
 

 

 

A ROTATING APERTURE MASK FOR SMALL TELESCOPES 

 

 

 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Mechanical Engineering  

 

 

by 

Edward Leo Foley 

November 2019



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 

Edward Leo Foley 

ALL RIGHTS RESERVED 



iii 

COMMITTEE MEMBERSHIP 

 

TITLE: A Rotating Aperture Mask for Small Telescopes 

  

AUTHOR: Edward Leo Foley 

  

DATE SUBMITTED: November 2019 

  

COMMITTEE CHAIR: John Ridgely, Ph.D. 

Professor of Mechanical Engineering 

  

COMMITTEE MEMBER: Russell Genet, Ph.D. 

Research Scholar in Residence 

  

COMMITTEE MEMBER: William R. Murray, Ph.D. 

Professor of Mechanical Engineering 

  

COMMITTEE MEMBER: Jane Zhang, Ph.D. 

Professor of Electrical Engineering 

 



iv 

ABSTRACT 

A Rotating Aperture Mask for Small Telescopes 

Edward Leo Foley 

 

Observing the dynamic interaction between stars and their close stellar neighbors is key 

to establishing the stars’ orbits, masses, and other properties. Our ability to visually 

discriminate nearby stars is limited by the power of our telescopes, posing a challenge to 

astronomers at small observatories that contribute to binary star surveys. Masks placed at 

the telescope aperture promise to augment the resolving power of telescopes of all sizes, 

but many of these masks must be manually and repetitively reoriented about the optical 

axis to achieve their full benefits. This paper introduces a design concept for a mask 

rotation mechanism that can be adapted to telescopes of different types and proportions, 

focusing on an implementation for a Celestron C11 Schmidt–Cassegrain optical tube 

assembly. Mask concepts were first evaluated using diffraction simulation programs, later 

manufactured, and finally tested on close double stars using a C11. An electronic rotation 

mechanism was designed, produced, and evaluated. Results show that applying a 

properly shaped and oriented mask to a C11 enhances contrast in images of double star 

systems relative to images captured with the unmasked telescope, and they show that the 

rotation mechanism accurately and repeatably places masks at target orientations with 

minimal manual effort. Detail drawings of the mask rotation mechanism and code for the 

software interface are included. 
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1. INTRODUCTION 

1.1 Statement of problem 

Stars that share a mutual gravitational bond provide valuable information to 

astronomers. Observing the evolution of a binary system’s separation and position angle 

over a sufficiently long period of time allows us to chart orbits and establish the 

dynamical mass of the system using Kepler’s Third Law (Bennett, Donahue, Schneider, 

& Voit, 2014). The dynamical mass can be combined with other information to deduce 

the masses of the system’s individual components, which in turn help us place the star 

within an evolutionary timeline (Hillenbrand & White, 2004). 

 Approximately half of all stars are believed to reside in binary systems (Bennett, 

Donahue, Schneider, & Voit, 2014), but some of these stars are easy to miss because they 

are dim relative to their neighbor, close to their neighbor or both. Frequently, the light 

from the brighter star will overwhelm the light from the dimmer star, making the dim star 

difficult to isolate (Daley, 2007; Hecht, 2002, p. 514). A similar issue arises when stars of 

similar magnitude lie close together, in which case their light becomes muddled together 

by atmospheric interference or they fall beneath the resolution limit of the telescope 

observing them, rendering the stars effectively indistinguishable. 

 Many of the overlooked stars are late-M stars, which are cool, faint, and red 

relative to other main-sequence members (Figure 1). Type-M dwarfs are believed to 

represent about three-quarters of all main-sequence stars (Yang, Cowan, & Abbot, 2013; 

van Dokkum & Conroy, 2010), but their low luminosity compared to other main-

sequence stars leads them to account for a disproportionately small number of 

observations (Malmquist, 1925). These stars are typically viewed with charge-coupled 
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device (CCD) cameras, which tend to have low sensitivity to wavelengths in the infrared 

range where late-M stars emit much of their energy, further complicating their study 

(Figure 2). Improving our ability to detect these dim binary components will allow us to 

enhance the accuracy of our binary star records and strengthen the models that depend on 

them. 

 

 

Figure 1. Hertzsprung–Russell diagram (NASA/CXC/SAO, 2015). Luminosity increases 

along the vertical axis and temperature decreases along the horizontal axis. Type-M 

stars appear toward the right side of the diagram. 
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Figure 2. Top, a comparison of the quantum efficiency of common CCD models across a 

range of wavelengths (Bernhard, 2012). Bottom, spectral cross-correlation template for 

an M3 star (Spectral cross-correlation templates - SDSS DR7, 2005). Note that the two 

graphs cover similar domains despite using different wavelength units. 
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One method of improving resolution is to use a larger telescope: telescopes with 

larger apertures have greater light-collecting potential and produce concentrated 

diffraction patterns less prone to obscuring dim neighbors of bright stars (Figure 3). 

Naturally, because larger telescopes can be very expensive, they are not an appropriate 

option for all observatories. Instead, we would prefer to augment the abilities of existing 

telescopes to resolve close binary stars. If these smaller telescopes were better equipped 

to view binary stars, more observatories would be able to contribute to the study of 

known systems and the discovery of entirely new systems. 

 

  
2.5 as, Δ𝑚 = 7, 

14” circular aperture 

2.5 as, Δ𝑚 = 7, 

8” circular aperture 

Figure 3. Brightness-normalized simulation of identical high-contrast star pairs viewed 

through circular apertures of two different sizes, assuming perfect seeing and 

monochromatic light. (Brightness is plotted on a nonlinear scale.) The telescope with the 

larger aperture can more easily resolve the dim secondary star. 

 

 The technology that resolves binary stars must have minimal impact on the 

astronomer and the telescope to have the highest adoption: it must be affordable and easy 

to use; its construction must be lightweight and cause no harm to the delicate and 

expensive optical components of the telescope. Our ideal solution is one that can be 

reproduced at home, using no exotic tools or processes; and is scalable to optical tube 
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assemblies of different proportions. Working within these mechanical and usability 

considerations, our next task is to specify our desired resolution and contrast. 

 

1.2 Resolution and contrast targets 

When a single star is viewed through a telescope with a circular aperture, an 

image capturing light at a single wavelength shows not a pinpoint of light but rather a 

pattern of concentric rings encircling a central concentration of light. The bright rings 

represent constructive interference resulting from diffraction caused by the aperture’s 

contour—regions where electromagnetic waves are reinforced by other waves at a similar 

phase. The dark rings represent destructive interference, representing the interaction of 

light out of phase. 

The bright glow in the center of the pattern, which contains about 84 percent of 

the total power (Reidl, 2001), is known as the Airy disk (Figure 4). The size of this Airy 

disk forms the basis of the Rayleigh criterion, which is a common method of quantifying 

resolution in optical systems. Applied to astronomy, the Rayleigh criterion states that two 

stars are considered resolvable if their angular separation is greater than the radius of the 

Airy disk. Mathematically, this can be shown to be true when 

 𝐷 sin 𝜃 > 1.22𝜆/𝐷 (1) 

where 𝐷 is the diameter of the aperture, 𝜃 is the angle of separation, and 𝜆 is the 

wavelength of light (Swinburne University of Technology, n.d.). Recognizing that the 

angle will be extremely small, we can apply a small-angle approximation to arrive at 

 𝜃 > 1.22𝜆/𝐷 (2) 
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For a telescope with an 11-inch-diameter circular aperture observing 550-nm-

wavelength light, this limit is 0.495 arcseconds (abbreviated as). Note that larger 

diameters and smaller wavelengths decrease the limit, improving the resolving power. 

Figure 3 demonstrates how the diffraction pattern changes when using two diameter 

values. 

 

 

Figure 4. The Airy pattern and the Airy disk. The radius of the Airy disk is 1.22 

wavelengths per diameter (λ/D). 

 

In practice, the true resolving power of telescopes is worse than the Rayleigh limit 

implies due to atmospheric turbulence, imperfect focus, thermal effects, and 

miscellaneous optical aberrations in the telescope. Still, the criterion provides a simple, 

consistent, and convenient means of describing an important parameter. 

Another important optical parameter is the contrast, which is especially relevant 

to the study of double stars with a large brightness difference. We use contrast in two 

different ways to refer to a ratio of electromagnetic powers. 

When referring to diffraction patterns, contrast is the ratio of the power 

concentration at a point of interest relative to the pattern’s maximum power 

concentration. Because these ratios can cover a large dynamic range, we will refer to the 
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contrast by taking the base-10 logarithm of this ratio. Figure 5 shows the log-10 contrast 

along the radius of the Airy pattern. Note that darker regions correspond to log-10 values 

that are lower (more negative). 

 

 

Figure 5. Contrast along the radius of the Airy pattern. Diffraction peaks of decreasing 

brightness alternate with diffraction nulls. 

 

 When referring to double stars, contrast refers to the brightness ratio between the 

components. For historical reasons, this is specified using the difference in their apparent 

visual magnitude, which, like our diffraction pattern metric, is logarithmic, but which 

uses a base of √100
5

 instead. Perhaps counterintuitively, higher apparent visual 

magnitudes describe dimmer stars, leading to a negative sign in the proportionality 

constant converting our diffraction-based contrast metric to the stellar contrast metric: 

 Δ𝑚apparent = −2.5Δ𝑚log10
 (3) 

 It is difficult to define a theoretical maximum contrast that can be measured 

because the result is dependent on a great number of variables including the 

magnification of the telescope, atmospheric conditions, camera sensitivity, and, if the 
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telescope is aimed manually toward a dim subject, the astronomer’s visual acuity and 

supply of patience. 

According to Dr. Russell Genet, double-star studies of pairs with contrast ratios 

between 6 and 7 apparent visual magnitudes (log-10 values between −2.4 and −2.8) can 

be difficult to capture using unmodified telescopes, so we establish the more challenging 

end of this range, 7 apparent visual magnitudes or a log-10 contrast of −2.8, to be our 

contrast target. We will strive for a solution that achieves this contrast at the smallest 

possible inner working angle, since this is where diffraction fringes are brightest and thus 

where the greatest benefits theoretically lie. It is also important for this high contrast to be 

maintained outward to larger working angles so that we provide good contrast when 

studying double star systems with a range of separation values. 

 

1.3 Existing approaches 

 Foley et al. (2015) summarize several ways in which an existing telescope can be 

modified to enhance resolution in double star observations. Some techniques include 

color filters, occulting bars, Lyot coronagraphs, and apodizing masks. 

 

1.3.1 Color filters 

 Color filters are optical components that selectively admit or reject light based on 

the light’s wavelength. The common Johnson/Cousins/Bessell filter set shown in Figure 6 

contains five filters that admit light in bands from the infrared to the ultraviolet, but many 

other filters are possible. Where nearby stars have significantly different temperatures 
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and thus different spectral profiles, color filters emphasize the light of one star by 

blocking some light from others (Figure 7). 

 

  

Figure 6. Transmission profiles of 

common photometry filters—ultraviolet 

(U), blue (B), visible (V), red (R), and 

infrared (I) (Coelho, Calvão, Reis, & 

Siffert, 2014). Each peak is normalized to 

100 percent. 

Figure 7. Spectra of blue A0 star and red 

K5 star (Richmond, 2007) with B and R 

filter transmission profiles from Figure 6 

superimposed. The B filter favors light 

from the A0 star and the R filter favors 

light from the K5 star. 

 

 Color filters are attractive because of their intuitive operation, compatibility with 

other tools, and wide support in the astronomical community. They generally cannot be 

used to isolate stars with similar temperatures, because these stars will possess similar 

spectral signatures. While they can help reveal hidden stars by capturing evidence of their 

spectra, they do not enhance telescope resolution directly. 

 

1.3.2 Occulting bars 

 Occulting bars are optical obstructions placed at the field stop of a telescope used 

to block or heavily attenuate light in a region of the image. These are especially useful 

when using a CCD to image binary stars with a large brightness difference, where light 

from the brighter star otherwise tends to saturate the sensors and cause a blooming effect 
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that smothers the secondary star (Daley, A Method of Measuring High Delta m Doubles, 

2007). Figure 8 demonstrates an occulting bar’s operation. 

 

  

Figure 8. Left, an occulting strip affixed to a field lens (Daley, A Method of Measuring 

High Delta m Doubles, 2007); right, color-inverted image of γ Draconis captured with 

the occulting strip (Daley, A Method of Measuring High Delta m Doubles, 2007). 

Without attenuation, the light from star A would saturate the CCD sensors and hide other 

stars in the image. 

 

 The shape of occulting bars varies from narrow strips to larger semicircles that 

block half the field of view (Daley, A Method of Measuring High Delta m Doubles, 

2007; Eagle, 2013). Most are constructed by astronomers out of common materials such 

as aluminum foil, electrical tape, or toothpicks. Whatever their shape or material, the bars 

must be placed exactly at the field stop for full effect. The closer to one another the stellar 

subjects are, the more precise the positioning of the bar and the telescope must be. 

 Occulting bars are useful where long exposures of bright stars dominate dimmer 

stars in the resulting image. They can also be used in conjunction with other telescope 

equipment. However, occulting bars do nothing to counteract diffraction effects. Airy 

rings from a bright primary star can still drown out light from a dim secondary, bar or 

not. Thus, despite their flexibility and low cost, occulting bars alone will not solve our 

problem.  
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1.3.3 Lyot coronagraphs 

 A Lyot coronagraph is a mask, placed at the pupil plane of an optical system, that 

blocks undesired light diffracted by an earlier obstruction. It is typically used to 

counteract the scattering of light around an occulting dot, placed at the focal plane, that 

blocks light traveling near the optical axis (Figure 9). This technique is an effective way 

to cancel light that would otherwise appear at the center of an image and possibly wash 

out features of interest around the periphery. The technique was first introduced by 

Bernard Lyot in 1939 to assist in studying the sun’s corona without the benefit of a solar 

eclipse (Oppenheimer, 2003) but finds modern use in exoplanet discovery (Caldwell & 

Gray, 1997; Perryman, 2011, pp. 152–153) and binary star detection (Boccaletti, Moutou, 

Mouillet, Lagrange, & Augereau, 2001). 

 

 

Figure 9. The function of a Lyot stop as applied to exoplanet discovery and observation 

(Kenworthy, 2018). An occulting mask (or “dot”) at the focal plane blocks light but also 

casts a diffraction pattern that the Lyot stop, positioned at the pupil plane, reduces. 

 

 Unfortunately, Lyot stops are impractical for small- to mid-size telescopes 

because of the need to place additional hardware within the optical assembly. Thankfully, 

there is another way of using their masking principle to our advantage. 
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1.3.4 Apodizing masks 

 Apodizing masks are a category of optical filters that attempt to reduce or 

eliminate one or more Airy rings by changing the diffraction pattern. These masks can be 

categorized into two types: gradated, which have translucent profiles whose opacity 

varies as a function of the spatial coordinate; and binary, whose transmission at any point 

on the mask is either fully transparent or fully opaque. Apodizing masks are placed in the 

optical path at either at the pupil plane or near the entrance aperture of a telescope. 

One implementation of a gradated apodizing mask is a mask whose opacity varies 

as a Gaussian function with respect to the radial coordinate (Park et al., 2002; Sacek, 

2019a) (Figure 10, left). Such a mask, when applied to an aperture with no other 

obstructions, drastically reduces the Airy pattern surrounding a star’s location (Figure 10, 

right; Figure 11). 

 

  

Figure 10. The transmission profile of an apodizing mask, left, and the mask’s point 

spread function, right. 
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Figure 11. Comparison of the point spread function of a Gaussian-gradated apodizing 

mask to that of a circular aperture. Many Airy rings are effectively eliminated. (The 

fringes that remain, visible in the horizontal cut plot, are due to limiting the domain of 

the Gaussian transmission function to the shape of a circular aperture. This truncation 

causes an opacity discontinuity along the circumference.) 

 

 In addition to studying the Gaussian gradated apodizing mask of Figure 10, Park 

et al. (2002) studied masks with triangular and exponential opacity profiles and found 

that these gradients theoretically enhance resolution even further. Yet more options for 

gradated apodizing masks were included in Vanderbei et al. (2008) as solutions to a 

technique introduced in the paper that optimizes masks for arbitrary contrast and working 

angle targets. 

 Though gradated masks have many advantages on paper, their strict light 

transmission tolerances make them difficult to manufacture. For the translucent part of 

the mask, Park et al. (2002) proposed an etching process where the thickness of a chrome 

layer atop quartz is controlled to achieve a desired opacity; however, Martinez et al. 

(2009) wrote that varying the thickness of a metal layer introduces “wavefront phase 

errors” that would compromise the intended pattern. 

 As an alternative to using translucent materials, opaque elements can be patterned 

to produce regions whose light throughput is functionally equivalent to the desired 
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translucency. To form their “microdot apodizer,” Martinez et. al (2009) varied the density 

of tiny opaque dots of chrome rather than the chrome’s thickness. An Internet search 

reveals that some crafty astronomers have also made their own apodizing masks by 

layering annular meshes (Suiter, 2001a–b; Florentino, 2009; Lovró, n.d.; Smith, n.d.). We 

can call these apodizing screens. The mask of Figure 12 (left) represents one such design 

with three layers of square mesh, each oriented at 30 degrees relative to the other two. 

The apodizing screen successfully diminishes the first Airy ring and somewhat improves 

the contrast of the telescope overall (Figure 13), but its contrast benefits fall well short of 

the smooth gradated apodizer seen in Figure 10. The screen’s low fabrication cost 

partially offsets the underwhelming diffraction enhancement. 

 

  

Figure 12. Apodizing screen imitating a Gaussian gradated apodizing mask, left, and its 

point spread function, right. The screen is arranged in layers of square mesh with circles 

cut to diameters 55 percent, 78 percent, and 90 percent of the full aperture’s diameter 

(Lovró, n.d.; Smith, n.d.; Florentino, 2009). 
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Figure 13. Comparison of the point spread function of an apodizing screen to that of a 

circular aperture. The screen offers only modest contrast benefits at working angles 

beyond about 2 λ/D. 

  

 These types of patterned masks are better called binary apodizing masks because 

their transmission at any point on the mask is either a maximized or minimized. At first, 

it might seem that binary masks’ lack of intermediate opacity levels fundamentally 

compromises the optical performance that might be achieved using gradated masks, but 

Vanderbei et al. (2003) demonstrated1 that a binary solution—specifically, a concentric 

ring pattern—provided better throughput than any circularly symmetric gradated mask 

that met prescribed contrast and working angle criteria. Later, Carlotti et al. (2011) found 

that binary apodizations performed better than gradated options in the presence of not just 

circular apertures but arbitrary aperture shapes. Kasdin et al.’s (2003) summary is 

perhaps the most efficient: “The best shaped pupils are as good as or better than the best 

graded apodizations.” 

 The utility of binary masks was discovered far before our ability to optimize 

them. Functional and cosmetic diffraction effects of shaped apertures were well 

documented by John Herschel in his report of observations made at the Cape of Good 

 
1 Vanderbei et. al (2008) expands upon this. 
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Hope in the 1830s (Herschel, 1847). Herschel especially praised the impact of a 

triangular diaphragm on double-star observations, remarking that it “reduce[d] the discs 

to hardly more than a third of their size, and [gave] them a clearness and perfection 

incredible without trial.” In the same report, he celebrated the striking beauty of the 

diffraction pattern’s “perfectly straight, delicate, brilliant lines, like brightly illuminated 

threads.” 

 Herschel’s triangular mask is an example of a mask that is not circularly 

symmetric. All such asymmetric masks produce diffraction patterns whose light intensity 

varies across the azimuthal angle. As one example, the triangle mask creates a pattern 

with three thin, intersecting streaks (Figure 14). Between these streaks are six dark, 

triangular regions that provide good contrast for observing dim secondary stars. We call 

the regions of high contrast divided by the spikes discovery zones since they are the 

locations where faint neighboring stars would be most visible. 

 

   

Figure 14. Simulation, center, of a star viewed through a triangular mask, left. Right, 

simulated image with high-contrast discovery zones highlighted in green. Simulated 

images were generated using Maskulator (Section 2.2.2). Discovery zone annotations 

were added by Foley. 
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 Over the century and a half following Herschel’s voyage, advances in optics 

theory, mathematical techniques, and computational capabilities would enable deliberate, 

bottom–up designs of alternate mask shapes. After Spergel (2000) introduced a Gaussian-

shaped high-contrast pupil mask, Princeton University member Jeremy Kasdin found 

mathematical links between Spergel’s design and prolate spheroidal wave functions 

described by Slepian & Pollack (1961) and Slepian (1965).2 Leveraging these 

connections, Kasdin et al. (2003) and Kasdin et al. (2004) invented additional designs for 

contrast-enhancing pupil masks, a selection of which can be seen in Figures 15–17. Each 

shape strikes a different balance between contrast and discovery zone size. The authors 

were interested in the masks’ use in exoplanet discovery, an application demanding 

exceptional contrast ratios on the order of 10−10 (Kasdin et al., 2003, p. 5). 

 

  

 

  

Figure 15. The “single Spergel–Kasdin 

prolate-spheroidal mask,”3 left, and its 

point spread function, right, from 

Kasdin et al. (2003). 

 
Figure 16. An “8-pupil circular 

eclipse-class mask,” left, and its point 

spread function, right, from Kasdin et 

al. (2003). 

 

 
2 This history is summarized in Kasdin et al. (2005). 
3 This name appears in Kasdin et al. (2004). 
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Figure 17. An “azimuthally symmetric 

mask,” left, and its point spread 

function, right, from Kasdin et al. 

(2003). 

 

 Further research into shaped pupils, documented in a flurry of papers, produced 

additional variants of these masks along with some entirely new genera including 

Vanderbei et al.’s (2003) sharshape masks (e.g. Figure 18) and Vanderbei et al.’s (2004) 

checkerboard masks (e.g. Figure 19). These masks were designed to have the beneficial 

properties of azimuthally symmetric and one-dimensional apodizing masks while 

maintaining full structural continuity. 

 

  

 

  

Figure 18. A 20-vane starshape mask, 

left, and its point spread function, 

right, from Vanderbei et al. (2003). 

 
Figure 19. A “centrally-obstructed 

checkerboard mask,” left, and its point 

spread function, right, from Vanderbei 

et al. (2004). 
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Many contrast-enhancing aperture masks have been manufactured and tested in 

astronomical applications.4 Van Albada (1958) combined a wire grating with a “spindle 

shaped diaphragm” to study Procyon and I 1260 (Figure 20). 5 He concluded that 

“photographic observations of binaries with very large magnitude differences can be 

improved considerably by means of […] spindle shaped diaphragms” (van Albada, 

1958). Daley (2014) reported successfully manufacturing and using a pupil mask 

resembling a Gaussian shape to resolve Sirius A and B with a 9-inch telescope (Figure 

21).6 Others have reported success using hexagonal apertures (Lindenblad, 1970), 

circular subapertures (Roberts Jr., 1998; Bernat, et al., 2010; Lacour, et al., 2011), and 

Gaussian subapertures (Debes et al., 2002; Ge et al., 2002; Debes et al., 2003; Debes & 

Ge, 2004). Figure 22 displays Debes & Ge’s (2004) subaperture approach. 

 

   

Figure 20. Mask and wire grating, left, used by van Albada to acquire images of 

Procyon, center, and I 1260, right (van Albada, 1958). 

 

 
4 Roberts Jr. (1998, pp. 61–78) contains a remarkably complete history of aperture masking up to the late 

1990s with emphasis on aperture masking used in conjunction with interferometry techniques. The work of 

van Albada (1958) is one notable omission in this report. 
5 Though van Albada’s (1958) spindle shapes resembled Gaussian openings, they were formed using 

polynomials of even degree ≥ 4 that satisfied certain position and slope constraints. The Gaussian profile 

introduced by Slepian (2000) satisfied similar constraints. 
6 Sirius, being a star system whose components are separated in brightness by about 10 apparent visual 

magnitudes (Daley, 2014) or a log-10 contrast of −4, exceeds the contrast specification for our project; 

however, the angular separation of 9.66 arcseconds does not come close to challenging the resolving power 

of the telescope. 
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Figure 21. Left, the mask used by Daley to observe Sirius (Daley, 2014). Right, the 

corresponding CCD image recorded using this mask in tandem with a small 

“coronagraph focal mask foil” to reveal Sirius B (Daley, 2014). 

 

  

Figure 22. Gaussian subaperture mask (Debes & Ge, 2004), left, and resulting exposure 

of ε Eri (Debes et al., 2002), right. 

 

 Though they are used as telescope focusing aids rather than contrast-enhancing 

aperture masks, the Bahtinov mask (Figure 23) (Bahtinov, 2005) and Carey mask (Figure 

24) (Carey, 2009) also represent successful realizations of aperture masks that operate on 

diffraction principles. Specifically, sets of coarse, parallel slots in the masks create 

diffraction spikes that communicate telescope focus. Both the Bahtinov and Carey masks 

are now well known and widely used in the astronomical community because of their 

utility, ease of manufacturing, and ease of use. This speaks well to the potential for 

astronomers to adopt other useful masks in their studies. 
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Figure 23. A Bahtinov mask, left, and a 

simulation of a star viewed through the 

mask using a well-focused telescope, 

right. Both images are from Niels 

Noordhoek’s Maskulator utility 

(Section 2.2.2). 

 
Figure 24. A Carey mask, left, and a 

simulation of a star viewed through the 

mask using a well-focused telescope, 

right. Both images are from Niels 

Noordhoek’s Maskulator utility 

(Section 2.2.2). 

 

 The masks mentioned so far that have been successfully tested have full structural 

connectivity, leaving no freestanding opaque elements. Masks without mechanical 

continuity require some support structure. If the support structure is opaque, it will affect 

and potentially compromise the diffraction pattern. Using glass or a similar transparent 

substrate beneath the opaque layer can introduce phase distortion unless the smoothness 

and shape is controlled very carefully. In the context of support structures, Vanderbei et 

al. (2003) wrote, “It is felt that glass cannot be used because of the inevitable scatter that 

would result.” Martinez et al. (2009) nonetheless successfully used a glass substrate 

polished to a roughness of 𝜆/20 peak-to-valley for their pupil mask but noted that the 

substrate had “the highest quality requirement of all components used in [their] 

experiment.” Difficulties related to the phase distortion caused by the glass substrate 

were also reported by Carlotti et al. (2011) along with an acknowledgement that this 

element is subject to “contamination” that could cause “additional amplitude and phase 

aberrations.” Balasubramanian et al. (2015) replaced the transparent material with a very 

flat, highly reflective aluminum substrate, thus reducing phase errors but requiring a new 
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optical configuration. To avoid these concerns, we will limit ourselves to structurally 

continuous masks from this point forward. 

 

1.4 Selection of method 

 The contrast-enhancing behavior of apodizing masks, combined with the masks’ 

convenient execution at the telescope aperture, makes them an ideal candidate for further 

study. Most existing astronomical apodization research concerns pupil masks inserted 

into the optical paths of large telescopes, leaving relatively few documented examples of 

aperture masks being integrated with small telescopes.7 The deficit of published science 

in this area opens a natural opportunity for us to help advance binary star discovery and 

observation. Conveniently, aperture masks can be used in concert with other equipment 

used in this field such as color filters and occulting bars. 

 In the following chapters, we discuss simulating aperture masks, designing 

suitable masks for a Celestron C11 optical tube assembly, producing a mask rotation 

mechanism, and testing these elements. 

 
7 Herschel (1847), van Albada (1958), and Daley (2014) represent some of these examples. 
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2. SIMULATING SHAPED APERTURES 

 Modeling the optics of shaped aperture masks is a vital step toward efficiently 

simulating and optimizing different designs. 

 

2.1 Optics summary 

The point spread function of an aperture describes the image-plane flux density 

distribution created by an infinitesimally small, concentrated point of light viewed 

through the aperture (Hecht, 2002, p. 503).8 Naturally, stars closely approximate 

concentrated sources, so the point spread function effectively describes the appearance of 

a star viewed through an aperture in the presence of diffraction effects. For example, the 

point spread function of a circular aperture is the Airy pattern (Figure 4). The more 

general term power spectrum also describes electromagnetic energy distributions, but we 

will use it to describe the compound pattern created by multiple sources. When viewing a 

single star in perfect optical conditions, the power spectrum is the same as the point 

spread function. 

Under the conditions of Fraunhofer diffraction, which applies to the problem of 

viewing objects at large distances, the point spread function of an aperture is proportional 

to the square of the magnitude of the two-dimensional Fourier transform of the aperture’s 

spatial transmissivity function (Weisstein, 2007; Cross, 2000): 

 

𝑃(𝑢, 𝑣) = 𝐶 ‖∫ 𝜉(𝑥′, 𝑦′) exp [−2𝜋𝑖 (
𝑢

𝜆
𝑥′ +

𝑣

𝜆
𝑦′)] 𝑑𝑥′𝑑𝑦′

𝐴

‖

2

 (4) 

 
8 Mathematically, this function can be thought of as an impulse response. 
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In this equation, 𝑃 is the point spread function, 𝑢 and 𝑣 are angular coordinates, 𝐶 

is a proportionality constant, 𝐴 is the aperture, 𝜉 is the transmission function of the 

aperture (1 for transparent regions, 0 for opaque),  𝑥′ and 𝑦′ are position coordinates in 

the aperture plane, 𝑖 is the imaginary unit, and 𝜆 is the wavelength of light. Appendix A 

summarizes the optics theory that enables this conclusion. 

The link between Fraunhofer diffraction and the Fourier transform is 

serendipitous because it allows us to apply well-understood properties of the Fourier 

transform in our designs and unlocks the power of computing algorithms specialized for 

this operation—in our case, the two-dimensional fast Fourier transform (FFT). Wielding 

these tools, we can effectively and efficiently simulate point spread functions for 

arbitrary aperture shapes. 

 

2.2 Diffraction simulation 

There are many tools available for simulating Fraunhofer diffraction via fast 

Fourier transforms. We pursued a custom MATLAB solution for most of our modeling. 

In parallel, we used an existing diffraction visualization program called Maskulator that 

was written by Niels Noordhoek, an astronomer who studied a problem like ours 

(Noordhoek, 2009). 

 

2.2.1 Diffraction simulation using MATLAB 

 MATLAB’s digital signal processing and image processing capabilities are two 

faculties well suited to calculating and displaying power spectra in the digital domain. 

Appendix B fully describes the process we follow in MATLAB, beginning at an image 
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representing the telescope aperture and ending in formatted figures of point spread 

functions or visualizations of star systems (Figure 25). These operations are supported by 

a network of functions written by Foley that are documented in Appendix K. Users have 

access to parameters that control simulation quality and various cosmetic attributes. 

 

 

Figure 25. Diffraction simulation workspace in MATLAB. 

 

The mask input image can be produced using any standard program that edits 

images; however, we provide MATLAB functions to generate many of the common 

shapes used in our analysis. These shapes include circles, polygons, gratings, and 

Gaussian functions (Appendix L). This fundamental geometry can easily be transformed 

and composed with other geometry to form subapertures, annuli, and other more complex 

shapes. 

 

2.2.2 Diffraction simulation using Maskulator 

 Niels Noordhoek’s Maskulator utility, shown in Figure 26, is another option for 

generating diffraction patterns of arbitrary masks (Noordhoek, 2009). Unlike our 
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MATLAB implementation, Maskulator can simulate imperfect telescope focus, making it 

an especially powerful tool for visualizing focus aids such as the Bahtinov and Carey 

masks. The program can also handle polychromatic light, which it does by dividing the 

spectrum into color slices and superimposing tinted instances of the monochromatic 

pattern that are scaled by the wavelength of the color at each slice. 

 

 

Figure 26. Niels Noordhoek’s Maskulator utility operating with default settings on a 

Bahtinov mask. 

 

 Maskulator produces beautiful visualizations and is fast, powerful, and 

straightforward, but it lacks some customization features that would make it even more 

useful for this project. It offers no automatic means of padding the aperture image to 

enhance the resolution of the output. It also exposes no access to the values in its 

intermediate calculations, making it harder to adapt to applications the program is not 

explicitly designed for. A feature to simulate the viewing of multiple stars would be 

especially helpful for the purposes of this project. 

 Despite these shortcomings, Maskulator is a very useful tool. Appendix C 

contains information about acquiring and configuring this program. 
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2.3 Displaying power spectra 

Power spectra have a very wide dynamic range, so we plot their output on a 

logarithmic scale to better visualize it. This approach parallels our eyes’ nonlinear 

sensitivity (Portugal & Svaiter, 2011; Wilkes, 2015) and reflects the logarithmic basis of 

the log-10 contrast and apparent visual magnitude scales (Section 1.2). Without 

performing this adjustment, dim features and variations within them can easily be missed. 

Because we are usually concerned with contrast within a point spread function 

rather than the pattern’s absolute brightness, we normalize the output by assigning the 

brightest point—almost always the center—a contrast of 0. Dimmer areas, which provide 

better contrast, then have log-10 contrast ratios less than 0. This brightness normalization 

also helps keep the focus on the effect of the mask rather than the size or total light-

collecting capacity of the telescope. 

The angular coordinates of the point spread function also beg to be normalized. 

Under Fraunhofer diffraction, a point spread function will dilate in proportion to the 

wavelength of light and the reciprocal of the scale of the aperture producing it (Appendix 

A.1); thus, we can normalize our angular coordinates, writing them in terms of 𝜆/𝐷. 

Table 1 demonstrates how the conversion from 𝜆/𝐷 to arcseconds varies by telescope 

diameter and wavelength, as calculated from Equation 5: 

 
𝜃 [as] = (

𝜆 [nm]

𝐷 [in]
) (

1 m

1 × 109 nm
) (

1 in

0.0254 m
) (

360°

2π rad
) (

3600 as

1°
) 

≈ (
𝜆 [nm]

𝐷 [in]
) (

1 as

123.14 nm/in
) 

 

(5) 
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Table 1. Equivalence of λ/D in arcseconds for different aperture diameters and observed 

wavelengths. Parenthesized letters denote the band. Wavelengths are the effective central 

wavelength of each band (Leibniz-Institut für Astrophysik Potsdam, 2014). 

Telescope 

diam. [in] 

Infrared (I) 

(880 nm) 

Red (R) 

(635 nm) 

Yellow (V) 

(548 nm) 

Blue (B) 

(435 nm) 

Ultraviolet (U) 

(366 nm) 

6 1 λ/D ≈ 1.19 as 0.86 as 0.74 as 0.59 as 0.50 as 

8 0.89 as 0.64 as 0.56 as 0.44 as 0.37 as 

11 0.65 as 0.47 as 0.40 as 0.32 as 0.27 as 

14 0.51 as 0.37 as 0.32 as 0.25 as 0.21 as 

 

Our choice to normalize angular coordinates allows us to acquire a single 

characteristic point spread function for each aperture shape. Finding the actual angular 

extents of a diffraction pattern is as simple as multiplying the normalized angular 

coordinates by 𝜆/𝐷. For example, recalling from Section 1.2 that the radius of the Airy 

disk is about 1.22 𝜆/𝐷, we can predict using Equation 5 that the angular extent of this 

radius for yellow light viewed through an 11-inch telescope will be about 0.494 seconds 

of arc (Equation 6). 

 
𝜃 ≈ (1.22) (

548 nm

11 in
) (

1 as

123.14 nm/in
) 

= 0.494 as 
 

(6) 

Armed with an arsenal of simulation tools and the knowledge of how to make use 

of our results, the next step is to finally apply our methods to a real telescope. 
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3. APERTURE MASKS FOR THE CELESTRON C11 OPTICAL TUBE ASSEMBLY 

3.1 The Celestron C11 optical tube assembly 

 The C11 is an optical tube assembly produced by Celestron with an aperture 

diameter of 11 inches. As the C11 is a Schmidt–Cassegrain design, it has both a primary 

mirror and a secondary mirror. Light enters through the aperture, reflects off a primary 

mirror at the base of the telescope, reflects off a secondary mirror near the aperture of the 

telescope, and finally enters the eyepiece (Figure 27). The use of mirrors allows a more 

compact form than a refracting telescope of the same resolving power. 

 

 

Figure 27. Key components of a Schmidt–Cassegrain telescope (United States of America 

Patent No. 7,595,942, 2009). Labels added by Foley. 

 

 A Schmidt–Cassegrain telescope’s secondary mirror lies along the axis of the 

optical tube assembly, partially obstructing incoming light. This obstruction, 

approximately 3.9 inches in diameter on the C11, affects the diffraction pattern and the 

total light-collecting capacity of the telescope. Figure 28 shows the C11’s annular 

aperture. 
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Figure 28. Two views of the aperture of the C11 captured by Foley. Note the optical 

obstruction caused by the corrector plate to which the secondary mirror is mounted 

internally. (In the image on the right, a cosmetic cap not affecting the aperture shape has 

been removed.) 

 

 A Celestron C11 was readily available for measurements and testing at the Orion 

Observatory in Santa Margarita, California. Already equipped for automated star surveys, 

the telescope had a motorized mount and a computer interface that could be programmed 

to operate various electrical peripherals. The C11 model is popular among smaller 

observatories, meaning any hardware designed for the Orion Observatory’s telescope 

would be relevant to a broad portion of our intended audience. 

 Considering these attractive qualities, we selected the C11 for which to develop 

our masks and rotation mechanism. We began the process with a more thorough 

investigation into the telescope’s optical properties. 

 

3.2 Effect of central obstruction on diffraction pattern 

 The C11 aperture’s 11-inch nominal diameter and 3.9-inch central obstruction 

combine to form a donut shape. Unmodified, this annulus creates a diffraction pattern 

that resembles, but is not identical to, the Airy pattern from a pure circular aperture. 

Figure 29 shows a comparison of the two apertures and their power spectra. If we overlay 

the two patterns, as in Figure 30, we see that the C11 concentrates energy in similar rings 
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as the unobstructed aperture, but at different relative magnitudes. For example, the C11 

distributes a greater proportion of its incoming light in bands near 1.6, 4.7, and 7.7 𝜆 𝐷⁄ . 

These appear in Figure 30 (left) as green-tinted rings. 
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Figure 29. Comparison of shapes and characteristic diffraction patterns of a circular 

aperture and a C11 aperture. Brightnesses are plotted on a nonlinear brightness scale. 

 
 

  

Figure 30. Comparison of power spectra of the C11 aperture and a circular aperture. 
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 We see in Figure 30 that the contrast provided by the unmodified C11 satisfies 

our requirement of 10−2.8 when the working angle is greater than about 5.0 𝜆/𝐷. 

Between 0 and 5.0 𝜆/𝐷, it straddles the target, with some angles achieving the contrast 

specification and others not. For the sake of this paper, we will say that 2.3 𝜆/𝐷 is the 

effective inner working angle of the C11, since the contrast exceptions beyond this point 

are contained within narrow angular spans. (The greatest offender is the peak of 10−2.6 

that occurs near 𝑢 = 4.7 𝜆/𝐷.) Given this decision, we should consider successful only 

those masks that, when added to the C11, reduce the inner working angle below 2.3 𝜆/𝐷. 

 Applying a simple mask like those introduced in Section 1.3.4 to an annular 

aperture will not meaningfully improve the contrast at small working angles. The masks 

in Section 1.3.4 obscure an otherwise whole circular area, in effect transforming the 

shape of the telescope’s aperture into that of the mask. However, when the mask fails to 

cover existing obstacles in the optical path, such as our secondary mirror, the point spread 

function of the composite aperture will exhibit diffraction artifacts from both the mask 

and the obstacles themselves. This is expected from the superposition property of Fourier 

transforms that model Fraunhofer diffraction (Appendix A.3). Figure 31 demonstrates a 

mask of this form that is unsuccessful because the discovery zones present in the 

Gaussian opening’s point spread function are contaminated by diffraction effects from 

the central obstruction. The new artifacts appear as green-tinted bands in Figure 32. 
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Figure 31. Comparison of shapes and characteristic diffraction patterns of a Gaussian 

mask and the compound pattern formed by a Gaussian mask placed on a C11 aperture. 

 

  

Figure 32. Comparison of point spread functions of a Gaussian mask alone and of a 

Gaussian mask combined with a C11 aperture. Vertical diffraction bands toward the left 

and right sides of the spectrum pollute a region that had high contrast in the original 

Gaussian design. 

 

Clearly, the presence of the central obstruction requires extra attention because of 

its tendency to contribute unwanted diffraction artifacts. For clues on how to account for 

this, we look to published research. 
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3.3 Past attempts to mask a central obstruction 

To circumvent an obstructed aperture on the much larger 100-inch telescope at 

Mt. Wilson, Debes et al. (2003) explored two designs derived from the Gaussian mask. In 

one, a Gaussian “secondary” obstruction is added to the aperture (Figure 33). In the other, 

the aperture is split into four smaller Gaussian openings (Figure 34). Both options 

completely eclipse the central obstruction so that it has no bearing on the final diffraction 

pattern. 

 

 

Figure 33. Gaussian with Gaussian 

secondary (Debes et al., 2003). 

 

Figure 34. Multiple-Gaussian design (Debes 

et al., 2003). 

 

 Both masks had tradeoffs. In simulations, Debes et al. (2003) found that the 

Gaussian with a Gaussian secondary offered improved contrast relative to a circular 

aperture but only in regions not close to the central object. The multiple-Gaussian mask 

provided better contrast than the Gaussian secondary design but at the cost of a decrease 

in resolution due to the smaller openings. This group opted for the multi-Gaussian design. 

 In a separate study, Vanderbei et al. (2003) used a mathematical optimization 

routine to generate a concentric ring mask for an aperture with a 31-percent central 

obstruction (Figure 35). This mask theoretically attains a contrast of −10 log-10 

magnitudes at working angles between 10 and 40 𝜆/𝐷. Though the contrast provided by 
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this mask far exceeds our specifications, the inner working angle is too large. It is also 

not clear how to manufacture such a mask without adding a support structure that might 

affect the diffraction pattern. 

 

  

Figure 35. Left, a concentric ring mask designed for a circular aperture with a 31-

percent central obstruction (Vanderbei et al., 2003). Right, the point spread function of 

the concentric ring mask (Vanderbei et al., 2003). 

 

 Tanaka et al. (2006) targeted an intermediate contrast ratio of 10−7 while 

developing a concentric ring mask for an early design of the Space Infrared Telescope for 

Cosmology and Astrophysics (SPICA) that had a four-armed spider structure in addition 

to a central obstruction.9 The size of the secondary mirror had not yet been specified, so 

the group devised masks for a range of obstruction proportions between 10 and 24 

percent. We focus on the 24-percent option because it most closely represents the C11. 

