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Boundary integral equation
method for resonances in gradient
Index cavities designed by
conformal transformation optics

Jung-Wan Ryu'®, Jinhang Cho?®, Soo-Young Lee*5, Yushin Kim*, Sang-Jun Park3,
Sunghwan Rim?, Muhan Choi*** & Inbo Kim?**

In the case of two-dimensional gradient index cavities designed by the conformal transformation
optics, we propose a boundary integral equation method for the calculation of resonant mode
functions by employing a fictitious space which is reciprocally equivalent to the physical space. Using
the Green'’s function of the interior region of the uniform index cavity in the fictitious space, resonant
mode functions and their far-field distributions in the physical space can be obtained. As a verification,
resonant modes in limagon-shaped transformation cavities were calculated and mode patterns and
far-field intensity distributions were compared with those of the same modes obtained from the finite
element method.

Recently, transformation optics (TO) has been attracting great interest because it provides the theoretical basis
of incredible optical devices such as optical invisibility cloaks'™ and realization of celestial objects such as optical
black holes in the laboratory®. Also, beyond optics it is widely applicable to acoustic waves®”’, elastic waves®®,
and seismic waves'?, etc. To date, many studies in TO have mainly been focused on devices enabling the con-
trol of light path, such as invisibility cloaks, flat Luneburg lenses''2, and waveguide bends'?, to name a few. In
addition to these applications of TO, recently Kim et al. have suggested that TO can be exploited to the design of
two-dimensional (2D) optical dielectric cavities'*. They have designed a new type of gradient index (GRIN) reso-
nator called transformation cavity (TC) by using conformal TO and showed that high-Q anisotropic whispering
gallery modes (WGMs) exhibiting desired directional emissions can be formed. Basically, WGM:s are resonances
with very long lifetime (which means very high Q-factor) due to the total internal reflection (TIR) of light around
the rim of the cavities and they play a central role in photonic devices such as lasers and sensors.

To study the properties of the resonant modes formed in these TCs, numerical calculation of the spatial con-
figuration of electromagnetic field, i.e., mode functions are indispensable. Typically, domain type methods such
as the finite element method (FEM) or the finite difference method (FDM) are generally used for this inhomoge-
neous potential problem, while boundary element method (BEM) is not generally applicable because the Green’s
function of the interior region of the GRIN cavities is not known. But, boundary-only methods such as the dual
reciprocity method (DRM)'® and analog equation method (AEM)'® which have been developed from the pure
BEM can be used for this kind of problems with inhomogeneous material properties. These boundary-only for-
malism commonly uses internal nodes (collocation points) in the inhomogeneous potential region and convert
domain integrals into boundary integrals, which is a rather complicated and cumbersome procedure and there is
no report, as far as we know, that these methods have been employed for the optical resonant mode calculation of
the 2D GRIN dielectric cavities.

On the other hand, in the case of 2D dielectric cavities with uniform refractive indices, BEM has been widely
used because of its advantages over other methods'’-'’. In particular, BEM works well for strongly deformed
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geometries from the circular shape and for the calculation of highly-excited resonant states (short wavelength
regime) since it uses only the field information at the discretized cavity boundary, while FEM which is based on
the 2D discretized space causes a heavy computational load?*?'. In addition, because an outgoing-wave boundary
condition at infinity is naturally built into the Green’s function in BEM, one does not need to artificially construct
an absorbing boundary environment at the outermost computational region such as the perfectly matched layer
(PML), which is required in FEM for the truncation of the unlimited outside region’. Thus, BEM has been
extensively used in calculating resonant modes in various 2D uniform index dielectric cavities, e.g., deformed
cavities?>?*, coupled cavities?®, and annular cavities®.

In this paper, we show that conventional BEM can still be used to calculate resonant modes of TCs with a
spatially-varying refractive index profile determined by an optical conformal mapping. To this end, we introduce
areciprocal virtual (RV) space which is related to the physical space by the inverse conformal mapping. The cavity
in the RV space has a uniform refractive index and there one can build a boundary integral equation (BIE) for the
interior region of the cavity.

