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A B S T R A C T

We have studied the phase-space dynamics and rectified current of a nano-electromechanical shuttle with two types of time-periodic potentials. By applying only
sinusoidal voltage with frequency 𝜔 at one lead, regular shuttle motion constructs Arnold’s tongues in parameter space, where the motion in each tongue has a
period of 𝜋∕𝜔 or 2𝜋∕𝜔. The rectified current in each tongue is finite for the 2𝜋∕𝜔 period but zero for the 𝜋∕𝜔 period. We then apply discrete kicks, the periods
of which modify the period of motion in the tongues. We find that it is important to the rectified current whether the integer of the lowest common multiple
between the two periods is even or odd. Specifically, the rectified current is finite in the tongues when the lowest common multiple integer is even, while the
current is zero when the integer is odd.

1. Introduction

Nano-mechanical electron shuttles are prototype nano-
electromechanical systems (NEMS) that have attracted a great deal
of attention due to their fundamental properties in new electronic
transport [1–10]. An electron shuttle consists of a nano-mechanical
resonator and two electrodes, with bias voltage and vibration between
the electrodes. An integer number of electrons is loaded or unloaded
with exponential dependence on the position of the shuttle when
one electrode is closed by a dc bias voltage. The dc bias voltage,
originating from the symmetry-breaking of the potential, transfers a
discrete number of electrons from one side to the other. Responses
of nano-electromechanical shuttles to ac fields have been reported in
both asymmetric [11–13] and symmetric systems [14]; asymmetric
systems show rectified current because of the imbalanced left and right
flows, even though ac bias voltage respects the symmetry under every
time period [11], and symmetric systems also show rectified current
that in this case originates from spontaneous symmetry-breaking with
increasing degrees of freedom [14].

A kicked rotor model provides us with interesting phenomena for
describing discrete driven systems as distinguished from continuously
driven systems [15,16]. In this model, system characteristics are de-
termined by the period and strength of periodic pulsed forces (or
kicks) as Dirac delta trains. In a classical sense, the model is a good
route to chaos, showing diffusive momentum growth with increas-
ing kick strength and period [17]. In the quantum case though, two
extraordinary phenomena arise: dynamic localization [16,18–20] and
quantum resonance [21–23] in momentum space, which correspond
to whether the driving period is an irrational or rational multiple
of 2𝜋, respectively. The motion of a nano-electromechanical shuttle
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behaves classically with electrons tunneling between electrodes on the
nanoscale, which can be treated semiclassically. We find then that the
interplay between a semiclassical electron shuttle and discrete kicks
exhibits interesting electronic transport and mechanical dynamics, the
behaviors of which will help us to better understand NEMS and to
design more useful nanoscale electron transport systems.

In this paper, we study an electron shuttle with two kinds of periodic
voltage applied, sinusoidal and periodic kicks, and find significant
mechanical dynamics and electronic current in the parameter space of
the resonating shuttle that rely on kick period and strength. Essentially,
a driving force induces a non-zero electronic current in the parameter
space and results in the shuttle becoming highly efficient in transferring
electrons. Moreover, strong high-frequency kicks train the system to be
more robust against continuous perturbation, such as a sinusoidal force,
thereby guaranteeing more stable electronic systems that can benefit
NEMS applications.

2. Nano-mechanical electron shuttle

Let us consider a nano-mechanical electron shuttle (hereafter re-
ferred to as a nano shuttle) as a movable quantum dot weakly con-
nected between two electric leads by a tunneling process, with the
system under a dissipative force. In this system, we neglect nonequilib-
rium contributions to current-induced force and pumping current [24–
26]. The two electrodes play different roles under a finite bias, namely
as a ‘‘source’’ and a ‘‘drain’’. A time-dependent bias voltage is applied
to the source electrode, and the drain electrode is directly connected
to the ground; the applied force is thus confined along the direction of
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Fig. 1. Schematic of an electron shuttle system.

