytometry. 24–48 h

after last infection, 1 million cells were transplanted intravenously

into lethally irradiated (7 Gy) 129X1/SvJ albino recipients. F1

hybrids from breeding 129X1/SvJ/albino X C57B6/albino mice were

used as secondary recipients for chemotherapy. After primary recipi-

ents developed advanced leukemia with accumulation of malignant

myeloid progenitors in bone marrow and infiltration of extramedul-

lary tissues such as spleen, AML cells were isolated, immunopheno-

typed, and transplanted into sublethally irradiated (3.5 Gy)

secondary recipients. Disease development was monitored by biolu-

minescence imaging (BLI). BLI was performed using an IVIS 100

Imaging System (Xenogen) under isoflurane anesthesia, 5 min after

intraperitoneal injection of 200 ll D-luciferin (15 mg/ml in PBS,

BioVision). After first detection of clear signal in bones and initial

spleen infiltration, mice were separated into control and therapy

groups and the latter was subjected to a standard chemotherapy

protocol containing cytarabine (Cell Pharm, Hannover, Germany)

and doxorubicin (Cell Pharm, Hannover, Germany): 3 days of

cytarabine 100 mg/kg + doxorubicin 3 mg/kg intraperitoneally,

followed by 2 days of cytarabine only. Mice under therapy were

provided with drinking water containing 120 mg/l ciprofloxacin

(Bayer) and 20 g/l glucose (Sigma). Therapy response was moni-

tored by BLI. Mice were monitored on the daily basis and sacrificed

when they reached objective criteria for a humane endpoint that

were defined before the onset of the experiment.

Cell culture and gene transfer

Human lung cancer cell lines (H1299, H460) were obtained from the

American Tissue Collection Center (ATCC) and authenticated by

short tandem repeat analysis at the Leibniz Institute DSMZ—

German Collection of Microorganisms and Cell Cultures, Braun-

schweig, Germany. Cells were maintained in high-glucose

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal bovine serum (FBS, Sigma-Aldrich), 100 U/ml penicillin,

100 lg/ml streptomycin (Life Technologies), and 1 lg/ml ampho-

tericin B (Sigma) at 37°C with 5% CO2. Primary MEFs were isolated

from E12.5-13.5 mouse embryos and amplified under low oxygen

conditions (3% O2); their gender is not available. El-Myc

lymphoma cell lines were maintained in B-cell medium: 1:1 mixture

of DMEM and Iscove’s modified Dulbecco’s medium (IMDM)

supplemented with 20% FBS, 100 U/ml penicillin/streptomycin,

50 lM 2-mercaptoethanol, and 1 ng/ml mIL-7 (ImmunoTools).

Cells were cultured on a feeder layer of 30 Gy-irradiated NIH 3T3

cells. Nutlin-3a (Sigma) was used at 10 lM, RG7112 (MedChemEx-

press) at 5 lM, RG7388 (MedChemExpress) at 8 lM, MI773 (Sel-

leckchem) at 10 lM, and Mafosfamide (Santa Cruz) at 1–5 lg/ml as

indicated. Hydrogen peroxide (Sigma) was used at 50–800 lM.

Plasmids and gene transfer

Transfections and viral infections were performed as described

(Timofeev et al, 2013). For production of lentiviruses, helper

plasmids pMD2.g (Addgene plasmid #12259) and psPAX2

(Addgene plasmid #12260) were used. For Tet-inducible gene

knockdown with shRNAs, we used the retroviral vector TtRMPVIR

(Addgene plasmid #27995), and for Tet-inducible gene expression,

we used the lentiviral vector pInducer20 (Addgene plasmid

#44012). For expression of mutant p53, the cDNA for murine or

human p53 was cloned into pInducer20 using the Gateway�

System (Invitrogen). MEFs were immortalized by retroviral trans-

duction with pMSCVhygro-E1A.12S or pMSCVneo-E1A.12S (Timo-

feev et al, 2013). For studies on Ras-induced senescence, MEFs

were transduced with MSCVhygro-HRasG12V (Timofeev et al,

2013).

