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We study the topological property of the magnetoelastic excitation in noncollinear antiferromagnets. As
a toy model, we consider the magnon-phonon coupling in a triangular antiferromagnet with a 120◦ Nèel
order. We find that in the presence of out-of-plane external magnetic field, the magnon-polaron bands, which
arise from hybridization of magnons and phonons, can carry Chern number, even though the individual
magnon and phonon bands are topologically trivial. Large Berry curvature is induced from the anticrossing
regions between the magnon and phonon bands, which renormalizes the thermal Hall conductivity of phonon
bands. To compute the Berry curvature and Chern number of magnon-polarons, we give a simple algorithm
to diagonalize magnetoelastic Hamiltonian without diagonalizing the phonon Hamiltonian, by mapping the
problem to the diagonalization of bosonic Bogoliubov-de-Gennes (BdG) Hamiltonian. This is necessary because
the contribution to the Berry curvature from phonon cannot be properly captured if we compute the Berry
curvature from magnetoelastic Hamiltonian whose phonon sector has been already diagonalized.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect [1–3], the
role of topology in electronic systems has been extensively
researched. Recently, the implications of nontrivial topology
has also been investigated in bosonic quasiparticles such as
magnons [4] and phonons [5,6]. It was found that although
the Chern number does not guarantee a quantized response
as in fermions because of the nature of bosonic statistics,
nonzero Chern number still indicates the presence of chiral
edge modes [4] and the nonzero Berry curvature contributes
to magnon [7–10] and phonon [5,6,11–14] thermal Hall effect,
and magnon spin Nernst effect [15,16].

On the other hand, it has long been known that magnon
can couple naturally to phonons in ferromagnets and anti-
ferromagnets [17–19]. The source of this coupling can be
roughly put into two categories [20], the first of which arises
from interionic spin-spin interactions, such as strain-variation
of dipole-dipole interactions and exchange interactions. The
second category arises from intraionic spin-orbit interaction,
wherein the spins sense the variation of crystal field that
stems from strain via spin-orbit coupling. Regardless of the
origin, when magnetoelastic coupling term that is quadratic
in magnon and phonon operators does not vanish, magnon
and phonon can hybridize to form a quasiparticle that is an
admixture thereof [18], which has been termed “magnon-
polaron” [21,22].

Recently, various phenomena rooted in magnetoelas-
tic coupling in ferromagnets have been studied, with po-
tential applications in spin and phonon control. In Refs.
[22–25], it was proposed that the magnon-phonon coupling in
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ferromagnets can be utilized in spintronics by exploiting
acoustic spin pumping. In Ref. [26], it was shown that phonon
velocity propagating parallel to and antiparallel to external
magnetic field can differ due to magnetoelastic coupling,
which may find usage in phononics. In Ref. [27], it was
proposed that large Berry curvature can be induced in the
anticrossing regions of magnon and phonon bands, which can
be utilized to control magnon current. It was also suggested
that magnon-phonon coupling contributes significantly to Hall
conductivity in response to gradient in external magnetic field
[28] as well as spin and thermal conductivities [29].

In contrast, magnetoelastic coupling in antiferromagnets
has been relatively less studied. However, recent experiments
showed that magnon-phonon coupling can be large in hexag-
onal rare-earth manganite RMnO3 (R = Y, Lu, and Ho),
which are approximately triangular antiferromagnets [30,31].
In Ref. [30], the authors showed that magnetoelastic coupling
contribute significantly to magnon decay for R = Y, Lu, and
in Ref. [31], the authors showed that magnetoelastic coupling
can significantly renormalize magnon spectrum for R = Ho.
Since the magnetoelastic coupling accompanies the anticross-
ing between magnon and phonon bands, one can expect novel
topological phenomena to arise in hybridized band structure.

In this paper, we examine the topological property of
magnon-polaron bands in a triangular antiferromagnet with
a 120◦ Nèel order. Although the ground-state configuration
enlarges the unit cell, the magnetic excitation keeps the trans-
lation symmetry of the underlying triangular lattice. Thus
there is only one magnon band in the Brillouin zone, and
one cannot expect any topological property in the magnon
band. However, once the magnon-phonon coupling is consid-
ered, the hybridized band structure with three magnetoelastic
bands can support nontrivial band topology. We find that the
magnetoelastic coupling arising from exchange striction does
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not open all of the gaps between the magnon and phonon.
However, the application of external magnetic field removes
all of the gap closing points, resulting in topological magnon-
polaron bands with nonzero Chern number.

In addition, in order to calculate the Berry curvature and
the Chern number of magnon-polaron bands, we develop
a method to diagonalize the magnetoelastic Hamiltonian.
This step is necessary because, although the magnetoelastic
Hamiltonian is often written in the Holstein-Primakoff (HP)
operator and phonon operator basis [27–29], calculating the
Berry curvature in this basis does not give the correct Berry
curvature for the magnon-polarons. The reason is that if we
write the magnetoelastic Hamiltonian in the phonon basis,
the phonon Hamiltonian is already diagonalized, so that the
Berry curvature computed in this way cannot correctly capture
the contribution from the phonon wave function. We find that
the problem of diagonalizing magnetoelastic Hamiltonian can
easily be solved by observing that the phonon Hamiltonian
can be mapped to a bosonic BdG Hamiltonian by a simple
transformation of basis. Thus, if we also write the magnon
Hamiltonian in BdG form, the magnetoelastic Hamiltonian is
also in BdG form, for which the problem of diagonalizing the
Hamiltonian and computing the Berry curvature is well known
[4,32].

This paper is organized as follows. In Sec. II, we study
the energy spectrum of magnon-polaron on triangular lattice.
We show that in the presence of external magnetic field, all
of the magnon-polaron bands become decoupled. In Sec. III,
we compute the Berry curvature and the thermal hall con-
ductivity, and show that the decoupled bands carry nonzero
Chern numbers. In Sec. IV, we present a general formalism to
diagonalize the magnetoelastic Hamiltonian, which is written
by using HP operators in magnon sector, and displacement
and momentum operators in the phonon sector. This method
should be compared with the method where magnetoelastic
Hamiltonian is written with the phonon operators. Although
the two methods give the same energy spectrum, their Berry
curvatures are different, as explained in Sec. V. We conclude
in Sec. VI.

II. MAGNON-POLARON SPECTRUM IN TRIANGULAR
ANTIFERROMAGNET

In this section, we present a toy model of topological
magnon-polaron in a triangular antiferromagnet. We begin by
examining the magnon spectrum and symmetries of Heisen-
berg triangular antiferromagnet, and then introduce easy-axis
anisotropy and external magnetic field. Then, we study the
phonon spectrum in triangular lattice with external magnetic
field. Finally, we turn on the interaction between magnons
and the in-plane vibrations, which can naturally arise in non-
collinear antiferromagnets, as will be explained below. In the
presence of magnetic field and the magnon-phonon coupling,
all of the bands decouple from each other.

A. Magnon

Let us study the magnon spectrum on a triangular lattice
with the Hamiltonian given by

Hm = HJ + HA + HH , (1)

K

(a) (b)

FIG. 1. (a) Triangular Heisenberg antiferromagnet with 120◦

Nèel order, in which the spins rotate by 120◦ counterclockwise for
translations by R1, R3, and −R2. Because of the magnetic ordering,
the unit cell of the magnetic ground state is enlarged, as indicated
by the yellow triangles. However, the translation symmetry of the
triangular lattice without magnetic order is restored in the magnon
spectrum. We have labeled some of the lattice sites for convenience.
(b) The convention for the Brillouin zone and the high-symmetry
momenta on it.

where HJ is the antiferromagnetic Heisenberg interaction,
HA is the easy axis anisotropy, and HH is the coupling to
the external magnetic field. Below, we will study each term
separately. The antiferromagnetic Heisenberg Hamiltonian is
given by

HJ = J
∑
〈i j〉

Si · S j, (2)

where J > 0, and the summation is over the nearest neigh-
boring spins. Its ground state is the 120◦ Nèel state [33–35]
shown in Fig. 1.

The magnon Hamiltonian can be found by introducing
local coordinates for each of the spins and by introducing the
HP operators with respect to the local coordinates. We always
choose the local z axis to point in the direction of the classical
magnetic order. We choose the local y axis to point out of the
plane, which leaves only one possibility for the local x axis.
Then, we write Si = Sx

i x̂i + Sy
i ŷi + Sz

i ẑi, where x̂i, ŷi, ẑi are the
local axes for the spin at position i. We find

Si · S j = Sy
i Sy

j + cos(θi − θ j )
(
Sz

i Sz
j + Sx

i Sx
j

)
+ sin(θi − θ j )

(
Sz

i Sx
j − Sx

i Sz
j

)
, (3)

where θi is measured with respect to the global x axis, which
is parallel to R1 in Fig. 1. The HP transformation with linear
spin wave approximation is Sz

i = S − a†
i ai, Sx

i =
√

2s
2 (ai +

a†
i ), Sy

i =
√

2S
2i (ai − a†

i ). Taking the Fourier transformation

ai =
∑

k

eik·Ri ak, (4)

where Ri is the position of the ith atom, we obtain

HJ =
∑

k

[
AJ

ka†
kak − 1

2
BJ

k(a†
ka†

−k + a−kak)
]
, (5)

where we kept only the terms quadratic in the HP
operators. Here, AJ

k = 3JS(1 + 1
2γk), BJ

k = 9
2 JSγk, and
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FIG. 2. Magnon spectrum along the high-symmetry line in the
unit of meV. (a) The magnon band with only the Heisenberg interac-
tion with J = 2 meV, S = 2. (b) The magnon band with anisotropy
A = −0.02 meV and magnetic field H = 0.5 meV. The role of the
anisotropy is to remove all of the Goldstone modes. The role of the
magnetic field is to remove all of the band degeneracies between
magnon and phonons.

γk = 1
6

∑
δ eik·δ, where δ are the vectors pointing towards the

six nearest neighbors from a given site.
Let us note that if we define

φk =
(

ak

a†
−k

)
, (6)

and define τi to be the 2 × 2 Pauli matrices that relate parti-
cle and hole, we have the following relations, which define
bosonic BdG field operators:

[φk,i, φ
†
k, j] = (τz )i j, φ−k = τxφ

†
k . (7)

Since we can write

HJ = 1

2

∑
k

φ
†
k

(
AJ

k BJ
k

BJ
k AJ

k

)
φk

=
∑

k

φ
†
kHJ (k)φk, (8)

where HJ (k) is a bosonic BdG Hamiltonian. For notational
simplicity, we will write φ

†
k for either ( a†

k
a−k

) or (a†
k a−k)

depending on the context. The magnon spectrum can be found
by diagonalizing HJ (k) by a matrix TJ (k) that satisfies

T †
J (k)HJ (k)TJ (k) = 1

2 ω̃J
k, TJ (k)†τzTJ (k) = τz, (9)

in which

ω̃J
k =

(
ω̃J

k,1
ω̃J

k,−1

)
, (10)

where ω̃J
k,±1 are non-negative. Such a problem can be solved

by using the Colpa’s method [32], which is reviewed in
Appendix B. We show the magnon spectrum of HJ (k) (i.e.,
ω̃J

k,1) in Fig. 2(a).
Let us note that although the magnetic order breaks the

translation symmetry generated by R1 = (a, 0) and R2 =
( 1

2 a,
√

3
2 a), where a is the lattice constant, the Hamiltonian

written in terms of HP operators respects the translation sym-
metry. This is because the magnetic ordering vector always
rotates by 120◦ counterclockwise (clockwise) about the global
z axis when translated by R1 (R2) while the terms quadratic in
HP operators depend only on the cosine of the relative angle,
as can be inferred from Eq. (3) [see also Appendix A 1]. Thus

we can still take the Bravais lattice generated by R1 and R2,
and define R3 = R1 − R2. The reciprocal lattice vectors are
then G1 = 2π

a (1,− 1√
3

), G2 = 2π
a (0, 2√

3
). The Hamiltonian

also has a threefold rotation symmetry about the center of the
yellow triangles in Fig. 1 (C3), a twofold rotation about the
line through sites 1 and 4 (C′

2y), and a twofold rotation about
the line through sites 1 and 2 (C2x). These are the symmetries
that are relevant for gapless points between magnon and
phonon bands, and their exact definitions are given in detail
in Appendix A 1.