As shown in Figure 36 (right), the diffraction pattern of the composite aperture shape 

displays prominent artifacts caused by the support structure. The mask nonetheless 

achieved the team’s target contrast at working angles between 6.0 and 12 𝜆/𝐷 along the 

diagonals. The fixed spider would seem to require reorienting the entire telescope to 

 
9 As of November 2019, the SPICA proposal specifies a three-legged spider and a 24-percent central 

obstruction (Roelfsema, 2019). 
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image dim stars that would otherwise appear on the cross-shaped diffraction 

concentration produced by a brighter star. 

 

  

Figure 36. Left, a concentric ring mask placed on an aperture with a 24-percent central 

obstruction and a four-legged spider (Tanaka et al., 2006). Right, the corresponding 

point spread function (Tanaka et al., 2006). The point spread function clearly displays 

vertical and horizontal diffraction components produced by the horizontal and vertical 

beams of the support structure. 

 

 In the same paper, Tanaka et al. (2006) investigated a mask with a checkerboard 

design,10 shown with its point spread function in Figure 37. This mask met the team’s 

10−7 contrast requirement at working angles between 5.4 and 11.4 𝜆/𝐷. 

 

  

Figure 37. Left, an asymmetric checkerboard mask that accommodates a 24-percent 

central obstruction and a four-legged spider (Tanaka et al., 2006). Right, the 

corresponding point spread function (Tanaka et al., 2006). 

 

 
10 See Vanderbei et al. (2004) for information on checkerboard masks. 
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 Years later, Enya & Abe (2011) adapted Kasdin et al.’s (2004) work on barcode 

masks to generate barcode mask solutions for SPICA assuming a 20% obstruction and a 

four-legged spider. These designs are shown with their point spread functions in Figure 

38. The upper design achieved a contrast ratio of 10−6 at working angles between 3.4 

and 15 𝜆/𝐷; the lower achieved 10−5.3 between 3.3 and 10 𝜆/𝐷. 

 

 

 

Figure 38. Left, barcode masks designed by Enya & Abe to accommodate a spider and a 

20-percent central obstruction (Enya & Abe, 2011). The secondary and its support 

structure are shown in red; the masks themselves are in black. Right, the point spread 

functions of the composite apertures (Enya & Abe, 2011). 

 

Carlotti et al. (2011) also volunteered an optimal solution for a 20-percent-

obstructed, four-legged-spider SPICA design that provides a contrast ratio of 10−6 at 

working angles between 3.5 and 12 𝜆/𝐷 (Figure 39).11 This mask, in contrast with 

 
11 The inner working angle for Carlotti et al.’s (2011) mask for SPICA is quoted in the paper as being both 

3.5 𝜆/𝐷 and 3.3 𝜆/𝐷. Seeing as all other working angles discussed in the paper are multiples of 0.5 𝜆/𝐷, 

we believe 3.5 𝜆/𝐷 was the intended value. 
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Tanaka et al.’s (2006) and Enya & Abe’s (2011) masks, does not exhibit full structural 

connectivity. 

 

  

Figure 39. Left, an optimal pupil apodization for a version of SPICA with a four-legged 

spider and a 20-percent central obstruction. The design achieves a contrast ratio of 10-6 

at working angles between 3.5 and 12 λ/D (Carlotti et al., 2011). Note the presence of 

free-standing islands. Right, the point spread function of this aperture (Carlotti et al., 

2011). 

 

 Table 2 compares the masks introduced in this section. These solutions have three 

qualities in common: 

1. Their contrast specifications are stricter than ours. 

2. Their inner working angle requirements are looser than ours. 

3. The circular obstructions the masks are designed for are smaller than ours. 

Within this mask survey, Enya & Abe’s (2011) second barcode mask achieves a 

contrast target closest to our own and offers the smallest inner working angle of 3.3 𝜆/𝐷. 

Still, this working angle is significantly greater than the 2.3 𝜆/𝐷 inner working angle of 

the unmodified C11 aperture. The mask is also not directly applicable because its central 

obstruction is much smaller than the C11’s. Vanderbei et al.’s (2003) mask 

accommodates the largest obstruction but has a huge inner working angle and no 

structural connectivity.
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Table 2. Summary of design criteria and performance metrics for masks in this section. The C11 aperture is included for reference. 

Name Source Fig. Connected12 Obstr. 

diameter 

Spider Log-10 

contrast 

IWA 

[𝝀/𝑫] 

OWA 

[𝝀/𝑫] 

Notes 

Celestron C11 Celestron, LLC 29 N/A 35% No −2.8 2.3 ∞ 13,14 

Gauss. w/second. Debes et al. (2003) 33 No ≈ 25% No ≈ −5.6 10 20 15,16 

Multi-Gauss. Debes et al. (2003) 34 Yes ≈ 25% No ≈ −7.2 10 20 15,16 

Rings A Vanderbei et al. (2003) 35 No 31% No −10 10 40 – 

Rings B Tanaka et al. (2006) 36 Yes 24% Yes −7 6.0 12 – 

Checkerboard Tanaka et al. (2006) 37 Yes 24% Yes −7 5.4 11.4 – 

Barcode A Enya & Abe (2011) 38 Yes 20% Yes −6 3.4 15 – 

Barcode B Enya & Abe (2011) 38 Yes 20% Yes −5.3 3.3 10 – 

Sym. dark hole Carlotti et al. (2011) 39 No 20% Yes −6 3.5 12 – 

 
12 Masks are considered structurally connected if all opaque mask areas connect to a stationary point on the telescope, including the spider if applicable. 
13 For the Celestron C11, we quote the contrast ratio targeted by this project along with the corresponding working angles. 
14 Working angles shown here ignore a brief break in the high-contrast zone between 4.5 and 5.0 λ/D. 
15 Obstruction proportion estimated from Figure 3 in Debes et al. (2003). 
16 In their Figure 5, Debes et al. (2003) provided a chart displaying the average contrast ratios for several masks measured between select working angles. These 

working angles form the IWA and OWA values in our Table 2. The contrast ratios shown in our Table 2 were not specified directly by Debes et al. (2003) but 

have been interpreted from Figure 5 in their paper. 
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 The survey of existing masks for obstructed apertures helps us understand the 

state of the art and gives us a chance to appreciate the wide diversity of shapes used to 

combat inconvenient diffraction properties of telescopes in their domain. It also informs 

us that our combination of a generous contrast requirement and a tight inner working 

angle requirement has little precedent in the astronomical field. This lack of direction 

simultaneously makes it more difficult and more satisfying to produce original qualifying 

mask designs. 

 

3.4 New mask candidates 

Armed with the conclusions of prior research and the tools to explore new mask 

variants, we at last propose our own masks for the Celestron C11 optical tube assembly. 

 

3.4.1 Gaussian donut mask 

 Inspired by Spergel (2000) and the work of Debes et al. (2003), we design a 

“Gaussian donut” mask for the C11. We place within a nominal Gaussian aperture shape 

an opaque Gaussian secondary that covers the secondary mirror obstruction, like the 

mask of Figure 33. 

 The Gaussian donut shape presents several design choices, including the 

broadness of the outer Gaussian, the height of the secondary, and the broadness of the 

secondary. We must optimize these for our project objective of providing good contrast at 

small inner working angles. 

 Because we will be using Gaussian curves extensively, it benefits us to establish a 

convention for how to represent them. Gaussian profiles are traditionally defined in 
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statistical applications using two parameters: a mean and a standard deviation. The 

distribution, which has an unbounded domain, is normalized such that its integral 

approaches one as the limits of integration extend toward positive and negative infinity. 

This ubiquitous bell-shaped curve is given by the following function. 

 
𝑓𝑔(𝑥) =

1

√2𝜋𝜎2
exp [

−(𝑥 − 𝜇)2

2𝜎2
] (7) 

In this equation, 𝑓𝑔 is the Gaussian distribution function, 𝑥 is the independent 

variable, 𝜎 is the standard deviation (whose square is the variance), and 𝜇 is the mean of 

the distribution. 

 It is useful for us to stretch the bell curve vertically and horizontally to better 

understand how these transformations affect the diffraction pattern. To this end, we can 

ignore the restriction on the Gaussian distribution’s integral and proceed to vary the peak 

height and standard deviation independently. For simplicity, we can say our mean is zero, 

establishing the center of the aperture as our datum. Letting ℎ be the amplitude of our 

Gaussian peak, our equation becomes simpler: 

 
𝑓𝑔(𝑥 | 𝜇 = 0) = ℎ exp (

−𝑥2

2𝜎2
) (8) 

 In most cases, when we change the height of the opening, we also want to change 

the width by the same factor so that we maintain the shape’s proportions. An easy way to 

do this is to normalize the standard deviation by the peak height, defining 𝑝 =
𝜎

ℎ
: 

 
𝑓𝑔(𝑥 | 𝜇 = 0) = ℎ exp (

−𝑥2

2𝑝2ℎ2
) (9) 
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Because our designs are independent of any one aperture size, we can also 

normalize the height and width relative to the aperture diameter, 𝐷, by defining 𝑎 =
ℎ

𝐷
 

and 𝑥̂ =
𝑥

𝐷
. The term 𝑝 is unaffected by this transformation because it is already 

dimensionless. We arrive at a simplified Gaussian profile equation fit for our use case: 

 
𝑔(𝑥̂) = 𝑎 exp (

−𝑥̂2

2𝑝2𝑎2
)  (10) 

Adapting this normalized profile to a specific diameter is as simple as scaling the 

profile by 𝐷 in both dimensions. 

 For our Gaussian donut mask, we set the outer profile height to the maximum 

value our aperture diameter accommodates, 𝑎 = 0.5. From here, we vary 𝑝 to explore its 

impact on the diffraction pattern. Table 3 compares the effect of different values of this 

term. 

 

Table 3. Comparison of aperture shapes and power spectra for Gaussian profiles with 

different normalized standard deviation terms. 

Std. dev. 

factor, 𝒑 

Aperture shape Point spread 

function 

Horizontal PSF cut IWA 

[𝝀/𝑫] 

0.15 

   

5.4 
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Std. dev. 

factor, 𝒑 

Aperture shape Point spread 

function 

Horizontal PSF cut IWA 

[𝝀/𝑫] 

0.25 

   

3.2 

0.35 

   

2.3 

0.50 

   

1.5 

0.65 

   

2.8 

 

 We see that as we begin to increase the value of 𝑝, we increase the angle of the 

discovery zones and decrease the minimum inner working angle. Both results are 

desirable for our application. This trend has its limits, however: as the broadness 

increases, the effect of truncating the tails of the Gaussian distribution becomes more 

significant. The truncated edges gradually resemble the contour of the original circular 
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aperture, introducing deleterious diffraction artifacts along our discovery axis. We find 

that the Gaussian with 𝑝 = 0.50 is the variant that meets the contrast target at the 

smallest working angle and maintains this contrast outward along the horizontal axis. 

 The shape of the Gaussian secondary is our next design consideration. This 

component must completely cover the secondary mirror cap lest the cap’s circular shape 

add undesirable diffraction components. For best throughput, we decrease the amplitude 

of the secondary Gaussian for a given broadness to the point that the circular profile of 

the secondary mirror cap lies tangent to the Gaussian profile. This constraint on the 

amplitude reduces the two-dimensional problem of selecting a height and a breadth to a 

single dimension where only the broadness need be selected. 

In this project, we choose to match the broadness factor between the inner and 

outer Gaussian curves. We know that a given broadness value will produce a discovery 

zone of a certain angle regardless of the peak height. We also know, due to superposition, 

that any mask formed by pairing Gaussian forms of mismatched broadness factors will 

produce in its diffraction pattern a complex superposition of the two hourglass shapes 

that each of its components would produce individually. In this situation, the maximum 

discovery zone angle is limited by the smaller broadness factor, so we suppose that 

picking a single factor for both Gaussian features will produce the widest possible search 

region.17 Through some iteration, we find that 𝑝 = 0.50 continues to work well in the 

donut form compared to other broadness factors. The shape formed by the outer and inner 

Gaussians is shown in Figure 40 along with its point spread function. This pattern is 

compared to the C11’s in Figure 41. 

 
17 A promising variant with unequal broadness terms that challenges this reasoning is discussed briefly in 

Section 6.2.2. 
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Figure 40. Gaussian donut shape (p=0.50) and its characteristic point spread function. 

Tails of the secondary Gaussian are so thin that they appear to vanish due to the limited 

resolution of the aperture image. 

 

  

Figure 41. Point spread function comparison of the Gaussian donut shape (p=0.50) and 

the C11 aperture. 

 

 The addition of the secondary increases the inner working angle to 2.4 𝜆/𝐷, well 

beyond the 1.5 𝜆/𝐷 offered by the singular Gaussian and even slightly higher than the 

unmasked C11’s 2.3 𝜆/𝐷. The combined shape does offer slightly better contrast at the 

prominent C11 diffraction bands (1.6, 4.7, 7.7 𝜆 𝐷⁄ , etc.) but is otherwise unremarkable. 

The azimuthal restriction on the region in which even these middling benefits can be 

seen—with inferior results at other angles—makes the mask’s use difficult to justify. 
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3.4.2 Multi-Gaussian mask 

 Another strategy for incorporating the Gaussian shape amid the C11’s secondary 

mirror obstruction is to place multiple small openings around the perimeter of the mirror 

like Debes et al. (2003). Being careful to avoid locating an opening above the central 

obstruction, we array the Gaussian subapertures in a square. Through some trial and 

error, we find that a broadness factor 𝑝 = 0.65 and amplitude 𝑎 = 0.18 placed at 

horizontal centers 𝑥′ = ±0.225 and vertical centers 𝑦′ = ±0.225 produce a competitive 

working angle for this general arrangement. Figure 42 shows the resulting mask and its 

point spread function. 

 

  

Figure 42. Multi-Gaussian profile and its point spread function. 

 

 It is clear from Figure 42 that the tails of the Gaussian subapertures are 

substantially truncated. This is true at the edges of the mask, where the tails collide with 

the limiting circular aperture. It is also true at the center of the mask, where pairs of tails 

overlap and effectively merge. One might expect the loss of tails to introduce noticeable 

artifacts into the point spread function, but it seems that either the magnitude of these 

effects is too small or the corresponding spikes appear at frequencies outside our working 
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angle window. What is visible in the point spread function is an array of tiles that results 

from the regularly patterned subapertures. 

 Figure 43 compares the multi-Gaussian mask’s power spectrum to that of the 

C11’s default aperture. Unsurprisingly, the small Gaussian shapes create a broad 

diffraction pattern that results in somewhat low resolution. The inner working angle is 

3.1 𝜆/𝐷, greater than the Gaussian donut’s 2.4 𝜆/𝐷; the azimuthal discovery zone angle 

is about the same. These facts leave the multi-Gaussian design with few compelling 

features. 

 

  

Figure 43. Comparison of the point spread functions of the multi-Gaussian mask and the 

unmasked C11 aperture. 

 

3.4.3 Concentric ring mask 

 Applying a similar optimization routine as Vanderbei et al. (2003) but specifically 

to the C11 aperture and our modest contrast requirements, Princeton research 

astrophysicist Neil Zimmerman produced a concentric ring design that achieves a 

contrast ratio of 10−3.0 at a small inner working angle of 2.4 𝜆/𝐷 (Zimmerman, 2014) 

(Figure 44). This inner working angle matches that of the Gaussian donut, but the 

concentric ring mask excels by having no azimuthal limits to its discovery space. 
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Zimmerman noted that while the mask theoretically improves contrast relative to the 

unmodified aperture, the gains are small and may be difficult to leverage in practice. He 

also acknowledged the manufacturing challenge represented by the two freestanding 

rings and concluded that the concentric ring mask is “difficult to recommend for the 

project.” 

 

 
 

Figure 44. Left, a concentric ring mask optimized for our contrast requirements on the 

C11 (Zimmerman, 2014). Yellow regions represent transparency. Right, the mask’s point 

spread function (Zimmerman, 2014). 

 

 

Figure 45. Plot showing the contrast of the concentric ring mask (“shaped pupil”) 

relative to the C11 aperture (Zimmerman, 2014). The dotted line, superimposed by Foley, 

denotes the contrast target. 
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3.4.4 Bowtie mask 

Neil Zimmerman proposed a second custom mask design for the C11, this one 

engineered to achieve a contrast ratio of 10−2.7 at the smallest possible inner working 

angle (Zimmerman, 2014) (Figure 46). This contrast requirement is slightly less strict18 

than our own of 10−2.8, but it is far closer than the targets seen in existing literature (e.g. 

Table 2). To produce the mask design, Zimmerman executed a numerical optimization 

process that maintained continuity at the outer and inner edges of the telescope aperture 

(Zimmerman, 2014). Owing to the mask’s point spread function’s “bowtie-shaped 

wedges,” Zimmerman titled the creation a “bowtie mask” (Zimmerman, 2014). 

 

   
Bowtie mask PSF, grays on 

log-10 (−4, −1) 

PSF, grays on log-10 
(−2.7, −1) 

Figure 46. Left, Neil Zimmerman's bowtie mask (Zimmerman, 2014). Center and right, 

the bowtie mask’s characteristic point spread function displayed at two different 

grayscale calibrations (Foley). In Zimmerman’s view, the discovery zone shape 

resembles a bowtie, hence the mask’s name. 

 

 The bowtie mask achieves its contrast requirement at working angles between 1.2 

and 8.0 𝜆/𝐷 along the horizontal axis (Zimmerman, 2014)19. This inner working angle is 

 
18 Similar solutions for stricter contrast requirements produced unacceptable free-standing islands in the 

mask shape (Zimmerman, 2014). 
19 Discovery zone inner working angle quoted from Zimmerman (2014); outer working angle deduced by 

Foley from a plot in Zimmerman (2014). 
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smaller than the angles offered by all other masks we have seen so far. Figure 47 

compares the performance of the bowtie mask to a C11 aperture and our original contrast 

target.  

 

 

Figure 47. Plot showing the contrast of the bowtie mask (“shaped pupil”) relative to the 

C11 aperture (Zimmerman, 2014). The dotted line, superimposed by Foley, denotes the 

contrast target we have used to this point. The contrast target the bowtie mask was 

designed to is slightly less strict, explaining some peaks that cross the dotted line. 

 

Unlike the concentric ring mask, the bowtie mask does not have full rotational 

symmetry. Instead, the high-contrast areas take the form of wedges limited both by 

azimuthal angle and working angle. Zimmerman quotes the azimuthal span of each 

wedge as 90 degrees (Zimmerman, 2014), but the true breadth varies depending on the 

desired outer working angle. As conveyed by Table 4, this angle can vary between 24 and 

132 degrees per wedge depending on the working angle window. 
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Table 4. Comparison of three different sets of parameters describing wedge-shaped 

discovery zones in the bowtie mask’s point spread function (Foley). Where wide working 

angle limits are required, the azimuthal span of the search area is small. Inversely, where 

tighter working angle limits are acceptable, the azimuthal span of the search angle is 

large. 

Wedge 

interpretation 

PSF and 

discovery zones 

IWA 

[𝝀/𝑫] 

OWA 

[𝝀/𝑫] 

Arc angle 

(each) 

Narrow 

 

1.2 8.0 24°  

Medium 

 

1.2 5.9 66°  

Wide 

 

2.4 5.9 132°  

 

Regardless of the discovery zone’s shape, we should not overlook the fact that the 

bowie mask is the first mask we have seen whose inner working angle is smaller than that 

of the default C11. This property more than makes up for the search area’s limits in 

azimuth and outer working angle. 
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3.5 Mask selection 

Table 5 summarizes the masks presented in this section. Of these masks, 

Zimmerman’s bowtie mask is a clear winner because it achieves its contrast requirements 

at a narrow inner working angle and across a generous azimuthal span. 

 

Table 5. Comparison of mask candidates for the Celestron C11. Unmasked Celestron 

C11 aperture included for reference. 

Name Source Fig. Struct. 

connec. 

Log-10 

contrast 

IWA 

[𝝀/𝑫] 

OWA 

[𝝀/𝑫] 

Az. 

cvg. 

Celestron 

C11 

Celestron, LLC 29 N/A −2.8 2.3 ∞ 360° 

Gaussian 

donut 

Foley, inspired 

by Debes et al. 

(2003) 

40 No20 −2.8 2.4 ∞  90° 

Multi-

Gaussian 

Foley, inspired 

by Debes et al. 

(2003) 

42 Yes −2.8 3.1 ∞  85° 

Concentric 

ring 

Zimmerman 

(2014) 

44 No −3.0 2.4 ∞ 360° 

Bowtie21 Zimmerman 

(2014) 

46 No −2.7 1.2 5.9 132° 

 

 
20 Though structurally connected in a mathematical sense, the Gaussian donut mask has a bridge between 

the Gaussian secondary and the rest of the mask that is too thin for any practical realization. 
21 Values cited in this row are based on the “medium” wedge interpretation from Table 4. 
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For the sake of variety, we would like to select a second mask to accompany the 

bowtie mask. Given that the list in Table 5 offers no obvious runner-up, we choose to 

produce both the Gaussian donut and multi-Gaussian masks as alternatives. The fact that 

these masks exceed our contrast specification at large working angles but compromise on 

the inner working angle provides an interesting counterpoint to the bowtie mask, which 

improves upon the inner working angle specification of the C11 but achieves a less 

extreme contrast. In addition, the distinctive hourglass-shaped discovery zones of the 

Gaussian-family masks readily reveal the orientation of the masks in their resulting 

images—a useful feature during testing. 

 

3.6 Enforcing structural connectivity 

 For all its benefits, Zimmerman’s bowtie mask is not structurally connected by 

default. Similarly, the Gaussian donut mask requires reinforcement to be mechanically 

viable. The multi-Gaussian mask, being structurally sound by default, requires no special 

treatment. 

 

3.6.1 Structural accommodations for bowtie mask 

 Zimmerman’s original bowtie mask design (Section 3.4.4) exists in two separate 

components: one attaches to the secondary mirror cylinder; one attaches to the rim of the 

telescope. Because we prefer structural connectivity across the entire mask, we add four 

1/8-inch beams between the inner and outer components of the mask at the regions of 

least separation, as seen in Figure 48. 
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Figure 48. Form of 11-inch bowtie mask with 1/8-inch bars added to maintain structural 

continuity. Added bars are identified by orange ovals. 

 

We choose these locations to add bridges because they are the locations where the 

least new material is required. We expect from our understanding of diffraction that small 

perturbations to the aperture shape correspond to high-frequency spatial components that 

will manifest themselves as diffraction spikes at working angles outside our range of 

interest. Indeed, we see in Figure 49 that the bridging between the interior and exterior of 

the pupil mask does not meaningfully affect the diffraction pattern that arises. The 

differences are negligible to the point of being almost invisible. 

 

  

Figure 49. A comparison of the point spread functions of the beamed bowtie mask and 

the original bowtie mask. No significant difference is visible on this domain. 
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3.6.2 Structural accommodations for Gaussian donut mask 

 The Gaussian donut mask of Figure 40 maintains structural integrity in a 

mathematical sense because the thin tails of the secondary connect to the outside of the 

circular aperture; however, these tails are vanishingly thin. For practical purposes, a more 

robust support structure must be added between the Gaussian secondary and the outside 

of the mask. 

Debes et al. identified the orientation of the support structure for their Mt. Wilson 

mask as “crucial,” warning that “spider arms can completely ruin the high contrast axis if 

positioned perpendicular to the mask’s horizontal axis” (Debes et al., 2003). The group 

oriented their four-armed support structure22 at 45 degrees to the horizontal to place 

diffraction spikes “in the brighter regions of the pattern” (Debes et al., 2003). 

Our support structure does not necessarily need to have four arms. We can readily 

avoid problematic vertical elements by placing a single 3/16-inch beam directly along the 

horizontal axis (Figure 50). Though this addition very slightly increases our inner 

working angle from 2.4 𝜆/𝐷 to 2.5 𝜆/𝐷, the high-contrast regions remain intact (Figure 

51). The differences are more pronounced along the vertical axis, where the beamed 

variant produces a strong and colorful diffraction spike (Figure 52). 

 

 
22 Debes et al. (2003) designed pupil masks for use with the Mt. Wilson 100-inch telescope. At 4 

millimeters in diameter, these pupil masks were much smaller than our 11-inch aperture masks. The 

extremely thin support structure would appear to have made designs with two supports too fragile. 
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Figure 50. Gaussian donut with horizontal beam. 

 

  

Figure 51. Point spread function comparison of the beamed and non-beamed Gaussian 

donut variants. The differences are very minor along the horizontal axis. 

 

  
Gaussian donut 

without beam 

Gaussian donut 

with beam 

Figure 52. Comparison of Maskulator point spread function renders for Gaussian donuts 

without a beam and with a beam. The beam produces a vertical diffraction spike but has 

a negligible impact along the discovery axis. 
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 We feel some relief that our additions to the original bowtie and Gaussian donut 

masks show almost no impact on the theoretical diffraction patterns within our working 

angles of interest. At last, with the optical and mechanical properties of our selected 

masks on firm footing, we proceed to design a device that holds these masks. 
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4. MASK ROTATION MECHANISM FOR THE CELESTRON C11 OPTICAL TUBE 

ASSEMBLY 

4.1 Need for rotation mechanism 

None of our selected masks has complete axial symmetry, meaning their 

discovery zones cover only a fraction of the periphery of a star. To fully survey the 

neighborhood of a target, we must sweep high-contrast regions through the 360-degree 

arc by alternately rotating the mask and capturing an image. For example, a mask with 

two symmetric 45-degree discovery zones requires a minimum of four different positions 

(Table 6). That said, smaller angular intervals allow discovery zones in consecutive 

images to overlap, which guards against slop and miscellaneous mask placement errors. 

Smaller discovery zones require more discrete mask orientations. 

 

Table 6. Effect of Gaussian donut mask rotation on a system with an apparent visual 

magnitude difference of 5 and a separation of 2.3 arcseconds, assuming an 11-inch 

telescope and 548-nanometer light. The secondary star (to the upper left of the primary) 

is arguably most visible when the mask is rotated at 135 degrees. 

Mask angle 0° 45° 90° 135° 

Mask 

    
Close double 

power 

spectrum 
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Some advanced telescope mounts may be able to reorient masks by rotating the 

entire optical tube assembly about its axis, but for most telescopes and most common 

configurations of the C11, rotating the mask itself is the only feasible option. As for the 

method of rotation, one can either spin the mask manually or use a powered rotation 

device. 

Rotating the mask by hand is tedious but adequate for some applications. For 

example, with prior knowledge of the placement of a secondary star relative to its 

primary, one can orient the mask by hand such that it emphasizes the secondary star. This 

works for general observation and monitoring. Manual mask rotation is financially 

inexpensive: the only extra equipment that must be added to the optical tube assembly are 

the masks themselves and a means of measuring the rotation angle. Of course, one must 

be careful not to impact the alignment of the telescope while placing the mask. 

Repeatedly rotating the mask and taking exposures also adds tedium to an astronomical 

observation process that already requires plenty of patience. 

 For the process of binary star discovery, automatic mask rotation is much 

preferred. Automated setups use computerized telescope mounts and triggered camera 

exposures, running on lists of star coordinates for many hours. The software to coordinate 

these actions is often versatile enough to be adapted to perform auxiliary operations in 

addition to its usual chores, offering us an opportunity to run mask rotation commands. In 

the end, the process of automated star observation and discovery looks almost the same 

as before, save the extra time required to rotate the mask and record additional exposures. 

 Electronic mask rotation requires some extra equipment. First, there must be some 

motorized mechanism to power the rotation, as well as some way of establishing an axis 
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about which the mask rotates. This axis must be aligned with the telescope’s optical axis 

through some mechanical link to the optical tube assembly. Electronics to interpret 

rotation commands and run the motor must also be present. All these must be 

implemented in a way that minimizes the impact on other behaviors of the telescope. 

 

4.2 Mechanical design considerations 

The design of a rotation mechanism for the C11 presents several challenges, the 

most significant of which are the potential for the mechanism to obstruct incoming light, 

the device’s size and weight, the device’s reliability and repeatability requirements, the 

need to avoid physically modifying the telescope to support the rotation mechanism, and 

the need to keep costs and manufacturing burdens small. 

 To preserve the delicate diffraction patterns created by our masks, we strive to 

avoid introducing any obstruction in front of the telescope aperture other than the mask 

itself. Even small additions, such as wires or structural spiders, will affect the diffraction 

pattern to some extent. We cannot expect these structural elements of the mechanism to 

rotate along with the mask, meaning some mask orientations will perform better than 

others in an unpredictable manner. While it may be possible to orient the optical tube 

assembly itself in ways that minimize the impact from any mask rotator supports, 

sidestepping the issue altogether is ideal. The optical isolation between mask and 

mechanism allows us to validate a mask’s performance independently of the state of the 

rotator, which reduces the number of variables in our tests and makes it easier to arrive at 

meaningful conclusions. 
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 In addition to our significant optics considerations, we must consider the 

mechanics of the device. First, the amount of weight suspended off the end of the 

telescope, which imparts a mechanical moment on the mount, must be minimized. 

Counterweights added to the opposite side of the mount typically balance the weight of 

apparatuses similar to ours, but this load nonetheless increases the moment of inertia, 

straining the motors responsible for aiming the optical tube assembly and lowering the 

frequencies of vibration. The effect is exacerbated if our mechanism is used in the 

presence of other astronomical devices, which the C11 at the Orion Observatory is. 

 We must keep slop reasonably small throughout the system so that we obtain 

consistent results at each rotation. A greater slop reduces trust in the reported mask angle. 

Users may respond to these ambiguous measurements by commanding additional 

orientations and recording additional exposures, which slows stellar observation and 

discovery. A loose mechanism may also center the mask off the optical axis, potentially 

introducing diffraction effects from exposed edges of the aperture that we intended to 

hide. 

 We must not damage the telescope we outfit. Telescopes are precise, fragile, and 

expensive pieces of equipment. No part of the telescope should be drilled into. The lens 

of the telescope must not be scratched. We should also be wary of making permanent 

cosmetic changes such as scuffs that might discourage an astronomer from using our 

solution. We would prefer not to mount to any sensitive optical elements, including the 

cylinder above the secondary mirror. 

 Finally, in the spirit of maximizing accessibility to this technology, we want to 

incorporate materials that are reasonably obtainable into an assembly that requires no 
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exotic manufacturing techniques. These two objectives also tend to reduce the final cost 

of the system, which promises easier adoption. 

 

4.3 Early designs 

4.3.1 Virtual axis design 

At first, we designed a rotation mechanism that would attach to the telescope only 

on its outside. To accomplish this, we would modify an off-the-shelf dew shield, which is 

a telescope extension normally used to reduce condensation at the surface of the lens 

(Astrozap, 2019). The dew shield comes with preinstalled thumb screws that give it a 

snug fit around the telescope’s exterior. The mask would be placed inside the dew shield 

and suspended above the telescope objective by lipped gears added to the dew shield. 

Each of these gears would rotate about bearings mounted externally to the shield. These 

gears would center the mask—establishing a “virtual axis”—and one of the gears would 

be powered to drive the mask’s rotation. This concept is shown in Figures 53 and 54. 

 

 

Figure 53. 3D model of the virtual axis 

design. Gear teeth are not included in the 

model for simplicity. Driving pinion 

(Figure 54) is at the lower right. Lower-

left and top gears are unpowered guiders. 

 

Figure 54. Detail of the stepper–pinion 

assembly. 
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 The gears along the perimeter of the dew shield would be created by laser-cutting 

any compatible material. We selected newsboard, a thick, compressed paper-based 

material that was both inexpensive and readily available. The gear and the lip were cut 

individually and layered along the same axis, as seen in Figures 55 and 56. A plastic 

bushing hidden in these figures facilitates rotary motion. 

 

 

Figure 55. One of the mask-supporting 

lips of the virtual axis design, viewed from 

the interior of the dew shield. 

 

Figure 56. The method of mounting each 

gear from the outside. A bracket 

complementary to the white bracket 

visible here lies on the underside of the 

gear lip. The metal axle bridging them is 

surrounded by an unseen plastic bushing 

inside the gear–lip stack. 

 

   To achieve powered rotation, the design called for one of the outer gears to be 

motorized. Rotating this pinion would rotate the mask an amount determined by the gear 

ratio. Anticipating some friction in the system, we selected one of the stronger stepper 

motors that an Arduino Motor Shield could drive, which had a NEMA-17 form factor 

(SparkFun Electronics, Inc., 2019). An off-the-shelf motor bracket was used to attach the 

motor to the dew shield. The size of the motor required a pinion that was similar in 

design but somewhat larger than the two guiding gears, as seen in Figure 57. 
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Figure 57. The size of the driving motor mandated a pinion larger than the guiding 

gears. 

 

 This design had many attractive properties. First, it required no attachment to the 

secondary mirror cylinder. This physically separated the rotation mechanism from fragile 

elements of the telescope, including the corrector plate. Second, it required few special 

parts: only the laser-cut gears, lips, and masks needed to be made custom; all other 

components were available off the shelf.  

 Sadly, the virtual axis design never worked. 

The first issue with the design concerned the meshing between the teeth of the 

interior gear and the teeth of the exterior gears. The cross-section of the nominally 

cylindrical dew shield ended up being more elliptical than anticipated, causing the 

exterior gears mounted to it to squeeze the mask along the shield’s minor axis but provide 

incomplete tooth engagement along the major axis. These effects would have likely 

contributed to mask misalignment, but this was not specifically tested. Some eccentricity 

in the shield was expected due to its thin, lightweight construction, but the extent of the 

eccentricity—visible to the naked eye—was not. This was likely caused by our using a 
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wooden brace to keep the part sturdy while cutting gear slots with a rotary saw (Figure 

58). 

 

 

Figure 58. Our method of steadying the dew shield during manufacturing likely deformed 

the part. 

 

 As problematic as it was, the eccentricity of the dew shield was made moot by the 

more fundamental issue of using gears to position the mask. The force applied by the 

driven pinion tended to push the mask toward the gap formed by the pinion and the next 

guiding gear, causing the gear teeth to bottom out and gnash; meanwhile, the trailing 

guiding gear supported no lateral load. This was a major oversight that could have been 

solved by using a proper positioning element. One option would have been to add to the 

mask a newsboard layer with a smooth, circular edge and replace the guiding gears with 

smooth, circular lipped elements that would interface only with the new mask layer and 

not the gear teeth themselves. This change would use the gear teeth exclusively for power 

transmission, which is what they are designed for in the first place. 

 This flawed design was almost completely executed (Figure 59). The only major 

component not built was the holder for the mask rotator electronics. 
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Figure 59. The virtual axis design seen with a mask. The design was abandoned before a 

holder for the electronics was created. 

 

 The failure of this design emphasized the importance of establishing a reliable 

rotation axis. It is difficult to center a mask when the positioning of the axis is subject to 

stacked tolerances. Of course, this rotation axis is only as useful as the device’s ability to 

drive a mask about it: any friction or other forces that resist rotation are problematic and 

must be minimized. We proceeded to carry these lessons into our next design. 

 

4.3.2 Lazy Susan design 

 An alternate means of rotating a mask from the outside without adding any 

hardware within the telescope aperture involves a large, sturdy ball bearing, the kind used 

in food turntables. We affectionately call this option the Lazy Susan design. 

 In this design, a mask would be placed such that it would rest on a circular lip 

attached to the interior of a large ball bearing, with the exterior of the ball bearing fixed 

to the exterior of the telescope. A secure mount between the bearing and the telescope 

would imply a well-established rotation axis, countering one of the shortcomings of the 

virtual axis design. 
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The lip at the bearing’s interior would have several mounting pegs on it that 

would interface with holes in the mask. These pegs and holes would be arranged such 

that the mask could be installed in only one orientation. This would allow some indexing 

feature—perhaps a magnet, optical element or physical protrusion—to be a component of 

the holder, removing the need for such a feature to be incorporated in the mask itself. 

Similarly, gear teeth could be molded into the holder, reducing the complexity of the 

mask’s geometry and making it easier to place and remove the mask. 

 Figure 60 shows a simple illustration of this concept to convey where the bearings 

would be placed on the telescope. Mounting hardware, indexing features, and electronics 

are not shown in this diagram. 

 

 

Figure 60. Solid model of Lazy Susan concept. The black body at the bottom represents 

the end of the C11 telescope. The white ring is the Lazy Susan bearing, which elevates the 

mask above the telescope aperture. Mounting hardware, indexing features, and 

electronics are not shown. 

 

 To help us evaluate the principle of the design, we acquired two off-the-shelf 

Lazy Susan bearings from an online retailer. Bearings in this family were difficult to 

locate, and the available sizes were limited. The two we purchased are shown in Figure 
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61 and described in Table 7. The smaller option, with inner diameter less than 10 inches, 

would have impeded the light collecting capacity of the telescope but had a more 

workable footprint. The other option—about two inches greater in diameter—would have 

avoided eclipsing the telescope optics but naturally came at the price of a larger package 

and greater weight. 

 

 

Figure 61. The bearings acquired in the process of evaluating the potential of the lazy 

Susan design. Pencil included for scale. 

 

Table 7. Physical property comparison of lazy Susan bearing options. 

Bearing size Outer diameter Inner diameter Weight [lbf] 

Large 13.81” 11.70” 1.59 

Small 11.84” 9.72” 1.38 

 

 Immediately, we found the bearings’ friction and weight to be problematic. 

Though the amount of resistance when the bearing was rotating—the kinetic friction—

was acceptable, the torque required to initiate motion—affected by static friction—was 

large and unpredictable. This friction seemed higher at some angles than others, and 

though it was never measured, it appeared that it would overpower the torque from the 
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stepper motor, even accounting for the gear reduction. This friction would likely increase 

with time and wear, especially in an outdoor environment. 

The only bearing option that would not have impeded the optics weighed 1.59 

pounds, and this weight would fall at a large moment arm relative to the telescope’s 

motors, magnifying its impact. The motor and electronics assemblies would further 

increase the load placed at the end of the telescope. 

Though possessing some attractive qualities, the lazy Susan concept was not 

suitable to develop further due to these overarching concerns, not to mention unanswered 

questions about mounting. We abandoned the concept in favor of a centrally mounted 

axis option. 

 

4.4 Final design 

4.4.1 Establishing a fixed axis 

Recognizing difficulties of mounting only to the outside of the telescope, we 

expanded our design window to include options where a component mounts to the 

secondary mirror cylinder that forms the central obstruction of a Schmidt–Cassegrain 

telescope’s aperture (recall Figure 28). This mounting point is mechanically ideal because 

it is aligned with the telescope’s optical axis—and thus our desired rotation axis—with a 

very high degree of precision. The tradeoff is that this component is also responsible for 

the telescope’s delicate collimation calibration. As the cylinder represents a sensitive 

telescope component, mounting to it conflicts slightly with one of our design goals. 

The secondary mirror cylinder is not the only path to a fixed axis: it would also be 

possible to install structural “spokes” extending from the circular perimeter of the 
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telescope to the circle’s center. While this would be a lightweight and inexpensive 

solution, the support structure would introduce a diffraction pattern that could reduce the 

effectiveness of the masks. Figures 62 and 63 show how spokes can affect the baseline 

diffraction pattern of the C11’s aperture. 

 

    

Figure 62. The aperture shape of a C11 outfitted with a four-armed 1/16-inch spider, left, 

and the shape’s point spread function, right. Unsurprisingly, the pattern is not 

axisymmetric. 

 

 

Figure 63. The spider’s subtle effect on the C11’s point spread function is visible in these 

overlay plots. 

 

 This structure would be difficult to rotate with the mask. If the spider were fixed 

to the telescope, then the convolution of the diffraction pattern of the spokes with the 

diffraction pattern of the mask would be different at different mask angles. We would 
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much prefer the mask to cast a diffraction pattern clear of interference from the support 

structure. 

 Given these difficulties, we decide to mount an axis directly to the secondary 

mirror cylinder, even though this location is not as robust as we would like. 

 

4.4.2 Strategies for powering rotation 

Assuming we are able to create a central mount that supports the mask, the next 

order of business is the mechanism to induce rotation. One option would be to mount a 

motor directly atop the secondary mirror, operating the mask in a “direct drive” manner. 

This would be a simple solution and would minimize equipment. Unfortunately, 

energizing the motor is a concern. First, the motor can produce heat that might degrade 

the quality of the image. Second, power would either need to be delivered to the motor by 

batteries placed within a small footprint at the center of the aperture, or wires would need 

to be laid radially across the telescope aperture. Placing wires this way would lead to 

similar diffraction issues as a spider support structure. A clever approach would involve 

routing wires along the structurally connected underside of the mask itself such that they 

are never exposed to incoming light (Figure 64), but this could lead to unpredictable 

winding of the wire at the telescope’s exterior. Prioritizing simplicity, we instead decide 

to drive the mask from the outside of the telescope, where we have much greater 

flexibility to determine wire routing. 
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Figure 64. Routing wires along the underside of the mask is one way of delivering 

electricity to the center of the telescope without affecting diffraction patterns. This figure 

shows how the wires might be routed on the bowtie mask. The gray body at the center of 

the figure represents the stepper motor. 

 

 Pulleys or gears can be used to transmit rotation, but pulleys generally require a 

belt in tension that would place an undesirable lateral load on our axle. Thus, we opt for a 

geared solution. To minimize the amount of equipment, we make the mask itself a gear in 

much the same way we did in the virtual axis design. Gears are normally difficult to 

manufacture, but a laser cutter drastically reduces the effort relative to traditional 

machining techniques. Also like the virtual axis design, we can cut teeth into the aperture 

mask at the same time we cut the contours of the mask’s openings. We can also laser-cut 

a pinion to mount to the motor shaft. Unlike the virtual axis design, however, the mask 

will be mounted to a physical axis rather than located by guiding gears, improving our 

alignment. 

 A stepper motor is a natural choice for the motor due to the small form factor and 

strong holding torque. Unless a stepper motor stalls or is forced past its holding torque, 

the shaft’s relative angular position can be determined by the number of times the motor 

has been stepped forward electrically. Tracking motion by counting actuation steps in 
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software effectively removes the need for an incremental encoder, though we still need 

some sense of absolute mask position to reestablish an orientation across power cycles or 

after a stall. This can be accomplished without an expensive absolute encoder by 

incorporating an indexing feature into our masks—some fiducial element that identifies a 

zero position. The fiducial can be a distinctive slit or mark captured by an optical sensor, 

or perhaps a magnet whose field triggers a Hall effect sensor, or maybe a physical 

protrusion that activates a limit switch. However it is implemented, the index provides 

our step counter context to determine the absolute position of the mask. We lean toward 

the magnet option for its forgiving alignment tolerances. 

