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ABSTRACT

Visual Speech Recognition Using a 3D Convolutional Neural Network

Matt Rochford

Main stream automatic speech recognition (ASR) makes use of audio data to identify

spoken words, however visual speech recognition (VSR) has recently been of increased

interest to researchers. VSR is used when audio data is corrupted or missing entirely

and also to further enhance the accuracy of audio-based ASR systems. In this re-

search, we present both a framework for building 3D feature cubes of lip data from

videos and a 3D convolutional neural network (CNN) architecture for performing

classification on a dataset of 100 spoken words, recorded in an uncontrolled envi-

ronment. Our 3D-CNN architecture achieves a testing accuracy of 64%, comparable

with recent works, but using an input data size that is up to 75% smaller. Overall,

our research shows that 3D-CNNs can be successful in finding spatial-temporal fea-

tures using unsupervised feature extraction and are a suitable choice for VSR-based

systems.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Automatic speech recognition (ASR) is the ability to translate spoken words into

text using computers. ASR incorporates knowledge and algorithms from linguistics,

computer science, and electrical engineering to identify and process human voices

[37]. Google Speech’s ASR engine is the most accurate on the market today and

has an average error rate of 16%, and as low as 2% for some datasets [30]. Main

stream ASR, such as Google Speech, uses data from audio signals in combination

with machine learning algorithms. However, when audio data is corrupted, such as

in noisy environments, performance suffers greatly.

Visual speech recognition (VSR) is the ability to extract spoken words from a video of

an individual talking without the use of audio data, which can otherwise be known as

lip reading. This topic has been of focus to researchers in situations where audio data

may be corrupted, such as in a noisy restaurant or train, or entirely missing, such

as old school silent films or off-microphone exchanges between athletes or politicians.

When used in conjunction with tradition audio-based speech recognition visual speach

can further increase ASR performance, especially in noisy environments such as in a

car or a noisy restaurant where audio-based solutions deteriorate.

In recent years machine learning algorithms have been applied to the problem of ASR

most commonly seen in technology like Amazon’s ’Alexa’ or Apple’s ’Siri’. The main

challenge of ASR is the need for strong statistical models since it would not be feasible

to teach a machine learning model all the words in the English language (of which
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there are over 140,000). Instead, traditional models make use of phonemes, which are

the distinct sounds present in speech that make up words. Models identify phonemes

and attempt to properly assemble them together to identify spoken words [37].

Hidden Markov Models (HMMs) have been successfully used since the 1970s for ASR

[47]. HMMs use statistical methods to determine the most likely state that follows the

current state. Since 2008 though, Recurrent Neural Networks (also known as Long

Short Term Memory (LSTM)) have replaced HMMs as the premier statistical model

for ASR. The advantage RNNs have over HMMs is that they use information from

more than just the current state when making a prediction on the next state. The

ability for models to incorporate more data when selecting the most likely sequence

of phonemes have seen rises in ASR recognition rates [30].

In the English language there are approximately 44 phonemes [2] (this number is

approximate due to differences in accent, pronunciation, etc.), some examples are

the p, oo, and sh sounds. Deep learning models (DLMs) detect phonemes and use

them to determine the most likely words being spoken. The biggest difficulty that

arises during this deep learning stage is that phonemes are rarely detected at 100%

likelihood so it requires choosing the most likely sequence of phonemes. This makes

the use of contextual information extremely important in determining the highest

probability word being spoken [2].

For visual speech recognition, word prediction is even more challenging due to the

smaller quantity of visemes available relative to phonemes. Visemes are the visual

equivalent of phonemes and are the shapes the mouth makes when making certain

sounds. In the English language there are only approximately 14 visemes since mul-

tiple phonemes correspond to the same viseme [40] [24]. For example the phonemes

p, b, and m all have the same viseme associated with them, as shown in Figure 1.1.
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This makes the process of predicting the spoken word even more challenging than in

traditional audio-based ASR.

Figure 1.1: Chart of Phonemes Associated with the Same Viseme Number
[24]

1.2 Motivation and Approach

This work presents an approach for determining the spoken word from a visual dataset

of known words. Rather than tackling the entire problem of VSR as several other pa-

pers have attempted, we attempt to build a model that can choose between a dataset

of 500 different words when presented with training samples of each. This research

could potentially be used to assist more advanced VSR models when confidence values

of choosing between words is low.

Rather than relying on traditionally used statistical machine learning models we focus

our efforts on training a Convolutional Neural Network (CNN) to recognize sequences

of lip movements as words. This shifts our problem to more of a traditional object
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recognition problem, seen commonly in computer vision, that CNNs have had great

success with. CNNs apply filters to an image, essentially looking for certain patterns

or shapes present in the image. This information is then used to make a prediction

on what can be seen in the input image.

Instead of using a traditional CNN, which has 2-Dimensional layers and is used pri-

marily on images (2-Dimensional collections of pixel data), we will use a 3-Dimensionals

CNN, where convolutional layers are 3 dimensional in nature, by adding a time di-

mension to the input data. This is based on the observation that dynamic information

encoded in lip movements contribute to improved intelligibility in lip reading. Hence

temporal features extracted with 3D-CNNs should improve ASR performance. The

3D-CNN will be trained on a dataset of 500 different words and its performance

will then be evaluated on a set of test videos containing words from the dataset the

network has not seen before.

In order to train a model to recognize spoken words, accurately detecting lips in

the frames of a video is essential. We will develop a pipeline for assembling 3D data

packages of lip frames from short videos taken from a dataset of words from television

programs. High-level face detection algorithms will first be used to assist in building

the lip detector framework. The facial detection algorithms used are based upon the

principles of Histogram of Oriented Gradients (HOG) and Support Vector Machines

(SVMs), which are commonly used algorithms in the field of computer vision. A

top-level flowchart of this process can be seen in Figure 1.2

1.3 Scope of Thesis

The goal of this thesis is twofold: develop a framework for processing videos into a

collection of lip frames and train a 3D-CNN to detect words from a test dataset at an

4



Figure 1.2: Top Level Flowchart

accuracy close to that achieved in recent VSR research, at least 60%. Lip detection

algorithms and framework must be applied to the thousands of videos in the dataset

in order to prepare the data needed during the machine learning phase. The machine

learning phase will then attempt to train the 3D-CNN using the lip data to identify

spoken words.

This thesis is organized as follows: Background, Methods, Implementation, Testing

and Results, and Conclusions. The background section will go in depth on both

the computer vision and machine learning principles behind this thesis. Methods

will discuss the general problem solving approach. Implementation will present the

specific implementation of solving this problem from a software and mathematical

standpoint. Testing and Results will discuss the models performance on a test set

of unseen videos of learned words. Conclusions will present the biggest difficulties

and challenges faced during this thesis as well as the most promising discoveries and

results.
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Chapter 2

BACKGROUND

2.1 Overview

This chapter outlines the relevant theory and literature used throughout this thesis.

The theoretical areas of the thesis are broken down into two larger parts: computer vi-

sion and machine learning. Computer vision is used to address the face detection and

lip detection. The face detection algorithm employs Histogram of Oriented Gradients

(HOG) for feature selection and Support Vector Machine (SVM) for classification.

Machine learning consists of the implementation of the 3D convolutional neural net-

work and its training and subsequent testing. Lastly, the most relevant literature on

Visual Speech Recognition will be reviewed.

2.2 Face and Lip Detection

Facial detection has seen great advancements in the past decade and its use can be

seen in everyday technology, such as auto-focus on smartphone cameras. Software is

used to detect the faces in a digital image and then the camera is focused on those

detected faces. Any facial identification system uses a face detection algorithm for its

first stage; you need to detect a face before you can begin to identify it!

Face detection can be considered a specific type of object detection; object detection

is used to locate all items that belong to a certain class in an image. In this instance

the class is human faces and the algorithm is tasked with finding the location of each

6



face and putting a bounding box around each detected face as verification as seen in

Figure 2.1.

Figure 2.1: Example Output of a Face Detection Program [17]

Algorithms used for face detection include Classifier-Cascades (Viola-Jones), Eigen-

faces, Cross-correlation, Neural Networks, Principal Component Analysis, and many

more [44] [15]. This paper will use an algorithm based on Histogram of Oriented

Gradients and Support Vector Machine and will provide a background and review on

each [39].

2.2.1 Digital Image Representation

Before reviewing the algorithms used in face detection it is important to understand

how images are represented in a digital world. The first step in this understanding

is to think of an image as a 2D array of pixels, where pixels are the smallest possible

units that make up an image. This can be shown in the picture of the letter ’a’ in

Figure 2.2 . Each square in the grid represents one pixel and each pixel has a value

7



associated with it that describes its color. The left grid shows what the image would

look like and the right grid shows the corresponding 2D array of pixel values.

Figure 2.2: Digital Image Representation [10]

For this example, the pixel values are normalized between 0 and 1 but in a standard

8-bit image the values would be between 0 and 255. A pixel value of 0 corresponds to

completely black and a pixel value of 255 (or 1 in the normalized case) corresponds to

completely white. Since this is a gray scale image the array is 2D which corresponds

to the height and width of the image (in pixels). The image of the letter ’a’ in the

example is a 14x12 array.

For color images the array is 3D instead of 2D. It shares the same height and width

elements of gray scale images but now has three ’channels’, or 2D layers, with one

channel each for the red pixel value, green pixel value, and blue pixel value (RGB).

RGB is just one of multiple color spaces used for encoding digital images but is by

far the most common so the review will be limited to the RGB color space. In a color

image the three pixel values at each location combine to form the color you see in the

image. A visual depiction is included in Figure 2.3 to help readers visualize the 3D

array representation of color images [13].

8



Figure 2.3: Representation of Digital Color Images as 3D Array [13]

Every subsequent concept in computer vision builds on this idea of treating images

as arrays of pixel values. Doing this allows images to be broken down into a set of

numeric data which can then be used in computations with various algorithms.

2.2.2 Histogram of Oriented Gradients

Histogram of Oriented Gradients, known in the computer vision world as HOG, is

a commonly used feature representation for object detection. Its use for human

detection was first presented in [39] in 2005. HOG has shown great success in person

detection and has been further applied to the problem of face detection. Although

HOG has seen an increase in use for face detection it is worth mentioning that the

Viola-Jones object detection framework, which makes use of Haar features, is still the

predominantly used algorithm for face detection. The HOG technique is chosen for

this paper for two reasons: it has easier to use open-source implementations and is

more easily adapted to perform lip detection instead of face detection.

The first step in HOG involves computing the gradient vector at each pixel location,

also known as the image gradient [19]. Computing the gradient vector at each location
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involves comparing the adjacent pixel values and finding the direction that the image

is becoming lighter, or increasing in pixel value. To demonstrate this, consider the

example shown in Figure 2.4 where the gradient vector will be calculated for the pixel

highlighted in red.

Figure 2.4: Calculating the Gradient Vector [19]

The pixel values are increasing upwards with a magnitude of 93 − 55 = 38, and

towards the right with a magnitude of 94 − 56 = 38. Combining these two changes

as vectors in the x and y directions gives a resultant gradient vector shown in Figure

2.5. This process is repeated for every pixel location in the image, except for edge

pixels.

After calculating all of the necessary gradient vectors the next step is to break the

image down into cells and assemble histograms of the gradient vectors in each cell [20].

First, the size of each cell must be defined, a common size used in HOG algorithms is

an 8x8 cell (64 pixels total) such as the one highlighted in red in the image shown in

Figure 2.6. Then a histogram of each gradient vector in the cell is assembled as shown

in Figure 2.7 (except the bin values would range from 0-360 for this application) where

the bin numbers refer to vector orientation in degrees, and the counts in each bin are

10



Figure 2.5: Resultant Gradient Vector [19]

the sum of the magnitudes of each gradient vector in that direction. A bin size of 20

degrees is typically chosen (as seen in Figure 2.7).

Each cell is then represented by the vector orientation that is most frequent in the

histogram. This process is then repeated for every cell in the image until each cell

has a gradient vector to represent the pixel change in that localized area of the image.

This process significantly reduces the dimensionality and size of the image data when

compared to using the raw pixel values. When performed on an image of a human

face the output is shown in Figure 2.8. The HOG representation basically shows the

flow of light across the image from dark to light (increasing pixel values).