The magnon spectrum with just the Heisenberg interaction
has three Goldstone modes [36] at �, K , and K ′. For the
toy model, we will remove these Goldstone modes by adding
easy-axis anisotropy along the direction of the magnetic or-
dering (local z axis defined above),

HA =
∑

i

A
(
Sz

i

)2
, (11)

where A < 0. This removes all the Goldstone modes, but we
will have to introduce an external magnetic field to remove the
band degeneracies between magnon and phonon bands along
�K and M�, as explained in Sec. II C.

We can remove all the band degeneracies between
magnons and phonons by applying external magnetic field
along the global z axis,

HH =
∑

i

�H · �Si. (12)

This will tilt the magnetization direction towards the z axis,
which can be described by using mean-field approximation
[37]. Namely, let us assume that the spins will cant uniformly
away from the plane [38]. The energy per site is given by

E = AS2 cos2 θ + HS sin θ + 3
2 JS2(2 sin2 θ − cos2 θ ), (13)

where θ is the canting angle of the spin away from the
2D plane (θ > 0 corresponds to out-of-plane canting). By
minimizing the energy, we obtain

sin θ = − H/S

9J − 2A
. (14)

If we perform the HP transformation for the full magnon
Hamiltonian by taking into account the canting angle [40], we
find

Hm =
∑

k

φ
†
kHm(k)φk, Hm(k) = 1

2

(
Ak Bk

Bk Ak

)
,

Ak

S
= − H

S
sin θ + A(1 − 3 cos2 θ ) − 6J (1 − cos2 θ + γ̃k),

Bk

S
= A sin2 θ + 3J

2
(1 + 2 cos2 θ − 2 sin2 θ )γk. (15)

Here, we have defined γ̃k = 1
12 Re[(1 + sin2 θ − 2 cos2 θ +

2i
√

3 sin θ )(eiR12·k + eiR23·k + eiR31·k)]. It can be checked that
this formula reduces to the one defined previously if we turn
off the anisotropy and magnetic field.

The spectrum with the anisotropy and the magnetic field
is shown in Fig. 2(b). If we assume that the Landé g factor is
about 1.6, H ∼ 0.1 meV corresponds to magnetic field of 1 T.
We use the parameter H = 0.5 meV, which would correspond
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FIG. 3. Phonon spectrum along the high-symmetry line in the
unit of meV. (a) The phonon spectrum with h̄2γ /M = 40 (meV)2 and
no effective magnetic field. (b) The phonon spectrum with effective
magnetic field hh̄ = −0.5 meV.

to magnetic field of about 5 T. We also use A = −0.02 meV
[30], which is a realistic value for RMnO3 when R = Y and
Lu [41].

Since there is only one magnon band, one cannot ex-
pect any topological band structure unless additional bosonic
bands are taken into account. Moreover, the magnon Hamilto-
nian is real, so that the Berry curvature is zero.

B. Phonon

Let us consider the phonon Hamiltonian for a triangular
lattice. For simplicity, we will only consider the in-plane
vibrations because there is no coupling between the out-of-
plane vibration and the magnon in the approximation we use
[see Eq. (22)]. The phonon Hamiltonian without magnetic
field is given by

Hp = 1

2

∑
RR′

[
p(R)2 1

M
+ u(R′)K (R′ − R)u(R)

]
. (16)

Here, R and R′ are the unit cell positions, u is the displace-
ment, p is the momentum, and K is the spring constant ma-
trix. For simplicity, we only consider the longitudinal spring
constant γ for the nearest neighbors, which is typically several
times larger than the transverse spring constant. For the spring
constant matrix between sites 1 and 2, this can be done by
taking

K (R1) =
(−γ 0

0 0

)
. (17)

Due to the triangular lattice symmetry of phonon, which we
review in Appendix A 2, we have K (R2) = C6K (R1)C−1

6 and
K (R3) = C3K (R1)C−1

3 . Finally, K (R = 0) = diag(3γ , 3γ )
follows from the constraint that

∑
R K (R) = 0. The phonon

Hamiltonian thus constructed is naturally symmetric with
respect to C6z, C2x, and C′

2y symmetries.
The dynamical matrix is defined to be

K (k) =
∑

R

1

M
K (R)eik·R, (18)

where M is the mass of the ion, Kxx(k) = γ

M (3 − 2 cos kx −
cos kx

2 cos
√

3ky

2 ), Kxy(k) = Kyx(k) = γ

M

√
3 sin kx

2 sin
√

3ky

2 , and

Kyy(k) = 3 γ

M (1 − cos kx
2 cos

√
3ky

2 ). The resulting phonon band

structure is shown in Fig. 3(a). We see that there are two
acoustic phonon bands which are degenerate at � and K .

To lift the degeneracy between the phonon bands, we can
introduce external magnetic field. We review the details of
how this can be done in Sec. IV A. For our purposes, it suffices
to note that the phonon Hamiltonian with magnetic field can
be written as

Hp =
∑

k

x†(k)Hp(k)x(k). (19)

Here, we have redefined p(k) → √
M p(k) and u(k) →

u(k)/
√

M and defined the operator

x(k) =
(

p(k)
u(k)

)
, (20)

and the matrices

Hp(k) = 1

2

(
Isd −A
A D(k)

)
, A =

(
0 h

−h 0

)
, (21)

where D(k) = −A2 + K (k). The parameter h is the phe-
nomenological coupling between phonon and magnetization,
known as the Raman coupling [5,42,43].

The energy spectrum can be found by solving the Hamilto-
nian equation of motion [see Eq. (48)]. The phonon spectrum
with magnetic field is shown in Fig. 3(b). We note that
the energy scale associated with the magnetic field is hh̄ ∼
0.002 meV for magnetic field about 1 T at 5.45 K [6,12]
for a paramagnet, which is quite small. We will put hh̄ =
−0.5 meV to clarify the role of magnon-phonon interaction.

C. Magnon-phonon coupling

Let us use the exchange magnetostriction model for the
magnon-phonon coupling [44],

Hc =
∑
〈i j〉

KmpRi j · 	ui jSi · S j, (22)

where Ri j = 1
a (Ri − R j ) is a unit vector and 	u = ui − u j .

This form of the Hamiltonian can be obtained from the
Heisenberg model by assuming that the exchange integral J
depends on the distance between the atoms, J (|ri − r j |) ≈
J + KmpRi j · 	ui j , where ri = Ri + ui. Note that out-of-plane
vibration will not couple to magnons in this model. For a
noncollinear antiferromagnet, magnon-phonon coupling can
arise naturally in quadratic order because Si · S j contains
terms linear in the HP operators.

In Sec. IV B, we will discuss two methods to solve the
magnon-phonon coupling problem: we can work either with


k = (
ak, a†

−k, pT
k , uT

k

)
, (23)

where u(k) is the displacement and p(k) is the conjugate
momentum in the Fourier space, or with

�k = (ak, b1,k, b2,k, a†
−k, b†

1,−k, b†
2,−k ), (24)

where b1,k and b2,k are the phonon operators in the Fourier
space. Although the energy spectrum of these two methods
are the same, their Berry curvature will be different. In order
to calculate the thermal Hall conductivity, the correct Berry
curvature is computed by working in 
k basis. In order to

174435-4



TOPOLOGICAL MAGNETOELASTIC EXCITATIONS IN … PHYSICAL REVIEW B 99, 174435 (2019)

compare these two methods, we will present the results by
using both methods.

Let us first work in the �k basis. It can be shown that up to
terms linear in the HP operators,

S1 · S j = ca1 + c∗a†
1 − c∗a2 − ca†

2, j = 2, 10, and 12, (25)

where c = S3/2

2

√
3
2 cos θ − 3S3/2 cos θ sin θ

2
√

2
i. Similarly, we have

S1 · S j = −c∗a1 − ca†
1 + ca3 + c∗c†

3, j = 3, 4, and 11.

(26)

This pattern arises from the difference in the ordering direc-
tion of j = 2, 10, and 12 and j = 3, 4, and 11 with respect
to the spin at site 1.

Let us now note that the Hamiltonian for the magnon-
phonon coupled system also has the translation symmetry
of the underlying triangular lattice. This is because Si · S j

only depends on whether the direction of 〈S j〉 (classical
spin direction) is rotated clockwise or counterclockwise by
120◦ about the global z axis compared to 〈Si〉, as can be
seen from Eqs. (25) and (26). Taking the Fourier transform
by taking into account the translation symmetry, we obtain
the following contribution to the magnetoelastic Hamiltonian
from translations of the magnon-phonon coupling between the
pair (1,2) [45]:

H(1,2)
c =

∑
σ=1,2,k

2

√
h̄

M
KmpR12 · [εσ (k)bk,σ + ε∗

σ (−k)b†
k,σ

]

× [Re(−ce−ik·R12 )a−k + Re(−c∗e−ik·R12 )a†
k], (27)

where εσ (k) and bk,σ are the polarization vector and the
phonon operator defined in Sec. IV A. The contribution from
the other bonds can be found by permuting the indices of Ri j .
For the pair (1,10), H(1,10)

c is obtained by permuting (1, 2) →
(2, 3), and H(1,12)

c is obtained by permuting (2, 3) → (3, 1).
Therefore the total magnon-phonon coupling Hamiltonian is
Hc = H(1,2)

c + H(1,10)
c + H(1,12)

c
Collecting the magnon, phonon, and the magnon-phonon

coupling Hamiltonian, we can write

H =
∑

k

�
†
k H̃me(k)�k. (28)

The matrix H̃me(k) has the bosonic BdG form because the
magnon and phonon operators satisfy the bosonic canonical
commutation relation. Thus the Hamiltonian can be diagonal-
ized by using the Colpa’s method [32], which is reviewed in
Appendix B.

