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We investigated the relation between the two-dimensional minimal gravity (Lee-Yang series) with
boundaries and open intersection theory. It is noted that the minimal gravity with boundaries is defined in
terms of boundary cosmological constant μB and the open intersection theory in terms of boundary marked
point generating parameter s. Based on the conjecture that the two different descriptions of the generating
functions are related by the Laplace transform, we derive the compact expressions for the generating
function of the intersection theory from that of the minimal gravity on a disk and on a cylinder.
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I. INTRODUCTION

The interplay of the KdV hierarchy between two-
dimensional quantum gravity and intersection theory (IT)
for the moduli spaces of closed Riemann surfaces was
proposed in [1]. The conjecture of Witten for the IT was
proved in [2] by finding the generating function (GF), also
known as free energy, of the one-matrix Airy function.
Later, the KdV hierarchy was also checked for two-
dimensional minimal gravity (MG) of Lee-Yang series
by constructing the effective GF on genera up to three in [3]
using the one-matrix model polynomials.
Similar interplay is noted for the models on the Riemann

surfaces with boundaries [4,5]. The GF of the MG with
boundaries (BMG) satisfies the relations, similar to the
ones known for the open intersection theory (OIT) [6].
These relations include the boundary version of the KdV
hierarchy and the string equation, which encode the
generalized Virasoro constraints, the analog of the con-
straints on the closed Riemann surfaces [7,8].
In this paper, we continue the investigation of the

interplay between the two-dimensional gravity and inter-
section theory on the moduli spaces of Riemann surfaces
with boundaries.

While the GF of IT and that of MG satisfy essentially the
same equations, including the KdV hierarchy and the
Virasoro constraints, they have perturbative expansions with
drastically different properties. The reason is that they belong
to different classes of the solutions with different types of
analytical properties, which can be related with each other by
different types of analytical continuation. It should be noted
that the set of KdV parameters in two theories plays a
different role. On the closed Riemann surfaces, the bulk
cosmological constant μ provides the gravitational scaling
dimension (GSD) and plays amajor role forMG. In addition,
theGF is nonanalytic in μ and therefore, one cannot turn off μ
in MG. On the other hand, t0 in IT provides the scaling
dimension (SD), which, in general, has nothing to dowith μ.
As a result, even though both GF are solutions of the same
KdV hierarchy, they are different.
Similar analysis holds for the open KdV hierarchy. BMG

needs the boundary cosmological constant μB and its open
KdV hierarchy is given in terms of μB. On the other hand,
OIT and its open KdV are described by the boundary
parameter s. As a result, the open KdV hierarchy of BMG
differs from that of OIT. Nevertheless, the two different
KdV hierarchies turn out to be closely related to each other:
exponentials of the GF of two theories are formally related
through the Laplace transform [5].
This paper investigates further the relation between

solutions to the open KdV hierarchy of BMG and OIT.
As a result of an explicit comparison of the two repre-
sentations, we obtain an elegant formula for the GF on a
disk. Once one finds the solution on the disk, one may
further proceed to finding the GF for higher topologies
order by order with the help of the hierarchical structure. As
the first example, we apply the machinery to the case of
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cylinder. The GF can be concisely given in terms of the
variables introduced in [9,10].
The paper is organized as follows. In Sec. II, description of

IT and MG in terms of the KdV hierarchy and Virasoro
constraints is summarized and clarified: Sec. II A is for the
closed Riemann surfaces and Sec. II B is for the Riemann
surfaces with boundaries (open Riemann surfaces). In
Sec. III, GF of BMG with μB parameter is analyzed in terms
of open KdV hierarchy with Euler characteristic expansion.
In Sec. IV, we find GF of OIT in s space using the Laplace
transform from GF of BMG in μB space. In this process, one
has to find a way to choose the right solution of string
equation. We provide a formula for the disk GF in s space
with dependence on all the KdV parameters, generating the
explicit formula of [6] where the first of the KdV parameters
being turned off. We further derive a formula for the GF on a
fluctuating cylinder and check if it reproduces a result given
in a form of a power series generated by perturbative analysis
[11]. This demonstrates that our approach is powerful and
simplified compared to preceding approaches. Section V is
the summary and discussion.

II. MINIMAL GRAVITY VS
INTERSECTION THEORY

A. Riemann surfaces without boundary

Minimal quantumgravity ofLee-Yang seriesMð2;2pþ1Þ
on the closed Riemann surface is described either by the
Liouville field theory coupled to conformal matter [12] or by
the scaling limit of one-matrix model [13,14]. Its generating
function (free energy) has natural genus expansion

F c ¼
X∞
g¼0

λ2g−2F c
ðgÞ; ð1Þ

where λ is the genus expansion parameter. Two approaches
led to the different expressions for theGF,which are believed
to be related to each other by the so-called resonance
transformations [15,16]. Belowwewill workwith thematrix
model description, which has a much clearer relation to the
integrable hierarchies. The GF F c depends on the multiple
KdV parameters τ0; τ1;…; τp−1, and it is convenient to
introduce the function

u≡ ∂2F c

∂τ20 : ð2Þ

The matrix model formulation allows us to construct the GF,
F c, dependent on the infinitely many descendent variables.
However, we do not consider this opportunity below.
The flow equations of u along the KdV parameter

directions constitute the KdV hierarchy [17–20]. The
KdV hierarchy and the string equation satisfied by the
GF of MG can be represented as

1

λ2
2nþ 1

2

∂3F c

∂τ20∂τn ¼
∂2F c

∂τ20
∂3F c

∂τ20∂τn−1 þ
1

2

∂3F c

∂τ30
∂2F c

∂τ0∂τn−1
þ 1

8

∂5F c

∂τ40∂τn−1 ; ð3Þ

0 ¼
X
n≥0

τnþ1

∂F c

∂τn þ τ20
2λ2

; ð4Þ

where τpþ1 ¼ 1 and τk ¼ 0 for k > pþ 1.
On a fluctuating sphere, the flows are described by the

dispersionless limit of the KdV hierarchy (3), which has the
simple form

∂3F c
ð0Þ

∂τn∂τ20 ¼
∂v
∂τn ¼

vn

n!
∂v
∂τ0 for 1 ≤ n ≤ p − 1: ð5Þ

HereF c
ð0Þ is the GF on the sphere, and it is best described in

terms of A1 Frobenius manifold [21,22] (see also [23,24]
for a dual description in terms of A2p) whose coordinate is
identified with the second derivative of the GF,

v≡ ∂2F c
ð0Þ

∂τ20 : ð6Þ

The string equation can be reduced to the polynomial
form

Pðτ; vÞ ¼ 0; Pðτ; vÞ≡Xp−1
m¼0

τm
vm

m!
þ vpþ1

ðpþ 1Þ! : ð7Þ

This equation can be obtained if one takes the second
derivative of (4) with respect to τ0, uses the dispersionlees
KdV hierarchy (5), and integrates the result over τ0.
It is noted that GF of MG is constructed on the fluctuating

sphere in [25] for the Lee-Yang model using both of the
results of Liouville field theory andmatrixmodel. This result
is extended in [16] to the Lee-Yang series

F c
ð0Þ ¼

1

2

Z
w

0

P2ðvÞdv; ð8Þ

where PðvÞ is the string polynomial and w is a proper
solution of the string equation of the polynomial form (7).
One can check easily that F c

ð0Þ satisfies the KdV hierarchy

and the string equation.GFofMG is further constructed up to
genus 3 in [3], and these contributions are also found to
satisfy the KdV hierarchy.
In [1], it was conjectured that two-dimensional gravity is

related to the intersection theory on the moduli space of
Riemann surfaces. The GF of IT depends on the infinitely
many parameters, t ¼ ðt0; t1; � � �Þ, playing the role of the
coupling constants of the gravitational descendants in
topological gravity. From this physical identification of
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different two-dimensional gravity models, Witten con-
cluded that the all genera GF of IT, Fc, also satisfies the
KdV hierarchy and the string equation