The output of the HOG is a feature vector containing magnitudes and directions at

each location in the image. The size of the feature vector is based on the cell size

used to generate the individual histograms. This feature vector can then be input

into a deep learning algorithm, such as a support vector machine. For face detection

specifically, the algorithm will have been trained using other HOG feature vectors

11



Figure 2.6: 8x8 Cell for HOG [20]

from images with faces in it and will then decide if the HOG feature vector is a

positive or negative match to the class of images it has been trained on.

2.2.3 Support Vector Machine

Support Vector Machine, commonly referred to as SVM, is a widely used classification

algorithm in the world of machine learning. It is a supervised learning model that

performs binary classification, which classifies an input as belonging to one of two

possible classes. The key feature of the SVM is that it finds the optimal hyperplane

between two classes by utilizing an allowable margin for overlap between the two

classes [53] [9].

In order to better understand the mechanics behind SVM, it is best to start with a

simple example of a 2D dataset. Consider the dataset shown in Figure 2.9, the goal

of the SVM is to draw a line that best separates the two classes. Doing so will then

allow the SVM to classify future points by determining what side of the classifier line

12



Figure 2.7: Histogram Used in HOG [20]

it lies on. Drawing a line to separate the two classes is easy enough and the green

line on the figure is just one of many options, but how can SVM decide which line

is the optimal line? The key concept of SVM is that the classifier boundary should

be as far away from each class of data point as possible; notice how the green line is

about equal distance from the black data points and the blue data points. This is

achieved by carefully considering the margin when calculating the classifier.

To understand the math behind SVM consider a similar example shown in Figure

2.10. First let us focus on the derivation of the boundary equation. The classifier

equation is the same for other linear classifiers: g(x) = wTx + b, where x is the input

data, which would be a vector with dimension 2 in this example, w is the weight

vector that gives the boundary equation its slope, and b is the bias that shifts the

equation up or down. When g(x) > 0 the classifier chooses x to belong to class 1

and when g(x) < 0 the classifier chooses x to belong to class 2. So then g(x) = 0 is

clearly the boundary equation for the classifier as shown in Figure 2.10 (the bolded

line in the middle) [57].
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Figure 2.8: Input Image (left) and Output of HOG (right) [16]

Figure 2.9: SVM Example for 2D Dataset [9]

The next step in the SVM process is to determine the equation for the margin lines.

Since the goal of SVM is to find the line (w and b values) that best separates the

classes, the classifier equation is applied to the points closest to the boundary. For

the blue points closest to the point the equation wTx + b = 1 is used and for the red

points the equation wTx + b = −1 is used [57]. This is done to generate a margin

that can be used to best separate the two different classes.

The margin is then given by the following equation (and can also be seen on Figure

2.10, where x+ and x− are the data points from each class closest to the margin:
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Figure 2.10: SVM Example with Boundary Equations [57]

wT

‖w‖
(x+ − x−) =

wT (x+ − x−)

‖w‖
=

2

‖w‖

The next step in the derivation is to find the boundary equation by maximizing the

margin between classes. This is considered a constrained optimization problem and

is formulated using the Lagrange multiplier [53].

The primal formulation is then, where yi are the individual training sample labels

(yiε{−1, 1}) and α is the vector of Lagrange Multipliers:

minL(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi[yi(w
Txi + b)− 1]

Maximizing the margin is the same as minimizing the magnitude of the weight vector.

Using this and rewriting the primal formulation with the weights in terms of the

training data, and substituting in leads to the dual formulation:

maxL(α) =
n∑

i=1

αi −
1

2

n∑
i,j

αiαjyiyjx
T
i xj
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subject to:
∑n

i=1 αiyi = 0, αi ≥ 0

These equations are then solved using quadratic programming and the discriminant

function is found to be:

g(x) =
∑
i

αiyi(x
T
i x) + b

Sometimes attempting to find a boundary with zero misclassifications is not possible

due to noise and outliers in the data to be classified, this issue is solved by the

introduction of a soft margin. This introduces a new parameter C which changes the

optimization problem to:

min
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi

In this situation C acts as a regularization parameter that controls the effect of the

constraints and ξ is a ’slack’ variable that is used to determine when a sample is either

a margin violation or a misclassification. A small C value will allow constraints to be

easily ignored which results in a large margin, where as a large C makes constraints

much harder to ignore which results in a small margin. A hard margin where all

constraints must be followed is the case where C is equal to infinity, which is simply

the base case first presented [57].

In the previous two examples a 2D space was considered which meant that the bound-

ary equation was a 1D line. The SVM algorithm can be used in higher dimension

spaces as well but instead of a boundary line it will be a boundary hyperplane. The
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SVM used in the face detection algorithm operates in a much higher dimension space

and as such utilizes a boundary hyperplane.

For the specific problem of face detection, a sliding window search strategy was em-

ployed where classification is performed on different windows in the image. SVM

compares the feature vector generated by HOG to other feature vectors of known

classes. First, HOG is applied to training images of faces and images of non-faces.

Each image is then associated with an output feature vector. These output feature

vectors are then used to train the SVM for classification. The trained SVM will then

perform the classification on HOG feature vectors.

If the sliding window search method identifies multiple potential bounding boxes, as

it commonly does, only the best fit box will be returned. Choosing of the best fit box

is done via non-maximum suppression (NMS). NMS starts with the bounding box

that has the highest score, which in the case of the SVM would be the distance from

the boundary equation, and suppresses all other boxes that overlap it [50].

2.2.4 Lip Detection

Following the face detection lip detection is performed by detecting the key facial

landmarks using a shape predictor. The shape predictor to be used is based off of

[46] and makes use of an ensemble of regression trees. This method is chosen because

its speed allows for real time detection. An example of the output of a shape predictor

used in conjunction with a face detector is shown in Figure 2.11.

The figure shows the initial face detected highlighted with the green region of interest

box. The shape predictor is then used to identify facial landmark points which are

identified by red dots. From here, the red dots corresponding to the lip region can

then be used to determine the region of interest for the lip data and crop that area

17



Figure 2.11: Example Output of Facial Landmark Detection [18]

out of the image. The mathematical background presented in [46] is intense and is

not the focus of this paper so is left out.

2.2.5 Data Processing

The last step before going on to the model training is the preparation of the data

extracted using the lip detector. Since the goal is to form a 3D array by adding a

time dimension to the already existing spatial dimensions, each frame is converted to

grayscale from color. If the images were not converted to grayscale each frame would

already be 3D and the time dimension would then make the output array 4D in nature.

Minimal research has been done on 4-Dimensional CNNs and few implementations

exist.

The lip data detected in each frame is a bounding box around the lips, which is then

cropped from the rest of the frame, forming a 2D array of pixel values. Each frame of

lip data in the video will likely be of different size so the 2D data arrays need to be
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resized to a common size in order for them to be compatible for stacking. After each

frame is resized they are all stacked together to form a 3D array. Each frame of lip

data is 2D and there are multiple frames in each video which adds a third dimension,

time, to the data. Figure 2.12 shows a visualization of the stacking of 2D arrays.

Figure 2.12: Stacking 2D Arrays to form a 3D Array [25]

2.3 Convolutional Neural Networks

The purpose of this next section is to explain the background on Convolutional Neural

Networks (CNNs), which is the machine learning model that will be used in speech

recognition. CNNs are a variation of standard neural networks (NNs); while in stan-

dard neural networks the layers of neurons are 1D in nature, they are 2D layers in

CNNs. This makes CNNs the obvious choice when solving image related problems.

Since digital images are 2D arrays of pixel data, as explained in the digital image

representation section, the 2D layers of CNNs work extremely well in conjunction

with these images.
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2.3.1 Neural Networks

Although there is a large difference between traditional neural networks and CNNs

due to their layer composition, there are a lot of similarities in the construction and

training of each. Before we can fully understand the principles behind CNNs it is

important to first understand NNs and their basics.

The most common use for NNs is to take a set of input data and then classify it into

different groups. They work by having layers of neurons, modeled off the neurons in

a human brain, that connect to each other and help the network make decisions and

learn patterns in data [7]. An overview of a simple neural network structure can be

seen in Figure 2.13.

Figure 2.13: Architecture of a Simple Neural Network [28]

In Figure 2.13, the white circles represent the individual neurons that make up each

layer of the network. The connections between neurons, represented as grey arrows

in the image, are called weights, and their values are updated as the model is trained.

These weights are the most important part of the network and are what allows the

network to make decisions about input data. All NNs have an input layer (shown
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in red), an output layer (shown in green), and a variable amount of hidden layers

(shown in blue).

Input layers are simply just the direct input values of the data being fed to the

network. The output layer is the layer tasked with performing classification of the

input data and the size usually corresponds to the number of classes in the dataset.

If the task of the NN is to predict a number based on a picture of a handwritten digit,

the ’classes’ would be the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Since there are

ten different classes the NN would have 10 output neurons. The output neuron with

the highest value after the input is fed into the network would be the predicted class.

The hidden layers are what gives the NN more complexity and allows it to perform

more difficult tasks. More hidden neurons equals more parameters which allows the

network to learn more complex patterns in the data.

Another important note about NNs is that each neuron is connected to every neuron

in the previous layer and every neuron in the next layer. Consider the example shown

in Figure 2.14 which shows 5 input neurons connected to two hidden neurons.

Figure 2.14: Weight Connection Between Neurons [27]
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The values in the input neurons are denoted by x1, ..., x5, while the values in the

hidden neurons are denoted by z1 and z2. Let the weights be denoted by wij for the

connection between input i, and neuron j in the next layer. The value z1 can then

be expressed as a summation of the inputs and weights according to:

z1 = w11x1 + w21x2 + w31x3 + w41x4 + w51x5

The value of the weights is determined during training which will be covered in a later

section. The z1 value is then put into an activation function and the output of that

function is the value held in the neuron. Activation function are used to increase the

non-linearity of the network and help it realize more complex functions and patterns.

Some commonly used activation functions for neural networks include the sigmoid

function and the rectified linear unit (ReLU). These functions are included below

[27].

Sigmoid: σ(z) = 1
1+e−z = ez

ez+1

ReLU: R(z) = z+ = max(0, z)

Graphs of these two activation functions are included in Figure 2.15 to demonstrate

the non-linear nature of each function.

Figure 2.15: Graph of Sigmoid and ReLU Activation Functions [5]
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2.3.2 Model Architecture

Now that the basics of neural nets have been covered, it is now appropriate to review

the theory on CNNs, as they are the machine learning model that will be implemented

in this paper. First, we will cover the architecture of CNNs and how they relate to

NNs.

Firstly, consider the CNN architecture shown in Figure 2.16, this network is used

to classify images into categories such as car, truck, van, bicycle, etc. The network

consists of multiple different types of layers that each behave differently. There are

three main types of layers: Convolutional, Pooling, and Fully Connected. This differs

from a NN where each layer operates the same but has a variable amount of neurons

[11].

Figure 2.16: Architecture of a Common CNN [11]

The first layer is a convolutional layer that is connected directly to the raw pixel

values of the input image (the input image and first layer must have the exact same

shape). This layer is the core of all CNNs and the most important element of the

network. They work by convolving a 2D filter around an image (or the output of a

previous layer). Consider the example shown in Figure 2.17, the blue square is the

filter and the red square is the image that the filter is being convolved around. A
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filter is a 2D array of numbers (the values of which are determined during training

just like weights in a traditional neural network), also called a convolutional kernel,

and in this case the filter size is 3x3 (which is the most commonly used size, with 5x5

the next most common).

The filter values and the image values in the neighborhood around the center pixel are

multiplied via 2-dimensional dot product and added to replace the center pixel (the

purple square in the right array). This is performed by multiplying the values from

each matching location in the filter and image and then summing all the products

together for the neighborhood. This process is repeated for every area on the image

that the filter can fit on and the output values are stored in a new array that is

the result of the convolution. All of these values are then input into an activation

function, which for CNNs is most commonly the ReLU activation function, and the

result is the output of the convolutional layer [12].

Figure 2.17: Example of a Filter Being Convolved Around an Image [12]

After one or multiple convolutional layers follows a pooling layer. The most commonly

used pooling layer is max pooling, but average pooling is also occasionally used (in

LeNet specifically [12]). Pooling layers are used to extract dominant features and

reduce the dimensionality of the data, which saves computing power [11]. Most
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traditional max pooling layers take a 2x2 area and replace it with the max value of

the area. This reduces the size of the data by half in each direction. A visual example

is included in Figure 2.18 that demonstrates both max and average pooling.