The spectrum of H̃me(k) without magnetic field is shown
in Figs. 4(a) and 4(c). We have plotted the magnon and
phonon spectrum without magnon-phonon coupling (Kmp =
0) in Fig. 4(a) to compare with the case with magnon-phonon
coupling (Kmp �= 0) in Fig. 4(c). The strength of magnon-

phonon coupling, Kmp

√
f h̄
M , where f = 103 × h̄/e ≈ 0.658 ×

10−12, can be expected to be about 0.3 meV/s1/2 [30]. The
numerical factor f arises naturally if we take h̄ = 1 and use
1 meV as the unit of energy for magnon-phonon coupling
problem. We use a reasonable value of 0.5 meV/s1/2 for our
model.

magnon
phonon

magnon
phonon

K M

16

14

12

10

8

6

4

2

0
K M

16

14

12

10

8

6

4

2

0

16

14

12

10

8

6

4

2

0

16

14

12

10

8

6

4

2

0
K M K M

(a) (b)

(c) (d)

FIG. 4. Influence of magnon-phonon coupling (Kmp) and mag-
netic field (H and h) on the magnon phonon band structure.
(a) Magnon and phonon bands without magnon-phonon coupling
(Kmp = 0) and without magnetic field (H = h = 0). (b) Magnon
and phonon bands without magnon-phonon coupling (Kmp = 0) and
with magnetic field (H �= 0, h �= 0). (c) Magnon and phonon bands
with magnon-phonon coupling (Kmp �= 0) and without magnetic
field (H = h = 0). Note that the gap along �K and M� does not
open. (d) Magnon and phonon bands with magnon-phonon coupling
(Kmp �= 0) and with magnetic field (H �= 0, h �= 0). Note that the
gap along �K and M� opens. If we put h̄ = 1 and measure energy
in units of meV, (d) can be reproduced by putting J = 2, S = 2,

H = 0.5, A = −0.02, Kmp

√
h̄
M = 0.5, γ /M = 40, and h = −0.5.

Let us notice that the gap does not open up along the
high-symmetry lines �K and M� even in the presence of
the magnon-phonon coupling. This is because of the C2x and
C′

2y symmetries mentioned previously. These two symmetries
are present in the magnon-phonon coupling Hamiltonian as
well, as explained in more detail in Appendix A 3, and are
therefore relevant for determining whether magnon bands and
phonon bands can hybridize along the high-symmetry lines.
For the magnon band, the C2x eigenvalue is 1 along the �K
line, and the C′

2y eigenvalue is −1 along the M� line. For
the phonon bands, the C2x eigenvalue along the �K line for
the band with higher (lower) energy is +1 (−1), and the
C′

2y eigenvalue along the M� line for the band with higher
(lower) energy is +1 (−1). Because energy bands with the
same (different) eigenvalues can (cannot) hybridize, the gap
closing points between magnon and phonon bands that remain
along the high-symmetry lines in Fig. 4(c) can be explained.

When the external magnetic field is turned on, the phonon
Hamiltonian does not have the C2x and C′

2y symmetry because
the effective Lorentz force an ion will feel when moving in
the positive y direction is not the same as when it is moving
in the negative y direction. Thus we should expect that the
gap will open. This is shown in Figs. 4(b) and 4(d), where we
have drawn the magnon and phonon spectrum with magnetic
field (h �= 0, H �= 0) and without magnon-phonon coupling

174435-5



SUNGJOON PARK AND BOHM-JUNG YANG PHYSICAL REVIEW B 99, 174435 (2019)

(Kmp = 0) in (b) for comparison with the case when there
is magnon-phonon coupling (Kmp �= 0) in (d). We see that
both the magnetoelastic coupling and the external magnetic
field are necessary to fully open the gap between the magnon-
polaron bands.

We have mentioned that the magnetoelastic Hamiltonian
can also be written in basis 
k,

H =
∑

k



†
kHme(k)
k, (29)

where Hme(k) takes the form

Hme(k) =
(

Hm(k) Hc(k)

H†
c (k) Hp(k)

)
. (30)

Here, Hm(k) and Hp(k) are defined respectively in Eqs. (15)
and (21), and Hc(k) is given by

Hc(k) =
(

0 0 v(k)

0 0 v(−k)

)
, (31)

where v(k) is the 1 × 2 column vector given by

v(k) = Kmp

√
h̄
M Re[−ceik·R12 R12 + (12 ↔ 23) + (12 ↔ 31)].

In Sec. IV C, we show that Hme can be mapped to a bosonic
BdG Hamiltonian Hs by making a simple transformation,

Hs = PV †HmeV P†. (32)

Denoting by In the n by n identity matrix, P and V are
defined as

P =

⎛
⎜⎜⎜⎝

I1

I2

I1

I2

⎞
⎟⎟⎟⎠, V =

⎛
⎜⎝

I2
1√
2
I2

1√
2
I2

i√
2
I2

−i√
2
I2

⎞
⎟⎠.

(33)

Because Hs is a bosonic BdG Hamiltonian, it can be solved by
using the Colpa’s method, just as H̃me.

III. BERRY CURVATURE AND THERMAL HALL
CONDUCTIVITY IN TRIANGULAR ANTIFERROMAGNET

In this section, we compare the Berry curvature computed
from H̃me(k) and Hs(k), and compute the thermal Hall conduc-
tivity of the model presented in Sec. II. Large Berry curvature
is induced in the anticrossing regions because of the magnon-
phonon coupling and the effective magnetic field in phonon.
This renormalize the thermal Hall conductivity arising from
phonons. We also show that the decoupled magnon-polaron
bands are topological.

A. Berry curvature

Let us first define the Berry curvature. Let Hk be either
H̃me(k) or Hs(k), and let Tk be the matrix that diagonalizes
Hk. As in Eqs. (9) and (10), this means that Tk satisfies

T †
k σzTk = σz, σz =

(
I3 0

0 −I3

)
(34)

and

T †
k HkTk = 1

2 h̄ω̃k, (35)

where ω̃k is a diagonal matrix with (ω̃k)nn � 0. Such a diago-
nalization problem can be solved by using the Colpa’s method
[32], which is reviewed in Appendix B. If we denote by |Tk〉n

the nth column vector of Tk, the Berry curvature is defined
to be

Bn(k) = (σz )nn∇ × [n〈Tk|iσz∇|Tk〉n]. (36)

Let us note that by multiplying both sides of Eq. (35) with
Tkσz and by using Eq. (34), we can obtain

σzHkTk = 1
2 Tkσz h̄ω̃k ≡ 1

2 Tk h̄ωk (37)

so that |Tk〉n are eigenvectors of σzHk. However, eigenvectors
of σzHk do not necessarily satisfy Eq. (34). A more detailed
review of the properties of bosonic BdG Hamiltonian and the
Berry curvature can be found in Sec. V and Appendix E

Since the magnetoelastic bands introduced in the previous
section are fully gapped in the presence of magnetic field
and magnetoelastic coupling, each of the hybridized bands
can carry quantized Chern number. In Fig. 5, we compare
the Berry curvature calculated for the magnon-phonon cou-
pled bands by using H̃me(k) (defined in Eq. (28)) and Hs(k)
[defined in Eq. (32)]. The Berry curvature density computed
by using H̃me(k) is shown in Figs. 5(a), 5(c) and 5(e), and
it should be compared with that computed by using Hs(k),
which is shown in Figs. 5(b), 5(d) and 5(f). The most no-
ticeable difference is that the contribution from phonon Berry
curvature, which is shown in Fig. 6, can be seen in Figs. 5(b)
and 5(d) [indicated with dotted circle], but not in (a) and
(c). Another difference is that the Berry curvature computed
from H̃me(k) shows spots of large Berry curvature, indicated
by dotted ellipse in Figs. 5(a), 5(c) and 5(e), which are not
present in Figs. 5(b), 5(d) and 5(f) computed from Hs(k).
Their origin can be traced back to the fact that H̃me(k) is not
smooth when computed numerically. This is because H̃me(k)
depends on εσ (k) whose phase factor is indeterminate. This
implies that the Berry phase computed from H̃me(k) does not
behave well for numerical computation. We explain this in
detail in Appendix E.

After integration of the Berry curvature, we find that the
Chern numbers of the bands, from highest to lowest energy,
are −2, 4, −2 respectively. Surprisingly, the Chern numbers
computed from Hs(k) and H̃me(k) are equivalent. In general,
however, we should not expect the Chern numbers computed
with these two methods to be equivalent.

Finally, let us note that the effective magnetic field h in
phonon is essential for the presence of Berry curvature in
our model. To see this, let us first notice that Hme(k) is real
because Hm(k), Hp(k), and Hc(k) are real [see Eqs. (15),
(21), and (31)]. When h = 0, this guarantees that the Berry
curvature vanishes, which we show in Appendix E 2. There-
fore, although the magnon-phonon coupling does not by itself
induce Berry curvature, it can induce large Berry curvature
in the presence magnetic field in phonon Hamiltonian. The
same conclusion holds for the Berry curvature computed from
H̃me(k). This is because if h = 0, we can choose εσ (k) to be
real. Then, it is immediate from Eq. (27) that the magnon-
phonon coupling terms are real, so that H̃me(k) is real. It
follows from this that there is no Berry curvature.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Berry curvature density of magnon-phonon hybridized
bands in the first Brillouin zone with the lattice constant a = 1. The
energy bands are labeled 1, 2, 3 from highest to lowest energy and
carry Chern numbers −2, 4, −2, respectively. (a) and (b) shows the
Berry curvature density for energy band 1 by using the H̃me(k) and
Hs(k), respectively. (c) and (d) are similar plots for energy band 2,
and (e) and (f) are similar plots for energy band 3.

B. Thermal Hall conductivity

The formula for thermal Hall conductivity can be derived
by either semiclassical theory or linear response theory. For
non-BdG bosonic Hamiltonian, it was shown that the two
approaches are equivalent [9,10]. This equivalence holds even
for BdG Hamiltonian, as we now show. The formula for
the thermal Hall conductivity derived by using semiclassical

(a) (b)

FIG. 6. Berry curvature density of phonon in the first Brillouin
zone with the lattice constant a = 1 and with the same parameters
used in Fig. 3 (b). (a) and (b) are the plots for the higher and lower
energy band, respectively.

wave-packet approach is given by [46]

κxy = 1

2h̄TV

N∑
n=−N

′ ∑
k

�n,k

∫ ∞

h̄ωn,k

E2 ∂g

∂E
dE , (38)

where �n,k is the z component of the Berry curvature com-
puted as in Eq. (88), h̄ωk,n is the energy [see Eq. (37)]
with h̄ωk,n > 0 (<0) for n > 0 (<0), g(E ) = 1

eE/kBT −1 is the
Bose-Einstein distribution, and the ′ indicates that there is no
summation over n = 0. Let us note the formula∫ ∞

h̄ωn,k

E2 ∂g

∂E
dE = −k2

BT 2c2((g(h̄ωn,k)), (39)

where c2(x) ≡ ∫ x
0 [ln(1 + ρ−1)]2. This can be derived by

making the substitution ρ = g, so that E = kBT ln(1 +
ρ−1). Combining this with the properties �−n,−k = −�n,k,
ω−n,−k = −ωn,k, ∂g(−E )

dE = − ∂g(E )
dE , and c2(∞) = π2

3 , we can
convert the summation for n < 0 to summation over n > 0.
After a short calculation, we arrive at the following expression
for the thermal Hall conductivity, which can also be derived
from the linear response theory [14,47]:

κxy = −k2
BT

V h̄

∑
k

N∑
n=1

[
c2(g(h̄ωn,k)) − π2

3

]
�n,k. (40)

We thus see that the thermal Hall conductivity for BdG
Hamiltonian derived from semiclassical theory agrees with
that derived from linear response theory.

