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Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet
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The nontrivial magnon band topology and its consequent responses have been extensively studied in two-
dimensional magnetisms. However, the triangular lattice antiferromagnet (TLAF), the best-known frustrated
two-dimensional magnet, has received less attention than the closely related Kagome system, because of the
spin-chirality cancellation in the umbrella ground state of the undistorted TLAF. In this paper, we study the band
topology and the thermal Hall effect (THE) of the TLAF with (anti-)trimerization distortion under the external
perpendicular magnetic field using the linearized spin wave theory. We show that the spin-chirality cancellation
is removed in such case, giving rise to the nontrivial magnon band topology and the finite THE. Moreover,
the magnon bands exhibit band topology transitions tuned by the magnetic field. We demonstrate that such
transitions are accompanied by the logarithmic divergence of the first derivative of the thermal Hall conductivity.
Finally, we examine the above consequences by calculating the THE in the hexagonal manganite YMnO3, well
known to have antitrimerization.
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I. INTRODUCTION

The band topology has been extensively studied in the
last decade for various quasiparticle excitations [1–10], in-
cluding magnon, the elementary excitation of a magnetically
ordered system. As the magnetic ordering breaks the time-
reversal symmetry (TRS), it is natural to expect the magnon
band structures analogous to that of the Weyl semimetal and
the anomalous quantum Hall insulator [11–20]. In collinear
phases, many magnon models with topological band struc-
tures were proposed [21–26]; however, there are only a few
studies in noncollinear magnetic phases [15,18,27–29].

The band topology is closely related to transverse trans-
port, and the thermal Hall effect (THE) is the most distinctive
response expected from a TRS broken phase like magnetism.
But the TRS breaking is only a necessary condition for having
a finite THE, and whether a system shows a finite THE or not
is also determined by its crystal symmetry. For example, in
the collinear antiferromagnetic honeycomb lattice, while the
spin Nernst effect can be nonzero, the THE is forbidden by the
symmetry constraint that forces a zero Chern number [21–23].
More generally, a coplanar magnetic system without the spin-
orbit coupling (SOC) cannot host a finite THE due to the
effective TRS, which is the combination of the ordinary time-
reversal and the π spin rotation around the axis normal to the
spin plane [30]. Hence, in the absence of SOC, a noncoplanar
spin configuration is necessary for the finite THE.

The simplest and yet most studied two-dimensional
model hosting a noncoplanar phase is a triangular lattice
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antiferromagnet (TLAF) under a perpendicular external mag-
netic field. However, to our best knowledge, in spite of the
noncoplanar spin ordering, little is known of the magnon
band topology and transverse response of TLAF. This is
due to the chirality cancellation in an undistorted TLAF,
prohibiting a finite THE. This situation is very different from a
Kagome lattice, another archetypical frustrated lattice, which
has been widely studied in various contexts of band topology
[17–19,27,28].

In this paper, we study the magnon band topology and the
THE of the (anti)trimerized TLAF under the perpendicular
magnetic field using the linearized spin wave theory. We clar-
ify that the effective PT symmetry forces THE to vanish for
the undistorted TLAF even under the perpendicular magnetic
field. However, the (anti)trimerization distortion removes this
symmetry, allowing a finite THE. Our study shows how the
band topology of the TLAF depends on the distortion strength
and the magnetic field, with the gap closings at the band
topology transitions. Remarkably, these transitions are char-
acterized by a logarithmic divergence in the first derivative of
the thermal Hall conductivity. Such singularity behavior may
be experimentally observed at zero magnetic field, where we
found the strongest divergence due both to a quadratic band
crossing at � and multiple linear band crossings. Finally, as
a real experimental system, we estimate the size of magnon
THE in YMnO3, the material in which the antitrimerization is
already observed [31].