 With our overall vision in place, we proceed to design the central mount, which 

we will call the axle cap assembly; the externally mounted motor holder, which we will 

call the motor bracket assembly; the gears; and the electronics assembly. 

 

4.4.3 Axle cap assembly 

 The axle cap assembly, modeled in Figure 65, sits atop the cylinder that houses 

the C11’s collimation screws. A countersink on the inside of the axle cap accommodates 

a central “axis bolt” whose flat head sits flush with the material around it. The axis bolt is 

secured using two consecutive fully threaded female standoffs with different diameters 

that act as a stepped shaft. A hole at the mask’s center fits around the narrow part of the 

shaft, allowing the mask to sit on the upper edge of the larger standoff. A plastic thumb 

nut that screws to the top of the axis bolt prevents the mask from escaping the shaft 

(Figure 65). The thumb nut does not contact the rotating elements directly—it rests 

securely at the top of the stepped shaft with a small gap between it and the top of the 
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mask. This makes unintentional disassembly during operation unlikely. The nut is plastic 

to minimize the impact of accidentally dropping it toward the telescope objective. 

 

   

Top Underside Section 

Figure 65. Solid model of the axle cap assembly, shown without the mask or thumb nut. 

 

 

Figure 66. Solid model of the axle cap on a C11, shown with a simplified mask and the 

securing thumb nut. 

 

 To replace a mask, the user will unscrew the thumb nut, lift the old mask, place 

down the new mask, and reattach the thumb nut. In practice, gravity should secure the 

mask in a stable position and remove the need for the thumb nut, but unpredictable 

factors like wind in combination with use of the telescope at shallow altitude angles may 

challenge this assumption. 

 The axle cap itself is formed from acetal, a thermoplastic known for its excellent 

machinability. The axle cap is a fairly large component—approximately 3.8 inches in 

diameter—so the material selection has a significant effect on the cap’s weight. Acetal’s 
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density is about 1.41 grams per cubic centimeter, which cuts 48 percent of the mass of an 

aluminum equivalent and 82 percent of a steel equivalent for a part of the same 

dimensions (MatWeb a–c). The reduced mass is especially relevant because of the cap’s 

placement at the end of the telescope, where a large moment arm exists relative to the 

telescope mount’s axis. Acetal is also recognized for its moisture resistance (W.S. 

Hampshire, Inc., 2019), so it should be suitable to leave on a telescope for multiple hours 

at a time—perfect for a fruitful night of stellar observation and discovery.23 

 The cap is designed with a slight clearance fit around the collimation cylinder that 

is large enough to facilitate easy installation and removal but tight enough to guard 

against mask misalignment and any substantial angling of the axle during use. The depth 

of the cap is just shallow enough to keep the cap’s rim from contacting a step in the 

secondary mirror cylinder, providing good stability. The cap’s outer diameter is less than 

the full width of the secondary mirror obstruction, and the difference in diameters is 

enough such that, even amid worst-case machining tolerances, the cap will not affect the 

optics. The depth clearance and diameter difference can be seen in Figure 67. 

 

 
23 Acetal is typically not recommended for use outdoors, but this stems from its susceptibility to 

degradation in the presence of ultraviolet light (Zeus Industrial Products, Inc., 2005). As our axle cap will 

not be used in sunlight, this is not a concern. 
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Figure 67. Section view of the axle cap's interface with the telescope. The axle cap is 

black; the telescope is brown. The depth of the cap is just less than the height of the 

upper part of the secondary mirror cylinder; meanwhile, the outer diameter of the cap is 

just shy of the diameter of the lower step of the secondary mirror cylinder. 

 

 The 10-32 axle bolt is significantly stronger than it needs to be given the minimal 

stresses in our system. We selected it based on the wide availability of standoffs with 10-

32 female thread and because there were more length options for flat-head screws of this 

thread size relative to screws with smaller threads. 

 The bill of materials for the axle cap assembly is available in Appendix N. 

Appendix O contains engineering drawings of the axle cap and its related assembly. 

 

4.4.4 Motor bracket and pinion assemblies 

The motor bracket assembly, which sits on the outside of the telescope, requires 

three essential elements: a motor, a mount, and a pinion. 

For the motor, we select the same motor that we used in the virtual axis design, a 

bipolar stepper motor with a NEMA-17 mounting pattern. The motor’s 1.8-degree step 

angle implies 200 steps per revolution (SparkFun Electronics, Inc., 2019), which is plenty 

of granularity given that our masks’ azimuthal discovery zones are no smaller than about 

42 degrees each and given that we benefit from a gear reduction between the motor-

mounted pinion and the mask itself. The motor’s holding torque of 0.23 newton-meters 
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(SparkFun Electronics, Inc., 2019) is enough for the small loads we drive.24 The 

electronics interface is a standard four-wire setup that is directly compatible with an 

Arduino Uno Motor Shield, as are the 12-volt voltage and 0.33-ampere current (SparkFun 

Electronics, Inc., 2019). At 0.44 pounds (SparkFun Electronics, Inc., 2019), the motor is 

not a light component, but we figure its weight is comparable to other stepper motors of 

similar specifications and should not give us pause. A DC gearmotor would be a lighter 

option, but it would likely demand an auxiliary encoder and a more sophisticated 

controller. 

The mounting of the motor is a challenging design task due to the limited 

placement options. We dare not drill into the telescope to form a mounting point; instead, 

we must make use of the existing metal collar surrounding the C11’s aperture. We 

envision a three-point mounting system with one contact point on the inside of the collar 

and two contact points spread apart on the outside of the collar (Figure 68). If the inner-

side contact point is made to be a thumb screw, then tightening this screw will cause the 

mount to clamp. A platform connected to these mounting points that lies parallel to the 

telescope lens but free of the optics forms the plane the motor mounts to. This principle 

can be seen in the model of our motor bracket assembly, shown in Figures 69 and 70. 

 

 
24 A conservative analysis in Appendix D shows that the required torque is no greater than about 0.21 

newton-meters. 
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Figure 68. Illustration of the three-point mounting concept. The inner contact is 

adjustable to allow a tight fit on the collar of the telescope regardless of the telescope’s 

diameter. 

 

  

Figure 69. Model of the underside of the 

motor bracket assembly, showing at the 

left side the adjustable thumb screw and 

the two stationary mounting posts. 

Figure 70. Model of the motor bracket 

assembly mounted to the collar of a C11 

telescope. 

 

The thumb screw allows the design to adapt to telescopes of different diameters 

easily. On a smaller telescope, the screw can be “tightened” further so it and the two 

stationary posts align to the tighter curvature of the rim. Inversely, on larger telescopes, 

the screw sits shallower in its threads. The thumb screw’s length determines the smallest 

compatible telescope, though the motor bracket may impinge on the optical path for 

especially small cylinder diameters. There is no equivalent upper diameter limit. 
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8-inch telescope 11-inch telescope 14-inch telescope 

Figure 71. Cross-sections, looking toward the telescope aperture, of the motor bracket’s 

interface with telescopes of different sizes. (Swapping the thumb screw for a longer 

alternative would be recommended for the 8-inch telescope so that it does not bottom 

out.) 

 

 Like the axle cap’s thumb nut, the motor bracket’s thumb screw is plastic to 

reduce potential damage to the telescope if it is accidentally dropped. 

 The shape of the motor bracket component is a mix of function and material 

choice. The part’s essential purpose is to support a mounted motor and provide a right 

angle between the motor mount and the surface through which the thumb screw hole is 

tapped. We found that aluminum U-channel stock could be machined to support both 

these functions at a lower cost than some alternative methods. The vertical ridge placed 

away from the telescope at the right sides of Figures 69 and 70 is an artifact of the stock 

material. We make use of it in the electronics assembly (Section 4.4.8). 

 The stepper motor comes with a mounting hub, which is a natural place to attach a 

pinion. The pinion assembly design we arrived at, modeled in Figures 72 and 73, uses 

three laser-cut pieces of acrylic. Two 3/32-inch-thick, clear, circular pieces of different 

sizes sandwich a 3/16-inch-thick gear. To keep the pinion close to the elevation of the 
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telescope edge, we attach the pinion beneath the hub, forming a mushroom-like shape. A 

small set screw pinches the hub to the stepper motor shaft. A model of the pinion 

assembly attached to the motor bracket assembly is shown in Figure 74. 

 

 

 

Figure 72. A model of the pinion 

assembly. The black cylinder represents 

a simplified gear. 

Figure 73. A view of the pinion assembly 

model from a lower angle, showing the 

screw heads. 

 

 

 

Figure 74. A model of the pinion assembly placed on the motor shaft. The narrow 

clearance between parts is apparent. 

 

 The two pinion lips are present to gently maintain the vertical position of the edge 

of the mask during operation. Even though the mask is supported at its center by the axle 

cap standoff, the mask is still liable to wobble slightly, and the lips help correct this 

motion. The lower lip is sized large enough to support parts of the mask within the mask 

gear’s root circle. The upper lip is smaller than the lower one to facilitate mask removal 

and reinsertion, but it still prevents errant mask excursions because it enters the mask 
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gear’s addendum circle. These lips are made of transparent acrylic to provide better 

visual feedback when inserting the mask into the rotation mechanism. 

We select the thickness of the pinion gear itself to be 3/16 of an inch because it is 

the largest that can be reasonably accommodated on the shaft and because materials 

thicker than this would make very heavy masks. To account for the case in which a 

material 3/16 of an inch thick is selected for a mask, we add two washers that act as 

spacers within the pinion assembly. These are visible in Figure 75. 

 

 

Figure 75. Detailed profile of the pinion assembly’s central column, exhibiting the 

humble spacers and set screw. 

 

 Bills of materials for the motor bracket and pinion assemblies can be found in 

Appendix N. Engineering drawings related to these assemblies are in Appendix O. 

 

4.4.5 Gear design 

At this point, we have established the need for two gears—a pinion and the mask 

itself—but we have not fully defined their geometry. The most important remaining 

variables are the number of teeth on each gear and their shared circular pitch. These 

variables dictate the pitch diameter of each gear and the separation between them, among 

other dependent variables. 
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It helps us to begin with some basic guidelines and use them to narrow our design 

window. First, under no circumstance should the mask’s root diameter be smaller than 

the telescope aperture’s diameter, lest we leak light through the gaps between gear teeth. 

Second, the teeth must be large enough that they will engage amid clearance in the 

system that might result from manufacturing tolerances. Third, the gear axes should be 

close to each other, within reason, to minimize material and weight at the motor bracket.  

After some iteration, we arrived at a design with 72 teeth at the mask and 17 teeth 

at the pinion. The circular pitch ended up at 0.5236 inches per tooth, which produces a 

mask pitch diameter of 12 inches, a pinion diameter of 2.83 inches, and a center distance 

of 7.42 inches. These dimensions and more are summarized in Table 8. Figure 76 

displays the result. Importantly, the root diameter of the gear comfortably exceeds our 

11-inch minimum (Figure 77). 

 

Table 8. Parameters of the mask and pinion gears. 

Parameter Gear Pinion Units 

Number of teeth 72 17 teeth 

Outer diameter 12.333 3.166 in. 

Pitch diameter 12.000 2.833 in. 

Root diameter 11.583 2.416 in. 

Circular pitch 0.5236 in./tooth 

Pressure angle 20 deg. 

Clearance 0.056 in. 

Backlash 0.02 in. 
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Figure 76. The 72-tooth gear and 17-

tooth pinion displayed to scale. Figure 

was created using Rainer Hessmer’s 

Involute Spur Gear Builder utility 

(Hessmer, 2014). 

Figure 77. Mask gear image overlaid with 

an 11-inch-diameter circle, demonstrating 

the clearance between the C11 aperture 

and the gear’s root diameter. 

 

 

 The choice of 72 teeth for the mask is particularly convenient. Each tooth 

represents exactly five degrees of rotation, allowing masks with two-way, three-way, 

four-way or six-way symmetry—and even those with some higher-order patterns—to 

have their symmetry reflected in the tooth pattern itself. The mask’s teeth will mesh with 

the pinion the same way at every rotationally equivalent angle at which the mask’s 

opening can be oriented. This implies that the backlash behavior at all such rotations is 

the same, which may lead to slightly more consistent imaging results than a configuration 

in which teeth do not reflect the same rotational symmetry as the mask opening. 

 Another small benefit of meshing a 72-tooth gear with a 17-tooth pinion is that 

wear patterns caused by a defect on a gear will be evenly distributed among all points on 

the opposite gear. This occurs because the greatest common factor between 72 and 17 is 

1, as shown in Table 9. This property would be much more important to high-speed, 

high-power geared systems, but we nonetheless accept the modest benefit. 

 



84 

Table 9. Gear teeth values and factors. 

Element Teeth Factors 

Gear (mask) 72 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 

Pinion 17 1, 17 

 

 We included a small clearance of 0.056 inches between the gears to account for 

possible engineering tolerance stack-up within the axle cap and motor bracket assemblies. 

This dimension is derived in Appendix E. With less rigor, we set the backlash between 

the two gears to be 0.02 inches, amounting to an angular backlash of about 0.19 degrees 

at the gear—plenty precise for our masks, whose discovery zone sectors are orders of 

magnitude wider. The clearance and backlash are visible in Figure 78. 

 

 

Figure 78. A close-up of the interface between the mask gear, left, and pinion gear, right, 

revealing the small clearance between them. Figure was created using Rainer Hessmer’s 

Involute Spur Gear Builder utility (Hessmer, 2014). 

 

 The process of producing gears with these dimensions is described in Section 

4.5.2. 
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4.4.6 Mask assembly 

The hard part of our mask designs is over: we selected the shapes of our openings 

in Section 3.5 and defined gear teeth to add our masks in Section 4.4.5. Yet unspecified is 

the masks’ material, for which we select 1/8-inch-thick birch. Wood is a good choice 

because it is light and sturdy. It can be used in a laser cutter—likely the only machine that 

is precise enough to cut our masks properly—and it is opaque to all light. Its matte finish 

prevents stray light from contaminating the image. Working against it is its tendency to 

absorb moisture, which can affect its dimensions (Ross, 2010). We opt not to use the 

same newsboard material that we used in the virtual axis design because of the excess of 

ash it creates during the laser cutting process. Naturally, wood also creates ash, but the 

amount is not as alarming. 

Initially, we considered using black acrylic because of acrylic’s excellent laser-

cutting characteristics, but a mask of this material would not have performed well in the 

field. Even though the material is visually black, it does not block infrared light (Figure 

79). This would cause light at only some wavelengths to diffract as designed, ruining any 

exposure recorded with an image sensor that detects wavelengths outside this range. 

 

 

Figure 79. Light transmission of black acrylic sheet (Acrylite). Even though the sheet is 

visually black, it transmits considerable light at infrared wavelengths. 
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We establish index positions in each mask by adding magnets toward the outside 

of the mask at azimuthal angles where the mask opening is rotationally symmetric 

relative to some base orientation. All our masks have two-way rotational symmetry, so 

each mask requires two magnets in diametric opposition across the mask, as shown in 

Figure 80. 

 

   

Figure 80. Magnet positions vary by mask based on available space. Magnets are shown 

as blue circles. 

 

The exact placement of the magnets relative to the opening is unimportant so long 

as the magnets are evenly spaced across the full 360-degree span in a way that reflects the 

opening’s symmetry. We use this flexibility to solve a geometrical challenge with the 

Gaussian donut mask: unlike the bowtie and multi-Gaussian masks, the Gaussian donut 

cannot accommodate magnets placed along the nominal vertical axis of the mask, so we 

instead place them at an angle 45 degrees to the vertical.  

The selected magnets have a diameter of 3/8 of an inch, a thickness of 1/16 of an 

inch, and are neodymium. They sit in shallow magnet cubbies etched into the mask and 

are attached to the mask with super glue. The magnets are placed in a circle with a 

diameter of 11 inches, which is the widest possible dimension that avoids encroaching 

upon gear tooth geometry. At this location, the magnets slightly enter the aperture 
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diameter, but because they would already sit atop an opaque part of the mask and because 

the opaque areas in our three masks are large, this is not an issue for us. Alternate mask 

designs that are especially open toward their outsides may not be as forgiving. 

The poles of the magnets should be aligned the same way for the benefit of the 

Hall effect sensor. Doing this conveniently allows the self-aligning nature of magnets to 

keep stacks of masks together neatly when placed in storage, as seen in Figure 81. 

 

  

Figure 81. Magnets gently hold the masks in a stack when the masks are not in use. 

 

Mask manufacturing is discussed in Section 4.5.2, with part and assembly 

drawings available in Appendix O. Appendix N contains a list of materials used in the 

mask assembly. 

 

4.4.7 Microcontroller selection 

We select a combination of an Arduino Uno and an Arduino Motor Shield to 

perform our rotation logic. Arduino is an open-source electronics prototyping platform 

that breaks out features of a microcontroller into convenient physical interfaces. Users 

write and upload firmware using the free Arduino integrated development environment 

(IDE). The Arduino series of devices enjoys wide support from hobbyists in part because 

it eliminates major hurdles in designing, building, and programming circuits. The 
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availability of boards and support for them make the platform very accessible to those 

without a background in electronics or software development. An Arduino Uno and an 

Arduino Motor Shield are shown in Figures 82 and 83. 

 

  

Figure 82. An Arduino Uno (Arduino 

AG, 2019). 

Figure 83. An Arduino Motor Shield 

(Arduino AG, 2019). 

 

The Uno runs on the Atmel ATmega328P, an 8-bit processor which runs at 16 

megahertz (Atmel Corporation, 2015). Given our meager input/output requirements, and 

in the absence of foreseeable demands in computational speed or complexity, this 

processor should be fine for our needs. The Uno exposes a USB-B connection that allows 

communication with a computer, allowing the chip to be programmed easily through the 

Arduino IDE. 

The Motor Shield is based on the STMicroelectronics L298, a dual full-bridge 

driver that can be operated through Arduino electronics at up to 12 volts and 4 amperes 

(Arduino AG, 2019). The full capacity of the chip itself is much higher 

(STMicroelectronics, 2000), but the Arduino-limited capacity is plenty to drive a strong 

stepper motor like the 12-volt, 0.33-ampere bipolar stepper motor we identified in 

Section 4.4.4. The Motor Shield fits directly atop the Uno. 



89 

At roughly 3 inches by 2.5 inches by 1.25 inches, the physical footprint of the 

Uno and the Motor Shield stack is far from compact (Figure 84). This size comes in part 

from the amount of onboard electronics irrelevant to this project. Certainly, a proprietary 

embedded system solution would be more space-efficient than the bulky Arduino 

hardware, but we will leave this optimization for a follow-up project. In the meantime, 

we prioritize function over form. 

 

 

Figure 84. The Arduino boards are rather large. 

 

4.4.8 Electronics assembly 

The ridge of the motor bracket farther away from the telescope aperture (seen at 

the right sides of Figures 69 and 70) provides a convenient mounting surface for our 

electronics. First, we acquire a plastic case that holds the Arduino Uno and the Motor 

Shield; second, we affix adhesive-backed hook-and-loop to this case and the motor 

bracket lip (Figure 85); third, we press the two together to keep them in place. This 

arrangement is shown in Figures 86 and 87. Though the hook-and-loop design may not 

qualify as elegant, it is inexpensive and otherwise suits our needs. 
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Figure 85. Detail 

of hook-and-loop 

placement. 

 

Figure 86. Solid model of the 

motor bracket assembly and an 

approximation of the 

electronics case joined via 

hook-and-loop. 

Figure 87. Realization of the 

attached motor bracket assembly 

and electronics case. The 

Arduino Uno lies within the 

case; the Motor Shield 

protrudes. 

 

 We must incorporate a Hall effect sensor to register the magnets placed in each 

mask. For convenience, we use an off-the-shelf Hall effect switch breakout board (Figure 

88) and simply glue it along the side of the motor bracket beside the thumb screw (Figure 

89). This breakout board position places the Hall effect sensor beneath the circular path 

of the indexing magnets, which is important for acquiring reliable sensor readings and 

thus reliable index positions (Figure 90). It is vital that soldered connections on the back 

side of the board are electrically insulated from the aluminum part to avoid a short circuit. 

 

   

Figure 88. A Hall effect 

sensor breakout board 

(SunFounder, 2017). The 

sensor itself is the black 

component at the right 

side of the image. 

Figure 89. A Hall effect 

breakout board attached 

to the side of the motor 

bracket. 

Figure 90. Top view of the full 

assembly with the mask made 

transparent to demonstrate the 

alignment between the indexing 

magnet and the Hall effect 

sensor. These components are 

highlighted by the yellow circle. 
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The Hall effect sensor establishes the zero position of the mask and is rigidly 

attached to the motor bracket, so the location of the motor bracket determines the mask 

datum relative to the telescope. Typically, an astronomer will want to maintain this 

position between observing sessions such that reported mask rotations are consistent 

night to night. The telescope offers few landmarks, so the astronomer might add a piece 

of masking tape to the outside of the telescope to mark a datum. While this design is not 

the most robust, it gets the job done. 

 Bills of materials for the electronics assembly can be found in Appendix N, with 

assembly drawings in Appendix O. 

 

4.4.9 Cost analysis 

A comprehensive bill of materials for the mask rotator with costs included can be 

found in Appendix N. 

At quantity, the total cost of parts for the mask rotator is approximately US$111. 

Electric components account for nearly three-quarters of the total, with the Arduino Uno 

at $22, the Arduino Motor Shield $22, the stepper motor $16, the power supply $8, the 

Hall effect sensor breakout $7, and the USB cable another $6. One of the easiest ways to 

reduce the part cost at scale would be to replace the Arduino devices with a custom 

printed circuit board. Many of the peripherals present on Arduino boards are not used in 

this project and only run up the size and price of our solution. 

 There are five different raw materials used to manufacture the mask rotator: stock 

acetal for the axle cap, stock aluminum U-bar for the motor bracket, black acrylic for the 

pinion, clear acrylic for the pinion lips, and birch for the masks themselves. The 
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minimum quantities sold by vendors are excessive for one mask rotator unit, but when 

the materials are used for multiple units, the effective cost per unit drops significantly. 

We estimate machining to take approximately five hours, of which two are spent 

on the axle cap, two are spent on the motor bracket, and one is spent laser-cutting the 

masks and pinion components. If a machinist is paid $20/hour to perform these 

operations, the total cost of the rotation mechanism increases by $100 to $211. In the 

future, machining costs can be reduced somewhat by simplifying the motor bracket part 

and by using an online-based commercial laser-cutting service. 

 

4.4.10 Mechanical design summary 

Figure 91 displays a model of the entire mask rotation mechanism assembly. 

 

 

Figure 91. A solid model of the complete mask rotation mechanism, excluding wires for 

clarity. 
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 We set several goals in Section 4.2 that are worthy of revisiting now that we have 

a complete mechanical design. 

 First, with respect to the purity of the optics, we succeeded at designing a rotation 

mechanism that does not enter the space forward of the C11’s telescope aperture. To do 

this, we had to mount the axle cap to the secondary mirror cylinder and the motor bracket 

assembly to the collar of the telescope. Only the mask can intercept parallel light rays that 

would otherwise strike the telescope aperture, as intended. 

 Second, with respect to minimizing the size and weight of the device, we arrived 

at a mixed bag. The overall size of the device, in the author’s opinion, is acceptable, 

though the Arduino devices are large and placed awkwardly on the outside of the motor 

bracket assembly. The weight of the device is inflated somewhat due to the use of metal 

components that were overkill for their function, one example being the steel standoffs on 

the axle cap. The form factor and weight can be improved somewhat by switching from 

Arduino to a more compact electronics solution and by substituting a lighter component 

for the makeshift stepped shaft at the axle cap assembly. 

 Third, with respect to designing a system that is reliable and repeatable, we made 

careful efforts to minimize engineering tolerances and provide a consistent method of 

achieving desired mask positions. The components of our system mate with existing 

telescope features and off-the-shelf parts that are machined to high levels of precision. As 

shown in Appendix E, the worst-case tolerance stack-up causes a gear mesh variance of 

0.056 inches. This distance is much shorter than the length of the gear teeth. Meanwhile, 

our automatic indexing function provides users a convenient and repeatable method for 

recovering mask positions, even if the device stalls or loses power. 
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Fourth, with respect to avoiding interfacing with sensitive telescope components, 

we did not entirely succeed. Whereas we were hoping to avoid mounting to the secondary 

mirror cylinder, difficulties with other designs pushed us in this direction. We rejected 

the notion of using spiders in Section 4.4.1, but an engineer who continues this project 

may reconsider this decision. 

 Finally, with respect to the accessibly of reproducing the design, we largely 

succeeded. The only custom parts required are the axle cap, the motor bracket, and the 

laser-cut components (mask, pinion, and pinion lips), which can all be produced using 

common machine shop tools. As documented in Section 4.4.9, we estimate the total 

hardware cost at about $111 and expect it to take about five hours to manufacture. The 

part count is high due to fasteners at the motor bracket assembly. Future designs can 

surely simplify the device. 

 A complete list of materials for the mechanism can be found in Appendix N. 

High-level assembly drawings are featured in Appendix O. 

 

4.5 Fabrication 

4.5.1 Rotation mechanism fabrication 

We turned to Cal Poly mechanical engineer Kevin Jantz to assist us with 

machining the motor bracket and axle cap parts. 

The motor bracket begins as a piece of aluminum U-channel stock. We selected 

part 9001K1 from McMaster–Carr’s catalog because the cross-section has square interior 

corners. These are important for us near the threaded tab in the finished part: a square 
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corner lets the part lie flush with the top of the telescope collar rather than be propped up 

by a fillet. 

Forming the threaded tab is the most difficult operation. It requires milling one 

flange of the stock such that the machined surface matches the existing surface on the 

underside of the channel as closely as possible. This operation creates an obvious contrast 

in finish between the machined and unmachined planes (Figure 92), but we can easily 

tolerate this imperfect aesthetic.25 Other machining steps in the part are trivial, such as 

cutting the stock to length, drilling holes for the various mounts, tapping the thumb screw 

hole, and breaking the edges. Figure 93 shows the motor bracket just after being 

machined. 

 

 

Figure 92. Profile of threaded lip, 

showing the square corner and change in 

surface finish. 

 

Figure 93. A motor bracket is born! 

(Photo by Kevin Jantz.) 

 

 The axle cap is a fairly simple part. It begins as 4-inch diameter acetal, which can 

be trimmed to size and hollowed out with a lathe. From here, drilling and countersinking 

are all that are needed to finish the part. A tailstock equipped with appropriate drill bits 

 
25 Let us not forget that this device is used at night. 
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can be used for these hole operations if available. Figure 94 shows the completed axle 

cap. 

 

 

Figure 94. A newly machined axle cap. (Photo by Kevin Jantz.) 

 

 Technical drawings for these parts are available in Appendix O. 

 

4.5.2 Mask and pinion fabrication 

A laser cutter is the most logical manufacturing method for the mask and the 

pinion components because these parts are flat and have complicated profiles. It operates 

as a special type of plotter, interpreting thin lines in the graphics file as paths to cut and 

broader regions as areas to engrave. 

Each mask has two important sources of cutting paths that need to be combined. 

The first is the gear tooth profile, which we generate using Rainer Hessmer’s Involute 

Spur Gear Builder utility (Appendix F); the second is the profile of the mask’s openings, 

which needs to be interpreted from a black-and-white image of the mask shape 

(Appendix G). With some effort, we combine these paths in Adobe Illustrator and set 

their stroke size small enough that they register to the laser cutter as elements to cut 

rather than raster. We add filled circles to our image to represent the magnet cubbies. 
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Unlike other profiles in the mask, these must be engraved rather than cut. Figure 95 

shows an example of a completed image. 

 

 

Figure 95. A complete bowtie mask representation for laser cutting. Black lines are paths 

to cut; blue circles are regions to engrave. 

 

 We cut the mask using a 75-watt Epilog Fusion laser cutter. Because all laser 

cutters and materials are different, we calibrated the machine first by running several test 

cuts and engravings to arrive at ideal settings (Table 10). 

 

Table 10. Laser cutter settings used for our masks. 

 Cut (for 1/8” birch) Raster (1/16” depth in birch) 

Speed 16% 22% 

Power 100% 100% 

Frequency 10% N/A 

 

 We encountered a few small challenges in the cutting process. A faulty sensor in 

the laser cutter sometimes triggered spuriously mid-cut, causing the machine to seize—or 

even worse, continue a cut in the direction of the last command it received, sometimes 

clean through the remainder of the part. Obviously, this malfunction ruined the mask. 
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Figure 96 shows a heartbreaking example of a part that fell victim to the seizing behavior 

just seconds before the cut would have finished. 

 

 

Figure 96. A mask left incomplete due to a malfunction in the laser cutter. 

 

 A more minor issue was the scorching of the wood during the etching process, 

which deposited ash along the mask in the direction of the airflow within the machine. 

For the mask’s sake, the price of this was mostly aesthetic, though it is possible that the 

airborne debris slightly contaminated the laser lens. 

 

 

Figure 97. The etching process tended to stain the wood slightly. 

 

 Once our cuts finally succeeded, we ended up with three handsome masks, shown 

together in Figure 98. 
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Figure 98. The result of cutting and assembling the masks. At the upper left is the 

Gaussian donut mask; at the upper right is the multi-Gaussian mask, and at the lower 

center is the bowtie mask. 

 

 Cutting the plastic pinion and pinion lips proceeded much the same as cutting the 

mask. Our settings for acrylic are shown in Table 11. The pinion cuts were performed on 

a different day than the mask cuts, so the settings may not follow the expected 

relationship relative to those used for the birch (Table 10). 

 

Table 11. Laser cutter settings used for our pinion and pinion lips. 

 Cut (3/16” acrylic for pinion) Cut (3/32” acrylic for pinion lips) 

Speed 8% 20% 

Power 100% 100% 

Frequency 100% 100% 

 

 True to the material’s reputation, the acrylic cut beautifully. However, we 

discovered an issue with the pinion lips that was not related to the cutting process. In the 

case the elevations of the mask and pinion did not match, the mask’s teeth tended to catch 
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on a pinion lip at the point they met the lip’s contour, causing unpleasant chattering and 

strain on the motor. To counteract this, we added a taper to the edges of the pinion lips in 

Adobe Illustrator (Figure 99). With the taper, the lips performed their function much 

better than before (Figure 100). 

 

  

Figure 99. A radial gradient added to the 

pinion lip defines a taper. 

Figure 100. The tapering of the pinion 

lips, though subtle, effectively keeps the 

gear teeth from getting caught on the edge 

of the lips. 

 

4.5.3 Assembly 

Assembling the mechanism was mostly trivial: the axle cap slid nicely onto the 

secondary mirror cylinder (Figure 101); mounting the motor to the bracket and the pinion 

to the motor shaft was straightforward (Figure 102). 

 

  

Figure 101. The axle cap placed on the 

C11’s secondary mirror cylinder. 

Figure 102. The motor bracket assembly 

attached to the telescope collar. 
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One unforeseen issue arose from the thread callout in the original drawing of the 

motor bracket, which errantly specified an 8-36 thread instead of the intended—and 

much more common—8-32 thread. (The part drawing in Appendix O is the corrected 

version.) Dutifully, Jantz tapped 8-36 thread. After the error in the drawing was 

discovered, we purchased a small set of 8-36 stainless steel screws to use in place of the 

plastic thumb screw. These new screws were a little longer than ideal, but we made the 

best of the limited available length options for fasteners in this uncommon thread size. 

Figure 103 shows our first complete mechanical assembly of the rotation 

mechanism, excluding the electronics. 

 

 

Figure 103. An assembled mask rotation mechanism less the electronics assembly. The 

mask shown is a prototype of the multi-Gaussian mask. 

 

 The gears meshed very nicely, leaving a slight clearance without too much slop. 

The region of gear meshing (which proved surprisingly difficult to photograph amid 

clouding in the upper pinion lip) is shown in Figure 104. 
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Figure 104. Region of meshing teeth in the rotation mechanism. 

 

4.6 Mask rotator software 

4.6.1 Design and interface considerations 

The simplest way to communicate between a computer and our electronics is to 

establish a virtual serial connection between the two devices using the Arduino’s UART-

to-USB bridge. The Arduino IDE provides a serial terminal that operates this interface for 

debugging purposes. We communicate at the default rate of 19200 baud, which is slow 

compared to most electronics but adequate for our infrequent commands. 

The selection of messages we transmit over the interface is much more 

interesting. To support a wide range of use cases, we establish the notion of an operating 

mode, which can either be absolute or relative. In absolute mode, position commands 

target an absolute position for the mask. To use this mode effectively, the zero position of 

the mask must first be established by an indexing operation. In relative mode, position 

commands refer to an angular position relative to the current position. This mode is 

convenient when indexing functions are not available or when a quick readjustment is 

needed. We also support continuous rotation commands, which are useful for debugging, 

as well as accessors that provide the current position angle and position target of the 
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mask. A complete list of commands is included in Appendix H along with information 

about the electrical interface. 

When a new position target is requested in absolute mode, the mechanism takes 

the shortest route to the new angle relative to the mask’s current position, even if it has 

not finished executing its most recent command. For example, if the mask is currently 

headed from 0 to 180 degrees but receives a new command partway to travel to 270 

degrees, software will decide either to continue the original rotation or to reverse course 

to reach 270 degrees depending on whether the mask has passed the halfway point. 

Absolute positions are interpreted using modular arithmetic where values outside 

[0, 360) are wrapped onto this domain. For example, if the current absolute position of 

the mask is 1 degree and the user requests a target of 3600 degrees, software will 

recognize the new target as a multiple of 360 degrees, equivalent to 0, and command the 

motor to rotate the mask backward just one degree. In relative mode, the full angle is 

respected such that a target of 3600 degrees will rotate the mask ten full rotations to an 

identical position, which is useful for testing. All the while, the system accounts for the 

72:17 gear ratio between the pinion and the mask, causing the motor to travel more than 

four times the mask’s angular distance for any rotation operation. 

The limited resolution of the stepper leads to small discrepancies between 

commanded positions and achievable positions. At all times, the motor’s step count is 

maintained as an integer that never loses precision. Angles contained in mask position 

commands are rounded to the nearest number of motor steps. Position accessors convert 

the present number of motor steps to the mask angle equivalent. Using the motor step 
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count as the definitive position gives the device immunity from floating-point and 

roundoff errors. 

The full mask rotator code can be found in Appendix M. 

 

4.6.2 Indexing behavior 

 Knowing the absolute rotation of the mask relative to the telescope is important so 

that we can make sense of our results as we survey the neighborhood of a star. The 

information can also be recorded and used to reproduce exposures if needed. 

 We selected a Hall effect sensor coupled with mask-mounted magnets as our 

index detection method as discussed in Section 4.4.2. The Hall effect sensor acts as a 

binary switch, where logical high indicates a magnetic field strength below the trigger 

threshold and logical low indicates a magnetic field strength above the trigger threshold. 

As the mask rotates to an index position and the magnet approaches the sensor, 

we see a transition from logical high to logical low; then, as the magnet travels beyond 

the sensor, we see the opposite transition. At first glance, it seems that we can simply 

take the average of the two transition positions and declare this the true index point 

(reasoning that the sensor will read the most “low” when the magnet is directly above it), 

but this technique will not work as expected due to hysteresis in the sensor. The magnetic 

field strength thresholds for latching and unlatching the sensor are asymmetric, which 

means a two-point average will not provide the actual position of peak magnetic strength. 

Worse, the sense of the positional error will depend on the direction of approach. It 

makes more sense for us to do two passes instead—one forward and one in reverse—to 

eliminate this directional dependence and yield a more accurate result. 
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 We implement the two-pass approach by first rotating the mask in one direction 

until we see the see the sensor latch and unlatch, then record the positions of these events. 

Next, we reverse the direction of rotation and again note the angles at which the sensor 

latches and unlatches. We figure that the average of these angles represents the point of 

maximum magnetic field, so we establish this point as the index position. Figure 105 

illustrates this two-pass indexing algorithm using variables explained in Table 12. 

 

 

Figure 105. Depiction of the two-pass approach for indexing behavior. 

 

Table 12. Variables used in illustration of two-pass indexing behavior. 

Variable Significance 

𝑥𝑖 Index position: expected point where 𝐵 = 𝐵𝑝, calculated as 

 𝑥𝑖 =
𝑥1+𝑥2+𝑥3+𝑥4

4
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Variable Significance 

𝑡1, 𝑥1 Time and mask position at which Hall effect sensor latches low (𝐵 > 𝐵𝑙) 

during first pass  

𝑡2, 𝑥2 Time and mask position at which Hall effect sensor latches high (𝐵 < 𝐵𝑢) 

during first pass 

𝑡3, 𝑥3 Time and mask position at which Hall effect sensor latches low (𝐵 > 𝐵𝑙) 

during second pass 

𝑡4, 𝑥4 Time and mask position at which Hall effect sensor latches high (𝐵 < 𝐵𝑢) 

during second pass 

𝑡5 Time at which mask has reached established index position (𝑥 = 𝑥𝑖) 

𝐵𝑝 Maximum magnetic field strength at Hall effect sensor. This is the 

strongest field possible given the system’s physical configuration. 

𝐵𝑙 Latching threshold for Hall effect sensor. When 𝐵 increases beyond 𝐵𝑙, the 

sensor’s voltage goes from 𝑉𝑢 to 𝑉𝑙. 

𝐵𝑢 Unlatching threshold for Hall effect sensor. When 𝐵 decreases below 𝐵𝑢, 

the sensor’s voltage goes from 𝑉𝑙 to 𝑉𝑢. 

𝑉𝑙 Hall effect sensor voltage when latched (low) 

𝑉𝑢 Hall effect sensor voltage when unlatched (high) 

 

 The moment an indexing routine is commanded, and every time the Hall effect 

sensor changes state, we set a ten-second timer. If the timer expires before we reach the 

next step in the indexing process, we consider the routine a failure and no new index is 

recorded. The software object we use to coordinate indexing operations (IndexTask) can 
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be configured to invoke a callback that communicates the routine’s success or failure to 

the higher-level application. An indexing operation might fail if the motor stalls or if the 

sensor is too far away from the magnet to detect the magnetic field. 

 The Hall switch breakout board contains a blue LED indicating the board’s power 

state and a yellow LED communicating when the sensor is triggered. These LEDs 

produce stray light that is unacceptable in an astronomical application, so we reserve a 

GPIO pin for the power state of the Hall switch breakout board and energize it only when 

an indexing operation is active. As soon as an index is acquired—or as soon as the index 

operation fails—we set the pin low to turn off the LEDs. This strategy also reduces power 

consumed by the Hall switch itself. One can desolder the offending indicators for 

additional insurance against stray light. 

 

4.7 Extensions to telescopes of different sizes 

 The Celestron C11 is only one Schmidt–Cassegrain optical tube assembly model 

in a field populated with options from many different manufacturers in different sizes. To 

adapt the overall hardware design to other telescope configurations requires resizing the 

axle cap and the masks. It is likely that a new mask will have a new number of teeth, in 

which case the revised gear ratio must be incorporated into the mask rotator firmware. In 

order to interface with the existing pinion assembly, the new mask must maintain the 

same circular pitch as the current design.26 If the new telescope features a central 

obstruction whose proportional size is significantly different than that of the C11’s 

 
26 This restriction means that a new mask’s pitch diameter cannot be selected independently of the mask’s 

tooth count, which must be an integer. Thus, a mask in a new telescope configuration may be forced to 

have a smaller-than-ideal pitch diameter to grant the mask a whole number of teeth. This will contribute to 

clearance between the mask and the pinion. 
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secondary mirror cylinder, then the masks should be redesigned, and not simply scaled, 

for best results. The motor bracket assembly should not have to be updated due to its 

adjustable three-point mount (Figure 71). 



109 

5. TESTING 

5.1 Overview 

The performance of the masks and rotation mechanism was evaluated over the 

course of several experiments. Early in the project, Jimmy Ray used a Gaussian donut 

mask to observe Rigel and confirm that the expected diffraction pattern appeared. Later, 

David Rowe built masking features into his Atmospheric Seeing Distortion simulator. 

Some time after, Loveland et al. (2016) placed the Gaussian donut mask and 

Zimmerman’s bowtie mask on a C11 and recorded exposures of double stars that were 

either close, high-contrast, or both. Finally, Foley performed mechanical tests on the 

rotation mechanism focused on the device’s accuracy and repeatability. 

 

5.2 Ray’s tests using the Gaussian donut mask 

In 2014, before delving too far into the infinite variations of theoretical aperture 

masks, we wanted to verify that shaped apertures produced diffraction patterns 

resembling our simulated results. An agreement between the two would instill confidence 

that our methods were sound. At the time, only a prototype Gaussian donut mask had 

been designed and manufactured (Figure 106). Jimmy Ray used this mask to observe 

Rigel using a Celestron C11 at the Arizona Sonoran Desert Observatory, Glendale 

(ASDOG). Rigel is a system of multiple stars whose two brightest components have an 

apparent magnitude difference of about 6.5 in the visual band (National Aeronautics and 

Space Administration: Goddard Space Flight Center, 2019), equivalent to 2.6 in a log-10 

scale. These two components were separated by 9.4 arcseconds at the time, placing them 

at approximately 23 𝜆/𝐷 assuming a 548-nanometer wavelength and an 11-inch 
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telescope. We did not expect these to be particularly challenging parameters to work with 

because, while the magnitude difference nearly matched our target contrast level, the 

separation of the components far exceeded our minimum achievable inner working angle. 

Ray captured Rigel in Figure 107. 

 

 

Figure 106. Prototype Gaussian donut 

mask used by Ray. 

 

Figure 107. Rigel as seen through a 

prototype Gaussian donut mask, captured 

by Ray. (1.0-second exposure, ISO 800, 

f/10; captured with temperature below 

dew point in presence of high clouds). 

 

 In Figure 107, we clearly see one bright star and one dimmer star, as expected. (In 

fact, the dimmer “star” is itself multiple stars, though this is not perceptible in the image.)  

The hourglass shape predicted from simulations is immediately evident, with darker 

discovery regions along its narrow axis and brighter areas along its wide axis. An 

additional spike in the bright region, which we attribute to the mask’s horizontal beam, is 

also visible. All results match the patterns we expect from our diffraction simulation. 

Figure 108 offers a visual comparison of Ray’s results with simulations of the Gaussian 

donut produced by two programs. 
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Monochromatic 

simulation of both 

stars using MATLAB  

Polychromatic 

simulation of single star 

using Maskulator 

Actual exposure 

(rotated) 

Figure 108. Comparison of simulated diffraction patterns, created using MATLAB and 

Maskulator, to Ray’s capture of Rigel using a prototype Gaussian donut mask. 