1

λ2
2nþ 1

2

∂3Fc

∂t20∂tn ¼
∂2Fc

∂t20
∂3Fc

∂t20∂tn−1 þ
1

2

∂3Fc

∂t30
∂2Fc

∂t0∂tn−1
þ 1

8

∂5Fc

∂t40∂tn−1 ; ð9Þ

∂Fc

∂t0 ¼
X
n≥0

tnþ1

∂Fc

∂tn þ t20
2λ2

: ð10Þ

Here and from now on, we distinguish the notation of GF,
F for MG, and F for IT. The conjecture was proved in [2]
by identifying of the GF of ITwith the matrix integral over
N × N Hermitian matrix X with the cubic potential

eF
c ∝

Z
½dX�e−1

λTrðX
3

6
−Λ2X

2
Þ; ð11Þ

with the condition Fcðt ¼ 0Þ ¼ 0. For this Kontsevich
matrix integral representation, the set of KdV parameters
is given by the Miwa variables

tk ¼ λð2k − 1Þ!!TrΛ−2k−1; ð12Þ

assuming N is sufficiently large.
It is known that the KdV hierarchy and string equation

imply the Virasoro constraints [7,8],

LneF
c ¼ 0 for n ≥ −1: ð13Þ

The Virasoro generators are

L−1 ¼
X
i≥0

ðti − δi;1Þ
∂

∂ti−1 þ
t20
2λ2

; ð14Þ

L0 ¼
X
i≥0

2iþ 1

2
ðti − δi;1Þ

∂
∂ti þ

1

16
; ð15Þ

and for n > 0,

Ln ¼
X
i≥0

ð2iþ 2nþ 1Þ!!
2nþ1ð2n − 1Þ!! ðti − δi;1Þ

∂
∂tiþn

þ λ2

2

Xn−1
i≥0

ð2iþ 1Þ!!ð2n − 2i − 1Þ!!
2nþ1

∂2

∂ti∂tn−i−1 : ð16Þ

The Virasoro constraints can also be derived from the
Kontsevich matrix integral [26–28].
From the comparison of the KdV hierarchy and the string

equation of MG (3) and (4) and those of IT (9) and (10) one
can conclude, that they coincide after an identification of all

variables τn with tn except for n ¼ 1. Namely, t1 is identified
with τ1 shifted by a constant, t1 ¼ τ1 þ 1. This is a well-
known dilaton shift. Let us stress that, while the equation
satisfied by the GF of ITand that ofMG are almost the same,
the solutions do not coincide. In particular, the role of KdV
parameters in two models differs dramatically. First, τn in
MG couples to the gravitation primary operator of Lee-Yang
series. On the other hand, tn for n > 0 in IT couples to
gravitational descendant operator.
Second, more important is the role of τp−1 of MG and t0

of IT. In MG approach, the cosmological constant μ should
be present and all the physical quantities in MG are
equipped with the GSD, which counts the power of μ
[12]. It is known [15,25] that τp−1 plays the role of μ. Other
KdV parameters τn (n < p − 1) are considered as defor-
mation parameters. Before the deformation, the string
equation of the polynomial form (7)

τp−1
vp−1

ðp − 1Þ!þ
vpþ1

ðpþ 1Þ! ¼ 0 ð17Þ

has a nontrivial solution v ∝ ffiffiffi
μ

p
and namely this solution

describes MG. This shows that, in general, GF of MG is
nonanalytic in τp−1, as GF is given in powers of v [see, e.g.,
(8)] and GSD is given by a fractional number.
It can be shown that the GF of MG is scale free. Note that

in (7) the coefficient of the term vpþ1 is assumed to be scale
free and can be normalized to 1. Since GSD of v is 1=2,
GSD of Pðτ; vÞ is ðpþ 1Þ=2 and GSD of the deformation
parameters τk is ðpþ 1 − kÞ=2. According to (8), GSD of
GF on sphere is ð2pþ 3Þ=2. In addition, the genus
expansion parameter λ2 in (1) has nonvanishing GSD,
namely, ð2pþ 3Þ=2.
To compare the IT with the MG, we can put tn ¼ 0

(n ≥ p) in the GF, which restricts to the subspace with the
finite number of KdV parameters t ¼ ðt0; t1; � � � tp−1Þ.
Then, the string polynomial for IT is obtained from (7)
by the above described between τ and t,

Pðt; vÞ ¼
Xp−1
m¼0

tm
vm

m!
− v; ð18Þ

where the linear power of v is added due to the t1 shift. In
this case, t0 becomes the basic parameter and the others are
treated as deformation parameters, so that the undeformed
solution is v ¼ t0. One can show that the string polynomial
(18) is consistent with the KdV hierarchy (9) and the string
equation (10) to the lowest order in λ.
The solution of this string equation, corresponding to IT,

is completely perturbative in tk’s. Namely, it is a power
series of all the KdV parameters tk so it has a regular limit
when all of them, including t0, go to zero. In a certain sense,
the GF of IT can be considered as a “universal” GF for the
whole Lee-Yang series, starting from Mð2; 1Þ model,
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adding proper number of variables and allowing analytic
continuation on the solution space [3].
Like in MG, one can introduce the SD to IT: in (18), t1 is

assumed to be a scale-free parameter. Therefore, it is natural
to define SD as the power of t0, the basic scale parameter.
This shows that SD of v is 1 and therefore, SD of Pðt; vÞ is
assigned to be 1 and SD of the deformation parameters tk is
1 − k. Note that v ¼ t0 before deformation, and that SD of
GF on sphere is 3 (from the definition v ¼ ∂2Fc

ð0Þ=∂t20), so is
the SD of the genus expansion parameter λ2.

B. Riemann surfaces with boundaries

Recently, the intersection theory on the moduli spaces of
the Riemann surfaces with boundaries was developed by
Pandharipande et al. [6]; see also [29,30]. They have
described the GF Fo for the open intersection numbersZ

M̄ḡ;k;l

ψa1
1 ψa2

2 …ψal
l ð19Þ

given by the integrals of the products of the first Chern
classes ψ i of the cotangent line bundles over the compac-
tification M̄ḡ;k;l of the moduli space of Riemann surfaces
with boundaries. They also constructed explicitly the
leading contribution to this GF, given by the disk geometry,
and explained how to make the naive description (19)
precise for the higher geometries. The integral is non-
vanishing only if dimension of M̄ḡ;k;l,

dimRMḡ;k;l ¼ 3ḡ − 3þ kþ 2l; ð20Þ
coincides with the degree of the integrand

3ḡ − 3þ kþ 2l ¼
Xl

j¼1

2aj; ð21Þ

and the stability condition 2ḡ − 2þ kþ 2l > 0 is satisfied.
The GF, which depends on the KdV parameters tk and an

additional parameter s, associated with the insertion of the
marked points on the boundary, has a natural topological
expansion

Fo ¼
X∞
ḡ¼0

λḡ−1Fo
ðḡÞ: ð22Þ

Here ḡ is the genus of the doubled Riemann surface. This
expansion can be interpreted as the Euler characteristic
expansion

Fo ¼
X
χ≤1

λ−χFo
ðχÞ; ð23Þ

where χ ¼ 2 − 2g − k is given in terms of the number of
handles (g ≥ 0) and the number of boundaries (k ≥ 1) of
the Riemann surface with boundaries, and is related to ḡ as

ḡ ¼ 1 − χ. Hereafter, we call the Euler characteristics
expansion the ḡ expansion.
The authors of [6] also suggested a generalization of the