We show the thermal Hall conductivity of magnon-polaron,
calculated by using Hs(k), as a function of temperature with
red line in Fig. 7(a), calculated with the parameters used in
Fig. 4(d). As a comparison, we plot the case without magnon-
phonon coupling with blue line, which is equal to the phonon
Hall conductivity because the magnon Hall conductivity
vanish. The Berry curvature arising from magnon-phonon
interaction contributes noticeably to the thermal Hall conduc-
tivity at high temperature. This is because the hybridization
between magnon and phonon occurs significantly only at high
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(a) (b)

FIG. 7. (a) Thermal Hall conductivity κxy computed by using
Hs(k). The blue line is κxy for phonon with parameters given in Fig. 3.
The red line is κxy for magnon-polaron with parameters given in
Fig. 4. The green line is computed with the same parameters except
the easy-axis anisotropy, which is reduced to A = −0.002. The x
axis is temperature in Kelvins and the y axis is the dimensionless
thermal Hall conductivity, h̄κxy/k2

B. (b) Thermal Hall conductivity
κxy computed by using H̃me(k). The contribution to the thermal Hall
conductivity from phonon is completely missed.

energies. On the other hand, if we reduce the anisotropy
from a = −0.02 to −0.002 meV, the magnon dispersion
near � falls below the highest phonon energy at the �. The
result is that magnon and phonon can hybridize significantly
also at lower energy. This is accompanied by a topological
phase transition so that the Chern numbers of the magnon
polaron bands are now 0, 2, −2, from bands with highest
energy to lowest energy. The thermal Hall conductivity for
this case is shown in green line, and we see that the thermal
Hall conductivity is now significantly renormalized at lower
temperatures. This is because excitations with large Berry
curvature, resulting from magnon-phonon coupling, are now
thermally active at lower temperatures.

To emphasize why Hs(k) should be used, we show the
thermal Hall conductivity calculated from H̃me(k) in Fig. 7(b).
As can be seen, the thermal hall conductivity signal from
phonon is completely missed in Fig. 7(b), which is in sharp
contrast to Fig. 7(a) where the phonon makes a significant
contribution for temperature around 20 K. In a material with
strong spin-phon coupling, the thermal Hall conductivity can
arise from magnon, phonon, and their coupling. In such cases,
the Berry curvature should be computed by using Hs(k), not
by using H̃me(k)

IV. DIAGONALIZATION OF
MAGNETOELASTIC HAMILTONIAN

In this section, we clarify the relation between the magne-
toelastic Hamiltonian and the BdG Hamiltonian. To introduce
the notations used for phonons, we begin with a brief review
of the theory of phonon in a two dimensional lattice with
net out-of-plane magnetization, which couples to phonons
through the Raman interaction [5,6,14]. Then, we clarify the
relation between the phonon Hamiltonian to the BdG Hamil-
tonian. Using this, we then present a method to diagonalize the
magnetoelastic Hamiltonian without introducing the phonon
operators, based on Colpa’s method of diagonalizing bosonic
BdG Hamiltonian, which is reviewed in Appendix B. For
complicated systems, this can simplify the work involved in
solving the hybridization problem. We will always put h̄ = 1.

A. Review of phonon Hamiltonian in effective magnetic field

The Hamiltonian of an ion moving in a static out-of-
plane magnetic field B can be written by making the sub-
stitution p → p − qA where p is the momentum conjugate
to the displacement u, q is the charge of the ion, and A =
1
2 B × u is the vector potential. Then, the kinetic part of the
Hamiltonian is

1

2m

∣∣∣p − q

2
B × u

∣∣∣2
= 1

2m

∣∣∣∣p −
(

0 − qB
2

qB
2 0

)
u

∣∣∣∣
2

. (41)

The effective Hamiltonian of lattice vibration in the pres-
ence of magnetization can be written in a similar way. Let
uα (R) denotes the two-dimensional displacement vector of an
ion multiplied by the square root its mass, mα . Here, R is the
unit cell position and α is the sublattice index. Similarly, let
pα (R) be the conjugate momentum divided by square root
of the mass. We will denote the charge of ion α by qα , α =
1, . . . , s, where s is the number of sublattice. We will often
omit the sublattice index and write, for example, u to mean
(u1, . . . , us). The phonon Hamiltonian is given by [5,42]

Hp = 1

2

∑
αβRR′

[{pα (R)2 + 2uα (R)Aαα pα (R)}δαβδR,R′

+ uα (R){Kαβ (R − R′) − (A2)αβ}uβ (R′)]. (42)

Here, A is a block diagonal matrix with blocks Aαβ = δαβ�α ,
where �α is a d × d matrix and d is the spatial dimension,
which is 2 for the present case. This matrix contains the
coupling between the ions and the effective magnetic field

�α =
(

0 h
−h 0

)
, (43)

where we have defined hα = −qαB/2mα . As we have men-
tioned before, B is the effective magnetic field, which is
proportional to the local magnetization in the z direction.
This coupling between u and p can occur by the Raman-type
interaction of the form gM · (u × p), where M is the average
magnetization [43].

We use the following convention for the Fourier transfor-
mation of phonons:

uα (R) = 1√
N

∑
R

uα (k)ei(R+δα )·k. (44)

Here, R is the position of the cell, δα is the displacement from
R to the equilibrium position of the atom in that cell, and N
is the total number of unit cells. The Hamiltonian after the
Fourier transformation is given by [5]

Hp = 1

2

∑
αβk

[{pα (−k) · pα (k) + 2uα (−k)Aαα pα (k)}δαβ

+ uα (−k)Dαβ (k)uβ (k)]

=
∑

k

x(−k)T Hp(k)x(k), (45)
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where

Dαβ (k) = −(A2)αβ +
∑

	R,αβ

Kαβ (	R)eik(	R+δα−δβ ), (46)

x(k) = (p(k), u(k)), and

Hp(k) = 1

2

(
Isd −A
A D(k)

)
. (47)

By writing the Hamilton’s equations of motion for u(k)
and p(k), we see that the eigenvalue problem that must be
solved is

Heff(k)χσ (k) = ωp
σ (k)χσ (k), Heff = i

(−A −D(k)
Ind −A

)
,

(48)

where σ in the subscript is the index for eigenmodes for
phonons. Here, we have combined the polarization vector for
the displacement εσ (k) and momentum μσ (k) into a single
object

χσ (k) =
(

μσ (k)

εσ (k)

)
(49)

Let us note that Heff = 2ρyHp, where ρi with i = x, y, z are
Pauli matrices in the phonon sector, defining the block struc-
ture in Eq. (48). The lower block of the matrix equation (48)
is just the relation between the conjugate momentum and the
kinetic momentum: pα = u̇α + �αuα , where the dot (̇ ) is the
differentiation with respect to time, implies

μσ (k) = −iωp
σ (k)εσ (k) + Aεσ (k). (50)

By using Eqs. (48), one can show that the eigenvalues and
eigenvectors of Heff always come in pairs, σ,−σ with the fol-
lowing relation: χ∗

−σ (−k) = χσ (k) and ω
p
−σ (−k) = −ω

p
σ (k).

Here, we have used the convention where σ > 0 corresponds
to ω

p
σ (k) � 0. Let us note that σ takes values in −sd,−sd +

1 . . . ,−1, 1, . . . , sd − 1, sd , where d = 2 is the dimension in
which the vibration takes place.

The eigenvectors can be normalized as follows:

χσ (k)†ρyχσ ′ (k) = (ρz )σσ ′ . (51)

Although it is possible to give a direct proof of this [5,6] [see
also Appendix D], we will instead assume that this normaliza-
tion condition is given, and then show in the next section that
when we transform the phonon Hamiltonian to a bosonic BdG
Hamiltonian, χσ (k) are mapped to the eigenvectors of bosonic
BdG Hamiltonian, see Eqs. (59), (61), and (64). This gives an
alternative proof of the normalization condition. We also note
that the convention we use to normalize χσ (k) differs from
the normalization condition in Refs. [5,6], where the authors
use ρy/2ωσ (k) as the metric for χσ (k) (the precise relation is
discussed in Appendix D). We prefer the normalization given
here because it behaves well even for acoustic phonon modes
and the relation between x(k) and the phonon operators bk,σ is
simpler, see Eq. (65). This does not affect the Berry curvature
that we define in Sec. V A, which we show in Appendix D.

Finally, let us note that the completeness relation is given
by ∑

σ

χσ (k)(ρz )σσχ†
σ (k)ρy = I2sd , (52)

where I2sd is the 2sd × 2sd identity matrix. This relation can
be checked by multiplying the right-hand side by χσ ′ (k).

B. Second quantization: relation to BdG Hamiltonian

We give a matrix formulation of the second quantization
problem of phonon in the presence of magnetic field. It will be
shown that this is only a simple variation of the BdG problem.
Then, we use this to show how the hybridization problem of
magnon and phonon can be mapped to the BdG problem.
This relation gives us a simple method to diagonalize the
magnetoelastic Hamiltonian. In the next section, we use this
diagonalization method to define the Berry connection.

In order to understand the relation between the phonon
problem and the BdG Hamiltonian, let us first note that the
metric used on the normalization of the polarization vectors
χσ (k) also appears in the commutation relation between the
operators, [xσ (k)†, xσ ′ (k′)] = (ρy)σσ ′δkk′ [48]. Next, we note
that the field operators yk in bosonic BdG Hamiltonian satisfy

(i) [y†
σ (k), yσ ′ (k′)] = −(ρz )σσ ′δkk′ , (53)

(ii) y†
σ (k) = (ρx )σσ ′yσ ′ (−k). (54)

The condition (i) can be satisfied by making use of the
following:

U †(θ )ρyU (θ ) = cos 2θρy + sin 2θρz, U (θ ) = eiρxθ . (55)

For θ = π/4, U ( π
4 ) =

√
2

2 (1 + iρx ), and ρy → ρz. There-
fore, if we define χσ (k) = U ( π

4 )ξ̃σ (k), the normalization
condition is

ξ̃
†
σ (k)ρz ξ̃σ ′ (k) = (ρz )σσ ′ . (56)

Similarly, if we define x(k) = U ( π
4 )ỹ(k)

[ỹ†
σ (k), ỹσ ′ (k)] = −(ρz )σσ ′ . (57)

To satisfy the condition (ii), let us note that we can make
an additional transformation that fixes the metric ρz. Let us
define

U ′ =
(

Isd

−iIsd

)
. (58)

If we define ξ̃σ (k) = U ′ξσ (k) and ỹ(k) = U ′y(k), we can
write

χσ (k) = V ξσ (k), x(k) = V y(k), (59)

where

V = U
(π

4

)
U ′, (60)

and

ξ†
σ (k)ρzξσ ′ (k) = (ρz )σσ ′, (61)

[y†
σ (k), yσ ′ (k)] = −(ρz )σσ ′ . (62)

Moreover, we have

y(k) =
⎛
⎝

√
2

2 (p(k) − iu(k)) ≡ vk
√

2
2 (p(k) + iu(k)) = v†

−k

⎞
⎠, (63)

so that condition (ii) is satisfied.
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With the transformation discussed above, the eigenvalue
problem for ξσ (k) becomes

[V †ρyHp(k)V ]ξσ (k) = [ρzV
†Hp(k)V ]ξσ (k)

= ω
p
σ (k)

2
ξσ (k), (64)

where the eigenvectors satisfy the constraint given in Eq. (61)
In addition, because the field operator y(k) is a bosonic BdG
field, V †Hp(k)V is a bosonic BdG Hamiltonian, and we see
that the constraint given in Eq. (61) is just the constraint on
the eigenvectors of a bosonic BdG Hamiltonian. At k points
where Hp(k) has no zero modes, it is positive definite, and
ξσ satisfying Eqs. (61) and (64) can be found by using the
Colpa’s method. This gives an alternative justification of the
normalization condition in Eq. (51).