the two electrodes as an effective 1D system. The equation of motion
for such a shuttle can be written as follows,

𝑚𝑥̈ + 𝑚𝛾𝑥̇ = 𝐹𝑠 + 𝐹𝑘 + 𝐹ℎ, (1)

where 𝑚 is the effective mass of the shuttle and 𝛾 is a damping param-
eter. The time-dependent bias voltage applied to the source electrode
of our system is made up of two different voltages, 𝑈 (𝑡) = 𝑈𝑠(𝑡) + 𝑈𝜉 ,
where the first part is normal sinusoidal voltage 𝑈𝑠(𝑡) = 𝛼 sin𝜔𝑡 in
which 𝛼 is the amplitude, and the second part is pulsed driven voltage
𝑈𝜉 = 𝜉𝐷𝜀(𝑡∕𝑇𝑘) in which 𝐷𝜀(𝑡∕𝑇𝑘) is a discrete function. 𝐷𝜀(𝑡∕𝑇𝑘) = 0
when 𝑡∕𝑇𝑘 ∈ [𝑛 − 1, 𝑛 − 𝜀), and 𝐷𝜀(𝑡∕𝑇𝑘) = 1 when 𝑡∕𝑇𝑘 ∈ [𝑛 − 𝜀, 𝑛) with
integer number 𝑛 and pulsed period 𝑇𝑘.

An ac voltage induces a normal continuous force 𝐹𝑠, while a pulsed
voltage induces a discretized kicked force 𝐹𝑘. The setup of our system
is illustrated by the effective circuit with two electrodes in Fig. 1.
The position-dependent tunneling process can be represented by a
parallel circuit with constant capacitance 𝑐𝑙∕𝑟 and a resistance that
exponentially depends on position 𝑅𝑙∕𝑟 = 𝑅0𝑒±𝑥∕𝜆, where 𝜆 is a charac-
teristic length. The continuous force is 𝐹𝑠 = −𝑐𝑈2

𝑠 (𝑡) (𝑥)∕𝜆, and the
kicked force is 𝐹𝑘 = −𝑐

[

2𝜉𝑈𝑠(𝑡)𝐷𝜀(𝑡∕𝑇𝑘) + 𝜉2𝐷2
𝜀(𝑡∕𝑇𝑘)

]

 (𝑥)∕𝜆, where
𝑐 = 𝑐𝑙 = 𝑐𝑟 is the effective capacitance of the symmetric circuit, and
 (𝑥) = 2

(

𝑒𝑥∕𝜆 + sinh 𝑥∕𝜆
)

∕ cosh3(𝑥∕𝜆) as derived in Appendix. 𝐹ℎ is
the harmonic potential of the nano shuttle.

Discrete electronic current results from transferring an integer num-
ber of electrons from the source electrode to the drain electrode (and
vice versa) through the oscillation of the shuttle. The dynamics of the
resonating shuttle in classical phase space dramatically changes the
electronic current behavior.

2.1. Equations of motion for the shuttle

In order to analyze the dynamics of the nano shuttle in phase space,
we can consider Hamiltonian equations that read 𝑝̇ = −𝜕𝐻∕𝜕𝑥 and
𝑥̇ = 𝜕𝐻∕𝜕𝑝. The coupled equations are reduced as

𝑥̈ = 𝜕2𝐻
𝜕𝑝𝜕𝑡

+
(

𝜕2𝐻
𝜕𝑝𝜕𝑥

)(

𝜕𝐻
𝜕𝑝

)

−
(

𝜕2𝐻
𝜕𝑝2

)

( 𝜕𝐻
𝜕𝑥

)

, (2)

which is the same equation as Newton’s second law 𝑚𝑥̈ = 𝐹 , where 𝐹
is a force applied to an object. We can obtain a Hamiltonian coupled
with a bath environment by applying force with damping 𝐹 = −𝑚𝛾𝑥̇ −
𝜕𝑉 (𝑥, 𝑡)∕𝜕𝑥 to the shuttle, where 𝑉 (𝑥, 𝑡) is potential. The modified
Hamiltonian equation with damping then reads

