
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=iiri20

International Reviews of Immunology

ISSN: 0883-0185 (Print) 1563-5244 (Online) Journal homepage: https://www.tandfonline.com/loi/iiri20

Regulatory T cells as therapeutic targets and
mediators

Amit Sharma & Dipayan Rudra

To cite this article: Amit Sharma & Dipayan Rudra (2019): Regulatory T cells as
therapeutic targets and mediators, International Reviews of Immunology, DOI:
10.1080/08830185.2019.1621310

To link to this article:  https://doi.org/10.1080/08830185.2019.1621310

Published online: 02 Jun 2019.

Submit your article to this journal 

Article views: 2

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=iiri20
https://www.tandfonline.com/loi/iiri20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08830185.2019.1621310
https://doi.org/10.1080/08830185.2019.1621310
https://www.tandfonline.com/action/authorSubmission?journalCode=iiri20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=iiri20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/08830185.2019.1621310&domain=pdf&date_stamp=2019-06-02
http://crossmark.crossref.org/dialog/?doi=10.1080/08830185.2019.1621310&domain=pdf&date_stamp=2019-06-02


Regulatory T cells as therapeutic targets and mediators

Amit Sharmaa,b and Dipayan Rudraa,b

aAcademy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea; bDivision of Integrative
Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

ABSTRACT
With the advent of the concept of dominant tolerance and the subsequent discovery of
CD4þ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all product-
ive as well as nonproductive immune responses can be compartmentalized to a binary of
immune effector T cells and immune regulatory Treg populations. A beneficial immune
response warrants the timely regulation by Tregs, whereas a nonproductive immune
response indicates insufficient effector functions or an outright failure of tolerance. There
are ample reports supporting role of Tregs in suppressing spontaneous auto-immune dis-
eases as well as promoting immune evasion by cancers. To top up their importance, several
non-immune functions like tissue homeostasis and regeneration are also being attributed to
Tregs. Hence, after being in the center stage of basic and translational immunological
research, Tregs are making the next jump towards clinical studies. Therefore, newer small
molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to
augment or undermine Treg responses in the context of autoimmunity and cancer. In this
brief review, we present the strategies to modulate Tregs towards a favorable clin-
ical outcome.
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Enforcing dominant peripheral tolerance, a tiny subset
of helper T cells – CD4þFOXP3þ regulatory T cells
(Tregs) has been at the forefront of immunological
research for almost last two decades. The singular
importance of Tregs can be appreciated by the fact
that both in mice and humans, a loss or defect of
Tregs invariably leads to catastrophic breach of
immune tolerance [1–3]. Tregs not only ensure toler-
ance to self-antigens and innocuous commensals but
also regulate an ongoing immune response leading to
resolution of inflammation [4–6], thus, maintaining
overall immune homeostasis.

Emergence of Tregs as clinically relevant
immune modulators

The idea of so called ‘suppressor’ cells of thymic ori-
gin started taking shape when it was demonstrated
that B cells could not be made tolerant to Sheep Red
Blood Cells (SRBC) in absence of thymus derived T
cells [7]. Another group demonstrated development of
various autoimmune disorders after thymectomy in 3-
day old neonatal mice [8]. However, a lack of specific
marker precluded efficient identification and

characterization of these cell types with potential
immune-suppressive properties. Sakaguchi et al. [9]
showed that 3 day thymectomized mice had reduced
number of CD4þCD5hi (then called Lyt-1þLyt-2,3–) T
cells and reconstitution with such cells rescued the
autoimmune reaction in thymectomized mice. Two
subsets of CD4þ T cells, CD4þCD45Rbhi and
CD4þCD45Rblo T cells were described in rats,
wherein CD45Rbhi cells were IFN-c producing Th1
type inflammatory T cells and CD45Rblo cells were
IL4 and IL10 producing T cells which protected
against cell mediated immunity by reducing produc-
tion of IFN-c [10]. Expanding this characterization in
mice, it was found that CD4þCD45Rblo cells did not
produce IL-4 but protected against adoptively trans-
ferred CD4þCD45Rbhi induced colitis in mice [11].
Nonetheless, the elusive specific identity of suppres-
sive T cells could only be ascertained by seminal work
of Sakaguchi et al. [12] after a decade of their earlier
report. In two successive studies, the group showed
that high affinity IL-2 receptor (IL-2Ra, CD25) was
the specific marker on suppressive cells which were
both CD5hi and CD45Rblo [12]. These CD4þCD25þ T
cells started appearing after day 3 of birth in mouse
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and expanded till day 10 [13]. The group named the
cells regulatory T cells. However, CD25 as a marker
of Tregs was not specific, owing to increased expres-
sion on large proportion of activated effector T cells.

In 1991, Godfrey et al. [14] characterized a mouse
line which originated from a spontaneous X-linked
recessive mutation at Oak ridge national laboratory
under Manhattan project in USA. This mouse
presents a severe lymphoproliferative phenotype with
hypergammaglobulinemia, anemia, runting and so
forth. leading to early death. The animals typically
have severe skin inflammation resulting in a scaly
appearance giving them the name ‘Scurfy’ mice.
Crossing these mice with athymic nude mice resulted
in complete protection from the disease indicating
thymic T cell mediated defect. Extensive genomic
analyses identified a 2-bp insertional mutation in a
gene on X-chromosome of scurfy mice [15]. This
gene had high homology with DNA binding domain
of forkhead family of proteins and thus, was named as
Forkhead box P3 – Foxp3. The mutations in homolo-
gous FOXP3 gene were also found, almost simultan-
eously, [1,16] in the human patients of
Immunodysregulation polyendocrinopathy enterop-
athy X-linked (IPEX) syndrome [17]. Phenotype of
IPEX patients and Scurfy mice led to probing of
Foxp3 in Tregs. Finally, in 2003, three separate groups
confirmed Foxp3 as a lineage defining transcription
factor exclusively expressed in CD4þCD8–CD25þ thy-
mocytes and CD4þCD25þ peripheral T cells in mice
[18–20]. Foxp3eGFP reporter mice established expres-
sion of Foxp3 in TCRbþ T cells in the hematopoietic
compartment and its conditional deletion in CD4þ T
cells led to scurfy phenotype in mice [18]. These dis-
coveries paved the way for intense investigations into
the field of Treg biology as well as maintenance and
transcription program of Foxp3 [21–24].