Figure 2.18: Max and Average Pooling Example [11]

The combination of input, convolution, ReLU activation, and pooling layers is what

makes up the feature learning section of the CNN; this section performs unsupervised

feature extraction. The second section of the CNN performs classification. This

classification section of the CNN is actually just a standard neural net as described

previously. This can be seen in the right section of 2.16.

Since the output from the feature learning section of the CNN is 2D but a standard

neural net only accepts 1D inputs, the 2D output must be flattened, as seen in the

first layer of the classification section in Figure 2.16. The flatten layer converts the

2D data array to a 1D data array. After the data has been flattened it is then input

to the classification NN as described in the previous section. In CNNs these standard

NN layers are called fully connected layers since each neuron is connected to every

neuron in the layers before and after it.

Lastly classification is performed using a softmax layer. A softmax layer simply

outputs the neuron with the highest value as the class. So if neuron 2 has the highest
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value then the CNN chooses class 2 as the most probable selected class for the input

image [12]. Softmax is chosen instead of a traditional max because it also rescales

output values to be between 0 and 1, where all the output values summed together

equal 1. Doing this allows the values to also be interpreted as a prediction confidence

rating. If the model predicts class 2 with a value of 0.65 it is much more certain of

the prediction than if it predicts class 2 with a value of 0.21.

2.3.3 Model Training

Model training enables a neural network to recognize patterns and make decisions or

classifications from data. It is essential in machine learning. Before we can talk about

the mathematics behind CNN model training we must first discuss what the model

will be trained with. Data used for training a model is called the training dataset and

data used for testing a model (after it has been trained) is called the test dataset. It

is important that samples used in the training dataset are not also present in the test

dataset. Showing the model samples from the test set invalidates results because it

is important to grade neural networks on their ability to classify unseen data.

Another consideration when training NNs is to have as much quantity of training

data as possible. This is because sometimes neural networks can become overfit to

their training data and lose their ability to generalize data. This means that some

networks can show extremely high training accuracy (the number of samples that it

predicts the correct class when compared to their training label), such as 99% or even

100%, but when applied to a test dataset perform significantly worse. What happens

is that the network learns how to recognize the difference between the exact training

data rather than learning the general pattern used in recognition. Using as large of

a training dataset as possible typically means an increase in training variance which

helps reduce the issue of overfitting.
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Training datasets are generally much larger than test datasets. In addition to training

and testing datasets there are validation sets. Validation sets are used to check the

performance of the model after each training cycle, allowing ML engineers to tune

hyper parameters on the fly, such as filter size, stride, or filter count, but is not used

for model learning. The test set is used after training has been completed to grade

the performance of the network. Although it is not uncommon for validation and

test sets to be used interchangeably since neither set is shown to the model during

training. A traditional approach is to use 70% of the data for training and 30% for

testing and validation but this is just a suggestion and other splits have worked well

too [4]. This split is visualized in Figure 2.19.

Figure 2.19: Split of Data into Training, Validation, and Test Datasets [4]

Model training consists of two important steps. First an input is fed into the model

and moves forward through each layer to the end of the network. Then the expected

output is compared to the actual output and the loss is calculated. This loss is then

propagated backwards through the network to update the weights in a process known

as back-propagation.

First, we start with how the loss is calculated. All training data in a supervised

learning method, which is what is used to train neural nets, has a label associated

it which tells the model which class the data actually belongs to. For example, if a

dataset has 10 different classes and a training data belongs to class 3 then it would

have a label vector of:
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[
0 0 1 0 0 0 0 0 0 0

]T

As can be seen there is a 1 in the 3rd location in the label vector, which is the class

that the training sample belongs to, and a 0 in all the other locations since the sample

is not a member of those classes. Next, the sample data is input into the network

and moves forward through the network. For example say that the sample output is

a vector of:

[
0.22 0.11 0.76 0.30 0.09 0.16 0.19 0.23 0.13 0.32

]T

This sample would be correctly classified because the value in the third location is the

highest value so the model would choose class 3 as its predicted class. Although the

model predicted the sample class correctly there is a still an error vector associated

with the training sample. The error vector is calculated based on the desired loss

function being used (of which there are many). For a multi-class classification problem

(where the number of classes ¿ 2) a standard loss function used is categorical cross-

entropy, which is what is used in this paper. Cross entropy is also called log loss, and

uses the following formula where yd is the desired output and ya is the actual output

[21]:

loss(yd, ya) = − log |1− yd − ya|

This loss is calculated for every individual entry in the output vector. A plot of the

loss function when the desired output is 1 is included in Figure 2.20. As can be seen
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when the actual value is close to 1 the loss is small, and when the error is far from 1

it is much larger.

Figure 2.20: Cross Entropy Loss Function when Desired Output is 1 [21]

After the loss is calculated at each neuron in the final layer of the network, this value

is then propagated backwards through the network, correcting the weights between

each neuron. The goal of this is to correct the weights that are most responsible for

the loss. The principle of back propagation is based on gradient descent [42].

As defined in the previous section, the neuron value before the activation function

(otherwise known as the induced local field v(n), where n is the iteration through the

training data) for neuron j is:

vj(n) =
∑
i

wij(n)yi(n)

Where yi(n) is the output of the neurons in the previous layer and wij(n) is the

associated weight vector for each connection from neuron i to neuron j. The output,

29



yj(n), of the neuron after applying the activation function for neuron j, ϕj(n), is

then:

yj(n) = ϕj(vj(n))

Each neuron has an instantaneous error energy associated with it defined using the

least-mean squared algorithm, where ej is the error function being used:

εj(n) =
1

2
e2j(n)

Next step is to find the partial derivative of the error energy with respect to the

weight vector. This is done using the chain rule of calculus:

∂εj(n)

∂wij(n)
=
∂εj(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wij(n)

One thing to note is that the ReLU activation function is not differentiable at 0. This

is solved by setting the derivative equal to 0 at that point. Next, differentiating both

sides of the instantaneous error energy equation leads to:

∂εj(n)

∂ej(n)
= ej(n)

Using a simplified loss function of ej(n) = yd(n)−yj(n), the partial derivative is then:

∂ej(n)

∂yj(n)
= −1
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Then differentiating the previously defined equation of yj(n) = ϕj(vj(n)) gives:

∂yj(n)

∂vj(n)
= ϕ′(vj(n))

Lastly, differentiating the previously defined equation of vj(n) =
∑

iwij(n)yi(n) gives:

∂vj(n)

∂wij(n)
= yi(n)

Now substituting these individual partial derivatives into the chain rule equation leads

to:

∂εj(n)

∂wij(n)
= −ej(n)ϕj

′(vj(n))yi(n)

The delta rule is then used to define the weight correction as:

∆wij(n) = −η ∂εj(n)

∂wij(n)

In this equation η is the learning rate parameter which is one of the most important

parameters in model training. Combining the two previous equations yields:

∆wij(n) = −ηδj(n)yi(n)

Where δj(n) is the local gradient of the neuron and is defined by:
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δj(n) =
∂εj(n)

∂vj(n)
= ej(n)ϕj

′(vj(n))

As can be seen in the previous equation the local gradient for the neuron is equal to

the product of the error signal for that neuron and the derivative of the activation

function. From this equation the weight adjustment for each connection can be calcu-

lated. Analyzing the equation it can be seen that the error signal is a key component

to the weight update. The error signal can be broken into distinct cases: when the

neuron is an output node and when it is a hidden node [42].

The output node is a more straightforward case since the desired output is provided

by the label associated with the training sample. The loss function is simply the

previously defined function of ej(n) = yd(n)− yj(n).

The more complicated case is when the neuron is a hidden node since there is no

explicit desired response value such as the training label for output nodes. This

means that the error signal must be propagated backwards from the output nodes

to the hidden nodes. The first step in this is redefining the formula for the local

gradient:

δj(n) = −∂εj(n)

∂yj(n)

∂yj(n)

∂vj(n)
= −∂εj(n)

∂yj(n)
ϕj
′(vj(n))

Next the partial derivative of the error energy must be calculated using the formula:

εj(n) =
1

2

∑
k

e2k(n)

Then differentiating each side results in:
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∂εj(n)

∂yj(n)
=
∑

ek
∂ek(n)

∂yj(n)

Combining this with previously defined equations leads to:

∂ek(n)

∂vk(n)
= −ϕk

′(vk(n))

Differentiating the previously defined formula for the induced local field, vk(n) =∑
iwki(n)yi(n), gives:

∂vk(n)

∂yj(n)
= wkj(n)

Combing the previous two equations gives:

∂εj(n)

∂yj(n)
= −

∑
δk(n)wkj(n)

Now finally substituting this equation into the error signal equation gives the local

gradient for hidden neurons:

δj(n) = ϕj
′(vj(n))

∑
δk(n)wkj(n)

Now that the local gradient has been defined we can revisit the formula for weight

correction:

∆wij(n) = ηδj(n)yi(n)
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∆wij(n) is the weight correction from neuron i to neuron j. δj(n) is the local gradient

as previously defined in the proof. yi(n) is the input signal from neuron i that feeds

into neuron j. η is the learning rate parameter that is controlled during the model

training. This parameter has a major impact on the model during training, if it is too

small training could take much longer than necessary as weights update too slowly,

wasting valuable time. If the learning rate is too large then large values of loss can

propagate backwards too strongly through the network and ruin previously defined

network weights [42].

The weights are then recalculated based on a concept called batches. A batch size

of 1 means that the weights are recalculated after every individual training sample.

More commonly a batch size of 16 or 32 is used in training [45]. This means that

the weight correction, ∆wij, is added together for 16 or 32 samples and then updated

each time the batch size is reached.

Each time the full set of training samples is used for weight correction is called an

epoch. In general, the more training epochs you can run the better but real life time

constraints exist. It is generally chosen to use as many epochs as time and hardware

allows for which could be 10, 100, 1000, or more based on the set of training data

being used.

After each training epoch the data should be randomized in order to help reduce

overfitting. As stated before increases in variance in the data presented during train-

ing helps reduce overfitting. Reshuffling the data helps the model avoid focusing on

specific patterns in the training data and focus on general patterns instead.

During training, classification accuracy and loss is closely monitored. Once either

metric reaches a level deemed acceptable the model training period is completed.
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2.3.4 Model Testing

After training the model is tested using the test dataset previously set aside. This

dataset is what is used to grade the performance of the model.

When testing the model each sample is pushed forward through the network but no

back propagation happens because the model is done learning. After being pushed

forward through the network, the model makes a prediction on the class of the input

based on the max neuron value in the output layer. This prediction is compared to

the known label, since the test dataset is labeled in the same manner as the training

and validation sets.

After testing each sample in the test dataset the number of misclassifications is used

to calculate the accuracy using the standard formula:

Accuracy =
TotalSamples−Misclassifications

TotalSamples
× 100

2.4 Related Works

The problem of VSR has been explored in [36], [35], [54], [43], and [38], among other

works.

Lip Reading in the Wild [36], authored by a team from the University of Oxford,

proposes both a pipeline for automated data collection for the building of advanced

datasets and CNN architectures that are able to recognize words from the assembled

dataset. This proposal is of importance to the VSR research community due to the

successful assembly of a new dataset in an uncontrolled environment. The authors

of [36] develop a framework for generating videos (of fixed length) of specific spoken
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Figure 2.21: Architectures Used in Lip Reading in the Wild Paper [36]

words taken from TV programs. This differs greatly from most VSR datasets that are

recorded and assembled in a controlled lab environment, and is a better approximation

of the videos seen in real-life classification tasks.

The second proposal of [36] is to investigate the performance of different CNN ar-

chitectures for recognition of the previously assembled dataset. They test the per-

formance of 4 different architectures, two 2D-CNNs and two 3D-CNNs, and achieve

a top recognition rate of 61.1% using a 2D CNN architecture with multiple input

towers that are concatenated after performing one convolution on each frame. The

architectures used in [36] are shown in Figure 2.21.

Interestingly, the authors of [36] consider their architectures 2D and 3D even though

the inputs to each are 3D and 4D respectively. The EF-3 and MT-3 architectures take

a collection of color images thus having the dimension of WxHx25x3 where W is the
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width of each frame, H is the height of each frame, 25 is the number of total frames

per video (the temporal dimension), and 3 is the multi-channels of the color image.

Our paper uses the conventional notation that CNNs with 3D inputs are considered

’3D CNNs’ especially since they perform 3D-Convolutions at the layer level.