To write the Hamiltonian in terms of the phonon operators,
let us make the expansion

x(k) =
∑

σ

χσ (k)bk,σ (65)

or equivalently, u(k) = ∑
σ εσ (k)bk,σ and p(k) =∑

σ μσ (k)bk,σ , where bk,σ satisfies the canonical
commutation relation for σ > 0 and b†

k,σ
= b−k,−σ , so

that [bk,σ , b†
k,σ ′ ] = δk,k′ (ρz )σσ ′ . Then, we have

Hp = 1

2

∑
k

x(−k)T ρyHeff(k)x(k)

= 1

2

∑
k,σ,σ ′

χT
σ ′ (−k)ρyHeff(k)χσ (k)b−k,σ ′bk,σ

= 1

2

∑
k,σ,σ ′

χ†
σ ′ (k)ρyω

p
σ (k)χσ (k)b−k,−σ ′bk,σ

= 1

2

∑
k,σ

∣∣ωp
σ (k)

∣∣b−k,−σ bk,σ

= 1

2

∑
k,σ

∣∣ωp
σ (k)

∣∣b†
k,σ

bk,σ . (66)

In the third line, we used the identity χσ (k)∗ = χ−σ (−k).

C. Diagonalization of magnetoelastic Hamiltonian

We will now develop a simple method to diagonalize the
magnetoelastic Hamiltonian Hme defined in Eq. (69). To do
this, we first keep track of the matrices that are used to intro-
duce phonon operators and diagonalize the resulting bosonic
BdG Hamiltonian. Then, we will observe that if we introduce
Hs defined in Eq. (77), the diagonalization procedure can be
simplified. Because this will require us to introduce various
forms of Pauli matrices, let us first explain the notation that
will be used.

Let us define ρi to be the 2sd × 2sd Pauli matrices for the x
and p blocks in the phonon sector. Similarly, let us define τi to
be the 2m × 2m Pauli matrices for the particle and hole blocks
in the magnon sector. Here, m is the number of HP operators
in a unit cell, and we assume that the magnon Hamiltonian is
written in BdG form. When there is no source for confusion,
we will abuse the notation and write ρi to mean I2m ⊕ ρi and

τi to mean τi ⊕ I2sd . In the same spirit, it is to be understood
that

V = I2m ⊕ V

=

⎛
⎜⎝

I2m
1√
2
Isd

1√
2
Isd

i√
2
Isd

−i√
2
Isd

⎞
⎟⎠, (67)

where V on the right-hand side was defined in Eq. (60).
Finally, we will use σi for the 2(m + sd ) × 2(m + sd ) Pauli
matrices in the magnetoelastic sector.

Let 
k = (ak,1, . . . , a†
−k,1, . . . , pT

1 (k), . . . , uT
1 (k), . . . ),

where ai,k for i = 1, . . . , m are the HP operators. The
magnetoelastic Hamiltonian is

Hme =
∑

k



†
kHme(k)
k, (68)

where

Hme(k) =
(

Hm(k) Hc(k)

H†
c (k) Hp(k)

)
. (69)

Hm(k) is the magnon Hamiltonian written in BdG form [for a
simple example, see Eq. (8)], and Hc(k) is the magnon-phonon
coupling Hamiltonian.

Let us now keep track of the matrices that are used to
diagonalize Hme. The transformation of phonon Hamiltonian
from u(k), p(k) basis to the phonon basis is 


†
kHme(k)
k =

�
′†
k X †

k Hme(k)Xk�
′
k, where

Xk =
(

I2m 0 . . . 0 . . .

0 χ1(k) . . . χ−1(k) . . .

)
(70)

and � ′
k = (a1k, . . . , a†

1−k, . . . , bk,1, . . . , b†
k,−1, . . . ). Note that

� ′
k is the field operators that is usually used to write the

magnon-phonon Hamiltonian [27–29]. Note that we have

X †
k τzρyXk = τzρz, (71)

where we have used Eq. (51). Let P be the permutation that
swaps half the magnon sector with half the phonon sector:

P =

⎛
⎜⎜⎝

Im

Isd

Im

Isd

⎞
⎟⎟⎠. (72)

so that �k ≡ P� ′
k = (a1k, . . . , bk,1, . . . , a†

1−k, . . . , b†
k,−1, . . . ).

Then,

H̃me(k) ≡ PX †
k Hme(k)XkP† (73)

and

Hme =
∑

k

�
†
k H̃me(k)�k (74)

is the magnetoelastic Hamiltonian in HP operator and phonon
operator basis arranged in BdG form. Let Tmp(k) be the
transformation that diagonalizes H̃me(k) satisfying the nor-
malization condition

Tmp(k)†σzTmp(k) = σz. (75)
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Then, XkP†Tmp(k) is the transformation that diagonalizes
Hme(k), satisfying the normalization condition

[T †
mp(k)PX †

k ]τzρy[XkP†Tmp(k)] = σz, (76)

where we have used Eq. (71), PτzρzP† = σz, and Eq. (75).
Now, let us simplify the diagonalization process. First,

define the “simplified” Hamiltonian as

Hs(k) = PV †Hme(k)V P†. (77)

Then, the matrix that diagonalizes the Hamiltonian is given by

Ts(k) = PV †XkP†Tmp(k). (78)

In other words,

T †
s (k)Hs(k)Ts(k) = diag

(∣∣ωmp
nk

∣∣/2
)

(79)

and

T †
s (k)σzTs(k) = σz (80)

Now, the problem of finding Ts(k) that satisfies Eqs. (79) and
(80) is exactly that of solving a bosonic BdG Hamiltonian.
Thus the Hs can be diagonalized by using Colpa’s method
[32]. For our purposes, we may assume that the matrix that
diagonalizes Hs(k) obtained from Colpa’s method is given
by Eq. (78). This is because the column vectors of Ts(k) is
unique up to a phase factor when there is no degeneracy in the
eigenvalues of Hs(k) [see Appendix B]. In conclusion, if we
start with Hs, we can just use Colpa’s method to diagonalize
the Hamiltonian to solve the magnon-phonon problem.

Finally, let us note that there is a simple explanation for the
reason that the Hs(k) can be diagonalized by using the Colpa’s
method. Let us write



†
kHme(k)
k = �

†
kHs(k)�k (81)

where we have defined

�k ≡ PV †
k

= P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak,1

...

a†
−k,1

...

vk

v†
−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak,1

...

vk

a†
−k,1

...
v†

−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (82)

where vk is the phonon BdG field which was defined in
Eq. (63). Because �k is bosonic BdG field, Hs(k) is bosonic
BdG Hamiltonian, and therefore can be solved using the
Colpa’s method. The reason we have given a complicated
derivation is to obtain Eq. (78), which relates Tmp(k) and Ts(k)

V. BERRY CONNECTION

In this section, we first briefly review the Berry connection
for bosonic BdG Hamiltonian. Then, we define the Berry con-
nection for the simplified magnetoelastic Hamiltonian Hs(k),
and show that it is different from that defined using H̃me(k) in
which the phonon part is already diagonalized. This will have
physical consequences because the Berry curvature is related
to the anomalous velocity of a semiclassical wave packet.

A. Berry connection of BdG systems

Let us first review some useful properties of a positive
definite bosonic BdG Hamiltonian. These properties apply to
phonon, magnon, and magnetoelastic Hamiltonians. Let Hk be
a 2N × 2N BdG Hamiltonian. The matrix Tk that diagonalizes
the BdG Hamiltonian, i.e., T †

k HkTk = 1
2 ω̃k, satisfy T †

k σzTk =
σz because different choices of field operators should preserve
the bosonic commutation relation. We note that the diagonal
matrix ω̃k has positive (diagonal) components. We also have

H−k = σxH∗
k σx, T−k = σxT ∗

k σx (83)

because of the condition (ii) satisfied by the BdG field op-
erators [see Eq. (54)]. The eigenvalues ωk,n

2 and eigenvectors
|Tk〉n, which are column vectors of the matrix Tk, satisfy
σzHk|Tk〉n = ωk,n

2 |Tk〉n. Note that if we define ωk = diag(ωk,n),
the eigenvalue problem is equivalent to σzHkTk = 1

2 Tkω(k) or
T †

k HkTk = 1
2σzω(k) ≡ 1

2 ω̃k. Using Eq. (83), it can be shown
that the eigenvalues and eigenvectors come in pairs; if we let
n > 0 correspond to ωk,n > 0, ωk,−n = −ω−k,n and |Tk〉−n =
σx|T ∗

−k〉n.
Next, let us review the Berry connection of a bosonic BdG

Hamiltonian. We first note that the gauge group for Hk is
the indefinite unitary group U (N, N ) whose elements G(k)
satisfy G†(k)σzG(k) = σz [for subbands, it is a subgroup of
U (N, N )]. This is because different choices of field operators
should preserve the bosonic commutation relation. For conve-
nience, we define the quantity

Ann′ (k) = n〈Tk|iσz∇|Tk〉n′ . (84)

The non-Abelian Berry connection is defined by [4,49]

Ann′ (k) = (σzA(k))
¯nn′ . (85)

Under the gauge transformation |Tk〉n → |Tk〉n′Gn′n(k), where
G(k) ∈ U (N, N ),

A(k) → G†(k)A(k)G(k) + G†(k)iσz∇G(k) (86)

so that

A(k) → G−1(k)A(k)G(k) + G−1(k)i∇G(k), (87)

since G−1(k) = σzG(k)†σz.
Thus the Berry curvature is given by

Bn(k) = ∇ × Ann(k) (88)

and the Chern number is given by

Cn = 1

2π

∫
BZ

dkBz
n(k). (89)

The sum rule for Chern number [4] states that the total Chern
number for the sector n > 0 is zero. This allows us to define
the Chern number when the lowest energy band has zero
modes because the total Chern number vanishes regardless of
how we open up the gap. It can also be shown that B−n(k) =
−Bn(−k) so that Cn = −C−n [47].

B. Magnon-polaron Berry connection

Let us derive the difference between the Berry connection
defined by using Hs and H̃me. For notational simplicity, let us
work with A(k) instead of A(k) = σzA(k), and simply refer
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to A(k) as the Berry connection in this section for magnon,
phonon, and magnon-polaron. From Eqs. (78) and (84), we
have

As
nn′ (k) = n〈T †

mp(k)PX †
k V P†|iσz∇|PV †XkP†Tmp(k)〉n′

= n〈T †
mp(k)PX †

k |iτzρy∇|XkP†Tmp(k)〉n′

= n〈T †
mp(k)P|

(
0

Ap(k)

)
|P†Tmp(k)〉n′

+ n〈Tmp(k)|PX †
k iτzρyXkP†∇|Tmp(k)〉n′

= n〈T †
mp(k)P|

(
0

Ap(k)

)
|P†Tmp(k)〉n′

+ Amp
nn′ (k), (90)

where the phonon Berry connection is

AP
σσ ′ (k) = 〈χσ (k)|iρy∇|χσ ′ (k)〉 = 〈ξσ (k)|iρz∇|ξσ ′ (k)〉

(91)

and

Amp(k) = n〈Tmp(k)|iσz∇|Tmp(k)〉n′ . (92)

We should note that the contribution from the phonon (the
first term in the above equation) does not vanish in general.
To understand this, let us define Wk = PV †XkP†. Since we
are interested in the Berry curvature of individual bands,
the only allowed transformation is of the form |Ts(k)〉n →
|Ts(k)〉neiζn (k) which does not mix different bands. However,
|Tmp(k)〉 → Wk|Tmp(k)〉 is different in nature. Even though it
does not change the energy, it mixes the matrix components
of |Tmp(k)〉, so that one can expect a change in the Berry
curvature. For an explicit comparison, see Fig. 5.