II. MODEL

In this paper, we study the following anisotropic spin
model on a triangular lattice with a magnetic field along the z
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FIG. 1. (a) The umbrella phase of TLAF. Red and blue equilat-
eral triangles have different Heisenberg exchange coupling constants
J1 and J2, respectively. (b) The magnon band structure of the J1 =
J2 = 1 case with h = 1 and Dz = 0.3 along M to M + a∗. Each band
is classified according to the eigenvalues λe−ik·t of {g|t}: λ = 1 (red),
e2π i/3 (green), and e−2π i/3 (blue). Numbers on the left and right are
λe−ik·t evaluated at the corresponding momentum. (c) The magnon
band structure in the whole momentum space. The lines on the E = 0
plane is the projection of nodal lines.

axis:

H = J1

∑
intra

Si · S j + J2

∑
inter

Si · S j + Dz
∑

i

(
Sz

i

)2

− h
∑

i

Sz
i , (1)

where J1 > 0, J2 > 0 and Dz > 0. Here J1 and J2 denote intra-
and intertrimer exchange constants as shown in Fig. 1(a), and
h = gμBB, where g ≈ 2 is the g-factor and μB is the Bohr
magneton.

First, we discuss the ground state of our model Eq. (1),
where we assume classical spins (S → ∞). The undistorted
triangular lattice (i.e., J1 = J2) has been studied extensively
[32–34]. In such a case, for Dz = 0, we have a three-sublattice
ground-state structure subject to the constraint SA + SB +
SC = M� = ẑh/3J , where A, B, and C are the indices of the
spins making a triangle as depicted in Fig. 1(a) and M� is the
sum of the spins. This constraint fixes only three out of six
free parameters (two for each spin sublattice) so the classical
ground state manifold is highly degenerate. Adding a two-
ion anisotropy in a XXZ model lifts this classical accidental
degeneracy, selecting an umbrella structure as the unique
ground state [33]. We instead introduced the single-ion easy-
plane anisotropy, which plays a similar role as the two-ion
anisotropy. As in the XXZ model, the single-ion easy-plane
anisotropy in Eq. (1) would select the umbrella configuration
which has the smallest z component of the spins among the
classical ground state manifold, which includes V, Y, and

umbrella phase [33]. A similar argument can be made for the
case J1 �= J2 by rearranging the Hamiltonian of Eq. (1) as

H = J1

∑
�∈�1

[
M� − ẑ

h

3Jeff

]2

+ J2

∑
�∈�2

[
M� − ẑ

h

3Jeff

]2

+ Dz
∑

i

(
Sz

i

)2 + (const), (2)

where 3Jeff = J1 + 2J2, and �1 and �2 are both the sets
of equilateral triangles but with different side lengths as in
Fig. 1(a). It can be also readily shown that in the absence of
an easy-plane anisotropy we have the same three-sublattice
structure subject to the constraint

SA + SB + SC = ẑ
h

3Jeff
. (3)

Now the easy-plane anisotropy selects the umbrella
ground state as in the J1 = J2 case. And by a suitable
parametrization of the spins in sublattices, i.e., Sα =
(sin θ cos φα, sin θ sin φα, cos θ ) with φα’s making 120◦
to each other, we find the tilting angle θ = cos−1(h/hc),
where hc = (9Jeff + 2Dz )S. Hence, our model Eq. (1) has
a simple ground-state phase diagram with the umbrella
structure below the saturation field hc and the fully polarized
phase above. We note that even though the quantum
fluctuation favors competing coplanar phases over the
umbrella phase, a sufficiently large easy-plane anisotropy
and/or an antiferromagnetic interlayer coupling stabilizes the
umbrella phase [35].

III. SPIN WAVE ANALYSIS

We perform the Holstein-Primakoff (HP) transformation
on Eq. (1) with the umbrella structure ground state: Sn =
S − a†a, S+ 
 √

2Sa and S− 
 √
2Sa†, where n is the local

magnetization direction,

H = 1

2

∑
αβk

ψ
†
αkHαβ (k)ψβk, (4)

where ψ
†
αk = [a†

α,k, aα,−k] and aα,k is the HP boson op-
erator of sublattice α = A, B, C, and momentum k.
The diagonalized form of the Hamiltonian is H = 1

2∑
η,k (Ekγ

†
ηkγηk + Eη,−kγη,−kγ

†
η,−k ), where

∑
η [γ †

η,k, γη,−k]

T †
ηαk = ψ

†
αk and Tk is the paraunitary matrix (i.e., T †

k σ3Tk =
Tkσ3T †

k = σ3) diagonalizing H (k) [36]. The Berry curvature
is then defined as z

n(k) = iεμνz[σ3∂kμ
T †

k σ3∂kν
Tk]nn. There are

three magnon bands from three sublattices with a gapless
linear Goldstone boson near � from the breaking of U(1)
spin-rotation symmetry around the z axis [37].