Virasoro constraints (13) for the open case,

BneF
cþFo ¼ 0 for n ≥ −1; ð24Þ

where

Bn ¼ Ln þ λns
∂nþ1

∂snþ1
þ 3nþ 3

4
λn

∂n

∂sn : ð25Þ

In particular, for n ¼ −1 with the help of the string
equation (10), Eq. (24) reduces to the open string equation

∂Fo

∂t0 ¼
X
n≥0

tnþ1

∂Fo

∂tn þ s
λ
: ð26Þ

An open version of the KdV hierarchy, satisfied by the
open GF, was also introduced in [6]

2nþ 1

2

∂Fo

∂tn ¼ λ
∂Fo

∂s
∂Fo

∂tn−1 þ λ
∂2Fo

∂s∂tn−1 þ
λ2

2

∂Fo

∂t0
∂2Fc

∂t0∂tn−1
− λ2

4

∂3Fc

∂t20∂tn−1 : ð27Þ

While the relation of the open KdV equations to the
integrable hierarchies remains unclear, it was proven by
Buryak in [31], that the open KdV hierarchy has a unique
solution with the given initial conditions, and this solution
satisfies the open Virasoro constraints (24). Buryak also
found an additional s-flow equation, which is consistent
with the open KdV hierarchy

∂Fo

∂s ¼ λ

�
1

2

�∂Fo

∂t0
�

2

þ 1

2

∂2Fo

∂t20 þ ∂2Fc

∂t20
�
: ð28Þ

Having in mind the connection between IT and MG in
the closed case, outlined in Sec. II 1, it is natural to expect a
similar connection for the case with boundaries. The GF of
BMG has the ḡ expansion (22),

F o ¼
X∞
ḡ¼0

λḡ−1F o
ðḡÞ: ð29Þ

However, the description of the OIT looks completely
different from that of the BMG. Namely, boundary effects
in BMG are described by the boundary cosmological
constant μB, whose nature essentially differs from that of
the boundary marked point insertion parameter s of the OIT.
A clue to the relation between two pictures can be seen

from the comparison of the equations, satisfied by the
leading terms of the ḡ expansion, that is GFs on the disk.
For the BMG on the disk, F o

ð0Þ, one has [15]
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F o
ð0Þðτ; μBÞ ¼

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l3=2
e−lμB

Z
∞

τ0

dxe−lvðxÞ: ð30Þ

Here vðxÞ is a function of x, which is governed by the string
equation of the polynomial form (7), with τ0 substituted by
x. The GF in (30) satisfies the following equation [4]:

2nþ 1

2

∂F o
ð0Þ

∂τn ¼ −μB
∂F o

ð0Þ
∂τn−1 þ

1

2

∂F o
ð0Þ

∂τ0
∂2F c

ð0Þ
∂τ0∂τn−1 ð31Þ

for 1 ≤ n ≤ p − 1. This equation can be easily derived if
one notes that the multiplication of the integrand of (30) by
−μB can be replaced by a derivative with respect to l.
Details are given in the Appendix A. This functional
relation is similar to the open KdV (27) at ḡ ¼ 0: F o

ð0Þ
corresponds to Fo

ð0Þ, and ∂Fo
ð0Þ=∂s is replaced by −μB,

which is assumed to be independent of τn.
This observation allows us to conjecture that the s and μB

pictures are related by the Laplace (or Fourier) transform [5]

eF
oðsÞ ¼ 1ffiffiffiffiffiffiffiffi

2πλ
p

Z
dμBe−

sμB
λ eF

oðμBÞ; ð32Þ

with the inverse transform

eF
oðμBÞ ¼ 1ffiffiffiffiffiffiffiffi

2πλ
p

Z
dse

sμB
λ eF

oðsÞ: ð33Þ

To avoid confusion, we indicate explicitly the variable s or
μB. Here we continue to use the notationF after the Laplace
transform and, depending on the context, we assume it to
depend on the KdV variables τ or t. The reason is that we
expect this relation still to be valid beyond the proper
parameter range of the OIT of [6]. As we will show in the
following section, to get theGFofOITone has to choosevery
particular F oðμBÞ, which corresponds to a certain topologi-
cal branch of BMG.
The Laplace transform in (32) and (33) can be inter-

preted with the saddle point method for the large values of
λ. Then the critical values of μB and s in (32) and (33)
satisfy, respectively,

s ¼
∂F o

ð0ÞðμBÞ
∂μB ð34Þ

and

μB ¼ −
∂F o

ð0ÞðsÞ
∂s ; ð35Þ

which allows to express μb in terms of s and t or τ and vice
versa. Thus, the disk amplitudes are related by the
Legendre transform

F o
ð0ÞðsÞ ¼ F o

ð0ÞðμBÞ − sμB: ð36Þ

The next orders of the ḡ expansion can be obtained by
computation of the Gaussian integral with perturbation, in
particular

F o
ð1ÞðsÞ ¼ F o

ð1ÞðμBÞ −
1

2
log

�∂2F o
ð0ÞðμBÞ
∂μ2B

�
; ð37Þ

where the expression for μB in (35) is used.
Another, but essentially equivalent, version of the

Laplace transform of GF of OIT was considered in [29].
It was shown that after the Laplace transform the GF of OIT
coincides with the Baker-Akhiezer function of the
Kontsevich-Witten tau-function of the KdV hierarchy,

eF
oðt;zÞ ¼ z−1=2eλ

−1Σk≥0ðtk−δk;1Þ z2kþ1

ð2kþ1Þ!!eF
cðtk−λð2k−1Þ!!z2kþ1 Þ−FcðtÞ; ð38Þ

where z is to be identified with i
ffiffiffiffiffiffiffiffi
2μB

p
. In Appendix B, we

compare the first term of this identity with our simplest
result in Sec. IV 1. The same relation between the GF of
open and closed versions of MG, which is probably the
simplest example of the more fundamental relation between
open and closed theories, was obtained in [32]. This
demonstrates that the Laplace transform (33) indeed
provides a correct way to introduce the boundary cosmo-
logical constant into the OIT. Below, we describe explicit
computations, which also support this claim.
The conjectural relation through the Laplace transform

allows us to translate the properties of the GF from s to μB
pictures and back. In particular, the Virasoro constraints

CneF
cþF oðμBÞ ¼ 0 for n ≥ −1; ð39Þ

where [5]

Cn ¼ Ln þ ð−μBÞn
�
−μB

∂
∂μB −

nþ 1

4

�
; ð40Þ

with Ln being Ln, replacing ti with τi except t1 → τ1 þ 1,
can be obtained by the Laplace transform of Virasoro
generators (25) for the cases, where the GF depends on the
infinite set of the KdV variables [29,33,34].
Similarly, for the open KdV hierarchy in μB space, we

have

2nþ 1

2

∂F o

∂τn ¼ −μB ∂F o

∂τn−1 þ
λ2

2

∂F o

∂τ0
∂2F c

∂τ0∂τn−1
− λ2

4

∂3F c

∂τ20∂τn−1 for n ≥ 1: ð41Þ

The open string equation becomes
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0 ¼
X
n≥0

τnþ1

∂F o

∂τn þ ∂F o

∂μB : ð42Þ

In addition, the s-flow equation (28) has a new form in the
μB space

−μB ¼ λ

�
1

2

�∂F o

∂τ0
�

2

þ 1

2

∂2F o

∂τ20 þ ∂2F c

∂τ20
�
; ð43Þ

which we call boundary condition equation (BCE). The
BCE provides a simple and consistent check of the GF in
the presence of the boundary and the boundary cosmo-
logical constant plays a role of the boundary condition.