Numerous mechanisms including direct cytolysis
[25], production of inhibitory cytokines like TGF-b,
IL-10 and IL-35 [26], inhibitory cell surface molecules
like cytotoxic T lymphocyte antigen 4 (CTLA-4) [27],
PD-1 [28], TIM-3 [29] and so forth. have been impli-
cated as Treg mediated suppressive modalities here-
after. Tregs also limit supply of growth factors [30] as
well as activating antigens [31] to effector T cells.
Identification of Tregs in different non-lymphoid
organs which adapt to the prevalent atmosphere
makes them even more formidable in policing the
immune system [32]. Thus, not surprisingly, a defect
in number and/or function of Tregs is observed in a
number of autoimmune and allergic diseases in
humans [33]. On the other hand, sustained Treg

response becomes a detrimental challenge in cancers.
Therefore, manipulating Treg numbers and/or func-
tions provides a two-way opportunity in ameliorating
graft versus host diseases (GvHD) and other auto-
immune disorders on one hand and cancers and other
immunosuppressive disorders on the other. Here, we
present the therapeutic strategies and approaches that
are currently pursued to enhance Treg functions
towards improvement of GvHD and other auto-
immune disorders to establish an operational toler-
ance. We also discuss the modalities being explored to
reduce or abrogate suppressive effects of Tregs to stop
immune evasion by cancers. After enormous preclin-
ical developments and discoveries in the field of Treg
biology, Tregs are being pursued with lot of anticipa-
tion in clinic; hence, we also aim to describe various
efforts with a clinical point-of-view.

(Re)establishing immune tolerance: strategies
to strengthen Tregs

To heal the breach in immune tolerance in consider-
able number of autoimmune diseases and allergies or
to reeducate the immune system for tolerance to
alloantigens in transplant patients, strengthening the
professional regulatory cells, that is Tregs is a compel-
ling mode of remedial intervention. This can be
achieved by increasing the brute number of Tregs
and/or enhancing their suppressive functions
(Table 1).

Adoptive cell (Treg) therapy – ACT-Treg

One of the simplest ways to increase Treg numbers is
to infuse those in the patient, which creates an
intended regulatory immune response. Here, we
describe various approaches which are being utilized
for adoptive transfer of Tregs in patients with pertin-
ent indications.

Polyclonal Tregs
The preclinical proof of concept of legitimacy of
adoptive Treg transfer was available at the onset of
identification of the specific marker for Tregs, that is
CD25. Asano et al., [13] showed that autoimmune
reaction after neonatal thymectomy could be reversed
by transfer of CD4þCD25þ T cells. Subsequently, sev-
eral studies have documented immunosuppressive
effect of adoptively transferred Tregs in various pre-
clinical animal models [34–36]. In humans, decrease
in Tregs was observed in acute transplant rejections
and an increase was observed in patients developing
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spontaneous tolerance post-transplantation [37–39].
FOXP3, being a nuclear resident transcription factor,
cannot be used for isolation of peripheral circulating
Tregs in humans. First human Treg adoptive cell ther-
apy (ACT) report [40] described clinical efficacy by
transfer of CD4þCD25þCD127– Tregs in related acute
and chronic GvHD patients (Figure 1A). FOXP3 and
CD127 expressions inversely correlate in human Tregs
[41]. Thus, CD4þCD25þCD127low/– Treg phenotype
has largely been utilized for fluorescence assisted cell
sorting. To establish tolerance to a graft, the extrapo-
lated calculations from preclinical models suggest that
there should be an increase in 33–50% of total Tregs

[42]. This increase can only be achieved by infusion
of about 3–5� 109 Tregs after lymphodepletion in the
host [42]. As a single leukapheresis can provide about
0.2� 109 Tregs, the required dose of Tregs can only
be produced by expanding them ex vivo with anti-
CD3/CD28 antibodies and high concentration of IL-2,
taking about 2weeks for requisite expansion [43].
While looking for stable Treg phenotype after expan-
sion, it was found that CD45RAþ naïve Tregs provide
more stable and suppressive Tregs after ex vivo
expansion [43].

A phase I/II dose escalation study for autologous
ex vivo expanded Tregs in kidney transplant recipients

