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ABSTRACT: Bimetallic platinum—cobalt (Pt—Co) catalysts
have highly enhanced performance for the oxygen reduction
reaction (ORR), where this peculiar surface alloy structure
contributes to efficient energy conversion processes. However,
the detailed catalytic reaction steps and adsorbate-driven
interactions on the surface morphology under practical operating
conditions are still unclear. Here, we report the water-assisted
surface reconstruction of the bimetallic Pt;Co(111) surface using
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near-ambient pressure scanning tunneling microscopy (NAP-STM) in a humid O, environment. The segregated CoO, clusters
are selectively transferred to the Co(II) oxide/hydroxide layer at 0.1 Torr of H,0/O, gas mixture at elevated temperature. In
contrast, this drastic phase transition is limited and dependent on the partial pressure of water because the nanoscale CoO
islands are formed with 0.1 Torr of the N,/O, gas mixture. Synchrotron radiation in-situ X-ray photoelectron spectroscopy
measurements also support the water-assisted evolution of the Co(OH), species. These morphologic modulations not only
explain the surface degradation process of the bimetallic Pt—Co catalysts but also indicate the active formation of CoO,/

CoOOH intermediates during energy conversion.
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1. INTRODUCTION

Novel utilization of renewable and clean energy production has
been at the top of international agendas for decades to solve
the steep depletion of fossil fuel sources."”” Among the various
solutions, a promising eco-friendly alternative is the direct
conversion of chemical energy to electrical energy in a fuel cell
using Pt electrocatalysts. However, it is a challenge to
overcome practical issues like the overpotential of the Pt
cathode in the rate-limiting step of the oxygen reduction
reaction (O, + 4H" + 4~ — 2H,0, E, = +1.23 V vs reversible
hydrogen electrode (RHE))® and the high cost of Pt, which is
especially a hurdle for large-scale operations.” Thereby,
extensive studies searching for Pt substitutes while enhancing
the efficiency of energy production deal with the rational
design of electrocatalysts. In particular, Pt-based bimetallic
alloys successfully meet the requirements to replace Pt (e.g.,
designs of Co- or Ni-alloyed Pt catalysts exemplify a superior
catalyst with respect to the volcano plot of energy
conversion).”™” Tailored layers in the surface of Pt-based
bimetallic catalysts have unique electronic structures that
facilitate beneficial molecular interactions via Sabatier’s
principle for enhancing catalytic activity.'’ Theoretically, a
shift of the d-band near the Fermi edge in the electronic
structure of Pt-based bimetallic materials by alloyed 3d
transition metal (TM) components can make fine adjustments
to the chemical bonding states on the surface, which
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conclusively explains the origin of previous important bench-
mark reports of Pt-TM and electrocatalysis.s’11 Nonetheless,
the very large mass and charge transfers that occur during
molecular interactions complicate the oxidation/reduction
reactions at the liquid/solid interface and are not yet fully
understood. The degradation process for bimetallic catalysts in
cyclic activity measurements has been investigated to under-
stand the relationship between catalyst morphology and
reactivity; these details have been much debated."”™"* Gaining
a fundamental understanding of molecular behavior on the
active sites of transient catalyst morphologies under realistic
conditions requires in-situ microscopic and spectroscopic
surface techniques that are operable at elevated pressure and
temperature. 1516

In this study, we reveal a phase transition of the morphology
of the Pt;Co(111) surface using near-ambient pressure
scanning tunneling microscopy (NAP-STM) in a humid O,
environment. The prepared Pt-skin topmost layer of the Pt—
Co surface is gradually covered with partially oxidized CoO,
clusters that result from surface segregation of subsurface Co
atoms under oxidation conditions. We show that the partial
pressure of water is a crucial factor for determining the
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consecutive restructuring process. This water-assisted surface
reconstruction makes large multilayered holes and pits in the
Co(1I) oxide/hydroxide structures, while the segregated CoO,
clusters grow to CoO islands on the Pt;Co(111) surface when
exposed to O,. Synchrotron radiation in-situ X-ray photo-
electron spectroscopy (XPS) was used to identify the oxidation
states of the Co before and after surface segregation. Our
experiments at more realistic conditions explain the surface
degradation process of the model Pt—Co bimetallic catalyst by
water molecule interactions at increased thermodynamic
potentials.'” ™"