The architecture used in this work is most similar to the EF architecture. The

main differences between our architecture and the EF architecture is the number of

pooling layers, number and size of fully connected layers, and the number of frames

that make up the input to the network. We use significantly less than 25 frames

due to the observation that the duration of most words is less than 25 frames, and

by including too many frames recognition rate could actually be worsened by the

inclusion of information unrelated to the target word.

Lip Reading Sentences in the Wild [35], authored by the same team as [36], takes the

work done in [36] and extends it a step further. Where [36] focuses on assembling a

dataset of spoken words from TV programs, [35] focuses on assembling a dataset of

spoken sentences from TV programs. [35] uses essentially the same pipeline as [36]

with minor modifications to assemble the new dataset. The task of recognizing the

spoken words is made much more difficult by the fact that the data is now sentences of

variable length rather than videos of fixed length containing one word. This requires

a more sophisticated ML model(s) than the one used in [36] and also requires the use

of audio data during training which was not used in [36].

The architecture in [35] makes use of essentially two different machine learning stages,

as is commonly seen in VSR tasks that require decoding of sentences. The first

machine learning stage is used as an unsupervised feature detector that features two

models in parallel, one for audio data and one for visual data. In [35] the visual section

of the first stage is a CNN in conjunction with Long Short Term Memory modules

(LSTM, also known as Recurrent Neural Networks) and the audio section involves

37



a linear cosine transform (known commonly as Mel Frequency Cepstrum, MFCC)

followed by LSTM modules. The second section of the model uses the outputs from

the audio and visual halves as an input into a second group of LSTM modules and

attempts to assemble words and match visual and audio data [35].

This structure of two or more separate ML models is commonly used in VSR tasks

that require full decoding of sentences. This model structure can be seen in Figure

2.22. The second half of this problem, assembling words from phonemes or visemes,

is similar to that in standard ASR and is explored in [51] and [49]. Both these papers

show the success of using Hidden Markov Models (HMMs) for speech recognition.

Figure 2.22: Overview of Traditional AV-ASR Programs

3D Convolutional Neural Networks for Cross Audio-Visual Matching Recognition [54],

is authored by a team out of West Virginia University, and is similar in nature to

[35]. [54] also uses the datasets assembled and presented in [36] and [35]. The work of

[54] attempts to build a network that maps audio and visual data to the same feature

space. It uses two non-identical 3D CNNs that are connected by a contrastive loss

function. One CNN is used for visual data and the other is used for audio data. The

contrastive loss function’s goal is to pull genuine data pairs (audio and visual data
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from the same video) closer together and push impostor pairs (audio and visual data

from different videos) farther apart.

The work of this paper most closely follows that of [36] and [54]. The preprocessing

pipeline of [54] that is used to extract lip data from videos is closely followed in this

work. Additionally, the 3D-CNN used for visual feature extraction is used as a starting

point network architecture for performing classification. The work of this paper relates

to [36] because we attempt to use a 3D-CNN to perform feature extraction and

recognition as opposed to just feature extraction, like in [54]. Essentially, the work of

[54] is adapted to perform the same task attempted in [36].
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Chapter 3

METHODS & IMPLEMENTATION

3.1 Overview

This section will lay out the actual software and mathematics used to implement the

model used for visual speech recognition. A block diagram of the overall work is

shown in Figure 3.1.

Figure 3.1: Overview of Thesis Work

3.2 Dataset

Before any code can be written, the first actual step in the project is to decide

and compile the dataset to be used. Compiling a comprehensive VSR dataset is a

complicated task due to the difficulty of finding and labeling data. In this situation

the data is a video of a speaker and the label is the spoken word or group of words.

This task has been discussed in [36] and [35].

The dataset to be used in this project is the one presented in [36] and is titled Lip

Reading in the Wild (LRW). The LRW dataset was compiled by J. S. Chung and A.

Zisserman from the University of Oxford and is presented in [36]. Table 3.1 compares
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this dataset to various other datasets used in VSR research, and is pulled directly

from [36].

Table 3.1: Comparision of Various Datasets [36]

Name Env. Output I/C # class # subj. Best perf.

AVICAR In-car Digits C 10 100 37.9%
AVLetter Lab Alphabet I 26 10 43.5%
CUAVE Lab Digits I 10 36 83.0%
GRID Lab Words C 8.5 34 79.6%

OuluVS1 Lab Phrases I 10 20 89.7%
OuluVS2 Lab Phrases I 10 52 73.5%
OuluVS2 Lab Digits C 10 52 -

LRW TV Words C 500 1000+ -

The major differences between LRW and other datasets is the environment, number

of classes, and number of subjects. Each video in the LRW dataset is cut out of a

TV program on BBC, which is what gives it its In the Wild moniker since videos

are not recorded in a controlled lab environment (AVICAR is the only other dataset

not recorded in a lab). I/C stands for isolated and continuous, samples in the LRW

dataset are single words cut out of an entire sentence, further adding to the more

natural and in the wild nature of the data. LRW also has 500 different spoken words

making it the largest of the available datasets and has over 1000 different speakers

which is significantly more than any other dataset. For a combination of these reasons,

the LRW dataset has been one of the most popular datasets for speech recognition

research tasks.

The LRW dataset is broken up into training, testing, and validation subsets and

consists of 500 classes. Each class is a single spoken word. Each subset contains

samples from every class. The training subset was compiled using TV clips from

1/1/2010 to 8/31/2015 and contains 800-1000 samples per class. The validation

subset was compiled using TV clips from 9/1/2015 to 12/24/2015 and contains 50

samples per class. Lastly, the test subset was compiled using TV clips from 1/1/2016
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to 9/30/2016 and also contains 50 samples per class [36]. From the date range it is

clear that there is no overlap between subsets since all videos are pulled from new

broadcasts. These statistics are shown in Table 3.2.

Table 3.2: LRW Dataset Statistics [36]

Set Dates # class # per class

Train 1/1/2010-8/31/2015 500 800-1000
Validation 9/1/2015-12/24/2015 500 50

Test 1/1/2016-9/30/2016 500 50

Each sample is a video containing 29 frames, at a frame rate of 25 frames per second,

for a total duration of 1.16 seconds each. For each sample the word occurs in the

middle of the video. Included with each video is metadata that gives the duration of

the word, which could be used to determine the exact starting and end frames. All

videos are included as mp4 files and are labeled using the format ’WORD.mp4’, such

as ACCORDING.mp4 for a sample thats class is the word ’according’ [36].

3.3 Classification and Accuracy Goals

The goal of this thesis is to classify the first 100 words included in the LRW dataset

using a 3D-CNN. A subset of the dataset is considered rather than the entire 500 word

dataset due to memory constraints. Classification of a 100 word dataset in an un-

controlled environment is still a challenging task and is still a more complex problem

than classifying many of the datasets presented in Table 3.1. A list of the 100 words

is presented in Table 3.3. The dataset still includes difficult to distinguish pairs such

as AGAIN-AGAINST, ALLOW-ALLOWED, AMERICA-AMERICAN, ATTACK-

ATTACKS, BENEFIT-BENEFITS, CHANGE-CHANGES, and CHARGE-CHARGES,

which keeps the classification task a challenging problem.
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Table 3.3: 100 Word Subset of the LRW Dataset

ABOUT ABSOLUTELY ABUSE ACCESS ACCORDING
ACCUSED ACROSS ACTION ACTUALLY AFFAIRS
AFFECTED AFRICA AFTER AFTERNOON AGAIN
AGAINST AGREE AGREEMENT AHEAD ALLEGATIONS
ALLOW ALLOWED ALMOST ALREADY ALWAYS

AMERICA AMERICAN AMONG AMOUNT ANNOUNCED
ANOTHER ANSWER ANYTHING AREAS AROUND
ARRESTED ASKED ASKING ATTACK ATTACKS

AUTHORITIES BANKS BECAUSE BECOME BEFORE
BEHIND BEING BELIEVE BENEFIT BENEFITS
BETTER BETWEEN BIGGEST BILLION BLACK
BORDER BRING BRITAIN BRITISH BROUGHT
BUDGET BUILD BUILDING BUSINESS BUSINESSES
CALLED CAMERON CAMPAIGN CANCER CANNOT
CAPITAL CASES CENTRAL CERTAINLY CHALLENGE
CHANCE CHANGE CHANGES CHARGE CHARGES
CHIEF CHILD CHILDREN CHINA CLAIMS
CLEAR CLOSE CLOUD COMES COMING

COMMUNITY COMPANIES COMPANY CONCERNS CONFERENCE
CONFLICT CONSERVATIVE CONTINUE CONTROL COULD

The full training set (800-1000 samples per class) for the first 100 words will be used.

It was chosen to use all the samples of a subset rather than use all classes but with

fewer samples. Using fewer samples per class has been shown to have a strong negative

affect on neural net accuracy [36].

The validation accuracies presented in [36] will serve as the benchmark as it has the

current state-of-the-art results on the LRW dataset using a CNN. The results from the

four CNN architectures tested in [36] are 44% and 46% for the two 3D architectures

and 57% and 61% for the two 2D architectures. These results are for classifying the

entire 500 word dataset.

The authors of [36] also tested each model on a 333 word subset of the LRW dataset.

The subset removes words that are plurals of another word (ex. BENEFIT and

BENEFITS) in the dataset and words that have the same visemes (as explained in

the introduction) such as BILLION and MILLION or WORSE AND WORST. The
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accuracy of the models in classifying the 333 word subset all see substantial increases

and the new highest accuracy is 65%.

Rather than remove plurals and viseme ambiguities this thesis includes them since

the dataset is already being restricted to a 100 word subset. This keep the problem

both complex and challenging when compared to other VSR works. It is expected

that word combinations such as BENEFIT-BENEFITS, CHANGE-CHANGES, and

CHARGE-CHARGES, all of which are present in the 100 word subset, will make

successful classifications more difficult. Due to this slightly different dataset used

in comparison with [36] it is difficult to draw exact comparisons but the goal is to

achieve similar performance classifying the 100 word dataset with pluralities to the

results of the 333 word dataset.

3.4 Hardware

All processing and model training was performed on a Nvidia GeForce 2080 Ti GPU

with an Intel Zion 2.1Ghz processor, 16-core CPU, with 32GB of RAM. The machine

had Ubuntu 18.04.3 64-bit operating system with kernel version 4.15.0-65 and CUDA

version 10.0.13.

3.5 Software

Firstly, the entire project is written in the Python 3 programming language. Python

has been the go to language for many machine learning researchers in recent times.

One of the main reasons for this is the plethora of already defined libraries and

frameworks available for researchers.
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NumPy is a scientific computation library that is excellent for array based operations.

Much of machine learning is based in linear algebra concerning vectors and arrays,

which makes NumPy hugely popular and important. In addition to this library, SciPy

can be used for further advanced computation and Scikit for implementing specific

ML algorithms and data mining [31].

In addition to these libraries are Keras and Tensorflow. Tensorflow is one of the

premier open source library for handling complex back-end ML operations [32]. It is

written in C++ and Python, and also developed and maintained by Google Brain,

giving it great reliability and flexibility. Keras is another open sourced library specif-

ically for neural networks and written in Python [34]. Keras is primarily used in

conjunction with Tensorflow, as a front-end API that is extremely easy to use with

Tensorflow as the powerful back-end. This combination of Keras and Tensorflow

makes Python one of the most popular languages used when dealing specifically with

neural networks [31].

In addition to the neural network implementation is the lip detector module. The lip

detector module is based off the dlib face detector. Dlib is an open source computer

vision and machine learning library written in C++ with easy to implement Python

APIs. Dlib is one of the most widely used face detection softwares for two reasons:

it is fully open source and is available for both commercial and academic use, and it

is also one of the fastest implementations available since it is written completely in

C++ [14].

All processing of video and image files will be handled with OpenCV. OpenCV is the

premier open source computer vision library, and is called cv2 within the Python en-

vironment. It is written in C and C++ and has implemented APIs in many languages

included Python. It also has support for Keras and Tensorflow. It was released over
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10 years ago and is the largest open source computer vision project in existence and

has extensive support for many applications [3].

Other specific, but minor, software packages used during implementation will be men-

tion as they are used. The main software packages used are the previously mentioned

Numpy, Dlib, OpenCV, and Keras with Tensorflow.

3.6 Lip Detection

This section will discuss the actual implementation from a software standpoint for

building the lip detection framework. This includes the lip detector module to be

applied to each video, the framework for applying it to every sample and storing the

result, and the framework for making the accompanying labels for each sample.