Figure 1. Strategies for ex vivo expansion of Tregs for adoptive cell therapy (ACT). (A) Autologous peripheral white blood cells are
collected by leukapheresis. Natural Tregs (CD4þCD25hiCD127low/–) (nTregs) are purified by magnetic enrichment or fluorescence
associated cell sorting (FACS). Highly purified nTregs are activated by coated anti-CD3/CD28 antibodies in presence of high amount
of IL-2. Activated Tregs are expanded ex vivo for several days and are ready for ACT after quality assessments. (B) Naïve T cells
enriched from peripheral white blood cells can be induced into Tregs (induced Tregs, iTregs) by activation with anti-CD3/CD28
antibodies in presence of TGFb and IL2. iTregs are further expanded for several days in presence of IL2 before those can be used
for ACT. (C) For manufacturing alloantigen specific Tregs, purified nTregs are activated with donor antigen presenting cells (APC)
or artificial APCs pulsed with given antigen in presence of high IL-2. Cells are expanded for several days before ACT post-quality
assessment. (D) Chimeric antigen receptor – Tregs (CAR-Tregs) are manufactured by activation and subsequent transduction of chi-
meric DNA. Transduced cells are expanded ex vivo for several days before ACT. scFv- Single chain variable region fragment
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– The ONE study (NCT02129881) [44,45] and a phase
I/II low and high dose autologous Treg adoptive ther-
apy in liver transplant patients – ThRIL trial
(NCT02166177) [45,46] are in patient follow up stage
and no serious adverse effects have been observed,
suggesting safety of adoptive therapy of autologous
polyclonal Tregs. In type I diabetes mellitus (T1DM),
autoimmune loss of pancreatic islet b cells is primary
pathology [47]. In animal models of T1DM, it was
shown that CD4þCD25þ Tregs are protective [48,49].
Initial clinical trial of Treg ACT in a cohort of
recently diagnosed T1DM children provided safety as
well as efficacy of the therapy, as no adverse effects
were observed in two dose groups along with increase
in C-peptide levels, an indicator of pancreatic b cell
function, and a decrease in requirement for exogenous
insulin [50,51]. Another phase I, dose escalation
(0.05� 108 to 26� 108 cells) study in T1DM patients
reported no adverse reactions with ex vivo expanded
CD4þCD25þCD127low/– polyclonal Treg ACT
(NCT01210664) [52,53]. The authors reported no ser-
ious infusion or cell therapy related adverse effects in
any cohort. Also, the long term monitoring of trans-
ferred Tregs (by non-radioactively labeling them with
[6,6-2H2]glucose suggested that a subset (�25%) of
Tregs was long lived and persisted up to 1 year post-
transfusion [53].

Instead of peripheral blood Tregs, attempts have
been made to isolate and expand Tregs from cryopre-
served umbilical cord blood (UCB). In the first dose
escalation study (NCT00602693) for safety and feasi-
bility of partial human leukocyte antigen matched
UCB derived CD4þ/CD25þ Tregs, a median 211-fold
expansion was reported after 18 days culture with
anti-CD3/CD28 beads and human IL-2. The study
reported no infusion related adverse effects in acute
GvHD patients. For the higher yield of expanded
Tregs, UCB derived Tregs were expanded with artifi-
cial APCs (K562 cells modified to express high-affinity
Fc receptor (CD64) and CD86, natural ligand of
CD28) [54] (NCT00602693). There was a median
13000-fold expansion in Tregs. Authors reported no
infusion related adverse events and reduced risk of
acute GvHD [54].

By appropriate treatment (Costimulation, TCR acti-
vation, TGFb and IL-2), conventional naïve T cells
can be converted to induced Tregs (iTregs) in vitro
(Figure 1B). This protocol enables us to use naïve T
cells from peripheral blood to manufacture iTregs for
ACT as natural Tregs are comparatively rare.
However, iTregs are known to be plastic [55] and
under an inflammatory host environment, can convert

to effector T cells and worsen the disease. Therefore,
it is imperative to understand the molecular mecha-
nisms which underlie such transmutations in iTreg
phenotypes. Pharmacological agents which stabilize
expression of FOXP3 in iTregs may positively affect
Treg mediated ACT. Recently, we have reported that
sister transcription factor of Foxp3, Foxp1 [56] is
essential for maintenance of Foxp3 expression in
mouse iTregs. A loss of Foxp1 leads to gradual loss of
Foxp3 and results in intestinal inflammation in aged
mice. On the other hand, a major player promoting
the plasticity of Foxp3 under inflammatory settings
was found to be the transcriptional regulator Id2 [57],
which when ectopically overexpressed in iTregs,
sequesters the transcriptional regulator E protein E2A
in the cytoplasm leading to generation of Th17 cells
in Treg differentiation environment. A forced deme-
thylation of Foxp3 Treg specific demethylated region,
which is methylated in conventional T cells by agents
like DNMT1 inhibitors as 5-aza-2-deoxycytidine (5-
Aza) can stabilize the FOXP3 expression in
Tregs [58,59].

Antigen specific Treg and chimeric antigen receptor
(CAR) Treg therapy
Unspecified and widespread specificities of polyclonal
Tregs somewhat undermine their efficacy. In inducing
transplant tolerance, it is found that donor alloantigen
specific Tregs are five to ten times more potent than
polyclonal Tregs [60,61]. The efficacy of these Tregs
was comparable to the frequency of alloantigen spe-
cific Tregs in the polyclonal pool (Figure 1C). Thus,
in theory an ACT with antigen specific Treg should
require five to ten-fold less cells. Also, the property of
bystander suppression by Tregs suggests that Tregs of
a unique antigen specificity can also function against
other possible MHC antigens for inducing operational
tolerance. Several clinical trials with alloantigen spe-
cific Tregs towards liver and kidney transplant
patients are being pursued at present [62].

A rather potent antigen specificity is offered by chi-
meric antigen receptor (CAR) Tregs (Figure 1D). Low
number of Tregs in body, and even rare frequency
towards specific alloantigens makes CAR-Tregs a suit-
able candidate. CAR-T cells can interact with antigens
in an MHC independent manner like B cells and there
is a high freedom of modulation with CARs. In a first,
Elinov et al., developed a transgenic mouse with all T
cells expressing a tripartite chimeric receptor made of
single-chain variable region fragment (scFv) specific
to hapten 2,4,6- trinitrophenol (TNP) as recognition
unit linked to CD28 costimulatory domain and FcRc
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immune receptor tyrosine-based activation motifs-
anti-TNP scFv-CD28-FcRc tripartite chimeric receptor
(TPCR) to activate the T cells specifically in response
to model antigen TNP [63]. The TNP-CAR Tregs
were specifically activated by TNP and were protective
against TNBS induced colitis which generates TNP-
haptenized cell surface antigens in colon [63]. CAR-
Tregs were shown to accumulate at the site of inflam-
mation in autoimmunity after systemic administration
in an antigen dependent manner [64]. CAR-Tregs tar-
geting human HLA-A2 antigen are also reported,
which suppress GvHD upon allogenic hematopoietic
stem cell transplantation [65]. Yoon et al. reported a
CAR-Treg against factor VIII (Factor VIII’s replace-
ment therapy in hemophilic patients generally induces
an immune response) [66]. These FVIII-CAR Tregs
suppressed both T and B cell effector response
to FVIII.