CRISPR-Cas9 gene editing

For the generation of p53 knock-out cells using CRISPR-Cas9 gene

editing, oligos encoding sgRNAs targeting the mouse Trp53 gene or

GFP as a control were annealed and cloned by Golden Gate cloning

into BsmbI-digested lentiCRISPR vector (Addgene plasmid #49535).

The presence of indels in the targeted Trp53 gene locus was con-

firmed by T7 endonuclease assay. In brief, infected cells were

collected, genomic DNA was isolated, and the fragment of interest

was PCR-amplified using primers flanking the predicted CRISPR-

Cas9 cleavage site. The PCR product was purified using the

QIAquick PCR Purification Kit (Qiagen), DNA was denatured, rean-

nealed in 1× NEB2 buffer (NEB), digested with 5 U T7 endonuclease

I (NEB) for 20 min at 37°C, and analyzed on a 2% agarose gel.

Knock-out of p53 in the pool of cells was confirmed by p53

immunofluorescence staining, Sanger sequencing of the targeted

Trp53 region, and InDel analysis using the TIDE algorithm

(Brinkman et al, 2014). sgRNA and primer sequences are listed in

Table EV1.

Cell viability and proliferation assays

Viability of cells after irradiation or drug treatment was assessed

using CellTiter-Glo Luminescent Cell Viability Assay (Promega) as

described (Timofeev et al, 2013). For quantitative real-time moni-

toring of cell proliferation, we performed automated time-lapse

microscopy using the IncuCyte S3 (Essen BioScience). Cells were

seeded in triplicates on 96-well plates to reach a starting conflu-

ence of 10–30% after 24 h. Following treatment with Nutlin �

doxorubicin, the plates were imaged for 48 h with a time interval

of 2 h. Confluence was calculated using the instrument’s IncuCyte

Zoom 2017A software. For assessment of long-term proliferative

capacity of primary MEFs (Fig EV4A), we used a modified 3T3

protocol: 200,000 cells from passage 1–2 were plated to each well

of a 6-well plate. Every 3 days, cells were harvested and counted

and 200,000 cells were replated. When the total number of cells

was lower than 200,000, all cells were replated. Population

doubling was calculated as the log2 of the ratio Npx+1/Npx,

where Npx is the total number of cells at passage X. For prolifera-

tion assay with CRISPR-Cas9-edited MEFs (Fig EV3E) and for

proliferation at normal (21%) and low (3%) oxygen conditions

(Fig EV3H), 500,000 cells were replated every 3 days on 10-cm cell

culture dishes. Under these conditions, proliferation of p53EE/EE

MEFs declined more rapidly than in Fig EV4A and eventually

resulted in deterioration of cell cultures.
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Cellular fractionation and western blotting

For immunoblotting, cells were lysed in RIPA buffer (0.1% SDS,

50 mM Tris–HCl at pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Na-deox-

ycholate) supplemented with protease inhibitor cocktail (Roche). To

prepare nuclear and cytosolic fractions, cells were collected and resus-

pended in 2–3 volumes of Buffer A (10 mM HEPES pH 7.9, 10 mM

KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM b-mercaptoethanol) supple-

mented with protease inhibitors, and incubated for 10 min on ice

before adding 10% NP-40 to a final concentration of 0.25%. Cells were

passed through a 27-G needle 5–10 times using a 1-ml syringe. Nuclei

were pelleted by centrifugation (500 ×g, 10 min). The cytoplasmic

fraction was collected and re-centrifuged for 10–15 min. Nuclear frac-

tions were washed three times in 5–10 volumes of Buffer A and

pelleted by centrifugation. Nuclei were lysed with 1–2 volumes of Buf-

fer C (20 mM HEPES pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 1 mM b-mercaptoethanol) and soluble fraction collected by