Now in the undistorted case (J1 = J2), a “nonsymmor-
phic” spin space group symmetry protects nodal lines and
triple degenerate points at K points [38,39] [Figs. 1(b)–1(c)].
To understand this, observe first that since the spin or-
derings of three sublattices in the umbrella state are re-
lated by the 120◦ spin rotation around the z axis, {g|t} =
{exp (2π iSz/3)|(2a + b)/3} is the symmetry of the system,
where a and b are the primitive lattice vectors [Fig. 1(a)].
Here g leaves k invariant, and thus we can choose the
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Bloch states to be eigenstates of {g|t}: {g|t}|uλ
k〉 = λe−ik·t|uλ

k〉,
where λ = 1, e±2π i/3 since {g|t}3|uλ

k〉 = {1̂|2a + b}|uλ
k〉 =

e−3ik·t|uλ
k〉. Now, for k → k + a∗ (k + b∗), where a∗ and b∗

are the reciprocal primitive vectors corresponding to a and b,
we have λ → λe2π i/3 (λe−2π i/3), alternating among the three
eigenstates [Fig. 1(b)]. Thus, in general the three magnon
branches meet an even number of times (at least twice) as they
cross BZ. In Fig. 1(b), we show the case for M → M + a∗
where there are four such crossings. This story holds for any
k → k + a∗, leading to the nodal line structures as shown
in Fig. 1(c). In addition, at two K points we have addi-
tional C3z symmetry, relating three eigenstates: {g|t}C3z|uλ

k〉 =
C3z{g|C−1

3z t}|uλ
k〉 = λe±2π i/3e−ik·tC3z|uλ

k〉. Therefore, {g|t} and
C3z protect the threefold degeneracy at two K points.

All the nodal lines and triple degenerate points are gapped
in the presence of the trimerization distortion in Eq. (1), as the
spin nonsymmorphic symmetry is no longer present, generat-
ing the Berry curvature z

n(k) near these gaps. Since the three
bands are now gapped, the Chern number for individual band
can be defined.

IV. BAND TOPOLOGY AND THERMAL HALL EFFECT

In Fig. 2, we show Chern numbers Cn = 1
2π

∫
BZ z

n(k)d2k
for each band with the band topology transition lines and
the intrinsic thermal Hall conductivity in the h − J2/J1 space
for several values of Dz. Here we used the parametrization

FIG. 2. (a)–(c) The band topology diagram for three different
values of single-ion easy-plane anisotropy, where three Chern num-
bers, from the top band to the bottom bands, are denoted in the
box. For (a) and (d), we assumed a small but finite easy-plane
anisotropy in order to stabilize the umbrella ground state. (d)–(f)
show the thermal Hall conductivity at T = Jeff/kB. In (d) we display
the expected trimerization magnitude J2/J1 ∼ 1.2 and J2/J1 ∼ 0.8
for YMnO3 and LuMnO3, respectively.

J1 = cos φ and J2 = sin φ. The thermal Hall conductivity
at temperature T = Jeff/kB is calculated using the following
formula [40,41]:

κxy = k2
BT

(2π )2h̄

∑
n

∫
BZ

c2(ρn,k )z
n(k)d2k, (5)

where z
n(k) is the Berry curvature of the nth band at mo-

mentum k. Here, the c2 function is given by c2(ρ) = (1 +
ρ)(log 1+ρ

ρ
)2 − (log ρ)2 − 2Li2(−ρ) with Li2(z) the polylog-

arithm function and ρn,k = 1/(exp (εn,k/kBT ) − 1), where
εn,k is the energy of the nth band at momentum k and ρ

is the Bose distribution function. T , εn(k) and thus κxy are
normalized in units of S

√
J2

1 + J2
2 .

Let us make a general remark on the condition for a finite
Chern number and THE in magnetic systems. First, note that
even though the TRS is broken, the magnetic systems with the
coplanar spin ordering possess effective TRS in the absence of
SOC, forbidding finite Hall responses [30]. More explicitly,
the time reversal followed by 180◦ spin rotation around the
axis normal to the plane, T̃ = exp(−iπSz )T , is the symmetry
of the system in such a case. This symmetry imposes a con-
straint on the Berry curvature, z

n(k) = −z
n(−k), enforcing

both the band Chern number and the thermal Hall conductivity
to be zero. However, if the system possesses a noncoplanar
spin configuration with nonzero chirality χ = SA · SB × SC,
then the effective TRS is broken and we can expect a finite
band Chern number and THE.