3.6.1 Lip Detector Module

The lip detector module is built primarily off the dlib face detection package as

described previously. It will also make use of the OpenCV library for handling video

files, Numpy for converting videos and images to usable arrays and storage of those

arrays, and also imutils, an open source library developed by Adrian Rosebrock of

Pyimagesearch, which is a series of OpenCV convenience functions [22].

The first step our module performs is to load dlib’s predefind face detector. The face

detector then requires a path to the Dlib shape predictor file. The shape predictor is

a ’.dat’ file provided directly from dlib and is included in the same directory as the

source code. This is performed using the following code:

predictor_path = 'shape_predictor_68_face_landmarks.dat' # Define path
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detector = dlib.get_frontal_face_detector() # Initialize detector

predictor = dlib.shape_predictor(predictor_path) # Load predictor

For this project we are using the 68 point facial landmark detector as can be seen in

the first line of the code above. Dlib’s face detector makes use of the HOG and SVM

algorithms outlined previously in the background chapter. The 68 point detector can

be seen in Figure 3.2.

Figure 3.2: 68 Point Facial Landmark Detector Used by Dlib [18]

This detector is chosen over smaller, faster detectors, such as the 5 point predictor,

due to the later need of isolating just the lip region. This is easily done by referring

to a subset of the predictor points.

After the detector has been initialized the facial landmark predictor loaded, the video

path is provided to OpenCV and is then loaded into the environment. The video

object is then opened and a while loop is used to iterate through each frame of the

video. This is performed using the following code:

video = cv2.VideoCapture(video_path) # Read video in

47



while(video.isOpened()):

ret, frame = video.read() # Capture frame

In addition to the actual video frame, the video.read() function returns a boolean

value that is used to check if the frame exists. If the frame exists, it is then time

to process the frame and apply the face detector. An example of all the frames in a

sample video is included in Figure 3.3

Figure 3.3: Frames in a Sample Video

The first thing to do with each frame is convert it from color to grayscale, using the

mapping from RGB to Gray of G = 0.299R+0.587G+0.114B . This is because since

each frame will be stacked together to build the 3D data array the individual frames

will need to be 2D. Stacking color frames would make a 4D array which requires
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more computing with minimal increases in performance [33]. Each frame will also be

resized to a standard size before being placed in the lip detector. The frame will then

be input into the previously initialized lip detector. The code for this is as follows:

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Convert to grayscale

frame = cv2.resize(frame,(224,224)) # Resize image

faces = detector(frame,1) # Detect faces in image

The frames are all resized to be 224 pixels by 224 pixels in order to reduce processing

time for frames of greater size (and since this size is known to work with this face

detection implementation). The 1 argument to the detector function means to up-

sample the image 1 time, which helps the detector find smaller harder to detect faces.

Since we know each sample has exactly one speaker, if the detector detects more than

1 face or 0 faces then that video sample is discarded. This is acceptable due to the

abundance of training data for every class.

The face object that is returned from the detector is then input into the shape pre-

dictor to identify the locations of the landmark. The output of the shape predictor is

converted to a Numpy array for convenience, using the imutils library. This is shown

in the following code.

shape = predictor(frame,face) # Identify facial landmarks

shape = face_utils.shape_to_np(shape) # Convert shape to numpy array

This shape array that contains locations of the facial landmarks is then used to locate

the lips in the image. Since from Figure 3.2 the landmarks that correspond to the lips

are 48-68, only that subset of the shape array is used. That subset is then converted

to a numpy array and used as an input in OpenCV’s bounding rectangle function.
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A margin of 10 pixels is included to grab excess information around the lips as just

using the strict landmarks tends to be too tight of a crop and some information is

lost. This is always possible since each video includes a much larger area than just the

face, as shown in Figure 3.3. This bounding rectangle is then applied to the frame

to grab the required lip data. Lastly, the lip data is resized to a common size for

concatenation compatibility. The code for this is included below.

(x, y, w, h) = cv2.boundingRect(np.array([shape[48:68]])) # Find bounding box

margin = 10 # Extra pixels to include around lips

lips = frame[y-margin:y + h + margin, x-margin:x + w + margin] # Grab lips

lips = cv2.resize(lips,(100,60)) # Resize to standard size

The lip frames are resized to 60 by 100 pixels because this will match the first layer

of the CNN that it will be input in to. A collection of lips from each frame is shown

in Figure 3.4.

Figure 3.4: Detected Lips in Each Video Frame

The last step of the lip detector is to stack the lip frames together to create a 3D array.

The lip frames are stacked together using Numpy’s dstack function, which stacks 2D

50



arrays to form a 3D array. Afterwards, the array is reshaped using Numpy’s moveaxis

function. The array needs to be reshaped in order to be compatible with the first layer

of the CNN. The lip detector module accepts a path to a video file as the argument

and returns the 3D array of lip frames as a numpy array. A software diagram for the

lip detector module is included in Appendix D.

3.6.2 Processing Framework

The tree structure of the dataset is shown in Figure 3.5. Only the first two classes

are shown, which are ’About’ and ’Absolutely’, the actual directory structure extends

for all 500 classes. Inside each class are 3 folders: test, train, and val, and each folder

contains the actual ’mp4’ sample files and a corresponding ’txt’ file that contains the

metadata.

Figure 3.5: Directory Structure for LRW Dataset
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The first function in the processing framework goes through each subfolder in the

directory and applies the lip detector module to each mp4 file. If no face is detected

in the ’mp4’ file, the program simply skips the file, otherwise the output of the module

is the previously mentioned numpy array.

This numpy array is then sliced using standard array slicing methods in Python. The

array is sliced to grab the middle 11 frames of the video. This is done to isolate the

actual frames that correspond to the word being spoken. Since only part of the video

is the target word, it makes sense to discard the extraneous information that does

not pertain to the target word. For this reason 11 frames are chosen because it is the

closest to the average frame length per word as seen in Table 3.4.

Table 3.4: Duration of Words in LRW Dataset

Duration (s) # of Frames

Max 0.8 20
Min 0.09 2.25

Average 0.424 10.6

The resulting numpy array is then stored using the command np.save(location,numpy_array).

The location for the stored array is the current directory that the input ’mp4’ file is

located. This is chosen for simplicity.

Next, it makes sense to move all ’.npy’ files to their own directory for future conve-

nience when assembling the training, validation, and test sets. Each numpy folder

is moved to a corresponding ’test’,’train’, or ’val’ folder based on which folder it is

currently stored. The new folders are located on the same level as the ’lipread mp4’

directly, just below the main ’LRW’ directory as seen in Figure 3.5.
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3.7 Model Training

3.7.1 Label Maker

The first step of preparing the data to be used for training is making the associated

labels to accompany the data. Since there are 100 classes in the dataset all the

labels will be vectors of length 100. The labels are made corresponding to the class

directories located in the ’lipread mp4’ directory. Each label is a vector of all 0’s with

a 1 in the location that corresponds to the class. For example, the word ’About’,

which is the first class in the dataset will have a label vector of:

[
1 0 0 0 0 0 0 0 .....

]T

Furthermore the label vector for ’Absolutely’, the second class in the dataset will have

a label vector of:

[
0 1 0 0 0 0 0 0 .....

]T

Each label vector is stored as a ’.npy’ file using the previously mentioned numpy save

command. They are all stored in a ’labels’ directory located on the same level as

’lipread mp4’, just below the ’LRW’ directory.

3.7.2 Assemble Dataset

Next, the dataset needs to be assembled according to Keras CNN compatibility. Keras

models expect datasets to be one array where the dimension of the array is one larger
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than the dimension of each training sample. For example if the training dataset is

100 images of size [50, 200] then the dimension of the training array will be a 3D array

of size [100, 50, 200].

For our project each input into the CNN will have size [11, 60, 100, 1], the 4th dimen-

sion of 1 is needed for CNN compatibility, since convolution operations will expand

that dimension it needs to be initialized before training. This leads to an array size

of [X, 11, 60, 100, 1], where X is the number of samples in each set. For the 100 class

subset the test set contains 4919 samples, the training set contains 95991 samples, and

the validation set contains 4937 samples. Each numpy array is built using Python’s

built in ’append’ function.

At this point it is important to normalize all the data to be between 0 and 1, this is

a step that is usually performed when training neural networks in order to keep loss

from destabilizing the model. Every value in the array is divided by 255.0 to convert

to the proper range (since pixel values range from 0 to 255).

Dividing by 255.0 converts each value from a unsigned 8-bit integer (uint8) to a float.

The standard float type in Python is a 64-bit value (float64). This means that each

dataset now takes up 8 times as much memory. Using the standard float type for the

100 class dataset leads to a memory requirement of:

95991× 11× 60× 100 = 6, 335, 406, 000Floats× 8Bytes/F loat = 47.2GB

All files need to be open at the same time due to the way Keras implements neural

network training. This is larger than the RAM available as described in the hardware

section. To solve this issue every float value is converted to a 16-bit value (float16)

which still allows for 4 decimal points of precision.
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3.7.3 Model Architecture and Initialization

From this point on, all model intialization, training, testing, etc. is done using the

Keras API with Tensorflow-GPU backend. The ’model init’ function takes an input

shape as its only parameter. It starts by initializing a model using the Keras Sequen-

tial API. Sequential models are linear stacks of layers and are the traditional choice

when building CNNs.

The base 3D-CNN architecture is based off the architecture described in [54] which

the authors use for feature extraction. This base architecture will then be altered

multiple times in an attempt to increase accuracy. Each of the individually altered

architectures and their results will be presented in the Results chapter.

The base architecture consists of four 3D-convolutional layers, three 3D-max pooling

layers, and three fully connected layers. The convolutional layers all use a kernel size

of 2, which in 3D is a 2x2x2 cube, a stride size of 1, and ReLu activation. Kernel size

is the size of the filter in the convolutional layers, and stride is how many pixels the

filter moves in each direction between convolution operations. The number of filters

start at 16 and increase by a factor of two in each subsequent layer (32, 64, 128).

The max pooling layers use a pool size and strides of (1,2,2) with the 1 being in the

temporal dimension.

After the last convolution layer is a flatten layer that converts the data to 1D for

compatibility with fully connected layers. The first two fully connected layers use

ReLu activation and have 1024 and 512 neurons respectively. The final fully connected

layer uses softmax activation for classification and has 100 neurons to match the

number of classes. After each of the first two fully connected layers a 0.5 dropout is

applied in order to reduce overfitting. Dropout reduces all values below a threshold

to zero.
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The base model architecture is shown in Table 3.5 and the code to initialize the base

CNN architecture is shown below that.

Table 3.5: Base Model Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 9x58x98x16 3x3x3 1
Pool1 9x58x98x16 9x28x48x16 1x3x3 1x2x2
Conv2 9x28x48x16 7x26x46x32 3x3x3 1
Pool2 7x26x46x32 7x12x22x32 1x3x3 1x2x2
Conv3 7x12x22x32 5x10x20x64 3x3x3 1
Pool3 5x10x20x64 5x4x9x64 1x3x3 1x2x2
Conv4 5x4x9x64 3x2x7x128 3x3x3 1
Flatten 3x2x7x128 5376 - -

FC1 5376 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

model = Sequential()

model.add(Convolution3D(input_shape=shape,filters=16,kernel_size=3,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,3,3),strides=(1,2,2)))

model.add(Convolution3D(filters=32,kernel_size=3,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,3,3),strides=(1,2,2)))

model.add(Convolution3D(filters=64,kernel_size=3,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,3,3),strides=(1,2,2)))

model.add(Convolution3D(filters=128,kernel_size=3,strides=1,activation='relu'))

model.add(Flatten())

model.add(Dense(1024, activation='relu'))
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model.add(Dropout(0.5))

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(100, activation='softmax'))

3.7.4 Model Training Script

The model training script begins by calling the previously defined function to build

the training and validation dataset and labels arrays. Next it uses the other previously

defined function to initialize the Keras CNN model.

Next the model is compiled using the standard Keras ’model.compile’ function. A

stochastic gradient descent (SGD) optimizer is used with learning rate equal to 0.02

and Nesterov momentum. SGD is an iterative method that is used to perform the

weight updates during model training. Nesterov momentum is used to speed up the

training process by accelerating gradient vectors in the right direction [26]. The learn-

ing rate of 0.02 was the largest rate that was able to successfully train the models

from scratch. Since the model architectures used are not well-known architectures

with pretrained models available they must all be trained from scratch. A categor-

ical cross entropy loss function was used as is standard for multi-class classification

problems.