𝜕2𝐻
𝜕𝑝𝜕𝑡

+
(

𝜕2𝐻
𝜕𝑝𝜕𝑥

+ 𝛾
)(

𝜕𝐻
𝜕𝑝

)

−
(

𝜕2𝐻
𝜕𝑝2

)

( 𝜕𝐻
𝜕𝑥

)

= −
𝜕𝑉 (𝑥, 𝑡)
𝑚𝜕𝑥

. (3)

We can re-write the Hamiltonian equations as follows,

𝑝̇ = −
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
𝑒𝛾𝑡 , (4)

𝑥̇ =
𝑝
𝑚
𝑒−𝛾𝑡 , (5)

where the modified force is 𝐹 = −𝜕𝑉 (𝑥, 𝑡)∕𝜕𝑥 = 𝐹𝑠 + 𝐹𝑘 + 𝐹ℎ, which is
considered in a new Hamiltonian with damping,

𝐻 =
𝑝2

2𝑚
𝑒−𝛾𝑡 + 𝑉 (𝑥, 𝑡)𝑒𝛾𝑡. (6)

Given one initial point, we can calculate the trajectory of the resonator
and reveal the corresponding motion properties using Eqs. (4) and (5).

From Eq. (5), we also find that momentum 𝑝 and 𝑚𝑥̇ are not equivalent
due to the dissipative force. To be exact, their relation is given by
𝑝 = 𝑚𝑥̇𝑒𝛾𝑡.

The dimensionless variables here are 𝑥̃ = 𝑥∕𝜆, 𝑝̃ = 𝑝𝑒−𝛾𝑡∕𝜆𝜔0𝑚,
𝑡 = 𝜔0𝑡, 𝜔̃ = 𝜔∕𝜔0, 𝛾̃ = 𝛾∕𝜔0, 𝑇𝑘 = 𝑇𝑘∕𝜔0, 𝛼̃ = 𝛼

√

𝑐∕𝑚∕𝜆𝜔0, and
𝜉 = 𝜉

√

𝑐∕𝑚∕𝜆𝜔0. The Hamiltonian equations are modified as

𝑝̇ = −
[

𝛼 sin(𝜔𝑡) + 𝜉𝐷𝜀(𝑡∕𝑇𝑘)
]2  (𝑥) − 𝑥 − 𝛾𝑝, (7)

𝑥̇ = 𝑝, (8)

where we omit the tildes (∼). These Hamiltonian equations with
rescaled quantities give us the shuttle dynamics in phase space based
on 𝑥 and 𝑥̇.

2.2. Electronic current

Charge accumulation on the left side of the shuttle system is de-
termined by Kirchhoff’s law in a circuit (Fig. 1) with bias voltage
𝑈 (𝑡) as a function of the time-dependent position of the shuttle (𝑥),
as 𝑄𝑙(𝑥, 𝑡) = 𝑐𝑈 (𝑡)𝑅𝑙(𝑥)∕[𝑅𝑙(𝑥) + 𝑅𝑟(𝑥)] where 𝑅𝑙∕𝑟(𝑥) is resistance at
the left/right junction. From the definition of current 𝐼(𝑡) = 𝑄𝑙 (𝑥)

𝑐𝑅𝑙(𝑥)
, the

instantaneous current of the system is

𝐼(𝑡) =
𝑈 (𝑡)

2𝑅0 cosh(𝑥)
, (9)

where the resistance depends on position 𝑅𝑙,𝑟(𝑥) = 𝑅0𝑒𝜂𝑥 and 𝜂 is ±1
depending on left/right. When we apply a sinusoidal bias voltage with
frequency 𝜔 and discrete kicks, the instantaneous current reads