(Maskulator cannot simulate multiple stars simultaneously.) 

 

The agreement between simulated and real results is not perfect: Ray’s image 

exhibits considerable atmospheric diffusion. This is not surprising, as Ray describes 

capturing the image in the presence of sub-dew-point temperatures and high clouds. 

Meanwhile, neither our MATLAB program nor Maskulator is equipped to model 

atmospheric conditions. This does raise the question of how much atmospheric effects 

might impede the effectiveness of our masks in ways invisible to our models. While we 

did not have a complete answer at this stage, the question motivated us to use an 

additional utility to help understand these effects better, namely David Rowe’s 

Atmospheric Seeing Distortion simulator. 

 

5.3 Rowe’s atmospheric seeing distortion simulations 

Astronomer David Rowe’s Atmospheric Seeing Distortion (ASD) program 

operates a complex optics model that accounts for diffraction, phase offsets due to 

atmospheric effects, aberrations in the telescope, and noise in the camera. Upon initiating 

the simulation, the program generates a multitude of synthesized images representing a 
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double star system viewed at an instant in time in the presence of these effects. The user 

can later reduce these images via a lucky imaging function, which seeks images where 

atmospheric effects are minimized. Figure 109 shows this tool’s graphical user interface 

with default settings. 

 

 

Figure 109. Rowe's Atmospheric Seeing Distortion simulator. 

 

In parallel with our project, Rowe outfitted ASD with the ability to model masked 

apertures. If our masks appeared to perform their intended function despite atmospheric 

effects, we would have even more confidence in their practical value. Indeed, as shown in 

Figure 110, applying a virtual Gaussian mask and post-processing the results with a 

deconvolution technique accentuate a secondary star that is otherwise difficult to spot. 
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Figure 110. Comparison of a double-star deconvolution after running David Rowe’s 

Atmospheric Seeing Distortion simulator without a mask, left, and with a Gaussian mask, 

right. Masking the aperture accentuates the secondary star. (The secondary appears to 

manifest itself twice due to deconvolution behaviors.) Both images are from David Rowe. 

 

 The quality of correlation seen in these early tests encouraged us enough to press 

forward with more rigorous experiments. 

 

5.4 Loveland’s tests using the Gaussian donut and bowtie masks 

Loveland et al. (2016) describes aperture mask field tests performed by Donald 

Loveland at the Orion Observatory in Santa Margarita, California, on a Celestron C11 

telescope. In these tests, the Gaussian donut and bowtie masks were used to observe four 

double-star systems with either high contrast, a small separation, or both. More precisely, 

Loveland et al. (2016) selected targets from the expansive Washington Double Star 

Catalog (WDS) that met the following criteria: 

• Location in the northern hemisphere, where the Orion Observatory is located 

• A separation angle between 1 and 15 arcseconds 

• No component dimmer than an apparent visual magnitude of 12, for compatibility 

with the EMCCD camera used 

• No primary component dimmer than 7th magnitude 

• Right ascension between 13 and 20 hours 
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Applying these filters left 163 candidates from which Loveland et al. (2016) 

finally selected the four of Table 13. The group picked BU 287 to test a large delta 

magnitude and selected the others primarily to determine the masks’ inner working 

angles. 

 

Table 13. Double star systems selected for evaluation of the Gaussian donut and bowtie 

masks, duplicated from Loveland et. al (2016) with minor changes to headings. 

Star name Sep. [as] Mag. 1 Mag. 2 Delta mag. Masks used 

BU 287 7.2 2.96 12 9.04 GD 

STF 2140 4.7 3.48 5.4 1.92 GD, bowtie 

STF 2579 2.5 2.89 6.27 3.38 Bowtie 

BU 627 1.8 4.84 8.45 3.61 Bowtie 

 

 The Gaussian donut mask Loveland used is the same protype version that Ray 

used in Section 5.2 (Figure 106). This mask, seen on a C11 in Figure 111, has a 

somewhat narrower opening (𝑝 = 0.36) than that of the final design (𝑝 = 0.50). 

Consequently, its theoretical inner working angle is larger: 3.4 𝜆/𝐷 rather than 2.5 𝜆/𝐷 

(Figure 114). 

 

 

Figure 111. Gaussian donut mask on a Celestron C11 telescope. 
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Figure 112. Diffraction behavior of the narrow Gaussian donut mask of Figure 106 used 

by Ray and later Loveland. 

 

Images of the selected stars were recorded on an Andor Luca EMCCD camera 

and post-processed using speckle interferometry techniques, leveraging David Rowe’s 

Plate Solve 3 program (Rowe & Genet, 2015). These images are collected in Table 14. 

 

Table 14. Summary of images captured with and without masks by Loveland et al. (2016) 

using speckle interferometry techniques. 

Target Deconv. 

star used 

Unmasked With Gaussian 

donut 

With bowtie 

BU 287 No 

  

— 
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Target Deconv. 

star used 

Unmasked With Gaussian 

donut 

With bowtie 

STF 

2140 

No 

  

— 

Yes 

 

— 

 

STF 

2579 

Yes 

 

— 

 

BU 627 Yes 

 

— 

 
 

Loveland et al. (2016) found the secondary component of BU 287 to be “near the 

limit of the equipment’s detecting ability” and “difficult to get desirable results [for].” 

They remarked that the reduced light throughput of the Gaussian donut mask relative to 

an unmasked aperture made this dim component even more difficult to detect. In both 

exposures, the star appears as a very subtle smudge toward the top right. It does seem that 

the secondary was not captured within the intended discovery zone of the Gaussian donut 

mask, but it is difficult to determine whether a correction would have provided materially 

different results. Our simulations suggest that the Gaussian donut provides a contrast of 
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roughly 16.4 apparent visual magnitudes (−6.6 log-10 magnitudes) along the high-

contrast axis at a working angle matching the stars’ separation but only about 8.7 

apparent visual magnitudes (−3.5 log-10 magnitudes) at the mask angle used for this 

exposure (Figure 113).27 Still, because the secondary would remain at the limit of the 

detector’s sensitivity and recognizing that these contrast predictions are sensitive to small 

and unpredictable optical imperfections, we cannot fully attribute the mask’s lackluster 

performance to its orientation. 

 

   

Rotated Gaussian donut Point spread function Horizontal PSF cut 

Figure 113. Study of the contrast along a 60-degree axis in the narrow Gaussian donut. 

 

STF 2140 was the only target observed with both masks. Loveland et al. (2016) 

began with the Gaussian donut, this time capturing the system squarely within the 

discovery zone. They observed that the secondary “still has some room to move inward,” 

implying that the mask can resolve stars closer than the 4.7-arcsecond separation of this 

system. This is consistent with our simulations, which show a theoretical minimum inner 

working angle as low as 1.4 arcseconds in perfect conditions. The benefits were more 

pronounced with the bowtie mask: the group found that using it on the same system 

 
27 We modeled the rotated mask as being 60 degrees off the high-contrast axis. 
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produced an image with a “much clearer and [more] circular” secondary component than 

the equivalent in the unmasked image. The team estimated the bowtie’s theoretical inner 

working angle for this system under their atmospheric conditions to be about 1.8 

arcseconds, which is greater than the bowtie’s theoretical 0.5-arcsecond limit in perfect 

conditions but still significantly better than the Gaussian donut. 

Pressing toward smaller separations, Loveland et al. (2016) tested the bowtie 

mask on STF 2579 and BU 627. Due to the small angle between their components, both 

systems exhibited diffraction effects from the primary star that affected visibility of the 

secondary. The team determined that using the bowtie mask produced clearer diffraction 

nulls around each system’s secondary component than using an unmasked aperture, 

making each such star easier to place in the images. Of viewing STF 2579 through an 

unmasked aperture, Loveland et al. (2016) wrote that the “airy null pattern is neither 

complete nor is it as dark in comparison to the image with a [bowtie] mask.” They 

estimated a minimum working angle of 1.5 arcseconds. For BU 627, they wrote that “the 

secondary component has a clear airy null pattern surrounding it, making it much easier 

to pinpoint” and estimated a minimum working angle of 1.2 arcseconds. 

The team ultimately found that the Gaussian donut mask offered few benefits 

relative to standard speckle reduction techniques on unmasked apertures, describing it as 

“unnecessary” and noting the loss of throughput. The multi-Gaussian mask was not 

available to the team, but it is likely that it would have fallen victim to the same 

throughput issue as the donut, pushing dim stars to the limit of the detector’s abilities. 

The bowtie mask, on the other hand, “showed promising results by demonstrating 

very close working angles that were able to surpass the ability of speckle reduction 
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without any mask” (Loveland, et al., 2016). Thus, Neil Zimmerman’s bowtie mask 

passed a threshold crucial to the success of the project: using the mask produced better 

results in close double-star observations than not using it. Not determined in these tests is 

the bowtie mask’s performance amid high-contrast stars with a brightness difference near 

the design value of 6.5 apparent visual magnitudes. We will leave the evaluation of the 

true practical limits of the bowtie mask for a follow-up project. 

 

5.5 Foley’s telescope-mounted rotation mechanism verification 

Soon after the rotation mechanism components were machined and a C11 optical 

tube assembly became available, we performed an informal mechanical verification of 

the rotator hardware. We attached the entire device to the telescope and ran it 

continuously, alternating between forward and reverse, looking for any difficulties. 

The rotator behaved well overall, though there were two aspects that required 

attention. First, when rotating the mask counter-clockwise for an extended period, the 

upper standoff comprising the axle began to unfasten itself, traveling slightly up the axle 

bolt. We resolved this, at least temporarily, by tightening the standoff. If we encountered 

the issue again, we could apply a thread glue to make the assembly more resistant to 

coming undone. 

Second, when the optical tube assembly was placed at an angle nearly horizontal 

to the ground, we found that rotating the mask in either direction caused the axle cap 

assembly to work itself up the secondary mirror column. This increased the angle at 

which the mask rode the pinion lips, causing greater friction and more strain on the 

stepper motor (Figure 114). To resolve this issue requires a more robust way of attaching 
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the axle cap to the secondary mirror column, perhaps by threading through the wall of the 

cap and incorporating a soft screw with a plastic or rubber tip. Thankfully, this issue 

should only manifest itself in practice when studying stellar targets close to the horizon, 

which is already not recommended. Shallow angles require light to pass through more of 

the atmosphere, increasing distortion. 

 

 

Figure 114. Cross-section of the mask rotator assembly showing mask misalignment 

when the axle cap is not properly seated. The effect is exaggerated here for clarity. 

 

5.6 Foley’s index quality tests 

Locating angles consistently is a vital function of the mask rotator. To verify this 

behavior, we ran the mechanism continuously for several minutes in a controlled 

environment and recorded the reported mask angles at which the Hall effect sensor 

transitioned from high to low and from low to high. With the rotator properly calibrated 

and the Hall effect sensor operating correctly, we would expect to see transitions of the 

same type appear once every 180 degrees on average. This would reflect the presence of 

two magnets per mask placed in diametrical opposition to each other. If the average fell 

short of 180 degrees, we would suspect that we overstated the number of motor steps per 

revolution or misrepresented the gear ratio between the pinion and the mask. If the 

average exceeded 180 degrees, we could again look for an error in the number of motor 
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steps per revolution or the gear ratio, but the more likely culprits would be missed index 

positions or missed motor steps. A missed index position could be caused by a weak or 

poorly positioned magnet. A missed motor step could result from a stall or a momentary 

glitch. It is also possible that we would see changes due to some temperature-dependent 

sensitivity of the Hall effect sensor, but we suspect this influence would be minor at 

most. 

In our first test, we experienced an overwhelming number of missed index 

positions. A short investigation revealed that the separation between the magnet and the 

Hall effect switch was too great for the magnet’s field to trigger the switch consistently. 

A picture of the area around the Hall effect switch (Figure 115) shows a sensor that, in 

agreement with Figure 90, is aligned nicely in the plane perpendicular to its sensing axis; 

however, the image also shows a prominent gap between the sensor and the magnet along 

that axis. 

 

 

Figure 115. The Hall effect switch's position relative to the index feature. 

 

Several remediation options were available: the magnets could be made stronger 

by using larger or higher-grade alternatives; the Hall effect switch breakout board could 

be brought closer to the mask; or the excitation voltage of the Hall effect switch could be 
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increased. At first, inverting the mask also seemed to be an option, but doing so would 

reverse the polarity of the magnetic field sweeping past the Hall effect sensor—a sensor 

that, regrettably, detects only one magnetic pole. The new orientation would also allow 

the magnets to fall toward the telescope’s corrector plate were their glue to fail. Instead, 

because the magnets and Hall effect switch breakout had already been fixed in place and 

because we had no safe means of increasing the circuit voltage, we opted to increase the 

strength of the magnetic field by adding 3/16-inch-diameter, 3/16-inch-tall neodymium 

magnets atop the existing magnets. The new configuration, shown in Figure 116, 

effortlessly and consistently triggered the Hall effect switch. 

 

 

Figure 116. An extra magnet added to an existing indexing feature. 

 

 With our new magnets in place, we ran the test twice: once forward and once in 

reverse. In the course of each three-minute trial, we recorded 53 pairs of high-to-low and 

low-to-high Hall switch state transitions without missing a single location. We interpreted 

each set of 53 transitions as data describing 52 “gaps” between index positions that 

should approximate 180 degrees each. Table 15 summarizes our results. Note that the 

minimum resolvable mask angle increment is about 0.43 degrees, which results from the 

stepper motor’s 200 steps per revolution and the 72:17 gear reduction: 
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δ = (1 step) (

360°

200 steps
) (

17

72
) 

→ 𝛿 = 0.425°  

(11) 

Table 15. Summary of rotation mechanism index quality test results. 

Transition type Gaps Min gap [deg] Max gap [deg] Avg. gap [deg] 

Forward, high-to-low 52 179.77 180.20 180.004 

Forward, low-to-high 52 179.77 180.20 179.996 

Reverse, high-to-low 52 −179.35 −180.63 −180.004 

Reverse, low-to-high 52 −179.77 −180.20 −180.004 

 

 The results were stunningly close to perfect. The minimum and maximum gaps 

for three of the four transition types were separated by the smallest resolvable increment 

of 0.43 degrees. The remaining case contained only a single instance of a −179.35-degree 

gap and a complementary −180.63-degree gap, and these occurred back-to-back. By 

taking half the distance between these values, we estimate that a single Hall switch 

transition can be measured to an accuracy ±0.64 degrees when the mask is traveling one 

direction. This statement ignores the effects of mechanical slop. 

 When we seek an index position during normal mask rotator operation, we look 

for not just one or two Hall effect switch transition points but four. As explained in 

Section 4.6.2, we use the average of these four positions to identify the true zero point. If 

all measured transition positions were the maximum 0.64 degrees off their true value, our 

average would be off by the same amount. This would be a very pessimistic estimate. A 

more reasonable approach would be to find the root-sum-square error of this four-point 

average, which can be calculated as the following. 
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𝐸𝑖𝑛𝑑𝑒𝑥 = ±

√4(0.642)

4
 

 

→ 𝐸𝑖𝑛𝑑𝑒𝑥 = ±0.32°  

(12) 

 The value of ±0.32 degrees is half of the error from an individual measurement. 

We used this as a guide for our next test, where we repeatedly triggered an indexing 

operation and observed how much the angle changed. Running 100 consecutive indexing 

operations yielded 99 gaps which should average about 180 degrees each. Table 16 

contains a summary of the results from this test. 

 

Table 16. Results of repeatedly indexing the mechanism. 

Transition type Gaps Min gap [deg] Max gap [deg] Avg. gap [deg] 

Index operation 99 179.67 180.41 179.9993 

 

 Again, our results were surprisingly consistent, with gaps averaging almost 

exactly the expected 180 degrees. The variation in gaps between index positions spanned 

less than a degree at their extremes, implying an accuracy of ±0.37 degrees. This was 

slightly worse than our predicted tolerance of ±0.32 degrees, but it is still quite good. It is 

clear from the results that we did not miss a single motor step, that the Hall switch 

functioned as expected, and that there was no significant angular variation in the 

placement of the index magnets. 

Full data for the tests in this section are available in Appendix J. 
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5.7 Summary of results 

Though we did not test the rotation mechanism in imaging applications, the 

success seen in our optical and mechanical testing gave us confidence that the masks and 

rotation mechanism can be used together effectively. If we were to continue the project, 

we would verify the performance of the rotator in a stellar discovery or stellar 

observation application. This would help us evaluate the mechanism’s resistance to 

changing orientations and better understand the assembly’s tolerance for vibrations 

caused by the stepper. It would also give us valuable user experience data: How 

cumbersome is the process of setting up and tearing down the device? How easy is it to 

drop a thumb screw and have it land on the glass face of the telescope? Are there any 

bugs or missing features in the mask rotator firmware? 

Using the rotator over the course of days and weeks would also inform us of 

matters regarding system life. Do the masks warp as they absorb moisture? Does 

anything rust and cause us problems? Do pieces of acrylic get chipped away and cause 

stress on the motor? 

While an infinite number of tests could be added, we believe we have performed 

enough to establish the mask rotation mechanism as an imperfect but valuable proof of 

concept that performs its essential functions. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Summary 

In the course of this project, we demonstrated that adding aperture masks to 

telescopes can enhance the visibility of dim secondary stars in a double-star configuration 

by producing diffraction patterns advantageous for the application. Using a combination 

of existing research and Fraunhofer diffraction simulation tools, we explored several 

mask configurations for the Celestron C11 optical tube assembly designed to optimize 

inner working angle and contrast parameters. We produced physical mask artifacts and 

supplemented them with a custom rotation mechanism that allows users to place masks at 

specific orientations. Finally, we performed and documented tests on the masks and the 

rotation mechanism itself. We found that the bowtie mask introduced by Neil 

Zimmerman improved a C11’s ability to resolve close double stars and confirmed that the 

mask rotator successfully manipulates masks when attached to the optical tube assembly. 

Though our solution works, there are many ways that it can made more effective. 

 

6.2 Potential mask improvements 

6.2.1 Tools of generation 

 There are an infinite number of different masks to evaluate. Some may be more 

effective than the three that were considered for this project. A more powerful mask 

creation routine that optimizes for working angle bounds and aperture geometry would be 

especially powerful. One method is described in Carlotti et al. (2011). 
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6.2.2 Gaussian boomerang mask 

A Gaussian donut mask variation whose promise we discovered too late in the 

project to fully explore is one whose secondary Gaussian has a broadness factor different 

than that of the primary opening. Following a trend observed in Table 3 where wider 

Gaussian features produce wider discovery regions, we would expect a broad secondary 

to behave better in general than a narrower variant of the same height. Indeed, a cursory 

optimization of the primary broadness 𝑝1 and secondary broadness 𝑝2 found that values 

𝑝1 = 0.50 and 𝑝2 = 1.20 result in a mask that has good diffraction characteristics along 

the horizontal axis in simulation (Appendix I). In the author’s opinion, the shape of the 

mask’s openings resembles a boomerang reflected about the horizontal axis; thus, we will 

call this mask a Gaussian boomerang (Figure 117). Unlike the Gaussian donut mask, no 

additional support structure is required since the truncation of the tails of the interior 

Gaussian shape leaves plenty of material connected to the outside. 

 

  

Figure 117. The Gaussian boomerang mask and its characteristic diffraction pattern, 

plotted on a nonlinear brightness scale. 

 

 Along the horizontal axis, the Gaussian boomerang eliminates a critical 

diffraction ring present in the C11 pattern (Figure 118). It reaches our contrast target at a 

small working angle of 1.38 𝜆/𝐷, competitive with Zimmerman’s bowtie mask of 
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Section 3.4.3, which reaches this threshold at 1.27 𝜆/𝐷 (Figure 119). Unlike the bowtie 

mask, however, the Gaussian boomerang achieves this contrast for only a narrow range 

of position angles. It is thus likely worse suited for the discovery of close binaries 

because it requires more mask rotation steps. On the other hand, the mask maintains a 

high level of contrast to working angles larger than the bowtie offers and eliminates 

multiple diffraction spikes characteristic of the C11 aperture, so it may still perform well 

on high-contrast pairs. 

 

  

Figure 118. Point spread function comparison of the Gaussian boomerang mask and the 

C11 aperture. 

 

  

Figure 119. Point spread function comparison of the Gaussian boomerang and bowtie 

masks. 
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The apparently complex tradeoffs introduced by the bowtie and Gaussian 

boomerang masks may be worthwhile subjects for a follow-up study. 

 

6.3 Diffraction simulation improvements 

 Though MATLAB is well suited for two-dimensional fast Fourier transforms, the 

operations demand significant amounts of memory and take a very long time to compute 

when acting on input images as large as ours—especially after padding (Appendix B.2). 

These issues are compounded by the number of locations in our simulation code where 

the gigantic complex matrices that result are copied to variables in memory, forcing 

expensive allocation operations. A better solution would recognize the symmetry in our 

masks and use this to reduce the quantity of redundant data being fed into the Fourier 

transform operation, accelerating the computation and cutting down the size of the output 

matrix. This output could also be shuttled to its destination more efficiently by 

preallocating memory and perhaps by implementing a cropping function that deletes 

transform data outside the domain of interest before variable assignment. 

 Still faster performance might be achieved by switching languages altogether. A 

compiled language like C++ has the potential to run significantly faster than an 

interpreted language like MATLAB because a compiler can use the context of the entire 

program to optimize execution, whereas an interpreter may only make optimization 

decisions one statement at a time. That said, fully switching away from MATLAB would 

require reimplementing not just the Fraunhofer diffraction routine but also the convenient 

plotting functions, so this decision should not be made lightly. 
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6.4 Mask rotator software improvements 

Like the masks it controls, the software interface can be made more effective. By 

design, motor control runs in parallel with the task that reads and responds to commands 

sent over the serial connection. This implementation allows the user to stop a mask that is 

currently in transit regardless of the action the rotator is currently taking. However, in 

some circumstances, such as an indexing operation, a higher-level task expects 

uninterrupted access to the mask controller and behaves in unpredictable ways if this 

chain of command is broken while the task is active. The most robust way to solve this 

issue is to implement a semaphore that controls access to StepperController and 

MaskController objects. This addition would require new error handling logic that 

recognizes and reports conditions where operations fail to reserve a necessary resource. 

 

6.5 Mechanical improvements 

 In this project, we went through great lengths to avoid having the rotation 

mechanism affect the optics of the telescope. This allowed us to evaluate the impact of 

our masks relative to the unobstructed aperture and to each other without having to 

qualify these conclusions with details of the mechanism’s state. We rejected designs with 

thin structural elements or wires placed across the aperture because they would create 

diffraction spikes. It is possible that we overestimated the negative impact of these thin 

elements, which would cause interference at working angles likely too large to affect 

double-star observations. Admitting these elements into the design space would allow the 

mask axle to couple to something other than the telescope’s secondary mirror cylinder, 

such as a spider attached to the telescope rim. The mask could even attach directly to a 
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motor shaft and the motor’s wires could stretch across the aperture, removing the need 

for gears entirely. A continuation of this project might explore alternate configurations 

that sacrifice perfect optics for a less complicated, more reliable rotation mechanism that 

avoids mounting to sensitive telescope components. 

 

6.6 Closing remarks 

The last five and a half years have given me a deep appreciation for astronomers 

past and present. Their pursuit of a better understanding of the universe will never end, 

but nonetheless they continue out of pure love for the celestial bodies around them. I 

hope that the product of this thesis may advance us just a little farther down this endlessly 

enriching and fascinating path. 
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A. OPTICS OF SHAPED APERTURES 

A.1 Fraunhofer diffraction and its implications 

 The Huygens–Fresnel principle states that every point of a wave front can be 

modeled as a source of spherical waves, and so the optical field represents the 

superposition of the wavelets from these point sources (Hecht, 2002, p. 421). This 

principle relies on virtual point sources of light that have no obvious physical 

justification, but it nonetheless conveniently predicts diffraction effects in many optical 

configurations. 

In 1882, Gustav Kirchhoff derived a more rigorous result from the homogeneous 

wave equation and showed it was mathematically equivalent to the Huygens–Fresnel 

model (Darrigol, 2012; Hecht, 2002, p. 422). This result, known today as the Fresnel–

Kirchhoff diffraction formula, is valid when the wavelength of light is small compared to 

the diffracting aperture (Hecht, 2002, p. 422).28 It can be written as follows, adapted from 

Weisstein (2007): 

 

𝜓(𝑥, 𝑦) = 𝐶 ∫ 𝜉(𝑥′, 𝑦′) exp [
−2𝜋𝑖(𝑥𝑥′ + 𝑦𝑦′)

𝑅𝜆
] 𝑑𝑥′𝑑𝑦′

𝐴

 (13) 

 In this equation, 𝜓 is the wavefunction in the projection plane given as a function 

of projection plane coordinates 𝑥 and 𝑦; 𝐶 is a constant; 𝐴 is the aperture; 𝜉 is a factor 

that accounts for transmission properties of the aperture as a function of coordinates 𝑥′ 

and 𝑦′ in the aperture plane. (In our case, 𝜉 ∈ [0, 1], where 0 is opaque and 1 is 

 
28 This condition readily applies to us. Even the smallest apertures in our design space, about 15 

centimeters (6 inches), are far larger than the sub-micrometer wavelengths of light they admit. The smallest 

features we can machine in a mask using a laser cutter—approximately 250 micrometers (CutLaserCut 

Ltd., 2015)—are still hundreds of times larger than the wavelength of near-infrared light.  
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transparent.29) 𝑅 represents the distance separating the aperture and projection planes, 

and 𝜆 is the wavelength of light. 

 The great distance between the telescope and our stellar subjects allows us to 

model the incoming rays of light as parallel. Under this condition, the rays incident on the 

aperture will converge to the focal plane of the telescope, which is where we record our 

image in a well-calibrated system. The angle at which the parallel rays strike the 

telescope relative to the optical axis is small, implying that the location to which the rays 

converge will be at a distance from the optical axis proportional to this small angle. This 

outcome gives us some flexibility to simplify the Kirchhoff–Fresnel formula. Whereas 

𝑢 = tan
𝑥

𝑅
 and 𝑣 = tan

𝑦

𝑅
 in general, for small 𝑢 and 𝑣, we can apply a small-angle 

approximation to write 𝑢 ≈
𝑥

𝑅
 and 𝑣 ≈

𝑦

𝑅
.  After making this substitution, our simplified 

Kirchhoff diffraction formula becomes the following: 

 

𝜓(𝑢, 𝑣) = 𝐶 ∫ 𝜉(𝑥′, 𝑦′) exp [−2𝜋𝑖 (
𝑢

𝜆
𝑥′ +

𝑣

𝜆
𝑦′)] 𝑑𝑥′𝑑𝑦′

𝐴

 (14) 

 This equation is the Fraunhofer diffraction equation. Figure 120 offers some 

visual context for its variables. 

 

 
29 If our masks could change not just the amplitude but the phase of the incoming light, this factor would 

take the more general form 𝜉 = 𝑇𝑒𝑖𝜃, where 𝑇 is the translucency and 𝜃 is the phase offset. 
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Figure 120. Geometry of Fraunhofer diffraction (Weisstein, 2007). Light shines through 

the aperture on the right to the projection plane on the left. 

 

If we introduce variables 𝑢̂ =
𝑢

𝜆
 and 𝑣 =

𝑣

𝜆
, we reach Equation 15: 

 

𝜓(𝑢̂, 𝑣) = 𝐶 ∫ 𝜉(𝑥′, 𝑦′) exp[−2𝜋𝑖(𝑢̂𝑥′ + 𝑣𝑦′)] 𝑑𝑥′𝑑𝑦′

𝐴

 (15) 

We recognize this integral as a Fourier transform of the aperture. This result is 

very convenient because it allows us to model aperture diffraction effects through elegant 

properties of the Fourier transform such as linearity, superposition, and convolution. 

 One such property, which concerns a dichotomy of space and frequency scaling 

(Wang, 2009; Osgood, 2007, pp. 349–350), shows 

 
ℱ{𝜉(𝑎𝑥′, 𝑎𝑦′)} =

1

𝐶𝑎2
𝜓 (

𝑢̂

𝑎
,
𝑣

𝑎
) (16) 

 This implies that reducing the scale of an aperture by setting 0 < 𝑎 < 1 increases 

the angular scale of the diffraction pattern to 
1

𝑎
 times its original value in both axes. This 

mathematically demonstrates what we already knew: smaller apertures produce broader 

diffraction patterns. 
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 Other elegant relationships emerge from our definitions of 𝑢̂ and 𝑣, which can be 

inverted to yield 𝑢 = 𝜆𝑢̂ and 𝑣 = 𝜆𝑣. It becomes plain to see that the angular size of the 

diffraction pattern scales linearly with the wavelength of light. 

 Putting these two facts together, under the condition of Fraunhofer diffraction, the 

angular size of the diffraction pattern is proportional to the wavelength and inversely 

proportional to the aperture diameter. 

 

A.2 Power spectrum 

The bands of light in a diffraction pattern correspond to concentrations of power 

contained in the wavefunction, 𝜓. The field of such power concentrations is known as the 

power spectrum and can be calculated as the square of the complex amplitude of the 

wavefunction (Cross, 2000): 

 𝑃(𝑢, 𝑣) = ‖𝜓(𝑢, 𝑣)‖2 (17) 

Whereas the wavefunction is complex in general, the power spectrum will contain 

strictly non-negative real values. If the wavefunction represents a single point of light, 

then the power spectrum is the point spread function. 

 

A.3 Superposition of apertures 

The linearity property of the Fourier transform (Osgood, 2007, p. 347) states that 

 ℱ{(𝛼𝑓1 + 𝛽𝑓2 + ⋯ + 𝜔𝑓𝑛)(𝝃)} = 𝛼ℱ{𝑓1(𝝃)} + 𝛽ℱ{𝑓2(𝝃)} + ⋯ + 𝜔ℱ{𝑓𝑛(𝝃)} (18) 

Adapting this equation to our Fraunhofer diffraction case, we can say that the 

wavefunction representing diffraction due to a composite aperture expressed as a 
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combination of other apertures is simply a linear combination of the wavefunctions due 

to those apertures alone: 

 𝜓𝑁 = 𝛼𝜓1 + 𝛽𝜓2 + ⋯ + Ω𝜓𝑛 (19) 

 This is a powerful result because it offers insight into how shapes added or 

removed from an aperture affect the new diffraction pattern. When a coefficient is 1, a 

shape is added and a new opening is created; when the coefficient is −1, a shape is 

removed and an existing transparent area becomes opaque. We can conclude from 

superposition that modified apertures will exhibit diffraction effects from the shapes 

added or removed—a comforting and intuitive result for those of us born without an 

innate, lucid comprehension of two-dimensional Fourier transforms. 

 Some caution is warranted, however. The principle of superposition applies only 

to the complex wavefunctions and not to the power spectra in general: 

 ‖𝛼𝜓1 + 𝛽𝜓2 + ⋯ + 𝜔𝜓𝑛‖2  ≠  ‖𝛼𝜓1‖2 + ‖𝛽𝜓2‖2 + ⋯ + ‖𝜔𝜓𝑛‖2 

 

→ 𝑃𝑁  ≠  𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛 

(20) 

Still, the composite power spectrum will typically contain artifacts seen in the 

power spectra of the shapes. To demonstrate this, we explore the effect of adding a 

square obstruction to a circular aperture in Figure 121. 
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Figure 121. Demonstration of superposing a square obstruction on a circular aperture. 

The power spectrum of the composite aperture exhibits features of the constituent 

apertures’ power spectra, including circular features at the image’s center and a subtle X 

shape. Power spectra are plotted on a nonlinear brightness scale. 

 

A.4 Superposition of light sources 

We can predict the joint power spectrum of multiple stars by convolving the 

aperture’s characteristic point spread function with the locations of stars in the field. For 

each star, we adjust the intensity of the pattern proportional to the star’s brightness, as 

seen in Figure 122. 
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Figure 122. Demonstration of the effect of multiple light sources on the power spectrum. 

Diameter of stars in top row is exaggerated for clarity. Power spectra are plotted on a 

nonlinear brightness scale. 

 

This approach to convolution is valid only because our stellar subjects represent 

incoherent light sources creating light whose mutual interference can be ignored: 

coherent light sources instead require convolution of the wavefunction, not the power 

spectrum (Sacek, 2019b). 
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B. MONOCHROMATIC DIFFRACTION SIMULATION USING MATLAB 

B.1 Diffraction simulation overview 

 In general, diffraction patterns defy simple arithmetic representation. We turn to 

the computational power offered by programs such as MATLAB in order to obtain 

numerical results instead. Though these tools are optimized for performing quick 

calculations, some operations such as Fourier transforms can be very expensive without 

making certain accommodations. 

 The general approach to calculating diffraction patterns consists of the following 

steps. We assume the conditions of Fraunhofer diffraction, monochromatic light, perfect 

focus, and no atmospheric distortion. 

1. Load the aperture image. 

2. Optionally, downscale the aperture image. 

3. Pad the image with opaque regions. 

4. Take the fast two-dimensional Fourier transform. 

5. Spatially shift the result of the Fourier transform to move the zero-frequency 

component to the center of the image. 

6. Find the power spectrum by squaring the magnitude of the Fourier transform 

element-by-element. 

7. Normalize the power spectrum by dividing each element by the spectrum’s 

maximum value. 

8. Place the result on a nonlinear brightness scale by taking the logarithm of the 

normalized power spectrum element-by-element. 

9. Plot the result. 
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 Each step is detailed in subsections that follow. Code that performs these steps is 

available in Appendix K. 

 

B.2 Loading and conditioning the aperture image 

 We load the aperture into the program as a square, grayscale image, with white 

pixels representing regions of perfect transparency and black pixels representing regions 

that are perfectly opaque. Shaped aperture masks appear as white regions bounded by 

black regions—pixels with intermediate gray values appear only along white–black 

borders and only when the mask image has been preprocessed with an anti-aliasing filter 

that smooths contours. The gradated apodizing masks of Section 1.3.4, true to their 

translucent nature, have gray pixel values throughout the image. 

 For convenience, we interpret the image as if its square dimension is the nominal 

diameter of the telescope. This lets us easily attach axes to the original image that span 

[−0.5D, +0.5D] in both dimensions. It also associates a scale with the image so that we 

can later represent power spectrum coordinates in terms of 𝜆/𝐷. 

 Optionally, we downscale the mask image before taking its transform. A smaller 

mask image significantly reduces intermediate variable storage during the fast Fourier 

transform process. It also drastically accelerates the calculation of the transform. The 

savings in execution time can be traded for larger padding factors in step 3, which 

increase resolution. Unfortunately, in most cases, downscaling incurs an irreversible loss 

of fidelity in the original image that propagates through dependent calculations, meaning 

that while the output transform may be more precise, it is less accurate. The more the 

image is downscaled, the more the antialiasing filter used to resample the image affects 
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the result, usually by diminishing high-frequency components in the pattern. In addition, 

the algorithm by which an image is downscaled may differ between implementations, 

leading to unpredictable outcomes. 

Table 17 explores the effect of gradually downscaling a triangular aperture image 

from 2048 by 2048 pixels to just 32 by 32 pixels. Though the fast Fourier transform 

output displays remarkable resistance to the downscaling of the input image, artifacts do 

become noticeable when the image reaches about 64 by 64 pixels or so. 

 

Table 17. Demonstration of aperture image downscaling effects. 

Scaling factor FFT input 

(before 𝟖 × pad30) 

FFT output31 Horizontal cut 

1 

 

(2048 × 2048) 

  

1

16
 

 

(128 × 128) 

  

 
30 See following paragraphs for an explanation of the padding factor. Padding is included here to provide 

good resolution in the output FFTs. 
31 Square of magnitude of Fourier transform, shifted to place (0, 0) frequency component at image center 

and plotted on a nonlinear brightness scale. All outputs are shown limited to the same frequency domain of 

𝑢 ∈ [−10, 10]𝐷−1; 𝑣 ∈ [−10, 10]𝐷−1. 
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1

32
 

 

(64 × 64) 

  

1

64
 

 

(32 × 32) 

  

 

 Before deciding to downscale an image, it is important to run a study across 

multiple scaling factors to ensure that the factor in question offers an appropriate balance 

of accuracy and fidelity for the application. A scaling factor of one will provide the best 

results, but smaller fractions run significantly faster and can be useful for drafts. 

 Padding the aperture image with black pixels before taking the Fourier transform 

is another useful technique. Black pixels increase the image dimensions and allow us to 

calculate spatial frequency content at non-integer multiples of the reciprocal of the 

aperture diameter. In other words, padding the image improves the spatial resolution of 

our Fourier transform. We define the padding factor to be the ratio of the square 

dimension of the padded image to the square dimension of the unpadded image. By this 

definition, a 256-by-256-pixel image that is padded to a size of 1024 by 1024 pixels 

would have a padding factor of 4. See Table 18 for a comparison of different padding 

factors and their impact on the output transform. 
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Table 18. Demonstration of padding factor effects. 

Padding factor FFT input FFT output32 Spat. freq. 

resolution 

[𝐩𝐱 𝑫−𝟏⁄ ] 

1 
 

(256 × 256) 

 

1 

2 
 

(512 × 512) 

 

2 

4  

(1024 × 1024) 
 

4 

8 

 

(2048 × 2048) 

 

8 

 

 
32 Square of magnitude of Fourier transform, shifted to place (0, 0) frequency component at image center 

and plotted on a nonlinear brightness scale. All outputs are shown limited to the same frequency domain of 

𝑢 ∈ [−10, 10]𝐷−1; 𝑣 ∈ [−10, 10]𝐷−1 and have been scaled to the same size on the page to illustrate the 

differences in spatial resolution. 
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 Throughout this paper, we use 2048-by-2048 pixel aperture images wherever 

possible.33 We generally apply a padding factor of 8 before taking the Fourier transform. 

 

B.3 Performing the two-dimensional fast Fourier transform 

We next invoke a function that calculates the complex factors of the Fourier 

transform. In order to perform this expensive operation expediently, we use a two-

dimensional Fourier transform method that is specialized for square images with 

dimensions of 2𝑛 pixels by 2𝑛 pixels—n a positive integer—called the two-dimensional 

fast Fourier transform. The output of this operation is a two-dimensional array of 

complex numbers corresponding to the amplitude and phase of all distinguishable spatial 

frequency components in the input image. MATLAB’s function for performing a two-

dimensional fast Fourier transform is fft2(). 

The fast Fourier transform assumes a periodic input image whereas in practice our 

inputs are aperiodic. Padding images before taking the two-dimensional fast Fourier 

transform more faithfully reflects the non-repeating nature of the real masks and produces 

higher-fidelity results at the expense of added computation time. 

 

B.4 Converting the Fourier transform output to a normalized power spectrum 

 In our application, (u, v) = (0, 0) represents the lowest frequency component of 

the image, which would be seen collocated with a star in an actual exposure. The 

component at this frequency is natively represented at the top-left pixel when displayed 

using a raster coordinate convention. For ease of interpretation, we translate the output so 

 
33 The bowtie mask of Section 3.4.4, provided to us at a resolution of 1000 by 1000 pixels, is one notable 

exception. 
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that the low-frequency components appear at the center of the image rather than its 

corners. MATLAB’s fftshift() function performs this translation. It can also be 

executed manually by defining 

 
𝑥′ = (𝑥 +

ℎ

2
) % ℎ 

𝑦′ = (𝑦 +
𝑤

2
) % 𝑤

 (21) 

where h is the image height, w is the image width, and the % symbol represents the 

modulo (remainder) operator. Note that per raster coordinate convention, x is the vertical 

coordinate and y is the horizontal coordinate. 

 As we saw in Appendix A.2, we can get the power spectrum by squaring the 

magnitude of the Fourier transform. In MATLAB, if F represents the shifted Fourier 

transform output, getting the power spectrum is as simple as calling abs(F).^2. 

 The values within the power spectrum will depend not only on the shape of the 

aperture that creates it but also the size of the image representing the aperture. In our 

application, however, we care only about the shape of the aperture. To remove the 

variance caused by the image size, we normalize the entire spectrum by the maximum 

value within it. With MATLAB, using P for our power spectrum, we can write 

P = P./max(max(P)). This results in the value 1 representing the brightest point of the 

spectrum—almost always its center—and all other values representing the fraction of 

power density relative to this brightest point. We have established a normalized contrast 

scale! 
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B.5 Plotting the power spectrum 

Our normalized contrast scale has a huge dynamic range spanning many orders of 

magnitude. To illustrate all important features of the power spectrum, we must use a 

nonlinear brightness scale. One way to do this would be to apply a gamma correction, 

raising every element in the spectrum to the power 1/4, say. In this paper, we instead 

take the logarithm so that the pixel values within our image correspond linearly to the 

astronomical apparent visual magnitude scale. In MATLAB, we simply call log10() to 

get the base-10 logarithm and multiply by −2.5 to get the difference in apparent visual 

magnitude (see Equation 3 in Section 1.2). 

Since our maximum component is 1 before performing this transformation, the 

base-10 logarithm will yield strictly nonpositive values and the apparent visual 

magnitude matrix will contain strictly nonnegative values. With either scale, we must 

select which value corresponds to black pixels and which value corresponds to white 

pixels. The decision is a matter of personal taste, but it helps to pick values that reveal 

important details of the spectrum without washing out the image. In this paper, we plot 

most power spectra on a log-10 range of [−4, −1], which leaves components −4 or less 

black and −1 or greater white. Exceptions are made where appropriate. 

 

B.6 Plotting a multi-star image 

 We know from Appendix A.4 that we can simulate a monochromatic multi-star 

image by convolving the power spectrum with the star positions, adjusting the brightness 

of each pattern in proportion to each star’s brightness. To this point, our power spectrum 

has been defined in normalized angular units of 𝜆/𝐷, but star positions are given in 
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absolute angular units of arcseconds. Converting 𝜆/𝐷 into arcseconds requires us to at 

last specify our aperture diameter and wavelength of interest. In this paper, we default to 

an aperture diameter of 11 inches to match the Celestron C11. Our wavelength selection 

depends on the context. 

 To prepare the convolution, we calculate the theoretical indices where stars would 

be present within a matrix built to the same spatial scale as the point spread function. 

(This is where the contextualization of the 𝜆/𝐷 units occurs.) We also calculate each 

star’s absolute brightness. We then convolve the non-log-scaled point spread function 

with our theoretical star matrix, lightening or attenuating each instance of the pattern in 

proportion to the calculated brightness. MATLAB’s conv2() function can perform this 

action if provided a real matrix, but we implement an alternative that leverages the 

sparseness of the star data to achieve much better performance. (See documentation 

within the getStarView.m file of Appendix K.3 for details.) 