centrifugation (10,000 ×g, 10 min). Mitochondrial fractions were

isolated using Mitochondria Isolation Kit for Cultured Cells (Thermo

Scientific) as described by the manufacturer. For Western blotting,

20–50 lg of total protein was resolved on 4–12% NuPAGE polyacry-

lamide gels (Invitrogen). After wet transfer to Hybond P nitrocellulose

membrane (GE Healthcare), antigens were detected using the follow-

ing antibodies: anti-cleaved caspase-3 (#9661, Cell Signaling, 1:500),

anti-p53 (NCL-p53-505, Leica Microsystems, 1:2,000), anti-MDM2

(SMP14, #sc-965, Santa Cruz Biotechnology [SC], 1:200), anti-PCNA

(PC10, #sc-56, 1:1,000), anti-Bak (At8B4, Abcam, 1:250), anti-Tom20

(FL-145, #sc-11415, 1:100), anti-cleaved PARP (#9541, Cell Signaling,

1:500), anti-cleaved Lamin A small subunit (#3035, Cell Signaling,

1:500), anti-H-Ras (C-20, #sc-520, Santa Cruz Biotechnology, 1:100),

anti-E1A (M-73, #sc-25, Santa Cruz Biotechnology, 1:500), and anti-b-

actin (AC-15, #ab6276, Abcam, 1:10,000). Detection was performed

with secondary anti-mouse or anti-rabbit IgG-HRP (GE Healthcare,

1:5,000) and SuperSignal ECL Kit (Thermo Fisher).

Immunohistochemistry and immunofluorescence

For histology and immunohistochemistry (IHC), formalin-fixed

samples were embedded in paraffin and 5-lm sections were

mounted to glass slides and processed as described (Timofeev et al,

2013). Apoptosis was detected using the DeadEndTM Colorimetric

TUNEL System (Promega) or antibodies against cleaved caspase-3

(#9661, Cell Signaling, 1:100). Other antibodies used for IHC were

anti-p53 (NCL-p53-505, Leica Microsystems, 1:1,000) and anti-BrdU

(BU1/75(ICR1), #OBT0030G, 1:100).

Proximity ligation assays

In situ interactions were detected by the proximity ligation assay kit

Duolink (DPLA probe anti-rabbit minus, DPLA probe anti-mouse

plus (Sigma-Aldrich, St. Louis, MO, USA); Detection Kit Red, Sigma-

Aldrich). The DPLA probe anti-rabbit minus binds to the p53 anti-

body, whereas the DPLA probe anti-mouse plus binds to the anti-

body against the probable interaction partner, respectively. The

Duolink proximity ligation assay secondary antibodies generate only

a signal when the two DPLA probes have been bound, which only

takes place if both proteins are closer than 40 nm, indicating their

interaction. Paraformaldehyde-fixed FFPE sections were pre-

incubated with blocking agent for 1 h. After washing in PBS for

10 min, primary antibodies were applied to the samples. Incubation

was done for 1 h at 37°C in a pre-heated humidity chamber. Slides

were washed three times in PBS for 10 min. DPLA probes detecting

rabbit or mouse antibodies were diluted in the blocking agent in a

concentration of 1:5 and applied to the slides followed by incubation

for 1 h in a pre-heated humidity chamber at 37°C. Unbound DPLA

probes were removed by washing two times in PBS for 5 min. The

samples were incubated with the ligation solution consisting of

Duolink Ligation stock (1:5) and Duolink Ligase (1:40) diluted in high-

purity water for 30 min at 37°C. After ligation, the Duolink Amplifi-

cation and Detection stock, diluted 1:5 by the addition of polymerase

(1:80), was applied to the slides for 100 min. Afterward, the slides

were incubated with DAPI for the identification of nuclei. After the

final washing steps, the slides were dried and coverslips were applied.

Quantification was done with the Duolink Image Tool v1.0.1.2 (Olink

Bioscience, Uppsala, Sweden). The signal threshold was adjusted to

100 and the pixel size for spot detection to 5 pixels for each picture.

Flow cytometry

For flow cytometry analysis, an Accuri C6 Flow Cytometer (BD Bios-

ciences) was used. Labeling of S-phase cells with BrdU and process-

ing for FACS were done as described (Timofeev et al, 2013) using

anti-BrdU Alexa Fluor 488 antibodies (BD Biosciences #347580). For

analysis of apoptosis, annexin V-APC (MabTag) and CaspGLOW

Staining Kit (BioVision) were used according to manufacturer’s

protocols. Cell cycle profiles and viability of cells were assessed

using staining with propidium iodide (PI) in permeable and non-

permeable conditions as described earlier (Timofeev et al, 2013). To

analyze mitochondrial ROS levels, cells were stained for 15 min on

plates with 3 lM MitoSOX free radical sensor (Thermo Fisher) in

HBSS buffer (Sigma), collected with trypsin, washed with PBS, and

analyzed by flow cytometry.