𝐼(𝑡) = 1
2𝑅0

𝛼 sin𝜔𝑡 + 𝜉𝐷𝜀(𝑡∕𝑇𝑘)
cosh(𝑥)

. (10)

Rectified current can then be defined by the average of the instanta-
neous current during the corresponding time period, as

𝐼𝑑𝑐 =
1
𝑡 ∫

𝑡

0
𝐼(𝜏)𝑑𝜏 = 1

2𝑡𝑅0 ∫

𝑡

0

𝛼 sin𝜔𝜏 + 𝜉𝐷𝜀(𝜏∕𝑇𝑘)
cosh(𝑥𝜏 )

𝑑𝜏. (11)

If the duration 𝜀 and strength 𝜉 of the kicks satisfy 𝜀𝜉 ≪ 1, and the
oscillation amplitude is meaningfully large (cosh(𝑥𝜏 ) ≥ 1), then we
can omit the contribution of the kicks. The rectified current can be
simplified with period 𝑇𝐼 , which is the period of instantaneous current,
as follows,

𝐼𝑑𝑐 =
𝛼

2𝑇𝐼𝑅0 ∫

𝑇𝐼

0

sin𝜔𝜏
cosh(𝑥𝜏 )

𝑑𝜏. (12)

In this case, for regular shuttle motion, the period of motion matches
the period of the time-dependent current. However, when the motion
of the shuttle is irregular, the period cannot be determined; under
this situation, we set 𝑡 = 𝑡𝑐 for the calculation of rectified current,
and 𝑡𝑐 = 1∕𝛾 is the characteristic time for the motion of the shuttle
resonator.

3. Nano-mechanical electron shuttle without kicked voltage

Let us focus on the dynamics of a nano-electromechanical shuttle
without kicks, which is therefore a simple grounded shuttle with time-
periodic bias voltage. Such asymmetry induces instabilities and current
rectification in the shuttle system.

3.1. Dynamics in phase space

The dynamics of the nano shuttle in phase space is well defined by
the integration of Hamiltonian equations (7) and (8), as

𝑝(𝑡) = ∫

𝑡

0

[

−𝛼2 sin2 𝜔𝜏 (𝑥) − 𝑥 − 𝛾𝑝
]

𝑑𝜏 + 𝑝(0), (13)

𝑥(𝑡) = ∫

𝑡

0
𝑝𝑑𝜏 + 𝑥(0). (14)
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Fig. 2. Magnitude of shuttle displacement 𝛥𝑥 as a function of 𝛼 and 𝜔 with 𝛾 = 0.1.
The initial state is (𝑥0 , 𝑝0) = (−0.1,−0.1). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Rectified current 𝐼𝑑𝑐 as a function of 𝛼 and 𝜔 with the same parameters as
Fig. 2.

Given an initial condition (𝑥0, 𝑝0), we can obtain a single trajectory
in phase space. In order to characterize trajectory size, we should
first define the magnitude of shuttle displacement, which is given as
𝛥𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, where 𝑥𝑚𝑎𝑥∕𝑥𝑚𝑖𝑛 is the maximum/minimum position
of the trajectory. The displacement of the shuttle distinguishes the 𝛼–
𝜔 parameter space and can be nonzero with some parameters when
pumping energy by external voltage is larger than dissipation energy.
Fig. 2 shows the stability of 𝛥𝑥 in phase space as a function of 𝛼
and 𝜔 with dissipation parameter 𝛾 = 0.1 and initial state (𝑥0, 𝑝0) =
(−0.1,−0.1). The deep blue regions indicate zero motion, while the
cyan and yellow tongues are regular motion trajectories with finite
amplitudes and different periods that converge to a fixed point. In
Fig. 2, for instance, the periods of the (from right to left) first, second,
and third tongues are 2𝜋∕𝜔, 𝜋∕𝜔, and 2𝜋∕𝜔, respectively.

