
http://www.aimspress.com/journal/mine

Mathematics in Engineering, 1(3): 447–488.
DOI:10.3934/mine.2019.3.447
Received: 04 December 2018
Accepted: 27 April 2019
Published: 29 May 2019

Research article

Computational efficiency of numerical integration methods for the tangent
dynamics of many-body Hamiltonian systems in one and two spatial
dimensions†

Carlo Danieli1, Bertin Many Manda2, Thudiyangal Mithun1 and Charalampos Skokos2,3,∗

1 Center for Theoretical Physics of Complex Systems, Institute for Basic Sciences, Daejeon, Korea
2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701,

Cape Town, South Africa
3 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden,
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Abstract: We investigate the computational performance of various numerical methods for the
integration of the equations of motion and the variational equations for some typical classical many-body
models of condensed matter physics: the Fermi-Pasta-Ulam-Tsingou (FPUT) chain and the one- and two-
dimensional disordered, discrete nonlinear Schrödinger equations (DDNLS). In our analysis we consider
methods based on Taylor series expansion, Runge-Kutta discretization and symplectic transformations.
The latter have the ability to exactly preserve the symplectic structure of Hamiltonian systems, which
results in keeping bounded the error of the system’s computed total energy. We perform extensive
numerical simulations for several initial conditions of the studied models and compare the numerical
efficiency of the used integrators by testing their ability to accurately reproduce characteristics of the
systems’ dynamics and quantify their chaoticity through the computation of the maximum Lyapunov
exponent. We also report the expressions of the implemented symplectic schemes and provide the explicit
forms of the used differential operators. Among the tested numerical schemes the symplectic integrators
ABA864 and S RKNa

14 exhibit the best performance, respectively for moderate and high accuracy levels in
the case of the FPUT chain, while for the DDNLS models s9ABC6 and s11ABC6 (moderate accuracy),
along with s17ABC8 and s19ABC8 (high accuracy) proved to be the most efficient schemes.
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1. Introduction

A huge number of important problems in physics, astronomy, chemistry, etc. are modeled via sets of
ordinary differential equations (ODEs) governed by the Hamiltonian formalism. Due to non-integrability,
the investigation of the time evolution of these problems, and generally their properties, often rely solely
on numerical techniques. As modern research requires numerical simulations to be pushed to their very
limit (e.g., large integration times, macroscopic limits), a methodical assessment of the properties of
different numerical methods becomes a fundamental issue. Such studies allow to highlight the most
suitable scheme for both general purposes and specific tasks, according to criteria of stability, accuracy,
simplicity and efficiency.

The beginning of the era of computational physics is considered to be the computer experiment
performed in the 1950s by Fermi, Pasta, Ulam and Tsingou (FPUT) [1–3] to observe energy equipartition
due to weak-anharmonic coupling in a set of harmonic oscillators. Indeed, the breaking of integrability
in Hamiltonian systems is often performed with the introduction of nonlinear terms in the equations
of motion. These additional nonlinear terms describe new physical processes, and led to important
questions and significant advancements in condensed matter physics. For instance, the FPUT problem
has been used to answer questions related to ergodicity, dynamical thermalization and chaos occurrence
(see e.g., [4–6] and references therein) and led to the observation of solitons [7, 8], and progress in
Hamiltonian chaos [9]. The interested reader can find a concise review of numerical results concerning
the FPUT system in [10].

Another important example concerns disordered media. In 1958, Anderson [11] theoretically showed
the appearance of energy localization in one-dimensional lattices with uncorrelated disorder (a
phenomenon which is now referred to as Anderson localization). This phenomenon was later
investigated also for two-dimensional lattices [12]. An important question which has attracted wide
attention in theory, numerical simulations and experiments is what happens when nonlinearity (which
appears naturally in real world problems) is introduced in a disordered system [13–30].

Two basic Hamiltonian models are at the center of these investigations: the disordered Klein-Gordon
(DKG) chain and the disordered, discrete nonlinear Schrödinger equation (DDNLS). In Refs. [22–26,
28–34] it was shown that Anderson localization is destroyed by the presence of nonlinearity, resulting
to the subdiffusive spreading of energy due to deterministic chaos. Such results rely on the accurate,
long time integration of the systems’ equations of motion and variational equations. We note that
the variational equations are a set of ODEs describing the time evolution of small deviations from a
given trajectory, something which is needed for the computation of chaos indicators like the maximum
Lyapunov exponent (mLE) [35–37]. The numerical integration of these sets of ODEs can be performed
by any general purpose integrator. For example Runge-Kutta family schemes are still used [38, 39].
Another category of integrators is the so-called symplectic integrators (SIs), which were particularly
designed for Hamiltonian systems (see e.g., [40–44] and references therein). The main characteristic
of SIs is that they conserve the symplectic structure of Hamiltonian systems, so that the numerical
approximation they provide corresponds to the exact solution of a system which can be considered as
a perturbation of the original one. Consequently the error in the computed value of the Hamiltonian
function (usually refereed to as the system’s energy) is kept almost constant over long integration times.
This almost constant error can be used as an indicator of the accuracy of the used integration scheme.

SIs have been successfully implemented for the long time integration of multidimensional
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Hamiltonian systems like the α- and β-FPUT systems and FPUT-like models, the DKG, the DDNLS and
systems of coupled rotors (see e.g., [22–26, 28–30, 32, 33, 45–54]). In these studies SIs belonging to the
so-called SABA family [55] were mostly used, since the FPUT, the DKG and systems of coupled rotors
can be split into two integrable parts (the system’s kinetic and the potential energy), while in some more
recent studies [33, 56] the ABA864 [57] SI was implemented as it displayed an even better performance.
As the DDNLS model is not explicitly decomposed into two integrable parts, the implementation of
SABA schemes requires a special treatment involving the application of fast Fourier transforms which
are computationally time consuming [29]. In [49, 50] it was shown that for the DDNLS model, the split
of the Hamiltonian function into three integrable parts is possible, and this approach proved to be the
best choice for the model’s integration with respect to both speed and accuracy. It is worth noting here
that the numerical integration of the variational equations by SIs is done by the so-called Tangent Map
Method [58–60].

The intention of this work is to present several efficient (symplectic and non-symplectic) integration
techniques for the time evolution of both the equations of motion and the variational equations of
multidimensional Hamiltonian systems. In particular, in our study we use these techniques to investigate
the chaotic dynamics of the one-dimensional (1D) FPUT system, as well as one- and two-dimensional
(2D) DDNLS models. We carry out this task by considering particular initial conditions for both the
systems and for the deviation vectors, which we evolve in time requiring a predefined level of energy
accuracy. Then, we record the needed CPU time to perform these numerical simulations and highlight
those methods that ensure the smallest CPU times for obtaining accurate results. A similar analysis for
the 1D and 2D DKG systems was performed in [56].

The paper is organized as follows. In Section 2 we introduce the models considered in our study.
In Section 3 we introduce in detail the symplectic and non-symplectic schemes implemented in our
investigations. In Section 4 we present our numerical results and report on the efficiency of each
studied scheme. In Section 5 we review our findings and discuss the outcomes of our study. Finally, in
Appendix A we provide the explicit forms of the used tangent map operators. Moreover, we present
there the explicit expressions of the tangent map operators for some additional important many-body
systems, the so-called β-FPUT chain, the KG system and the classical XY model (a Josephson junction
chain-JJC) in order to facilitate the potential application of SIs for these systems from the interested
reader, although we do not present numerical results for these models.