El-Myc;p53EE lymphoma cells were transduced with TtRMPVIR

retroviral vectors (Zuber et al, 2011) expressing a p53-targeting

(shp53.814, Dickins et al, 2005) or non-silencing control shRNA

coupled to RFP. Knockdown of p53 was induced with 1 lg/ml doxy-

cycline. After 48 h of doxycycline pre-treatment, cells were treated

with 1–5 lg/ml mafosfamide (Santa Cruz) for 24 h, washed, and

left to recover for 48 h. Enrichment of RFP-expressing cells, i.e.,

cells efficiently expressing shRNA, in treated versus untreated

cultures was analyzed with flow cytometry.

Metabolism analysis

Mitochondrial metabolism was assessed using the Seahorse XF Cell

Mito Stress Test Kit (Agilent) on the Seahorse XFe96 instrument

according to manufacturer’s protocols. Cells were treated for 24 h with

0.5 lg/ml doxycycline to induce p53 expression. A total of 20,000

cells were plated in 96-well XF cell culture microplates and let to

adhere for 5 h before measurements were performed. Data were

analyzed using MS Excel templates provided by the manufacturer.

Electrophoretic mobility shift assays

Electrophoretic mobility shift assays (EMSAs) were performed in

20 ll reaction volume containing 20 mM HEPES (pH 7.8), 0.5 mM
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EDTA (pH 8.0), 6 mM MgCl2, 60 mM KCl, 0.008% Nonidet P-40,

100 ng anti-p53 antibody (Pab421), 1 mM DTT, 120 ng salmon

sperm DNA, 1 ll glycerol, 20,000 cpm of [32P]-labeled double-

stranded oligonucleotide, and either 5 ll of in vitro translated

protein or 5 lg of nuclear extracts from Nutlin-treated MEFs. After

30 min incubation at room temperature, reaction mixtures were

subjected to electrophoresis on a 3.5% native polyacrylamide gel

(37.5:1 acrylamide/bisacrylamide) in a Tris-borate-EDTA buffer at

125 V for 90 min at room temperature. 10 pmoles of competitor

were added to control the specificity of DNA binding. For supershift

analysis, 1 lg of anti-p53 antibody (FL393, Santa Cruz) was added.

DNA–protein complexes were revealed with X-ray films (Kodak).

Chromatin immunoprecipitation

Primary MEFs were treated for 16 h with 10 lM Nutlin or 0.1%

DMSO as control. Cells were fixed on plates with 0.88%

paraformaldehyde (PFA) for 10 min at room temperature and

quenched by adding glycine to a final concentration of 54 mM for

5 min. Cells were washed twice with ice-cold PBS and scraped off

the plate with PBS supplemented with proteinase inhibitors (Roche).

Cell pellets were lysed in SDS lysis buffer (1% SDS, 10 mM EDTA,

50 mM Tris–HCl pH 8.1) supplemented with protease inhibitors

(2 × 107 cells/ml lysis buffer) and sonicated using the Bioruptor�

Sonication System (Diagenode) to obtain 300–1,000 bp DNA frag-

ments. The shearing efficiency was controlled using agarose gel elec-

trophoresis. After centrifugation (10,000 g, 10 min, 20°C), 100 ll

sheared chromatin was diluted 1:10 with dilution buffer (0.01%

SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris–HCl pH 8.1,

167 mM NaCl) and pre-cleared for 1 h with 50 ll Protein G

Sepharose (50% slurry in 20% ethanol) beads (GE Healthcare) at

4°C. The p53 protein was immunoprecipitated overnight at 4°C with

2.5 lg anti-p53 antibody (FL393, Santa Cruz), and normal rabbit IgG

(Santa Cruz) was used as the control. The protein complexes were

pulled down for 4 h at 4°C with 50 ll Protein G Sepharose beads.