III. GENERATING FUNCTION OF MINIMAL
GRAVITY WITH BOUNDARIES

A. Generating function on a disk

According to one-matrix model approach, the continuum
limit of the matrix variable is described by a differential
operator Q̂2 ¼ −∂2

x þ uðxÞ, where u is given by (2) [17,18],
and the GF of BMG can be expressed in terms of u,
obtained from GF of MG without boundary. For the
GF on a disk, one may use the dispersionless limit
(neglecting derivatives) of Q̂2, the second order polynomial
in y; Q2 ¼ y2 þ vðxÞ.
The GF on a disk has the integral representation (30)

with the proper normalization [15]

F o
ð0Þðτ; μBÞ ¼

iffiffiffiffiffiffiffi
2π2

p
Z

∞

0

dl
l
e−lμB

Z
∞

τ0

dx
Z
R
dy e−1ðy2þvðxÞÞ

¼ iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l3=2
e−lμB

Z
∞

τ0

dx e−lvðxÞ ð44Þ

and is given symbolically by hTr logðμB þQ2Þi, which is
straightforwardly extendable to incorporate multiple boun-
daries and to impose boundary conditions [35]. In III A, vðxÞ
is the solution of the string polynomial equation (7) with τ0
replaced by x. As is discussed in the previous section, there
are pþ 1 solutions to this equation, and to get the GF of
BMG, one has to take the solution vðxÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffi−τp−1

p when all
the parameters switched off except τp−1 (∝ μ).
This GF satisfies the lowest order of the open KdV

hierarchy in μB space (31) as we show in Appendix A.
The open string equation (42) in the lowest order in λ trivially
follows from the string polynomial equation (7). In addition,
one can show that the lowest order of the BCE (43)

−μB ¼ 1

2

�∂F o
ð0Þ

∂τ0
�2

þ
∂2F c

ð0Þ
∂τ20 ; ð45Þ

is also satisfied if one notes that

∂F o
ð0Þ

∂τ0 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μB þ w
2π

r
Γ
�
−
1

2

�
¼

ffiffiffi
2

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μB þ w

p
; ð46Þ

where w¼vðτ0Þ denotes the relevant solution of Pðτ;vÞ¼0.
To simplify the expression, one can change the integra-

tion variable x into v if the string polynomial equation for
Pðτ; vÞ in (7) is used,

F o
ð0Þðτ; μBÞ ¼ −

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l3=2
e−lμB

Z
∞

w
dvPð1Þðτ; vÞe−lv:

ð47Þ

Here Pð1Þðτ; vÞ ¼ dP=dv plays the role of the Jacobian
factor dx=dv ¼ −dP=dv. It should be emphasized that the
integration variable v is independent of τn. After the
integration by parts in v, one gets

F o
ð0Þðτ; μBÞ ¼ −

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB

Z
∞

w
dvPðτ; vÞe−lv;

ð48Þ

where we use Pðτ; wÞ ¼ 0. Therefore, one has

F o
ð0Þðτ; μBÞ ¼

X
n

τnhOnidisk; ð49Þ

where, due to Pðτ; wÞ ¼ 0, we have an identity

hOnidisk ¼
∂F o

ð0Þ
∂τn ¼ −

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB

Z
∞

w
dv

vn

n!
e−lv

ð50Þ

and

0 ¼
X
n

τn
∂hOnidisk

∂τm : ð51Þ

The correlation functions hOnidisk depend only onw and μB.
To evaluate the integrals in (50), we scale v ¼ wη and put

the scale-free monomial ηn as a linear combination of the
Legendre polynomials Pk,

ηn ¼
X

k¼n;n−2;…≥0
ð2kþ 1Þn!an;kPkðηÞ; ð52Þ

where

an;k ¼
1

2ðn−kÞ=2ððn − kÞ=2Þ!ðnþ kþ 1Þ!! : ð53Þ

Then the integration over η is given as the modified Bessel
function of the second kind Kn,
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Z
∞

1

dηe−wlηPkðηÞ ¼
ffiffiffiffiffiffiffiffi
2

πwl

r
K1=2þkðwlÞ: ð54Þ

Furthermore, the integration over l is performed (after
analytic continuation if necessary) to give

Z
∞

0

dl
l
e−lμBK1=2þkðwlÞ ¼

2πð−1Þkþ1

2kþ 1
coshðð1=2þ kÞθÞ:

ð55Þ

Here we put μB ¼ w coshðθÞ. As a result, (50) is given
in terms of the Chebyshev polynomial TnðcoshðxÞÞ¼
coshðnxÞ,

hOnidisk ¼ −iwnþ1=2ð−1Þnþ1

×
X

k¼n;n−2;…≥0
an;kT2kþ1ðcoshðθ=2ÞÞ: ð56Þ

It is noted that hOnidisk in general depends on the KdV
parameters since w and θ are functions of KdV parameters.
However, on-shell w and θ reduce to certain constant
values, w ∝ ffiffiffi

μ
p

and coshðθÞ ∝ μB=
ffiffiffi
μ

p
.

B. Higher ḡ expansion

The open KdV hierarchy (41) and the open string
equation (42) allow one to further evaluate the higher ḡ ≥
1 contributions using the ḡ expansion

2nþ 1

2

∂F o
ðḡÞ

∂τn ¼ −μB
∂F o

ðḡÞ
∂τn−1 þ

1

2

X
ḡ1þ2ḡ2¼ḡ

�∂F o
ðḡ1Þ

∂τ0
∂2F c

ðḡ2Þ
∂τ0∂τn−1

�

− 1

4

∂3F c
ððḡ−1Þ=2Þ

∂τ20∂τn−1 ; ð57Þ

0 ¼
X
n≥0

τnþ1

∂F o
ðḡÞ

∂τn þ
∂F o

ðḡÞ
∂μB : ð58Þ

Here and below the termF c
ððḡ−1Þ=2Þ is present only when ḡ is

odd. In addition, BCE (43) shows that higher ḡ ≥ 1
equation becomes linear in F o

ðḡÞ,

0¼
X

ḡ1þḡ2¼ḡ

1

2

∂F o
ðḡ1Þ

∂τ0
∂F o

ðḡ2Þ
∂τ0 þ1

2

∂2F o
ðḡ−1Þ

∂τ20 þ
∂2F c

ðḡ=2Þ
∂τ20 : ð59Þ

The ḡ expansion shows that higher ḡ contribution, more
precisely, its first derivatives, is given in terms of lower ḡ
solution. Therefore, GF for each ḡ can be obtained from
F o

ð0Þðτ; μBÞ, which satisfies the lowest order nonlinear

equation (45).
One can obtain the GF for ḡ ¼ 1 if one uses the BCE (59)

which simplifies for ḡ ¼ 1 as the following:

0 ¼
∂F o

ð0Þ
∂τ0

∂F o
ð1Þ

∂τ0 þ 1

2

∂2F o
ð0Þ

∂τ20 ð60Þ

¼
∂F o

ð0Þ
∂τ0

∂
∂τ0

�
F o

ð1Þ þ
1

2
log

�∂F o
ð0Þ

∂τ0
��

: ð61Þ

The solution has the form

F o
ð1Þ ¼ −

1

2
log

�∂F o
ð0Þ

∂τ0
�
; ð62Þ

where τ0-independent but τn>0-dependent contribution
turns out to vanish except the trivial constant [5].
This solution can be compared with the GF of BMG

from the matrix model computation on cylinder F o
ð1Þ ∝

hðTr logðM þ μBÞÞ2ic, where the subscript c denotes the
connected part and M is the Hermitian matrix. In the
continuum limit, one has to replace M by Q2 to have
the form [18]