3.2. Electronic current

Eq. (12) gives the rectified current of the shuttle with periodic force
as a function of 𝛼 and 𝜔, as shown in Fig. 3 with the same parameters
as Fig. 2. The current is determined by two time periods, one of which
is the period of shuttle motion 𝑇𝑥 = 𝑛𝜋∕𝜔 by 𝑠𝑖𝑛2(𝜔𝑡) where 𝑛 = 1 or
2 [27], and the other is the oscillation of driving voltage 𝑇𝑣 = 2𝜋∕𝜔
by 𝑠𝑖𝑛(𝜔𝑡). The period 𝑇𝐼 of instantaneous current 𝐼(𝑡) is the lowest
common multiple of 𝑇𝑣 and 𝑇𝑥. In the odd case, 𝑛 = 1, the lowest
common multiple is 2𝜋∕𝜔. The rectified current should thus be zero

when we consider separating the current into two terms using half
periods, as follows,

𝐼𝑑𝑐 = 𝛼
2𝑇𝐼𝑅0

[

∫

𝜋∕𝜔

0

sin𝜔𝜏
cosh(𝑥𝜏 )

𝑑𝜏 + ∫

2𝜋∕𝜔

𝜋∕𝜔

sin𝜔𝜏
cosh(𝑥𝜏 )

𝑑𝜏

]

= 𝛼
2𝑇𝐼𝑅0

[

∫

𝜋∕𝜔

0

sin𝜔𝜏
cosh(𝑥𝜏 )

𝑑𝜏 − ∫

𝜋∕𝜔

0

sin𝜔𝜏
cosh(𝑥𝜏 )

𝑑𝜏

]

= 0. (15)

In the even case, 𝑛 = 2, the lowest common multiple is again 2𝜋∕𝜔;
however, in this case the second integral function of Eq. (15) cannot
cancel the first term because the position coordinate 𝑥 of the shuttle is
asymmetric in the time region, (0, 𝜋∕𝜔) and (𝜋∕𝜔, 2𝜋∕𝜔), which means
that the rectified current is finite. In this way, rectified current depends
on the periodicity of the shuttle resonator.

4. Nano-mechanical electron shuttle with kicked voltage

Now let us move on to discuss the dynamics and electronic prop-
erties that result from applying discrete external force in the form
of kicks to the nano-electromechanical shuttle. The additional kicked
force is also a time-periodic function. In this case, nano shuttle motion
is not only related to the period of the continuous force induced by
the sinusoidal voltage but also depends on the period of the discrete
force induced by the periodic kicks. The kicks therefore modulate the
dynamics of the nano shuttle, where the rectified current is determined
by the lowest common multiple of the continuous force and discrete
force periods.

4.1. Dynamics in phase space

We previously discussed the classical dynamics of kicked systems
in terms of the discrete kicked period. During a complete kick period,
we can split the time into two parts as general continuous (kick-free)
dynamics 𝑡∕𝑇𝑘 ∈ [(𝑛−1), 𝑛− 𝜀) and the dynamics including kicks 𝑡∕𝑇𝑘 ∈
[𝑛 − 𝜀, 𝑛), both with a time interval, where 𝜀 is the time duration of
the kick force. Within the kick-free interval, the Hamiltonian equations
read

𝑝(𝑡) = ∫

𝑡

(𝑛−1)𝑇𝑘

[

−𝛼2 sin2 𝜔𝜏 (𝑥) − 𝑥 − 𝛾𝑝
]

𝑑𝜏

+ 𝑝[(𝑛 − 1)𝑇𝑘], (16)

𝑥(𝑡) = ∫

𝑡

(𝑛−1)𝑇𝑘
𝑝𝑑𝜏 + 𝑥[(𝑛 − 1)𝑇𝑘], (17)

which are the same equations of motion as the driven nano shuttle
without kicks. Within the kick interval, the Hamiltonian equations are
changed into