2. EXPERIMENTAL PROCEDURES

2.1. Operando Direct Observations Using NAP-STM. Direct
observation images were taken by using a reaction cell (15 mL)
integrated STM scanner (Aarhus STM 150 NAP, SPECS GmbH) in
an ultrahigh-vacuum (UHV) chamber (base pressure: 1 X 107'°
Torr) that is connected to a high-purity (99.999%) multigas delivery
manifold system. Each STM image was recorded in constant current
mode where the tunneling condition is denoted as V, (sample bias
voltage) with I, (tunneling current).

2.2. Synchrotron Radiation in-Situ XPS Measurements.
Photoemission core-level electron transition signals were acquired at
the HR-PES II end-station of the 10A2 beamline with an undulating
X-ray radiation source in top-up mode at the Pohang Accelerator
Laboratory (PAL) in the Republic of Korea. XPS measurements were
performed in an UHV chamber (base pressure: 4 X 107" Torr) that
is equipped with a hemispherical electron analyzer (SES200, Scienta).
The X-ray beam incidence angle was selectively adjusted to the
sample surface (takeoff angle of 30° for surface-sensitive and 90° for
subsurface-sensitive) in the measurements. Photoelectron spectra
were recorded with a step of 0.05 eV and a pass energy of 20 eV. Each
acquired spectrum binding energy was calibrated to the Fermi edge of
the clean sample at each selected photon energy. The collected XP
spectra were analyzed by using a commercially available software
package (CasaXPS 2.3.19). The binding energy calibrated spectra
were subtracted by using a Shirley-type background before the curve-
fitting procedure. The O 1s core-level spectra were deconvoluted with
widely used fitting parameters with a Gaussian (70%) and Lorentzian
(30%) mixed function.

2.3. Preparation of Single-Crystal Pt;Co(111) Surface. A
polished Pt;Co(111) sample with a cut accuracy <0.1° was purchased
from Mateck GmbH (Germany) and pretreated by using cyclic Ar*
ion-bombardment sputtering of 1000 eV at 1 X 10~ Torr for 20 min,
followed by UHV annealing at 1100 K for S min. This straightforward
procedure was repeated until obtaining a monolayer Pt-skin-covered
Pt;Co(111) surface without any contaminants in each separate
analysis system. Detailed experimental procedures are described
elsewhere.””*!

3. RESULTS AND DISCUSSION

The prepared Pt;Co(111) surface image exhibits a typical step-
terrace structure at 300 K in UHV (Figure la). Each of the
measured step heights is 2.3 A, and the nearest-neighbor
distance is ~2.8 A on the terrace (inset of Figure la). The
indicated hexagonal spots (white dotted line) in the Fast-
Fourier transform (FFT) image confirm the (111) facet of the
Pt atom arrays on the locally magnified terrace area (Figure S1
in the Supporting Information), which means that the
pretreated clean Pt;Co(111) surface consists of an upper Pt
skin with Pt—Co alloyed subsurface layers.”>**

The observed Pt-skin/Pt;Co(111) surface is suddenly
altered depending on the surface interactions with the
surrounding adsorbate molecules. In Figure 1b, the operando
NAP-STM image shows bright nanoislands (indicated by
arrows) with dark pits along the deformed step-terrace
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Figure 1. NAP-STM images of the Pt;Co(111) under different
measurement conditions with corresponding schematics. (a) Clean at
UHYV and 300 K [V, = 1.25 V; I, = 0.19 nA] with an enlarged atom-
resolved Pt-skin STM image (inset) [V, = 0.37 V; I, = 0.13 nA], (b)
Co oxide nanoisland evolution with 0.1 Torr of N,/O, gas mixture at
460 K [V, = 128 V; I, = 0.29 nA], and (c) Co oxide multilayer
formation with 0.1 Torr of the H,0/0, gas mixture at 460 K [V, =
1.10 V; I, = 0.18 nA]. Schematic models of the (d) Pt-skin/
Pt;Co(111) layer, (e) Co oxide island composites, and (f) multilayer
Co oxide structure (side view). The colors for each atom indicate Pt