The paper is organized as follows. The wave equations in a wholly transformed (WT) space are derived from
Maxwell’s equations in an original virtual (OV) space. And then we formulate BEM for the resonant modes of TCs
by using the RV space. Finally, we demonstrate the validity of our BEM with examples of limagon-shaped TCs.

GRIN Cavities Designed by Conformal Transformation Optics

The theories of TO have been independently proposed by Ulf Leonhardt (conformal TO with Helmholtz equation
in complex plane)! and Sir John Pendry (general TO with Maxwell’s equations)? as design methodologies of their
optical invisibility cloaks. The general TO is based on the form invariance of Maxwell’s equations under a general
coordinate transformation; as the consequences of the form invariance, electric and magnetic fields are renormal-
ized and the constitutive parameters (i.e., the electric permittivity € and the magnetic permeability ) are changed
to anisotropic tensor quantities>?”.

Here, we will derive the conformal TO from the general TO and then obtain the wave equation for
infinitely-long cylindrical dielectric cavity in a WT space. We start from an OV space described by Cartesian
coordinates (u, v, w), where the Maxwell’s equations in frequency domain (fields ~ e~**) without sources or cur-
rents in linear isotropic dielectric media are written as'

VxE=iwpH, V xH=—iweE. (1.1)

In Eq. (1.1), E and H are time-independent complex electric and magnetic fields, respectively; the magnetic
permeability p is given by pou,, where 11y and i, are the vacuum permeability and the relative permeability,
respectively; and the electric permittivity € is given by ¢,¢,, where ¢, and ¢, are the vacuum permittivity and the
relative permittivity, respectively.

Under a general coordinate transformation from the OV space to a WT space described by coordinates (x, y, z),
Maxwell’s equations that keep their forms invariant in the WT space transforms as

V' x E =iwp'H, V' x H = — iwe'F/, (1.2a)
where
E=)"E, HW=UY"H V=U)"V. (1.2b)
The relation of the constitutive parameters between the OV space and the WT space are given by

o= EAAT’ W= MAAT’
|det A |det A (1.3)

where A is the Jacobian matrix of the transformation from the OV space to the WT space, and is given by

0x Ox Ox
ou v ow
Aol o o
ou Ov Ow
0z 0z 0z
u v ow (1.4)

According to the so-called material interpretation®® or manipulation-of-material viewpoint?, one can think
that the effect of coordinate transformation is encoded in the redefined fields and anisotropic constitutive param-
eters in unchanged flat Cartesian space. In conformal TO, the coordinate transformation is given by an ana-
Iytic function (= f(n) =x(u, v) + iy(u, v) of a complex variable = u+ iv with z=w, so the Jacobian matrix A is
reduced to a block diagonal form,
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Figure 1. Schematic illustration for (a) a circular cavity in the OV space (= u+iv), (b) a limagon-shaped
cavity in the WT space ((=x+iy), (c) the corresponding limagon-shaped TC in the physical space ((=x+ i),
and (d) the inverse transformed circular cavity in the RV space (n=u+ iv) obtained by conformal mapping

of Eq. (3.1). (Straight gray lines in (a) and (c) are grids of coordinates. Curved gray lines in (b) and (d) are the
transformed image of the straight grid lines in (a) and (c) by the conformal mapping. Scaled color represents
refractive index).
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ou ov
A= 8_)/ 6_)' ol’

ou Ov

0 0 1 (1.5)

because, g" = g—y = 0,and Z—Z = % = 0. The analytic function (= f(n) always produces a conformal coordinate
w

w u 4
transformation, which satisfies the Cauchy-Riemann equations,

Ox Oy Oy _  Ox

v ou s (1.6)

Due to these relations and the orientation-preserving property of conformal mappings (i.e., detA > 0), the
constitutive parameters in the WT space turn out to have a simple diagonal form with the scale factor of a confor-
mal mapping squared as the third diagonal element as follows™,

/

€

0
- 0

o W=p
detA det A (1.7)