Beads were washed with Low Salt Immune Complex Wash Buffer

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–HCl pH 8.1,

150 mM NaCl), then with High Salt Immune Complex Wash Buffer

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–HCl pH 8.1,

500 mM NaCl), with LiCl Immune Complex Wash Buffer (0.25 M

LiCl, 1% IGEPAL-CA630, 1% deoxycholic acid (sodium salt), 2 mM

EDTA, 10 mM Tris–HCl pH 8.1), and finally twice with TE (10 mM

Tris–HCl pH 8.1, 1 mM EDTA). Protein/DNA crosslinks were eluted

twice for 15 min at 20°C in 100 ll elution buffer (0.1 M NaHCO3,

1% SDS). 1% input stored at �20°C was treated in the same way.

Crosslinking was reverted upon overnight incubation at 65°C in

elution buffer supplemented with 200 mM NaCl followed by RNase

A digestion at 37°C for 30 min, addition of 40 mM Tris–HCl pH 6.5

and 10 mM EDTA, proteinase K digestion for 2 h at 55°C, and inacti-

vation of proteinase K at 99°C for 10 min. DNA was purified using

the QIAquick PCR Purification Kit (Qiagen), and DNA concentration

was measured with the Qubit dsDNA HS reagent (Molecular Probes).

ChIP-seq and RNA-seq

ChIP-seq libraries were prepared from purified ChIP DNA with the

MicroPlex Library Preparation Kit (Diagenode) according to the

manufacturer’s instructions. For RNA-seq, RNA quality was

assessed using the Experion RNA StdSens Analysis Kit (Bio-Rad).

RNA-seq libraries were prepared from total RNA using the TruSeq

Stranded mRNA LT Kit (Illumina) according to the manufacturer’s

instructions. Quality of sequencing libraries (for ChIP-seq and RNA-

seq) was controlled on a Bioanalyzer 2100 using the Agilent High

Sensitivity DNA Kit (Agilent). Pooled sequencing libraries were

quantified with digital PCR (QuantStudio 3D, Thermo Fisher) and

sequenced on the HiSeq 1500 platform (Illumina) in rapid-run mode

with 50 base single reads.

ChIP-seq data analysis

Reads were aligned to the Mus musculus genome retrieved from

Ensembl revision 79 (mm10) with Bowtie 2.0.0-beta7 using the

default parameter settings (Langmead & Salzberg, 2012). Lanes were

deduplicated to a single duplicate read, keeping only these effective

reads for further analysis. Peak calling was performed individually

for each sample using a mixed input as background using MACS

1.4.0rc2 with default parameters for all samples (Zhang et al, 2008).

To reduce the amount of false positives, peaks were filtered to those

peaks showing a strong enrichment over background, i.e., peaks

with a minimum of 50 effective foreground reads, not more than 50

effective reads in background, and showing at least a threefold

increase in the normalized read counts compared to background. To

enable comparison between the samples, tag counts were calculated

and normalized to one million mapped reads (tags per million,

TPM). The foreground–background ratio used to filter reported

peaks was calculated on basis of TPMs in foreground versus TPMs in

background. To compare samples, filtered ChIP-seq peaks from the

Nutlin-treated p53+/+ sample were taken as the basis. Of these 472

peaks, we removed 4 peaks that overlap with non-specific peaks in

Nutlin-treated p53�/� MEFs, yielding 468 p53WT peaks. 2,000 bp

spanning regions around all of these 468 peak regions were centered

to the summit of the p53+/+ Nutlin signal (TPM). To allow compara-

bility of the lanes, TPMs were plotted as heatmap for all lanes, and

the maximum value was fixed to the 95th percentile of the p53+/+

Nutlin signal. To obtain a list of target genes, we annotated the gene

with the closest corresponding transcription start site to each peak.

Hypergeometric enrichment was performed using Fisher’s exact test,

based on MSigDB gene sets as reference and our target genes as

query.

Motif identification: For de novo binding motif search, peaks from

Nutlin-treated p53+/+ MEFs (filtered as stated above) were trimmed

to 150 bp (peak middle +/�75 bp). These 468 regions were used for

analysis with MEME-ChIP (version 4.12.0) using the default parame-

ters (Machanick & Bailey, 2011). To identify motifs of known bind-

ing sites, CentriMo (version 4.12.0) analysis was performed on the

same 150 bp regions, using the JASPAR CORE 5 (vertebrates) and

UniPROBE (retrieved August 2011) databases as reference (Berger

et al, 2006; Bailey & Machanick, 2012; Mathelier et al, 2014).