F o
ð1Þ ¼

�
iffiffiffiffiffiffiffi
2π2

p
�

2
Z

∞

τ0

dx1

Z
τ0

−∞
dx2

Z
∞

0

dl1dl2
l1l2

× hx1je−l1ðμBþw−∂2Þjx2ihx2je−l2ðμBþw−∂2Þjx1i; ð63Þ

where the integration range of x1 does not overlap with
that of x2 because of the connected part. In addition, vðxÞ in
Q2 is replaced by w because derivative of v does not
contribute to the cylindrical contribution [15]. One may
evaluate the integral easily, by inserting the identity 1 ¼R
∞
−∞ dpajpaihpaj, with hpajxii ¼ eipaxi , and performing
the pa integral (Gaussian integral), the matrix element is
evaluated as

hxijeli∂2 jxji ¼
ffiffiffi
π

li

r
e−

ðxi−xjÞ2
li : ð64Þ

This shows that [15]

F o
ð1Þ ¼

1

4π

Z
∞

0

dl1
l1=21

Z
∞

0

dl2
l1=22

e−ðl1þl2ÞðμBþwÞ 1

l1 þ l2
: ð65Þ

To regularize this divergent integral, we take a derivativewith
respect to τn,

∂F o
ð1Þ

∂τn ¼ −
1

4

∂w
∂τn

1

μB þ w
: ð66Þ

Integrating over τn again gives

F o
ð1Þ ¼ −

1

4
log ðμB þ wÞ þ a; ð67Þ

where a is the integration constant independent of τn.
If the constant a is fixed as − 1

2
logð ffiffiffi

2
p

iÞ, then the result is
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consistent with (62) recalling (46). This demonstrates that the
matrix calculation coincides with that of the open KdV
results. We expect this holds for higher ḡ solution.

IV. GENERATING FUNCTION OF INTERSECTION
THEORY WITH BOUNDARIES

GF of the OIT satisfies the open KdV hierarchy (27) and
the open Virasoro constraints (24). So, one can evaluate this
GF solving the open KdV hierarchy, or, equivalently,
Virasoro constraints, using the initial conditions

Foðt0; ti>0 ¼ 0; sÞ ¼ 1

λ

�
st0 þ

s3

3!

�
: ð68Þ

The solution is unique [36].
In this section, we will find the GF of OIT in a different

way. Namely, we demonstrate that the Laplace transform
(32) converts the GF of a particular topological solution of
the BMG in μB space into the GF of OIT in s space,

eF
oðsÞ ¼

Z
dμBe−sμB=λeF

oðμBÞ: ð69Þ

If the GF obeys the open KdV hierarchy and the GF on a
disk (ḡ ¼ 0 contribution) satisfies the initial condition (68),
then higher ḡ > 0 contribution should also work due to the
uniqueness of the solution.

A. Generating function on a disk

Note that the Laplace transform (69) reduces to the
Legendre transform for ḡ ¼ 0 [5],

Fo
ð0Þðt; sÞ ¼ Fo

ð0Þðt; μBÞ − sμB; ð70Þ

and the boundary parameters, s and μB, are related through

s ¼
∂Fo

ð0Þðt; μBÞ
∂μB or μB ¼ −

∂Fo
ð0Þðt; sÞ
∂s : ð71Þ

To get the GF of OIT, we have to take a particular GF on the
μB side, Fo

ð0Þðt; μBÞ. We claim that it is given by the disk GF

(30) where τ0 substituted by t0, and v is the solution of the
polynomial string equation (18) as p tends to infinity. So GF
of OIT is represented by (47) but with replacing the string
polynomialPðτ; vÞwithPðt; vÞ in (18), and accordingly the
GF is denoted by F rather than F in the rest of this paper,

Fo
ð0Þðt; μBÞ ¼ −

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l3=2
e−lμB

Z
∞

w
dvPð1Þðt; vÞe−lv:

ð72Þ

Here w corresponds to the solution of Pðt; vÞ ¼ 0, regard-
ing the terms with the parameter set ftkg is treated as a
perturbation.

Let us check if this OIT solution coincides with the GF in
s space. We use the Legendre transform with the conjugate
variable s,

s¼
∂Fo

ð0Þ
∂μB ¼ iffiffiffiffiffiffi

2π
p

Z
∞

0

dl

l1=2
e−lμB

Z
∞

w
dvPð1Þðt;vÞe−lv: ð73Þ

To get some idea about how to find the explicit form of
Fo
ð0Þðt; sÞ, we start with p ¼ 1 case and move on to p ¼ 2, 3

and p ¼ 4, and then extract generic features. Of course, for
any p, the case with p − 1 can be obtained if one puts
tp−1 ¼ 0.

(i) p ¼ 1 case: In this, case only t0 is present,
Pð1Þ ¼ −1, and w ¼ t0. Thus, (72) has the simple
form

Fo
ð0Þðt0; μBÞ ¼

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l5=2
e−lðμBþwÞ: ð74Þ

Note that this integral depends only on the sum
μB þ w. This integral is divergent as l → 0 and needs
regularization to be finite. We note the differentia-
tion which makes the integral finite,

∂2Fo
ð0Þ

∂μ2B ¼ iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lðμBþt0Þ ¼ iffiffiffi

2
p ðμBþwÞ−1=2:

ð75Þ

After integration over μB once, we have

s ¼
∂Fo

ð0Þ
∂μB ¼ i

ffiffiffi
2

p
ðμB þ wÞ1=2 ð76Þ

discarding μB-independent term. Likewise, one
more integration gives

Fo
ð0Þðt0; μBÞ ¼ i

2
ffiffiffi
2

p

3
ðμB þ wÞ3=2: ð77Þ

We provide another derivation from (38) in
Appendix B.

After the Legendre transformation, we have GF
of OIT,

Fo
ð0Þðt0; sÞ ¼ swþ s3

3!
¼ st0 þ

s3

3!
; ð78Þ

which is exactly the same as the initial condition (68).
(ii) p ¼ 2 case: In the presence of two variables t0 and

t1, one has Pð1Þðt; vÞ ¼ t1 − 1, which we also denote
by −ξ1, and w ¼ t0=ð1 − t1Þ. As in the p ¼ 1 case,
we can evaluate (72) after regularization,
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s ¼
∂Fo

ð0Þ
∂μB ¼ i

ffiffiffi
2

p
ξ1ðμB þ wÞ1=2; ð79Þ

Fo
ð0Þðt; μBÞ ¼ i

2
ffiffiffi
2

p

3
ξ1ðμB þ wÞ3=2: ð80Þ

The Legendre transform results in GF,

Fo
ð0Þðt0; t1; sÞ ¼

st0
1 − t1

þ s3

3!ð1 − t1Þ2

¼ swþ s3

3!ð1 − t1Þ2
; ð81Þ

which is in the agreement with the results of [6].
As the number of KdV parameters increases, the

evaluation becomes not easy to carry out. To
simplify it, we note that the open string equation (26)
at ḡ ¼ 0 has the form of differential equation

DFo
ð0Þ ¼ s; ð82Þ

where

D≡ ∂
∂t0 −

X
n≥0

tnþ1

∂
∂tn : ð83Þ

The inhomogeneous solution to Eq. (82) is sw. This
can be seen as follows. Since w is the solution of the
string polynomial equation Pðt; vÞ ¼ 0, its deriva-
tive ∂Pðt; wðtÞÞ=∂t0 ¼ 0 satisfies an identity

∂w
∂t0 ¼

X
n≥0

tnþ1

∂w
∂tn þ 1: ð84Þ

Thus, sw satisfies (82). In addition, there exist
solutions of the corresponding homogeneous equa-
tion. A homogeneous solution f can be put as a
function of s and a convenient set of parameters
ξ1;…; ξp−1,

ξn¼−
dnPðt;vÞ

dvn

����
v¼w

≡−PðnÞðwÞ for n¼ 1; � � �p−1:

ð85Þ

One may easily show that Dξn ¼ 0. Therefore, we
may put GF at ḡ ¼ 0 as the following form:

Fo
ð0Þðt; sÞ ¼ swþ fðs; ξÞ; ð86Þ

with the homogeneous solution f. This structure of
GF is already seen in p ¼ 1 and 2 cases.
The variables ξn are well known in the matrix

models [9,10]. These variables are extremely

convenient for investigation of the GF and correla-
tion functions for the resolvents for the closed case.
As the GF of the BMG can be related to the
correlation function of the local operators in MG
[15,18], it is not very surprising that they also show
up in the theory with boundary.