 Once the convolution is complete, we can take the logarithm of the data and plot 

the result in much the same way as we did the point spread function. 
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C. NOTES ON MASKULATOR 

C.1 Downloading and running Maskulator 

(Please exercise caution when downloading, installing, and executing programs 

from the Internet. The author used these applications and libraries in this section without 

issue but cannot guarantee that they are safe. Continue at your own risk.) 

Niels Noordhoek’s diffraction simulation utility, Maskulator (Section 2.2.2), is 

available at http://www.njnoordhoek.com/?p=376. It will not function correctly after 

being downloaded to a 64-bit PC without additional steps. By default, the button labeled 

calculate will have no effect when clicked. To resolve the issue, perform the sequence of 

steps below. 

1. Download Maskulator v5.0 from http://www.njnoordhoek.com/?p=376. 

2. Open the Maskulator zip file and extract its contents to a new folder. We will call 

this folder the Maskulator folder. 

3. Download precompiled 64-bit Windows DLLs for the Fastest Fast Fourier 

Transform in the West (FFTW) C subroutine library. These are available at 

http://fftw.org/install/windows.html. Make sure to select the 64-bit version. The 

author used FFTW v3.3.5, but other versions are likely to work. 

4. Open the FFTW zip file and copy only the file called libfftw3f-3.dll to your 

Maskulator folder. When prompted, choose to replace the existing file. 

5. Open Maskulator from your Maskulator folder, press Load mask, select an image 

from your Maskulator folder, and press the calculate button. Confirm that a 

diffraction pattern appears in the display. 

 

http://www.njnoordhoek.com/?p=376
http://www.njnoordhoek.com/?p=376
http://fftw.org/install/windows.html
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C.2 Relevant parameters within Maskulator 

Maskulator offers several parameters that affect the generated diffraction pattern. 

The parameters most relevant to this project are summarized in Table 19. 

 

Table 19. Description of selected Maskulator parameters. 

Parameter Units Min Max Effect 

annotation – – – Uncheck to visualize the diffraction pattern 

without overlaid information about the telescope 

focus. 

matrix size 

N () 

px 256 2048 Increasing this number increases the angular 

domain covered by the Fast Fourier transform 

output but does not increase its resolution. In 

effect, a smaller matrix size produces an output 

that is a cropped version of the output from a 

larger matrix size—but note its effects on the 

“brightness” parameter. 

start nm 350 780 The lower end of the spectrum displayed in the 

diffraction pattern. Slices with wavelengths less 

than the default value of 450 nanometers or 

greater than 650 nanometers are not displayed. 

steps – 1 64 How many steps into which to divide the spectral 

range defined by the “start” and “stop” 

parameters, including the endpoints. A value of 1 
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Parameter Units Min Max Effect 

uses only the “start” parameter. The output 

produced by Maskulator is a combination of this 

number of slices, where each slice is a different 

wavelength. Larger numbers produce smoother 

spectra at the expense of additional computation 

time. 

stop nm 350 780 The upper end of the spectrum displayed in the 

diffraction pattern. Slices with wavelengths less 

than 450 nanometers or greater than the default 

value of 650 nanometers are not displayed. 

Brightness (unk.) 0 10000 Higher values correspond to a brighter image, 

bringing dim or even otherwise invisible features 

into view. The natural brightness of an image 

appears to increase linearly with the “matrix size 

N ()” parameter, requiring a reciprocal 

adjustment to brightness for equivalent results. 

For example, an image to be generated with a 

matrix size of 1024 should have its brightness set 

to one-fourth the value of the brightness of an 

image generated using a matrix size of 256. 
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Parameters not listed in Table 19, including “aperture D (m),” “focal length f 

(m),” “Barlow magnification(),” and “Defocus (microns),” are used to explore in detail 

the effects of telescope focus on diffraction patterns and are not vital to the conclusions 

of this thesis. 

To achieve increased resolution in the diffraction pattern, the original mask 

images must be manually padded with black pixels using another tool before supplying 

them to Maskulator. Where focus is important and the input image does not represent the 

precise extent of the aperture to be studied, one must also modify the “aperture D (m)” 

parameter to reflect the theoretical extent of the entire input image in the aperture plane. 

For example, if a 1024-by-1024-pixel image represents a 0.25-meter aperture and it is 

padded with black pixels to form a 2048-by-2048-pixel image, “aperture D (m)” should 

be set to 0.50 even though 0.50 meters is larger than the telescope aperture’s diameter. 
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D. CALCULATION OF REQUIRED STEPPER MOTOR TORQUE 

To begin calculating the amount of motor torque needed to rotate our masks, we 

make several assumptions: 

• The mask can be modeled as a solid, circular plate of birch 0.125 inches thick and 

12 inches in diameter. These quantities match the material thickness and pitch 

diameter of our mask gear. Naturally, our masks are not solid, so this assumption 

should yield an overestimate of the component’s mass moment of inertia. 

• The magnets in the mask assembly can be ignored. 

• The pinion can be modeled as a solid, circular cylinder of acrylic 0.375 inches 

thick and 2.833 inches in diameter. These quantities match the height of the 

acrylic stack in the pinion assembly (pinion plus two lips) and the pinion’s pitch 

diameter. 

• The leading face of a pinion tooth begins in contact with a mask tooth such that 

when the stepper motor begins to move, the mask too begins to move. 

• The stepper motor accelerates the pinion and the mask to their steady-state speeds 

in one pulse. We drive the stepper motor at 125 hertz, so each pulse is 8 

milliseconds long. 

 

With these assumptions in place, we perform the calculations in Table 20. 

 

Table 20. Steps of a calculation that estimates the required torque of our stepper motor. 

Term Value Notes 

Mask diameter 𝑑𝑚 = 12 in – 
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Term Value Notes 

Mask radius 
𝑟𝑚 =

𝑑𝑚

2
 

→ 𝑟𝑚 = 6 in 

 

Mask thickness 𝑎𝑚 = 0.125 in – 

Mask density 
𝜌𝑚 = 0.0231

lbm

in3
 

34 

Mask mass moment of inertia 
𝐼𝑚 =

1

2
𝑚𝑚𝑟𝑚

2  

→ 𝐼𝑚 =
𝜋

2
𝜌𝑚𝑎𝑚𝑟𝑚

4  

→ 𝐼𝑚 = 5.88 lbm ∙ in2 

– 

Pinion diameter 𝑑𝑝 = 2.833 in – 

Pinion radius  
𝑟𝑝 =

𝑑𝑝

2
 

→ 𝑟𝑝 = 1.417 in 

– 

Pinion thickness 𝑎𝑝 = 0.375 in – 

Pinion density 
𝜌𝑝 = 0.0430

lbm

in3
 

35 

Pinion mass moment of inertia 
𝐼𝑝 =

1

2
𝑚𝑝𝑟𝑝

2 

→ 𝐼𝑝 =
𝜋

2
𝜌𝑝𝑎𝑝𝑟𝑝

4 

→ 𝐼𝑝 = 0.102 lbm ∙ in2 

– 

 
34 Taking the average of the values quoted in Engineering ToolBox (2004) yields 640 kg/m3, which is 

equivalent to 0.0231 lbm/in^3. 
35 This is the 1190 kg/m3 quoted in Engineering ToolBox (2009) converted to lbm/in^3. 
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Term Value Notes 

Stepper angle advanced per step Δ𝜃𝑠 = 1.8 deg 36 

Stepper driver step period Δ𝑡𝑠 = 0.008 s 37 

Pinion steady-state angular velocity 
𝜔𝑝,𝑠𝑠 = (

Δ𝜃𝑠

Δ𝑡𝑠
) (

2𝜋 rad

360 deg
) 

→ 𝜔𝑝,𝑠𝑠 = 3.927
rad

s
 

– 

Gear ratio 
𝐾 =

72

17
 

– 

Mask steady-state angular velocity 𝜔𝑚,𝑠𝑠 =
𝜔𝑝,𝑠𝑠

𝐾
 

→ 𝜔𝑚,𝑠𝑠 = 0.927
rad

s
 

– 

Pinion angular impulse 𝐿𝑝 = 𝐼𝑝𝜔𝑝,𝑠𝑠 

→ 𝐿𝑝 = 0.401 
lbm ∙ in2

s
 

– 

Mask angular impulse 𝐿𝑚 = 𝐼𝑚𝜔𝑚,𝑠𝑠 

→ 𝐿𝑚 = 5.45 
lbm ∙ in2

s
 

– 

Shaft torque required to accelerate 

pinion and mask to steady-state speeds 

in one step (assuming constant 

application for the step duration) 

𝑇 =
𝐿𝑚 + 𝐿𝑝

Δ𝑡𝑠
 

→ 𝑇 = 731 
lbm ∙ in2

s2
 

→ 𝑇 = 0.214 N ∙ m   

– 

 

 
36 Per SparkFun Electronics, Inc. (2019). 
37 We found experimentally that a rate of 125 hertz works well. 
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E. CALCULATION OF REQUIRED CLEARANCE BETWEEN PINION GEAR AND 

MASK GEAR 

 To facilitate a smooth interface between the pinion’s and the mask’s gear teeth, 

we include a clearance between the top lands of the teeth on one gear and the bottom 

lands between the teeth on the other gear. The required clearance is a function of 

machining and assembly tolerances elsewhere in the system that are summarized in Table 

21. Most variance comes from generous hole location tolerances in the motor bracket. 

 

Table 21. Summary of tolerances factored into gear clearance calculations. 

Dimension Value Notes 

Maximum axle cap clearance relative to 

secondary mirror cylinder 

𝐴 = .016" – 

Maximum axis placement variation due 

to axle cap inner diameter clearance 

𝐵 =
𝐴

2
 

→ 𝐵 = .008" 

38 

Axis placement variation due to axle bolt 

hole clearance 

𝐶 = 0" 39 

Maximum deviation in parallelism 

between axle cap exterior and interior 

flat surfaces 

𝐷 = .03" – 

Minimum cap inner diameter 𝐸 = 3.597" – 

 
38 The maximum clearance between axle cap and secondary mirror cylinder is 0.016 inches, but the axle is 

centered, meaning the position variance is half. 
39 Countersink is self-centering regardless of hole clearance. 
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Dimension Value Notes 

Axle angle due to maximum parallelism 

tolerance and minimum inner diameter 

𝐹 = atan (
𝐷

𝐸
) 

→ 𝐹 = 0.00834 rad 

40 

Maximum thickness of axle cap top 𝐺 = .27" – 

Maximum length of lower standoff 𝐻 = .505" 41 

Maximum mask thickness 𝐼 = .1875" 42 

Maximum transverse travel of mask top 

in presence of maximum axle angle 

𝐽 = (𝐺 + 𝐻 + 𝐼) sin 𝐹 

→ 𝐽 = .0080" 

– 

Maximum variation in motor bracket 

guide post placement 

𝐾 = .02" – 

Maximum variation caused by motor 

bracket guide post hole diameter 

tolerance 

𝐿 =
. 012"

2
 

→ 𝐿 = .006" 

43 

Maximum variance caused by motor 

mount hole placement 

𝑀 = .008" – 

Maximum variation caused by motor 

mount hole diameter tolerance 

𝑁 =
. 012"

2
 

→ 𝑁 = .006" 

44 

Maximum total variance 𝑂 = 𝐵 + 𝐶 + 𝐽 + 𝐾 + 𝐿 + 𝑀 + 𝑁 

→ 𝑂 = .056"  

– 

 

 
40 Largest parallelism deviation combined with smallest distance over which it is achieved. 
41 (McMaster–Carr Supply Company, 2019) 
42 Per our own spec. See Section 4.4.4. 
43 Axis placement tolerance is half the diameter tolerance. 
44 Axis placement tolerance is half the diameter tolerance. 
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F. METHOD OF GENERATING GEAR PROFILES 

 A reliable method of representing accurate gear shapes in a vector drawing format 

proved surprisingly difficult to find. Several scripts found online did not properly account 

for mechanical interference effects of meshing gears. After some trial, we arrived at a 

successful and repeatable, if perhaps non-ideal, process: 

1. Using a web browser, access Rainer Hessmer’s Involute Spur Gear Builder utility, 

available at http://hessmer.org/gears/InvoluteSpurGearBuilder.html. 

2. Set parameters per Table 22. 

3. Press Update. When processing is complete, your output should show one of the 

two gears shown in Figure 123. 

4. Press Generate DXF. 

5. Press Download DXF. 

6. Save the file to disc. 

7. Open Inkscape.45 We used Inkscape 0.92.3 64-bit on Windows. 

8. Press Ctrl+O (alternatively, access File > Open) and open the DXF file created 

in step 6. A DXF Input window will appear. 

9. Set the parameters in the DXF Input window to match Table 23. Leave other 

parameters at their default values. 

10. Press OK. The gear shape should appear on the canvas. 

 
45 Unfortunately, the DXF output from the Involute Spur Gear Builder cannot be interpreted by most vector 

applications. Inkscape is one of the few that can read the file, so we use it to convert the file into a more 

flexible format. 

http://hessmer.org/gears/InvoluteSpurGearBuilder.html
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11. Press Ctrl+Shift+R (alternatively, access Edit > Resize Page to Selection). This 

will move the canvas boundaries to encompass the gear shape. Your window 

should now appear similar to Figure 124. 

12. Press Ctrl+Shift+S (alternatively, access File > Save As…). A dialog box will 

appear. 

13. Change the “Save as type” to “Encapsulated PostScript (*.eps)”. 

14. Give the file an appropriate name and location, then press Save. 

15. Using Adobe Illustrator, open the EPS file created in step 14. We used Adobe 

Illustrator 23.0.6. 

16. Press Ctrl+A (alternatively, Select > All) to highlight the entire mask profile. 

17. Press Ctrl+F10 (alternatively, Window > Stroke) to open up the Stroke window. 

18. In the Stroke window, set the size to 0.001 pt. (We do this so that the laser cutter 

will cut these lines rather than engrave them.) 

19. With the gear profile still selected, access Object > Path > Simplify. A settings 

prompt will appear. 

20. In the Simplify window, set Curve Precision to 100% and Angle Threshold to 0°, 

then press OK. (We simplify the profile to remove redundant nodes that can slow 

down the laser cutting process.) 

21. With the gear profile still selected, access Object > Artboards > Fit to Selected 

Art. This will expand the canvas to cover the entire gear, allowing the laser cutter 

to process the figure’s complete geometry. 

22. Save your file using Ctrl+S or by selecting File > Save. The Save window may 

appear. 
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23. If the Save window appears, give the file an appropriate name and press the Save 

button. 

 

Now that we have a representation of gear teeth in an Adobe Illustrator format, 

we can treat this file as a template. Creating new geared mask definitions is as simple as 

copying the Wheel 1 template and combining the copy with an aperture pattern. See 

Appendix G for more information on this process. 

 

Table 22. Parameters used with Rainer Hessmer’s Involute Spur Gear Builder to produce 

gear shapes for this project. In this table, Wheel 1 is the mask-side gear and Wheel 2 is 

the motor-side pinion. 

Parameter name Value Units46 

Circular pitch 0.5236 in. / tooth 

Pressure angle 20 degrees 

Clearance 0.056 in. 

Backlash 0.02 in. 

Profile shift 0 in. 

Wheel 1 tooth count 72 teeth 

Wheel 1 center hole diameter 0.25 in. 

Wheel 2 tooth count 17 teeth 

Wheel 2 center hole diameter 0.1869 in. 

Show see note47 – 

 
46 The utility enforces no particular length unit as long as the selection is consistent. The units in this 

column are correct in the context this project. 
47 Select either “Wheel 1 Only” or “Wheel 2 Only” depending on which gear you want to create. 
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Parameter name Value Units46 

Rotation steps per tooth angle 10 – 

Number of segments per 360 degrees of rotation 90 – 

 

 

Figure 123. Involute Spur Gear Builder display after completing Step 3 with “Wheel 1 

and Wheel 2” selected as the “Show” parameter. For the gears to appear as large as 

they do here, you will need to zoom in by sliding the gray scrollbar to the left. 

 

Table 23. DXF Input parameters for Inkscape. 

Parameter Value 

Method of scaling Manual scale 

Manual scale factor 25.4 

Manual x-axis origin 0.0 

Manual y-axis origin 0.0 
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Figure 124. Result of performing step 11 for Wheel 1, left, and Wheel 2, right. 
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G. CONVERTING MASK IMAGES TO A LASER-CUTTER FORMAT 

 Just as the gear tooth profiles need to be converted to a laser-cutter-compatible 

format, so too must the mask images. The mask images begin in a raster format, which 

describes graphics using pixel values. This format has no notion of lines or curves, so this 

context must be communicated another way. In general, one would provide this 

information by generating vector files from scratch, but this approach is impractical for 

the project because the boundaries of many masks have no convenient mathematical 

representation.48 

 Thankfully, tools exist that interpret raster images and suggest appropriate vector-

based curves. This operation is not a true conversion from raster to vector because the 

two formats describe fundamentally different data. Still, the process is good enough for 

our purposes. 

 We performed the following steps using Adobe Illustrator 23.0.6. 

1. Open the PNG version of the mask in Adobe Illustrator. (This PNG would have 

been created by running the makeApertures.m script described in Appendix L.) 

2. Open the Image Trace window by accessing Window > Image Trace. 

3. In the Image Trace window, press the arrow next to “Advanced”. 

4. Change settings to match Table 24. 

5. Press Trace. 

6. Expand the trace with Object > Image Trace > Expand. 

 
48 Fourier transforms run on a computer are almost always discrete fast Fourier transforms that have no 

notion of a continuous signal. The function accepts discrete values as inputs and produces discrete values as 

outputs. In this project, we provide the discrete inputs in matrix form, where each element of the matrix 

describes the opacity at a small region of a mask. These matrices need not be formed using any particular 

mathematical strategy. 



177 

7. Click off the mask image to deselect it. 

8. For each black region in the image, click the region using the Direct Selection 

Tool (white cursor), then delete the region by pressing the Delete key on your 

keyboard. 

9. Open the Appearance window by pressing Shift+F6 or via Window > 

Appearance. 

10. For each white region in the image, click the region, then, using the Appearance 

window, change the Stroke to a 0.001-pt black line and the Fill to transparency 

(denoted by a red slash). See Figure 125. 

11. Resize the artboard bounds to the extents of the mask shape via Object > 

Artboards > Fit to Artwork Bounds. See Figure 126. 

12. Save the result via Ctrl+S or File > Save. 

 

The resulting file can now be combined with the gear output from Appendix F to 

form the basis for the cut pattern. 

 

Table 24. Image Trace parameters for importing mask images in Adobe Illustrator. 

Parameter Value 

Paths 95% 

Corners 95% 

Noise 2 px 

Create  Fills (not Strokes) 
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Figure 125. How the Adobe Illustrator interface might appear after performing step 10. 

 

 

Figure 126. Result of step 11. (Contour is accentuated in this figure for printing 

purposes.) 
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H. MASK ROTATOR SOFTWARE AND ELECTRICAL INTERFACES 

H.1 Mask rotator software interface 

As discussed in Section 4.6, the mask rotator communicates using a UART serial 

interface over USB. Table 25 is a complete list of commands and associated actions. The 

code itself is included in Appendix M. 

 In this table, the Cmd column represents the character or characters sent to the 

mask rotator. The Return column is what the mask rotator sends back. For example, if the 

mask rotator receives an s (“stop”) command, it will send back a reciprocal s to indicate 

the rotator read the original command correctly. 

• Some commands have special formats or significance that is described in a note 

following the table. 

• All return codes are followed by one carriage return and one newline character 

(\r\n). 

• The program begins in “absolute” mode. (See entries for r and a.) 

• The interface operates at 19200 baud. 

 

Table 25. Index of mask rotator commands. 

Cmd Name Action Return 

a enter 

absolute 

mode 

Enters absolute mode, causing 

targets to be interpreted with 

respect to the index position 

a 
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Cmd Name Action Return 

b backward Rotates mask backward 

continuously 

b 

f forward Rotates mask forward 

continuously 

f 

g(1) go to Sets a new target position for the 

mask 

g(1) representing the new 

absolute mask target 

position 

i locate index Triggers an indexing operation 

(see Section 4.6.2) 

i initially, then either I if 

index was acquired or ~ if 

index was not acquired 

p get position Gets current mask position  p (1) representing the 

current absolute mask 

position 

r enter 

relative 

mode 

Enters relative mode, causing 

targets to be interpreted as 

changes in position 

r 

s stop Stops mask rotation s 

t get target Gets current mask target position t (1) representing the 

current absolute mask target 

position 
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Cmd Name Action Return 

z set zero Stops mask rotation and sets 

current position as the new zero 

point 

z 

? ping Takes no action (used for 

verifying communication) 

! 

(else) N/A Unrecognized command x 

 

(1) A positive, negative, or zero integer representing degrees multiplied by 100. For 

example, the characters -6311 represent −63.11 degrees. The precision of this 

number should not be confused for its accuracy, which is governed by the 

mechanical system and is much worse. The range of valid integers is 

[−2−31, 231 − 1], or [−2147483648, 2147483647]. This is enough to represent 

about 59,652 full rotations on either side of zero, which should be more than 

enough travel for any reasonable application. The program holds some numbers in 

a floating-point format, so precision may degrade slightly for extremely large 

integers toward the limits of this range. 

 

H.2 Mask rotator wiring 

 Tables 26 and 27 show how to wire the stepper motor and Hall switch to the 

Arduino Motor Shield in the configuration the mask rotator program expects.  
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Table 26. Hall switch electrical 

connections. 

Hall switch label Arduino pin 

SIG 5 

VCC 4 

GND GND 

 

Table 27. Stepper motor electrical 

connections. 

Stepper wire Arduino terminal 

A (red) A+ 

B (yellow) B+ 

C (green) A− 

D (blue) B− 
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I. STUDY OF SECONDARY BROADNESS IN A GAUSSIAN DONUT 

Table 28 explores the effect of changing the broadness of a secondary Gaussian 

obstruction relative to that of the primary shape. This follows an earlier discovery in 

Section 3.4.1 that an outer broadness factor of 𝑝 = 0.50 performs well with respect to our 

contrast and working angle targets. 

 

Table 28. Study of different broadness choices for the secondary Gaussian while holding 

the broadness of the primary constant. 

Outer 𝒑𝟏  Inner 𝒑𝟐 Aperture shape Point spread function Horizontal PSF cut 

0.50 0.30 

   

0.50 0.50 

   

0.50 0.80 
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Outer 𝒑𝟏  Inner 𝒑𝟐 Aperture shape Point spread function Horizontal PSF cut 

0.50 1.20 

   

0.50 1.60 

   
 

Of these options, the aperture with secondary broadness 𝑝2 = 1.20 has the most 

promising simulated response. Along the horizontal axis, the aperture’s power spectrum 

reaches our target contrast threshold at a small working angle of 1.38 𝜆/𝐷 and forever 

maintains this contrast as the angle increases. While some other configurations achieve 

the target contrast at smaller angles, they do so only at narrow valleys of destructive 

interference. The configuration with 𝑝2 = 1.60 does not have this issue but reaches the 

target contrast at a greater angle (1.59 𝜆/𝐷) than the 𝑝2 = 1.20 configuration. 
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J. INDEX QUALITY TEST DATA 

 This section contains data collected while testing the angular accuracy of the 

mask rotation mechanism. See Section 5.6 for more details. 

 

Mask rotating in forward direction 

Table 29. Data collected during index quality testing with mask running in the forward 

direction. The leftmost four columns contain raw data and the remaining columns 

contain derived values. 

Hilo time 

[ms] 

Hilo pos 

[deg] 

Lohi time 

[ms] 

Lohi pos 

[deg] 

Gap 

[deg] 

Hilo delta 

[deg] 

Lohi delta 

[deg] 

2017 107.10 2190 116.45 9.35   
5407 287.30 5578 296.22 8.92 180.20 179.77 

8798 467.50 8962 476.00 8.50 180.20 179.78 

12183 647.27 12352 656.20 8.93 179.77 180.20 

15574 827.47 15740 836.40 8.93 180.20 180.20 

18958 1007.25 19131 1016.60 9.35 179.78 180.20 

22351 1187.45 22521 1196.37 8.92 180.20 179.77 

25738 1367.22 25906 1376.15 8.93 179.77 179.78 

29126 1547.42 29295 1556.35 8.93 180.20 180.20 

32513 1727.20 32682 1736.12 8.92 179.78 179.77 

35903 1907.40 36070 1916.32 8.92 180.20 180.20 

39292 2087.60 39460 2096.52 8.92 180.20 180.20 

42677 2267.37 42848 2276.30 8.93 179.77 179.78 

46069 2447.57 46237 2456.50 8.93 180.20 180.20 

49456 2627.35 49624 2636.27 8.92 179.78 179.77 

52847 2807.55 53009 2816.05 8.50 180.20 179.78 

56233 2987.32 56401 2996.25 8.93 179.77 180.20 

59617 3167.10 59787 3176.45 9.35 179.78 180.20 

63008 3347.30 63176 3356.22 8.92 180.20 179.77 

66395 3527.07 66565 3536.42 9.35 179.77 180.20 

69783 3707.27 69954 3716.20 8.93 180.20 179.78 

73173 3887.47 73342 3896.40 8.93 180.20 180.20 

76563 4067.67 76730 4076.17 8.50 180.20 179.77 

79948 4247.45 80118 4256.37 8.92 179.78 180.20 

83336 4427.22 83507 4436.57 9.35 179.77 180.20 
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86727 4607.42 86892 4616.35 8.93 180.20 179.78 

90115 4787.62 90283 4796.12 8.50 180.20 179.77 

93500 4967.40 93671 4976.32 8.92 179.78 180.20 

96892 5147.60 97060 5156.52 8.92 180.20 180.20 

100280 5327.37 100447 5336.30 8.93 179.77 179.78 

103671 5507.57 103837 5516.50 8.93 180.20 180.20 

107057 5687.35 107225 5696.27 8.92 179.78 179.77 

110444 5867.55 110612 5876.47 8.92 180.20 180.20 

113832 6047.32 114000 6056.25 8.93 179.77 179.78 

117219 6227.52 117388 6236.45 8.93 180.20 180.20 

120609 6407.30 120772 6416.22 8.92 179.78 179.77 

123995 6587.50 124164 6596.42 8.92 180.20 180.20 

127387 6767.27 127553 6776.20 8.93 179.77 179.78 

130773 6947.47 130942 6956.40 8.93 180.20 180.20 

134160 7127.25 134331 7136.17 8.92 179.78 179.77 

137551 7307.45 137719 7316.37 8.92 180.20 180.20 

140936 7487.22 141105 7496.15 8.93 179.77 179.78 

144325 7667.42 144497 7676.35 8.93 180.20 180.20 

147715 7847.62 147882 7856.12 8.50 180.20 179.77 

151103 8027.40 151269 8036.32 8.92 179.78 180.20 

154488 8207.17 154660 8216.52 9.35 179.77 180.20 

157878 8387.37 158048 8396.30 8.93 180.20 179.78 

161266 8567.15 161437 8576.50 9.35 179.78 180.20 

164653 8747.35 164825 8756.27 8.92 180.20 179.77 

168045 8927.55 168213 8936.47 8.92 180.20 180.20 

171432 9107.32 171600 9116.25 8.93 179.77 179.78 

174817 9287.10 174988 9296.45 9.35 179.78 180.20 

178208 9467.30 178377 9476.22 8.92 180.20 179.77 

    Min 179.7700 179.7700 

    Max 180.2000 180.2000 

    Avg 180.0038 179.9956 
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Mask rotating in reverse direction 

Table 30. Data collected during index quality testing with mask running in the reverse 

direction. The leftmost four columns contain raw data and the remaining columns 

contain derived values. 

Hilo time 

[ms] 

Hilo pos 

[deg] 

Lohi time 

[ms] 

Lohi pos 

[deg] 

Diff 

[deg] 

Hilo delta 

[deg] 

Lohi delta 

[deg] 

1672 9473.67 1834 9465.17 -8.50   
5055 9293.90 5221 9284.97 -8.93 -179.77 -180.20 

8443 9114.12 8612 9105.20 -8.92 -179.78 -179.77 

11833 8933.92 11998 8925.00 -8.92 -180.20 -180.20 

15224 8753.72 15390 8744.80 -8.92 -180.20 -180.20 

18611 8573.95 18778 8565.02 -8.93 -179.77 -179.78 

22001 8393.75 22162 8385.25 -8.50 -180.20 -179.77 

25387 8213.97 25554 8205.05 -8.92 -179.78 -180.20 

28776 8033.77 28940 8025.27 -8.50 -180.20 -179.78 

32164 7854.00 32327 7845.07 -8.93 -179.77 -180.20 

35554 7673.80 35716 7664.87 -8.93 -180.20 -180.20 

38939 7494.02 39103 7485.10 -8.92 -179.78 -179.77 

42328 7313.82 42494 7304.90 -8.92 -180.20 -180.20 

45718 7133.62 45883 7125.12 -8.50 -180.20 -179.78 

49109 6953.42 49273 6944.92 -8.50 -180.20 -180.20 

52495 6773.65 52659 6765.15 -8.50 -179.77 -179.77 

55882 6593.87 56049 6584.95 -8.92 -179.78 -180.20 

59270 6413.67 59437 6404.75 -8.92 -180.20 -180.20 

62662 6233.47 62823 6224.97 -8.50 -180.20 -179.78 

66045 6053.70 66208 6045.20 -8.50 -179.77 -179.77 

69437 5873.50 69598 5865.00 -8.50 -180.20 -180.20 

72820 5694.15 72990 5684.80 -9.35 -179.35 -180.20 

76215 5513.52 76378 5505.02 -8.50 -180.63 -179.78 

79597 5333.75 79764 5324.82 -8.93 -179.77 -180.20 

82990 5153.55 83154 5145.05 -8.50 -180.20 -179.77 

86375 4973.77 86539 4965.27 -8.50 -179.78 -179.78 

89765 4793.57 89930 4785.07 -8.50 -180.20 -180.20 

93152 4613.80 93318 4604.87 -8.93 -179.77 -180.20 

96543 4433.60 96704 4425.10 -8.50 -180.20 -179.77 

99929 4253.82 100092 4245.32 -8.50 -179.78 -179.78 

103320 4073.62 103484 4065.12 -8.50 -180.20 -180.20 

106704 3893.85 106869 3884.92 -8.93 -179.77 -180.20 

110092 3713.65 110260 3705.15 -8.50 -180.20 -179.77 
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113482 3533.87 113648 3524.95 -8.92 -179.78 -180.20 

116872 3353.67 117037 3344.75 -8.92 -180.20 -180.20 

120254 3173.90 120422 3164.97 -8.93 -179.77 -179.78 

123647 2993.70 123813 2984.77 -8.93 -180.20 -180.20 

127033 2813.92 127196 2805.00 -8.92 -179.78 -179.77 

130426 2633.72 130588 2625.22 -8.50 -180.20 -179.78 

133809 2453.95 133976 2445.02 -8.93 -179.77 -180.20 

137200 2273.75 137364 2264.82 -8.93 -180.20 -180.20 

140586 2093.97 140752 2085.05 -8.92 -179.78 -179.77 

143978 1913.77 144139 1905.27 -8.50 -180.20 -179.78 

147362 1734.00 147529 1725.07 -8.93 -179.77 -180.20 

150751 1553.80 150918 1544.87 -8.93 -180.20 -180.20 

154136 1374.02 154302 1365.10 -8.92 -179.78 -179.77 

157531 1193.82 157692 1185.32 -8.50 -180.20 -179.78 

160917 1013.62 161081 1005.12 -8.50 -180.20 -180.20 

164309 833.42 164473 824.92 -8.50 -180.20 -180.20 

167694 653.65 167859 645.15 -8.50 -179.77 -179.77 

171083 473.87 171248 464.95 -8.92 -179.78 -180.20 

174470 293.67 174634 285.17 -8.50 -180.20 -179.78 

177861 113.47 178023 104.97 -8.50 -180.20 -180.20 

    Min -180.6300 -180.2000 

    Max -179.3500 -179.7700 

    Avg -180.0038 -180.0038 

 

Repeated indexing operations 

Table 31. Data from repeated indexing 

operations. The leftmost three columns 

are raw data and the remaining column 

is derived. 

# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

1 3715 180.63  
2 7929 360.61 179.98 

3 12109 540.49 179.88 

4 16304 720.38 179.89 

5 20492 900.36 179.98 

6 24690 1080.46 180.10 

7 28900 1260.55 180.09 

# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

8 33112 1440.54 179.99 

9 37314 1620.52 179.98 

10 41529 1800.51 179.99 

11 45732 1980.50 179.99 

12 49941 2160.59 180.09 

13 54137 2340.47 179.88 

14 58341 2520.67 180.20 

15 62538 2700.45 179.78 

16 66750 2880.65 180.20 

17 70943 3060.53 179.88 

18 75149 3240.62 180.09 
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# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

19 79345 3420.40 179.78 

20 83549 3600.60 180.20 

21 87745 3780.37 179.77 

22 91959 3960.57 180.20 

23 96155 4140.35 179.78 

24 100368 4320.44 180.09 

25 104562 4500.32 179.88 

26 108772 4680.52 180.20 

27 112964 4860.51 179.99 

28 117165 5040.50 179.99 

29 121361 5220.27 179.77 

30 125567 5400.47 180.20 

31 129763 5580.25 179.78 

32 133989 5760.66 180.41 

33 138189 5940.65 179.99 

34 142388 6120.53 179.88 

35 146596 6300.62 180.09 

36 150792 6480.40 179.78 

37 154981 6660.39 179.99 

38 159199 6840.59 180.20 

39 163391 7020.47 179.88 

40 167602 7200.56 180.09 

41 171793 7380.34 179.78 

42 175986 7560.33 179.99 

43 180197 7740.52 180.19 

44 184409 7920.51 179.99 

45 188610 8100.50 179.99 

46 192821 8280.59 180.09 

47 197024 8460.37 179.78 

48 201234 8640.57 180.20 

49 205439 8820.45 179.88 

50 209649 9000.54 180.09 

51 213853 9180.42 179.88 

52 218064 9360.52 180.10 

53 222260 9540.40 179.88 

54 226469 9720.60 180.20 

55 230668 9900.37 179.77 

56 234896 10080.57 180.20 

# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

57 239091 10260.35 179.78 

58 243315 10440.55 180.20 

59 247514 10620.43 179.88 

60 251720 10800.52 180.09 

61 255914 10980.41 179.89 

62 260124 11160.50 180.09 

63 264318 11340.49 179.99 

64 268533 11520.58 180.09 

65 272732 11700.25 179.67 

66 276942 11880.56 180.31 

67 281132 12060.33 179.77 

68 285336 12240.42 180.09 

69 289553 12420.41 179.99 

70 293771 12600.61 180.20 

71 297966 12780.39 179.78 

72 302173 12960.69 180.30 

73 306374 13140.58 179.89 

74 310588 13320.67 180.09 

75 314794 13500.34 179.67 

76 319012 13680.64 180.30 

77 323215 13860.42 179.78 

78 327424 14040.62 180.20 

79 331601 14220.29 179.67 

80 335810 14400.59 180.30 

81 339996 14580.37 179.78 

82 344209 14760.57 180.20 

83 348406 14940.45 179.88 

84 352618 15120.54 180.09 

85 356822 15300.42 179.88 

86 361031 15480.52 180.10 

87 365214 15660.29 179.77 

88 369421 15840.60 180.31 

89 373622 16020.37 179.77 

90 377826 16200.57 180.20 

91 382027 16380.35 179.78 

92 386239 16560.44 180.09 

93 390433 16740.33 179.89 

94 394645 16920.52 180.19 
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# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

95 398837 17100.41 179.89 

96 403044 17280.50 180.09 

97 407241 17460.27 179.77 

98 411449 17640.48 180.21 

99 415647 17820.46 179.98 

# 

Time 

[ms] 

Angle 

[deg] 

Delta 

[deg] 

100 419861 18000.56 180.10 

  Min 179.67 

  Max 180.41 

  Avg 179.9993 
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K. DIFFRACTION SIMULATION CODE 

K.1 Prerequisites 

Running the diffraction simulation software requires a copy of MATLAB. We 

used MATLAB R2018a. No toolboxes are required. 

The most recent version of code—potentially including features or bugfixes added 

after this paper was published—can be downloaded from https://github.com/e-

foley/FraunhoferSim. 

The software operates on image files that represent apertures. Two such images 

representing the bowtie mask and the beamed bowtie mask are included in the software 

repository linked above. Others can be generated by running the makeApertures.m script 

described in Appendix L. Please note that the makeApertures.m script has slightly 

different prerequisites than the diffraction simulation code itself. 

 

K.2 Architecture and usage 

The diffraction code generates and manipulates two key objects: 

• A Psf object represents a point spread function for an aperture. The object holds 

information about the distribution of energy within the point spread function 

along with meta-information about the object, including its resolution and angular 

bounds. Spatial information within the Psf object is normalized to 𝜆/𝐷. 

• A StarView object represents the convolution of a point spread function with 

stars. Like a Psf object, a StarView also holds information about itself, including 

its resolution and angular bounds. Unlike a Psf, however, a StarView operates in 

angles of arcseconds rather than normalized units. In order to contextualize the 

https://github.com/e-foley/FraunhoferSim
https://github.com/e-foley/FraunhoferSim
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Psf’s normalized units as arcseconds, the StarView must know the diameter of the 

telescope and what wavelength of light is being observed. 

 

Once a Psf or StarView object has been created, it can be plotted using an 

appropriate plotting function. Psfs are compatible with psfGetImage(), which creates an 

image of the point spread function without axes or other labels; psfPlot(), which creates a 

formatted plot of the point spread function; and psfCut(), which creates a formatted plot 

of a u-axis cut through the point spread function. StarView objects can be plotted using 

svGetImage() and svPlot(), which behave almost identically to their psfGetImage() and 

psfPlot() counterparts. 

Functions that plot Psfs and StarViews accept the object to plot as well as an 

assortment of formatting parameters. These formatting parameters differ function-to-

function and are generally combined into structures with many different fields. For 

example, psfPlot() accepts an ImagescProps struct and an IoProps struct. The fields 

within the ImagescProps struct can either be set manually or generated using 

getPsfPlotDefaults(). IoProps determines how and where the image is saved to disc, and 

its fields will be set manually by the user. 

The functions psfPlot() and psfCut() can operate on multiple Psf objects 

simultaneously, in which case the Psfs will be combined on the same plot. This is useful 

for comparisons. To provide multiple Psf objects to these functions, place the objects in 

an array. 

All the operations are demonstrated in a script called demo.m, which is designed 

to run successfully out of the box. Use this script as a basis for further development. To 
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configure and perform individual operations, run runAperturePlot.m, runSinglePsf.m, 

runMultiPsf.m or runStarView.m. 

Figure 127 offers a diagram of the architecture described in this section. 

 

 

Figure 127. Architectural layout of diffraction simulation functions. White textboxes 

represent functions and are each labeled with the function’s name. (Various formatting-

related parameters accepted by the functions are omitted for clarity.) 
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K.3 Code 

 Files are listed alphabetically by file name. For code describing functions related 

to aperture creation, consult Appendix L.3 on page 218 instead. 

 

asFromLd.m 

% Calculates the factor that converts lambda/diameter into arcseconds for the 
% given wavelength and aperture diameter. 
% 
% wavelength_nm  The wavelength of light (nanometers) 
% diameter_in    The aperture diameter (inches) 
% 
% as             The angle (arcseconds) corresponding to 1 lambda/diameter 
 
function [as] = asFromLd(wavelength_nm, diameter_in) 
    % Convert both arguments to meters to find angle in radians. (Small 
    % angle approximation is used.) 
    ld_rad = (wavelength_nm / 1e9) / (diameter_in * (1/12) * (1/3.28)); 
     
    % Convert angle from radians to arcseconds. 
    as = ld_rad * 3600 * (360/(2*pi)); 
end 

 

asterismFromDouble.m 

% Converts information describing a double star system into an array of Star 
% objects for use in other functions. The primary star will be placed at 
% (u, v) = (0, 0); the secondary star will be placed according to the separation 
% and position angle arguments. 
% 
% separation_as  The angular separation of the stars (arcseconds) 
% app_vis_mags   Apparent visual magnitudes of the stars [m1,m2]. Larger numbers 
%                correspond to dimmer stars. 
% pa_deg         Position angle of second star relative to first star (degrees). 
%                Angles of 0, 90, 180, 270 degrees will place second star along 
%                -v, +u, +v, and -u. 
% 
% asterism       Star objects representing the system [Star1,Star2] 
 
function [asterism] = asterismFromDouble(separation_as, app_vis_mags, pa_deg) 
 
% Construct the Star objects. 90-degree offsets within trig functions align us 
% with astronomical conventions for star placement, with 0 degrees being north 
% (down), 90 degrees being east (right), and so forth. 
star1 = Star([0 0], app_vis_mags(1)); 
star2 = Star(separation_as * [cosd(pa_deg-90) sind(pa_deg-90)], app_vis_mags(2)); 
 
asterism = [star1 star2]; 
 
end 
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CutProps.m 

% Properties related to plotting horizontal cuts through a point spread 
% function. 
 
classdef CutProps 
    properties 
        % Title of the plot 
        plot_title = 'Horizontal PSF cut' 
         
        % Nominal plot size (pixels) [width,height]. MATLAB may adapt the 
        % numbers in unexpected ways. 
        nominal_plot_size_px = [620 528] 
         
        % Fudge factor for vertically aligning plot title 
        extra_title_margin = 0.14 
         
        % u-axis label, axis limits [low,high], and tick spacing 
        u_title = '{\itu} [{\it\lambda}/{\itD}]' 
        u_limits = [0 12] 
        u_spacing = 2 
         
        % w-axis label, axis limits [low,high], and tick spacing 
        w_title = 'log_1_0 contrast' 
        w_limits = [-8 0] 
        w_spacing = 1 
         
        % Whether to show color bars beside the plot 
        show_color_bars = false 
         
        % Color maps to use for color bars {map1,map2,...,mapN} 
        color_maps = {} 
         
        % w-axis limits over which color bar range is applied 
        c_limits = [-4 -1] 
         
        % Color bar tick spacing 
        c_spacing = 1 
         
        % Legend entries describing plotted lines {label1,label2,...,labelN} 
        labels = {'Aperture'} 
         
        % Line colors {[r1,g1,b1],[r2,g2,b2],...,[rN,gN,bN]} 
        line_colors = [0 0 0] 
         
        % Thickness of cut profile lines (points) 
        cut_line_thickness_pt = 2 
         
        % Font size of all text in figure (points) 
        font_size_pt = 14 
         
        % Whether to draw a horizontal "contrast target" line on the plot 
        show_target = true 
         
        % The place along the w-axis to draw a contrast target line 
        target = -2.6 
         
        % Thickness of target line (points) and its color [r,g,b] 
        target_line_thickness_pt = 1 
        target_line_color = [0.4 0.4 0.4] 
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    end 
end 

 

demo.m 

Note that demo.m invokes makeApertures(), which is defined in Appendix L. 