RNA-seq data analysis

Reads were aligned to the Mus musculus genome retrieved from

Ensembl revision 79 (mm10) with STAR 2.4. Tag counts were calcu-

lated and normalized to one million mapped exonic reads and gene

length (FPKM). To generate the set of expressed genes, only genes

with a minimum read count of 50 and a minimum FPKM of 0.3 were
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kept. DESeq2 (version 1.8.2) was used to determine differentially

expressed genes (Berger et al, 2006). Genes with a greater than

twofold change according to DESeq2 analysis and a maximum FDR

of 0.05 were considered as regulated. Gene set enrichment analysis

(GSEA) was performed using Molecular Signatures Database

(MSigDB) gene sets and GSEA2 software (version 2.1.0) from the

Broad Institute (West et al, 2005; Liberzon et al, 2011, 2015). FPKM

values of genes from the indicated gene sets were z-transformed

and plotted as heatmaps.

PCR and real-time PCR

For PCR genotyping, tail tips or tissues were lysed overnight at

55°C in PBND buffer (10 mM Tris–HCl pH 8.3, 50 mM KCl,

2.5 mM MgCl2, 0.45% NP-40, 0.45% Tween-20) supplemented

with 8 U/ml proteinase K (AppliChem) and afterward inactivated

at 95°C for 10 min. For LOH and residual disease detection in

El-Myc lymphoma samples, crude lysates were prepared as

above and 50 ng of genomic DNA purified with peqGOLD Tissue

DNA Mini Kit (PeqLab) was used as template for qPCR with

primers specific for the ElMyc transgene and a control locus for

normalization.

For reverse transcription–quantitative PCR (RT–qPCR), RNA was

isolated from cells or tissue samples using the RNeasy Mini Kit (Qia-

gen) and cDNA was generated with the SuperScript VILO cDNA

Synthesis Kit (Invitrogen). Gene expression was analyzed on a

LightCycler 480 (Roche) using the ABsolute QPCR SYBR Green Mix

(Thermo Scientific). Data were evaluated by the DDCt method with

b-actin as a housekeeping gene for normalization.

For mtDNA content analysis, genomic DNA was analyzed by

quantitative PCR for the mitochondrial genes mt-Nd4, mt-Co1, mt-

Cyb, and mt-Nd2, and Ct values were normalized to the nuclear

gene Trp53.

Primer sequences are provided in Table EV1.

Statistical analyses

Statistical differences between experimental groups analyzed at dif-

ferent time points or under different treatment conditions were

calculated using one- or two-way ANOVA test, while correcting for

multiple comparisons using Sidak’s multiple comparisons test. A

significance level of P < 0.05 was used throughout the study.

Kaplan–Meier curves representing survival analyses were compared

by the log-rank (Mantel–Cox) test. Multiple survival Kaplan–Meier

curves were compared by ordinary ANOVA with Tukey’s multiple

comparisons test. Statistical analyses were performed using the

Prism software package (GraphPad).

Data availability

The datasets produced in this study are available in the following

databases:

• RNA-seq data: EBI ArrayExpress E-MTAB-6774

• ChIP-seq data: EBI ArrayExpress E-MTAB-6793

Expanded View for this article is available online.
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Expanded View Figures

◀
Figure EV1. Generation and characterization of the Trp53R178E knock-in mouse.

A Trp53 targeting strategy. Asterisk indicates the R178E (EE) point mutation in exon 5; LSL, lox-stop-lox cassette.

B Southern blot, showing integration of the construct in a correctly targeted 129/SvEv embryonic stem cell clone. Genomic DNA was digested with SspI and hybridized

with the 3
0 probe shown in (A). LSL-EE denotes the targeted allele carrying a lox-stop-lox (LSL) cassette and R178E (EE) mutation. The 10.3 kb SspI fragment

corresponds to the wild-type and the 8.4 kb fragment to the targeted allele.

C Sanger sequencing of a Trp53 exon 5-6 PCR amplicon confirms the presence of the Arg->Glu mutation in a tiptail biopsy from a heterozygous founder mouse.

D PCR used for genotyping of mouse biopsies and cells. Asterisk indicates unspecific PCR product.