(iii) p ¼ 3 case: For the case p ¼ 3, the solution of the
polynomial string equation w has the form

w ¼ 1 − t1
t2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2t0t2
ð1 − t1Þ2

s �

¼ t0
1 − t1

�
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2t0t2

ð1−t1Þ2
q �

: ð87Þ

One finds

s ¼
∂Fo

ð0Þðt; μBÞ
∂μB

¼
ffiffiffi
2

p
iðμB þ wÞ1=2

�
ξ1 −

2

3
ξ2ðμB þ wÞ

�
; ð88Þ

where (assuming t1 < 1)

ξ1 ¼ −Pð1Þðt; wÞ ¼ 1 − t1 − t2w

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t1Þ2 − 2t0t2

q
; ð89Þ

ξ2 ¼ −pð2Þðt; wÞ ¼ −t2: ð90Þ

Integrating over μB, one has

Fo
ð0Þðt; μBÞ ¼

ffiffiffi
2

p
iðμB þ wÞ3=2

×

�
2

3
ξ1 −

4

5!!
ξ2ðμB þ wÞ

�
: ð91Þ

Noting that ∂ξ1=∂t0 ¼ ξ2=ξ1, one can check that
Fo
ð0Þ satisfies the BCE equation (45).

To find GF in s space, we put μB in powers of s by
solving (88)

μB ¼ −w −
s2

2ξ21

X∞
n¼0

anzn1;

an ¼
ð−1Þn
nþ 1

�
3nþ 1

n

�
; ð92Þ

with z1 ¼ s2ξ2=ð3ξ31Þ. Then, using the second rela-
tion in (71), one can easily find GF directly by
integrating over s,
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Fo
ð0Þðt; sÞ ¼ swþ s3

2ξ21

X∞
n¼0

anzn1
ð2nþ 3Þ ; ð93Þ

which has the expected structure of (86).
(iv) p ¼ 4 case: For the case p ¼ 4, we have

s ¼
∂Fo

ð0Þ
∂μB ¼

ffiffiffi
2

p
iðμB þ wÞ1=2 ð94Þ

×

�
ξ1 − 2

3!!
ξ2ðμB þ wÞ þ 4

5!!
ξ3ðμB þ wÞ2

�
: ð95Þ

We note that (94) is a polynomial equation of the
form

1

h0
¼ ð1þ z1h0 þ z2h20Þ2; ð96Þ

where h0 ¼ −2ξ21ðμB þ wÞ=s2, z1 ¼ s2ξ2=ð3ξ31Þ and
z2 ¼ s4ξ3=ð15ξ51Þ. One can find h0 as a series in zi’s,

h0 ¼
X∞
n;m¼0

an;mzn1z
m
2 ;

an;m ¼ 2
ð−1Þnþmð3nþ 5mþ 1Þ!
n!m!ð2nþ 4mþ 2Þ! ; ð97Þ

where an;0 ¼ an in (92), so that the solution (97)
reduces to the one in (92) when z2 → 0. This shows
that

μB ¼ −w −
s2

2ξ21

X∞
n;m¼0

an;mzn1z
m
2 : ð98Þ

Using the second relation in (71), one integrates μB
over s to find GF of the form

Fo
ð0Þðt; sÞ ¼ swþ s3

2ξ21

X∞
n;m¼0

an;mzn1z
m
2

ð2nþ 4mþ 3Þ : ð99Þ

(v) Arbitrary p: In general, (73) provides the relation
between μB and s as follows:

s¼
∂Fo

ð0Þ
∂μB ¼

ffiffiffi
2

p
i
Xp−2
n¼0

ð−2Þnξnþ1ðμBþwÞnþ1=2

ð2nþ1Þ!! :

ð100Þ

We find Fo
ð0Þðt; μBÞ by integrating (100) over μB,

Fo
ð0Þðt; μBÞ ¼ −

ffiffiffi
2

p
i
Xp−2
n¼0

ð−2Þnþ1ξnþ1ðμB þ wÞnþ3=2

ð2nþ 3Þ!! :

ð101Þ

Similar to (96), we rewrite (100) in the following
form to find μB in power series of s,

1

h0
¼

�
1þ

Xp−2
n¼1

znhn0

�2

; zi ¼
s2iξiþ1

ð2iþ 1Þ!!ξ2iþ1
1

;

ð102Þ

where h0 is the same in (96): h0 ¼ −2ξ21ðμB þ wÞ=s2.
Then h0 is given in a power series of zk ’s,

h0 ¼
X
nk≥0

an1;…;np−2z
n1
1 � � � znp−2p−2 ; ð103Þ

where the coefficient an1;…;np−2 has the form

an1;n2;…;np−2 ¼ 2
ð−1Þn1þn2þ���þnp−2ð1þ 3n1 þ 5n2 þ � � � þ ð2p − 3Þnp−2Þ!
n1!n2!…np−2!ð2þ 2n1 þ 4n2 þ � � � þ 2ðp − 2Þnp−2Þ!

: ð104Þ

By noting

μB ¼ −w −
s2

2ξ21

X
nk≥0

an1;…;np−2z
n1
1 � � � znp−2p−2 ; ð105Þ

one has GF in power series of zk’s by integrating over s following the second relation in (71),

Fo
ð0Þðt; sÞ ¼ swþ s3

2ξ21

X∞
ni¼0

an1;…;np−2z
n1
1 � � � znp−2p−2

ð3þ 2n1 þ 4n2 þ � � � þ 2ðp − 2Þnp−2Þ
: ð106Þ

To get the complete GFofOIT, one should tendp to infinity. The result (106) with formally replacingp → ∞ accommodates
all the dependence on the KdV parameters, part of which is consistent with the theorem provided by Pandharipande et al. [6]
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which deals with a special case restricted by the limit t0 → 0.
In this limit, one has w → 0, ξ1 → 1 − t1, ξi → −tiði ≥ 2Þ
and GF has the following form:

Fo
ð0Þðt;sÞjt0¼0 ¼

X∞
ni¼0

ð1þ3n1þ5n2þ…Þ!
n1!n2!…ð3þ2n1þ4n2þ…Þ!

×

�
t2
3!!

�
n1
�
t3
5!!

�
n2 � � � s3þ2n1þ4n2þ…

ð1− t1Þ2þ3n1þ5n2þ… :

ð107Þ

This provides the correlation numbers

hOα1…Oαlσ
kio0 ¼

∂lþkFo
ð0Þ

∂tα1…∂tαl∂sk
����
ðt;sÞ¼0

ð108Þ

¼ ð1þ Σl
i¼1ð2αi − 1ÞÞ!

Πl
i¼1ð2αi − 1Þ!! ð109Þ

Here we note that the number k of marked points
on the boundary is specified by the set fαig: k ¼
3þP

l
i¼1 2ðαi − 1Þ, which is clearly seen in (107).