From here the model is trained using the ’model.fit’ function with shuffle set to True.

Shuffling the data randomizes the order of the samples presented to the model each

training epoch. This is another parameter used to help reduce overfitting.

Model training is monitored by considering both training and validation accuracy.

Models with viable architectures started to show sharp increases in accuracy after
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three epochs. Each model was trained until the validation accuracy didn’t improve

for five epochs.
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Chapter 4

TESTING AND RESULTS

4.1 Face and Lip Detection

The face and lip detection program was applied to all video samples for the first

100 classes of the LRW dataset. Once a face was detected, the lips were extracted

using the dlib shape predictor landmarks, so all videos that had detected faces had

corresponding detected lips. Detecting faces on the other hand did produce some

errors. There were two types of face detection errors: no faces detected and more

than one face detected (since every video was only one speaker). Samples that had

detection errors were discarded from the datasets. Even after discarding the samples

with detection errors, there was still enough samples to successfully train the model.

The statistics of the face detection program are shown in Table 4.1. The correct

classification rate of 98.62% resulted in enough samples needed to help reach model

accuracy goals. The no face error resulted about 3 times as often as the multiple

face error but both were relatively infrequent compared to the amount of correct

classifications.

The numer of samples of each dataset after processing is shown in 4.2. Each sample

was a 4D Numpy array of size (11,60,100,1). The shape of each dataset was then a

Table 4.1: Face Detection Statistics

Type Number Percentage

Face Correctly Detected 105,847 98.62%
No Face Detected 1,112 1.04%

Multiple Faces Detected 373 0.35%
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5D array with shape (X,11,60,100,1) where X is the number of samples per dataset.

The results of the validation set are used to evaluate performance since the dataset

was slightly larger than the test dataset. In practice, when the final trained model

was tested on both the test and validation datasets the results were negligible. For

example, for model #1 the final validation accuracy was 56.98% and test accuracy

was 57.32% and for model #6 the final validation accuracy was 63.68% and test

accuracy was 63.90%. Furthermore, validation accuracy was recorded after every

training epoch so more data was available to draw conclusions.

Table 4.2: Samples per Dataset

Dataset Number of Samples

Training 95,991
Testing 4,919

Validation 4,937

4.2 Model Architectures and Results

4.2.1 Model #1

As mentioned in the implementation chapter, multiple different architectures were

tested. Each architecture was a modified version of the base architecture presented

in the implementation chapter. The base architecture will be considered Model #1

and is shown in Table 3.5.

This model had 6,373,124 parameters (weights) of which 5,506,048 were connections

between the last convolution layer and the first fully connected layer. The output of

the convolutional section of the network was a vector of dimension 5,376.

Model #1 showed promising results for it being the first architecture tested. It showed

a peak validation accuracy of 58.44% which occurred after 12 epochs. Since this was
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the first model it was used as a test for the training script on multiple machines and

training accuracy data from scratch was not recorded.

4.2.2 Model #2

Model #2 was a minor modification on the first model that consisted of adding one

more pooling layer and convolutional layer in the hopes that the extra convolutional

layer would increase accuracy. After the 4th convolutional layer (the last convolutional

layer of the base architecture) another 3D max pooling layer was added, followed by

a 5th 3D convolutional layer. In order to accommodate the dimensionality loss from

the additional layers, the kernel sizes of both the pooling layers and convolutional

layers were changed from 3 to 2. This also allowed us to investigate the effectiveness

of kernels of size 2, as most research has been done on CNNs with kernel size 3.

The architecture of Model #2 is shown in Table 4.3, with changes from the base

architecture bolded.

Table 4.3: Model #2 Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 10x59x99x16 2x2x2 1
Pool1 10x59x99x16 10x29x49x16 1x2x2 1x2x2
Conv2 10x29x49x16 9x28x48x32 2x2x2 1
Pool2 9x28x48x32 9x14x24x32 1x2x2 1x2x2
Conv3 9x14x24x32 8x13x23x64 2x2x2 1
Pool3 8x13x23x64 8x6x11x64 1x2x2 1x2x2
Conv4 8x6x11x64 7x5x10x128 2x2x2 1
Pool4 7x5x10x128 7x2x5x128 1x2x2 1x2x2
Conv5 7x2x5x128 6x1x4x256 2x2x2 1
Flatten 6x1x4x256 6144 - -

FC1 6144 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

Adding these two layers greatly reduced the number of parameters in the network.

The output of the convolutional section was now 6,144 (from 44,800) which greatly
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reduced the total parameters from 46,538,708 to 7,217,364. Despite the reduction in

total parameters, Model #2 actually showed an increase in performance. It achieved

a peak validation accuracy of 64.84% which occurred after 22 epochs. The training

and validation accuracy’s after each epoch are shown in Figure 4.1.

Figure 4.1: Model #2 Accuracy Results

4.2.3 Model #3

Model #3 used the most different architecture of any tested in this paper. It consisted

of banks of two convolutional layers followed by one max pooling layer rather than

alternating convolutional and pooling layers. This architecture was inspired from the

VGG architecture that has shown promising results in image classification tasks [56].

The architecture consists of two 3D convolutional layers followed by a max pooling

layer, this is then repeated two more times. Then it is followed by a convolutional,

max pooling, and convolutional layer similar to the structure used in the base archi-

tecture. This was the largest amount of convolutions that could be performed based

on the sample array size due to the reduction in dimensionality from each convolution
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and pooling layer. This resulted in a convolutional section output of size 2,304 and

3,328,324 total parameters. The architecture of Model #3 is shown in Table 4.4, with

changes from the base architecture bolded.

Table 4.4: Model #3 Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 10x59x99x16 2x2x2 1
Conv2 10x59x99x16 9x58x98x16 2x2x2 1
Pool1 9x58x98x16 9x29x49x16 1x2x2 1x2x2
Conv3 9x29x49x16 8x28x48x32 2x2x2 1
Conv4 8x28x48x32 7x27x47x32 2x2x2 1
Pool2 7x27x47x32 7x13x23x32 1x2x2 1x2x2
Conv5 7x13x23x32 6x12x22x64 2x2x2 1
Conv6 6x12x22x64 5x11x21x64 2x2x2 1
Pool3 5x11x21x64 5x5x10x64 1x2x2 1x2x2
Conv7 5x5x10x64 4x4x9x128 2x2x2 1
Pool4 4x4x9x128 4x2x4x128 1x2x2 1x2x2
Conv8 4x2x4x128 3x1x3x256 2x2x2 1
Flatten 3x1x3x256 2304 - -

FC1 2304 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

Model #3 had about half as many parameters as Model #2 but performed similarly.

It achieved a peak validation accuracy of 61.09% after 30 epochs. The training and

validation accuracy after each epoch are shown in Figure 4.2.

4.2.4 Model #4

Model #4 uses the base architecture and adds two more convolutional layers and

a max pooling after the end of the convolutions with the idea that the extra con-

volutional layer relative to Model #2 can increase accuracy. It consists of three

convolutional layers in a row each increasing in filter number. It starts with the 128

filter layer that is the last convolutional layer of the base network and then follows
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Figure 4.2: Model #3 Accuracy Results

that with a 256 filter layer and then a 512 filter layer. The architecture of Model #4

is shown in Table 4.5, with changes from the base architecture bolded.

These convolutions reduce the dimension of the convolutional section output to 10,240

and 12,460,756 total parameters. This network achieved a peak validation accuracy

of 63.93% which occurred after 19 epochs. The training and validation accuracy after

each epoch are shown in Figure 4.3.

4.2.5 Model #5

Model #5 uses a similar architecture to Model #3 in that it uses banks of two

convolutional layers followed by a max pooling layer. This set of three layers is

repeated four times, with each set increasing the number of filters in the convolutional

layer. The architecture of Model #5 is shown in Table 4.6.

This architecture had the least amount of parameters with 2,410,692 and a convolu-

tional output dimension of 1,536. It achieved a peak validation accuracy of 60.75%
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Table 4.5: Model #4 Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 10x59x99x16 2x2x2 1
Pool1 10x59x99x16 10x29x49x16 1x2x2 1x2x2
Conv2 10x29x49x16 9x28x48x32 2x2x2 1
Pool2 9x28x48x32 9x14x24x32 1x2x2 1x2x2
Conv3 9x14x24x32 8x13x23x64 2x2x2 1
Pool3 8x13x23x64 8x6x11x64 1x2x2 1x2x2
Conv4 8x6x11x64 7x5x10x128 2x2x2 1
Conv5 7x5x10x128 6x4x9x256 2x2x2 1
Conv6 6x4x9x256 5x3x8x512 2x2x2 1
Pool4 5x3x8x512 5x1x4x512 1x2x2 1x2x2
Flatten 5x1x4x512 10240 - -

FC1 10240 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

which occurred after 39 epochs. The training and validation accuracy after each

epoch are shown in Figure 4.4.

4.2.6 Model #6

The last model test uses the same architecture as Model #2 but has double the

number of filters in each convolutional layer to test if increasing filter count can

increase accuracy. The architecture of Model #6 is shown in Table 4.7.

This model performed similarly to Model #2 and achieved a peak validation accuracy

of 64.49% which occurred after 24 epochs. This model had 14,553,924 total parame-

ters, about double that of Model #2. The training and validation accuracy after each

epoch are shown in Figure 4.5.

65



Figure 4.3: Model #4 Accuracy Results

4.3 Analysis of Results

Table 4.8 compares the results of all six architectures tested. Model #2 had the best

performance with a validation accuracy of 64.84%. Since all the models were derived

from the same base model they all exhibited similar performance.

When total parameters were increased the model reached peak validation accuracy in

fewer epochs, demonstrating a strong inverse relationship between total parameters

and number of epochs until max accuracy. The only model to deviate from this

pattern was Model #6, which actually took more epochs than the comparable Model

#2 that had half as many parameters. Doubling the filter count in each layer for

Model #6 vs Model #2 had a negligible effect on accuracy but at the cost of doubling

the parameters.

Adding extra convolutional layers past 5 did little to help the accuracy of the model.

Models #3 and #5 had the most convolutional layers at 8 which also resulted in the
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Table 4.6: Model #5 Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 10x59x99x16 2x2x2 1
Conv2 10x59x99x16 9x58x98x16 2x2x2 1
Pool1 9x58x98x16 9x29x49x16 1x2x2 1x2x2
Conv3 9x29x49x16 8x28x48x32 2x2x2 1
Conv4 8x28x48x32 7x27x47x32 2x2x2 1
Pool2 7x27x47x32 7x13x23x32 1x2x2 1x2x2
Conv5 7x13x23x32 6x12x22x64 2x2x2 1
Conv6 6x12x22x64 5x11x21x64 2x2x2 1
Pool3 5x11x21x64 5x5x10x64 1x2x2 1x2x2
Conv7 5x5x10x64 4x4x9x128 2x2x2 1
Conv8 4x4x9x128 3x3x8x128 2x2x2 1
Pool4 3x3x8x128 3x1x4x128 1x2x2 1x2x2
Flatten 3x1x4x128 1536 - -

FC1 1536 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

least amount of parameters. This is because the majority of CNN parameters are in

the fully connected layers and by applying more convolutions the dimensionality of

the convolutional section output is reduced.

Figure 4.6 shows the individual plots for epoch versus validation accuracy of each

model on the same plot.
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Figure 4.4: Model #5 Accuracy Results

Table 4.7: Model #6 Architecture

Layer Input Size Output Size Kernel Stride

Conv1 11x60x100x1 10x59x99x32 2x2x2 1
Pool1 10x59x99x16 10x29x49x32 1x2x2 1x2x2
Conv2 10x29x49x16 9x28x48x64 2x2x2 1
Pool2 9x28x48x32 9x14x24x64 1x2x2 1x2x2
Conv3 9x14x24x32 8x13x23x128 2x2x2 1
Pool3 8x13x23x64 8x6x11x128 1x2x2 1x2x2
Conv4 8x6x11x64 7x5x10x256 2x2x2 1
Pool4 7x5x10x256 7x2x5x256 1x2x2 1x2x2
Conv5 7x2x5x256 6x1x4x512 2x2x2 1
Flatten 6x1x4x512 12288 - -

FC1 12288 1024 - -
FC2 1024 512 - -
FC3 512 100 - -

Table 4.8: Comparison of Different Architectures Performances

Model # Peak Accuracy Epochs for Max Acc. Total Parameters Conv Layers

Model #1 58.44% - 6,373,124 4
Model #2 64.84% 22 7,217,364 5
Model #3 61.09% 30 3,328,324 8
Model #4 63.93% 19 12,460,756 6
Model #5 60.75% 39 2,410,692 8
Model #6 64.49% 24 14,553,924 5
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Figure 4.5: Model #6 Accuracy Results

Figure 4.6: Model Accuracy Comparison
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Chapter 5

CONCLUSION

5.1 Summary of Work

In this work we presented both a processing framework for extracting lip data from

videos and various 3D-CNN architectures for performing visual speech recognition on

a dataset of 100 similar words recorded in an uncontrolled environment. We showed

that our model achieved 64.8% validation accuracy which is in line with other recent

work done on this problem. Most notably our results are similar to those presented

in [36], the only current paper to use 3D-CNNs for classification of the LRW dataset.