2. Models and Hamiltonian functions

In this work we focus our analysis on the 1D FPUT system and the 1D and 2D DDNLS models. In
what follows we briefly present the Hamiltonian functions of these systems.

2.1. The α-Fermi-Pasta-Ulam-Tsingou model

The 1D FPUT model [1–3] was first introduced in 1955 to study the road toward equilibrium of a
chain of harmonic oscillators in the presence of weak anharmonic interactions. Since then, this system
has been widely used as a toy model for investigating energy equipartition and chaos in nonlinear lattices.
In the literature there exist two types of the FPUT model the so-called α- and β-FPUT systems. In our
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study we consider the α-FPUT model whose Hamiltonian function reads

H1F =

N∑
i=0

[
p2

i

2
+

1
2

(qi+1 − qi)2 +
α

3
(qi+1 − qi)3

]
. (2.1)

In Eq.(2.1), qi and pi are respectively the generalized coordinates and momenta of the i lattice site and α is
a real positive parameter. In our study we consider fixed boundary conditions q0 = p0 = pN+1 = qN+1 = 0.
We also note that this model conserves the value of the total energy H1F.

In contrast to the α-FPUT system, the β-FPUT model is characterized by a quartic nonlinear term
[see Eq. (A.26) in Appendix A.4]. The fact that the value of the Hamiltonian function of the β-FPUT
model is bounded from below leads to differences between the two models. For example, phenomena of
chopping time which occur in the α- model do not appear in the β-FPUT system [61]. Further discussion
of the differences between the α- and the β- models can be found in [62–64].

2.2. The 1D and 2D disordered discrete nonlinear Schrödinger equations

The DDNLS model describes anharmonic interactions between oscillators in disordered media and
has been used to study the propagation of light in optical media or Bose-Einstein condensates through the
famous Gross-Pitaevskii equation [52], as well as investigate, at a first approximation, several physical
processes (e.g., electron tight binding systems [39]). The Hamiltonian function of the 1D DDNLS model
reads

H1D =

N∑
i=1

[
εi

2
(q2

i + p2
i ) +

β

8
(q2

i + p2
i )2 − pi+1 pi − qi+1qi

]
, (2.2)

where qi and pi are respectively the generalized coordinates and momenta of the i lattice site and the
onsite energy terms εi are uncorrelated numbers uniformly distributed in the interval

[
−W

2 ,
W
2

]
. The

real, positive numbers W and β denote the disorder and the nonlinearity strength respectively. We also
consider here fixed boundary conditions i.e., q0 = p0 = pN+1 = qN+1 = 0.

The two-dimensional version of the DDNLS model was considered in [30, 65]. Its Hamiltonian
function is

H2D =

N∑
i=1

M∑
j=1

{εi, j

2

[
q2

i, j + p2
i, j

]
+
β

8

[
q2

i, j + p2
i, j

]2
−

[
qi, j+1qi, j + qi+1, jqi, j + pi, j+1 pi, j + pi+1, j pi, j

] }
, (2.3)

where qi, j and pi, j are respectively the generalized positions and momenta at site (i, j) and εi, j are
the disorder parameters uniformly chosen in the interval

[
−W

2 ,
W
2

]
. We again consider fixed boundary

conditions i.e., q0, j = p0, j = qN+1, j = pN+1, j = 0 for 1 ≤ j ≤ M and qi,0 = pi,0 = qi,M+1 = pi,M+1 = 0 for
1 ≤ i ≤ N.

Additionally to the energies H1D [Eq. (2.2)] and H2D [Eq. (2.3)] both systems conserve their respective
norms S 1D and S 2D:

S 1D =
1
2

N∑
i=1

(
q2

i + p2
i

)
; S 2D =

1
2

N∑
i=1

M∑
j=1

(
q2

i, j + p2
i, j

)
. (2.4)
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3. Numerical integration schemes

The Hamilton equations of motion

dq
dt

=
∂H
∂p

,
d p
dt

= −
∂H
∂q

, (3.1)

of the N degree of freedom (dof) Hamiltonian H = H(q, p), with q = (q1, q2, . . . , qN) and
p = (p1, p2, . . . , pN) being respectively the system’s generalized positions and momenta, can be
expressed in the general setting of first order ODEs as

dx
dt

= ẋ = J2N · DH(x(t)), (3.2)

where x = (q, p) = (x1, x2, . . . , xN , xN+1, . . . , x2N) = (q1, q2, . . . , qN , p1, p2, . . . , pN) is a vector
representing the position of the system in its phase space and (˙) denotes differentiation with respect to
time t. In Eq. (3.2)

J2N =

[
ON IN

−IN ON

]
, (3.3)

is the symplectic matrix with IN and ON being the N × N identity and the null matrices respectively, and

DH =

[
∂H
∂q1

, . . . ,
∂H
∂qN

,
∂H
∂p1

, . . . ,
∂H
∂pN

]T

, (3.4)

with (T ) denoting the transpose matrix.
The variational equations (see for example [37, 58]) govern the time evolution of a small perturbation

w(t) to the trajectory x(t) with
w(t) = (δq(t), δp(t)) = (δq1(t), δq2(t), . . . , δqN(t), δp1(t), δp2(t), . . . , δpN(t)) (which can also be written
as w(t) = δx(t) = (δx1(t), . . . , δxN(t), δxN+1(t), . . . , δx2N(t))) and have the following form

ẇ(t) =
[
J2N · D2

H(x(t))
]
· w(t), (3.5)

where [
D2

H(x(t))
]

i, j
=

∂2H
∂xi∂x j

∣∣∣∣∣
x(t)
, i, j = 1, 2, . . . ,N, (3.6)

are the 2N × 2N elements of the Hessian matrix D2
H(x(t)) of the Hamiltonian function H computed on

the phase space trajectory x(t). Eq. (3.5) is linear in w(t), with coefficients depending on the system’s
trajectory x(t). Therefore, one has to integrate the variational equations (3.5) along with the equations of
motion (3.2), which means to evolve in time the general vector X(t) = (x(t), δx(t)) by solving the system

Ẋ = (ẋ(t), δ̇x(t)) = f (X) =

[
J2N · DH(x(t))[

J2N · D2
H(x(t))

]
· δx(t)

]
. (3.7)

In what follows we will briefly describe several numerical schemes for integrating the set of equations
(3.7).

Mathematics in Engineering Volume 1, Issue 3, 447–488.



452

3.1. Non-symplectic integration schemes

Here we present the non-symplectic schemes we will use in this work: the Taylor series method and
the Runge-Kutta discretization scheme. These methods are referred to be non-symplectic because they
do not preserve the geometrical properties of Hamiltonian equations of motion (e.g., their symplectic
structure). The immediate consequence of that is that they do not conserve constants of motion (e.g., the
system’s energy).