However, following the line (magenta) for an undistorted
triangular lattice (J1 = J2) in Fig. 2, THE is zero even when
a finite magnetic field is applied. It is because of the effective
PT symmetry Ĩ = exp(−iπSy)PT , where the inversion center
is at the middle of B and C in Fig. 1(a). In this case, we have
z

n(k) = −z
n(k) = 0, also forbidding a finite Chern number

and THE. This situation can also be understood heuristically
in terms of spin chirality χ : Because χ has the opposite sign
for the neighboring triangles, it cancels out and magnon feels
no gauge field. Note that the constraint from the effective PT
symmetry applies to the charge Hall effect in itinerant mag-
netic systems as well. In the presence of the (anti)trimerization
(J1 �= J2), the effective PT symmetry is absent. Now since
there is no symmetry to enforce the Berry curvature to vanish,
we expect a finite magnon THE.

We find that the magnon band structure exhibits a rich
band topology diagram in the h − J2/J1 space. Since the
three bands are separated from one another away from the
J1 = J2 lines (magenta) and below the saturation field (dashed
line) in the parameter space, the Chern numbers are well
defined for the top, middle, and bottom bands, as denoted in
Figs. 2(a)–2(c). On the red lines, there is an accidental gap
closing between the top and middle bands, while on the blue
lines, between the middle and bottom bands. We further find
that all the degeneracies occur either at K points or on the
�-M segment. Two accidental gap closings appear at the K
point as the two K points are related by MyT , where My is
the mirror operation about y = 0 plane, while three accidental
gap closings appear for the �-M case as three �-M lines are
related by C3z. Hence, the topological band transition with the
gap closings at K changes the Chern number by 2 and the one
with the gap closings at �-M changes it by 3.
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In Figs. 2(d)–2(f) we show the intrinsic contribution to the
magnon thermal Hall conductivity. It has intriguing behavior,
yet at first sight reveals no apparent relation to the band
topology diagram of Figs. 2(a)–2(c). Interestingly, there was
a numerical observation of the singular behavior of κxy at
the phonon band topology transition point [42]; however, the
appropriate explanation was not provided. Here, we found that
the band topology transition of a free bosonic system mani-
fests itself as the logarithmic divergence in the first derivative
of κxy at the transition point both for the linear and higher-
order band crossing. To see it clearly, let us assume without
loss of generality that the transition occurs at p = 0, where p
could be any parameter inducing a band topology transition
(e.g., external magnetic field) with gap closing between two
bands at k = 0 and E = E0, leading to a Weyl point in the
k̃ = (kx, ky, p) space. In the case of the isotropic single Weyl
point, i.e., H (k̃) = E0 − k̃ · σ , the singular contribution of
the THE is ̃

p
n,kc2(ρn,k ) = ± p

2(k2+p2 )3/2 c2[ρ(E0 ± ε
p
k )] for the

upper and lower bands, respectively, where ε
p
k =

√
k2 + p2.

Now, since c2[ρ(E0 + ε
p
k )] − c2(ρ(E0 − ε

p
k )) ∝ ε

p
k for small k

and p, one immediately notices the logarithmic divergence of
the first derivative of κ̃xy at the transition point p = 0:

∂

∂ p
κ̃ p

xy ∝ ∂

∂ p

∫
k<kc

d2kn,kε
p
k ∝ log |p| + · · · . (6)

FIG. 3. (a) Magnon band structure of YMnO3 with B = 5 T.
(b) Energy-resolved Chern number. (c) Integrated thermal Hall con-
ductivity κ int

xy (ε) as defined in the text at T = 40 K. The thermal
Hall conductivity is κxy = −1.53×10−3 W/Km. (d) Temperature and
magnetic-field dependence of calculated thermal Hall conductivity
of YMnO3. The inset is κxy and ∂Bκxy at 40 K, where the singu-
larities appear at the band topology transition points (dotted lines):
B = 0, 5.9, and 116.3 T. The band Chern numbers, from the top
to the bottom band, are [−2, −1, 3] (B < 0 T), [2, 1, −3] (0 T <

B < 5.9 T), [−1, 4, −3] (5.9 T < B < 116.3 T), and [−1, 2, −1]
(116.3 T < B < 363 T), respectively. At B = 0, κxy and the band
Chern numbers reverse their sign, because B < 0 and B > 0 sectors
are related by C2x .