The results of the face detection program provided a processing framework that can

achieve greater than 98% success rate in extracting lip frames from videos and out-

putting a 3D array of data. This processing framework will be available for use by

the open-source community via Github. This framework excels in its simplicity in

that it takes only a path to a video file and returns an array of lip data. This frame-

work is also easily adjusted to return any other face subregion from the 68-point dlib

facial landmark set. For example, using landmarks 37-48 can be used to return a 3D

data packet centered on the eyes, which could be useful for applications such as gaze

detection.

The results of the model training and testing show that 3D-CNNs can be used for

unsupervised extraction of temporal features. It is hard to make a direct comparison

with the results presented in [36] due to the differences in datasets but our results

still show that 3D-CNNs can be used to perform VSR. Furthermore, the authors of

[36] used 25 frames from each video with each lip frame being of size 124x124 and in
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our work we used an input size of 11 frames, with each frame of size 60x100, a 82%

reduction.

The architecture presented in model #2 performed the best of all architectures tested.

This result when compared to the performance of other architectures leads to the

conclusion that 5 convolutional layers worked best for this classification task. It

showed a 6% increase in accuracy compared to the 4 convolutional layer network

and the performance of other networks with 6 or more convolutional layers did not

outperform it. The results also showed that ending with a convolutional layer rather

than with a pooling layer produced better results.

This issue could also be explained by the difference in parameters before the start of

the fully connected layers. Models #2, #4, and #6 were the top three performing

models. These 3 models also had the most parameters before the start of the fully

connected layers. Although, model #2 had the least of the three and had the best

performance of the three so it is hard to say definitively if that was the reason.

We also showed with our various architectures that using a kernel of size 2x2x2 can

be successful in comparison with many works that use the more traditional kernel

size of 3x3x3, which is what was used in both [36] and [54].

The results in Table 4.8 also present an observation regarding total parameters in

relation to training epochs. Models with more parameters reached peak validation

accuracy faster in a nearly linear relationship, with Model #6 being the only data

outlier. The best performances occurred with 5, 5, and 6 convolutional layers respec-

tively leading to the conclusion that 5 or 6 is the most ideal number of convolutional

layers for accuracy, which can be further backed up by the results of [36] where all

the architectures presented used 5 convolutional layers.
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5.2 Limitations

The main limitations of this work had to do with the time required to process each

video and the memory required to store the dataset during model training. Also,

the complex nature of CNN architectures leaves many possible architecture types

untested.

Processing each video to extract and assemble the lip data took about 2 seconds

on our machine. When considering the entire LRW dataset which consists of about

1050 videos per class, and 500 classes, this results in a processing time of about 12

days, when running continuously. The main reason for the relatively slow processing

speed is that the face detection algorithm can not be easily sped up by the use of

GPUs. Using the HOG+SVM face detection technique had the benefit of the simple

implementation and easy adaption for lip detection, but has a massive drawback in

speed when compared to a CNN based detector that can utilize a GPU. If designing

a real-time application for VSR it would make sense to either redesign a processing

framework based around CNN face detection or to write low level code that would

allow the HOG+SVM technique to be run on a GPU. Even if the HOG+SVM tech-

nique could be run on a GPU, there is no guarantee that it would show substantial

increases in speed as GPUs are not optimized for all operations (they are mainly used

currently for neural network training among other things).

The memory constraint was caused by the size of the training dataset array. Even

using the smallest float precision that python would allow the dataset still took up

over 50% of the available memory. In order to train a model using the entire 500 word

dataset either more memory would need to be available for use or the program would

have to be rewritten in a more memory efficient language such as C++. Performing

72



classification on only the first 100 words was chosen both for this limitation and the

one regarding processing time.

The last limitation has to do with the complex nature of CNNs and the many options

present when designing them. Due to the multiple different layer types (convolution,

pooling, fully connected, etc.) and parameters for each type (kernel size, stride, filter

count, etc.) it is difficult to test a comprehensive set of models. To some degree

choosing model architectures can be more of an art than an exact science due to the

nearly limitless combinations of layer types and parameters.

5.3 Future Work

5.3.1 Accuracy Improvements

5.3.1.1 Model Architecture Changes

Due to the previously mentioned complexities when choosing a convolutional neural

network architecture, there are many different tweaks that could be tested in order to

attempt to increase the model accuracy. Some of these possibilities include different

pooling layers, convolutional layer parameters, and fully connected layer sizes.

In terms of pooling layers there are both different types of pooling layers that could

be used as well as different parameters for max pooling layers. Other pooling options

include average pooling layers and convolutional layers with larger strides. Average

pooling layers are used less commonly than max pooling layers as they do a worse

job at extracting the more important features like edges and corners [11]. There is

also the option of using large stride convolutional layers which has been explored in

[52]. This method was briefly attempted in this work but did not immediately yield
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positive training results and was abandoned for the continued use of max pooling

layers.

In terms of convolutional layers, there are many parameters that can be tweaked

while still maintaining the overall structure of the network. This work used kernel

sizes of two rather than the more traditional size of three in order to allow room for

more convolutional layers in the network. One option could be to use a larger lip

frame size than 60x100 which could allow for the same network architecture but with

convolution kernel sizes of three or greater. Another option would be to use padding,

which would allow for convolutions to be performed without a loss of dimensionality.

Also, the effect of changing filter count was briefly tested in Model #6 but showed

very similar results to Model #2. This was the only attempt at focusing on the

changing of filter counts and only double the number of filters was tested.

Lastly, the number and size of the fully connected layers could easily be altered.

Only the last layer size of 100 neurons must be kept the same due to the number of

classes in the LRW subset being tested on. There is the option of either increasing

or decreasing the number of neurons in the first two fully connected layers as well

as adding another fully connected layer. Increasing the number of neurons increases

the complexity of the network which traditionally leads to higher training accuracy

but not always higher validation accuracy. Having too complex of a fully connected

network can easily lead to overfitting and actually decrease validation accuracy. Still,

it could be a worthwhile pursuit as this work never adjusted the size of the fully

connected layers at all.
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5.3.1.2 Image Preprocessing

A common technique for increasing the accuracy of image classification models is to

apply different filters to images before model training. Filters such as Sobel, Gabor,

and Difference of Gaussian have been shown to improve the results of face recognition

models by increasing contrast near edges and other key areas [55].

Other preprocessing methods such as mean normalization could possibly help results.

The only preprocessing down in this work was a simple normalization to scale pixel

values between 0 and 1 by dividing each value by 255. This work focused more on

model architectures rather than processing techniques and leaves a lot of possibilities

for improvement for future researchers willing to test different processing techniques.

5.3.1.3 Included Frames

This work decided to use the middle 11 frames of each video to form the 3D arrays

used to train the CNN models. The two other papers used for inspiration used 25

frames [36] and 9 frames [54], with each also producing decent results in line with

this paper. This leaves the possibility that the optimal value of included frames is

still yet to be determined and could become the focus of a future work.

The reasoning for the use of 11 frames in this work was to use the average number

of frames per word but most words fall either below or above this value. Words with

frame lengths less than 11 end up including extraneous information that is not related

to the target word. On the other hand, words with frame lengths greater than 11

have a loss of information that could end up being vital to differentiating it from

similar words. This is true especially for words that are longer than 11 frames and
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also include plural words in the same dataset (such as BENEFIT and BENEFITS),

which could cause high misclassification rates.

5.3.2 Application for Full Scale VSR

The problem of full scale visual speech recognition is much more complicated than

the problem approached in this work. As mentioned in the introduction, full scale

VSR requires the use of statistical models such as LSTM to determine the most likely

sequence of visemes. Since training a 3D-CNN to detect all 150,000+ words in the

English language is not a realistic application, a different approach must be made.

This work shows that 3D-CNNs can be successful in extracting temporal features to

use for speech recognition which leads to the idea that a 3D-CNN can be a valid

choice for a viseme detector. Using this model in conjunction with a framework that

breaks videos down into smaller segments can be a practical approach to improving

VSR.

Since there are less than 15 visemes in the English language, there is a high probability

that the 3D-CNN can detect visemes with higher than the 64% accuracy reported in

this work. Using this model as a viseme detector which is then used as an input to

a LSTM model has the possibility of improving upon the state-of-the-art for stand

alone VSR. The challenging part of this concept would be the successful building of

a framework that can extract segments of video that correspond to single visemes.

Nevertheless this is an exciting possibility for improvement in a field that still has

much room for growth.
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5.3.3 Enhancement of Existing ASR Systems

The other main reason for VSR research is the effect of combining it with main stream

ASR to increase accuracy. This is especially true for ASR in noisy environments such

as in a restaurant or other public settings, which can be considered one of the main

weaknesses of current audio-based ASR systems.

The results of this work show that 3D-CNNs have the potential to be state-of-the-

art in VSR, which when used in conjunction with current ASR systems can increase

accuracy in previously difficult environments. Since the need for ASR will always

outweigh the need for stand alone VSR systems, this is the most likely application

of the work shown here. Using the idea presented in the previous section on full

scale VSR, this model can be used to improve current ASR systems. By combining

audio data with video data, researchers have been able to improve the performance

of audio-based ASR systems [48] [41].

A 3D-CNN would be especially good for ASR systems with limited number of words

to classify. Examples of this would be classifying spoken numbers such as 1 through

10, or spoken letters A through Z. Our work showed that a 3D-CNN can perform

classification on a dataset with 100 similar words, leading to the observation that

it would also perform well in the two described scenarios which would have 10 and

26 classes respectively. Also for systems with a limited number of voice commands,

around 100 or less, a 3D-CNN would be suitable.
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APPENDICES

Appendix A

LIP DETECTOR MODULE CODE

#########################################################################################

# Lip Detector Module

# Matt Rochford

# This file defines the function to be used for lip detection in videos.

# Input is a path to an mp4 file (or other video type supported by cv2.VideoCapture).

# Output is a 3D data packet of frames of lip data stored as a numpy array.

#########################################################################################

# Import the necessary packages

from imutils import face_utils

import numpy as np

import cv2

import dlib

import time

#########################################################################################

# Define path to dlib predictor

predictor_path = 'shape_predictor_68_face_landmarks.dat'

#########################################################################################
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# Lip detection function

def lip_detector(video_path):

# Uncomment this line for use with timing block at bottom of function

#t0 = time.time()

# Initialize dlib's face detector (HOG-based) and create facial landmark predictor

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(predictor_path)

# Read video in as mp4 file

video = cv2.VideoCapture(video_path)

# Check if video opened

if (video.isOpened()==False):

print('Error opening video file: ' + video_path)

return # Return from function if video does not open

lip_frames = [] # Initialize variable to store lip frames

count = 0 # Initialize counter to track frames

# Read video frame by frame

while(video.isOpened()):

ret, frame = video.read() # Capture frame

if ret == True: # if frame exists

count = count + 1 # Increment counter

if 10 <= count <= 20: # If frame is in target time area then detect faces

# This line can be removed to process all frames in video

# Keeping this line only processes the middle 11 frames of video
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# Convert frame to grayscale and resize to a standard size

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

frame = cv2.resize(frame,(224,224))

# detect face in the image

faces = detector(frame, 1)

if len(faces) > 1: # If more than one face detected print error and return

#print('Error: Multiple faces detected in video')

return 2 # Return error code 2

elif len(faces) == 0: # If no face detected print error and return

#print('Error: No face detected in video')

return 0 # Return error code 0

else: # If one face detected perform lip cropping

for face in faces:

# Determine facial landmarks for the face region and convert to a NumPy array

shape = predictor(frame, face)

shape = face_utils.shape_to_np(shape)