CAR-Tregs come with their own safety and survival
issues. The dependence of Tregs for survival on para-
crine IL-2 sourced from other cells is a constraint.
Efforts are on to produce CAR-Tregs which can pro-
duce and utilize their own IL-2 in an autocrine fash-
ion. Tregs tend to be plastic in an inflammatory
environment and can turn into effector T cells.
Therefore, engineering the cells by deleting inflamma-
tory cytokine genes as a strategy is proposed. Also,
these Tregs can be developed with inducible ‘suicide
switches’ to eliminate all CAR-Tregs, on demand
[67,68]. USA-based Sangamo Therapeutics is planning
a CAR-Treg (TX200) clinical trial for Kidney trans-
plant patients, wherein, Sangamo wants to apply their
expertise in zinc finger nuclease gene editing technol-
ogy towards increasing safety and survival of CAR-
Tregs [69].

Strategies for in vivo Treg expansion

All the constraints of ACT can be overcome by suit-
able approaches to expand and enhance Tregs in vivo.
The amenability of these methods to simpler clinical
paraphernalia makes those even attractive.

IL-2 therapy for Treg expansion
Common c-chain cytokine Interleukin-2 is a growth
factor for various lymphocytes. Its therapeutic poten-
tial was initially utilized in co-therapy with autologous
natural killer cells [70] and subsequent monotherapy
for metastatic tumors in humans. The treatment
established importance of immunotherapy for treating
cancers. High dose IL-2 therapy presented several
adverse effects like fluid extravasation due to capillary

leak and so forth, however, most of those were revers-
ible upon cessation of treatment [71]. Paradoxically
though, deletion of units of IL-2 receptor (IL2Ra and
IL2Rb) resulted in proliferative immune disorders
instead of expected immunosuppression [72,73] in
mice, suggesting a role of IL-2 in immune regulation.
While Treg development and suppression potential in
IL-2 or IL-2 receptor deficient animals was largely
intact, its maintenance at the periphery was subdued
[21]. It was reported that IL-2 administration
expanded the Treg pool in mice [74] as well as
humans [75]. The higher expression of high affinity
IL-2Ra (CD25) indicated a lower threshold require-
ment of IL-2 for Tregs [73]. Indeed, a short span
(5 days), low dose IL-2 administration was found to
expand and activate Tregs in pancreatic islets in dia-
betes onset NOD mice [76]. Subsequent, clinical trial
NCT00574652 reported around 420% increase in Treg
numbers in peripheral blood in HCV-Induced
Vasculitis human patients [77] (Figure 2A). Daily
low-dose IL-2 administration (NCT00529035) to
glucocorticoid refractory active chronic graft versus
host disease (GvHD) patients was found safe [78].
This therapy increased Treg numbers to more than 8
times of baseline numbers without changing the con-
ventional T cell numbers leading to significant ameli-
oration of chronic GvHD [78]. Currently, Low-dose
IL-2 for Treg Expansion and tolerance (LITE) study
NCT02949492, a phase 4 clinical trial to wean the
liver transplant patients from immunosuppressive
drugs by expanding the Treg pool by administering
low dose IL-2 is being tested. Similarly, studies assess-
ing the effect of IL-2 therapy in SLE (NCT02084238)
[79], relapsing remitting multiple sclerosis
(NCT02424396, MS-IL2 trial), a phase 2 trial in a set
of 14 autoimmune and auto-inflammatory disorders
(TRANSREG trial - NCT01988506), a multicenter
phase I/II clinical trial to evaluate the safety as well as
efficacy of low dose IL-2 in prevention of further loss
of beta-cell function in patients with established T1D
(NCT03243058), ulcerative colitis (NCT02200445),
Primary Sj€ogren’s Syndrome (pSS) (NCT02464319)
and so forth are being conducted, as described in
www.clinicaltrials.gov.

Boyman et al., [80] discovered that IL-2 and anti-IL-
2 monoclonal antibodies when given in vivo can
potentiate the IL-2 effect. It was observed that different
monoclonal antibodies can expand either CD8þ T cells
(Clone S4B6) or Tregs (Clone JES6-1), presumably by
increasing the biological activity of IL-2 by forming
immune complexes (Figure 2A). Indeed, pre-formed
IL-2 anti-IL-2 mAb immune complexes increased Tregs
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in mice. Recently, by solving the crystal structure of
JES6-1 monoclonal antibody in complex with IL-2,
Spangler et al., [81] demonstrated that JES6-1 binding
with IL-2 sterically hinders it is binding to IL2Rb and
IL-2Rc and at the same time lowers the affinity to IL-
2Ra by an allosteric modulation – ‘trigger exchange’.
This favored the IL-2 availability to Tregs which have
very high IL-2Ra expression and expanded their popu-
lation. Several studies have demonstrated successful
Treg expansion and amelioration of immune disorders
in mouse models like lupus nephritis [82], collagen
induced arthritis [83], systemic lupus erythematosus-
like chronic graft-Versus-host Disease [84] and devel-
opment of immune tolerance in mice receiving lung
transplants [85] and so forth. For testing, this approach
in clinic, it is important to produce such potentiating
antibodies in humans. In fact, recently, a fully human

anti- IL-2 antibody F5111.2 has been reported [86] that
when in complex with human IL-2, stabilizes IL-2 in a
conformation which selectively sustains downward sig-
naling in Tregs. F5111.2-hIL-2 immune complexes
improved Treg/T conventional and Treg/T cytotoxic
cell ratio by almost four folds in a dose dependent
manner and successfully reduced type 1 diabetes remis-
sion in NOD mice, disease severity in experimental
autoimmune encephalitis and xenogeneic graft versus
host disease in mice [86].