% Demonstration script that shows how to generate mask figures and diffraction 
% pattern figure for the C11 aperture and bowtie mask. Plots will be created as 
% figures and saved in Portable Network Graphics (PNG) format in a "plots" 
% folder. 
% 
% Prerequisites: folders called "apertures" and "plots" exist in the same 
% directory as this script; "apertures" folder contains at least a file called 
% "bowtie.png". 
% 
% Script tested using MATLAB R2018a with the Image Processing Toolbox. 
 
% Clear existing variables and figures for repeatability reasons. 
clearvars; 
close all; 
 
% Define miscellaneous input and output variables. 
input_prefix = 'apertures/'; 
output_prefix = 'plots/'; 
io_props = IoProps; 
io_props.save_png = true; 
io_props.save_eps = false; 
 
% Generate our aperture shapes, including the C11. 
makeApertures; 
 
% Load images corresponding to the C11 aperture and bowtie mask. 
c11_aperture = imread([input_prefix 'c11.png']); 
bowtie_mask = imread([input_prefix 'bowtie.png']); 
 
% Generate plots of the C11 aperture and bowtie mask. 
aperture_plot_props = getAperturePlotDefaults; 
aperture_plot_props.plot_title = 'C11 aperture'; 
io_props.png_location = [output_prefix 'c11 aperture plot.png']; 
plotAperture(c11_aperture, aperture_plot_props, io_props); 
aperture_plot_props.plot_title = 'Bowtie mask'; 
io_props.png_location = [output_prefix 'bowtie mask plot.png']; 
plotAperture(bowtie_mask, aperture_plot_props, io_props); 
 
% Calculate PSFs for the C11 aperture and bowtie mask and store them in objects. 
% (We will feed these objects into functions that plot them in different ways.) 
aperture_scale = 0.25;  % Lower: faster execution, less accurate 
fft_scale = 8;  % Higher: better resolution, slower processing 
c11_psf = getPsf(c11_aperture, aperture_scale, fft_scale); 
bowtie_psf = getPsf(bowtie_mask, aperture_scale, fft_scale); 
 
% Plot the individual PSFs of the C11 aperture and bowtie mask. 
psf_plot_props = getPsfPlotDefaults; 
psf_plot_props.plot_title = 'Ideal monochromatic, on-axis PSF of C11 aperture'; 
io_props.png_location = [output_prefix 'c11 psf plot.png']; 
psfPlot(c11_psf, psf_plot_props, io_props); 
psf_plot_props.plot_title = 'Ideal monochromatic, on-axis PSF of bowtie mask'; 
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io_props.png_location = [output_prefix 'bowtie psf plot.png']; 
psfPlot(bowtie_psf, psf_plot_props, io_props); 
 
% Plot horizontal cuts of our two PSFs. 
cut_plot_props = CutProps; 
cut_plot_props.labels = {'C11 aperture'}; 
io_props.png_location = [output_prefix 'c11 cut plot.png']; 
psfCut(c11_psf, cut_plot_props, io_props); 
cut_plot_props.labels = {'bowtie mask'}; 
io_props.png_location = [output_prefix 'bowtie cut plot.png']; 
psfCut(bowtie_psf, cut_plot_props, io_props); 
 
% Create a figure showing one PSF overlaid on the other. This is as simple as 
% supplying both Psf objects and appropriate colors to psfPlot. 
psf_plot_props.plot_title = 'PSF comparison'; 
% Show C11 in shades of fuchsia, bowtie in shades of green. 
psf_plot_props.color_maps = {[1 0 1] .* gray(256), [0 1 0] .* gray(256)}; 
psf_plot_props.labels = {'C11 aperture', 'bowtie mask'}; 
io_props.png_location = [output_prefix 'c11 bowtie psf comparison plot.png']; 
psfPlot([c11_psf bowtie_psf], psf_plot_props, io_props); 
 
% Create a figure showing one PSF "cut plot" overlaid on the other. Again, this 
% is as simple as supplying both Psf objects, colors and labels. 
cut_plot_props.plot_title = 'PSF horizontal cut comparison'; 
cut_plot_props.show_color_bars = true; 
cut_plot_props.color_maps = psf_plot_props.color_maps; 
cut_plot_props.labels = psf_plot_props.labels; 
cut_plot_props.line_colors = {[1 0 1], [0 1 0]}; 
io_props.png_location = [output_prefix 'c11 bowtie cut comparison plot.png']; 
psfCut([c11_psf bowtie_psf], cut_plot_props, io_props); 
 
% Create two objects that represent visualizing a binary system through the C11 
% aperture and through the bowtie mask. This takes a few steps, but it's worth 
% it. First, define the telescope diameter and light wavelength (so we know what 
% lambda/D actually is). 
telescope_diameter_in = 11;  % (inches) 
wavelength_nm = 680;  % (nanometers) 
% Then, define properties of our double-star system. Let's use Lambda Cygni. 
% (Properties from https://en.wikipedia.org/wiki/Lambda_Cygni.) 
separation_as = 0.77;  % (arcseconds) 
app_vis_mags = [4.54 6.26];  % apparent visual magnitudes (not log-10) 
pa_deg = 90;  % position angle (degrees) -- pretend it's 90 to align with mask 
stars = asterismFromDouble(separation_as, app_vis_mags, pa_deg); 
% Generate the actual StarView objects, which are used in analogous ways as Psf 
% objects. 
c11_sv = getStarView(stars, c11_psf, telescope_diameter_in, wavelength_nm); 
bowtie_sv = getStarView(stars, bowtie_psf, telescope_diameter_in, wavelength_nm); 
 
% Now we plot the StarView objects, setting up a few display properties first. 
sv_plot_props = getStarViewPlotDefaults; 
sv_plot_props.output_limits = [10 4]; 
sv_plot_props.plot_title = 'Monochromatic view of stars through C11 aperture'; 
io_props.png_location = [output_prefix 'c11 star view plot.png']; 
svPlot(c11_sv, sv_plot_props, io_props); 
sv_plot_props.plot_title = 'Monochromatic view of stars through bowtie mask'; 
io_props.png_location = [output_prefix 'bowtie star view plot.png']; 
svPlot(bowtie_sv, sv_plot_props, io_props); 
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formatImagescPlot.m 

% Formats an existing plot created using imagesc to apply scaling and standard 
% graphical elements in a consistent manner. 
% 
% the_figure     Handle to the figure produced by imagesc 
% imagesc_props  Plot formatting properties to apply 
 
function formatImagescPlot(the_figure, imagesc_props) 
s = imagesc_props; 
 
set(the_figure, 'Position', [0 0 s.nominal_plot_size_px]); 
 
% Axis operations seem redundant, but performance consistent only with them all. 
axis on; 
axis square; 
axis equal; 
 
% Configure axes. 
xlim(s.field_limits(1,:)); 
ylim(s.field_limits(2,:)); 
xticks(s.field_limits(1,1):s.h_axis_tick_spacing:s.field_limits(1,2)); 
yticks(s.field_limits(2,1):s.v_axis_tick_spacing:s.field_limits(2,2)); 
set(gca, 'YDir', 'normal'); 
set(gca, 'TickDir', 'out'); 
xlabel(s.h_axis_title); 
ylabel(s.v_axis_title); 
 
% Construct and place plot title. 
my_title = title(s.plot_title); 
title_pos = get(my_title, 'Position'); 
set(my_title, 'Position', title_pos + [0 s.extra_title_margin 0]); 
 
% Apply font across whole figure. 
set(gca,'FontSize',s.font_size_pt,'fontWeight','bold'); 
set(findall(gcf,'type','text'),'FontSize',s.font_size_pt,'fontWeight','bold'); 
 
end 

 

getAperturePlotDefaults.m 

% Generates a default ImagescProps object configured for aperture plots. The 
% object can be supplied to the plotAperture function. 
% 
% defaults  The default ImagescProps object configured for aperture plots. 
 
function [defaults] = getAperturePlotDefaults 
defaults = ImagescProps; 
defaults.plot_title = ''; 
defaults.nominal_plot_size_px = [620 528]; 
defaults.extra_title_margin = 0.02; 
defaults.field_limits = [-0.5 0.5; -0.5 0.5]; 
defaults.output_limits = [0 1]; 
defaults.h_axis_title = '{\itx}'' ({\itx}/{\itD})'; 
defaults.h_axis_tick_spacing = 0.1; 
defaults.v_axis_title = '{\ity}'' ({\ity}/{\itD})'; 
defaults.v_axis_tick_spacing = 0.1; 
defaults.labels = {}; 
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defaults.show_color_bars = false; 
defaults.color_maps = gray(256); 
defaults.font_size_pt = 14; 
end 

 

getPsf.m 

% Generates the characteristic point spread function corresponding to a given 
% aperture. The function interprets the entirety of the aperture image, 
% including any opaque padding, as the aperture for the purpose of calculating 
% the aperture's size. 
% 
% aperture        The image representing the entirety of the aperture, where 
%                 white pixels indicate transparent regions and black pixels 
%                 indicate opaque areas. Grayscale values convey translucency. 
% aperture_scale  The factor the function will use to scale the aperture image 
%                 before the fast Fourier transform is taken. Smaller factors 
%                 greatly improve speed at the cost of introducing aliasing 
%                 noise into the point spread function. 
% fft_scale       The dimensions the scaled aperture image will be padded to 
%                 as a ratio of the scaled aperture image size. Larger fft_scale 
%                 values improve point spread function resolution but 
%                 significantly increase computation time. 
% 
% psf                 A Psf object representing the point spread function 
%                     created by the aperture 
% scaled_aperture_px  The dimensions of the aperture image after it was scaled 
%                     scaled by aperture_scale (pixels) [height,width] 
% fft_size_px         The dimensions of the fast Fourier transform output 
%                     (pixels) [height,width] 
 
function [psf, scaled_aperture_size_px, fft_size_px] = ... 
    getPsf(aperture, aperture_scale, fft_scale) 
 
psf = Psf; 
 
% Convert to grayscale if necessary. 
if (size(aperture, 3) > 1) 
    aperture = rgb2gray(aperture); 
end 
 
% Scale dims of the mask/aperture. Scaling down allows FFT to use less memory. 
% We rotate the matrix such that we can store the PSF with (u, v) indices. 
scaled_aperture = imresize(aperture, aperture_scale); 
scaled_aperture_size_px = size(scaled_aperture); 
scaled_aperture = rot90(scaled_aperture, 3); 
fft_size_px = fft_scale * [1 1] * max(size(scaled_aperture)); 
 
% Find FFT of this mask/aperture (not power spectrum yet), padding the FFT to 
% dimensions of fft_size_px and placing zero-frequency component in the center 
% of the image. 
psf.data = fftshift(fft2(scaled_aperture, fft_size_px(1), fft_size_px(2))); 
 
% Power spectrum is the square of the complex amplitude. 
psf.data = abs(psf.data) .^ 2; 
 
% With unity FFT scale, 1.0 lambda/D is lowest resolvable frequency; larger FFT 
% scales give better resolution. 
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psf.pixels_per_ld = fft_scale; 
 
% Calculating bounds is slightly tricky because fftshift places zero-frequency 
% to lower-right of center when dimension is even. 
psf.ld_bounds(:,2) = floor((fft_size_px' - 1) / 2); 
psf.ld_bounds(:,1) = psf.ld_bounds(:,2) - fft_size_px' + 1; 
psf.ld_bounds = psf.ld_bounds / fft_scale; 
 
end 

 

getPsfPlotDefaults.m 

% Generates a default ImagescProps object configured for PSF plots. The object 
% can be supplied to the psfPlot function. 
% 
% defaults  The default ImagescProps object configured for PSF plots. 
 
function [defaults] = getPsfPlotDefaults 
defaults = ImagescProps; 
defaults.plot_title = 'Power spectrum'; 
defaults.nominal_plot_size_px = [660 528]; 
defaults.extra_title_margin = 0.5; 
defaults.field_limits = [-12 12; -12 12]; 
defaults.output_limits = [-4 -1]; 
defaults.h_axis_title = '{\itu} [{\it\lambda}/{\itD}]'; 
defaults.h_axis_tick_spacing = 2; 
defaults.v_axis_title = '{\itv} [{\it\lambda}/{\itD}]'; 
defaults.v_axis_tick_spacing = 2; 
defaults.labels = {}; 
defaults.show_color_bars = true; 
defaults.color_maps = {hot(256)}; 
defaults.font_size_pt = 14; 
end 

 

getStarView.m 

% Produces a StarView object that captures the convolution of stars as viewed 
% through an aperture producing the supplied point spread function. 
% 
% stars          An array of Star objects that are to appear in the star view 
% psf            A Psf object describing the characteristic point spread 
%                function of the aperture the stars are being viewed through 
% diameter_in    The aperture diameter of the telescope (inches) 
% wavelength_nm  The wavelength of light to use to draw the convolved power 
%                spectra (nanometers) 
% 
% sv             The StarView object produced 
 
function [sv] = getStarView(stars, psf, diameter_in, wavelength_nm)     
 
sv = StarView; 
 
% Cache (L/D -> arcsecond) factor for easy reference. 
as_from_ld = asFromLd(wavelength_nm, diameter_in); 
 
% Calculate pixel scale in pixels per arcseconds. 
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sv.pixels_per_as = psf.pixels_per_ld / as_from_ld; 
 
% If no stars, no result. 
if numel(stars) == 0 
    return; 
end 
 
% Precompute the bounds of the domain we'll want to fill. Since the PSF for each 
% star will be the same, the result comes down to how the star positions expand 
% the region. 
min_star_u =  inf(); 
max_star_u = -inf(); 
min_star_v =  inf(); 
max_star_v = -inf(); 
for i = 1:numel(stars) 
    star_u = stars(i).pos_as(1); 
    if star_u < min_star_u 
        min_star_u = star_u; 
    end 
    if star_u > max_star_u 
        max_star_u = star_u; 
    end 
     
    star_v = stars(i).pos_as(2); 
    if star_v < min_star_v 
        min_star_v = star_v; 
    end 
    if star_v > max_star_v 
        max_star_v = star_v; 
    end 
end 
 
% Calculate padding and use this to form a canvas that can hold everything. 
upx_min_pad = -round(min_star_u * sv.pixels_per_as); 
upx_max_pad =  round(max_star_u * sv.pixels_per_as); 
vpx_min_pad = -round(min_star_v * sv.pixels_per_as); 
vpx_max_pad =  round(max_star_v * sv.pixels_per_as); 
upx_total = size(psf.data, 1) + upx_min_pad + upx_max_pad; 
vpx_total = size(psf.data, 2) + vpx_min_pad + vpx_max_pad; 
sv.data = zeros(upx_total, vpx_total); 
 
% Assign arcsecond bounds accordingly. 
sv.as_bounds(1,1) = min_star_u + psf.ld_bounds(1,1) * as_from_ld; 
sv.as_bounds(1,2) = max_star_u + psf.ld_bounds(1,2) * as_from_ld; 
sv.as_bounds(2,1) = min_star_v + psf.ld_bounds(2,1) * as_from_ld; 
sv.as_bounds(2,2) = max_star_v + psf.ld_bounds(2,2) * as_from_ld; 
 
% Compose the image in different slices--one slice per convolution member. 
for i = 1:numel(stars) 
    upx_shift =  round(stars(i).pos_as(1) * sv.pixels_per_as); 
    vpx_shift =  round(stars(i).pos_as(2) * sv.pixels_per_as); 
     
    slice = zeros(size(sv.data)); 
     
    % Calculate the shifted domain over which to place the new star image. 
    upx_range = upx_min_pad + upx_shift + (1:size(psf.data,1)); 
    vpx_range = vpx_min_pad + vpx_shift + (1:size(psf.data,2)); 
    slice(upx_range, vpx_range) = psf.data / max(max(psf.data)); 
     
    % Amplify the star by its brightness as we add it to the convolution. 
    sv.data = sv.data + 100^(-stars(i).app_vis_mag / 5) * slice; 
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end 
 
end 

 

getStarViewPlotDefaults.m 

% Generates a default ImagescProps object configured for StarView plots. The 
% object can be supplied to the svPlot function. 
% 
% defaults  The default ImagescProps object configured for StarView plots. 
function [defaults] = getStarViewPlotDefaults 
defaults = ImagescProps; 
defaults.plot_title = 'Simulated monochromatic view'; 
defaults.nominal_plot_size_px = [660 528]; 
defaults.extra_title_margin = 0.2; 
defaults.field_limits = [-5 5; -5 5]; 
defaults.output_limits = [10 2]; 
defaults.h_axis_title = '{\itu} [as]'; 
defaults.h_axis_tick_spacing = 1; 
defaults.v_axis_title = '{\itv} [as]'; 
defaults.v_axis_tick_spacing = 1; 
defaults.labels = {}; 
defaults.show_color_bars = true; 
defaults.color_maps = {bone(256)}; 
defaults.font_size_pt = 14; 
end 

 

ImagescProps.m 

% Properties for formatting plots created from the imagesc function. 
% ImagescProps objects are used as an input to several functions that produce 
% plots, including plotAperture, psfPlot, and svPlot. 
 
classdef ImagescProps 
    properties 
        % Title of the plot 
        plot_title 
         
        % Nominal plot size (pixels) [width,height]. MATLAB may adapt the 
        % numbers in unexpected ways. 
        nominal_plot_size_px 
         
        % Fudge factor for vertically aligning plot title  
        extra_title_margin 
         
        % Bounds of plot domain--i.e. what to crop the plot to [x1,x2;y1,y2] 
        field_limits 
         
        % Range of dependent axis values to display [low,high]. This also 
        % determines how colors are mapped to these values.  
        output_limits 
         
        % Horizontal axis title and tick spacing 
        h_axis_title 
        h_axis_tick_spacing 
         



203 

        % Vertical axis title and tick spacing 
        v_axis_title 
        v_axis_tick_spacing 
         
        % Legend entries describing plotted objects {label1,label2,...,labelN} 
        labels 
 
        % Whether to show color bars beside the plot 
        show_color_bars 
         
        % Color maps to use for plotted objects {map1,map2,...,mapN} 
        color_maps 
 
        % Font size of all text in figure (points) 
        font_size_pt 
    end 
end 

 

IoProps.m 

% Holds properties related to the saving of figures to disc. 
 
classdef IoProps 
    properties 
        % Whether and where to save a portable network graphics (PNG) file 
        save_png = true; 
        png_location = 'output.png'; 
         
        % Whether and where to save an encapsulated postscript (EPS) file 
        save_eps = false; 
        eps_location = 'output.eps'; 
    end 
end 

 

plotAperture.m 

% Plots an aperture image with labeled coordinate axes. 
% 
% aperture       The aperture image to plot 
% imagesc_props  An ImagescProps object governing how the plot will appear 
% io_props       An IoProps object governing whether and how the output is saved 
% 
% figure_out     A handle to the figure created by this function 
 
function [figure_out] = plotAperture(aperture, imagesc_props, io_props) 
s = imagesc_props; 
o = io_props; 
 
% Convert color_maps to cell array to allow proper indexing later. 
if (~iscell(s.color_maps)) 
    s.color_maps = {s.color_maps}; 
end 
 
% Create and scale figure. Aperture image is assumed to represent exactly the 
% entire aperture--no more, no less. Larger dimension establishes diameter. 
figure_out = figure; 
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d_px = max(size(aperture)); 
imagesc([-0.5 0.5] .* size(aperture, 2) / d_px, ... 
        [0.5 -0.5] .* size(aperture, 1) / d_px, aperture); 
formatImagescPlot(figure_out, s); 
 
% Apply color map. We can only plot one thing, so we use first map in the list. 
colormap(s.color_maps{1}); 
 
% Save the image to disc if needed. 
if o.save_eps 
    print('-depsc', '-painters', o.eps_location); 
end 
if o.save_png 
    print('-dpng', o.png_location); 
end 
 
end 

 

Psf.m 

% Represents a point spread function. Contains information about the  
% intensity of the electromagnetic field at discrete angular positions (which 
% correspond to known ratios of light wavelength to aperture diameter). 
 
classdef Psf 
    properties 
        % Matrix with values proportional to the intensity (square of complex  
        % amplitude) of the electromagnetic field at discrete angles. First 
        % index is values of u spanning ld_bounds(1,:); second index is values 
        % of v spanning ld_bounds(2,:). 
        data 
         
        % Number of pixels per ratio of light wavelength to aperture diameter 
        % (pixels/(L/D)) 
        pixels_per_ld 
         
        % The angular domain of the PSF data (L/D) [umin,umax;vmin,vmax] 
        ld_bounds 
    end 
end 

 

psfCut.m 

% Creates a figure displaying the intensity of the electromagnetic field along 
% the u-axis of one or more point spread functions. 
% 
% psfs        Psf objects representing the PSFs to cut 
% cut_props   A CutProps object describing how to format the figure. 
% io_props    An IoProps object determining whether and how the figure is saved 
% 
% figure_out  A handle to the generated figure. 
 
function [figure_out] = psfCut(psfs, cut_props, io_props) 
c = cut_props; 
o = io_props; 
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% Condition some arguments into cell arrays so that they work in loops. 
if (~iscell(c.color_maps)) 
    c.color_maps = {c.color_maps}; 
end 
if (~iscell(c.labels)) 
    c.labels = {c.labels}; 
end 
if (~iscell(c.line_colors)) 
    c.line_colors = {c.line_colors}; 
end 
 
num_psfs = numel(psfs); 
num_maps = numel(c.color_maps); 
 
% Create cell arrays that will store values of u and intensity for each PSF cut. 
u = cell(1, num_psfs); 
w = cell(1, num_psfs); 
 
% For each PSF, log-normalize the intensities and collect data along the u-axis. 
for i=1:num_psfs 
    image = log10(psfs(i).data ./ max(max(psfs(i).data))); 
    upx_min = 1 + round(psfs(i).pixels_per_ld * ... 
        (c.u_limits(1) - psfs(i).ld_bounds(1,1))); 
    upx_max = 1 + round(psfs(i).pixels_per_ld * ... 
        (c.u_limits(2) - psfs(i).ld_bounds(1,1))); 
    v_px =    1 + round(psfs(i).pixels_per_ld * ... 
        (0 - psfs(i).ld_bounds(1,1))); 
     
    % Because we rounded to find u bound indices closest to requested limits, we 
    % calculate what values of u *actually* correspond to those indices. 
    u{i} = psfs(i).ld_bounds(1,1) + ((upx_min:upx_max) - 1) / psfs(i).pixels_per_ld; 
    w{i} = image(upx_min:upx_max,v_px); 
end 
 
% Begin boring plot formatting stuff... 
figure_out = figure; 
set(figure_out, 'Position', [0 0 c.nominal_plot_size_px]); 
hold on; 
 
% Create an array of line handles, adding one extra slot if we need to show the 
% contrast target also. 
h = zeros(1, num_psfs + c.show_target); 
 
% Show the contrast target if requested. 
if (c.show_target) 
    h(end) = plot([c.u_limits(1) c.u_limits(2)], [c.target c.target], ... 
        'Color', c.target_line_color, 'LineStyle', '--', 'LineWidth', ... 
        c.target_line_thickness_pt); 
end 
 
% Actually plot the cut data. 
line_styles = {'-', '--', ':', '-.'}; 
for i=1:num_psfs 
    h(i) = plot(u{i}, w{i}, 'Color', c.line_colors{i}); 
    set(h(i), 'LineWidth', c.cut_line_thickness_pt); 
    set(h(i), 'LineStyle', line_styles{1 + num_psfs - i}); 
end 
 
hold off; 
 
% Create the legend. 
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if (c.show_target) 
    legend(h, c.labels, 'contrast target'); 
else 
    if numel(c.labels) > 0 
        legend(h, c.labels); 
    end 
end 
 
% Configure the axis displays. 
xlabel(c.u_title); 
ylabel(c.w_title); 
xlim(c.u_limits); 
ylim(c.w_limits); 
set(gca,'FontSize', c.font_size_pt, 'fontWeight', 'bold'); 
set(gca, 'XTick', (c.u_limits(1)):c.u_spacing:c.u_limits(2)); 
set(gca, 'YTick', (c.w_limits(1)):c.w_spacing:c.w_limits(2)); 
 
% The logic to show the color bars is convoluted because we cheat our way around 
% the typical MATLAB restriction of one color bar per plot. 
if (c.show_color_bars) 
    cb = colorbar('westoutside'); 
    colormap(cb, c.color_maps{end}); 
    caxis(c.c_limits); 
    % Cache initial color bar's position so we can place subsequent bars.  
    color_bar_pos = cb.Position; 
    set(cb, 'TickLabels', []); 
    set(cb, 'AxisLocation', 'in'); 
    set(cb, 'Limits', c.w_limits); 
    set(cb, 'Ticks', (c.w_limits(1)):c.w_spacing:c.w_limits(2)); 
     
    for i=1:(num_maps-1) 
        cb = colorbar; 
        colormap(cb, c.color_maps{i}); 
        caxis(c.c_limits); 
        % Place color bars one standard color bar's width apart so they're 
        % adjacent. 
        cb.Position = color_bar_pos - [(num_maps-i)*color_bar_pos(3) 0 0 0]; 
        set(cb, 'TickLabels', []); 
        set(cb, 'AxisLocation', 'in'); 
        set(cb, 'Limits', c.w_limits); 
        set(cb, 'Ticks', (c.w_limits(1)):c.w_spacing:c.w_limits(2)); 
    end 
end 
 
% Add labels and change font size. 
my_title = title(c.plot_title); 
title_pos = get(my_title, 'Position'); 
set(gca,'FontSize',c.font_size_pt,'fontWeight','bold'); 
set(findall(gcf,'type','text'),'FontSize',c.font_size_pt,'fontWeight','bold'); 
set(my_title, 'Position', title_pos + [0 c.extra_title_margin 0]); 
 
% Save the plot to disc if requested. 
if o.save_eps 
    print('-depsc', '-painters', o.eps_location); 
end 
if o.save_png 
    print('-dpng', o.png_location); 
end 
 
end 
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psfGetImage.m 

% Generates a graphical representation of a point spread function encoded by a 
% Psf object across a specified angle domain. 
% 
% psf                The Psf object representing the PSF to visualize 
% new_ld_bounds      The angular bounds of the image in wavelengths per aperture 
%                    diameter [umin,umax;vmin,vmax] 
% log_10_mag_limits  Log-10 magnitude limits corresponding to black and white 
%                    with intermediate values in grayscale [min,max] 
% 
% image              The generated PSF image as a matrix of grayscale values 
 
function [image] = psfGetImage(psf, new_ld_bounds, log_10_mag_limits) 
 
% Log-normalize the power spectrum. 
image = log10(psf.data ./ max(max(psf.data))); 
 
% Crop the spectrum as close as possible to ld_bounds. 
upx_min = 1 + floor(psf.pixels_per_ld * (new_ld_bounds(1,1) - psf.ld_bounds(1,1))); 
upx_max = 1 +  ceil(psf.pixels_per_ld * (new_ld_bounds(1,2) - psf.ld_bounds(1,1))); 
vpx_min = 1 + floor(psf.pixels_per_ld * (new_ld_bounds(2,1) - psf.ld_bounds(2,1))); 
vpx_max = 1 +  ceil(psf.pixels_per_ld * (new_ld_bounds(2,2) - psf.ld_bounds(2,1))); 
image = image(upx_min:upx_max,vpx_min:vpx_max); 
 
% Map the log-10 magnitude limits to [0, 1]. No clamping is applied. 
mag_delta = log_10_mag_limits(2) - log_10_mag_limits(1); 
image = (image - log_10_mag_limits(1)) / mag_delta; 
 
% Rotate the image to same conventions as original aperture image. 
image = rot90(image); 
 
end 

 

psfPlot.m 

% Creates a formatted plot of a point spread function encoded by a Psf object. 
 
% psfs           The Psf objects to plot 
% imagesc_props  An ImagescProps object describing how to format the plot 
% io_props       An IoProps object determining whether and where to save output 
% 
% figure_out     Handle to the figure generated by this function 
 
function [figure_out] = psfPlot(psfs, imagesc_props, io_props) 
s = imagesc_props; 
o = io_props; 
 
% Condition color_maps and labels into cell arrays so that they work in loops. 
if (~iscell(s.color_maps)) 
    s.color_maps = {s.color_maps}; 
end 
if (~iscell(s.labels)) 
    s.labels = {s.labels}; 
end 
 
num_psfs = numel(psfs); 
psf_images = cell(num_psfs, 1); 
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num_maps = numel(s.color_maps); 
num_labels = numel(s.labels); 
 
% Find the canvas size required to display all PSFs, calling it 'max_size_px'. 
max_size_px = [0 0]; 
for i=1:num_psfs 
    psf_images{i} = psfGetImage(psfs(i), s.field_limits, s.output_limits); 
    max_size_px = max(max_size_px, size(psf_images{i})); 
end 
 
% Construct an RGB canvas to this size and additively combine every PSF image. 
composite = zeros([max_size_px 3]); 
for i=1:num_psfs 
    map = s.color_maps{i}; 
    num_colors = size(map, 1); 
    % Resize small images to size of largest. 
    psf_images{i} = imresize(psf_images{i}, max_size_px); 
    % Convert psf_images to indices within color map. 
    psf_images{i} = round(1 + (num_colors - 1) * max(0, min(1, psf_images{i}))); 
    for x=1:size(psf_images{i}, 1) 
        for y=1:size(psf_images{i}, 2) 
            % Add colors element-wise (concise 3D matrix ops are challenging). 
            for c=1:3 
                composite(x,y,c) = composite(x,y,c) + map(psf_images{i}(x,y),c); 
            end 
        end 
    end 
end 
 
figure_out = figure; 
ax = axes; 
 
% Display and do initial formatting on plot. 
imagesc(s.field_limits(1,:), fliplr(s.field_limits(2,:)), composite); 
formatImagescPlot(figure_out, s); 
 
% If we have PSFs to label, create a legend. 
if (num_labels > 0) 
    hold on; 
    h = zeros(num_labels, 1); 
     
    % Usually, legends are used on line plots only, so we create an empty "line 
    % plot" in order to display a legend. 
    for i=1:num_labels 
        h(i) = plot(NaN, NaN, 'Marker', 's', 'MarkerSize', 8, ... 
            'MarkerFaceColor', s.color_maps{i}(end, :), 'MarkerEdgeColor', ... 
            'none', 'LineStyle', 'none'); 
    end 
     
    l = legend(h, s.labels); 
    l.Color = 'none'; 
    l.TextColor = [0.99 0.99 0.99];  % Pure white doesn't display. 
    l.EdgeColor = [0.99 0.99 0.99];  % Pure white doesn't display. 
    hold off; 
end 
 
% Establish baseline color bar position so we can position extras (if needed). 
% MATLAB usually limits us to one color bar per plot, but we get around this by 
% positioning the second and subsequent bars manually. 
if (s.show_color_bars) 
    cb = colorbar(ax); 
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    colormap(cb, s.color_maps{1}); 
    caxis(s.output_limits); 
    color_bar_pos = cb.Position; 
 
    for i=2:num_maps 
         % Cancel last color bar's labels if more bars to show.  
         set(cb, 'TickLabels', []); 
 
         % Must create dummy hidden axes to place extra color bar. 
         ax = axes; 
         ax.Visible = 'off'; 
         ax.XTick = []; 
         ax.YTick = []; 
 
         % Create and format new color bar on dummy axes. 
         cb = colorbar(ax); 
         colormap(cb, s.color_maps{i}); 
         caxis(s.output_limits); 
 
         % Match color bar's dimensions to baseline, translating it by its 
         % width. 
         cb.Position = color_bar_pos + [(i-1)*color_bar_pos(3) 0 0 0]; 
    end 
 
    set(cb,'FontSize', s.font_size_pt, 'fontWeight', 'bold'); 
    ylabel(cb, 'log_1_0 contrast'); 
end 
 
% Same the image if requested. 
if o.save_eps 
    print('-depsc', '-painters', o.eps_location); 
end 
if o.save_png 
    print('-dpng', o.png_location); 
end 
 
end 

 

runAperturePlot.m 

% Utility script that produces a formatted aperture plot, isolating the most 
% common parameters for easy customization. 
 
% Focus on below variables ===================================================== 
 
input_name = 'gaussian 50 donut 160';  % Aperture image file name less extension 
aperture_title = 'Gaussian boomerang';  % Plot title 
 
% End important variables ====================================================== 
 
input_prefix = 'apertures/'; 
output_prefix = 'plots/'; 
io_props = IoProps; 
io_props.save_png = true; 
io_props.save_eps = false; 
io_props.png_location = [output_prefix input_name ' aperture plot.png']; 
aperture = imread([input_prefix input_name '.png']); 
aperture_plot_props = getAperturePlotDefaults; 
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aperture_plot_props.plot_title = aperture_title; 
close(plotAperture(aperture, aperture_plot_props, io_props)); 

 

runMultiPsf.m 

% Utility script that produces a formatted overlay plot of the point spread 
% functions of given apertures along with a plot comparing their contrast 
% through a horizontal cut. Isolates the most common parameters for easy 
% customization. 
 
% Focus on below variables ===================================================== 
 
% 1 is base; 2 is addition 
input1_name = 'c11';  % Aperture image file name less extension 
input2_name = 'gaussian 50 donut 160'; 
aperture1_title = 'C11 aperture';  % Shows up in plot titles 
aperture2_title = 'Gaussian boomerang'; 
aperture_scale = 1.0;  % Default: 1.0 (can use 0.25 for draft) 
fft_scale = 8;  % Default: 8 
ld_bound = 12;  % Max magnitude of u and v dimensions in PSF plots; default: 12 
mag_lims_psf = [-4 -1];  % Default: [-4 -1] 
mag_lims_cut = [-8 0];  % Default: [-8 0] 
show_target = true;  % Default: true 
target = -2.8;  % Default: -2.8 
labels = {aperture1_title aperture2_title}; 
 
% End important variables ====================================================== 
 
input_prefix = 'apertures/'; 
output_prefix = 'plots/'; 
io_props = IoProps; 
io_props.save_png = true; 
io_props.save_eps = false; 
io_props.png_location = [output_prefix input2_name ' vs ' input1_name ' psf plot.png']; 
aperture1 = imread([input_prefix input1_name '.png']); 
aperture2 = imread([input_prefix input2_name '.png']); 
psf1 = getPsf(aperture1, aperture_scale, fft_scale); 
psf2 = getPsf(aperture2, aperture_scale, fft_scale); 
psf_plot_props = getPsfPlotDefaults; 
psf_plot_props.plot_title = 'Point spread function comparison'; 
psf_plot_props.field_limits = ld_bound .* [-1 1; -1 1]; 
psf_plot_props.output_limits = mag_lims_psf; 
psf_plot_props.color_maps = {[1 0 1] .* gray(256) [0 1 0] .* gray(256)}; 
psf_plot_props.labels = labels; 
close(psfPlot([psf1 psf2], psf_plot_props, io_props)); 
cut_props = CutProps; 
cut_props.plot_title = 'Horizontal PSF cut comparison'; 
cut_props.u_limits = [0 ld_bound]; 
cut_props.w_limits = mag_lims_cut; 
cut_props.show_color_bars = true; 
cut_props.color_maps = psf_plot_props.color_maps; 
cut_props.c_limits = mag_lims_psf; 
cut_props.show_target = show_target; 
cut_props.target = target; 
cut_props.labels = labels; 
cut_props.font_size_pt = 14; 
cut_props.line_colors = {cut_props.color_maps{1}(end,:) 
cut_props.color_maps{2}(end,:)}; 



211 

io_props.png_location = [output_prefix input2_name ' vs ' input1_name ' psf cut.png']; 
close(psfCut([psf1 psf2], cut_props, io_props)); 

 

runSinglePsf.m 

% Utility script that produces a formatted plot of the point spread function 
% of a given aperture along with a plot of contrast through a horizontal cut. 
% Isolates the most common parameters for easy customization. 
 
% Focus on below variables ===================================================== 
 
input_name = 'gaussian 50 donut 160';  % Aperture image file name less extension 
aperture_title = 'Gaussian boomerang';  % Shows up in plot titles 
aperture_scale = 1.0;  % Default: 1.0 (can use 0.25 for draft) 
fft_scale = 8;  % Default: 8 
ld_bound = 12;  % Max magnitude of u and v dimensions in PSF plots; default: 12 
mag_lims_psf = [-4 -1];  % Default: [-4 -1] 
mag_lims_cut = [-8 0];  % Default: [-8 0] 
show_target = true;  % Default: true 
target = -2.8;  % Default: -2.8 
labels = {aperture_title}; 
 
% End important variables ====================================================== 
 
input_prefix = 'apertures/'; 
output_prefix = 'plots/'; 
io_props = IoProps; 
io_props.save_png = true; 
io_props.save_eps = false; 
io_props.png_location = [output_prefix input_name ' psf plot.png']; 
aperture = imread([input_prefix input_name '.png']); 
[psf, scaled_aperture_size_px, fft_size_px] = ... 
    getPsf(aperture, aperture_scale, fft_scale); 
psf_image = psfGetImage(psf, ld_bound .* [-1 1; -1 1], mag_lims_psf); 
imwrite(psf_image, [output_prefix input_name ' psf.png']); 
psf_plot_props = getPsfPlotDefaults; 
psf_plot_props.plot_title = ['Ideal monochromatic, on-axis PSF of ' aperture_title]; 
psf_plot_props.field_limits = ld_bound .* [-1 1; -1 1]; 
psf_plot_props.output_limits = mag_lims_psf; 
close(psfPlot(psf, psf_plot_props, io_props)); 
cut_props = CutProps; 
cut_props.plot_title = ['Horizontal PSF cut of ' aperture_title]; 
cut_props.u_limits = [0 ld_bound]; 
cut_props.w_limits = mag_lims_cut; 
cut_props.show_color_bars = true; 
cut_props.color_maps = gray(256); 
cut_props.c_limits = mag_lims_psf; 
cut_props.show_target = show_target; 
cut_props.target = target; 
cut_props.labels = labels; 
cut_props.font_size_pt = 14; 
io_props.png_location = [output_prefix input_name ' psf cut.png']; 
close(psfCut(psf, cut_props, io_props)); 
savePsfSpecs(size(aperture), aperture_scale, scaled_aperture_size_px, ... 
    fft_scale, fft_size_px, [output_prefix input_name ' psf specs.txt']); 
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runStarView.m 

% Utility script that produces a formatted plot of stars viewed through an 
% aperture, isolating the most common parameters for easy customization. 
 
% Focus on below variables ===================================================== 
 
input_name = 'gaussian 50 donut 160';  % Aperture image file name less extension 
aperture_title = 'Gaussian boomerang';  % Shows up in plot titles 
aperture_scale = 1.0;  % Default: 1.0 (can use 0.25 for draft) 
fft_scale = 8;  % Default: 8 
as_bound = 5; 
app_vis_mag_lims = [10 2]; 
star_separation_as = 3.1; 
star_app_mags = [0 3.0]; 
star_angle_deg = 120; 
aperture_diam_in = 11; 
wavelength_nm = 548; 
 
% End important variables ====================================================== 
 
input_prefix = 'apertures/'; 
output_prefix = 'plots/'; 
io_props = IoProps; 
io_props.save_png = true; 
io_props.save_eps = false; 
io_props.png_location = [output_prefix input_name ' sv plot.png']; 
stars = asterismFromDouble(star_separation_as, star_app_mags, star_angle_deg); 
psf = getPsf(imread([input_prefix input_name '.png']), aperture_scale, fft_scale); 
sv = getStarView(stars, psf, aperture_diam_in, wavelength_nm); 
sv_image = svGetImage(sv, as_bound * [-1 1; -1 1], app_vis_mag_lims); 
imwrite(sv_image, [output_prefix input_name ' sv.png']); 
sv_plot_props = getStarViewPlotDefaults; 
sv_plot_props.plot_title = ['Ideal monochromatic view through ' aperture_title]; 
sv_plot_props.field_limits = as_bound .* [-1 1; -1 1]; 
sv_plot_props.output_limits = app_vis_mag_lims; 
svPlot(sv, sv_plot_props, io_props); 

 

savePsfSpecs.m 

% Creates a text file with PSF generation details for future reference. 
% 
% aperture_size_px         Dimensions of original aperture image (pixels) 
%                          [height,width] 
% aperture_scale           Factor by which aperture image is scaled before 
%                          padding it in advance of taking the fast Fourier 
%                          transform 
% scaled_aperture_size_px  Size of aperture image after being rescaled (pixels) 
%                          [height,width] 
% fft_scale                Dimensions the scaled aperture image will be padded 
%                          to as a ratio of the scaled aperture image size 
%                          prior to taking the fast Fourier transform 
% fft_size_px              Size of fast Fourier transform input (pixels) 
%                          [height,width] 
% output_location          Path at which the text file will be saved 
 
function savePsfSpecs(aperture_size_px, aperture_scale, ... 
    scaled_aperture_size_px, fft_scale, fft_size_px, output_location) 
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fid = fopen(output_location, 'w'); 
fprintf(fid, ['original aperture size:  ' num2str(aperture_size_px(1)) ... 
    ' px X ' num2str(aperture_size_px(2)) ' px\r\n']); 
fprintf(fid, ['aperture scale:  ' num2str(aperture_scale) '\r\n']); 
fprintf(fid, ['reduced aperture size:  ' num2str(scaled_aperture_size_px(1)) ... 
    ' px X ' num2str(scaled_aperture_size_px(2)) ' px\r\n']); 
fprintf(fid, ['FFT scale:  ' num2str(fft_scale) '\r\n']); 
fprintf(fid, ['FFT size:  ' num2str(fft_size_px(1)) ' px X ' ... 
    num2str(fft_size_px(2)) ' px\r\n']); 
fprintf(fid, ['timestamp:  ' datestr(now)]); 
fclose(fid); 
 
end 

 

Star.m 

% Object representing a single star. Holds position and magnitude. 
 
classdef Star 
    properties 
        % Angular position of the star relative to center of field of view 
        % (arcseconds) [u,v] 
        pos_as 
         
        % Apparent visual magnitude of the star (NOT log-10). Higher numbers are 
        % dimmer stars per astronomical convention. 
        app_vis_mag 
    end 
     
    methods 
        % Constructs a star with given position and apparent visual magnitude. 
        % 
        % pos_as       Angular position of the star relative to center of the 
        %              field of view (arcseconds) [u,v] 
        % app_vis_mag  Apparent visual magnitude of the star (NOT log-10) 
        % 
        % star         The constructed Star object 
        function star = Star(pos_as, app_vis_mag) 
            star.pos_as = pos_as; 
            star.app_vis_mag = app_vis_mag; 
        end 
    end 
end 

 

StarView.m 

% Represents the convolution of stars with point spread functions for a 
% particular wavelength and a specific telescope diameter. Importantly, a 
% StarView object differs from a Psf object in that its dimensions are not 
% normalized to lambda/diameter: instead, they are in arcseconds. 
 
classdef StarView 
    properties 
        % A 2-D matrix of values proportional to the power density at known 
        % angular coordinates. First index is values of u spanning 
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        % as_bounds(1,:); second index is values of v spanning as_bounds(2,:). 
        % Proportionality constant has no concise definition. 
        data 
         
        % Spatial resolution of the data in pixels per arcsecond (pixels/as) 
        pixels_per_as 
         
        % Angular bounds of data (arcseconds) [umin,umax;vmin,vmax] 
        as_bounds 
         
        % Diameter of aperture "viewing" the StarView (inches) 
        diameter_in 
         
        % Wavelength of light captured in this StarView (nanometers) 
        wavelength_nm 
    end 
end 

 

svGetImage.m 

% Generates a graphical representation of stars viewed with diffraction effects 
% as encoded by a StarView object. The image is plotted on a specified angular 
% domain with specified magnitude limits. 
% 
% sv                  The StarView object to visualize 
% new_as_bounds       The angular bounds of the region to visualize (arcseconds) 
%                     [umin,umax;vmin,vmax] 
% app_vis_mag_limits  The apparent visual magnitude limits--not log-10 
%                     limits--that define black and white pixels. Because larger 
%                     apparent visual magnitudes correspond to dimmer objects, 
%                     the bounds are listed in descending magnitude order as 
%                     [max,min]. 
% 
% image               The generated StarView image as a matrix of grayscale 
%                     values 
 
function [image] = svGetImage(sv, new_as_bounds, app_vis_mag_limits) 
 
% Calculate apparent visual magnitude in existing StarView data. 
image = -2.5 * log10(sv.data); 
 
% Crop the field as close as possible to as_bounds. 
upx_min = 1 + floor(sv.pixels_per_as * (new_as_bounds(1,1) - sv.as_bounds(1,1))); 
upx_max = 1 +  ceil(sv.pixels_per_as * (new_as_bounds(1,2) - sv.as_bounds(1,1))); 
vpx_min = 1 + floor(sv.pixels_per_as * (new_as_bounds(2,1) - sv.as_bounds(2,1))); 
vpx_max = 1 +  ceil(sv.pixels_per_as * (new_as_bounds(2,2) - sv.as_bounds(2,1))); 
image = image(upx_min:upx_max, vpx_min:vpx_max); 
 
% Map the apparent visual magnitude limits to [0, 1]. No clamping is applied. 
mag_delta = app_vis_mag_limits(2) - app_vis_mag_limits(1); 
image = (image - app_vis_mag_limits(1)) / mag_delta; 
 
% Rotate the image to same conventions as original aperture image. 
image = rot90(image); 
 
end 
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svPlot.m 

% Creates a formatted plot of a StarView object across a specified angular 
% range. 
 