B. Higher ḡ expansion

The universal formula for the GF on the cylinder (ḡ ¼ 1)
in the μB picture Fo

ð1Þðt; μBÞwas obtained in Sec. III B (67),

Fo
ð1ÞðμBÞ ¼ −

1

4
log ðμB þ wÞ þ c1; ð110Þ

with c1 being a constant to be determined later. We expect
that this relation as well as the disk GF (101) and higher ḡ
contributions can be also extracted from the λ expansion of
the wave function formula (38).
For the cylinder, the relation between the GF in s and μB

pictures is given by (37)

Fo
ð1ÞðsÞ ¼ Fo

ð1ÞðμBÞ −
1

2
log

�∂2Fo
ð0ÞðμBÞ
∂μ2B

�
; ð111Þ

which, with the help of (101), reduces to

Fo
ð1ÞðsÞ ¼ − 1

2
log

�
ξ1 þ

Xp−2
n¼1

ð−2Þnξnþ1ðμB þ wÞn
ð2n − 1Þ!!

�����
μB¼μBðsÞ

þ c; ð112Þ

where c is a constant given by c ¼ c1 − ð1=2Þ logði= ffiffiffi
2

p Þ.
This expression has the power series expansion in zi’s if
one uses the expression for μB in (105).
To find the constant c, we consider the case with tk ¼ 0

for k > 2. The disk amplitude for this case is given by (81),
so the cylinder GF (112) is

Fo
ð1Þðt; sÞ ¼ −

1

2
logðξ1Þ þ c ¼ −

1

2
log ð1 − t1Þ þ c: ð113Þ

From this expression, we can conclude that c ¼ 0, and
thus c1 ¼ ð1=2Þ logði= ffiffiffi

2
p Þ.

For p ¼ 3 Fo
ð1ÞðsÞ gives, up to logarithmic term, the

power series expansion in z1,

Fo
ð1ÞðsÞ ¼ − 1

2
logðξ1 − 2ξ2ðμB þ wÞÞ

¼ − 1

2
logðξ1Þ − 3

2
z1 þ

21

2
z21 − 24z31 ð114Þ

þ 981

8
z41 − 6663

10
z51 þ 3765z61 þ � � � : ð115Þ

Let us compare this result with a solution to the open
string equation and the open KdV in ḡ expansion in the s
picture. The open string equation with ḡ ≥ 1 becomes a
homogeneous differential equation

DFo
ðḡÞ ¼ 0; ð116Þ

where D is defined by (83). Therefore, GF with ḡ ≥ 1 is
represented in terms of ξi, the solutions of the homo-
geneous equation

Fo
ðḡÞ ¼ Fo

ðḡÞðξi; sÞ for ḡ ≥ 1: ð117Þ

In addition, the s-flow equation (28) in ḡ expansion has the
form

∂Fo
ðḡÞ

∂s ¼
X

ḡ1þḡ2¼ḡ

1

2

�∂Fo
ðḡ1Þ

∂t0
∂Fo

ðḡ2Þ
∂t0

�
þ1

2

∂2Fo
ðḡ−1Þ

∂t20 þ
∂2Fc

ðḡ=2Þ
∂t20 ;

ð118Þ

which can be used to restrict further the form of (117).
Finally, it should satisfy open KdV equation: for n ≥ 1,

2nþ 1

2

∂Fo
ðḡÞ

∂tn ¼
X

ḡ1þḡ2¼ḡ

�∂Fo
ðḡ1Þ

∂s
∂Fo

ðḡ2Þ
∂tn−1

�
þ
∂2Fo

ðḡ−1Þ
∂s∂tn−1

þ 1

2

X
ḡ1þ2g2¼ḡ

�∂Fo
ðḡ1Þ

∂t0
∂2Fc

ðg2Þ
∂t0∂tn−1

�

− 1

4

∂3Fc
ððḡ−1Þ=2Þ

∂t20∂tn−1 : ð119Þ

It is to be noted thatFo
ðḡÞ has an important parity property in s,

Fo
ðḡÞðξi;−sÞ ¼ ð−1Þḡþ1Fo

ðḡÞðξi; sÞ: ð120Þ

The parity property is already seen in (106) of Sec. IV B
whereGFFo

ð0Þðt; sÞ is odd in s. Thegeneral proof can bedone
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using the dimension of the moduli space given in (21): ḡþ k
must always be odd [37]. Since k denotes the power of s in
GF, one concludes (106). The parity property is also
consistent with the SD considered in IT. Since Fo is scale
free as seen in (24), each term in ḡ expansion is also scale free.
Noting that SDof λ is 3=2, one has SDofFo

ð0Þ is3=2, which is
obvious in (106). (SD of s and w are 1=2 and 1, respectively,
and SD of ξi and zi are 0.) Therefore, the ḡ expansion of Fo

shows that SD of Fo
ðḡÞ is 3ðḡþ 1Þ=2. This shows that SD of

GF with ḡ even is a half-odd integer. Since SD of KdV
parameter tn is an integer, the only way to have the half-odd
integer SD is the quantity proportional to odd power of s
which is reflected in the parity (120).
Let us provide a few simple checks of the GF expression

(112) by restricting the situation where most of the KdV
parameters are turned off, though the expression (112) is
valid for any integer p.

(i) p ¼ 2 case: At ḡ ¼ 1, the open string equation
shows that ∂Fo

ð1Þ=∂t0 ¼ 0. Applying this condition
to the s-flow equation, with the help of (81), one has
∂Fo

ð1Þ=∂s ¼ 0. This result is consistent with that Fo
ð1Þ

is the even function of s. Based on this fact, the open
KdV has the form

3

2

∂Fo
ð1Þ

∂t1 ¼
∂2Fo

ð0Þ
∂s∂t0 −

1

4

∂3Fc
ð0Þ

∂t30
¼

�
1 −

1

4

� ∂w
∂t0 ¼

3

4

1

ð1 − t1Þ
: ð121Þ

The solution is given as

Fo
ð1Þ ¼ −

1

2
logð1 − t1Þ; ð122Þ

which coincides with (113).
(ii) p ¼ 3 case: In this case, noting that Fo

ð1Þ is scale free
and an even function of s, we can find it in terms of
scale-free parameters, ξ1 and z1. A direct evaluation
shows that Fo

ð1Þ given by

Fo
ð1Þ ¼ −

1

2
logðξ1Þ þ

X∞
n¼1

Xn−1
k¼0

3ð−1Þn
2n

�
3k

k

�

×

�
3n − 3k − 2

n − k − 1

�
zn1 ð123Þ

solves the s-flow equation, coincides with (115), and
its expansion in a power series in ti and s gives

Fo
ð1Þ ¼

t1
2
þ t21

4
þ s2t2

2
þ t0t2

2
þ3s2t1t2

2

þ t0t1t2þ3s2t21t2þ
3t0t21t2

2
þ…; ð124Þ

reproducing the result provided explicitly by [11]
under an appropriate identification of the parameters.