This result can be easily generalized to include multi-
ple gap closings and the anisotropy. In the case of the
multi-Weyl point, H (k̃) = E0 − (kn cos(nφ), kn sin(nφ), p) ·
σ , where tan φ = ky/kx, we have ̃n,kε

p
k = pn2k2(n−1)

k2n+p2 , leading
to the same logarithmic singularity but with a higher-order
band crossing at the transition point. We note that our model
exhibits both accidental linear band crossings and essential
quadratic band crossings; the latter occurs at � when h = 0
due to the combination of C3 point symmetry group and
T̃ [37]. We corroborate the above results by the numerical
calculation of the THE for YMnO3 [the inset of Fig. 3(d)],
which we will discuss below in more detail.

V. THERMAL HALL EFFECT IN YMnO3

As a real experimental example, we consider YMnO3, in
which Mn3+ ions with S = 2 form a quasi-2D TLAF with
the interlayer distance of c/2 = 5.7 Å. The strong spin-lattice
coupling was previously reported in this multiferroic material,
where the antitrimerization distortion of the lattice occurs at
TN = 75 K [31]. The magnetic structure and the origin of
multiferroicity of the compound have long been the subject of
debate. In particular, the lattice distortion was at first thought
to lead to a large modulation in the exchange constant J
[43,44], but a more recent study shows a smaller (yet still
significant) effect with J2/J1 ∼ 1.2 [45,46]. Here, we assume
the realistic parameters for the magnetic Hamiltonian of
YMnO3 and calculate the THE: J1 = 2 meV, J2 = 2.4 meV,
and Dz = 0.3 meV.

First, we show the magnon band structure along with
energy-resolved Chern number Cn(ε) = 1

2π

∫
BZ δ(εn,k − ε)

z
n(k)d2k and the integrated thermal Hall conductivity

κ int
xy (ε) = k2

BT
(2π )2 h̄

∑
n

∫
εn,k<ε

c2(ρn,k )z
n(k)d2k for B =

h/gμB = 5 T and T = 40 K [Figs. 3(a)–3(c)]. Since
J2/J1 = 1.2, which is not very far away from nodal
semimetallike band structure (J1 = J2), we can see that band
gaps are quite small and the Berry curvature is concentrated
around these gaps. We next show the magnetic field and
temperature dependence of κxy, plotted up to the saturation
field Bc 
 363 T and T = 60 K < TN [Fig. 3(d)]. We observe
that the THE is still large (κxy ∼ −10−3 W/Km) even for
small magnetic fields (∼10 T) at temperatures as low as
30 K. We emphasize that since the longitudinal thermal
conductivity is measured to be κxx ∼ 10 W/Km [47], the
Hall angle κxy/κxx ∼ 10−4 of our result is in an observable
range of experiments [48]. Furthermore, the THE shows the
most profound signature of the singularity of κxy, as derived
in Eq. (6), at zero magnetic field, where both the linear
and quadratic crossings occur. Hence, we expect that the
consequence of the band topology transition can be measured
by a careful experiment in YMnO3.

Before concluding, we remark that because of the large
spin-lattice coupling in YMnO3 [45], the phonon contribu-
tion to κxy may not be negligible [49]. In fact, even in the
absence of trimerization, the effective PT symmetry, Ĩ =
exp(−iπSy)PT , is still broken in the material when we con-
sider nonmagnetic ions such as O2−, and so magnetoelastic
excitation may contribute appreciably to κxy. Therefore, the
inclusion of phonon may change our calculation of the thermal
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Hall conductivity, but the symmetry remains the same, so we
should still expect the finite thermal Hall effect. We leave a
detailed study on this issue as the focus of future study.

VI. CONCLUSION

In conclusion, we considered the trimerization distortion
and the magnetic field on TLAF, which give rise to the
nontrivial band topology and the finite THE. This leads to a
variety of topologically distinct band structures, in contrast
to a rather simple undistorted case [50,51]. As one crosses
the band topology transition boundary, the first derivative of
the thermal Hall conductivity shows a logarithmic divergence.

This establishes the clear relation between the bosonic band
topology and the THE. We finally propose the hexagonal
manganite family RMnO3 with the P63cm space group as the
candidate material to detect such effects.
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