% sv             The StarView object to plot 
% imagesc_props  An ImagescProps object describing how to format the plot 
% io_props       An IoProps object determining whether and where to save output 
% 
% figure_out     Handle to the figure generated by this function 
 
function [figure_out] = svPlot(sv, imagesc_props, imagesc_io_props) 
s = imagesc_props; 
o = imagesc_io_props; 
 
% Condition color_maps into cell array for consistency with psfPlot. 
if (~iscell(s.color_maps)) 
    s.color_maps = {s.color_maps}; 
end 
 
% Preformat the data within the StarView. We convert log-10 magnitudes to 
% apparent visual magnitudes and rotate the image to get (x,y) from (u,v). 
image = sv.data; 
image = -2.5 * log10(image); 
image = rot90(image); 
 
% Create and reformat the StarView plot by using imagesc followed by 
% formatImagescPlot with the arguments supplied to svPlot. 
figure_out = figure; 
imagesc(sv.as_bounds(1,:), fliplr(sv.as_bounds(2,:)), image); 
formatImagescPlot(figure_out, s); 
 
% Format the color axis appropriately. 
caxis(fliplr(s.output_limits)); 
h = colorbar; 
colormap(flipud(s.color_maps{1})); 
drawnow;  % MATLAB bug: color bar colors don't update without this line. 
% Reverse the color bar axis because large magnitudes (dim objects) should 
% appear lower in the scale. 
set(h, 'YDir', 'reverse'); 
ylabel(h, 'apparent visual magnitude'); 
 
% Save the output if requested. 
if o.save_eps 
    print('-depsc', '-painters', o.eps_location); 
end 
if o.save_png 
    print('-dpng', o.png_location); 
end 
 
end 
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L. APERTURE IMAGE CREATION CODE 

L.1 Prerequisites 

To run the aperture image creation code requires MATLAB. We used version 

R2018a to verify the code in this section. MATLAB’s Image Processing Toolbox, while 

not mandatory, contains functions that allow additional apertures to be created. 

None of the masks proposed in this paper—bowtie, Gaussian donut or multi-

Gaussian—requires the Image Processing Toolbox. The bowtie mask and its beamed 

variant are provided in the code repository; the Gaussian-family masks call upon 

elementary MATLAB functions included in the standard MATLAB installation. Table 32 

lists shapes that use the Image Processing Toolbox and the required functions the toolbox 

provides. 

 

Table 32. Elementary shapes in the aperture image creation code suite and their Image 

Processing Toolbox dependencies. 

Shape Example Image Processing Toolbox 

functions invoked 

Regular polygons other than those 

provided by formRectangle() 

Figure 14 poly2mask() within 

formPolygon.m 

Oriented apodizing screens Figure 12 imrotate() within 

makeApertures.m 

Diagonal spiders Debes et al.’s 

(2003) Figure 3 

imrotate() within 

makeApertures.m 
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 All aperture creation code can be found on GitHub alongside the diffraction 

simulation code at https://github.com/e-foley/FraunhoferSim. 

 

L.2 Architecture and usage 

The structure of the aperture creation code is very simple: it relies on a collection 

of “form” functions, where each function is responsible for creating a different type of 

shape. For example, formCircle() creates a circle; formRectangle() creates a rectangle, 

and formGaussian() creates a shape in the form of a reflected Gaussian curve. All such 

functions accept a canvas size parameter and operate on normalized coordinates such that 

shapes can easily be scaled to different dimensions. 

In some cases, the output from a single “form” function is enough to define a 

mask. Most mask images, however, are compound shapes whose components originate 

from multiple different functions. Each “form” function’s output is simply a matrix that 

can be logically combined with other matrices on an element-wise basis. For example, 

the logical “or” operator || opens holes in an existing shape because it favors values of 

1, which correspond to transparency. The logical “and” operator && adds obstructions 

instead because it favors values of 0, which correspond to opaqueness. The logical 

complement operator ~ finds its use when a shape needs to be interpreted as open in one 

context and closed in another. 

The script formApertures.m generates every mask seen in this paper. Along the 

way, it demonstrates how to begin with a set of elementary shapes and combine them to 

form complex apertures. A section toward the end of this script executes conditionally 

https://github.com/e-foley/FraunhoferSim
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based on whether the Image Processing Toolbox is installed. Thus, formApertures.m 

should always execute to completion. 

 

L.3 Code 

 Files are listed alphabetically by file name. For code describing functions related 

to the simulation of diffraction patterns, consult Appendix K.3 on page 194 instead. 

 

formApodization.m 

% Generates a Gaussian apodization profile with transparency maximized at the 
% center of the image, tapering toward opaque outward at a rate inversely 
% related to a standard deviation value. Note that the Gaussian function will 
% produce values greater than zero for any real input arguments, but the domain 
% must be truncated to the dimensions of the canvas size within this function. 
% (In other words, if this image is to be padded with opaque pixels, there will 
% be discontinuities along the borders of the original canvas.) 
% 
% This function should not be confused with formGaussian, which utilizes the 
% Gaussian function output to form a transparent region representing a normal 
% distribution rather than to modify translucency in a continuous profile. 
% 
% canvas_size_px  Dimensions of the image to create (pixels) [height,width] 
% rel_std_dev     The standard deviation of the Gaussian distribution as a ratio 
%                 of the larger canvas dimension 
% 
% M               The Gaussian apodization profile image, with transparent areas 
%                 1, opaque areas 0, and intermediate values corresponding to 
%                 translucent regions [2D array] 
 
function [M] = formApodization(canvas_size_px, rel_std_dev) 
    M = zeros(canvas_size_px, 'double'); 
    center_px = (canvas_size_px + 1) / 2; 
    max_dim_px = max(canvas_size_px); 
    % Translucency decays as a Gaussian function of distance to image center. 
    for x = 1:canvas_size_px(1) 
        for y = 1:canvas_size_px(2) 
            M(x,y) = exp(-(((x-center_px(1))^2 + (y-center_px(2))^2) / ... 
                (2*(rel_std_dev*max_dim_px)^2))); 
        end 
    end 
end 

 

formCircle.m 

% Creates a circular transparent region in an image with specified canvas size. 
% No anti-aliasing is applied. 
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% 
% canvas_size_px  Dimensions of the image to create (pixels) [height,width] 
% rel_radius      Radius of the circle as a ratio of the larger canvas dimension 
% 
% M               A 2D matrix with 1s in a center circular region and 0s 
%                 elsewhere 
 
function [M] = formCircle(canvas_size_px, rel_radius) 
    M = zeros(canvas_size_px, 'logical'); 
    center_px = (canvas_size_px + 1) / 2; 
    max_dim_px = max(canvas_size_px); 
    for x=1:canvas_size_px(1) 
        for y=1:canvas_size_px(2) 
            % Pixel is transparent (1) if its distance from the image center is 
            % no greater than the circle's radius. 
            M(x,y) = sum(([x,y] - center_px) .^ 2) <= (max_dim_px * rel_radius) ^ 2; 
        end 
    end 
end 

 

formGaussian.m 

% Forms an image showing the region enclosed by a Gaussian profile and its 
% reflection across the horizontal axis as transparent, and other areas opaque. 
% No anti-aliasing is applied. 
% 
% canvas_size_px   Dimensions of the image to create (pixels) [height,width] 
% rel_peak_height  Amplitude of the Gaussian function (a half that's reflected) 
%                  as a ratio of the canvas height 
% rel_std_dev      The standard deviation of the Gaussian distribution as a 
%                  ratio of the peak height 
% 
% M                The resulting image, with transparent regions 1 and opaque 
%                  regions 0 (2D array) 
 
function [M] = formGaussian(canvas_size_px, rel_peak_height, rel_std_dev) 
M = ones(canvas_size_px, 'logical'); 
peak_height_px = rel_peak_height * canvas_size_px(1); 
std_dev_px = rel_std_dev * peak_height_px; 
mean_px = (canvas_size_px(2) + 1) / 2; 
vert_center_px = (canvas_size_px(1) + 1) / 2; 
 
% Calculate Gaussian in pixel scale. 
h = 1:canvas_size_px(2); 
vert_scaling = peak_height_px * std_dev_px * sqrt(2*pi); 
norm_px = vert_center_px + vert_scaling * ... 
    1/(std_dev_px*sqrt(2*pi)) * exp(-(h-mean_px).^2/(2*std_dev_px^2)); 
 
% Only calculate values for top half, then reflect result. 
x_limit_px = round(canvas_size_px(1) / 2); 
for x=1:x_limit_px 
    for y=h 
        if x < (canvas_size_px(1) + 1 - norm_px(y)) 
            M(x,y) = 0; 
        end 
    end 
end 
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% Duplicate result about horizontal axis. 
M = M .* flipud(M); 
 
end 

 

formMultigaussian.m 

% Creates an image representing multiple openings in the shape of a region 
% enclosed by the profile of a normal distribution and its reflection about its 
% horizontal axis. Image size, subaperture placement, and opening dimensions can 
% be selected. No antialiasing is applied. 
% 
% canvas_size_px   Dimensions of the image to create (pixels) [height,width] 
% rel_centers      Locations of subapertures as ratios of the larger canvas 
%                  dimension [vert1,horiz1;vert2,horiz2;...;vertN,horizN] 
% rel_peak_height  Amplitude of the Gaussian function (a half that's reflected) 
%                  as a ratio of the canvas height 
% rel_std_dev      The standard deviation of the Gaussian distribution as a 
%                  ratio of the peak height 
% 
% M                The resulting image, with transparent regions 1 and opaque 
%                  regions 0 (2D array) 
 
function [M] = formMultigaussian(canvas_size_px, rel_centers, ... 
    rel_peak_height, rel_std_dev) 
M = zeros(canvas_size_px, 'logical'); 
 
% Create slices representing single Gaussians and combine them onto the canvas 
% by shifting each one by a number of pixels appropriate for the rel_centers 
% argument. 
for i = 1:size(rel_centers, 1) 
    single = formGaussian(canvas_size_px, rel_peak_height, rel_std_dev); 
    shift_px = -round(rel_centers(i,:) .* canvas_size_px); 
    for j=1:canvas_size_px 
        for k=1:canvas_size_px 
            if (j + shift_px(1) >= 1 && j + shift_px(1) <= canvas_size_px(1) && ... 
                    k + shift_px(2) >= 1 && k + shift_px(2) <= canvas_size_px(2)) 
                % Combine images using an "or" function to keep the output range 
                % within [0, 1]. 
                M(j,k) = M(j,k) || single(j + shift_px(1), k + shift_px(2)); 
            end 
        end 
    end 
end 
 
end 

 

formPolygon.m 

% Creates a mask with a regular-polygonal-shaped transparent region at its 
% center. The size, number of sides, and orientation of the polygon can be 
% configured along with the size of the image. No antialiasing is applied. 
% 
% canvas_size_px  Dimensions of the image to create (pixels) [height,width] 
% max_rel_radius  The radius of the circle circumscribing the polygon as a ratio 
%                 of the greater dimension of the canvas 
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% num_sides       The number of sides the polygon has 
% rot_deg         The angle at which the first vertex is placed relative to the 
%                 origin (degrees) 
% 
% M               The resulting image, with transparent regions 1 and opaque 
%                 regions 0 (2D array) 
 
function [M] = formPolygon(canvas_size_px, max_rel_radius, num_sides, rot_deg) 
max_dim_px = max(canvas_size_px); 
 
% Mark vertices along the circumference of the bounding circle. We first 
% calculate the angles at which these vertices will appear, then do basic trig 
% to find the (x,y) coordinates. 
theta = deg2rad(rot_deg) + linspace(0, 2*pi, num_sides + 1); 
 
% Minus sign below converts raster coordinates to Cartesian coordinates. 
v = (1 + canvas_size_px(1)) / 2 - max_dim_px * max_rel_radius * sin(theta); 
h = (1 + canvas_size_px(2)) / 2 + max_dim_px * max_rel_radius * cos(theta); 
 
% MATLAB's poly2mask function does all the heavy lifting. The function's x and y 
% parameters act in Cartesian space unlike most MATLAB functions. 
M = poly2mask(h, v, canvas_size_px(1), canvas_size_px(2)); 
 
end 

 

formRectangle.m 

% Creates an image representing a mask with a rectangular area removed. The 
% rectangle's edges are aligned to rows and columns of the matrix. No 
% antialiasing is applied. 
% 
% canvas_size_px  Dimensions of the image to create (pixels) [height,width] 
% rel_center      The coordinates of the center of the rectangle as a ratio of 
%                 the larger canvas dimension [vert,horiz] 
% rel_dims        The height and width of the rectangle as ratios of the larger  
%                 canvas dimension [height,width] 
%  
% M               The resulting image, with transparent regions 1 and opaque 
%                 regions 0 (2D array) 
 
function [M] = formRectangle(canvas_size_px, rel_center, rel_dims) 
    M = zeros(canvas_size_px, 'logical'); 
    max_dim_px = max(canvas_size_px); 
     
    % Calculate center and bounds. 
    center = ((canvas_size_px + 1) / 2) + max_dim_px .* rel_center; 
    top =    max(center(1) - max_dim_px * rel_dims(1) / 2, 1); 
    bottom = min(center(1) + max_dim_px * rel_dims(1) / 2, canvas_size_px(1)); 
    left =   max(center(2) - max_dim_px * rel_dims(2) / 2, 1); 
    right =  min(center(2) + max_dim_px * rel_dims(2) / 2, canvas_size_px(2)); 
     
    % Populate regions contained by bounds. 
    M(floor(top):ceil(bottom),floor(left):ceil(right)) = 1; 
end 
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formScreen.m 

% Creates an image representing a mask with alternating opaque and transparent 
% ridges aligned with the vertical axis. The function operates on parameters 
% provided in pixels rather than as ratios of the canvas size like other 
% functions, so it is best for specialized, precise use cases. 
% 
% canvas_size_px  Dimensions of the image to create (pixels) [height,width] 
% line_width_px   Width of each opaque line (pixels) 
% spacing_px      Spacing between opaque lines, including their width (pixels) 
% 
% M               The resulting image, with transparent regions 1 and opaque 
%                 regions 0 (2D array) 
 
function [M] = formScreen(canvas_size_px, line_width_px, spacing_px) 
    M = ones(canvas_size_px, 'logical'); 
    for i = 1:line_width_px 
        M(:,i:spacing_px:canvas_size_px) = 0; 
    end 
end 

 

formSineGrating.m 

% Creates an image representing a gradated mask whose translucency varies 
% sinusoidally along a specified axis at a specified spatial frequency and 
% phase. 
% 
% canvas_size_px     Dimensions of the image to create (pixels) [height,width] 
% frequency_1_px     The spatial frequency of the sinusoidal function (1/pixel) 
% phase_deg          The phase of the sinusoid (degrees). The image's top-left 
%                    pixel's translucency is effectively calculated using this 
%                    value as its angle. 
% grating_angle_deg  The orientation of the sine grating (degrees). When 0, the 
%                    spatial wave "propagates" along the horizontal axis to form 
%                    vertical bars. A positive value rotates the grating 
%                    counterclockwise. 
% 
% M                  A 2D matrix representing the sine grating image, with 
%                    transparent areas 1, opaque areas 0, and translucent 
%                    regions somewhere between 0 and 1. 
 
function [M] = formSineGrating(canvas_size_px, frequency_1_px, phase_deg, ... 
    grating_angle_deg) 
M = zeros(canvas_size_px, 'double'); 
 
% Find normal unit vector for purpose of calculating distances. 
n = [-sind(grating_angle_deg) cosd(grating_angle_deg)]; 
 
% For every element in matrix, find the distance along the direction of the unit 
% vector by projecting the indices onto it. Use that distance to calculate our 
% progression through the sine wave. 
for i=1:size(M, 1) 
    for j=1:size(M, 2) 
        dist_px = dot([i j] - 1, n); 
        M(i,j) = 0.5 + 0.5 * sind(360 * frequency_1_px * dist_px + phase_deg); 
    end 
end 
end 
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makeApertures.m 

% Creates all images representing apertures and masked apertures and saves them 
% in the "apertures" folder. 
 
function makeApertures 
output_prefix = 'apertures/'; 
canvas_dim_px = 2048; 
canvas_size_px = canvas_dim_px * [1 1]; 
make_tifs = true; 
 
% CIRCULAR APERTURE 
circle = formCircle(canvas_size_px, 0.5); 
imwrite(circle, [output_prefix 'circle.png']); 
 
% C11 OBSTRUCTION 
% Assuming entire image represents 11", cut 3.881" circle out. 
c11_obstruction = ~formCircle(canvas_size_px, 3.881/11*0.5); 
imwrite(c11_obstruction, [output_prefix 'c11 obstruction.png']); 
 
% C11 APERTURE 
c11 = circle & c11_obstruction; 
imwrite(c11, [output_prefix 'c11.png']); 
 
% GAUSSIAN VARIANTS (NO OBSTRUCTION) 
for i=10:5:65 
    gaussian = circle & formGaussian(canvas_size_px, 0.5, i / 100); 
    imwrite(gaussian, [output_prefix 'gaussian ' num2str(i) '.png']); 
end 
clear i gaussian; 
 
% GAUSSIAN OBSTRUCTIONS 
% Gaussian secondaries are numerically sized to overlap C11 secondary. 
gaussian_30_obstruction = ~formGaussian(canvas_size_px, 0.32, 0.30); 
imwrite(gaussian_30_obstruction, [output_prefix 'gaussian 30 obstruction.png']); 
gaussian_35_obstruction = ~formGaussian(canvas_size_px, 0.29, 0.35); 
imwrite(gaussian_35_obstruction, [output_prefix 'gaussian 35 obstruction.png']); 
gaussian_36_obstruction = ~formGaussian(canvas_size_px, 0.29, 0.36); 
imwrite(gaussian_36_obstruction, [output_prefix 'gaussian 36 obstruction.png']); 
gaussian_40_obstruction = ~formGaussian(canvas_size_px, 0.27, 0.40); 
imwrite(gaussian_40_obstruction, [output_prefix 'gaussian 40 obstruction.png']); 
gaussian_45_obstruction = ~formGaussian(canvas_size_px, 0.25, 0.45); 
imwrite(gaussian_45_obstruction, [output_prefix 'gaussian 45 obstruction.png']); 
gaussian_50_obstruction = ~formGaussian(canvas_size_px, 0.23, 0.50); 
imwrite(gaussian_50_obstruction, [output_prefix 'gaussian 50 obstruction.png']); 
gaussian_55_obstruction = ~formGaussian(canvas_size_px, 0.22, 0.55); 
imwrite(gaussian_55_obstruction, [output_prefix 'gaussian 55 obstruction.png']); 
gaussian_60_obstruction = ~formGaussian(canvas_size_px, 0.21, 0.60); 
imwrite(gaussian_60_obstruction, [output_prefix 'gaussian 60 obstruction.png']); 
gaussian_70_obstruction = ~formGaussian(canvas_size_px, 0.20, 0.70); 
imwrite(gaussian_70_obstruction, [output_prefix 'gaussian 70 obstruction.png']); 
gaussian_80_obstruction = ~formGaussian(canvas_size_px, 0.19, 0.80); 
imwrite(gaussian_80_obstruction, [output_prefix 'gaussian 80 obstruction.png']); 
gaussian_100_obstruction = ~formGaussian(canvas_size_px, 0.18, 1.00); 
imwrite(gaussian_100_obstruction, [output_prefix 'gaussian 100 obstruction.png']); 
gaussian_120_obstruction = ~formGaussian(canvas_size_px, 0.18, 1.20); 
imwrite(gaussian_120_obstruction, [output_prefix 'gaussian 120 obstruction.png']); 
gaussian_160_obstruction = ~formGaussian(canvas_size_px, 0.18, 1.60); 
imwrite(gaussian_160_obstruction, [output_prefix 'gaussian 160 obstruction.png']); 
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% GAUSSIAN DONUT, STDDEV FACTOR 0.30 (NO SUPPORT) 
gaussian_30_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.30) & gaussian_30_obstruction; 
imwrite(gaussian_30_donut, [output_prefix 'gaussian 30 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.35 (NO SUPPORT) 
gaussian_35_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.35) & gaussian_35_obstruction; 
imwrite(gaussian_35_donut, [output_prefix 'gaussian 35 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.36 (NO SUPPORT) 
gaussian_36_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.36) & gaussian_36_obstruction; 
imwrite(gaussian_36_donut, [output_prefix 'gaussian 36 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.40 (NO SUPPORT) 
gaussian_40_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.40) & gaussian_40_obstruction; 
imwrite(gaussian_40_donut, [output_prefix 'gaussian 40 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.45 (NO SUPPORT) 
gaussian_45_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.45) & gaussian_45_obstruction; 
imwrite(gaussian_45_donut, [output_prefix 'gaussian 45 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.50 (NO SUPPORT) 
gaussian_50_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_50_obstruction; 
imwrite(gaussian_50_donut, [output_prefix 'gaussian 50 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTOR 0.55 (NO SUPPORT) 
gaussian_55_donut = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.55) & gaussian_55_obstruction; 
imwrite(gaussian_55_donut, [output_prefix 'gaussian 55 donut.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.45, 1.20 
gaussian_45_donut_120 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.45) & gaussian_120_obstruction; 
imwrite(gaussian_45_donut_120, [output_prefix 'gaussian 45 donut 120.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.50, 0.30 
gaussian_50_donut_30 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_30_obstruction; 
imwrite(gaussian_50_donut_30, [output_prefix 'gaussian 50 donut 30.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.50, 0.50 
gaussian_50_donut_50 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_50_obstruction; 
imwrite(gaussian_50_donut_50, [output_prefix 'gaussian 50 donut 50.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.50, 0.80 
gaussian_50_donut_80 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_80_obstruction; 
imwrite(gaussian_50_donut_80, [output_prefix 'gaussian 50 donut 80.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.50, 1.20 
gaussian_50_donut_120 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_120_obstruction; 
imwrite(gaussian_50_donut_120, [output_prefix 'gaussian 50 donut 120.png']); 
 
% GAUSSIAN_DONUT, STDDEV FACTORS 0.50, 1.60 
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gaussian_50_donut_160 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.50) & gaussian_160_obstruction; 
imwrite(gaussian_50_donut_160, [output_prefix 'gaussian 50 donut 160.png']); 
 
% GAUSSIAN DONUT, STDDEV FACTORS 0.55, 1.20 
gaussian_55_donut_120 = ... 
    circle & formGaussian(canvas_size_px, 0.5, 0.55) & gaussian_120_obstruction; 
imwrite(gaussian_55_donut_120, [output_prefix 'gaussian 55 donut 120.png']); 
 
% BEAM 
beam_rel_width = (3/16) / 11; 
beam = ~formRectangle(canvas_size_px, [0 0], [beam_rel_width 1]); 
imwrite(beam, [output_prefix 'bar.png']); 
clear beam_rel_width 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.30 
gaussian_30_donut_with_beam = gaussian_30_donut & beam; 
imwrite(gaussian_30_donut_with_beam, ... 
    [output_prefix 'gaussian 30 donut with beam.png']); 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.35 
gaussian_35_donut_with_beam = gaussian_35_donut & beam; 
imwrite(gaussian_35_donut_with_beam, ... 
    [output_prefix 'gaussian 35 donut with beam.png']); 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.36 
gaussian_36_donut_with_beam = gaussian_36_donut & beam; 
imwrite(gaussian_36_donut_with_beam, ... 
    [output_prefix 'gaussian 36 donut with beam.png']); 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.40 
gaussian_40_donut_with_beam = gaussian_40_donut & beam; 
imwrite(gaussian_40_donut_with_beam, ... 
    [output_prefix 'gaussian 40 donut with beam.png']); 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.45 
gaussian_45_donut_with_beam = gaussian_45_donut & beam; 
imwrite(gaussian_45_donut_with_beam, ... 
    [output_prefix 'gaussian 45 donut with beam.png']); 
 
% GAUSSIAN_DONUT WITH BEAM, STDDEV FACTOR 0.50 
gaussian_50_donut_with_beam = gaussian_50_donut & beam; 
imwrite(gaussian_50_donut_with_beam, ... 
    [output_prefix 'gaussian 50 donut with beam.png']); 
 
% APODIZATION, STDDEV FACTOR 0.18 
apodization_18 = formApodization(canvas_size_px, 0.18); 
imwrite(apodization_18, [output_prefix 'apodization 18.png']); 
 
% CIRCLE WITH APODIZATION, STDDEV FACTOR 0.18 
circle_with_apodization_18 = circle .* apodization_18; 
imwrite(circle_with_apodization_18, [output_prefix 'circle with apodization 18.png']); 
 
% SCREEN, VERTICAL, 8 PIXELS SPACED BY 32 PIXELS 
screen_vertical = formScreen(canvas_dim_px, 8, 32); 
imwrite(screen_vertical, [output_prefix 'screen vertical 8 32.png']); 
 
% SCREEN, SQUARE, 8 PIXELS SPACED BY 32 PIXELS 
screen_square = screen_vertical & screen_vertical'; 
imwrite(screen_square, [output_prefix 'screen square 8 32.png']); 
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% 1/16" SPIDER (FOUR-LEGGED) 
rel_spider_width = (1/16) / 11; 
spider_1_16 = ~formRectangle(canvas_size_px, [0 0], [rel_spider_width 1]) & ... 
         ~formRectangle(canvas_size_px, [0 0], [1 rel_spider_width]); 
imwrite(spider_1_16, [output_prefix 'spider 1 16.png']); 
 
% 1/8" SPIDER (FOUR-LEGGED) 
rel_spider_width = (1/8) / 11; 
spider_1_8 = ~formRectangle(canvas_size_px, [0 0], [rel_spider_width 1]) & ... 
         ~formRectangle(canvas_size_px, [0 0], [1 rel_spider_width]); 
imwrite(spider_1_8, [output_prefix 'spider 1 8.png']); 
 
clear rel_spider_width 
 
% C11 WITH SPIDER (FOUR-LEGGED) 
c11_with_spider = c11 & spider_1_16; 
imwrite(c11_with_spider, [output_prefix 'c11 with spider.png']); 
 
% C11 WITH GAUSSIAN, STDDEV FACTOR 0.30 
c11_with_gaussian_30 = c11 & formGaussian(canvas_size_px, 0.5, 0.30); 
imwrite(c11_with_gaussian_30, [output_prefix 'c11 with gaussian 30.png']); 
 
% GAUSSIAN MULTI, STDDEV FACTOR 0.30 
rel_horiz = 0.225; 
rel_vert = 0.225; 
rel_height = 0.2175; 
rel_matrix = [-rel_vert -rel_horiz; 
               rel_vert -rel_horiz; 
              -rel_vert  rel_horiz; 
               rel_vert  rel_horiz]; 
gaussian_30_multi = formMultigaussian(canvas_size_px, rel_matrix, rel_height, 0.30); 
gaussian_30_multi = gaussian_30_multi & c11; 
imwrite(gaussian_30_multi, [output_prefix 'gaussian 30 multi.png']); 
clear rel_horiz rel_vert rel_height rel_matrix 
 
% GAUSSIAN_MULTI, STDDEV FACTOR 0.35 
rel_horiz = 0.225; 
rel_vert = 0.225; 
rel_height = 0.2125; 
rel_matrix = [-rel_vert -rel_horiz; 
               rel_vert -rel_horiz; 
              -rel_vert  rel_horiz; 
               rel_vert  rel_horiz]; 
gaussian_35_multi = formMultigaussian(canvas_size_px, rel_matrix, rel_height, 0.35); 
gaussian_35_multi = gaussian_35_multi & c11; 
imwrite(gaussian_35_multi, [output_prefix 'gaussian 35 multi.png']); 
clear rel_horiz rel_vert rel_height rel_matrix 
 
% GAUSSIAN_MULTI, STDDEV FACTOR 0.50 
rel_horiz = 0.225; 
rel_vert = 0.225; 
rel_height = 0.18; 
rel_matrix = [-rel_vert -rel_horiz; 
               rel_vert -rel_horiz; 
              -rel_vert  rel_horiz; 
               rel_vert  rel_horiz]; 
gaussian_50_multi = formMultigaussian(canvas_size_px, rel_matrix, rel_height, 0.50); 
gaussian_50_multi = gaussian_50_multi & c11; 
imwrite(gaussian_50_multi, [output_prefix 'gaussian 50 multi.png']); 
clear rel_horiz rel_vert rel_height rel_matrix 
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% GAUSSIAN_MULTI, STDDEV FACTOR 0.65 
rel_horiz = 0.225; 
rel_vert = 0.225; 
rel_height = 0.155; 
rel_matrix = [-rel_vert -rel_horiz; 
               rel_vert -rel_horiz; 
              -rel_vert  rel_horiz; 
               rel_vert  rel_horiz]; 
gaussian_65_multi = formMultigaussian(canvas_size_px, rel_matrix, rel_height, 0.65); 
gaussian_65_multi = gaussian_65_multi & c11; 
imwrite(gaussian_65_multi, [output_prefix 'gaussian 65 multi.png']); 
clear rel_horiz rel_vert rel_height rel_matrix 
 
% SINE GRATINGS 
for wavenumber_px=[8 16 32 64 128] 
    sine_grating = formSineGrating(canvas_size_px, 1/wavenumber_px, 0, 90); 
    imwrite(sine_grating, ... 
        [output_prefix 'sine grating ' num2str(wavenumber_px) '.png']); 
end 
clear wavenumber_px sine_grating; 
 
% BEGIN IMAGE PROCESSING TOOLBOX QUARANTINE ==================================== 
 
% Check if Image Processing Toolbox is installed. 
v = ver; 
if any(strcmp('Image Processing Toolbox', {v.Name})) 
    % TRIANGLE 
    triangle = formPolygon(canvas_size_px, 0.5, 3, 90); 
    imwrite(triangle, [output_prefix 'triangle.png']); 
 
    % SQUARE 
    square = formPolygon(canvas_size_px, 0.5, 4, 0); 
    imwrite(square, [output_prefix 'square.png']); 
 
    % HEXAGON 
    hexagon = formPolygon(canvas_size_px, 0.5, 6, 0); 
    imwrite(hexagon, [output_prefix 'hexagon.png']); 
 
    % SQUARE OBSTRUCTION (FOR SUPERPOSITION DEMO IN PAPER) 
    % Size obstruction to cover C11 secondary mirror. 
    square_obstruction = 1 - formPolygon(canvas_size_px, 3.881/11 * sqrt(2)/2, 4, 0); 
    imwrite(square_obstruction, [output_prefix 'square obstruction.png']); 
     
    % CIRCULAR APERTURE WITH SQUARE OBSTRUCTION 
    circle_with_square_obstruction = circle & square_obstruction; 
    imwrite(circle_with_square_obstruction, ... 
        [output_prefix 'circle with square obstruction.png']); 
     
    % APODIZING SCREEN, 8 PIXELS SPACED BY 32 PIXELS 
    % Dimensions of circular screen cutouts from Lovro 
    % (http://www.graphitegalaxy.com/index.cgi?a=diyapodmask). 
    apodizing_screen = circle & ... 
        (screen_square | formCircle(canvas_size_px, 0.55/2)); 
    apodizing_screen = apodizing_screen & ... 
        (imrotate(screen_square, 30, 'crop') | formCircle(canvas_size_px, 0.78/2)); 
    apodizing_screen = apodizing_screen & ... 
        (imrotate(screen_square, 60, 'crop') | formCircle(canvas_size_px, 0.90/2)); 
    imwrite(apodizing_screen, [output_prefix 'apodizing screen 8 32.png']); 
 
    % GAUSSIAN DONUT WITH ORIENTED SPIDER, STDDEV FACTOR 0.30 
    gaussian_30_with_oriented_spider = ... 
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        gaussian_30_donut & imrotate(spider_1_8, 45, 'crop'); 
    imwrite(gaussian_30_with_oriented_spider, ... 
        [output_prefix 'gaussian 30 donut with oriented spider.png']); 
     
    % GAUSSIAN DONUT WITH ORIENTED SPIDER, STDDEV FACTOR 0.35 
    gaussian_35_with_oriented_spider = ... 
        gaussian_35_donut & imrotate(spider_1_8, 45, 'crop'); 
    imwrite(gaussian_35_with_oriented_spider, ... 
        [output_prefix 'gaussian 35 donut with oriented spider.png']); 
     
    % GAUSSIAN DONUT WITH ORIENTED SPIDER, STDDEV FACTOR 0.40 
    gaussian_40_with_oriented_spider = ... 
        gaussian_40_donut & imrotate(spider_1_8, 45, 'crop'); 
    imwrite(gaussian_40_with_oriented_spider, ... 
        [output_prefix 'gaussian 40 donut with oriented spider.png']); 
     
    % GAUSSIAN DONUT WITH ORIENTED SPIDER, STDDEV FACTOR 0.45 
    gaussian_45_with_oriented_spider = ... 
        gaussian_45_donut & imrotate(spider_1_8, 45, 'crop'); 
    imwrite(gaussian_45_with_oriented_spider, ... 
        [output_prefix 'gaussian 45 donut with oriented spider.png']); 
     
    % GAUSSIAN DONUT WITH ORIENTED SPIDER, STDDEV FACTOR 0.50 
    gaussian_50_with_oriented_spider = ... 
        gaussian_50_donut & imrotate(spider_1_8, 45, 'crop'); 
    imwrite(gaussian_50_with_oriented_spider, ... 
        [output_prefix 'gaussian 50 donut with oriented spider.png']); 
end 
 
% END IMAGE PROCESSING TOOLBOX QUARANTINE ====================================== 
 
% Optionally copy every .png to .tif. 
if make_tifs 
    pattern = fullfile(output_prefix, '*.png'); 
    files = dir(pattern); 
    for i=1:length(files) 
        new_name = strrep(files(i).name, '.png', '.tif'); 
        imwrite(imread([output_prefix files(i).name]), [output_prefix new_name]); 
    end 
    clear pattern files i new_name 
end 
end 
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M. MASK ROTATOR CODE 

M.1 Prerequisites 

We use the Arduino IDE to compile and upload mask rotator code to an Arduino 

Uno. This software can be found at https://www.arduino.cc/en/Main/Software. We used 

version 1.8.5, but newer versions should also work. After downloading or cloning the 

mask rotator source from https://github.com/e-foley/MaskRotator, configure the Arduino 

IDE to use the MaskRotator directory as the sketchbook location. In version 1.8.5 of the 

IDE, this can be accomplished via File > Preferences. 

To compile and upload code, connect the power supply and USB cable to the 

Arduino Uno, open mask_rotator.ino using the IDE, and press Ctrl+U. The device can 

now be communicated with by either using the serial monitor (Ctrl+Shift+M) or another 

serial terminal. 

 

M.2 Note on TimerOne library 

The mask rotator software leverages an open-source library called TimerOne, 

originally written by Jesse Tane, to perform timer-based interrupts in support of the 

stepper motor driver. This library is licensed under a Creative Commons Attribution 3.0 

United States license, the full details of which can be found at 

http://creativecommons.org/licenses/by/3.0/us/. No changes have been made to the 

library in support of this thesis project. 

In order to avoid any misunderstandings about authorship, we do not include the 

source of the TimerOne library in this paper. 

 

https://www.arduino.cc/en/Main/Software
https://github.com/e-foley/MaskRotator
http://creativecommons.org/licenses/by/3.0/us/
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M.3 Code 

 Files are listed alphabetically. When a unit has both a header and source, the 

header is listed first. 