Recently, synthetic peptide mimics of IL-2 has been
described which bind to IL-2Rb and c chain hetero-
dimer but have no binding with IL-2Ra [87]. Such
strategies can be utilized for selective signaling via IL-
2Ra and other receptor complexes for Treg expansion.

Figure 2. Approaches for in vivo expansion of Tregs. (A) Top, Low dose IL-2 therapy results in selective Treg expansion owing to
high density of high affinity IL-2Ra on Tregs. Similarly, low dose long half-live IL-2 (PEGylated IL-2) also selectively induces Treg
expansion. Middle, IL-2 and anti-IL-2 antibody immune complexes with certain monoclonal antibodies like JES6-1 selectively
expands Tregs owing to their ability to sterically hinder IL-2 binding to low affinity IL-2 receptors on effector T cells. Bottom,
Activation of TNFRII on Treg surface by membrane bound TNFa, TNFa muteins or agonist antibodies specifically expands Tregs.
Also, certain anti-TNFa antibodies like adalimumab bind to Fc receptors on monocytes and thus make membrane bound TNFa
available to TNFRII on Treg surface leading to their selective expansion. (B) Certain commensal bacteria and their products like
polysaccharide A from Bacteroides fragilis or Cell surface b-glucan/galactan (CSGG) of Bifidobacterium bifidum selectively expand
colonic Tregs via a dendritic cell TLR2 dependent process.
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Tumor necrosis factor a mediated Treg expansion
Tumor necrosis Factor-a (TNF-a) is produced as a 26
KD type II transmembrane protein which forms a
functional homotrimeric molecule after getting cleaved
into a 17 KD soluble monomer by metalloprotease
TNF-a converting enzyme [88,89]. TNF initiates
NFkB signaling by ubiquitous TNFRI or immune cell
specific TNFRII [90]. TNFRI is activated by both
membrane bound and soluble TNF [91], TNFRII is
activated by membrane bound TNF [92].

TNF-a is a classic inflammatory cytokine that can
inhibit Treg suppressive potential by increasing PKC-
h recruitment to immunological synapse [93]. It also
inactivates FOXP3 by inhibiting its phosphorylation
[94]. Rather paradoxically, it was found that TNF
interaction with TNFRII receptor promotes the expan-
sion of Tregs which are highly suppressive [95,96]
(Figure 2A). This interaction was found to be instru-
mental for Treg mediated effects in various animal
models like autoimmune colitis [97] and EAE [98]
and so forth. Specific TNF mutein – selective mouse
TNF-based agonist of TNF receptor 2 (STAR2)
increased Tregs by 2–4 folds which successfully sup-
pressed acute allogenic stem cell transplantation (allo-
HCT) induced GvHD in mice [99]. This selective
TNFRII stimulation did not induce any appreciable
activation of conventional T cells. A human TNFRII-
specific STAR-2 equivalent TNC-scTNF (143N/145R)
was shown to expand human Tregs in vitro [99].
Similarly, TNFRII antagonistic antibody TR7554.7 was
shown to abolish the protective effect of Tregs on
allo-HCT induced GvHD [100]. Rather unexpectedly,
it was found out that adalimumab, a therapeutic anti-
TNF antibody, crosslinked membrane bound TNF on
monocytes with TNFRII on Tregs, both isolated from
patients with rheumatoid arthritis. This, in turn, facili-
tated the expansion of functional Tregs in vitro [101].

Human Tregs isolated from PBMC produce their
own membrane bound TNF-a which can act as auto-
crine growth factor for Tregs by cross-linking TNF
receptor type II, resulting in enhanced proliferation par-
ticularly when IL-2 is limiting [102]. Several pharma-
ceutical agents targeting human TNFRII have been
described as TNFRII agonist antibodies like MR2-1
[103] and TNF muteins like TNF07 [104] and so forth.
A detailed account can be found in this review [105].
Thus, standalone or as a co-therapy TNFRII mediated
Treg expansion is a potential treatment strategy for vari-
ous autoimmune, GvHD and chronic inflammatory dis-
eases. One clinical study NCT01233583 has been testing
effect of adalimumab and other drugs on Treg modula-
tion in psoriasis patients.

Peripheral Treg expansion by microbes and
their products
Several bacteria have been shown to increase the fre-
quency of Tregs in gut associated lymphoid tissues
(Figure 2B). Bacteroides fragilis has been shown to
induce functional IL-10 producing Tregs in mice gut
which were protective in the models of experimental
colitis [106]. Oral administration of bacterial polysach-
haride A (PSA) produced by B. fragilis in mice also
reversed experimental colitis [106]. Later, PSA was
reported to induce FOXP3 and CD39 in human
CD4þ T cells, in vitro [107]. Similarly, Clostridium
strains induce higher frequency of functional Tregs in
mice colon by inducing a TGFb1 enriched environ-
ment [108]. Colonization with Clostridium and subse-
quent increase in Tregs was protective in animal
models of inflammatory bowel disease and food
allergy [108]. Later studies found that bacteria produc-
ing short chain fatty acids butyrate and propionate by
metabolism of dietary fibers induce Tregs by working
via GPCR43 and histone deacetylase inhibitory prop-
erties [109–111]. Oral feeding of rationally selected
mixture of 17 strains of Clostridia from human feces,
based on Treg frequency and high IL-10 and ICOS
expression, increased Treg abundance and were pro-
tective in experimental colitis and allergic diarrhea in
mice, suggesting a possible therapy for similar human
conditions [112]. Other lactic acid bacteria like
Bacillus coagulans 09.712 [113] and Lactobacillus plan-
tarum WCFS1 [114] are reported to increase Treg fre-
quency. Recently, human probiotic Bifidobacterium
bifidum strain PRI1 has been shown to de novo gen-
erate Tregs in mouse gut [115]. The authors found
that Cell surface b-glucan/galactan (CSGG) polysac-
charide of B. bifidum are the main component which
increased the TGFb production from dendritic cells
largely through a TLR2 dependent manner. The Tregs
generated were functional and provided significant
protection against experimental colitis [115].