(light gray), Co (royal blue), and O (red) in the schematic models.

structures during the dry oxidation process (0.1 Torr of N,/
O, 1:1 ratio gas mixture) at 460 K. Representative line profiles
(Figure S2) indicate that the apparent height of the
nanoislands is close to 1.6 A, and the reconstructed step
heights on the observed surface are in the range 1.4—1.9 A.
The nanoislands are similar to an earlier report of
stoichiometric CoO islands on an oxidized Co/Au(111)
surface.”” Furthermore, the randomly formed pits on the
terraces have height profiles of 1.0—2.1 A during the evolution
of nanoclusters and nanoislands, where the observed
deformation of the Pt-skin/Pt;Co(111) surface is certainly
triggered by subsurface Co atom segregation under dry
oxidation conditions. However, we observed a widely formed,
winding layered structure when in a humid O, environment
(0.1 Torr of H,0/0, 1:1 ratio gas mixture) at 460 K (Figure
1c). The reconstructed morphology has an apparent height of
5.0 A between the lowest valley and the highest peak in the
measured line profile (Figure S3). The nanoislands on the
observed image seem to have discrete step edge structures,
which provides evidence of reconstructed metal—oxide inter-
face formation with three different layers of 1.7 A average step
height. This unusual picture obviously differs from the dry
oxidation process. The formation of an adsorbate-driven
layered structure is assisted by the surrounding water
molecules during oxidation of the segregated Co atoms on
the Pt;Co(111) surface at the increased thermodynamic
surface potential under reaction conditions. Based on our
direct observations, schematics of the bimetallic Pt—Co
compositions on the surface are proposed as Pt-skin/
Pt;Co(111), Co oxide island composites, and Co oxide
multilayer structures, as illustrated in Figure 1d—f.

Figure 2a—d shows the characteristic processes of water-
induced Co oxide evolution on the Pt;Co(111) surface under
operando conditions. Under the humid O, conditions, most of
the terraces were covered with varying sizes (4—10 nm) of
nanocluster networks at 370 K, as shown in Figure 2a.
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Figure 2. Operando NAP-STM images with 0.1 Torr of H,0/0, gas
mixture on the Pt;Co(111) surface at temperatures of (a) 370 K [V, =
1.00 V; I, = 0.11 nA], (b) 440 K [V, = 1.10 V; I, = 0.19 nA], and (c)
480 K [V, = 1.10 V; I, = 0.19 nA]. (d) A local magnified operando
NAP-STM image at 440 K [V, = 1.10 V; I, = 0.23 nA]. (e) Two-
dimensional FFT image of (d). (f) Atomistic ball model of the O/
Co/Pt layered structure (red: O; royal blue: Coj light gray: Pt).

Subsurface Co atoms could selectively segregate onto the
topmost layer when surrounded by O, molecules, which was
also observed in previous reports of Pt-based bimetallic
catalysts.”>*> The chemical potential of the reactive molecules