3.1.1. Taylor series method - T IDES

The Taylor series method consists in expanding the solution X(t) at time t0 + τ in a Taylor series of
X(t) at t = t0

X(t0 + τ) = X(t0) +
τ1

1!
dX(t0)

dt
+
τ2

2!
d2X(t0)

dt2 + . . . +
τn

n!
dnX(t0)

dtn + O

(
τn+1

(n + 1)!
dn+1X(t0)

dtn+1

)
. (3.8)

Once the solution X at time t0 + τ is approximated, X(t0 + τ) is considered as the new initial condition
and the procedure is repeated to approximate X(t0 + 2τ) and so on so forth. Further information on this
integrator can be found in [66, Sec. I.8]. If we consider in Eq. (3.8) only the first n + 1 terms we then
account the resulting scheme to be of order n. In addition, in order to explicitly express this numerical
scheme, one has to perform n − 1 successive differentiations of the field vector f . This task becomes
very elaborate for complex structured vector fields. One can therefore rely on successive differentiation
to automate the whole process (see e.g., [67]). For the simulations reported in this paper we used the
software package called T IDES [67, 68] which is freely available [69]. We particularly focused on the
implementation of the T IDES package as it has been already used in studies of lattice dynamics [60].
The T IDES package comes as a Mathematica notebook in which the user provides the Hamiltonian
function, the potential energy or the set of ODEs themselves. It then produces FORTRAN (or C) codes
which can be compiled directly by any available compiler producing the appropriate executable programs.
In addition, the T IDES package allows us to choose both the integration time step τ and the desired
‘one-step’ precision of the integrator δ. In practice, the integration time step is accepted if the estimated
local truncation error is smaller than δ.

It is worth noting that there exists an equivalent numerical scheme to the Taylor series method,
derived from Lie series [70] (for more details see e.g., the appendix of [71]). Indeed, Eq. (3.7) can be
expressed as

dX
dt

= LHZ X, (3.9)

where LHZ is the Lie operator [72] defined as

LHZ =

2N∑
i=1

(
dxi

dt
∂

∂xi
+

dδxi

dt
∂

∂δxi

)
. (3.10)

The formal solution of Eq. (3.9) reads

X(t0 + τ) = eτLHZ X(t0), (3.11)

and can be expanded as

X(t0 + τ) = L0
HZ X(t0) +

τ1

1!
L1

HZ X(t0) +
τ2

2!
L2

HZ X(t0) + . . .+
τn

n!
Ln

HZ X(t0) +O

(
τn+1

(n + 1)!
Ln+1

HZ X(t0)
)
. (3.12)
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This corresponds to a Lie series integrator of order n. Similarly to the Taylor series method, one has
to find the analytical expression of the successive action of the operator LHZ onto the vector X(t0). For
further details concerning Lie series one can refer to [72, 73]. The equivalence between the Lie and
Taylor series approaches can be seen in the following way: for each element xi and δxi of the phase
space vector X we compute

L0
HZ xi = Id · xi = xi(t0), 1 ≤ i ≤ 2N,

L1
HZ xi =

2N∑
j=1

dx j

dt
∂xi

∂x j
=

dxi

dt
= fi, 1 ≤ i ≤ 2N,

L2
HZ xi =

2N∑
j=1

dx j

dt
∂ fi

∂x j
=

d fi

dt
=

d2xi

dt2 , 1 ≤ i ≤ 2N,

...

L0
HZδxi = Id · δxi = δxi(t0), 1 ≤ i ≤ 2N,

L1
HZδxi =

2N∑
j=1

dδx j

dt
∂δxi

∂δx j
=

dδxi

dt
= f2N+i, 1 ≤ i ≤ 2N,

L2
HZδxi =

2N∑
j=1

dx j

dt
∂ f2N+i

∂x j
+

dδx j

dt
∂ f2N+i

∂δx j
=

d f2N+i

dt
=

d2δxi

dt2 , 1 ≤ i ≤ 2N,

...

Therefore L0
HZ X = X, L1

HZ X = dX
dt , L2

HZ X = d2 X
dt2 etc.

3.1.2. A Runge-Kutta family scheme − DOP853

A huge hurdle concerning the applicability of the Taylor and Lie series methods can be the explicit
derivation of the differential operators (see [73] and references therein). Over the years other methods
have been developed in order to overcome such issues and to efficiently and accurately approximate
Eq. (3.8) up to a certain order in n. One way to perform this task was through the use of the well-known
‘Runge-Kutta family’ of algorithms (see e.g., [40, 73]) which nowadays is one of the most popular
general purpose schemes for numerical computations. This is a sufficient motivation for us to introduce
a s−stage Runge-Kutta method of the form

X(t0 + τ) = X(t0) + τ

s∑
i=1

bi ki, with ki = f

t0 + ciτ, X(t0) + τ

i−1∑
j=1

ai, j k j

 and ci =

i−1∑
j=1

ai, j, (3.13)

where the real coefficients ai, j, bi with i, j = 1, . . . , s are appropriately chosen in order to obtain the
desired accuracy (see e.g., [66, Sec. II.1]). Eq. (3.13) can be understood in the following way: in
order to propagate the phase space vector X from time t = t0 to t = t0 + τ, we compute s intermediate
values X1, X2, . . . , Xs and s intermediate derivatives k1, k2, . . . , ks, such that ki = f (Xi), at times
ti = t0 + τ

∑i−1
j=1 ai j. Then each Xi is found through a linear combination of the known ki values, which

are added to the initial condition X(t0).
In this work we use a 12-stage explicit Runge-Kutta algorithm of order 8, called DOP853 [66,

Sec. II.5]. This method is the most precise scheme among the Runge-Kutta algorithms presented in [66]
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(see Fig. 4.2 of [66]). A free access Fortran77 implementation of DOP853 is available in [74] (see
also the appendix of [66]). As in the case of the T IDES package, apart from the integration time
step τ, DOP853 also admits a ‘one-step’ precision δ based on embedded formulas of orders 5 and 3
(see [66, Sec. II.10], or [60] and references therein for more details).

3.2. Symplectic integration schemes

Hamiltonian systems are characterized by a symplectic structure (see e.g., [40, Chap. VI] and
references therein) and they may also possess integrals of motion, like for example the energy, the
angular momentum, etc. SIs are appropriate for the numerical integration of Hamiltonian systems as
they keep the computed energy (i.e., the value of the Hamiltonian) of the system almost constant over
the integration in time. Let us remark that, in general, SIs do not preserve any additional conserved
quantities of the system (for a specific exception see [75]). SIs have already been extensively used in
fields such as celestial mechanics [76], molecular dynamics [77], accelerator physics [43], condensed
matter physics [22, 29, 33], etc.

Several methods can be used to build SIs [40]. For instance, it has been proved that under certain
circumstances the Runge-Kutta algorithm can preserve the symplectic structure (see e.g., [78, 79]).
However, the most common way to construct SIs is through the split of the Hamiltonian function into
the sum of two or more integrable parts. For example, many Hamiltonian functions are expressed as the
sum of the kinetic and potential energy terms, with each one of them corresponding to an integrable
system (see Appendices A.1 and A.4). Let us remark that, in general, even if each component of the
total Hamiltonian is integrable the corresponding analytical solution might be unknown. Nevertheless,
we will not consider such cases in this work. In our study we also want to track the evolution of the
deviation vector w(t) by solving Eq. (3.7). Indeed this can be done by using SIs since upon splitting the
Hamiltonian into integrable parts we know analytically for each part the exact mapping x(t)→ x(t + τ),
along with the mapping δx(t)→ δx(t + τ).