# Extract the lip region as a separate image

(x, y, w, h) = cv2.boundingRect(np.array([shape[48:68]]))

margin = 10 # Extra pixels to include around lips

lips = frame[y-margin:y + h + margin, x-margin:x + w + margin]

lips = cv2.resize(lips,(100,60))

# Create a stack of extracted frames

if len(lip_frames) == 0:

lip_frames = lips

else:

lip_frames = np.dstack(((lip_frames),(lips)))
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else: # If no frame left break from loop

break

# Release video object

video.release()

# Close any open windows

cv2.destroyAllWindows()

# Reshape array for CNN layer compatibility

lip_frames = np.moveaxis(lip_frames,-1,0)

# Uncomment this block to keep track of processing time per video

#t1 = time.time()

#total = t1-t0

#print('Lip detection time: '+str(total))

return lip_frames

#########################################################################################

# REFERENCES:

# Code for reading and editing video files is adapted from 'Learn OpenCV'

# https://www.learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/

# Code for lip detection is based off Dlib library and an implementation from PyImageSearch

# https://www.pyimagesearch.com/2017/04/10/detect-eyes-nose-lips-jaw-dlib-opencv-python/
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Appendix B

PROCESSING FRAMEWORK CODE

#########################################################################################

# Video Preprocessing Framework

# Matt Rochford

# This is the main function that implements the lip detector on each video

# file and stores the output numpy arrays. Also includes all helper functions.

#########################################################################################

# Import modules

from lip_detector import lip_detector

import os

import numpy as np

import time

#########################################################################################

# Define Paths

input_folder = '../LRW/lipread_mp4/' # Path to folders of each class

output_folder = '../LRW/' # Included for help when storing output numpy arrays

#########################################################################################

# This function forms a subset of the LRW dataset consisting of the first 100 classes.

# The output is a list of each class name to then be used in deciding which classes

# to process.
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def data_subset():

# Initialize counter f

i = 0

# Initialize array for storing class names

subset_strings = []

# Loop through each class directory e.g. ABOUT, ABSOLUTELY, ACCESS

for directory in os.listdir(input_folder):

# Only include the first 100 classes

if i < 100:

subset_strings.append(directory)

# Increment counter

i = i + 1

# Return list of 100 class strings

return subset_strings

#########################################################################################

# This function applies the lip detector function to all the files in the input folder

# and saves the output numpy files to the output folders.

def process_videos():

# Form list of subset strings

subset = data_subset()

# Initialize variables for performance evaluation

91



mult_faces_tot = 0

no_faces_tot = 0

face_tot = 0

i = 1

# Loop over each file in entire dataset

# Loops over each word directory Ex. ABOUT, ABSOLUTELY, ACCESS, etc.

for directory in os.listdir(input_folder):

# Start timer to keep track of processing time per class

t0 = time.time()

print('Processing '+directory+' class #'+str(i))

i = i + 1

# Initialize variables for per class evaluation

mult_faces = 0

no_faces = 0

face = 0

# If class is in the 100-class subset

if directory in subset:

# Loops over each sub directory, test train val

for sub_directory in os.listdir(input_folder+directory):

# Loops over each file in final directory

for file in os.listdir(input_folder+directory+'/'+sub_directory):

# Only use mp4 files

if file.endswith('.mp4'):
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# Generate label for output data file

label = os.path.splitext(file)[0] # Grab file base name

label = label + '.npy'

# Check if file has already been processed and update counter

if os.path.exists(output_folder+sub_directory+'/'+label):

face = face + 1

# Otherwise process file

else:

# Form full input path using directory and individual file

path = input_folder+directory+'/'+sub_directory+'/'

# Perform lip detection and return data array

data_array = lip_detector(path+file)

# If face detection error, keep track for evaluation

if isinstance(data_array,int):

if data_array == 2:

mult_faces = mult_faces + 1

elif data_array == 0:

no_faces = no_faces + 1

# If face was detected successfully

else:

# Update counter

face = face + 1

# Define path to output folder

path = output_folder+sub_directory+'/'
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# Save output numpy array to output folder

np.save(path+label,data_array)

# Update total evaluation stats with class stats

mult_faces_tot = mult_faces_tot + mult_faces

no_faces_tot = no_faces_tot + no_faces

face_tot = face_tot + face

# Print detection rate for each class

print('Correctly detected faces in '+directory+': '+str(face))

print('No faces detected in '+directory+': '+str(no_faces))

print('Multiple faces detected in '+directory+': '+str(mult_faces))

# Reset per class counters

mult_faces = 0

no_faces = 0

face = 0

# Print class processing time

t1 = time.time()

total = t1-t0

print('Processing time: '+str(total))

# Print total detection rate

print('Correctly detected faces total: '+str(face_tot))

print('No faces detected total: '+str(no_faces_tot))

print('Multiple faces detected total: '+str(mult_faces_tot))

#########################################################################################

# This function is used to calculate max min and average word duration for help with

# training. Average word duration is used to determine amount of frames to include for
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# training.

def duration():

# Initialize array to store word durations

duration = []

# Loop over each file in entire dataset

# Loops over each word directory Ex. ABOUT, ABSOLUTELY, ACCESS, etc.

for directory in os.listdir(input_folder):

# Loops over each sub directory, test train val

for sub_directory in os.listdir(input_folder+directory):

# Loops over each file in final directory

for file in os.listdir(input_folder+directory+'/'+sub_directory):

# Only read txt files

if file.endswith('.txt'):

data = [] # Initialize dummy variable to store text data

path = input_folder+directory+'/'+sub_directory+'/'+file # Define path to file

with open(path,'rt') as myfile:

for line in myfile:

data.append(line) # Append lines to dummy variable

time = float(data[-1].split()[1]) # Grab duration value

duration.append(time) # Add duration to total array

print('Mean, max, and min word durations:')

95



print(np.mean(duration))

print(np.max(duration))

print(np.min(duration))

#########################################################################################

if __name__ == "__main__":

#duration()

process_videos()
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Appendix C

MODEL TRAINING AND TESTING CODE

#########################################################################################

# 3D CNN

# Matt Rochford

# This file contains functions used for loading and assembling datasets, and initializing,

# training, and testing the 3D CNN model used for visual speech recognition.

#########################################################################################

# Ignore numpy and tensorflow compatibility warnings

import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)

# Import tensorflow and ignore some errors

import os

import tensorflow as tf

tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

# Import other modules

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential, load_model

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.convolutional import Convolution3D, MaxPooling3D

from keras import optimizers

import numpy as np
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#########################################################################################

# Define path to datasets

input_folder = '../LRW/'

#########################################################################################

# This function forms a subset of the LRW dataset consisting of the first 100 classes.

# The output is a list of each class name to then be used in deciding which classes

# to process.

def data_subset():

# Initialize counter f

i = 0

# Initialize array for storing class names

subset_strings = []

# Loop through each class directory e.g. ABOUT, ABSOLUTELY, ACCESS

for directory in os.listdir(input_folder):

# Only include the first 100 classes

if i < 100:

subset_strings.append(directory)

# Increment counter

i = i + 1

# Return list of 100 class strings

return subset_strings
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#########################################################################################

# This function create labels for each class and saves them as .npy files to the proper

# directory.

def label_maker():

# Make string of classes to be used in dataset

subset = data_subset()

# Initialize counter for label making

i = 0

folder = input_folder+'lipread_mp4/'

# Loops over each word directory Ex. ABOUT, ABSOLUTELY, ACCESS, etc.

for directory in subset:

# Hard code label of size 100 for each word in dataset subset

# Change to 500 if using entire LRW dataset

label = np.zeros((100), dtype=int)

# Assign value of 1 at proper location

label[i] = 1

# Create name for label file

name = directory+'_label.npy'

# Create path to labels folder

path = input_folder+'labels/'

# Save numpy file to labels folder

np.save(path+name,label)
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# Increment counter

i = i + 1

#########################################################################################

# This function builds a 4D data array to use for model training. Key is which dataset to be

# assembled: test, train, or val. The output is one array of the entire dataset with ordered

# labels.

def build_4D_arrays_and_labels(key):

# Generate string of classes for data subset

subset = data_subset()

i = 0

# Initialize arrays for data and labels

dataset = []

labels = []

# Define path to proper dataset folder: test,train,val

path = input_folder+key+'/'

# For each numpy array file from lip detector output

for file in os.listdir(path):

name = file.split('_')

# Only add files in data subset

if name[0] in subset:

# Load numpy array

data = np.load(path+file)
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# Grab correct frames if full video was processed earlier

if data.shape[0] != 11:

data = data[9:20,:,:]

# Add 4th dimension to numpy array for CNN layer compatibility

data = np.expand_dims(data,axis=-1)

# Normalize training data to 0~1 range

data = data / 255.0

# Convert to shortest float for memory allocation demands

data = np.float16(data)

# Grab file base word

word = file.split('_')[0]

# Make label file string

label_file = word+'_label.npy'

# Load label array

label = np.load(input_folder+'labels/'+label_file)

# Append data to list

dataset.append(data)

labels.append(label)

# Convert lists to numpy arrays

dataset = np.stack(dataset)

labels = np.stack(labels)

# Print output stats

print(key+' dataset size and label size')

print(dataset.shape)

print(labels.shape)

# Save numpy arrays to save processing time when no new data is added

np.save(key+'_data.npy',dataset)
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np.save(key+'_labels.npy',labels)

return dataset, labels

#########################################################################################

# This function is used to load a dataset that was already assembled using the

# 'build_4D_arrays_and_labels' function. Used to save time when no changes to dataset

# have been made.

def load_dataset(key):

dataset = np.load(key+'_data.npy')

labels = np.load(key+'_labels.npy')

return dataset,labels

#########################################################################################

# Function to initialize 3D CNN

# Only input to function is the shape of the input numpy array used for training.

# Formatted as a 3 item tuple, which is also the output of object.shape.

# Returns the tensorfow model object and prints the model summary.

# This current architecture is the one that produced the best results with a

# validation accuracy of 63~64%

def model_init(shape):

print('Initializing CNN Model using Keras')

model = Sequential()

model.add(Convolution3D(input_shape=shape,filters=16,kernel_size=2,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))
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model.add(Convolution3D(filters=32,kernel_size=2,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))

model.add(Convolution3D(filters=64,kernel_size=2,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))

model.add(Convolution3D(filters=128,kernel_size=2,strides=1,activation='relu'))

model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))

model.add(Convolution3D(filters=256,kernel_size=2,strides=1,activation='relu'))

model.add(Flatten())

model.add(Dense(1024, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(100, activation='softmax'))

print(model.summary())

return model

#########################################################################################

# Main function for training the keras model. This function creates training labels,

# calls array building functions, initializes model, and then trains it.

def train_model():

# Make training labels

label_maker()
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# Build training dataset

print('Building training dataset')

#train_data,train_labels = build_4D_arrays_and_labels('train')

train_data,train_labels = load_dataset('train')

# Build validation dataset

print('Building validation dataset')

#val_data,val_labels = build_4D_arrays_and_labels('val')

val_data,val_labels = load_dataset('val')

# Initialize Keras model

model = model_init(train_data[1].shape)

# Load Keras model (use if you want to continue training on an already made model)

#model = load_model("model.h5")

# Nesterov momentum increases learning rate throughout training

sgd = optimizers.SGD(lr=0.02,nesterov=True)

# Compile using categorical cross entropy loss function

model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=['accuracy'])

# Train model using keras fit

print('Training Keras Model')

# Use for loop for training to help save weights after each epoch

for i in range(20):

# Train model

model.fit(train_data,train_labels,epochs=5,validation_data=(val_data,val_labels),shuffle=True)

# Save model after each epoch

model.save("model.h5")

104



#########################################################################################

# This function is used for testing the final performance of the trained model.

def test_model():

# Build testing dataset

print('Building testing dataset')

#test_data,test_labels = build_4D_arrays_and_labels('test')

test_data,test_labels = load_dataset('test')

# Load model

model = load_model("model.h5")

# Evaluate model with test dataset

[loss,accuracy] = model.evaluate(test_data,test_labels)

accuracy = accuracy*100

# Print test results

print('Testing loss: '+str(loss))

print('Testing accuracy: '+str(accuracy))

#########################################################################################

if __name__ == '__main__':

train_model()

#test_model()

#model = model_init((11,60,100,1))
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Appendix D

SOFTWARE DIAGRAMS

Figure D.1: Software Diagram for Lip Detector Module
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