VI. CONCLUSIONS

We have explained how to compute the Berry curvature
and Chern number in magnon-polaron bands by finding the
relation between magnetoelastic Hamiltonian and the bosonic
BdG Hamiltonian. As an example, we have applied this to
the triangular antiferromagnet with out-of-plane magnetic
field, where the magnon and phonon bands have zero Chern
number. Although the magnon-phonon coupling arising from
exchange magnetostriction of Heisenberg model does not by
itself generate Berry curvature, it induces, in the presence
of out-of-plane magnetic field, large Berry curvature in the
anticrossing regions. In addition, all of the resulting magnon-
polaron bands are gapped, and they carry nonzero Chern
numbers. The Berry curvature arising from magnon-phonon
hybridization can significantly renormalize the phonon ther-
mal Hall conductivity.

Similarly, we expect that magnon-phonon coupling can
significantly renormalize magnon Hall conductivity. Recently,
Ref. [50] discussed possible thermal Hall conductivity in
trimerized triangular lattice antiferromagnet YMnO3. As the
authors point out, magnon Hall conductivity may be renor-
malized by magnon-phonon coupling. Although the magnon-
phonon coupling from exchange magnetostriction does not
by itself induce Berry curvature in our toy model, this may
not be true when there is trimerization. Therefore, in the

presence of magnon-phonon coupling in trimerized triangular
antiferromagnet, we can expect significant deviation of ther-
mal Hall conductivity from that resulting only from magnons.
In practice, however, it may be difficult to distinguish the
contribution to Hall response from magnon-phonon coupling
and uncertainty in parameters in magnetoelastic Hamiltonian.
Therefore an interesting question would be to ask whether it
is possible for the thermal Hall conductivity or spin Nernst
conductivity to arise solely from magnon-phonon coupling.
We leave these questions for future research.
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APPENDIX A: SYMMETRY ANALYSIS

In this section, we discuss the symmetry representation of
magnon, phonon, and magnon-polaron. For clarity, we put a
hat (̂ ) over operators in this section.

1. Magnon symmetry

In this section, we will study the symmetry of Heisenberg
Hamiltonian. Let us first assume that there is no external
magnetic field, i.e., no canting. Because the Heisenberg model
arises when there is no spin-orbit coupling, the (unitary)
symmetry of Heisenberg model on triangular lattice as a
wallpaper group is p6mm ⊗ SU(2) when there is no magneti-
zation. When there is magnetic ordering, the symmetry will be
lowered to a subgroup of this symmetry group. In particular,
the symmetry of the ground state is generated by the following
symmetry operators (the right-hand side defines the action on
the spin position and direction, respectively):

T̂R1 = TR1 ⊗ C3,

T̂R2 = TR2 ⊗ C−1
3 ,

Ĉ3z = C3z ⊗ C3z, (A1)

Ĉ2x = C2x ⊗ 1,

Ĉ2y = C2y ⊗ C2y.

Here, TRi ⊗ 1 is a lattice translation by Ri, C3z ⊗ 1 is a rotation
of the lattice positions by 120◦ counterclockwise about the
center of yellow triangle, C2x ⊗ 1 is a twofold rotation about
the line through the lattice sites 1 and 2, C2y ⊗ 1 is a twofold
rotation about the line through lattice sites 4 and 3, and 1 ⊗
(C2x,C2y,C3z ) are vectorial rotation of spin directions.
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(a) (b)

FIG. 8. Global axes (x̂, ŷ, ẑ) and local axes of spin at site 3 in
Fig. 1 (x̂3, ŷ3, ẑ3) (a) without canting and (b) with canting by angle θ .
The local axes for sites 1 (2) are obtained through rotation by 120◦

about the global ẑ axis counterclockwise (clockwise).

In order to introduce the HP operators, we have defined
local axes as described in Fig. 8, so that for spin at Ri,

ŜRi = ŜRi,xx̂Ri + ŜRi,yŷRi
+ ŜRi,z ẑRi . (A2)

The local axes should be thought of as operators transforming
under the symmetry representations in Eq. (A1),

T̂R1

(
x̂Ri , ŷRi

, ẑRi

)
T̂ −1

R1
= (

x̂Ri+R1 , ŷRi+R1
, ẑRi+R1

)
,

T̂R2

(
x̂Ri , ŷRi

, ẑRi

)
T̂ −1

R2
= (

x̂Ri+R1 , ŷRi+R1
, ẑRi+R1

)
,

Ĉ3z
(
x̂Ri , ŷRi

, ẑRi

)
Ĉ−1

3z = (
x̂C3zRi , ŷC3zRi

, ẑC3zRi

)
,

(A3)
Ĉ2x

(
x̂Ri , ŷRi

, ẑRi

)
Ĉ−1

2x = (
x̂C2xRi , ŷC2xRi

, ẑC2xRi

)
,

Ĉ2y
(
x̂Ri , ŷRi

, ẑRi

)
Ĉ−1

2y = ( − x̂C2yRi ,−ŷC2yRi
, ẑC2yRi

)
,

Ĉ ′
2y

(
x̂Ri , ŷRi

, ẑRi

)
Ĉ ′−1

2y = (
x̂C2yRi , ŷC2yRi

, ẑC2yRi

)
,

and

Ĉ(ŜRi,x, ŜRi,y, ŜRi,z )Ĉ−1 = (ŜCRi,x, ŜCRi,y, ŜCRi,z ), (A4)

where Ĉ is any of the operators in Eq. (A3) and C is its
action on lattice position. In Eq. (A3), we have defined an
additional symmetry operator Ĉ ′

2y, which is similar to the

twofold rotation Ĉ2y. However, unlike Ĉ2y, which introduces
a negative sign for local x and y axes, Ĉ ′

2y only changes the

position indices of the local axes. Ĉ ′
2y is an emergent symmetry

that is present because the Heisenberg interaction contains
only terms such as ŜRi · ŜR j , which is invariant under the
permutation of indices i and j. The C′

2y symmetry referred

to in the main text is the Ĉ ′
2y symmetry, and it is present in

the magnon-phonon coupling Hamiltonian, in contrast to Ĉ2y,
which is broken by the magnon-phonon coupling Hamilto-
nian. Before going further, let us note that the transformation
of the magnon operator âRi are fixed by Eq. (A4) to be

ĈâRi Ĉ−1 = âCRi . (A5)

Let us next find symmetry operators that acts exclusively
on HP operators, corresponding to the symmetries defined by
Eqs. (A3) and (A4). In other words, we would like to know
whether we can absorb the transformation of the local axes
into the transformation of HP operators, so that we can treat
the local axes as numbers instead of operators. This step is
necessary because when we write the magnon Hamiltonian, as
well as the magnon-phonon coupling Hamiltonian, quantities
such as x̂i · x̂ j will be evaluated to a number which do not

transform under the symmetry operator that acts only on the
HP operators. We will label such a symmetry operator acting
only on the HP operators with a superscript “HP,” ĈHP. To find
the action of ĈHP, it is useful to explicitly write down Ŝ1 · Ŝ2

without numerically evaluating the local axes. Using

Ŝi = x̂i

√
2S

2
(âi + â†

i ) + ŷi

√
2S

2i
(âi − â†

i ) + ẑi(S − â†
i âi ),

(A6)

we find that up to the quadratic order in HP operators,

Ŝ1 · Ŝ2 = S

2
[x̂1 · x̂2(â1 + a†

1)(â2 + â†
2)

− 2ix̂1 · ŷ2(â†
1â2 − â1â†

2) − ŷ1 · ŷ2(â1 − a†
1)

× (â2 − â†
2) − 2ẑ1 · ẑ2(â†

1â1 + â†
2â2)], (A7)

where we have used x̂1 · ŷ2 = −ŷ1 · x̂2. Similar expressions
for Ŝ2 · Ŝ3 and Ŝ3 · Ŝ1 can be obtained through cyclic permu-
tation.

As an example, let us first discuss Ĉ3z operator. Because
we assume that there is no canting, x̂1 · ŷ2 = 0. The action of
Ĉ3z is

Ĉ3zŜ1 · Ŝ2Ĉ−1
3z = S

2
[x̂2 · x̂3(â2 + a†

2)(â3 + â†
3)

− ŷ2 · ŷ3(â2 − a†
2)(â3 − â†

3)

− 2ẑ2 · ẑ3(â†
2â2 + â†

3â3)]

(∗)= S

2
[x̂1 · x̂2(â2 + a†

2)(â3 + â†
3)

− ŷ1 · ŷ2(â2 − a†
2)(â3 − â†

3)

− 2ẑ1 · ẑ2(â†
2â2 + â†

3â3)]. (A8)

For the first equality, we have used Eqs. (A3) and (A5), and
(∗)= means that the expressions are numerically equivalent.
Because similar equality holds for other pairs of spins, there
is a HP operator representation of ĈHP

3z , which acts only on the
HP operators, as a permutation of HP operators:

ĈHP
3z âRi ĈHP−1

3z = âC3zRi . (A9)

Similarly, we may define

T̂ HP
R âRi T̂ HP−1

R = âRi+R, ĈHP
2x âRi ĈHP−1

2x = âC2xRi ,

ĈHP
2y âRi ĈHP−1

2y = âC2yRi , Ĉ ′HP
2y âRi Ĉ

′HP−1
2y = âC2yRi . (A10)

Let us note that ĈHP
2y is not present in magnon-phonon coupling

Hamiltonian, and the definition of Ĉ ′HP
2y needs to be modified,

as explained in Appendix A 3.
Let us next find the representation in the k space. For any

of the symmetry operators Ĉ,

ĈHPâkĈHP−1 =
∑

Ri

eik·Ri âCRi =
∑

Ri

eik·C−1Ri âRi . (A11)

Therefore, when Ĉ is one of the rotation operators, we have
ĈHPâkĈHP−1 = âCk. When Ĉ = TR, ĈHPâkĈHP−1 = e−ik·Râk.
It follows that when Ĉ is one of the rotation operators, its
constraint on the magnon Hamiltonian is Hm(Ck) = Hm(k).
At this point, there is no difference between Ĉ2y and Ĉ ′

2y. This
is not so when there is canting, which we explain below, and
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also when we consider the coupling between magnon and
phonon in Appendix A 3. Finally, let us note that anisotropy
term does not affect the symmetry of the Hamiltonian.

Let us next comment on what happens when the magnetic
order cants. As before, T̂R, Ĉ3z and Ĉ2x remain a good sym-
metry, and their corresponding symmetry acting exclusively
on the HP operators do not change. However, Ĉ2y does not
remain a symmetry because the ground-state configuration is
not invariant under this symmetry. On the other hand, Ĉ ′

2y is
still a symmetry of the Hamiltonian, which can be seen from
Eq. (A7). However, we cannot define a unitary Ĉ ′HP

2y symmetry.
To see this, notice that the only additional term compared to
the case without canting is iSx̂1 · ŷ2(â†

2â1 − â2â†
1). Its transfor-

mation is

Ĉ ′
2yiSx̂1 · ŷ2(â†

2â1 − â2â†
1)Ĉ ′−1

2y = iSx̂2 · ŷ1(â†
1â2 − â1â†

2)

(∗)= iSx̂1 · ŷ2(â†
2â1 − â2â†

1).