E Electrophoretic mobility shift assay (EMSA) performed with a radiolabeled oligonucleotide containing a p53 consensus binding site incubated with in vitro translated

full-length p53 protein (IVT p53WT, left) or nuclear extracts from primary MEFs with indicated p53 genotypes treated with 10 lM Nutlin o/n (right). For supershift

analysis, anti-p53 antibody (FL-393, Santa Cruz) was added; asterisks denote disrupted and shifted bands, respectively. Arrowhead, specific p53-DNA complex. ret lys—

reticulocyte lysate; specific comp—non-radiolabeled consensus binding site oligonucleotide as competitor; scrambled comp—non-radiolabeled sequence-scrambled

competitor oligonucleotide; ns—non-specific.

F Venn diagram illustrating number and overlap of peaks called in the p53 ChIP-seq datasets from Nutlin-treated MEFs of indicated genotypes. Only peaks present in

p53+/+—but not in p53�/� MEFs—were considered p53-specific.

G Hypergeometric enrichment showing that genes in the vicinity of p53 ChIP-seq peaks from Nutlin-treated p53+/+ MEFs are significantly enriched for p53-related gene

sets from the Molecular Signatures Database (MSigDB). Shown is the -log10 of the P value adjusted for multiple comparisons using Benjamini–Hochberg correction.

H Nutlin-regulated gene expression in primary MEFs of indicated p53 genotypes. Scatter plot shows the log2-fold change of the 1,000 top-regulated genes. Box and

whiskers indicate the interquartile range and 5–95 percentiles, respectively. Significance was tested by ordinary ANOVA with Sidak’s multiple comparisons test.

I p53EE fails to regulate non-canonical tumor-suppressive target genes identified by transcriptional profiling of transactivation domain mutant mice (Brady et al,

2011). Shown are the z-transformed RNA expression values (FPKM).
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◀
Figure EV2. Cells and tissues from p53EE mice show deficiency in cell cycle arrest, senescence, and apoptosis.

A Oncogenic HRasG12V was overexpressed in primary MEFs, and cells were stained for senescence-associated b-galactosidase (SA b-gal) to detect oncogene-induced

senescence (positive cells are marked with arrowheads). Western blots show expression of H-Ras and b-actin as loading control.

B Senescence caused by cell culture stress was assessed in primary MEFs at passage 8 by SA b-gal staining (arrowheads).

C Left, 3D structure of the double salt bridge formed between the H1 helices of two adjacent p53WT monomers. Residues glutamate 177 (177E) and arginine 178 (178R)

are labeled. Right, schematic illustration of interactions between the two H1 helices of p53 molecules with wild-type and mutated Glu177 and Arg178.

D Primary thymocytes were isolated from mice with indicated genotypes and irradiated ex vivo with 6 Gy X-ray. Cellular survival at indicated time points was analyzed

using CellTiter-Glo assay (Promega). Note, homozygous EE and homozygous RR mutant thymocytes are apoptosis-deficient, while compound EE/RR mutant

thymocytes are sensitive to irradiation. Data are shown as mean � SD.

E Apoptosis (detected by IHC staining of cleaved caspase-3) in thymus of control or irradiated mice (6 Gy X-ray) after 6 h. Note massive apoptosis in both p53+/+ and

p53EE/RR mice.

F The absence of p53EE expression in small intestine of unstressed mice and accumulation at indicated time points after irradiation. p53+/+ are shown for comparison.

G Dynamics of apoptosis (TUNEL staining) in small intestine at indicated time points after whole-body irradiation (6 Gy X-ray). Arrowheads mark TUNEL-positive

apoptotic cells.

H Cell proliferation in samples from (G) as detected by immunohistochemical staining for BrdU incorporation.

Data information: All scale bars denote 50 lm.
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◀
Figure EV3. Constitutive p53EE stabilization triggers ROS-dependent senescence.

A Long-term proliferation assay for freshly isolated primary MEFs with the genotypes p53�/� (n = 3), p53+/+ (n = 3), and p53EE/EE (n = 6).

B SA-b-galactosidase staining of MEFs from (A) at passage 16. Red arrowheads indicate senescent cells positive for SA-b-galactosidase.