Let us outline the whole process by considering a general autonomous Hamiltonian function H (q, p),
which can be written as sum of I integrable intermediate Hamiltonian functions Ai, i.e., H =

∑I
i=1 Ai. This

decomposition implies that the operator eτLAiZ in the formal solution in Eq. (3.11) of each intermediate
Hamiltonian function Ai is known. A symplectic integration scheme to integrate the Hamilton equations
of motion from t0 to t0 + τ consists in approximating the action of eτLHZ in Eq. (3.11) by a product of
the operators eγiτLAiZ for a set of properly chosen coefficients γi. In our analysis we will call as number
of steps of a particular SI the total number of successive application of each individual operator eτLAiZ .
Further details about this class of integrators can be found in [80–82] and references therein. In what
follows, we consider the most common cases where the Hamiltonian function can be split into two
(I = 2) or three (I = 3) integrable parts. Let us remark here that, in general, the split H =

∑I
i=1 Ai is not

necessarily unique (see Appendix A.1). Studying the efficiency and the stability of different SIs upon
different choices of splitting the Hamiltonian is an interesting topic by itself, which, nevertheless, is
beyond the scope of our work.

3.2.1. Two part split

Let us consider that the Hamiltonian H (q, p) can be separated into two integrable parts, namely
H = A(q, p) + B(q, p). Then we can approximate the action of the operator eτLHZ = eτ(LAZ+LBZ ) by the
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successive actions of products of the operators eτLAZ and eτLBZ [80–83]

eτLHZ =

p∏
j=1

ec jτLAZ ed jτLBZ + O
(
τn+1

)
, (3.14)

for appropriate choices of the real coefficients c j, d j with j = 1, . . . , p. Different choices of p and
coefficients c j, d j lead to schemes of different accuracy. In Eq. (3.14) the integer n is called the order of
a symplectic integrator.

The Hamiltonian function of the 1D α-FPUT system [Eq. (2.1)] can be split into two integrable parts
H1F = A (p) + B (q), with each part possessing N cyclic coordinates. The kinetic part

A (p) =

N∑
i=0

p2
i

2
, (3.15)

depends only on the generalized momenta, whilst the potential part

B (q) =

N∑
i=0

1
2

(qi+1 − qi)2 +
α

3
(qi+1 − qi)3, (3.16)

depends only on the generalized positions. This type of split is the most commonly used in the literature,
therefore a large number of SIs have been developed for such splits. Below we briefly review the SIs
used in our analysis, based mainly on results presented in [56].

Symplectic integrators of order two. These integrators constitute the most basic schemes we can
develop from Eq. (3.14)

LF: The simplest example of Eq. (3.14) is the so-called Störmer-Verlet or leap-frog scheme
(e.g., see [40, Sect. I.3.1] and [83]) having 3 individual steps

LF(τ) = ea1τLAZ eb1τLBZ ea1τLAZ , (3.17)

where a1 = 1
2 and b1 = 1.

S ABA2/S BAB2: We consider the S ABA2 and the S BAB2 SIs with 5 individual steps

S ABA2(τ) = ea1τLAZ eb1τLBZ ea2τLAZ eb1τLBZ ea1τLAZ , (3.18)

where a1 = 1
2 −

1
2
√

3
, a2 = 1

√
3

and b1 = 1
2 , and

S BAB2(τ) = eb1τLBZ ea1τLAZ eb2τLBZ ea1τLAZ eb1τLBZ , (3.19)

with a1 = 1
2 , b1 = 1

6 and b2 = 2
3 . These schemes were presented in [84], where they were named the (4,2)

methods, and also used in [55]. We note that the S ABA2 and S BAB2 SIs (as well as other two part split
SI schemes) have been introduced for Hamiltonian systems of the form H = A + εB, with ε being a small
parameter. Both the S ABA2 and S BAB2 integrators have only positive time steps and are characterized
by an accuracy of order O(τ4ε+ τ2ε2) [55]. Although these integrators are particularly efficient for small
perturbations (ε � 1), they have also shown a very good performance in cases of ε = 1 (see e.g., [24]).
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ABA82: In addition, we use in our analysis the SI

ABA82(τ) = ea1τLAZ eb1τLBZ ea2τLAZ eb2τLBZ ea3τLAZ eb2τLBZ ea2τLAZ eb1τLBZ ea1τLAZ , (3.20)

with 9 individual steps [84, 85], where the constants ai, bi with i = 1, 2, 3 can be found in Table 2 of [85].
We note that the ABA82 method is called S ABA4 in [55].

Symplectic integrators of order four. The order of symmetric SIs can be increased by using a
composition technique presented in [80]. According to that approach starting from a symmetric SI S 2n(τ)
of order 2n (n ≥ 1), we can construct a SI S 2n+2(τ) of order 2n + 2 as ∗

S 2n+2(τ) = S 2n((1 + d)τ) S 2n(−(1 + 2d)τ) S 2n((1 + d)τ), where d =
21/(2n+1) − 1
2 − 21/(2n+1) . (3.21)

FR4: Using the composition given in Eq. (3.21) for the LF SI of Eq. (3.17) we construct a SI which
we name FR4 [80, 87] having 7 individual steps

FR4(τ) = ea1τLAZ eb1τLBZ ea2τLAZ eb2τLBZ ea2τLAZ eb1τLBZ ea1τLAZ , (3.22)

with coefficients a1 = 1
2(2−21/3) , a2 = 1−21/3

2(2−21/3) , b1 = 1
2−21/3 and b2 = − 21/3

2−21/3 .

S ABA2Y4/S BAB2Y4: Applying the composition given in Eq. (3.21) to the S ABA2 [Eq. (3.18)]
and the S BAB2 [Eq. (3.19)] integrators we obtain the fourth order SIs S ABA2Y4 and S BAB2Y4 having
13 individual steps. In particular, we get

S ABA2Y4(τ) = ed1a1τLAZ ed1b1τLBZ ed1a2τLAZ ed1b1τLBZ ea0τLAZ ed0b1τLBZ ed0a2τLAZ ed0b1τLBZ

× ea0τLAZ ed1b1τLBZ ed1a2τLAZ ed1b1τLBZ ed1a1τLAZ , (3.23)

with coefficients d0 = − 21/3

2−21/3 , d1 = 1
2−21/3 , a1 = 1

2 −
1

2
√

3
, a2 = 1

√
3
, b1 = 1

2 , and a0 = d1a1 + d0a1, and

S BAB2Y4(τ) = ed1b1τLBZ ed1a1τLAZ ed1b2τLBZ ed1a1τLAZ eb0τLBZ ed0a1τLAZ ed0b2τLBZ ed0a1τLAZ

× eb0τLBZ ed1a1τLAZ ed1b2τLBZ ed1a1τLAZ ed1b1τLBZ , (3.24)

with coefficients d0 = − 21/3

2−21/3 , d1 = 1
2−21/3 , a1 = 1

2 , b1 = 1
6 , b2 = 2

3 and b0 = d1b1 + d0b1.