𝑝(𝑛𝑇𝑘) = ∫

𝑛𝑇𝑘

𝑛𝑇𝑘−𝜀

[

− (𝑥) (𝛼 sin𝜔𝜏 + 𝜉)2 − 𝑥 − 𝛾𝑝
]

𝑑𝜏

+ 𝑝(𝑛𝑇𝑘 − 𝜀), (18)

𝑥(𝑛𝑇𝑘) = ∫

𝑛𝑇𝑘

𝑛𝑇𝑘−𝜀
𝑝𝑑𝜏 + 𝑥(𝑛𝑇𝑘 − 𝜀). (19)

If 𝜀 is small enough, then we assume that the position of the nano
shuttle and the sinusoidal function are unchanged as 𝑥(𝑡) ∼ 𝑥(𝑛𝑇𝑘 − 𝜀)
and sin(𝜔𝑡) ∼ sin𝜔(𝑛𝑇𝑘 − 𝜀) during the time interval [𝑛𝑇𝑘 − 𝜀, 𝑛𝑇𝑘),
respectively. The momentum shift is written by

𝑝(𝑛𝑇𝑘) = − [𝑥(𝑛𝑇𝑘 − 𝜀)]
(

𝛼 sin𝜔(𝑛𝑇𝑘 − 𝜀) + 𝜉
)2 𝜀

− 𝑥(𝑛𝑇𝑘 − 𝜀)𝜀 − ∫

𝑛𝑇𝑘

𝑛𝑇𝑘−𝜀
𝛾𝑝(𝜏)𝑑𝜏

+ 𝑝(𝑛𝑇𝑘 − 𝜀). (20)
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Fig. 4. Magnitude of shuttle displacement 𝛥𝑥 as a function of 𝛼 and 𝜔 with different 𝑇𝑘 and 𝜉. The parameters are (a) 𝑇𝑘 = 𝜋∕11 and 𝜉 = 10, (b) 𝑇𝑘 = 𝜋∕59 and 𝜉 = 10, (c)
𝑇𝑘 = 𝜋∕11 and 𝜉 = 100, and (d) 𝑇𝑘 = 𝜋∕59 and 𝜉 = 100. Other parameters are 𝛾 = 0.1, 𝑥0 = −0.1, 𝑝0 = −0.1, and 𝜀 = 10−6.

With the assumption that the kick strength is stronger than the si-
nusoidal force, 𝜉 ≪ 𝛼, the momentum after one pulse is as follows,

𝑝(𝑛𝑇𝑘) = −𝜉0 [𝑥(𝑛𝑇𝑘 − 𝜀)] + 𝑝(𝑛𝑇𝑘 − 𝜀), (21)

where 𝜉0 = 𝜉2𝜀. This is the same framework as the discrete kick period.
After one complete kick, the final position and momentum are the same
as the initial condition of the next period; thus, given the initial state,
we can obtain the whole trajectory in phase space.

As shown in Fig. 4(a)–(b), the stability of the displacement for a
small kick strength is similar to the stability of the shuttle without kicks
(Fig. 2), even with the assumption 𝜉 ≫ 𝛼. In other words, the small
kicks do not affect the dynamics of the nano shuttle when the kick
period is short (𝑇𝑘𝜉 < 1). With increasing kick strength, the shorter
and shorter periods shift the Arnold’s tongues to higher and higher
frequencies, and the magnitude of displacement is reduced, as shown
in Fig. 4(c)–(d). This means that the influence of sinusoidally driven
𝛼 weakens according to larger strengths and shorter periods of the
kicks; i.e., kicked voltage makes the system robust against sinusoidal
perturbation as defined by the 𝛼 parameter.

4.2. Electronic current

As aforementioned, the period of the whole system is determined
by the lowest common multiple of 𝑇𝑠 and 𝑇𝑘, where 𝑇𝑠 = 𝜋∕𝜔 and 𝑇𝑘 is
the time period of driving forces 𝐹𝑠 and 𝐹𝑘. Whether these two periods
are commensurate or not gives us a new degree of freedom in the time
period to control the shuttle dynamics.