(A12)

However, we cannot define unitary transformation Ĉ ′HP
2y that

acts only on the HP operators. This is because if we define

Ĉ′HP
2y â1(2)Ĉ

′HP−1
2y = eiφ â2(1), (A13)

we have

Ĉ ′HP
2y iSx̂1 · ŷ2(â†

2â1 − â2â†
1)Ĉ ′HP−1

2y = −iSx̂1 · ŷ2(â†
2â1 − â2â†

1),

(A14)

so that we cannot define a unitary Ĉ ′HP
2y . Because the symmetry

that protects the gap closing point between the magnon and
the phonon bands along the M� line is unitary Ĉ

′HP
2y symmetry,

which is also present in the magnon-phonon Hamiltonian
when there is no canting (see Appendix A 3), the gap along
this line will open once the magnetic field is introduced into
the magnon Hamiltonian (but not into the phonon Hamilto-
nian). In contrast, the Ĉ2x symmetry is retained in the presence
of canting, and the gap along the �K line does not open unless
magnetic field is introduced into the phonon Hamiltonian as
well. This can be seen from the band structure shown in Fig. 9.

2. Phonon symmetry

Let us briefly review the representation of phonon sym-
metry. Let Ĉ be a spatial symmetry operator and let C be
its (vector) representation. Let us use the convention that
the displacement vector u is a column vector. The potential
energy of displacements by uα (Ri ) should be equivalent to the
potential energy of displacements by Cuα′ (R′

i ) when uα (Ri ) =
uα′ (R′

i ), where the atom at lattice position Ri and sublattice α

is sent to, under the action of Ĉ, the atom at lattice position R′
i

and sublattice α′. That is,

uT
α (Ri )Kαβ (Ri − R j )uβ (R j ) = [Cuα′ (R′

i )]
T Kα′β ′ (R′

i − R′
j )

×[Cuβ ′ (R′
j )]

= uT
α′ (R′

i )[C
T Kα′β ′ (R′

i − R′
j )C]

× uβ ′ (R′
j ).

Thus we have

Kα′β ′ (R′
i − R′

j ) = CKαβ (Ri − R j )C
T . (A15)

0

2
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8

10

12

14

16

K M

FIG. 9. Magnon-polaron spectrum with h = 0 and H �= 0 with
the other parameters are the same as in Fig. 4(d). The band gap along
the M� line opens because Ĉ′

2y is broken, in contrast to the band
crossing along the �K line protected by Ĉ2x .

The representation of Ĉ consistent with the above is

Ĉûα (Ri )Ĉ−1 = CT ûα′ (R′
i ). (A16)

In the case of triangular lattice without effective magnetic
field, the Hamiltonian has Ĉ3z, Ĉ2x, and Ĉ ′

2y symmetries (for

phonon, there is no difference between Ĉ2y and Ĉ ′
2y). When

acting on û(k), their representations in k space is

C3z =
(

− 1
2

√
3

2

−
√

3
2 − 1

2

)
, C2x =

(
1 0
0 −1

)
, C′

2y =
(−1 0

0 1

)
.

(A17)

On the other hand, along the high-symmetry lines �K and
M�, the dynamical matrix is diagonal. Along �K , Dxx(k) −
Dyy(k) = 2γ

M (cos kx
2 − cos kx ) > 0 so that the band with higher

(lower) energy has C2x eigenvalue of 1(−1). Similarly, along
the M� line,

Dxx − Dyy = 2γ

M

(
cos

√
3ky

2
− 1

)
< 0, (A18)

so that the band with higher (lower) energy has C′
2y eigenvalue

of 1(−1).

3. Magnon-phonon symmetry

The magnon-phonon coupling Hamiltonian does not break
any of the symmetries we have mentioned above except for
Ĉ2y, and the technique we have used to find the symmetry rep-
resentations of magnon and phonon can be straightforwardly
applied even in the presence of magnon-phonon coupling,
except for Ĉ ′

2y. Therefore, we will focus on Ĉ2y and Ĉ ′
2y sym-

metries. To understand how Ĉ2y and Ĉ ′
2y acts on the coupling

Hamiltonian, let us restore explicitly write the local axes in
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the expression for Ŝ1 · Ŝ2 that is linear in HP operators:

Ŝ1 · Ŝ2 = S
√

2S

2
[(â1 + â†

1)x̂1 · ẑ2 − i(â1 − â†
1)ŷ1 · ẑ2

− i(â2 − â†
2)ẑ1 · ŷ2 + (â2 + â†

2)ẑ1 · x̂2]. (A19)

Using Eqs. (A3) and (A5),

Ĉ2yŜ1 · Ŝ2Ĉ−1
2y = S

√
2S

2
[(â2 + â†

2)(−x̂2) · ẑ1

− i(â2 − â†
2)(−ŷ2) · ẑ1 − i(â1 − â†

1)ẑ2 · (−ŷ1)

+ (â1 + â†
1)ẑ2 · (−x̂1)]

= − Ŝ1 · Ŝ2 �= Ŝ1 · Ŝ2. (A20)

It follows from this that Ĉ2y is not a symmetry of the magnon-
phonon coupling Hamiltonian even in the absence of canting
because

Ĉ2yŜ1 · Ŝ2R12 · (û1 − û2)Ĉ−1
2y = (−Ŝ1 · Ŝ2)R12 · (û1 − û2),

(A21)

where we used Eqs. (A16) and (A20). On the other hand,

Ĉ ′
2yŜ1 · Ŝ2Ĉ

′−1
2y = S

√
2S

2
[(â2 + â†

2)x̂2 · ẑ1 − i(â2 − â†
2)ŷ2 · ẑ1

− i(â1 − â†
1)ẑ2 · ŷ1 + (â1 + â†

1)ẑ2 · x̂1)]

= Ŝ1 · Ŝ2, (A22)

so that Ĉ ′
2y is a symmetry of the coupling Hamiltonian.

However, we must still be careful because the ĈHP
2y symmetry

operator that acts only on the HP operators as ĈHP
2y aRi Ĉ

′HP−1
2y =

aC2yRi in Eq. (A10) does not carry over, as we now explain. Be-
cause Ĉ ′

2y is not unitary-representable in the magnon Hamilto-
nian when there is canting, we will only treat the case without
canting. Using x̂1 · ẑ2 = −x̂2 · ẑ1 and ẑ1 · ŷ2 = ẑ2 · ŷ1 = 0,

Ĉ ′
2yŜ1 · Ŝ2Ĉ

′−1
2y

(∗)= − S
√

2S

2
[(â2 + â†

2)x̂1 · ẑ2

+ (â1 + â†
1)ẑ1 · x̂2)]

= Ĉ ′HP
2y

S
√

2S

2
[(â1 + â†

2)x̂1 · ẑ1

+ (â2 + â†
2)ẑ1 · x̂2)]Ĉ ′HP−1

2y

= Ĉ ′HP
2y Ŝ1 · Ŝ2Ĉ

′HP−1
2y , (A23)

if we (re)define

Ĉ ′HP
2y âRi Ĉ

′HP−1
2y = −âC2yRi . (A24)

Therefore we see that the eigenvalue of Ĉ ′HP
2y is −1 along the

M� line for the magnon band. On the other hand, ĈHP
2x defined

as in Eq. (A10) remains valid and its eigenvalue along the �K
line is 1.

APPENDIX B: DIAGONALIZATION OF
BDG HAMILTONIAN

In this section, we summarize Colpa’s method [32] of
finding a matrix T that diagonalizes a 2N × 2N positive
definite bosonic BdG Hamiltonian HBdG. Then we show that

when the eigenvalues are nondegenerate, the matrix T satisfy
a uniqueness condition. To diagonalize HBdG, we must find T
that satisfies

T †HBdGT = diag(Ẽn), T †σzT . (B1)

First, make the decomposition HBdG = K†K , which can be
numerically implemented by the Cholesky decomposition.
Second, define U to be the matrix that unitarily diagonalizes
KσzK†: U †[KσzK†]U = E . Here, E is a diagonal matrix with
N positive and N negative entries. Then, Ẽ = σzE and T =
K−1U

√
Ẽ . Let us also note that when HBdG is real, K can be

taken to be real, so that T is real, i.e., the Hamiltonian can be
diagonalized by a real matrix.

Let us define |T, n〉 to be the nth column of T , and refer to it
as an eigenvector of HBdG. We will now show that it is unique
up to an overall phase factor when there is no degeneracy in
energy spectrum. It follows that there is no problem in assum-
ing that the eigenvectors obtained from directly diagonalizing
Hs defined in Eq. (77) is given by Eq. (78) when we compute
the Berry curvature.

Let T and T̃ be two sets of matrices that diagonalizes
HBdG. Because det(T ) �= 0, we can write any vector as a linear
combination of |T, m〉. Therefore

|T̃ , n〉 =
∑

m

|T, m〉Cnm

⇔ HBdG|T̃ , n〉 =
∑

m

HBdG|T, m〉Cnm

⇔ Enσz|T̃ , n〉 =
∑

m

Emσz|T, m〉Cnm (B2)

⇔ En〈T, n′|σz|T̃ , n〉 =
∑

m

Em〈T, n′|σz|T, m〉Cnm

⇔ En〈T, n′|σz|T̃ , n〉 = En′ (σz )n′n′Cnn′ .

To obtain the third line, we use HBdG|T, n〉 = En|T, n〉 and
HBdG|T̃ , n〉 = En|T̃ , n〉. On the other hand,

〈T, n′|HBdG|T̃ , n〉 = En〈T, n′|σz|T̃ , n〉
= En′ 〈T, n′|σz|T̃ , n〉, (B3)

where we have used 〈T, n′|HBdG = En′ 〈T, n′|σz. This implies
that 〈T, n′|σz|T̃ , n〉 is nonzero iff n = n′. From the above two
equations, we see that Cnn′ is nonzero iff n = n′. Therefore,
|T̃ , n〉 = Cnn|T, n〉 where Cnn is a phase factor. This concludes
the proof.

APPENDIX C: MAGNETOSTRICTION

Because magnetoelastic coupling can lead to magnetostric-
tion, we should check whether magnetostriction will occur
for the model we have considered in the main text. We show
below that there will be no magnetostriction at the mean-field
level. To see this, let us first focus on the magnetoelastic
coupling between sites 1 and 2 in Fig. 1. The term that can
potentially cause magnetostriction is

J〈S1〉 · 〈S2〉(u2x − u1x ). (C1)
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Similarly, if we consider the magnetoelastic coupling between
sites 11 and 1, we obtain

J〈S11〉 · 〈S1〉(u1x − u11x ). (C2)

We thus see that terms proportional to u1x cancel in Eqs. (C1)
and (C2). Similar cancellation occurs in magnetoelastic cou-
pling between other sites, so the model we used in the main
text does not cause magnetostriction at the mean-field level.

However, if we consider magnetoelastic coupling aris-
ing from spin-orbit coupling, there can be magnetostriction.
Magnetoelastic coupling arising from spin-orbit coupling is
quadratic in magnetization and linear in strain tensor [51], and
as an example, we can write down the following term for the
magnetoelastic coupling between sites 1 and 2 in Fig. 1:

αs1xs1y(u2y − u1y). (C3)

Here, six = Si · x̂, siy = Si · ŷ, and x̂ and ŷ are unit vectors
along global x and y axis. From this, we can find the coupling
between the others by imposing triangular lattice symmetry.
Such a term will cause magnetostriction because terms linear
in uy are not canceled. This result is reasonable because the
magnetic order breaks the translation symmetry, and it should
be expected that the lattice will be able to see this through
spin-orbit coupling. For simplicity of the model, we will not
consider such terms.