ABA82Y4: Using the composition given in Eq. (3.21) for the second order scheme ABA82 of
Eq. (3.20) we obtain an integrator with 25 individual steps having the form

ABA82Y4(τ) =ed1a1τLAZ ed1b1τLBZ ed1a2τLAZ ed1b2τLBZ ed1a3τLAZ ed1b2τLBZ ed1a2τLAZ ed1b1τLBZ ea0τLAZ

× ed0b1τLBZ ed0a2τLAZ ed0b2τLBZ ed0a3τLAZ ed0b2τLBZ ed0a2τLAZ ed0b1τLBZ ea0τLAZ

× ed1b1τLBZ ed1a2τLAZ ed1b2τLBZ ed1a3τLAZ ed1b2τLBZ ed1a2τLAZ ed1b1τLBZ ed1a1τLAZ , (3.25)

where d0 = − 21/3

2−21/3 , d1 = 1
2−21/3 , while ai, bi with i = 1, 2, 3 can be found in Table 2 of [85]. Here

a0 = d1a1 + d0a1.
∗We adopt the notation of Iserles and Quispel [86].
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S ABA2K/S BAB2K: As was explained in [55] the accuracy of the S ABAn (and the S BABn) class
of SIs can be improved by a corrector term K = {B, {B, A}}, defined by two successive applications of
Poisson brackets ({·, ·}), if K corresponds to a solvable Hamiltonian function. In that case, the second
order integration schemes can be improved by the addition of two extra operators with negative time
steps in the following way

S ABAnK(τ) ≡ e−
gτ2

2 LKZ S ABAn(τ)e−
gτ2

2 LKZ , (3.26)

with analogous result holding for the S BABn scheme. By following this approach for the S ABA2

and S BAB2 SIs [which are of the order O(τ4ε + τ4ε2)] we produce the fourth order SIs S ABA2K and
S BAB2K, with g = (2 −

√
3)/24 and g = 1/72 respectively. These new integration schemes are of the

order O(τ4ε + τ4ε2) [55].

ABA864/ABAH864: The fourth order SIs ABA864 and ABAH864 were proposed in [57, 85]. They
have respectively 15 and 17 individual steps and have the form

ABA864(τ) = ea1τLAZ eb1τLBZ ea2τLAZ eb2τLBZ ea3τLAZ eb3τLBZ ea4τLAZ eb4τLBZ ea4τLAZ eb3τLBZ

× ea3τLAZ eb2τLBZ ea2τLAZ eb1τLBZ ea1τLAZ , (3.27)

with coefficients ai, bi i = 1, 2, 3, 4 taken from Table 3 of [57], and

ABAH864(τ) = ea1τLAZ eb1τLBZ ea2τLAZ eb2τLBZ ea3τLAZ eb3τLBZ ea4τLAZ eb4τLBZ ea5τLAZ eb4τLBZ ea4τLAZ eb3τLBZ

× ea3τLAZ eb2τLBZ ea2τLAZ eb1τLBZ ea1τLAZ , (3.28)

with coefficients ai, bi, i = 1, 2, . . . , 5 found in Table 4 of [57]. We note that both schemes were designed
for near-integrable systems of the form H = A + εB, with ε being a small parameter, but the construction
of ABAH864 was based on the assumption that the integration of the B part cannot be done explicitly,
but can be approximated by the action of some second order SI, since B is expressed as the sum of two
explicitly integrable parts, i.e., B = B1 + B2. The ABA864 and ABAH864 SIs are of order four, but their
construction satisfy several other conditions at higher orders, improving in this way their performance.

Symplectic integrators of order six. Applying the composition technique of Eq. (3.21) to the fourth
order SIs FR4 [Eq. (3.22)], S ABA2Y4 [Eq. (3.23)], S BAB2Y4 [Eq. (3.24)], ABA82Y4 [Eq. (3.25)],
S ABA2K and ABA864 [Eq. (3.27)], we construct the sixth order SIs FR4Y6, S ABA2Y4Y6, S BAB2Y4Y6,
ABA82Y4Y6, S ABA2KY6 and ABA864Y6 with 19, 37, 37, 73, 19 and 43 individual steps.

In [80] a composition technique using fewer individual steps than the one obtained by the repeated
application of Eq. (3.21) to SIs of order two was proposed, having the form

S 6(τ) = S 2(w3τ)S 2(w2τ)S 2(w1τ)S 2(w0τ)S 2(w1τ)S 2(w2τ)S 2(w3τ), (3.29)

whose coefficients wi, i = 0, 1, 2, 3 are given in Table 1 in [80] for the case of the so-called ‘solution
A’ of that table. Here S 2 and S 6 respectively represent a second and a sixth order symmetric SI. Note
that Eq. (3.29) corresponds to the composition scheme s6odr6 of [88]. Applying the composition given
in Eq. (3.29) to the S ABA2 [Eq. (3.18)], the S BAB2 [Eq. (3.19)] and the ABA82 [Eq. (3.20)] SIs we

Mathematics in Engineering Volume 1, Issue 3, 447–488.



458

generate the order six schemes S ABA2Y6, S BAB2Y6 and ABA82Y6 having 29, 29 and 57 individual
steps respectively.

We also consider in our study the composition scheme s9odr6b of [88] which is based on 9 successive
applications of S 2

s9odr6b(τ) = S 2(δ1τ)S 2(δ2τ)S 2(δ3τ)S 2(δ4τ)S 2(δ5τ)S 2(δ4τ)S 2(δ3τ)S 2(δ2τ)S 2(δ1τ). (3.30)

The values of δi, i = 1, 2, . . . , 5 in Eq. (3.30) can be found in the Appendix of [88]. Furthermore, we
also implement the composition method

s11odr6(τ) = S 2(γ1τ)S 2(γ2τ)S 2(γ3τ)S 2(γ4τ)S 2(γ5τ)S 2(γ6τ)S 2(γ5τ)S 2(γ4τ)S 2(γ3τ)S 2(γ2τ)S 2(γ1τ)
(3.31)

of [89], which involves 11 applications of a second order SI S 2, whose coefficients γi, i = 1, 2, . . . , 6
are reported in Section 4.2 of [89]. Using the S ABA2 of Eq. (3.18) as S 2 in Eqs. (3.30) and (3.31), we
respectively build two SIs of order six, namely the s9S ABA26 and the s11S ABA26 SIs with 37 and 45
individual steps. In addition, using the ABA82 integrator of Eq. (3.20) as S 2 in Eqs. (3.30) and (3.31)
we construct two other order six SIs namely the s9ABA82 6 and s11ABA82 6 schemes with 73 and 89
individual steps respectively.

Runge-Kutta-Nyström methods: In addition, we consider in our analysis two SIs of order six,
belonging in the category of the so-called Runge-Kutta-Nyström (RKN) methods (see e.g., [40,44,71,90]
and references therein), which respectively have 21 and 29 individual steps

S RKNb
11(τ) = eb1τLBZ ea1τLAZ eb2τLBZ ea2τLAZ eb3τLBZ ea3τLAZ eb4τLBZ ea4τLAZ eb5τLBZ ea5τLAZ eb6τLBZ ea5τLBZ

× eb5τLAZ ea4τLBZ eb4τLAZ ea3τLBZ eb3τLAZ ea2τLAZ eb2τLAZ ea1τLAZ eb1τLAZ , (3.32)

and

S RKNa
14(τ) = ea1τLAZ eb1τLAZ ea2τLAZ eb2τLAZ × . . . × ea7τLAZ eb7τLAZ ea8τLAZ eb7τLAZ ea7τLAZ

× . . . × eb2τLAZ ea2τLAZ eb1τLAZ ea1τLAZ . (3.33)

The values of the coefficients appearing in Eqs. (3.32) and (3.33) can be found in Table 3 of [90]. This
class of integrators has, for example, been successfully implemented in a recent investigation of the
chaotic behavior of the DNA molecule [91].