V. SUMMARY AND DISCUSSION

We investigated the relation between the two-dimensional
minimal gravity (Lee-Yang series) onRiemann surfaceswith
boundaries (μB, the boundary cosmological constant) and
open intersection theory (s, the source of the boundary
marked point). The generating functions of both theories are
considered as solutions to the openKdVhierarchy and string
equation. Since there are many solutions to the open KdV
hierarchy with different analytic properties, one needs a
proper way to identify the right solution.
We use the conjecture that the generating function of the

minimal gravity with μB and that of the intersection theory
with s is related by the Laplace transform. The generating
function on a disk corresponds to the leading contribution
to the Laplace transform, which reduces to the Legendre
transform. We obtain the generating function of the
intersection theory from that of the minimal gravity using
the Legendre transform and confirm that the generating
function of each theory belongs to a different solution
sector of the open KdV hierarchy and string equation.
Based on this relation, we provide a systematic way to find

the generating function in ḡ expansion (ḡ denotes thegenus of
the doubled Riemann surfaces, equivalent to the Euler
characteristic). As the first nontrivial example of the machi-
nery, we provide an explicit form of the generating function
of open intersection theory on a cylinder (ḡ ¼ 1), from that of
the minimal gravity through the Laplace transform.
Higher ḡ expansion is a more challenging problem. It will

be interesting to find the generating function of the inter-
section theory through the Laplace transform and compare it
with the combinatoric expression in s space for the all-genera
generating function [30]. It is to be noted that a given term of
the ḡ expansion contains contributions from the several
topologically distinct surfaces. For example, ḡ ¼ 2 contains
two different geometries: pants and kettle. For the open
intersection theory, the contributions of different types of
surfaces can be traced by the extension of the generating
function [37,38]. However, the computations of the generat-
ing function of the minimal gravity with boundaries with
topological structure different form the sphere with arbitrary
number of boundaries is still not known, but can be extracted
from the relation in terms of the closed GF [32,33] or the
matrix model computations [15,18].
It is clear that the correlation functions in μB space

present the nonanalytic behavior (square root branch),
which is useful to describe the correlation numbers of
primary operators. On the other hand, the correlation
functions of the intersection theory in s space show the
polynomial behavior and are suited to describe the corre-
lation numbers of the descendants. It is interesting to note
that the very different role of the two theory spaces when
related with the Laplace transform was used in [39] to solve
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the cosmological problem using the cosmological constant
and its conjugate variable.
Another interesting problem is the description of the

boundary gravitational descendants in open intersection
theory introduced in [31,36] and further investigated in
[11,37,38,40]. This extended theory has a nice Kontsevich-
Penner matrix model description. This identification
immediately leads to the integrability of the deformed
model, which is shown to be the tau function of the KP
hierarchy. It would be interesting to find the minimal
gravity counterpart of this deformed model. From the point
of minimal gravity, this should correspond to consideration
of the gravitating operators on boundaries and different
types of the boundary conditions. The meaning of the
Laplace transform from the point of view of the matrix
integrals is not clear at the moment.
Finally, one may expect that the idea of this paper can be

extended to the case of the so-called r-spin open inter-
section numbers [41]. One may relate this theory with
Mðq; pÞ series of minimal gravity in terms of the Aq−1
Frobenius manifolds [23,24,42–44]. It would be interesting
to apply the Laplace transform to investigation of the open
p − q duality. We are going to come back to these topics in
the future publications.

ACKNOWLEDGMENTS

The work of H.M. and C. R. was partially supported
by National Research Foundation of Korea Grant
No. 2017R1A2A2A05001164, and of A. A. by Grant
No. IBS-R003-D1 and by RFBR Grant No. 17-01-00585.
A. A. would also like to thank Vasily Pestun for his hospital-
ity at IHES (supported by the European Research Council
under the European Union’s Horizon 2020 research and
innovation programme, QUASIFT Grant No. 677368),
where this project was completed.

APPENDIX A: OPEN KdV OF MINIMAL
GRAVITY ON A DISK

We provide a simple way to prove that GF (30) satisfies
the open KdV hierarchy (31). According to (30),

∂F o
ð0Þ

∂τn−1 ¼ −
iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB

Z
∞

τ0

dx
∂v

∂τn−1 e
−lvðxÞ; ðA1Þ

where we put ∂v
∂τ0 ¼ ∂v

∂x, and using the string equation (5), we
have

∂F o
ð0Þ

∂τn ¼ −
iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB

Z
∞

w
dv

vn

n!
e−lv; ðA2Þ

where we change the integration variable from x to v. If one
multiplies (A2) by μB (and uses τn−1 instead of τn for later
convenience), the result can be put in terms of the
derivatives of l,

−μB
∂F o

ð0Þ
∂τn−1 ¼−

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2

�∂e−lμB
∂l

�Z
∞

w
dv

vn−1

ðn−1Þ!e
−lv:

ðA3Þ

Using the integration by parts of l, one has

−μB
∂F o

ð0Þ
∂τn−1 ¼ − iffiffiffiffiffiffi

2π
p

Z
∞

0

dl

l1=2
e−lμB

�
vþ 1

2l

�

×
Z

∞

w
dv

vn−1
ðn − 1Þ! e

−lv; ðA4Þ

where the surface term vanishes. We may subtract
∂F o

ð0Þ
∂τn

from the above,

− μB
∂F o

ð0Þ
∂τn−1 −

�
nþ 1

2

� ∂F o
ð0Þ

∂τn
¼ − 1

2

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB 1

l

�
1 − vl

n

�

×
Z

∞

w
dv

vn−1
ðn − 1Þ! e

−1v ðA5Þ

and simplify the result

− 1

2

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB 1

l

Z
∞

w
dv

d
dv

�
vn

n!
e−lv

	

¼ wn

n!
×
1

2

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB 1

l
e−lw: ðA6Þ

One may use the string equation (5) to get

∂2F c
ð0Þ

∂τ0τn−1 ¼
wn

n!
: ðA7Þ

In addition, the rest term has the form

iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB e

−1w
l

¼ iffiffiffiffiffiffi
2π

p
Z

∞

0

dl

l1=2
e−lμB

Z
∞

w
dv e−lv ¼ −∂F o

ð0Þ
∂τ0 : ðA8Þ

Collecting all the results, we have the open KdV hierarchy
(31)

2nþ 1

2

∂F o
ð0Þ

∂τn ¼ −μB
∂F o

ð0Þ
∂τn−1 þ

1

2

∂F o
ð0Þ

∂τ0
∂2F c

ð0Þ
∂τ0∂τn−1 : ðA9Þ
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APPENDIX B: ANOTHER DERIVATION OF
GENERATING FUNCTION ON A DISK

Here we demonstrate how (38) gives the GF of BMG on
a disk for the simplest case (77), where all the KdV
parameters are turned off ti>0 ¼ 0, except t0. Extracting the
leading term in a series expansion in λ of the logarithm of
(38), one finds

Fo
ð0Þðt;zÞ¼

X
k≥0

ðtk−δk;1Þ
z2kþ1

ð2kþ1Þ!!−
X
k

ð2k−1Þ!!
z2kþ1

∂Fc
ð0Þ

∂tk :

ðB1Þ

Recalling that

Fc
ð0Þ ¼

1

2

Z
w

0

P2ðt; vÞ dv; Pðt; vÞ ¼ −vþ
X∞
m¼0

tm
vm

m!
;

ðB2Þ

one has

∂Fc
ð0Þ

∂tn ¼ −
wnþ2

ðnþ 2Þn!þ
X∞
m¼0

tm
m!n!

wmþnþ1

ðmþ nþ 1Þ ; ðB3Þ

whose evaluation at ti>0 ¼ 0 results in

∂Fc
ð0Þ

∂tn
����
ti>0¼0

¼ −
tnþ2
0

ðnþ 2Þn!þ
tnþ2
0

ðnþ 1Þ! ¼
tnþ2
0

ðnþ 2Þ! : ðB4Þ

Making ti>0 turn off, one obtains

Fo
ð0Þðt0; zÞ ≔ Fo

ð0Þðt; zÞjti>0¼0

¼ t0z −
z3

3
−
X∞
k¼0

ð2k − 1Þ!!
z2kþ1

tkþ2
0

ðkþ 2Þ! : ðB5Þ

Substituting z ¼ i
ffiffiffiffiffiffiffiffi
2μB

p
, one immediately sees, noting

ð−1Þ!! ¼ 1, that this is a series expansion of (77):

Fo
ð0Þðt0; μBÞ ¼ i 2

ffiffi
2

p
3λ ðμB þ t0Þ3=2 for large values of jμBj.
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