While most of these studies provide a future per-
spective wherein these microbial mixtures or their
components can be used alone or in combination
with other existing therapies, a lack of very specific
mechanisms and biological importance of increased
Treg generation over the normally present Tregs in
homeostasis are not very clear.

Targeting Tregs for tumor immunotherapy:
inhibition of Tregs

Highly immunosuppressive intra-tumoral environment
helps the tumor to escape anti-tumor immune
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response. While several suppressive cell types contrib-
ute to this tumor environment, Tregs are probably the
most important suppressive cells, enriched in many
type of tumors [116–119] and can constitute more
than half of CD4þ T cell compartment [120]. In ani-
mal models it has been demonstrated that Tregs con-
tribute to early tumor initiation and subsequent
progression [121,122]. A high ratio of T effector cells
to Tregs has been indicative of successful immuno-
therapy in both mice and humans [123,124].

Earlier it was reported that certain conventional
chemotherapeutic agents enhance their anti-tumor
effect by inhibiting Treg cell function and viability
[125,126]. Indeed, low dose cyclophosphamide and
paclitaxel, both chemotherapeutic agents were found
to be suppressing FOXP3þ Tregs [127–129] (Table 2).

Intratumoral Treg depletion

Antibody therapies to block the binding of immune
checkpoint molecules, on effector T cells, with their
ligands have revolutionized cancer immunotherapy. A
high expression of checkpoint molecules like CTLA-4,
PD-1, TIM-3, LAG-3 and so forth. makes them ideal
target for Treg depletion via antibody dependent cel-
lular cytotoxicity (ADCC). Other than checkpoint
inhibitors, specific chemokine receptors and other sur-
face markers specifically expressed by intratumoral
Tregs can also be utilized for similar purposes.

Treg depletion by diphtheria toxin administration
in mouse models of cancers where Tregs express a
receptor for Diphtheria toxin has been shown to curb
the tumor progression both in autochthonous [130]
and transplanted tumors [131]. However, Treg deple-
tion in human tumors is constrained by absence of an
exclusive tumor specific Treg surface marker. It is
desirable to deplete only the intratumoral Tregs so
that adverse autoimmune reactions due to peripheral
Treg depletion can be avoided. Nevertheless, in such
cases a depletion therapy is aimed at markers with
relatively higher expression in Tregs than conven-
tional T cells, so that a therapeutic window could
be achieved.

IL-2/IL-2R based Treg depletion
A most direct inhibition of Treg mediated suppression
is possible either by depletion of Tregs within tumors
or blockade of their recruitment and/or intratumoral
induction of Tregs, if any. Based on TCR repertoire
overlap analysis, several reports have suggested that
there is little to no intratumoral conversion of naïve
or effector T cells into induced Tregs [132–135].

A high expression of high affinity IL2 receptor a
(CD25) makes it a natural target for selective deple-
tion of Tregs (Figure 3A). Thus, humanized anti-
CD25 antibodies (daclizumab and basiliximab) have
been assessed in clinical trials. Daclizumab in a com-
bination with dendritic cell vaccine in metastatic mel-
anoma patients, although depleted most peripheral
Tregs, did not provide any significant effect in either
generation of vaccine specific effector T cells or in
progression free survival [136]. Similarly, basiliximab,
an IgG1 chimeric mouse-human antibody has been
shown to deplete Tregs and reduce tumor growth dur-
ing dendritic cell vaccination in chemotherapy
induced lymphopenia in mice with malignant melan-
oma [137]. This regimen also depleted Tregs in
humans with glioblastoma [137]. Further effect of
basiliximab in patients is being evaluated in clinical
study NCT00626483. Recently, anti-CD25 antibody
optimized for FCcR binding and ADCC has been
reported to have better intra-tumoral Treg depletion
as well as better therapeutic profile in combination
with anti-PD1 check-point inhibitor [138]. IL-2 fused
with diphtheria toxin (Denileukin difitox, Ontak and
E-7777) or exotoxin A of Pseudomonas spp. (LMB-2)
have been used to selectively kill Tregs (Figure 3A).
Ontak is approved for cutaneous T-cell lymphoma.
Studies have reported mixed response from Ontak
treatment in various cancers and as co-therapy for
vaccination in mice and humans [139–141]. It was
found to deplete activated Tregs while sparing the
resting ones [140]. Several clinical studies are evaluat-
ing it in various cancerous indications. E-7777 is a
variant of Ontak with better bioavailability. Its
phase I clinical trial (NCT01401530) has provided a
manageable adverse effect profile and clinically
meaningful anti-tumor activity in relapsed/refrac-
tory peripheral and cutaneous T cell lymphoma
[142]. A phase II clinical study of LMB-2
(NCT00924170) in combination with chemotherapy,
cyclophosphamide and fludarabine, has shown com-
plete remission in adult T cell leukemia [143].
Accumulated evidence suggest that Treg depletion
based on CD25 can be a good strategy in lympho-
penic conditions, when high CD25 expressing
effector T cells can be spared. High expression of
CD25 by tumor cells and Tregs can potentiate the
effect of IL-2 and toxin fusion proteins.