10 10 O
01 01 0
00 00 L

For this case of conformal TO, let us consider an infinitely-long cylindrical dielectric cavity with a circular cross
section of radius Ry=1in the OV space (Fig. 1(a)) from which cylindrical cavity with a deformed cross sectionina WT
space (Fig. 1(b)) can be obtained by a conformal mapping, taking z-axis and w-axis along the length of the cylinder'*"°.
Hereafter, we use the dimensionless coordinates (x, y) rescaled as (x/R,, y/R,). For the transverse magnetic (TM)
polarized mode of the cylindrical cavity, only the z-component, Ez’ among the components of electric field is non-zero,
ie,F = EZ'Q, H' - Z = 0,50 Eq. (1.2a) becomes
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V' xE =iwuH, V' xH = —iwe'E. (1.8)

From these equations, following wave equation for the TM mode can be obtained by using another Maxwell
equation, V' - (¢’E/) = 0,

(A" + (K] E'(x, y) = 0, (1.9)
where A’ = 92 + 81, and the spatially-varying refractive index #/(r) in the WT space is given by

)

¢ 1
=ny|==", re,
ey — (Vdet A °|dn‘
L _ % veq
fdet A dn . (1.10)

where 1, is the refractive index of the cavity in an OV space which is equal to_[€ 7 the free space wave number
is k=w/c, where c is the speed of light in vacuum given by 1/, /€45 Qin(er) denotes the interior (exterior) region
of the cavity. Equation (1.9) can be also obtained starting from the 2D Helmholtz equation under conformal

mapping, which is a well-known result in waveguide theory®'. At the dielectric interface, both E,(x, y) and its
normal derivative 9, E/,(x, y) are continuous across the cavity boundary¥,
E/z|in = E/z|ex’ 8J_E,z‘in = 8J_E,z‘ex' (111)
The normal derivative is defined as 9, =p(r) - V|, where p(r) is the outward normal unit vector at point r on
the boundary curve I' of the interior (exterior) region of the cavity. The TM modes of a cylindrical cavity in the
WT space are supported by the refractive index n’ originating from the anisotropic electric permittivity, €', not
from the anisotropic magnetic permeability, ' as can be seen from Eq. (1.8). It is noted that the electric field wave
function E’,(x, y) in the WT space and its counterpart function E,(u, v) in the OV space are the same, as can be
shown by Egs. (1.2b) and (1.5).
For the transverse electric (TE) polarized mode of a cylindrical cavity in a WT space, among the components

of the magnetic field, only the z-component, H, is non-zero, i.e., H' = Hzli, E’' - Z=0 then Eq. (1.2a) becomes
V' x B =iwp/ H/, V' x H = —iwe E'. (1.12)

From these equations, the following wave equation for the TE mode can be obtained by using another Maxwell
equation, V'- (W'H') =0,

(A + #*(r)K* 1 H' (x, y) = 0, (1.13)

where the spatially-varying refractive index »/(r) in the WT space is the same as the one in Eq. (1.10). At the
dielectric interface, H' (x, y) and instead of its normal derivative, (1/n’ 2)6JLH ' (x, y) are continuous across the
cavity boundary??,

_ 6LH /z

OH. oM.
n T T (1.14)

! — !

H z‘in =H z|ex’ n,z
TE modes of a cylindrical cavity in the WT space are supported with the refractive index »’ originating from
the anisotropic magnetic permeability, p/, not from the anisotropic electric permittivity, £/, as one can see from

Eq. (1.12). It is also noted that the magnetic field wave functions H,(x, y) in the WT space and their counterpart
functions H,,(u, v) in the OV space are the same, as can be shown by Egs. (1.2b) and (1.5).

Boundary Element Method for Resonant Modes in Transformation Cavities
The GRIN cavity in WT space obtained from the homogeneous disk cavity in the OV space by an optical confor-
mal mapping is surrounded by inhomogeneous material that fills infinitely extended outer region, which is an
unphysical situation. Thus, we replace the outside inhomogeneous index with 1, i.e., the refractive index of air, as
shown in Fig. 1(c) and then call the same cavity a transformation cavity (TC) in the physical space, which has
gradually varying refractive index profile, n(x, y) in the interior region of the cavity according to Eq. (1.10) *. In
other words, conformal mapping is only applied to the interior region ((2,,) of the cavity in the OV space to obtain
a TC in the physical space. Hereafter, primed quantities and operators in the WT space used in the previous sec-
tion will be replaced with unprimed ones in the physical space for convenience.