influence the morphology, which implies that the control of
pressure and temperature in the surrounding environment
would lead to morphological changes via surface reconstruc-
tion or restructuring.”® These morphological changes originate
from the inherent lattice mismatch between the Pt and 3d-TM
of the bimetallic alloy materials. For instance, Pt;Co has a 2%
reduced fcc lattice constant with a segregation energy of —0.61
eV compared with Pt in a theoretically optimized model
structure.”” The dissociated oxygen pulls the subsurface Co
atoms onto the topmost layer, and the segregated CoO,
nanoclusters are spontaneously formed on the Pt;Co(111)
surface via strain and ligand effects.”®*” The oxygen-induced
phase separation of Pt;Co(111) and segregated CoO,
nanocluster oxidation would be followed by the thermody-
namic relation at a given temperature and pressure.30 For
example, selective Co segregation on the Pt;Co(111) surface is
easily observed even at 300 K in 1 Torr of O, compared with
an O, pressure 1/20th of that (Figure S4). This subsurface Co
atom segregation process occurs on the Pt;Co(111) under
both dry and humid oxidation conditions at temperatures
under 400 K, regardless of the partial pressure of water.
Surprisingly, the observed surface structure has an abrupt
phase transition stage at temperatures above 400 K during
humid oxidation. The reconstructed surface shows broken
steps and holes with periodic arrays at 440 K (Figure 2b).
Finally, the evolved layers combined with each other at 480 K
(Figure 2c) to make an ultrathin Co oxide multilayer on the
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Figure 3. Synchrotron radiation in-situ XPS measurements on the Pt;Co(111) surface with 2 X 107 Torr of H,0/0, (1:1 ratio) gas mixture and
at elevated temperature. Comparison of the core-level XP spectra of (a) Co 2p and Pt 4f and (b) O 1s. (c) Relative peak intensity histogram of the
Pt and Co core-level XP spectra. (d) Stacked column plots of the relative peak areas from the O 1s core-level XP spectra.
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surface. In Figure 2d, the enlarged image taken during
operando observations at 440 K clearly shows the moiré
pattern fragments of the layered structure with a periodicity of
2.4 nm. As shown in Figure 2e, the FFT results in Figure 2d
also provide strong evidence (white dotted circles) of the
presented periodicity. This observed structure matches a
previously proposed superstructure of “O/Co/Pt” (see
schematic illustration in Figure 2f 3! Thus, the water-assisted
surface reconstruction has a large discrepancy from the trend
seen with dry oxidation on the Pt;Co(111) surface. According
to a kinetic Monte Carlo (kMC) simulation, the selectively
dissolved components organize porosities on the terraces such
that the nonequilibrium dealloying behavior of the external
holes and pits occur at the liquid/alloy interface.”* Pourbaix
diagrams also describe how the Co—H,O system may form
Co;0, Co(OH),, Co(OH),;, and CoOOH in neutral pH at
equilibrium potentials.”® Water-induced agglomeration of the
CoO, clusters could lead to a wide range of surface
reconstruction. The revealed water-assisted Co oxide multi-
layer formation on the Pt;Co(111) is analogous to two-
dimensional Co(OH),/CoOOH and Co oxide island
structures on Au catalysts.”**> As described above, observa-
tions of the evolved morphology show a considerable
discrepancy between the structural formation with respect to
the partial pressure of water. Notwithstanding these valuable
results, confirmation of the chemical binding information is
key to investigating the origin of the specific compositions on
the layered Pt—Co alloy surface.

To clarify the chemical species information, we performed
in-situ synchrotron radiation XPS measurements on the
Pt;Co(111) surface with 2 X 107® Torr of water and an O,
gas mixture (1:1 ratio) with increasing temperature. We
selected photon energies of 320 eV for Pt 4f, 680 eV for O 1s,
and 910 eV for Co 2p core-level photoelectron spectra. At a
takeoff angle of 30° against the hemispherical electron
analyzer, we could actually collect surface-sensitive chemical
binding information from the surface in the range of 1—2 nmy;
experimental apparatus adjustments are particularly important
to interpret the adsorbed molecular water (hydroxyl group
coupling of the Co oxide) (Figure $5).%° As shown in Figure
3a, the core-level spectra of Pt 4f and Co 2p show changes in
the relative elemental composition of the Pt and Co on the
Pt;Co(111) surface at elevated temperatures. The absolute
intensity of the Pt 4f core-level spectrum gradually decreased
with increasing temperature; however, the Co 2p core-level
spectrum increased at the same temperature. We identified a
shift of the metallic Co (Co°) peak at 778.2 eV toward to Co**
or Co® at a binding energy of 780.9 eV with increasing
temperature.”” Moreover, the noticeable shakeup satellite (SS)
peak appears at 787.0 eV when at temperatures above 550 K,
which confirms the change in oxidation state at 600 K in the
XP spectra. According to the literature, synthesized nanoma-
terials such as CoO, Co(OH),, CoOOH, and Co;0, show a
representative characteristic XP spectral shape such that each
chemical species is distinguished by deconvoluted peak
positions.”®*” Notably, a broad satellite peak appears in each
analysis result for CoO and Co(OH), at binding energies of
786.5 and 786.3 eV, respectively, in the literature. Thus, the
observed peak shift at temperatures above 550 K in the
measured Co 2p core-level spectra is attributed to a change in
the oxidation state (Co® — Co®*). Overall, the acquired
chemical species results imply that the pretreated clean Pt-
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skin/Pt;Co(111) surface could be selectively oxidized to Co
oxides/hydroxide under humid oxidation conditions.