Checkpoint therapy mediated ADCC of Tregs
Punctual deletion of CTLA-4 on adult mouse Tregs
increases the immunosuppressive function of Tregs via
higher IL-10 and other rebound immunosuppressive
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molecules [144]. Thus, a mere inhibitory approach
towards Treg CTLA-4 without Treg depletion might
not be effective in anti-tumor therapy.

Antibodies against CTLA-4, PD-1 and PDL-1,
while developed for rejuvenating exhausted T cells,
are increasingly demonstrated to inhibit Tregs, owing
to a higher expression of these molecules on Treg cell
surface. Recent preclinical studies demonstrated that
anti-CTLA-4 antibody isotypes especially IgG2a
deplete Tregs in mouse tumor models [145,146]. This
depletion was incumbent on presence of FCcRIV
receptor expressing macrophages in the tumors
(Figure 3B). Similarly, anti-human CTLA4 antibodies
ipilimumab and tremelimumab also increase CD8/

Treg ratio inside tumors and decrease the frequency
of infiltrating Tregs [147]. However, this was observed
in highly inflamed tumors presenting a high affinity
polymorphism of CD16 receptor. A recent study tried
to assess absolute depletion of Tregs, instead of fre-
quency, by immunohistochemistry in prostate cancers,
primary bladder cancers and metastatic melanoma
[148]. This analysis indicated that though CD8/Treg
ratio increases after ipilimumab therapy, this is largely
attributable to increased number of CD8 T cells while
Treg density remains rather unchanged. Thus, there is
a scope of designing dual activity anti-CTLA4 anti-
bodies, which can effectively block CTLA-4 signaling
on effector T cells and simultaneously, deplete the

Figure 3. Subjugation of Tregs in tumor microenvironment. (A) CD25 (IL-2Ra) mediated Treg depletion can be achieved by natural
killer (NK) cell mediated antibody dependent cell cytotoxicity (ADCC) by binding to anti-CD25 antibodies by Fc receptors. IL-2
fusion proteins with diphtheria toxin (Ontak, E7777) and exotoxin A of Pseudomonas spp. can deliver the toxins to Tregs via CD25
binding leading to the apoptosis of Tregs. (B) Immune check-point inhibitor antibodies like anti-CTLA4 and anti-PD-1 can lead to
NK cell mediated Treg ADCC. Similarly, depleting anti-CCR4 antibodies also cause Treg ADCC. (C) Inhibiting Neuropilin-1 (NRP-1)
signaling by blocking its binding to ligand Semaphorin A leads to conversion of Tregs into effector like T cells. Also, Indole deoxy-
genase inhibitors spare the tryptophan and reduce kyneurinine formation leading to decreased Treg frequency. (D) Blocking TNF
family surface receptors on Tregs like OX-40 and GITR leads to decreased suppressive functions of Tregs.
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Tregs, particularly in tumors expressing ADCC suffi-
cient cells.

Further, it is observed that though metastatic mel-
anoma patients treated together with ipilimumab and
radiation showed favorable response in some patients,
majority of patients did not respond. Modeling the
same treatment in mouse model of B16F10 melanoma
revealed increased PD-L1 expression by tumor cells.
Thus, adding a PD-L1 or PD-1 blockade reduced the
resistance to radiation and ipilimumab co-therapy
[149]. A combined treatment with nivolumab (anti-
PD-1 antibody) and ipilimumab has provided favor-
able outcomes in melanoma patients in an ongoing
Clinical Trial NCT01927419 [150].

Anti-chemokine receptor antibody medi-
ated depletion
Tumor cells and infiltrating macrophages produce
chemokines like CCL17 [151] and CCL22 [152]. Both
of these chemokines are ligands for CCR4, expressed
on effector Tregs infiltrating the tumors. A defucosy-
lated humanized anti-CCR4 antibody KW-0761
(mogamulizumab) has shown effective intratumoral
Treg depletion [153,154] (Figure 3B). This antibody
was approved in Japan for relapsed or refractory
CCR4-positive adult T-cell leukemia-lymphoma in
2012. Recently, FDA has approved mogamulizumab
for rare non-melanoma skin cancers mycosis fun-
goides and S�ezary syndrome, two subtypes of cutane-
ous T cell lymphoma. However, CCR4 is found to be
expressed on effector T cells as well as resting Tregs,
albeit lower than effector Tregs. Indeed, it was found
that mogamulizumab depletes both Tregs and effector
T cells [155], which might be the reason for adverse
drug reactions seen with this therapy [156]. Recent
genome wide transcriptome studies identified CCR8
as major chemokine receptor expressed selectively on
intratumoral Tregs [157,158]. CCR8 ligands CCL1 and
CCL18 are highly transcribed in tumor infiltrating
myeloid cells [157]. Indeed, anti-CCR8 therapy in a
mouse model of colon carcinoma induced protective
immunity and enhanced L. monocytogenes-based vac-
cine response [159].

Inhibition of Treg functions

Certain TNFR family molecules like GITR and OX-40
are highly expressed on activated Tregs. GITR ligation
with non-depleting agonistic antibodies destabilizes
Tregs reducing their numbers resulting in reduced
tumor growth [160,161] (Figure 3C). Anti-GITR anti-
bodies also synergize with checkpoint therapy

[162,163]. A review of current biologicals targeting
TNFR molecules on Tregs can be found in [164].

The heme proteins TDO (tryptophan 2,3-dioxyge-
nase) and IDO (indoleamine 2,3-dioxygenase) are spe-
cific enzymes catalyzing first rate limiting reaction in
conversion of Tryptophan to kyneurinine. They are
expressed by several tumors and dendritic cells in
response to inflammation [165] (Figure 3D).
Utilization of tryptophan by these pathways renders
effector T cells ineffective and increases Treg gener-
ation [166]. Several mono as well as dual inhibitors
are under various stages of clinical development
[167,168]. However, recently a phase 3 clinical trial of
IDO inhibitor epacadostat in a co-therapy with pem-
brolizumab has reported negative results [169].