C Western blot of MEFs with indicated genotypes at early (p3) and late passages (p53+/+ p7, p53�/�, and p53EE/EE p17). Asterisk marks a spontaneously immortalized

p53EE/EE cell line, which has lost p53 expression. s.e., short exposure; l.e., long exposure.

D mRNA expression analysis (RT–qPCR) of MEF cultures from (C). mRNA expression was normalized to b-actin.

E Long-term proliferation assay with primary p53�/� and p53EE/EE MEFs transduced with two different CRISPR/Cas9 nucleases targeting Trp53 or GFP (control). Shown

is the passage number after gene editing.

F Mitochondrial ROS in primary MEFs from late passages measured by flow cytometry with MitoSOX red dye. EE*, spontaneously immortalized p53EE/EE cell culture

with loss of p53 expression.

G mRNA expression analysis (RT–qPCR) of early and late passage MEFs cultured in low (3%) oxygen; n = 4. mRNA expression was normalized to b-actin.

H Long-term proliferation of primary p53�/� and p53EE/EE MEFs cultured from frozen stocks in normal high (21%) versus low (3%) oxygen. Shown is the number of

passages after revitalization of MEFs frozen at passage 2–4. n = 4.

I Oxygen consumption rate (OCR) assessed with Seahorse XF Cell Mito Stress Test Kit. pInd20-p53EE, Tet-induced p53EE expression in Trp53�/�;Mdm2
�/� MEFs.

Control, Tet-treated Trp53�/�;Mdm2
�/� MEFs. Time points of treatment with oligomycin, FCCP, and rotenone+antimycin A are indicated with arrows. Statistical

significance was tested with multiple two-sided t-tests in combination with the false discovery rate approach. FDR q-values < 0.05 are considered significant (n = 8).

J Mitochondrial DNA (mtDNA) content of indicated MEFs determined by qPCR and normalized to early passage p53+/+ MEFs and nuclear DNA (nuDNA). p53+/+ early,

n = 3; p53+/+ late, n = 4; p53�/� early, n = 1; p53�/� late, n = 1; p53EE/EE early, n = 3; p53EE/EE late, n = 6.

K mRNA expression analysis (RT–qPCR) of p53�/� and p53EE/EE MEF cultures for indicated Nrf2 target genes. mRNA expression was normalized to b-actin; n = 3.

L Hmox1 mRNA expression analysis (RT–qPCR) of p53�/� and p53EE/EE MEF cultures treated for 4 h with 0, 50, 100, 200, 400, and 800 lM H2O2. mRNA expression was

normalized to b-actin; n = 3.

Data information: All data are shown as mean � SD. Significance was tested by 2-way ANOVA with Sidak’s multiple comparisons test unless indicated otherwise.
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Figure EV4. Mutant p53 expression in p53EE

lymphomas compared to human cancer samples.

Spontaneous lymphomas from p53EE mice and

human lymphomas with the indicated p53mutations

were stained for p53 using FL-393 antibody (which has

comparable affinity for human and murine p53). p53

staining intensity was quantified by automated

image analysis.

A Top: Percentage of cells with indicated staining

intensity scores for each sample. Bottom:

Distribution and mean of cellular staining

intensities for each sample. Violin plots were

generated with the GraphPad Prism 8 default

algorithm (high smoothing) and indicate the

median and quartiles with solid and dotted lines,

respectively. ns, no significant difference of the

mean staining intensity between the two groups

of murine and human lymphomas (Mann–

Whitney test; unpaired, non-parametric, two-

tailed).

B Exemplary images. The analysis demonstrates

that p53EE expression in murine lymphomas is

within the range for mutant p53 expression in

human lymphomas. Scale bar: 100 lm.

The EMBO Journal Oleg Timofeev et al

EV7 The EMBO Journal e102096 | 2019 ª 2019 The Authors



B

0 1 2 3

0

0.1

0.2

0.3

0.4

p53 IHC score

F
ra

c
tio

n
 o

f 
tu

m
o
rs

A
score 0 score 1

score 2 score 3

Figure EV5. p53EE expression in tumors from

p53EE/EE mice.

A p53 immunohistochemistry images of

spontaneous thymic lymphomas from p53EE/EE

mice representative of p53 immunostaining

scores 0–3.

B Fraction of p53EE/EE mouse tumors with indicated

p53 immunostaining scores.
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