Let us first consider that 𝑇𝑠 and 𝑇𝑘 are commensurate as 𝑇𝑘 = 𝑚𝑇𝑠∕𝑙,
where 𝑚, 𝑙 are arbitrary integer numbers. The lowest common multiple
of 𝑇𝑠 and 𝑇𝑘 is 𝑚𝑇𝑠, and then 𝑛𝑚𝑇𝑠 (𝑛 = 1 or 2) can be the regular
motion period of the shuttle resonator. When the integer 𝑚 of the lowest
common multiple is odd or even, the rectified current can be zero or
not according to the periodicity of the shuttle, respectively; as shown in
Section 3.2, the rectified current is zero for the odd 𝑛 = 1 and nonzero
for the even 𝑛 = 2. In Fig. 5, (a)–(b) show the displacement and (c)–
(d) show the rectified current of the shuttle with a commensurate kick
period and 𝑛 = 1. We can compare with rectified currents with different
periods, of which Fig. 5(c) and (d) are 𝑇𝑘 = 𝜋∕11 and 𝑇𝑘 = 2𝜋∕11,
respectively. These two plots obviously indicate that kicks with an even

𝑚 period induce the finite rectified current but kicks with an odd 𝑚
period do not. For even 𝑚, the period of shuttle motion is always an
even number, and the rectified current for all of the tongues is finite. On
the other hand, when 𝑇𝑠 and 𝑇𝑘 are incommensurate, the motion of the
shuttle resonator is quasiperiodic because there is no lowest common
multiple of 𝑇𝑠 and 𝑇𝑘. Thus, the rectified current is finite and irregular
for any available parameters under this consideration due to the infinite
periodicity.

5. Conclusion

In conclusion, we studied rectified current through a nano-
electromechanical shuttle with sinusoidal and kicked bias voltage, as
well as the shuttle’s mechanical motion in phase space. Shuttle motion
from only sinusoidal voltage formed tongue structures in the 𝛼–𝜔
parameter space, with different periods presented on each tongue. The
corresponding rectified currents were finite for tongues with a period
of 2𝑇𝑠 but zero for tongues with a period of 𝑇𝑠. We found that the
periodicity of motion on each tongue can be modified by applying
kicked bias voltage; variation of the kick period changes the period
of the regular motion of the nano shuttle from 𝑇𝑠 to an even multiple
of 𝑇𝑠. When the lowest common multiple integer is odd, then the
rectified current is zero and finite depending on whether the motion
of the shuttle is odd or even, respectively. Meanwhile, when the lowest
common multiple integer is even, then the nano shuttle transfers finite
rectified current on every tongue. This operation renders the electron
shuttle system more efficient in terms of electron transfer.
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Fig. 5. Magnitude of shuttle displacement 𝛥𝑥 (left panels) and rectified current 𝐼𝑑𝑐 (right panels) vs. 𝛼 and 𝜉 with (a) and (c) 𝑇𝑘 = 𝜋∕11, and (b) and (d) 𝑇𝑘 = 2𝜋∕11. Other
parameters are 𝛾 = 0.1, 𝜔 = 1.0, 𝑥0 = −0.1, 𝑝0 = −0.1, and 𝜀 = 10−6.