Symplectic integrators of order eight. Following [80] we can construct an eighth order SI S 8, starting
from a second order one S 2, by using the composition

S 8(τ) = S 2(w7τ)S 2(w6τ)S 2(w5τ)S 2(w4τ)S 2(w3τ)S 2(w2τ)S 2(w1τ)S 2(w0τ)S 2(w1τ)S 2(w2τ)
× S 2(w3τ)S 4(w4τ)S 2(w5τ)S 2(w6τ)S 2(w7τ). (3.34)

In our study we consider two sets of coefficients wi, i = 1, . . . , 7, and in particular the ones corresponding
to the so-called ‘solution A’ and ‘solution D’ in Table 2 of [80]. Using in Eq. (3.34) the S ABA2

[Eq. (3.18)] SI as S 2 we construct the eighth order SIs S ABA2Y8 A (corresponding to ‘solution A’) and
S ABA2Y8 D (corresponding to ‘solution D’) with 61 individual steps each. In a similar way the use of
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ABA82 [Eq. (3.20)] in Eq. (3.34) generates the SIs ABA82Y8 A and ABA82Y8 D with 121 individual
steps each.

In addition, considering the composition scheme s15odr8 of [88], having 15 applications of S 2, we
construct the eighth order SI s15S ABA28 [s15ABA82 8] having 61 [121] individual steps when S ABA2

of Eq. (3.18) [ABA82 of Eq. (3.20)] is used in the place of S 2.
Furthermore, implementing the composition technique s19odr8 presented in [89], which uses 19

applications of a second order SI S 2, we construct the SI s19S ABA28 [s19ABA82 8] with 77 [153]
individual steps, when S ABA2 of Eq. (3.18) [ABA82 of Eq. (3.20)] is used in the place of S 2.

The SIs of this section will be implemented to numerically integrate the α-FPUT model [Eq. (2.1)]
since this Hamiltonian system can be split into two integrable parts A(p) and B(q). In Section A.1 of the
Appendix the explicit forms of the operators eτLAZ and eτLBZ are given, along with the operator eτLKZ of
the corrector term used by the S ABA2K and S BAB2K SIs. In addition, in Section A.4 of the Appendix
the explicit forms of the tangent map method operators of some commonly used lattice systems, whose
Hamiltonians can be split in two integrable parts, are also reported.

3.2.2. Three part split

Let us now consider the case of a Hamiltonian function H (q, p) which can be separated into three
integrable parts, namely H (q, p) = A (q, p) +B (q, p) +C (q, p). This for example could happen because
the Hamiltonian function may not be split into two integrable parts, or to simplify the solution of one
of the two components, A or B, of the two part split schemes discussed in Section 3.2.1. In such cases
we approximate the action of the operator eτLHZ of Eq. (3.11) by the successive application of operators
eτLAZ , eτLBZ and eτLCZ i.e.,

eτLHZ =

p∏
j=1

ec jτLAZ ed jτLBZ ee jτLCZ + O
(
τn+1

)
, (3.35)

for appropriate choices of the real coefficients c j, d j and e j with j = 1, . . . , p. As in Eq. (3.14), in
Eq. (3.35) the integer n is the order of a symplectic integrator.

As examples of Hamiltonians which can be split in three integrable parts we mention the Hamiltonian
function of a free rigid body [92] and the Hamiltonian functions of the 1D [Eq. (2.2)] and 2D [Eq. (2.3)]
DDNLS models we consider in this work. For example the 1D DDNLS Hamiltonian of Eq. (2.2) can be
split in the following three integrable Hamiltonians: a system of N independent oscillators

A1 =

N∑
i=1

εiJi +
β

2
J2

i , (3.36)

where Ji = (q2
i + p2

i )/2, i = 1, . . . ,N are N constants of motion, and the Hamiltonian functions of the q−
and p−hoppings

B1 = −

N∑
i=1

pi pi+1, and C1 = −

N∑
i=1

qiqi+1, (3.37)

with each one of them having N cyclic coordinates. The three part split of the 2D DDNLS of Eq. (2.3)
can be found in Section A.3 of the Appendix [Eq. (A.17)].

We note that a rather thorough survey on three part split SIs can be found in [49, 50]. We decided to
include in our study a smaller number of schemes than the one presented in these works, focusing on the
more efficient SIs. We briefly present these integrators below.
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Symplectic integrators of order two. We first present the basic three part split scheme obtained
by the application of the Störmer-Verlet/leap-frog method to three-part separable Hamiltonians. This
scheme has 5 individual steps and we call itABC2 [93]

ABC2(τ) = ea1τLAZ eb1τLBZ ec1τLCZ eb1τLBZ ea1τLAZ , (3.38)

where a1 = 1
2 , b1 = 1

2 and c1 = 1.

Symplectic integrators of order four. In order to built higher order three part split SIs we apply some
composition techniques on the basicABC2 SI of Eq. (3.38).

ABCY4: Using the composition given in Eq. (3.21) for n = 1, we construct

ABCY4(τ) = ABC2(d1τ)ABC2(d0τ)ABC2(d1τ), (3.39)

with d0 = −21/3

2−21/3 and d1 = 1
2−21/3 . This integrator has 13 individual steps, it has been explicitly introduced

in [93] and implemented in [50], where it was calledABC4
[Y].

ABCS 4: Implementing a composition scheme which was introduced in [81] and studied in [88]
(where it was named s5odr4) we obtain the SI

ABCS 4(τ) = ABC2(p2τ)ABC2(p2τ)ABC2((1 − 4p2)τ)ABC2(p2τ)ABC2(p2τ), (3.40)

where p2 = 1
4−41/3 and 1 − 4p2 = −41/3

4−41/3 , having 21 individual steps. This integrator was denoted as
ABC

4
[S ] in [50].

S S 864S : Using the ABAH864 integrator of Eq. (3.28) where B is considered to be the sum of
functions B1 and C1 of Eq. (3.37), i.e. B = B1 + C1, and its solution is approximated by the second order
S ABA2 SI of Eq. (3.18), we construct a SI with 49 steps, which we call S S 864S . This integrator has
been implemented for the integration of the equations of motion of the 1D DDNLS system [Eq. (2.2)]
in [49], where it was called S S 4

864.

Symplectic integrators of order six.

ABCY4Y6/ABCS 4Y6: Applying the composition technique of Eq. (3.21) to the fourth order SIs
ABCY4 [Eq. (3.39)] andABCS 4 [Eq. (3.40)], we respectively construct the schemesABCY4Y6 and
ABCS 4Y6 with 37 and 49 individual steps.

ABCY6 A: Using the composition given in Eq. (3.29) we build a sixth order SI with 29 individual
steps, considering the integratorABC2 in the place of S 2

ABCY6 A(τ) = ABC2(w3τ)ABC2(w2τ)ABC2(w1τ)ABC2(w0τ)ABC2(w1τ)ABC2(w2τ)ABC2(w3τ).
(3.41)

In particular, we consider in this construction the coefficients wi, i = 0, 1, 2, 3, corresponding to the
‘solution A’ of Table 1 in [80]. Note that this SI has already been implemented in [49, 50], where it was
denoted asABC6

[Y].
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s9ABC6: Implementing the composition given in Eq. (3.30), withABC2 in the place of S 2, we
get

s9ABC6(τ) = ABC2(δ1τ)ABC2(δ2τ)ABC2(δ1τ)ABC2(δ4τ)
×ABC2(δ5τ)ABC2(δ4τ)ABC2(δ3τ)ABC2(δ2τ)ABC2(δ1τ), (3.42)

which was referred to asABC6
[KL] in [49, 50].

s11ABC6: From the composition given in Eq. (3.31) we create the SI scheme

s11ABC6(τ) = ABC2(γ1τ)ABC2(γ2τ) × · · · × ABC2(γ5τ)ABC2(γ6τ)ABC2(γ5τ)
× · · · × ABC2(γ2τ)ABC2(γ1τ), (3.43)

which has 45 individual steps. This integrator was referred to asABC6
[S S ] in [49, 50].