Figure 3b shows the detailed changes in the oxidation state
for both the Pt and Co in the simultaneously acquired O 1s
spectra. At 400 K, three different characteristic peaks appeared
at 529.8, 530.8, and 532.7 eV; they can be assigned to Pt—O
(chemisorbed oxygen), partially oxidized nonuniform CoO,, (0
< x £0.5) clusters, and coupled water molecules on the CoO,
species, respectively.””*® This confirms that the CoO,
segregation phenomenon occurs via dissociated oxygen from
the water and O, gas mixture on the Pt;Co(111) surface at 400
K. We note that dissociated water molecules were not found at
300 K, nor on the clean surface (i.e., the dissociated hydroxyl
group from the water molecule is selectively adsorbed on the
segregated CoO, networks and not on the Pt atoms).
Typically, the adsorption of water molecules on Pt atoms is
not favored even at 160 K;* however, the partially oxidized
CoO, clusters prefer electrophilic adsorbates, such as
dissociated water, to create more stable electron config-
urations.”’ For instance, the edge sites of CoO actively
facilitate water dissociation even at room temperature because
the exposed active sites cause dynamic changes in the chemical
state on the surface.”

Thus, the adsorbed molecular water or the coupled hydroxyl
group (—OH) appears at a relatively higher binding energy
above 531 eV in the XP spectrum for the metal—oxide
system.””"> With the acceleration of the humid oxidation
process above 500 K, the Pt—O peak disappears, and peaks for
the lattice oxygen (CoO) and Co hydroxide [Co(OH),]
species suddenly emerge at 530.4 and S31.5 eV, respectively.
Crystallography of the stable Co;0, bulk structure consists of
Co* from tetragonal and Co** from octahedral sites;"’
however, we could not deconvolute each feature with the
ratio of Co**/Co’" for Co;0, because the segregated amounts
of the Co atoms were not sufficient to have a large-scale stable
bulk structure. Nevertheless, the peak at 531.5 eV could be
assigned to Co(OH), at 500 K, except for bulk Co;0,
formation, because the simultaneous shift of the primary
peak position and the intensity ratio to the SS peak in the
acquired Co 2p spectrum were different than the reference
results for Co;0, formation.”®”” The SS peak in the Co 2p
spectra originated from complex electron-exchange correla-
tions between the initial and final states of the Co oxides. In
molecular orbital (MO) theory, the solution of the wave
equation based on quantum mechanics calculations asserts that
an electron transition from O 2p to Co 3d contributes to the
overlapped peak shapes of the SS species with oxidation states
of Co**. ™

Therefore, the assignment of the peak for Co(OH), is
reasonable in the O 1s spectra at elevated temperature. Above
400 K, consumption of the adsorbed —OH group occurs
readily during transformation of the intermediate CoOOH;
thus, the CoO, and adsorbed water species simultaneously
decreased at 550 K. Eventually, the Co(OH), peak has the
largest portion of the deconvoluted peak areas in the O 1s
spectrum at 600 K. Figure 3c,d aids in the numerical analysis of
the XP spectra by providing plots of the histograms. These
histograms display the fractional ratio of the Pt and Co
elements on the Pt;Co(111) surface and the trends of the
relative peak areas for each Co oxide species at a given time. It
shows that the segregated Co changed oxidation states with
increasing temperature; in the end, the oxide structure
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Figure 4. Representative operando NAP-STM images and plot of the measured evolving morphology height on the Pt;Co(111) surface from NAP-
STM images under environmental conditions. Each representative image (scale bar: 10 nm) shows a separate surface reconstruction step in the
respective dry and humid oxidation processes at elevated temperature.

consisted of a predominantly Co(OH), overlayer on the
surface.