Now let us formulate a BEM for optical resonant modes in a TC with inhomogeneous refractive index in phys-
ical space. We have to solve the following scalar wave equation

[A + n* (1)K ¥(r) = 0, 2.1)

where A = 8,2 + 8?, position vector r=(x, y) = (r cos 6, r sin 0), and the refractive index n(r) is given by
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”0|d_g|_l) refy,
n(r) ={ " dn
1, req,. (2.2)

For asymptotically large r, the resonant mode function t(r) must satisfy the outgoing-wave boundary
condition,

eikr

N (2.3)

where h(6) is the far-field angular distribution of the radiation emission. The outgoing-wave boundary condition
leads to solutions exponentially decaying in time with discrete complex eigenvalues k with Im(k) < 0. So their
angular frequency w becomes complex. The lifetime 7 of these so-called ‘resonant modes’ or ‘resonances’ is given
by the imaginary part of the angular frequency as 7= —1/[2Im(w)]; the quality factor Q of each resonance is
defined by Q=277/T = —Re(w)/[2Im(w)] with the oscillation period of light wave T'=27/Re(w). The complex
wave function ¢ equals E, and H, for TM and TE polarizations, respectively. The continuity relations at the
cavity-air interface are given by

P(r) ~ h(0)

Yy = U 0,9, = 0,4, for TM modes, (2.4a)
win = wex’ alqfin = L¢ex for TE modes,
n. (2.4b)

where 1, and 01, are wave functions and their normal derivatives from the interior (exterior) of the
cavity, respectively, and n,,(=no|d(/dn| ") is the inhomogeneous refractive index from the interior region of the
cavity evaluated at the boundary™.

In BEM, the above scalar wave equation is replaced by corresponding BIEs by using the Green’s function and
Green’s second identity, and then the cavity boundary I' is discretized. In our case, the Green’s function for the
interior region in physical space is not known since the refractive index is spatially varying there, so we cannot
obtain the BIE from the interior region of the cavity, while for the exterior region of the uniform refractive index

the BIE of the conventional BEM can be used. The Green’s function in the exterior region is defined as the solution
of

(A + k) G*(xr, t'; k) = 6(r — 1), (2.5)

where 6(r — r’) is the Dirac §-function, and r, t’ are arbitrary points in the exterior region of the cavity. The Green’s
function G¥(r, t’; k) for the exterior region is given by the zeroth order Hankel function of the first kind,

G™(x, s k) = ~ LWk — ).
(e, 5 k) = —=H{ kr — x') 06

By multiplying Eq. (2.1) by the Green’s function, subtracting the resulting equation from the product of
Eq. (2.5) and 9(r), and applying Green’s second identity, we obtain the resulting boundary integral equation (BIE)
as follows'”

) = @ 0,6 15 K) — G 15 K ) ds, 1 € D
r (2.7a)

Lieeny = pv f (W(r) 0, G(r, r's k) — G™(r, r'; k) 0,0(x)) ds, ¢’ € T,
2
T (2.7b)

where 0, is the normal derivative at point r on the boundary curve I of region ,, and s=s(r), which is the arc length
along I at r in the physical space; PV means Cauchy principal value integration. In order to build the BIE for the interior
region of cavity, we introduce the RV space which is obtained from the physical space by the inverse conformal map-
ping, n=f"'(¢), as shown in Fig. 1(c, d). In general, the inverse conformal mapping is not a one-to-one mapping and
therefore the RV space corresponding to the OV space should be selected. In the RV space, functions, vectors, differ-
ential operators, and other relevant symbols will be expressed with tildes. Under the inverse conformal mapping, the
scalar wave Eq. (2.1) transforms to

[A + A2®)K*] 3 (F) = 0, (2.8)

~ =2 =2
where A = 0, + 0,, position vector ¥ = (u, v), and refractive index 7i(¥) is given by

Ny s FeQ,
0=l e g,
ac (29)
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We note that the cavity in the RV space has a constant refractive index profile as shown in Fig. 1(d). Thus, for
the interior region of the cavity in the RV space, we can build the BIE,