It has been reported that intratumoral Tregs are
stabilized by NRP-1 [170]. Binding of NRP-1 to its
ligand semaphorin4a inhibits AKT phosphorylation
and thus, increases FOXO1 and 3 nuclear localization.
This stabilizes the Treg genetic program. Loss of
NRP-1 expression from intratumoral Tregs led the
Tregs to produce interferonc and loss of suppressive
phenotype [120]. Thus, inhibition of NRP-1 ligation
can be utilized as a therapy to subdue tumor Tregs
probably in combination with other therapies
(Figure 3D).

Recently, it has been shown that human Tregs
induce senescence in effector T cells via nutrient (glu-
cose) deprivation via a TLR8 dependent mechanism,
which is a mechanism of immunosuppression by
tumor cells as well. A therapy directed against such
mechanisms can provide a synergistic effect as it will
inhibit both tumor cell as well as intratumoral Treg
expansion [171,172].

Conclusion and future perspectives

Both autoimmunity and alloimmunity have long
been clinically managed by general immunosuppres-
sion. With the efforts to utilize Tregs for these thera-
pies, a specificity is being brought, which can protect
against the ills of a global suppressive milieu.
However, Treg therapy is in its infancy and several
issues are still being addressed. For the adoptive Treg
therapy, the process of manufacturing of Tregs is
itself tricky. We still do not have markers which can
be utilized for identifying Tregs with absolute surety.
Also, a cell therapy requires Good Manufacturing
Practice (GMP) manufacturing facilities which are
scarce and costly. The rather non-feasibility of
imparting these treatments outside research facilities
is also a major hurdle. The individual nature of cell
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therapy is a deterrent but is safe. This is being
addressed by off-the-self ‘universal Tregs’ [173]. To
suppress alloimmunity and establish an immune tol-
erance, the number of adoptively transferred Tregs is
very high (and not yet totally defined), so better
strategies for ex vivo expansion of Tregs and clinical
studies looking at safety of transferred Tregs in the
efficacy ranges of Tregs are a requisite. The ex vivo
hyper-expansion strategies with artificial APCs need
to be pursued as well [174]. Also, better understand-
ing of mechanisms of Treg mediated ‘infectious tol-
erance’ can supplement this endeavor [175].

Manufacturing iTregs from naïve T cells precludes
need for high numbers of rather ‘rare’ natural Tregs,
but possible plasticity as well as survival of iTregs in
vivo is a hurdle. Hence, there is scope for new strat-
egies and protocols to ensure Treg lineage stability.
All these goals, theoretically, are achievable by CAR-
Treg therapy. Therefore, there is need for more defini-
tive preclinical and clinical studies with CAR-Tregs.
Although the enormous cost associated with such
therapies is an impediment, the results could be really
astonishing. With the FDA approval of CAR-T cell
therapy for certain lymphomas, the possibility of ther-
apy with CAR-Tregs is ever more exciting. However,
one big issue with this therapy remains with identifi-
cation and thorough investigation of unique antigens
to be targeted. The CAR-Tregs will also be faced with
similar questions of survival, stability and plasticity.
However, approaches like providing them with their
own autocrine IL-2, deleting effector cytokine genes
from them, incorporating some suicide switches and
so forth. are already being discussed. As demonstrated
in preclinical animal model studies, tissue specific
homing of CAR-Tregs based on specific antigen is a
very interesting prospect [176] as this eliminates chan-
ces of a global suppression. The strategies to expand
Tregs in vivo are rather manageable and can be easily
applied in a clinical setting. However, the efforts to
increase half-life of IL-2 shall be pursued more aggres-
sively. PEGylation of IL-2 definitely has been shown
as one way of doing that [177]. However, IL-2 medi-
ated preferential induction of Tregs is a challenge. It
has been shown that low to ultra-low doses of IL-2
(10 to 100 folds less than what required for memory
T cells) can induce Tregs in type 1 diabetic patients
[178]. Recently, effector T cell specific IL-2 mimics
which selectively bind to IL-2Rb and c chains have
been described [87]. Along these lines, identification
of IL-2 mimics which can selectively bind to IL-2Ra
shall be pursued.

The overabundance of Tregs in a tumor milieu is
indeed a bottleneck in cancer therapy. Similarly,
depletion of tumor specific Tregs while preserving the
global immune homeostasis is a challenge. Here again,
identification of specific markers can be a boon. As
immunosuppression inside tumors is in a large part
driven by cancer itself, probably Treg based
approaches need to take into account the conglomer-
ation of all type of cells. The tumor specific and prob-
ably personalized identification of cells capable of
ADCC inside tumors should be a norm before Treg
depleting immunotherapy. Also, there are other cells
which can take on the suppression mantle from Tregs,
so they all should be looked in totality. Tregs, prob-
ably, are the primary reason for epitope masking by
cancers and given the enhanced capabilities of intratu-
moral Tregs it will be beneficial to identify antigen
specific Tregs. As recently demonstrated, even neoan-
tigen specific Tregs exist in the host, harnessing
potential of antigen specificity could be important
[135]. A recent setback with IDO inhibitors
(NCT02752074) [169,179] notwithstanding, muting
Treg functions by specific targets is a very valid
approach in cancer therapy. The amenability of this
approach to small molecule inhibitors can push drug
discovery forward. Also, identification of metabolic
aspects of Treg survival and trafficking in tumor
environment could provide specific and sensitive tar-
gets for future Treg based therapies.

To sum up, burgeoning information about Treg
biology and innovative strategies for Treg modulation
foretell exciting prospects for establishing broken tol-
erance in transplantation and autoimmune diseases.
Also, Tregs provide a better understanding of immune
evasions by cancers and thus, the conundrum of
highly effective cancer immune checkpoint therapy
but only in a small subset of patients might get a key.
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