APPENDIX D: PHONON CONVENTIONS

Let us first relate the phonon normalization given in the
main text with that given in Refs. [5,6]. There, the authors
define right eigenvectors |χR

k,σ 〉 and left eigenvectors |χL
k,σ 〉 of

Heff. Let us define ∣∣χR
k,σ

〉 = √
2|ωk,σ ||χk,σ 〉, (D1)

where |χk,σ 〉 is a right eigenvector [see Eq. (48)] satisfying
the normalization condition in Eq. (51). Then, it is easy to
check that ∣∣χL

k,σ

〉 = ρy

2ωk,σ

∣∣χR
k,σ

〉
(D2)

is a left eigenvector of Heff. Since we have normalized |χk,σ 〉
using ρy as in Eq. (51), we see that the right and left eigenvec-
tors we have defined satisfy the normalization condition given
in Refs. [5,6], 〈

χL
k,σ

∣∣χR
k,σ ′

〉 = δσ,σ ′ . (D3)

If we define

χR
σ (k) =

(
μR

σ (k)

εR
σ (k)

)
, (D4)

Eq. (D3) becomes

〈
χL

k,σ

∣∣χR
k,σ ′

〉 = εR†
j,σ εR

j,σ ′ + i

ωk,σ

εR†
j,σ AεR

j,σ ′ = δσ,σ ′ , (D5)

where we have used Eq. (50).
It is not difficult to show why this normalization is possible.

First, let us note that when there are no band degeneracies, left
and right eigenvectors are orthogonal, so that 〈χL

k,σ |χR
k,σ ′ 〉 ∝

δσ,σ ′ (we have not normalized the left and right eigenvectors

at this point). We then notice from Eq. (48) that(−ω2
k,σ − 2iωk,σ A + A2 + D

)
εR
σ (k) = 0. (D6)

Multiplying Eq. (D6) by εR†
j,σ to the left, we obtain

εR†
j,σ εR

j,σ ′ + i

ωk,σ

εR†
j,σ AεR

j,σ ′ = εR†
j,σ

(
1

2
+ A2 + D(k)

2ω2
k,σ

)
εR

j,σ ′ .

(D7)

Using Eq. (18), we see that the matrix enclosed in paren-
thesis on the right-hand side of the above equation is posi-
tive definite. Therefore 〈χL

k,σ |χR
k,σ ′ 〉 = 〈χL

k,σ |χR
k,σ 〉δσ,σ ′ where

〈χL
k,σ |χR

k,σ 〉 > 0. Redefining |χR
k,σ 〉 → 1√

〈χL
k,σ

|χR
k,σ

〉 |χ
R
k,σ 〉, we

obtain the normalization conditions in Eqs. (D5), (D3), and
(51).

Next, let us show that the Berry curvature that we have
defined is equivalent to that defined in Refs. [5,6]. The Berry
curvature B′

k,σ defined in Refs. [5,6] is given by

B′
k,σ ≡ ∇ × 〈

χL
k,σ

∣∣∇∣∣χR
k,σ

〉
= ∇ × Ak,σ + ∇ ×

[
2ωk,σ√
2|ωk,σ | (σz )σσ∇√

2ωk,σ

]

= Bk,σ , (D8)

where

Ak,σ = i(ρz )σσ 〈ξk,σ |ρz∇|ξk,σ 〉
= i(ρz )σσ 〈χk,σ |ρy∇|χk,σ 〉,

Bk,σ = ∇ × Ak,σ . (D9)

are the phonon Berry connection and Berry curvature we
have defined in the main text. As discussed in the main text,
the BdG nature of phonon implies that for the purpose of
calculating the thermal Hall conductivity, it is sufficient to
limit ourselves only to the sector for which n > 0.

Finally, let us note that the convention we use in the
main text is convenient for defining Berry curvature, but we
must be careful because the polarization vector for position,
which appears in magnon-phonon coupling Hamiltonian, is
unit dependent in our convention. Using Eq. (50), we have

χ†
k,σ

σyχk,σ = 2ωk,σ ε†
k,σ

εk,σ + 2iε†
k,σ

Aεk,σ . (D10)

Thus the unit of εk,σ is [s]1/2 and the unit of μ is [s]−1/2,
in contrast to conventional normalization of the polarization
vectors such as that adopted in Refs. [5,6] where εk,σ is

unitless and μ has unit of [s]−1/2. Since the unit of Kmp

√
h̄
M

is [J/s1/2], the unit of Kmp

√
h̄
M εk,σ is [J]. Now, if we put

h̄ = 1 and measure energy in units of meV, we obtain a
new unit of time s′. If we have a quantity whose unit is [s],

we have the rule 1[s] = f [s′]. Thus (Kmp

√
h̄
M

1
1meV )[s′]−1/2 =

(Kmp

√
f h̄
M

1
1meV )[s]−1/2, which is the origin of the factor f in

Sec. II C.

APPENDIX E: BERRY CURVATURE

In this section, we review how the Berry curvature can
be computed and explain why the Berry curvature computed
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FIG. 10. Discretized Brillouin zone. The flux of Berry curvature
modulo 2π through the shaded plaquette can be calculated from (E2).

from H̃me does not behave well numerically. Then, we discuss
the reality condition on magnon-polaron Berry curvature.

1. Computation of Berry curvature

In the usual system where the particle number is conserved,
the Berry curvature can be calculated by dividing the Brillouin
zone into plaquettes as shown in Fig. 10, and by calculating
the flux of the Berry curvature, which is given by [52]

Arg[〈nk|nk + δ1〉〈nk + δ1|nk + δ1 + δ2〉×
× 〈nk + δ1 + δ2|nk + δ2〉〈nk + δ2|nk〉]. (E1)

For BdG Hamiltonian, we need to make a slight modifica-
tion because the projection operator to a set of sub-bands
S is given by

∑
n∈S |nk〉(σz )nn〈nk|σz. For the purpose of

calculating Berry curvature of a single band, it suffices to
replace 〈nk|nk + δk〉 by 〈nk|σz|nk + δk〉 in Eq. (E1), which
gives Berry curvature that is equivalent to Eq. (88) in the
main text. Namely, the flux of Berry curvature through a
plaquette formed by k, k + δ1, k + δ1 + δ2, k + δ2 is given by
[4] (modulo 2π )

Arg[〈nk|σz|nk + δ1〉〈nk + δ1|σz|nk + δ1 + δ2〉
× 〈nk + δ1 + δ2|σz|nk + δ2〉〈nk + δ2|σz|nk〉]. (E2)

This is the method we have used to compute the Berry
curvature in the main text.

Another way to define a gauge invariant expression for the
Berry curvature is to write it in terms of the Hamiltonian. Let
us first note the identity:∑

m

σz|mk〉(σz )mm〈mk|σz = σz. (E3)

Thus the Berry curvature for n > 0 is

Bn(k) = i
∑
m �=n

(∇〈nk|)σz|mk〉 × (σz )mm〈mk|σz∇|nk〉. (E4)

Note that the term m = n does not contribute because of
the identity 〈mk|σz∇k|nk〉 = −(∇〈mk|)σz|nk〉, which follows
from taking the gradient of the both sides of 〈mk|σz|nk〉 =

(σz )mn. The energy eigenstates satisfy

Hk|nk〉 = En(k)σz|nk〉, (E5)

where En(k) takes both positive and negative values. Taking
the gradient on both sides and multiplying by 〈mk|, we obtain

〈mk|∇Hk|nk〉 = (En(k) − Em(k))〈mk|σz∇|nk〉
+ ∇En(k)(σz )mn. (E6)

Thus

Bn(k) =
∑
m �=n

i〈nk|∇Hk|mk〉(σz )mm × 〈mk|∇Hk|nk〉
(En(k) − Em(k))2 . (E7)

Let us note that in both of the methods, the Hamilto-
nian should be smooth. However, when we naively con-
struct the Hamiltonian numerically, H̃me is not smooth be-
cause the phase of the phonon polarization vector εσ (k)
is not smoothly determined. The problem this causes in
the second method is clear from Eq. (E7). To clarify what
goes wrong in the first method, let us reexamine the toy
model in the main text. Let us multiply the polariza-
tion vector by some phase factor ε′

σ=1,2(k) = e−iζσ (k)εσ (k).
For simplicity, let us assume that ζσ (k) = ζ δk,k0 − ζ δk,−k0 .
Then, the eigenvectors of the bosonic BdG Hamilto-
nian H̃me changes to |nk〉′ = eiζ (k)|nk〉 where e−iζ (k) =
diag(1, e−iζ1(k), e−iζ1(k), 1, eiζ1(−k), eiζ1(−k) ). Let us note that
only the wave functions at k0 and −k0 are multiplied by a ma-
trix that is not the identity. When we compute the flux of Berry
curvature through a plaquette containing k0, it is clear from
Eq. (E2) that the flux is not invariant under the transformation
|nk〉 → |nk〉′. Let us note that this transformation differs from
the usual U(1) transformation of the form |nk〉′′ = |nk〉eiζ̃ (k),
where eiζ̃ (k) an overall phase factor multiplying the wave
function. In this case, it is easily seen that Eq. (E2) is invariant
under the transformation |nk〉 → |nk〉′′.

2. Reality condition

Let us first mention that it does not immediately follow
that the Berry curvature vanishes from the condition that
the matrix Hme(k) is real. For this would imply that the
phonon Berry curvature is always be zero after we turn off
the magnon-phonon coupling. We will show below that when
h = 0 in phonon Hamiltonian, the reality of Hme(k) implies
zero Berry curvature. For notational simplicity, we will omit
the dependence on k in what follows.

When h = 0 and there is no magnon-phonon coupling
through the phonon momentum p, Hme takes the form

Hme =
⎛
⎝Hm 0 Hc

0 1
2 Isd 0

H†
c 0 1

2 D

⎞
⎠ (E8)

[cf. Eq. (69)]. Then,

Ṽ †HmeṼ =

⎛
⎜⎜⎝

τzHmτz
1√
2
τzHc − 1√

2
τzHc

1√
2
H†

c τz
1
4 (1 + D) 1

4 (1 − D)

− 1√
2
H†

c τz
1
4 (1 − D) 1

4 (1 + D)

⎞
⎟⎟⎠, (E9)

where we have defined Ṽ = [(iτz ) ⊕ ρ0]V , V was defined in
the main text and ρ0 is the identity matrix in the phonon sector.
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Here, let us note that τz is necessary to keep Hm in BdG form.
Then, H̃s = PṼ †HmeṼ P† is a bosonic BdG Hamiltonian with
real components, where the permutation matrix P was defined
in Eq. (72). This can be diagonalized with a real matrix
through Colpa’s method. Let |Tn〉 be the nth column vector
of the real matrix that diagonalizes H̃s (see Appendix B).

Then, the (abelian) Berry connection for n > 0 is

i〈Tn|σz∇|Tn〉 = i〈K̂Tn|σz∇K̂|Tn〉 = i[∇〈Tn|]σz|Tn〉
= −i〈Tn|∇σz|Tn〉 = 0, (E10)

where K̂ is the complex conjugation operator and we have
used ∇[〈Tn|σz|Tn〉] = 0. This concludes the proof.
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