55 (28,G™(F, 5 k) — 8(F — F)D(E) — 2G"F ¥s k) 9, 0®)ds =0, £, ¥ € T
T (2.10)
where 9, = p(¥) - %\ and p(¥) is the outward normal unit vector to the boundary curve I" of the region 5 at

point ¥ and § = §(¥) is the arc length along T at #. The Green’s function G™(E, ¥'; k) on the boundary of the cavrty
in the RV space is given by the zeroth order Hankel function of the first kind,

e o i IO
G™E ¥; k) = — ZHO“)(nOk|r — ), 2.11)
and LG"”(f, '; k) is its normal derivative expressed as
~ . /
B,G"(k, ¥; k) = ’”0 P - ——— H(nek[E — ¥,
\ | (2.12)

where H(" is the first order Hankel function of the first kind. To solve Eq. (2.10) numerically, the boundary must
be discretized by dividing it into small boundary elements. The BIE (Eq. (2.10)) can be approximated as a discre-
tized sum

B, 0%, + Cp i) = 0,
;( im 01U + Ciy i) (2.13)

where'B‘,m = f E(;,, $)ds = [ (= 26", 5 k) ds.Cy, = [ €&, 5)ds = [ (20,G"(5, 5 b)—6( — 5)) d5,
LQ/}m = 8l1/)(s ) T/Jm = 1/;( .»and [ denotes integration over a boundary element with a midpoint s,,,.
For the exterior region of the cav1ty, from Eq. (2.7b) we can write the following BIE,

¢ (20,G*(xr, t's k) — 6(r — ¥)YP(x) — 2G™(x, t'; k) O 9(r))ds =0, r, ¥’ € T.

(2.14)
Equation (2.14) can be discretized as follows,
By 010 + Ciy b)) = 0,
z,,,: T ; (2.15)

whereB,, = [ B(s, s)ds = [ (= 2G™(s, s K))ds,Cy,, = [ Cs;, s)ds = f (20,G*(s, s k) — 8(s — ) ds,
oW, =0 L¢(s ),and ¢, = 1/)(5 ). The size of the small boundary elements ds in the physical space is a function of
ds in the RV space and this function can be derived from the conformal mapping (= f(n). For the case of TM
resonant modes where both the wave function v and its normal derivative 0, ¢ are continuous across the bound-
ary, Egs. (2.13) and (2.15) can be written in a matrix form,

EI 6lm ~ ~

L

~

1/}

m

=0.

Blm Clm

an (216)

In the above equation, we used the relation, 1, = am, which comes from the fact that electric field wave func-
tions in the physical space and their counterpart functions in the RV space are the same as mentioned above and

!
the normal derivative relation, 9 )\ U, = LS L w where|%| " is evaluated at the midpoint §, ; details of deriva-
dn
tion of these relations can be found in ref 33, Thus, for the case of TM resonant modes, the 2N x 2N matrix M(k)
is defined by
glm élm
M(k) = B ,
Im d_ Clm
7 (2.17)

where N is the number of boundary elements. The resonant wave numbers k,,, are determined from the condition
that the matrix M(k) becomes singular, i.e.,

det [M(k)] = 0. (2.18)

For the case of TE resonant modes where the wave function 7/7 and 9 LzZJ /7 are continuous across the boundary
in the RV space, the above matrix M(k) should be replaced with
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n()z Elm 6lm
—1

dn

d¢

M(k) = .
Clm

Im

(2.19)

Finally, the wave functions in the interior and exterior regions of cavities can be obtained from following BIEs
(see Eq. (2.7a)) as follows

P, (F) = yﬁr (P(3),G™, ¥s5 k) — G5, T3 k,p)) 0,0(3)) ds, ¥ € €, (2.200)

U (r) = 54 (U(s) .G (s, 15 ky) — GX(s, 15 kpp) D, 00(s)) ds, £ € Q. (2.20b)

The wave function 1,,(r’) in the interior region of the cavity in the physical space can be obtained from 1/71-,,(?’ )
using the relation 1, (r') = 1), (¥), where r’ is related to ¥ by the conformal mapping.