Figure 4 displays a statistical plot based on the measured
height of the evolving species of CoO, clusters, CoO islands,
and the CoOOH/Co(OH), overlayer from the NAP-STM
images under operando conditions (p, = 0.1 Torr). Oxygen-
driven CoO, segregation occurred almost uniformly along the
terraces of the Pt;Co(111) catalyst, where clusters grew via the
Ostwald-ripening process of nucleation and coalescence at
elevated temperature. Thus, the agglomerated CoO, cluster
size increased exponentially up to 400 K. A dramatic phase
transition began with selective surface reconstruction depend-
ent on whether the —OH group was bound to the networks of
nucleated CoO,. The dry oxidation process [p(H,0)/p’ = 0]
led to the formation of CoO on the Pt—Co alloy surface where
the average height of the nucleated CoO, islands grew linearly
up to 2.3 + 0.2 A at 500 K. This increased by 30.4% compared
with the morphology height at 410 K, at which temperature
the islands corresponded to the CoO structure. In contrast, the
humid oxidation process [p(H,0)/p° = 0.5] readily constructs
an overlayer structure on the Pt;Co(111) surface. After the
indicated phase transition at 400 K, the Co(OH), layer grew
epitaxially with increasing temperature. This vigorous
reconstruction has a measured morphology height of 3.4 +
0.9 A at 500 K, which corresponds to approximately double the
measured height of the bilayer CoO island structure.*® Their
measured height profiles indicate wider distributions than that
of CoO nanoisland structure. This implies that the observation
results in more extreme experimental conditions might have a
sub-angstrom-level error scale. However, the variation of
average morphology height distribution under humid oxidation
conditions was significantly higher than the error scale and
could therefore be considered solid evidence of the effect of
vapored water molecules. Also, in the results of our operando
NAP-STM and in-situ XPS, we did not observe the formation
of multilayer CoO or CoOOH structures on the Pt;Co(111)
surface in experimental conditions with dry or humid
oxidation. Unlike the nucleation and growth step before the
surprising phase transition at 400 K, both dry and humid
oxidation promote monotonic growth of islands or overlayers
at elevated temperatures. Repeated units of Co—O might make
an unfavorable dipole moment during island or layer growth,
where the opposing charge polarization between the Co- or O-
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terminated layers should compensate for one other to stabilize
the oxide structure.*”*¢

Thus, the water-assisted adsorbate interactions are not
limited to forming surface oxides but can develop an influential
ultrathin oxide layer. It follows that the Co oxides may have
many oxidation states because of structural flexibility, which
explains the potential for novel construction of nanoscale
architecture."®"® Especially, the evolution of an intermediate
CoOOH layer is very important for the direct conversion of
energy via the oxygen evolution reaction (OER). This active
phase could play an effective role in the four-electron exchange
process at liquid/solid interfaces.”” Moreover, the identified
Co oxide and hydroxide overlayers may provide a relaxation
pathway for hot carriers through the specified electron
transition [O*~(2p) — Co3+(eg)],48 which could also be
used for ultrathin metal—oxide layered devices in industrial
energy applications.*”’

4. CONCLUSION

The detailed surface phase transition process of a bimetallic
Pt;Co(111) model catalyst has been observed in operando
conditions using NAP-STM. Dissociated oxygen with increas-
ing chemical potential energy leads to subsurface Co atoms
segregating onto the topmost Pt-skin layer of the Pt;Co(111)
surface. After the segregated CoO, clusters form, the phase
transition step selectively proceeds as a function of water
partial pressure. The oxygen-driven nucleated CoO, networks
are spontaneously transformed to an ultrathin CoO/Co(OH),
overlayer on the Pt;Co(111) surface by the hydroxylation
reaction during the humid oxidation process. We show that in-
situ XPS analysis results are consistent with the observed trend
of the morphologic changes seen in NAP-STM images where
the segregated CoO, species underwent Co(OH), layer
formation when exposed to a water and O, gas mixture at
elevated temperature. These investigations clarify the elemen-
tary step of transient Co oxide formation on Pt—Co bimetallic
catalyst surfaces during the ORR at an increased chemical
potential.
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Figures S1—S5: NAP-STM images with representative
line profiles and angle-dependent O 1s core-level XP
spectra in a water/O, gas mixture (PDF)
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