Symplectic integrators of order eight.

ABCY8 A/ABCY8 D: Based on the composition given in Eq. (3.34) we construct the SI

ABCY8(τ) = ABC2(w7τ)ABC2(w6τ) × · · · × ABC2(w1τ)ABC2(w0τ)ABC2(w1τ)
× · · · × ABC2(w6τ)ABC2(w7τ), (3.44)

settingABC2 in the place of S 2. This SI has 61 individual steps. Considering the ‘solution A’ of Table
2 in [80] for the coefficients wi, 0 ≤ i ≤ 7, we obtain theABCY8 A SI, while the use of ‘solution D’ of
the same table leads to the construction of the SIABCY8 D.

s17ABC8: Consider the composition method s17odr8b of [88] we build the SI (referred to as
ABC

8
[KL] in [49, 50]) s17ABC8 having 69 individual steps

s17ABC8(τ) = ABC2(δ1τ)ABC2(δ2τ) × · · · × ABC2(δ8τ)ABC2(δ9τ)ABC2(δ8τ)
× · · · × ABC2(δ2τ)ABC2(δ1τ). (3.45)

s19ABC8: Finally, we also implement the composition s19odr8b reported in [89, Eq. (13)] and
construct the SI

s19ABC8(τ) = ABC2(γ1τ)ABC2(γ2τ) × · · · × ABC2(γ8τ)ABC2(γ9τ)ABC2(γ8τ)
× · · · × ABC2(γ2τ)ABC2(γ1τ), (3.46)

which has 72 individual steps. We note that this scheme corresponds to the SI ABC8
[S S ] considered

in [49, 50].
The explicit forms of the operators related to the three part split of the DDNLS Hamiltonians

[Eqs. (2.2) and (2.3)] are given in Sections. A.2 and A.3 of the Appendix.
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4. Numerical results

We test the efficiency of the integrators presented in Section 3 by using them to follow the dynamical
evolution of the α-FPUT model [Eq. (2.1)], the 1D DDNLS system [Eq. (2.2)] and the 2D DDNLS
Hamiltonian [Eq. (2.3)]. For each model, given an initial condition X(t0) = (x(t0), δx(t0)) we compute
the trajectory {x(tn)}n∈N with x(t) = (q1(t), q2(t), . . . , qN(t), p1(t), p2(t), . . . , pN(t)) and check the
integrators’ efficiency through their ability to correctly reproduce certain observables of the dynamics.
We also follow the evolution of a small initial perturbation to that trajectory
w(t0) = δx(t0) = (δq1(t0), δq2(t0), . . . , δqN(t0), δp1(t0), δp2(t0), . . . , δpN(t0)) and use it to compute the
time evolution of the finite time mLE [35–37]

X1(t) =
1
t

ln
[
‖w(t0 + τ)‖
‖w(t0)‖

]
, (4.1)

in order to characterize the regular or chaotic nature of the trajectory through the estimation of the most
commonly used chaos indicator, the mLE χ, which is defined as χ = limt→+∞ X1(t). In Eq. (4.1) ‖ · ‖ is
the usual Euclidian norm, while w(t0) and w(t0 + τ) are respectively the deviation vectors at t = t0 and
t0 + τ > t0. In the case of regular trajectories X1(t) tends to zero following the power law [37, 94]

X1(t) ∝ t−1, (4.2)

whilst it takes positive values for chaotic ones.

4.1. The α-Fermi-Pasta-Ulam-Tsingou model

We present here results on the computational efficiency of the symplectic and non-symplectic schemes
of Section 3 for the case of the α-FPUT chain [Eq. (2.1)]. As this system can be split into two integrable
parts we will use for its study the two part split SIs of Section 3.2.1. In our investigation we consider
a lattice of N = 210 sites with α = 0.25 and integrate up to the final time t f = 106 two sets of initial
conditions:

• Case IF: We excite all lattice sites by attributing to their position and momentum coordinates a
randomly chosen value from a uniform distribution in the interval [−1, 1]. These values are rescaled
to achieve a particular energy density, namely H1F/N = 0.1.
• Case IIF: Same as in case IF, but for H1F/N = 0.05.

We consider these two initial conditions in an attempt to investigate the potential dependence of the
performance of the tested integrators on initial conditions [73, Sec. 8.3]. Since we have chosen non-
localized initial conditions, we also use an initial normalized deviation vector w(t) whose components
are randomly selected from a uniform distribution in the interval [−1, 1].

To evaluate the performance of each integrator we investigate how accurately it follows the considered
trajectories by checking the numerical constancy of the energy integral of motion, i.e., the value of H1F

[Eq. (2.1)]. This is done by registering the time evolution of the relative energy error

Er(t) =

∣∣∣∣∣H1F(t) − H1F(0)
H1F(0)

∣∣∣∣∣ , (4.3)
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at each time step. In our analysis we consider two energy error thresholds Er ≈ 10−5 and Er ≈ 10−9.
The former, Er ≈ 10−5, is typically considered to be a good accuracy in many studies in the field of
lattice dynamics, like for example in investigations of the DKG and the DDNLS models, as well as in
systems of coupled rotors (see for example [24–26,28–30]). In some cases, e.g., for very small values of
conserved quantities, one may desire more accurate computations. Then Er ≈ 10−9 is a more appropriate
accuracy level. In addition, in order to check whether the variational equations are properly evolved, we
compute the finite time mLE X1(t) [Eq. (4.1)].

In Figure 1 we show the time evolution of the relative energy error Er(t) [panels (a) and (d)], the
finite time mLE X1(t) [panels (b) and (e)], and the required CPU time TC [panels (c) and (f)], for cases IF

and IIF respectively, when the following four integrators were used: the fourth order SI ABA864 (blue
curves), the sixth order SI S ABA2Y6 (red curves), the DOP853 scheme (green curves) and the T IDES
package (brown curves). These results are indicative of our analysis as in our study we considered in total
37 different integrators (see Tables 1 and 2). In Figure 1 the integration time steps τ of the SIs (reported
in Tables 1 and 2) were appropriately chosen in order to achieve Er ≈ 10−9, while for the DOP853
algorithm and the T IDES package Er(t) eventually grows in time as a power law [Figure 1(a),(d)].
Nevertheless, all schemes succeed in capturing correctly the chaotic nature of the dynamics as they do
not present any noticeable difference in the computation of the finite time mLE X1 in Figure 1(b),(e).
For both sets of initial conditions X1 eventually saturates to a constant positive value indicating that both
trajectories are chaotic. The CPU time TC needed for the integration of the equations of motion and
the variational equations are reported in Figure 1(c),(f). From these plots we see that the SIs need less
computational time to perform the simulations than the DOP853 and T IDES schemes.

In Table 1 (Table 2) we present information on the performance of all considered integration schemes
for the initial condition of case IF (case IIF). From the results of these tables we see that the performance
and ranking (according to TC) of the integrators do not practically depend on the considered initial
condition. It is worth noting that although the non-symplectic schemes manage to achieve better
accuracies than the symplectic ones, as their Er values are smaller [Figure 1(a),(d)], their implementation
is not recommended for the long time evolution of the Hamiltonian system, because they require more
CPU time and eventually their Er values will increase above the bounded Er values obtained by the
symplectic schemes.