Numerical Calculation in Limagon-Shaped Transformation Cavities
The conformal transformation, which maps the unit circle to the limagon'**, is given by

¢ =B+ en’), (3.1)

where 7 and ( are complex variables that denote positions in the two complex planes, ¢ is a deformation parameter,
and (s a positive scaling factor. The refractive index n(x, y) in the physical space derived from Eq. (2.2) is given by

., wyeq,
n(x, y) = {1 + 4e¢/p|
L, (%, y) € Qpy (3.2)

where 1, is the constant refractive index of a circular cavity in the OV space. The refractive index #i(u, v) derived
from Eq. (2.9) in the RV space is given by

B Ny s (u, v) € Qm
iu, v) = { ~
BI1 + 2en|, (u,v) € Q,,. (3.3)

Figure 1(c, d) show a limagon-shaped TC and an inversely transformed circular cavity obtained from Eq. (3.1)
with € = 0.24, n,=2.0, and 3= 1.0 in the physical space and the RV space, respectively. We note that the refrac-
tive index 7i(u, v) given by the inverse conformal transformation of Eq. (3.1) is a double-valued function. The
proper branch of refractive index 77(u, v) must be chosen so that the circular cavity in the RV space is same as the
circular cavity in the OV space.

Using the BEM formulated in the previous section, we obtained TM resonances when ¢ = 0.15, n,=1.8, and
B=0.769. The positive scaling factor (3 is introduced to obtain anisotropic WGMs supported by TIR which is
called conformal Whispering Gallery Mode (c(WGM)'. The condition for TIR in generic TCs is given by
|d¢/dn|~" > 1; in this case, the condition becomes 5 < f3,,,. = 1/(1 + 2¢) and we use 5= 3,,,, which is the min-
imal condition for TIR. The dimensionless resonant wave numbers kR, can be obtained from det[M(kR,)] = 0
through the root-finding algorithm such as the Newton-Raphson method. All of resonances in the range of
9.7 <Re[kR,] < 10.7 and 0 < Im[kR,] < —0.2 are marked in the complex k-space as shown in Fig. 2. Since each
mode has correspondence with the resonances in a uniform index circular cavity in the OV space which are labe-
led by the azimuthal mode number m and the radial mode number /, we simply denote the modes by (m, I).
Additionally, our BEM can generate the unphysical modes with Im[kR,] =0, so-called ‘spurious solutions, as in
the conventional BEM'. We can sort out them by comparing the Q-factor and the corresponding near-field
patterns.

In order to confirm the validity of our BEM, we compared the results of BEM with that of the correspond-
ing simulation performed by COMSOL Multiphysics v.5.3, a commercial FEM-based electromagnetic solver. In
Fig. 3, we depict the normalized values of |0, 1> and |¢|* along the arc length s normalized with total arc length
L for a resonant mode, (14,1) with the complex wave number kR, =9.785 — i 0.00158 and one can see that the
two results match almost exactly. The (14,1) c(WGM has a high-Q factor (Q~3097) because of the evanescent
leakage by TIR.

We plotted the near-field wave patterns and the far-field intensity distributions of the c(WGM obtained by
the two methods in Fig. 4. The far-field distribution exhibits bidirectionality due to the tunneling emission
at the rightmost position of the limagon shaped TC where the refractive index is lowest. In Fig. 4(a), the top,
bottom-left, and bottom-right patterns are the intensity, the real part, and the imaginary part of the complex wave
function obtained from BEM, respectively. Figure 4(b) is the results for the same mode obtained from FEM. As
shown in Fig. 4(c), the far-field intensity distribution obtained with BEM also agree well with the result obtained
with FEM. Incidentally, the BEM based on the Green’s function can obtain the wave function value at any spatial
point using only 0, 1 and 9 at the cavity boundary and it is one of the notable advantages of this method.
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Figure 2. Resonance positions in complex k-space and near-field intensity patterns for TM modes found by
BEM in the limagon-shaped TC with € = 0.15, ny=1.8, and 3=0.769. Crosses and open circles mark the
positions of a pair of nearly degenerate resonant modes labeled by same (1, I) for even- and odd-parity modes
with respect to x-axis on the left. We depicted only the even- parity mode patterns on the right.
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Figure 3. Comparison of the normalized |0, ¢|* and |¢|* along the normalized arc length s/L for the (14,1) TM
c¢WGM in a limagon-shaped TC withe = 0.15, n,=1.8, and §=10.769 obtained by BEM and FEM, respectively.
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Figure 4. Comparisons between (a,b) near-field, and (c) far-field patterns obtained by BEM and FEM for even-
parity (14,1) TM ¢WGM in a limagon-shaped TC with ¢ = 0.15, n,= 1.8, and 3=0.769. Top, bottom-left, and
bottom-right images in (a) and (b) are |¢)|%, Re(¢)), and Im(v)), respectively. In (c), the solid black and the dashed
red lines are the distributions obtained by BEM and FEM, respectively.