 

bipolar_stepper.h 

#ifndef BIPOLAR_STEPPER_H_ 
#define BIPOLAR_STEPPER_H_ 
 
// Represents a bipolar stepper motor. 
class BipolarStepper { 
 public: 
  // Constructs a BipolarStepper by denoting Arduino pins to be used for motor 
  // functions. The object will be created in an uninitialized, disabled state. 
  // 
  // brka: The Arduino pin corresponding to the motor's BRKA line. 
  // dira: The Arduino pin corresponding to the motor's DIRA line. 
  // (etc.) 
  BipolarStepper(int brka, int dira, int pwma, int brkb, int dirb, int pwmb); 
 
  // Destroys a BipolarStepper object, attempting to set the motor into a 
  // deenergized state first. 
  ~BipolarStepper(); 
 
  // Initializes a BipolarStepper object. This must be called in order for 
  // actuation commands to function properly. 
  void initialize(); 
 
  // Checks whether the BipolarStepper object has been initialized. 
  // 
  // Returns: True if the BipolarStepper object has been initialized. 
  bool isInitialized() const; 
 
  // Enables the motor. This must be called in order for actuation commands to 
  // succeed. 
  void enable(); 
 
  // Disables the motor. After disable() is called, actuation commands will be 
  // ignored until 
  void disable(); 
 
  // Checks whether the motor is enabled. 
  // 
  // Returns: True if the BipolarStepper object is enabled. 
  bool isEnabled() const; 
 
  // Steps the motor forward once. Will fail if the motor is not both 
  // initialized and enabled. 
  void stepForward(); 
 
  // Steps the motor backward once. Will fail if the motor is not both 
  // initialized and enabled. 
  void stepBackward(); 
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 private: 
  // The number of unique states that are cycled through via the stepForward() 
  // and stepBackward() functions. 
  static const int NUM_STATES = 4; 
 
  // Internal function that executes a particular motor state by energizing pins 
  // in a pattern appropriate for the current state. 
  void doState(int state); 
 
  // Arduino pin assignments for motor functions. 
  const int brka_; 
  const int dira_; 
  const int pwma_; 
  const int brkb_; 
  const int dirb_; 
  const int pwmb_; 
 
  // Which energization state is currently active. Normally between 0 and 
  // (NUM_STATES - 1). 
  int state_; 
 
  // Other status variables. 
  bool initialized_; 
  bool enabled_; 
}; 
 
#endif 

  

bipolar_stepper.cpp 

#include "bipolar_stepper.h" 
#include <Arduino.h> 
 
BipolarStepper::BipolarStepper(int brka, int dira, int pwma, int brkb, int dirb, 
    int pwmb) : brka_(brka), dira_(dira), pwma_(pwma), brkb_(brkb), dirb_(dirb), 
    pwmb_(pwmb), state_(0), initialized_(false), enabled_(false) {} 
 
BipolarStepper::~BipolarStepper() { 
  // Put our outputs in what should be a safe state before destroying the object 
  // that controls them. 
  digitalWrite(brka_, LOW); 
  digitalWrite(dira_, LOW); 
  digitalWrite(pwma_, LOW); 
  digitalWrite(brkb_, LOW); 
  digitalWrite(dirb_, LOW); 
  digitalWrite(pwmb_, LOW); 
} 
 
void BipolarStepper::initialize() { 
  pinMode(brka_, OUTPUT); 
  pinMode(dira_, OUTPUT); 
  pinMode(pwma_, OUTPUT); 
  pinMode(brkb_, OUTPUT); 
  pinMode(dirb_, OUTPUT); 
  pinMode(pwmb_, OUTPUT); 
  doState(state_); 
  initialized_ = true; 
} 
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bool BipolarStepper::isInitialized() const { 
  return initialized_; 
} 
 
void BipolarStepper::enable() { 
  enabled_ = true; 
} 
 
void BipolarStepper::disable() { 
  enabled_ = false; 
} 
 
bool BipolarStepper::isEnabled() const { 
  return enabled_; 
} 
 
void BipolarStepper::stepForward() { 
  if (!initialized_ || !enabled_) { 
    return; 
  } 
 
  state_ = (state_ + 1) % NUM_STATES; 
  doState(state_); 
} 
 
void BipolarStepper::stepBackward() { 
  if (!initialized_ || !enabled_) { 
    return; 
  } 
 
  state_ = (state_ + NUM_STATES - 1) % NUM_STATES; 
  doState(state_); 
} 
 
void BipolarStepper::doState(int state) { 
  state %= 4; 
  switch (state) { 
    case 0: 
      digitalWrite(brka_, LOW); 
      digitalWrite(brkb_, HIGH); 
      digitalWrite(dira_, HIGH); 
      analogWrite(pwma_, 255); 
      break; 
    case 1: 
      digitalWrite(brka_, HIGH); 
      digitalWrite(brkb_, LOW); 
      digitalWrite(dirb_, LOW); 
      analogWrite(pwmb_, 255); 
      break; 
    case 2: 
      digitalWrite(brka_, LOW); 
      digitalWrite(brkb_, HIGH); 
      digitalWrite(dira_, LOW); 
      analogWrite(pwma_, 255); 
      break; 
    case 3: 
      digitalWrite(brka_, HIGH); 
      digitalWrite(brkb_, LOW); 
      digitalWrite(dirb_, HIGH); 
      analogWrite(pwmb_, 255); 
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      break; 
    default: 
      // Can't get here. 
      break; 
  } 
} 

  

hall_switch.h 

#ifndef HALL_SWITCH_H_ 
#define HALL_SWITCH_H_ 
 
// Represents a binary Hall effect switch that detects the presence of a nearby 
// magnetic field. 
class HallSwitch { 
 public: 
  // Constructs a HallSwitch object, delegating Arduino pins for its functions. 
  // The HallSwitch object is constructed in an uninitialized state. 
  // 
  // power_pin: The Arduino pin used to power the hall effect switch. 
  // state_pin: The Arduino pin delegated to read the digital state of the Hall 
  //            effect switch. 
  HallSwitch(int power_pin, int state_pin); 
 
  // Initializes the HallEffect object. This must be called before setting the 
  // power state of the switch or reading the switch's state. 
  void init(); 
 
  // Checks whether the Hall effect switch has been initialized. 
  // 
  // Returns: True if the switch has been initialized. 
  bool isInitialized() const; 
 
  // Powers on or off the Hall effect switch. 
  // 
  // power_state: True to energize the hall effect switch. (Unenergized switches 
  //              cannot trigger.) 
  void setPowerState(bool power_state); 
 
  // Checks whether the Hall switch is currently triggered by a magnetic field. 
  // 
  // Returns: True if the switch is triggered by a magnetic field. 
  bool isTriggered() const; 
 
 private: 
   // Arduino pins delegated for Hall effects switch functions. 
   const int power_pin_; 
   const int state_pin_; 
 
   // Whether the swiltch has been initialized. 
   bool is_initialized_; 
}; 
 
#endif 
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hall_switch.cpp 

#include "hall_switch.h" 
#include <Arduino.h> 
 
HallSwitch::HallSwitch(const int power_pin, const int state_pin) : 
    power_pin_(power_pin), state_pin_(state_pin), is_initialized_(false) {} 
 
void HallSwitch::init() { 
  pinMode(power_pin_, OUTPUT); 
  digitalWrite(power_pin_, LOW); 
  pinMode(state_pin_, INPUT); 
  is_initialized_ = true; 
} 
 
bool HallSwitch::isInitialized() const { 
  return is_initialized_; 
} 
 
void HallSwitch::setPowerState(bool power_state) { 
  if (!is_initialized_) { 
    return; 
  } 
 
  digitalWrite(power_pin_, power_state); 
} 
 
bool HallSwitch::isTriggered() const { 
  if (!is_initialized_) { 
    return false; 
  } 
 
  return !digitalRead(state_pin_); 
} 

  

index_task.h 

#ifndef INDEX_TASK_H_ 
#define INDEX_TASK_H_ 
 
#include "hall_switch.h" 
#include "mask_controller.h" 
#include <Arduino.h>  // For size_t 
 
// Operates a cooperative task whose responsibility is to drive a MaskController 
// and HallSwitch in conjunction to determine a new index position for the mask. 
// Physically, this index position is determined a location of peak magnetic 
// field. No other functions should attempt to manipulate the HallSwitch, 
// MaskController, or the MaskController's dependencies while indexing is 
// active. 
// 
// The method used to determine an index is to advance the mask forward, 
// recording angular positions at which the Hall effect switch triggers from 
// low to high and from high to low; then doing the same in reverse; then taking 
// the average of all four positions. Finally, the mask homes to its new zero 
// point to show the operator where the device believes this location to be. 
class IndexTask { 
 public: 
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  // List of possible states the IndexTask can be in. 
  enum class State : int { 
    START = 0,                // Starting state. 
    INIT,                     // State following a request to initialize. 
    WAITING_FOR_FORWARD_LOW,  // Forward, waiting to be in a low state. 
    FORWARD_LOW,              // Forward, waiting for low-to-high transition. 
    FORWARD_HIGH,             // Forward, waiting for high-to-low transition. 
    REVERSE_LOW,              // Backward, waiting for low-to-high transition. 
    REVERSE_HIGH,             // Backward, waiting for high-to-low transition. 
    INDEXED,                  // Index acquired; waiting for next action. 
    CANNOT_INDEX              // Index can't be found; waiting for next action. 
  }; 
 
  // Results of indexing operations. 
  enum class IndexEvent { 
    NONE,            // Default value. 
    INDEX_FOUND,     // Index has been located. 
    INDEX_NOT_FOUND  // We failed to find the index. 
  }; 
 
  // Amount of time we are willing to wait for a HallSwitch state transition 
  // before declaring that the device is  unable to find an index [ms]. 
  static const int INDEX_TIMEOUT_MS = 10000u; 
 
  // Construct a new IndexTask, designating  the MaskController and 
  // HallSwitch the task will operate. 
  // 
  // mask_controller: The MaskController to operate. 
  // hall_switch: The HallSwitch to read. 
  IndexTask(MaskController* mask_controller, HallSwitch* hall_switch); 
 
  // Initialize the IndexTask. This must be requested before calling index(). 
  void init(); 
 
  // Checks for state transitions and takes actions accordingly. Call this as 
  // frequently as possible to improve indexing resolution. 
  void step(); 
 
  // Seek an index position for the mask. An index position will be established 
  // where the task estimates a local peak in magnetic field strength, which 
  // will typically be triggered when the magnet is directly above the physical 
  // Hall effect sensor. Note that this operation will change the index of the 
  // MaskController, affecting all subsequent MaskController actions. 
  void index(); 
 
  // Retrieves the current state of the IndexTask. See the State enumeration. 
  // 
  // Returns: The current State enumerator describing the state of the task. 
  State getState() const; 
 
  // Establishes a function to call when we have finished looking for an index. 
  // 
  // cb: The function to invoke when we have finished looking for an index. 
  //  -> event: The outcome of the indexing operation. 
  //  -> index_offset_deg: The angle the index position has been adjusted by as 
  //                       a result of the indexing operation [deg]. Set to 
  //                       nullptr to remove the callback. 
  void setIndexEventCallback(void (*cb)(IndexEvent event, float index_offset_deg)); 
 
 private: 
  // Length of array in which we store positions to use in calculating an 
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  // index position. 
  static const size_t NUM_KEY_POSITIONS = 4u; 
 
  // Utility method to check when an index timeout has occurred. 
  // 
  // Returns: True if a timeout is active. 
  bool timedOut() const; 
 
  // Utility method announcing via callback that an index could not be located. 
  void announceIndexNotFound() const; 
 
  // The MaskController to manipulate. 
  MaskController* const mask_controller_; 
 
  // The HallSwitch to read. 
  HallSwitch* const hall_switch_; 
 
  // Flags for requested actions. 
  bool init_requested_; 
  bool index_requested_; 
 
  // Current state of the IndexTask. 
  State state_; 
 
  // Time of last HallSwitch state change or request to index. Used as a 
  // reference for index timeouts. 
  unsigned long last_index_progress_stamp_ms_; 
 
  // Container for angle datapoints used in the determination of the True 
  // index position. 
  float key_positions_deg_[NUM_KEY_POSITIONS]; 
 
  // Callback to invoke when we have finished looking for an index. 
  void (*index_event_callback_)(IndexEvent event, float index_offset_deg); 
}; 
 
#endif 

  

index_task.cpp 

#include "index_task.h" 
#include "hall_switch.h" 
#include "mask_controller.h" 
#include <Arduino.h> 
 
IndexTask::IndexTask(MaskController* const mask_controller, 
    HallSwitch* const hall_switch) : mask_controller_(mask_controller), 
    hall_switch_(hall_switch), init_requested_(false), index_requested_(false), 
    state_(State::START), last_index_progress_stamp_ms_(0u), 
    index_event_callback_(nullptr) { 
  for (size_t i = 0u; i < NUM_KEY_POSITIONS; ++i) { 
    key_positions_deg_[i] = 0.0f; 
  } 
} 
 
void IndexTask::init() { 
  init_requested_ = true; 
} 
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void IndexTask::step() { 
  switch (state_) { 
    case State::START: 
      // Just wait for an init command... 
      if (init_requested_) { 
        init_requested_ = false; 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        state_ = State::INIT; 
      } 
      break; 
    case State::INIT: 
      // State reserved for more functionality... In the meantime, just wait for 
      // an index command. 
      if (index_requested_) { 
        index_requested_ = false; 
        mask_controller_->forward(); 
        hall_switch_->setPowerState(true); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::WAITING_FOR_FORWARD_LOW; 
      } 
      break; 
    case State::WAITING_FOR_FORWARD_LOW: 
      // Wait for a low signal. (This is important if an index is requested when 
      // we are currently near the index position.) 
      if (!hall_switch_->isTriggered()) { 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::FORWARD_LOW; 
      } else if (timedOut()) { 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        announceIndexNotFound(); 
        state_ = State::CANNOT_INDEX; 
      } 
      break; 
    case State::FORWARD_LOW: 
      // Continue forward as we wait for a triggered sensor. 
      if (hall_switch_->isTriggered()) { 
        key_positions_deg_[0] = mask_controller_->getPositionDeg(false); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::FORWARD_HIGH; 
      } else if (timedOut()) { 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        announceIndexNotFound(); 
        state_ = State::CANNOT_INDEX; 
      } 
      break; 
    case State::FORWARD_HIGH: 
      // We currently have a triggered sensor... Continue until it's not 
      // triggered anymore. 
      if (!hall_switch_->isTriggered()) { 
        key_positions_deg_[1] = mask_controller_->getPositionDeg(false); 
        mask_controller_->reverse(); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::REVERSE_LOW; 
      } else if (timedOut()) { 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        announceIndexNotFound(); 
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        state_ = State::CANNOT_INDEX; 
      } 
      break; 
    case State::REVERSE_LOW: 
      // Retread our ground in reverse until sensor is high again... 
      if (hall_switch_->isTriggered()) { 
        key_positions_deg_[2] = mask_controller_->getPositionDeg(false); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::REVERSE_HIGH; 
      } else if (timedOut()) { 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        announceIndexNotFound(); 
        state_ = State::CANNOT_INDEX; 
      } 
      break; 
    case State::REVERSE_HIGH: 
      // Last step in reverse... 
      if (!hall_switch_->isTriggered()) { 
        key_positions_deg_[3] = mask_controller_->getPositionDeg(false); 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
 
        // Calculate average transition position. 
        float angle_sum_deg = 0.0f; 
        for (size_t i = 0u; i < NUM_KEY_POSITIONS; ++i) { 
          angle_sum_deg += key_positions_deg_[i]; 
        } 
        const float offset_deg = angle_sum_deg / NUM_KEY_POSITIONS; 
 
        // Apply new index position and communicate it via callback. 
        mask_controller_->offsetZero(offset_deg); 
        if (index_event_callback_ != nullptr) { 
          index_event_callback_(IndexEvent::INDEX_FOUND, offset_deg); 
        } 
 
        // Rotate to new zero to show users where we think it is. 
        mask_controller_->rotateTo(0.0f); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::INDEXED; 
      } else if (timedOut()) { 
        mask_controller_->stop(); 
        hall_switch_->setPowerState(false); 
        announceIndexNotFound(); 
        state_ = State::CANNOT_INDEX; 
      } 
      break; 
    case State::INDEXED: 
      // We did it! Now wait for the next command to index so we can restart the 
      // process. 
      if (index_requested_) { 
        index_requested_ = false; 
        mask_controller_->forward(); 
        hall_switch_->setPowerState(true); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::WAITING_FOR_FORWARD_LOW; 
      } 
      break; 
    case State::CANNOT_INDEX: 
      // Not a lot we can do in an error state except wait for instructions. 
      if (index_requested_) { 
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        index_requested_ = false; 
        mask_controller_->forward(); 
        hall_switch_->setPowerState(true); 
        last_index_progress_stamp_ms_ = millis(); 
        state_ = State::WAITING_FOR_FORWARD_LOW; 
      } 
      break; 
    default: 
      // No clue how we got here... Let's reset everything. 
      mask_controller_->stop(); 
      hall_switch_->setPowerState(false); 
      init_requested_ = false; 
      index_requested_ = false; 
      state_ = State::START; 
      break; 
  } 
} 
 
void IndexTask::index() { 
  index_requested_ = true; 
} 
 
IndexTask::State IndexTask::getState() const { 
  return state_; 
} 
 
void IndexTask::setIndexEventCallback( 
    void (*const cb)(IndexEvent event, float index_offset_deg)) { 
  index_event_callback_ = cb; 
} 
 
bool IndexTask::timedOut() const { 
  return (int)(millis() - last_index_progress_stamp_ms_) > INDEX_TIMEOUT_MS; 
} 
 
void IndexTask::announceIndexNotFound() const { 
  if (index_event_callback_ != nullptr) { 
    index_event_callback_(IndexEvent::INDEX_NOT_FOUND, 0.0f); 
  } 
} 

 

mask_controller.h 

#ifndef MASK_CONTROLLER_H_ 
#define MASK_CONTROLLER_H_ 
 
#include "stepper_controller.h" 
 
// Operates a StepperController to manipulate a mask interfacing with a stepper 
// motor. Maintains knowledge of the gear ratio between motor and mask in order 
// to drive the motor to the desired angles. 
class MaskController { 
  public: 
    // Preferences for direction of motion. 
    enum class Direction : int { 
      NONE = 0,  // No motion: default value. 
      FORWARD,   // Forward direction. 
      REVERSE,   // Reverse direction. 
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      AUTO       // Direction that will reach the target the fastest. 
    }; 
 
    // Constructs a MaskController that operates a specified StepperController 
    // using a given gear ratio between motor and mask. 
    // 
    // stepper_controller: The StepperController to drive. 
    // gear_ratio: Rotations of motor per one rotation of mask. 
    MaskController(volatile StepperController* stepper_controller, 
        float gear_ratio); 
 
    // Drives the mask forward continuously. 
    void forward(); 
 
    // Drives the mask backward continuously. 
    void reverse(); 
 
    // Halts mask motion. 
    void stop(); 
 
    // Rotates the mask to an absolute angle. 
    // 
    // target_deg: Absolute angle to rotate the mask to [deg]. 
    // direction: Preferred direction of motion. 
    // wrap_result: Whether the angle returned from the function is wrapped to 
    //              the range [0, 360) degrees. 
    // Returns: The actual absolute angle rotated to [deg]. May not match the 
    //          specified angle exactly due to motor resolution limits. 
    float rotateTo(float target_deg, Direction direction = Direction::AUTO, 
        bool wrap_result = true); 
 
    // Rotates the mask by a relative angle. 
    // 
    // angle_deg: Relative angle to rotate the mask by [deg]. 
    // direction: Preferred direction of motion. 
    // wrap_result: Whether the angle returned from the function is wrapped to 
    //              the range [0, 360) degrees. 
    // Returns: The actual absolute angle rotated to [deg]. May not match the 
    //          specified angle exactly due to motor resolution limits. 
    float rotateBy(float angle_deg, bool wrap_result = true); 
 
    // Retrieves the current absolute position of the mask. 
    // 
    // wrap_result: Whether the angle returned from the function is wrapped to 
    //              the range [0, 360) degrees. 
    // Returns: The current absolute position of the mask [deg]. 
    float getPositionDeg(bool wrap_result = true) const; 
 
    // Retrieves the current target position of the mask. 
    // 
    // wrap_result: Whether the angle returned from the function is wrapped to 
    //              the range [0, 360) degrees. 
    // Returns: The current target position of the mask [deg]. 
    float getTargetDeg(bool wrap_result = true) const; 
 
    // Establishes the current mask position to be an absolute angle of zero. 
    void setZero(); 
 
    // Offsets the existing zero reference by an angle. 
    // 
    // relative_angle_deg: The angle to offset the zero reference by [deg]. 
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    void offsetZero(float relative_angle_deg); 
 
    // Converts a mask angle to a motor angle. 
    // 
    // mask_angle_deg: An absolute mask angle [deg]. 
    // Returns: The motor angle corresponding to the mask angle [deg]. 
    float maskToMotorAngleDeg(float mask_angle_deg) const; 
 
    // Converts a motor angle to a mask angle. 
    // 
    // motor_angle_deg: An absolute motor angle [deg]. 
    // Returns: The mask angle corresponding to the motor angle [deg]. 
    float motorToMaskAngleDeg(float motor_angle_deg) const; 
 
  private: 
    // Wraps an unbounded angle to the range [0, 360) degrees. 
    // 
    // nominal_deg: The unbounded angle [deg]. 
    // Returns: An equivalent angle on the range [0, 360) degrees. 
    static float wrapAngleDeg(float nominal_deg); 
 
    // The StepperController this MaskController manipulates. 
    volatile StepperController* const stepper_controller_; 
 
    // Rotations of motor per one rotation of mask. 
    const float gear_ratio_; 
 
    // Current absolute target angle [deg]. 
    float target_deg_; 
}; 
 
#endif 

  

mask_controller.cpp 

#include "mask_controller.h" 
#include "stepper_controller.h" 
#include <Math.h> 
 
MaskController::MaskController( 
    volatile StepperController* const stepper_controller, 
    const float gear_ratio) : stepper_controller_(stepper_controller), 
    gear_ratio_(gear_ratio), target_deg_(0.0f) {} 
 
void MaskController::forward() { 
  if (stepper_controller_ == nullptr) { 
    return; 
  } else if (gear_ratio_ > 0.0f) { 
    stepper_controller_->forward(); 
  } else { 
    stepper_controller_->reverse(); 
  } 
} 
 
void MaskController::reverse() { 
  if (stepper_controller_ == nullptr) { 
    return; 
  } else if (gear_ratio_ > 0.0f) { 
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    stepper_controller_->reverse(); 
  } else { 
    stepper_controller_->forward(); 
  } 
} 
 
void MaskController::stop() { 
  if (stepper_controller_ == nullptr) { 
    return; 
  } else { 
    stepper_controller_->stop(); 
  } 
} 
 
float MaskController::rotateTo(const float target_deg, 
    const Direction direction, const bool wrap_result) { 
  if (stepper_controller_ == nullptr) { 
    return NAN; 
  } 
 
  // Stop and record because the motor angle would theoretically change as we 
  // progress through the function if we didn't do this. 
  stepper_controller_->stop(); 
  const float current_deg = getPositionDeg(false); 
  const float forward_delta_deg = wrapAngleDeg(target_deg - current_deg); 
  const float reverse_delta_deg = wrapAngleDeg(current_deg - target_deg); 
 
  float delta_to_use_deg = 0.0f; 
  switch (direction) { 
    default: 
    case Direction::NONE: 
      break; 
    case Direction::FORWARD: 
      delta_to_use_deg = forward_delta_deg; 
      break; 
    case Direction::REVERSE: 
      delta_to_use_deg = -reverse_delta_deg; 
      break; 
    case Direction::AUTO: 
      delta_to_use_deg = forward_delta_deg < reverse_delta_deg ? 
          forward_delta_deg : -reverse_delta_deg; 
      break; 
  } 
 
  return rotateBy(delta_to_use_deg, wrap_result); 
} 
 
float MaskController::rotateBy(const float angle_deg, const bool wrap_result) { 
  target_deg_ = getPositionDeg(false) + angle_deg; 
  // We use rotateTo() below rather than rotateBy() so that we don't accumulate 
  // roundoff error  between target_deg_ and the converted motor angle target in 
  // repeated calls to this function. 
  const float nominal_deg = motorToMaskAngleDeg( 
      stepper_controller_->rotateTo(maskToMotorAngleDeg(target_deg_))); 
  return wrap_result ? wrapAngleDeg(nominal_deg) : nominal_deg; 
} 
 
float MaskController::getPositionDeg(const bool wrap_result) const { 
  const float nominal_deg = 
      motorToMaskAngleDeg(stepper_controller_->getPositionDeg()); 
  return wrap_result ? wrapAngleDeg(nominal_deg) : nominal_deg; 
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} 
 
float MaskController::getTargetDeg(const bool wrap_result) const { 
  return wrap_result ? wrapAngleDeg(target_deg_) : target_deg_; 
} 
 
void MaskController::setZero() { 
  if (stepper_controller_ == nullptr) { 
    return; 
  } 
  stepper_controller_->stop(); 
  stepper_controller_->setZero(); 
} 
 
void MaskController::offsetZero(const float relative_angle_deg) { 
  if (stepper_controller_ == nullptr) { 
    return; 
  } 
  stepper_controller_->stop(); 
  stepper_controller_->offsetZero(maskToMotorAngleDeg(relative_angle_deg)); 
} 
 
float MaskController::wrapAngleDeg(const float nominal) { 
  return nominal - 360.0f * floor(nominal / 360.0f); 
} 
 
float MaskController::maskToMotorAngleDeg(const float mask_angle_deg) const { 
  return mask_angle_deg * gear_ratio_; 
} 
 
float MaskController::motorToMaskAngleDeg(const float motor_angle_deg) const { 
  return motor_angle_deg / gear_ratio_; 
} 

  

mask_rotator.ino 

#include <Arduino.h> 
#include "bipolar_stepper.h" 
#include "hall_switch.h" 
#include "mask_controller.h" 
#include "index_task.h" 
#include "stepper_controller.h" 
#include "timer_one.h" 
 
// Serial config 
const int SERIAL_BAUD_RATE = 19200; 
const int SERIAL_TIMEOUT_MS = 10;  // [ms] 
enum Command : char { 
  FORWARD_COMMAND = 'f', 
  BACKWARD_COMMAND = 'b', 
  STOP_COMMAND = 's', 
  GET_POSITION_COMMAND = 'p', 
  GET_TARGET_COMMAND = 't', 
  SET_ZERO_COMMAND = 'z', 
  ENTER_RELATIVE_MODE_COMMAND = 'r', 
  ENTER_ABSOLUTE_MODE_COMMAND = 'a', 
  LOCATE_INDEX_COMMAND = 'i', 
  FOUND_INDEX_RESPONSE = 'I', 
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  COULD_NOT_FIND_INDEX_RESPONSE = '~', 
  PING_COMMAND = '?', 
  PING_RESPONSE = '!', 
  GO_TO_COMMAND = 'g', 
  UNRECOGNIZED_COMMAND = 'x' 
}; 
 
// Motor/mask config 
const int BRKA_PIN = 9; 
const int DIRA_PIN = 12; 
const int PWMA_PIN = 3; 
const int BRKB_PIN = 8; 
const int DIRB_PIN = 13; 
const int PWMB_PIN = 11; 
const float GEAR_RATIO = 72.0/17.0; 
const int16_t MOTOR_STEPS = 200u;  // Motor steps per revolution 
uint32_t STEP_PERIOD_US = 8000u;  // [us] 
const MaskController::Direction PREFERRED_DIRECTION = 
    MaskController::Direction::AUTO; 
 
// Hall switch config 
const int HALL_SWITCH_POWER_PIN = 4; 
const int HALL_SWITCH_STATE_PIN = 5; 
 
// Objects, state variables, etc. 
BipolarStepper stepper(BRKA_PIN, DIRA_PIN, PWMA_PIN, BRKB_PIN, DIRB_PIN, PWMB_PIN); 
HallSwitch hall_switch(HALL_SWITCH_POWER_PIN, HALL_SWITCH_STATE_PIN); 
StepperController motor_controller(&stepper, MOTOR_STEPS); 
MaskController mask_controller(&motor_controller, GEAR_RATIO); 
IndexTask index_task(&mask_controller, &hall_switch); 
TimerOne timer; 
enum class Mode { 
  NONE, 
  ABSOLUTE, 
  RELATIVE 
} mode = Mode::ABSOLUTE; 
 
// Called once at the start of the progrom; initializes all hardware and tasks. 
void setup() { 
  Serial.begin(SERIAL_BAUD_RATE); 
  Serial.setTimeout(SERIAL_TIMEOUT_MS); 
  stepper.initialize(); 
  stepper.enable(); 
  hall_switch.init(); 
  index_task.init(); 
  index_task.setIndexEventCallback(&actOnIndexEvent); 
  timer.initialize(); 
  timer.attachInterrupt(update, STEP_PERIOD_US); 
} 
 
// Called repeatedly: updates tasks and looks for new actions to take based on 
// command inputs. 
void loop() { 
  index_task.step(); 
 
  // Process input. 
  if (Serial.available()) { 
    const char command = Serial.peek(); 
    switch (command) { 
      case FORWARD_COMMAND: 
        Serial.read(); 
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        mask_controller.forward(); 
        Serial.write(FORWARD_COMMAND); 
        Serial.println(); 
        break; 
      case BACKWARD_COMMAND: 
        Serial.read(); 
        mask_controller.reverse(); 
        Serial.write(BACKWARD_COMMAND); 
        Serial.println(); 
        break; 
      case STOP_COMMAND: 
        Serial.read(); 
        mask_controller.stop(); 
        Serial.write(STOP_COMMAND); 
        Serial.println(); 
        break; 
      case GET_POSITION_COMMAND: 
        Serial.read(); 
        Serial.write(GET_POSITION_COMMAND); 
        Serial.println(degreesToSerial(mask_controller.getPositionDeg(true))); 
        break; 
      case GET_TARGET_COMMAND: 
        Serial.read(); 
        Serial.write(GET_TARGET_COMMAND); 
        Serial.println(degreesToSerial(mask_controller.getTargetDeg(true))); 
        break; 
      case SET_ZERO_COMMAND: 
        Serial.read(); 
        mask_controller.setZero(); 
        Serial.write(SET_ZERO_COMMAND); 
        Serial.println(); 
        break; 
      case ENTER_RELATIVE_MODE_COMMAND: 
        Serial.read(); 
        mode = Mode::RELATIVE; 
        Serial.write(ENTER_RELATIVE_MODE_COMMAND); 
        Serial.println(); 
        break; 
      case ENTER_ABSOLUTE_MODE_COMMAND: 
        Serial.read(); 
        mode = Mode::ABSOLUTE; 
        Serial.write(ENTER_ABSOLUTE_MODE_COMMAND); 
        Serial.println(); 
        break; 
      case LOCATE_INDEX_COMMAND: 
        Serial.read(); 
        index_task.index(); 
        Serial.write(LOCATE_INDEX_COMMAND); 
        Serial.println(); 
        break; 
      case PING_COMMAND: 
        Serial.read(); 
        Serial.write(PING_RESPONSE); 
        Serial.println(); 
        break; 
      case GO_TO_COMMAND: { 
        Serial.read();  // Get the command character out of the buffer. 
        float serial_deg = serialToDegrees(Serial.parseInt()); 
        float actual_deg = 0.0f; 
        if (mode == Mode::ABSOLUTE) { 
          actual_deg = mask_controller.rotateTo(serial_deg, PREFERRED_DIRECTION); 
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        } else if (mode == Mode::RELATIVE) { 
          actual_deg = mask_controller.rotateBy(serial_deg); 
        } 
        Serial.write(GO_TO_COMMAND); 
        Serial.println(degreesToSerial(actual_deg)); 
        break; 
      } 
      default: 
        Serial.read();  // Discard character if we don't recognize it. 
        Serial.write(UNRECOGNIZED_COMMAND); 
        Serial.println(); 
        break; 
    } 
  } 
} 
 
// Converts an angle from serial convention to degrees. 
float serialToDegrees(const int32_t serial) { 
  return serial / 100.0f; 
} 
 
// Convets an angle from degrees to serial convention. There is no overflow 
// protection. 
int32_t degreesToSerial(const float degrees) { 
  return static_cast<int32_t>(round(degrees * 100.0f)); 
} 
 
void actOnIndexEvent(const IndexTask::IndexEvent event, 
    const float index_offset_deg) { 
  (void)(index_offset_deg);  // Denote index offset parameter as unused. 
  if (event == IndexTask::IndexEvent::INDEX_FOUND) { 
    Serial.write(FOUND_INDEX_RESPONSE); 
    Serial.println(); 
  } else if (event == IndexTask::IndexEvent::INDEX_NOT_FOUND) { 
    Serial.write(COULD_NOT_FIND_INDEX_RESPONSE); 
    Serial.println(); 
  } 
} 
 
// Function run via timer interrupt to actuate motor. 
void update() { 
  motor_controller.update(); 
} 

  

stepper_controller.h 

#ifndef STEPPER_CONTROLLER_H_ 
#define STEPPER_CONTROLLER_H_ 
 
#include "bipolar_stepper.h" 
#include <Arduino.h>  // For int16_t, int32_t 
 
// Drives a motor represented by BipolarStepper object. 
class StepperController { 
  public: 
    // Current motor action. 
    enum class Behavior : int { 
      STOPPED = 0,    // Motor is stopped. Default value. 
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      FORWARD,        // Motor is moving forward continuously. 
      REVERSE,        // Motor is moving backward continuously. 
      TARGETING,      // Motor is currently approaching its target position. 
      REACHED_TARGET  // Motor has successfully reached its target position. 
    }; 
 
    // Constructs a StepperController, delegating a BipolarStepper to manipulate 
    // and a number of steps per rotation. The update() function should be 
    // invoked within a timer interrupt at approximately 125 Hz. 
    // 
    // stepper: The BipolarStepper to manipulate. 
    // steps_per_rotation: Number of steps that form one full motor rotation. 
    StepperController(BipolarStepper* stepper, int16_t steps_per_rotation); 
 
    // Drives the motor forward continuously. 
    void forward() volatile; 
 
    // Drives the motor backward continuously. 
    void reverse() volatile; 
 
    // Halts motor motion. 
    void stop() volatile; 
 
    // Rotates the motor to an absolute angle. 
    // 
    // target_deg: Absolute angle to rotate the motor to [deg]. 
    // Returns: The actual absolute angle rotated to [deg]. May not match the 
    //          specified angle exactly due to the finite number of steps per 
    //          rotation. 
    float rotateTo(float target_deg) volatile; 
 
    // Rotates the motor by a relative angle. 
    // 
    // angle_deg: Relative angle to rotate the motor by [deg]. 
    // Returns: The actual absolute angle rotated to [deg]. May not match the 
    //          specified angle exactly due to the finite number of steps per 
    //          rotation. 
    float rotateBy(float angle_deg) volatile; 
 
    // Retrieves the current absolute position of the motor. 
    // 
    // Returns: The current absolute position of the motor [deg]. 
    float getPositionDeg() const volatile; 
 
    // Retrieves the current target position of the motor. 
    // 
    // Returns: The current target position of the motor [deg]. 
    float getTarget() const volatile; 
 
    // Establishes the current motor position to be an absolute angle of zero. 
    void setZero() volatile; 
 
    // Offsets the existing zero reference by an angle. 
    // 
    // relative_angle_deg: The angle to offset the zero reference by [deg]. 
    void offsetZero(float relative_angle_deg) volatile; 
 
    // Updates the state of the motor. For best results, this should be called 
    // within a timer interrupt triggering at approximately 125 Hz. 
    void update() volatile; 
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    // Converts an absolute motor position to an absolute number of motor steps. 
    // 
    // degrees: The absolute angle to convert [deg]. 
    // Returns: The integral number of steps forming an angle closest to the 
    //          given angle. 
    int32_t degreesToSteps(float degrees) const volatile; 
 
    // Converts a number of motor steps to an absolute angular position. 
    // 
    // steps: The number of steps. 
    // Returns: The angle formed by traveling the given number of steps [deg]. 
    float stepsToDegrees(int32_t steps) const volatile; 
 
  private: 
    // The BipolarStepper driver this StepperController manipulates. 
    BipolarStepper* const stepper_; 
 
    // The number of steps of the motor constituting one full revolution. 
    const int16_t steps_per_rotation_; 
 
    // Current position of the motor in steps relative to zero. 
    volatile int32_t position_steps_; 
 
    // Current target absolute angle of the motor [deg]. 
    float target_deg_; 
 
    // Current target absolute position of the motor in steps. 
    int32_t target_steps_; 
 
    // Currently active behavior. 
    volatile Behavior behavior_; 
}; 
 
#endif 

  

stepper_controller.cpp 

#include "stepper_controller.h" 
#include "bipolar_stepper.h" 
#include <Arduino.h> 
#include <Math.h> 
 
StepperController::StepperController(BipolarStepper* const stepper, 
    const int steps_per_rotation) : stepper_(stepper), 
    steps_per_rotation_(steps_per_rotation), position_steps_(0), 
    target_deg_(0.0f), target_steps_(0), behavior_(Behavior::STOPPED) {} 
 
void StepperController::forward() volatile { 
  behavior_ = Behavior::FORWARD; 
} 
 
void StepperController::reverse() volatile { 
  behavior_ = Behavior::REVERSE; 
} 
 
void StepperController::stop() volatile { 
  behavior_ = Behavior::STOPPED; 
} 



249 

 
float StepperController::rotateTo(const float target_deg) volatile { 
  // Very brief pause to avoid potential momentary direction change. 
  behavior_ = Behavior::STOPPED; 
  target_deg_ = target_deg; 
  target_steps_ = degreesToSteps(target_deg_); 
  behavior_ = Behavior::TARGETING; 
  return stepsToDegrees(target_steps_); 
} 
 
float StepperController::rotateBy(const float angle_deg) volatile { 
  // Very brief pause to avoid position changes. 
  behavior_ = Behavior::STOPPED; 
  target_deg_ = stepsToDegrees(position_steps_) + angle_deg; 
  target_steps_ = degreesToSteps(target_deg_); 
  behavior_ = Behavior::TARGETING; 
  return target_deg_; 
} 
 
float StepperController::getPositionDeg() const volatile { 
  // TODO: Disable interrupts here. 
  return stepsToDegrees(position_steps_); 
} 
 
float StepperController::getTarget() const volatile { 
  return target_deg_; 
} 
 
void StepperController::setZero() volatile { 
  position_steps_ = 0; 
} 
 
void StepperController::offsetZero(const float relative_angle_deg) volatile { 
  position_steps_ -= degreesToSteps(relative_angle_deg); 
} 
 
// Note: Instead of a switch tree, we could set a function pointer (to a private 
// helper function) whenever we alter behavior_. Snazzy but probably overkill. 
void StepperController::update() volatile { 
  if (stepper_ == nullptr) { 
    return; 
  } 
 
  switch (behavior_) { 
    default: 
    case Behavior::STOPPED: 
    case Behavior::REACHED_TARGET: 
      break; 
    case Behavior::FORWARD: 
      stepper_->stepForward(); 
      position_steps_++; 
      break; 
    case Behavior::REVERSE: 
      stepper_->stepBackward(); 
      position_steps_--; 
      break; 
    case Behavior::TARGETING: 
      if (position_steps_ < target_steps_) { 
        stepper_->stepForward(); 
        position_steps_++; 
      } else if (position_steps_ > target_steps_) { 
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        stepper_->stepBackward(); 
        position_steps_--; 
      } else /*position_steps_ == target_steps_*/ { 
        behavior_ = Behavior::REACHED_TARGET; 
      } 
      break; 
  } 
} 
 
int32_t StepperController::degreesToSteps(const float degrees) const volatile { 
  return static_cast<int32_t>(round(degrees / 360.0f * steps_per_rotation_)); 
} 
 
float StepperController::stepsToDegrees(const int32_t steps) const volatile { 
  return 360.0f * steps / steps_per_rotation_; 
} 

  

timer_one.h, timer_one.cpp 

TimerOne is an open-source library written by a third party. Our program uses 

TimerOne, but we did not modify its source code. See Appendix M.2. 
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N. BILLS OF MATERIALS 

 The bill of materials is divided into six parts to show the cost of each major 

subassembly. Unit prices are calculated at quantity where applicable. Costs from 

machining and assembly labor are excluded. Prices are accurate as of October 12, 2019. 

 

N.1 Axle cap assembly 

 

Table 33. Bill of materials for axle cap assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 

4”-diameter acetal cylinder 

(per foot) 

McMaster–Carr 

#8497K533 

$69.33 0.1 $6.93 

2 

Stainless steel flathead screw, 

10-32 × 1 1/4 

McMaster–Carr 

#91781A835 

$0.18 1 $0.18 
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# Description Vendor/ ID Unit Qty Extended 

3 

Stainless steel standoff, 

female, 1/2 OD, 10-32 × 1/2 

McMaster–Carr 

#91125A381 

$3.12 1 $3.12 

4 

Stainless steel standoff, 

female, 1/4 OD, 10-32 × 

13/32 

McMaster–Carr 

#91125A591 $1.91 1 $1.91 

TOT.     $12.14 

 

N.2 Mask assembly 

 

Table 34. Bill of materials for mask assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 

Birch, 1/8 thick (per 30 × 24 

sheet49) 

Woodcraft 

#131400 

$9.50 0.25 $2.38 

 
49 Each 30-by-24 sheet provides four masks if the cuts are placed carefully. 
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# Description Vendor/ ID Unit Qty Extended 

2 

Neodymium magnet, 3/8 × 

1/16 

totalElement 

$0.26 2 $0.52 

TOT.     $2.90 

 

N.3 Motor bracket assembly 

 

Table 35. Bill of materials for motor bracket assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 

6063 aluminum U-channel, 1 

H × 3 W × 1/4 thick (per 4 

feet) 

McMaster–Carr 

#9001K104 $43.98 0.052 $2.29 
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# Description Vendor/ ID Unit Qty Extended 

2 

Bipolar stepper motor, 

NEMA 17, 12 V, 0.33 A, 

1.8° step, 0.23 N-m holding 

torque 

SparkFun 

#ROB-09238 

$15.95 1 $15.95 

3 

Stainless steel cheesehead 

screw, M3×0.5×8 

McMaster–Carr 

#94017A204 

$0.22 4 $0.88 

4 

Aluminum standoff, female, 

1/4 OD, 4-40 × 1 

McMaster–Carr 

#93330A439 

$0.60 2 $1.20 

5 

Stainless steel panhead 

screw, 4-40 × 5/850 

McMaster–Carr 

#91772A112 

$0.04 2 $0.08 

TOT.     $20.40 

 

N.4 Motor bracket electronics assembly 

 

 
50 Part is also used for a different purpose in the pinion assembly. 
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Table 36. Bill of materials for motor bracket electronics assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 

Motor bracket 

assembly 

N/A 

$20.40 1 $20.40 

2 

Hall switch 

breakout 

Amazon (SunFounder) 

#0701715366763 

$6.99 1 $6.99 

3, 4 

2” hook and loop 

strip (per 5 yd) 

Amazon (Strenco) 

$12.92 0.014 $0.18 

5a 

Case for Arduino 

Uno 

Amazon (DAOKI) 

$3.98 1 $3.98 

5b Arduino Uno Rev3 Arduino.cc $22.00 1 $22.00 

5c 

Arduino Motor 

Shield Rev3 

Arduino.cc 

$22.00 1 $22.00 

TOT.     $75.55 
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N.5 Pinion assembly 

 

Table 37. Bill of materials for pinion assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 

Aluminum mounting hub, 

3/4” OD, 5-mm ID; 4 holes 

with 4-40 thread at 1/2” BD; 

.2” thick; 4-40 set screw (per 2 

hubs) 

SparkFun  

$3.75 1 $3.75 

2, 5 

Clear acrylic, 3/32 thick (per 

12 × 12 sheet51) 

McMaster–Carr 

#8560K181 

$5.24 0.25 $1.32 

 
51 Each 12-inch-by-12-inch sheet can easily provide four pairs of lips. 
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# Description Vendor/ ID Unit Qty Extended 

3 

Nickel-plated brass washer, 

#4, .281 OD 

McMaster–Carr 

#92917A110 

$0.03 2 $0.06 

4 

Black acrylic, 3/16 thick (per 

12 × 12 sheet52) 

estreetplastics 

#B011871212 

$5.99 0.083 $0.50 

6 

Stainless steel panhead screw, 

4-40 × 5/853 

McMaster–Carr 

#91772A112 

$0.04 2 $0.08 

TOT.     $5.71 

 

N.6 Master assembly 

 

 
52 Each 12-inch-by-12-inch sheet can provide at least twelve 3.167-inch-diameter pinions if cut carefully 

(Specht, 2009). 
53 Part is also used for a different purpose in the motor bracket assembly. 
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Table 38. Bill of materials for master assembly. 

# Description Vendor/ ID Unit Qty Extended 

1 11” optical tube assembly Celestron C11 N/A 1 N/A 

2 Axle cap assembly N/A $12.14 1 $12.14 

3 

Motor bracket electronics 

assembly 

N/A 

$75.55 1 $75.55 

4 

Nylon thumb screw, 8/32 

× 3/8 

McMaster–Carr 

#94320A393 

$0.09 1 $0.09 

5 Mask assembly N/A $2.90 1 $2.90 

6 

Stainless steel hex set 

screw, 4-40 × 1/4 

McMaster–Carr 

#92311A106 

$0.04 054 $0.00 

7 Pinion assembly N/A $5.71 1 $5.71 

8 

Plastic thumb nut, 10-32 

thread 

McMaster–Carr 

#93886A130 

$0.85 1 $0.85 

– 

9-V, 650-mA power 

supply 

Amazon 

(SunFounder) 

$7.99 1 $7.99 

– 16’ USB A–B cable Amazon (Basics) $5.99 1 $5.99 

TOT.     $111.22 

 

 
54 Mounting hub purchased for motor bracket assembly includes one such screw. 
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O. TECHNICAL DRAWINGS 

 The following pages contain engineering drawings that describe the shapes of the 

custom parts along with their interfaces with off-the-shelf components. Appendix N 

contains a complete list of these components. 

Due to formatting restrictions imposed on this paper, these drawings have been 

resized such that their scales do not align with common fractions. 
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