Appendix. Force in the electron shuttle

Circuit diagrams of the kicked nano shuttle are shown in Fig. 1.
Based on this structure and Kirchhoff’s law, we obtain the following
equations:
𝑄𝑙(𝑥)
𝑅𝑙(𝑥)𝑐𝑙

−
𝑄𝑟(𝑥)
𝑅𝑟(𝑥)𝑐𝑟

= 0, (A.1)

𝑄𝑙(𝑥)
𝑐𝑙

+
𝑄𝑟(𝑥)
𝑐𝑟

= 𝑈 (𝑡), (A.2)

where 𝑥 is the position of the shuttle (right is the positive direction),
𝑙(𝑟) indicates the left(right) junction, and 𝑄𝑙,𝑟, 𝑅𝑙,𝑟, and 𝑐𝑟,𝑙 are the accu-
mulated charge, resistance, and capacitance at left(right), respectively.
𝑈 (𝑡) is the voltage applied to the source electrode. Let us assume a
symmetric junction, namely as 𝑐𝑙 = 𝑐𝑟 = 𝑐. From Eqs. (A.1) and (A.2),
we can solve

𝑄𝑙∕𝑟(𝑥, 𝑡) =
𝑐𝑈 (𝑡)𝑅𝑙∕𝑟(𝑥)
𝑅𝑙(𝑥) + 𝑅𝑟(𝑥)

. (A.3)

Now, the total charge on the shuttle is given by

𝑄𝑡(𝑥, 𝑡) = 𝑐𝑈 (𝑡)
𝑅𝑙(𝑥) − 𝑅𝑟(𝑥)
𝑅𝑙(𝑥) + 𝑅𝑟(𝑥)

. (A.4)

The resistance can be given as 𝑅𝑙 = 𝑅0
𝑙 𝑒

(𝑑+𝑥)∕𝜆 and 𝑅𝑟 = 𝑅0
𝑟𝑒

(𝑑−𝑥)∕𝜆,
where 𝜆 is the characteristic length of the system, and 𝑑 is the distance
between an electrode and the center point between the two electrodes.
Here, 𝑅0

𝑙 𝑒
𝑑∕𝜆 = 𝑅0

𝑟𝑒
𝑑∕𝜆 = 𝑅0 under the symmetric junction 𝑅𝑙 = 𝑅𝑟

at 𝑥 = 0. The resistances of the left and right electrodes are 𝑅𝑙 =
𝑅0𝑒𝑥∕𝜆 and 𝑅𝑟 = 𝑅0𝑒−𝑥∕𝜆. Substituting these resistance in Eq. (A.4), we
can find the total charge through 𝑄𝑡(𝑥, 𝑡) = 𝑐𝑈 (𝑡) tanh(𝑥∕𝜆). From the
circuit, the voltage for the oscillator is given by 𝑈 (𝑥, 𝑡) = 𝑄𝑙(𝑥, 𝑡)∕𝑐, and
thus, under such voltage, the shuttle has electronic energy as 𝐸(𝑥, 𝑡) =
𝑄𝑡(𝑥, 𝑡)𝑈 (𝑥, 𝑡). Correspondingly, the force acting on the nano shuttle is

𝐹 = −
𝜕𝐸(𝑥, 𝑡)

𝜕𝑥
= −𝑐𝑈2(𝑡) 𝜕

𝜕𝑥

[

2 tanh 𝑥∕𝜆𝑒𝑥∕𝜆

cosh 𝑥∕𝜆

]

,

= −
𝑐𝑈2(𝑡)

𝜆
 (𝑥), (A.5)

where

 (𝑥) =
2
(

𝑒𝑥∕𝜆 + sinh 𝑥∕𝜆
)

cosh3(𝑥∕𝜆)
. (A.6)

Considering 𝑈 (𝑡) = 𝑈𝑠(𝑡) + 𝜉𝐷𝜀(𝑡∕𝑇𝑘) and driven force 𝐹 = 𝐹𝑠 + 𝐹𝑘, we
get

𝐹𝑠 = − 𝑐
𝜆
𝑈2
𝑠 (𝑡) (𝑥), (A.7)

𝐹𝑘 = − 𝑐
𝜆
[

2𝜉𝑈𝑠(𝑡)𝐷𝜀(𝑡∕𝑇𝑘) + 𝜉2𝐷2
𝜀(𝑡∕𝑇𝑘)

]

 (𝑥). (A.8)
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