In our case, all resonances except those with m = 0 are exist in nearly degenerate pairs due to the breaking of
rotational symmetry. The mode pairs are formed with even- and odd-parity with respect to the mirror symmetry
axis (x-axis) and are very close to each other in the complex k-space as shown in Fig. 2. In Fig. 5, we depicted
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Figure 5. The nearly degenerate pair of (14,1) TM cWGMs obtained by BEM in the limagon-shaped TC with
€ = 0.15,n,=1.8, and 5=0.769. (a,b) Wave intensity patterns of the pair and (c) their far-field intensity
distributions.
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Figure 6. The even-parity (16,2) TM resonant mode in the limagon-shaped TC with e = 0.24, n,=2.0 and
B=1.0. (a,b) Wave intensity patterns obtained by BEM and FEM, respectively. (¢) Far-field intensity
distribution which are obtained by BEM (solid black lines) and FEM (dashed red lines). Inset of (c) is a zoom-in
plot for the range of 90~270 degree.

the mode intensity patterns and the corresponding far-field intensity distributions of a nearly degenerate (14,1)
cWGM pair. The even-parity (Fig. 5(a)) and the odd-parity mode (Fig. 5(b)) with respect to x-axis have k,.R,
=9.785240667 — i 0.0015797513 and kR, = 9.785240670 — i 0.0015797508, respectively. The far-field intensity
distributions of the cWGM pair show out of phase interference patterns but all exhibit bidirectional emission
features as shown in Fig. 5(c).

Using the BEM, we also obtained another resonant mode in a limagon-shaped TC with € = 0.24, n,=2.0, and
B=1.0. The complex wave number of the mode is k,,,R,=11.913 — i 0.107 and the intensity pattern of the reso-
nant mode is shown in Fig. 6(a). This resonant mode has low-Q factor (Q~: 56) and the corresponding far-field
intensity distribution is shown in Fig. 6(c). Contrary to the bidirectional far-field distribution of the above (14,1)
cWGM, this low-Q mode has a unidirectional far-field intensity distribution. From these results, one can note that
the Q-factors and emission directionalities of the resonant modes in TCs depend on the scaling factor 3 as well as
the deformation parameter ¢3°. We also obtained the resonant mode under the same parameters by FEM and the
resultant wave number of the mode is k,,,R,=11.913 — i 0.108, which agrees well with the BEM result. Also, the
intensity pattern of the corresponding mode and the far-field intensity distribution obtained by FEM are shown
in Fig. 6(b,c), respectively, which nearly match the results of BEM as well.
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Conclusion

The cWGMs in TCs can simultaneously possess useful properties, such as an ultrahigh-Q factor and direc-
tional light emission, which are seemingly incompatible. In order to obtain the resonant mode functions in TCs
designed by conformal TO, we have developed a pure BEM based on the fact that the Green’s functions of inte-
rior and exterior regions are known in the RV and the physical spaces, respectively, which are connected by a
conformal mapping. For the verification of our BEM, we have respectively, which are connected by a conformal
mapping. For the verification of our BEM, we have calculated resonant modes in limagon-shaped TCs and com-
pared those with the corresponding results from FEM. Complex wave numbers, mode patterns, and far-field
intensity distributions of the resonant modes obtained by the BEM almost match those obtained by FEM. Like the
conventional BEM for homogeneous dielectric cavities, the newly proposed BEM has advantages in computing
resonances in the TCs, e.g. a relatively simple formalism and efficiency, especially in finding highly-excited states.
It can also be used for a measure of reliability for FEM calculations in non-piecewise-constant media. We expect
that our method will be extended to the calculation of resonant modes in TCs with more complex geometries.
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	Numerical Calculation in Limaçon-Shaped Transformation Cavities

	Conclusion

	Acknowledgements
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