From the results of Tables 1 and 2 we see that the best performing integrators are the fourth order SIs
ABA864 and ABAH864 for Er ≈ 10−5, and the sixth order SIs S RKNa

14 and S RKNb
11 for Er ≈ 10−9. We

note that the best SI for Er ≈ 10−5, the ABA864 scheme, shows a quite good behavior also for Er ≈ 10−9,
making this integrator a valuable numerical tool for dynamical studies of multidimensional Hamiltonian
systems. We remark that the eighth order SIs we implemented to achieve the moderate accuracy level
Er ≈ 10−5 exhibited an unstable behavior failing to keep their Er values bounded. A similar behavior was
also observed for the two RKN schemes S RKNa

14, S RKNb
11 when they were used to obtain Er ≈ 10−5.

Thus, the higher order SIs are best suited for more accurate computations. It is also worth mentioning
here that the ranking presented in Tables 1 and 2 is indicative of the performance of the various SIs in
the sense that small changes in the implementation (e.g., a change in the last digit of the used τ value)
of integrators with similar behaviors (i.e., similar TC values) could interchange their ranking positions
without any noticeable difference in the produced results.
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Figure 1. Results for the integration of the equations of motion and the variational equations
of the α-FPUT Hamiltonian [Eq. (2.1)] for cases (see text for details) IF [panels (a), (b) and (c)]
and IIF [panels (d), (e) and (f)] by the SIs ABA864 (blue curves) and S ABA2Y6 (red curves),
and the non-symplectic schemes DOP853 (green curves) and T IDES (brown curves): the
time evolution of, (a) and (d) the relative energy error Er(t) [Eq. (4.3)], (b) and (e) the finite
time mLE X1(t) [Eq. (4.1)], (c) and (f) the required CPU time TC. All curves in panels (b) and
(e), as well as the blue and red curves in panels (c) and (f) overlap.
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Table 1. Information on the performance of the numerical schemes used for the integration
of the equations of motion and the variational equations of the α-FPUT system [Eq. (2.1)]
up to the final time t f = 106 for case IF (see text for details). The order n and the number of
steps of each SI, along with the integration time step τ used to reach a relative energy error
Er ≈ 10−5 and Er ≈ 10−9, as well as the required CPU time TC in seconds are reported. δ is
the one-step precision of the non-symplectic schemes. Results are presented in increasing TC

values. See [95] for practical information on the simulations.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

ABA864 4 15 0.6 88 S RKNa
14 6 29 0.45 160

ABAH864 4 17 0.55 115 S RKNb
11 6 23 0.35 177

S ABA2Y6 6 29 0.575 167 s11S ABA26 6 45 0.3 536
ABA864Y6 6 43 0.625 202 s19S ABA28 8 77 0.45 594
s9S ABA26 6 37 0.575 205 s9ABA82 6 6 73 0.35 607
FR4 4 7 0.14 228 s15S ABA28 8 61 0.35 611
S BAB2Y6 6 29 0.5 233 S ABA2Y6 6 29 0.14 683
S ABA2K 4 9 0.3 234 ABA864 4 15 0.08 717
ABA82Y4 4 25 0.375 240 s19ABA82 8 8 153 0.65 773
s11S ABA26 6 45 0.65 247 s9S ABA26 6 37 0.16 779
S ABA2Y4 4 13 0.18 265 ABA864Y6 6 43 0.16 791
ABA82 2 5 0.125 278 s15ABA82 8 8 121 0.475 838
ABA82Y6 6 57 0.675 283 ABA82Y6 6 57 0.2 841
s15S ABA28 8 61 0.65 339 s11ABA82 6 6 89 0.275 941
S ABA2 2 5 0.07 347 S BAB2Y6 6 29 0.12 965
s19S ABA28 8 77 0.775 356 ABAH864 4 17 0.055 1013
S BAB2Y4 4 13 0.18 358 S ABA2Y8 D 8 61 0.175 1223
FR4Y6 6 19 0.21 366 ABA82Y8 D 8 121 0.25 1575
s9ABA82 6 6 73 0.575 369 S ABA2Y4Y6 6 37 0.07 1701
s11ABA82 6 6 89 0.675 382 FR4Y6 6 19 0.45 1787
S BAB2 2 5 0.07 387 ABA82Y4Y6 6 73 0.125 1932
S ABA2Y4Y6 6 37 0.3 394 ABA82Y4 4 25 0.0375 2156
ABA82Y4Y6 6 73 0.525 405 S BAB2Y4Y6 6 37 0.065 2239
S ABA2Y8 D 8 61 0.525 408 S ABA2K 4 9 0.03 2344
S BAB2K 4 9 0.2 416 S ABA2KY6 6 19 0.09 2465
s19ABA82 8 8 153 1.15 439 FR4 4 7 0.01 2597
S ABA2KY6 6 19 0.4 535 S ABA2Y4 4 13 0.018 2654
S BAB2Y4Y6 6 37 0.275 553 S BAB2Y4 4 13 0.018 3156
s15ABA82 8 8 121 0.775 618 S ABA2Y8 A 8 61 0.06 3570
ABA82Y8 D 8 121 0.6 656 S BAB2K 4 9 0.02 4167
S ABA2Y8 A 8 61 0.225 1090 ABA82Y8 A 8 121 0.07 5624
LF 2 3 0.018 1198 ABA82 2 5 0.00125 27796
ABA82Y8 A 8 121 0.225 1749 DOP853 8 δ = 10−16 0.05 31409

S ABA2 2 5 0.0007 34595
S BAB2 2 5 0.0007 39004
LF 2 3 0.0002 95096
T IDES - δ = 10−16 0.05 232785
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Table 2. Similar to Table 1 but for case IIF (see text for details) of the α-FPUT system of
Eq. (2.1). See [95] for practical information on the simulations

.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

ABA864 4 15 0.6 77 S RKNa
14 6 29 0.475 156

ABAH864 4 17 0.55 101 S RKNb
11 6 23 0.35 179

S ABA2Y6 6 29 0.575 183 s11S ABA26 6 45 0.3 480
ABA864Y6 6 43 0.625 195 s19S ABA28 8 77 0.45 596
s9S ABA26 6 37 0.575 214 s9ABA82 6 6 73 0.35 611
ABA82Y4 4 25 0.375 224 ABA864 4 15 0.08 613
s11S ABA26 6 45 0.65 227 s15S ABA28 8 61 0.35 618
FR4 4 7 0.14 231 S ABA2Y6 6 29 0.14 676
S ABA2K 4 9 0.3 241 s19ABA82 8 8 153 0.65 760
S BAB2Y6 6 29 0.5 255 ABA864Y6 6 43 0.16 811
S ABA2Y4 4 13 0.18 270 s15ABA82 8 8 121 0.475 828
ABA82 2 5 0.125 280 s9S ABA26 6 37 0.16 838
ABA82Y6 6 57 0.675 285 ABA82Y6 6 57 0.2 937
S BAB2Y4 4 13 0.18 316 S BAB2Y6 6 29 0.12 964
s15S ABA28 8 61 0.65 329 ABAH864 4 17 0.055 1023
s19S ABA28 8 77 0.775 336 s11ABA82 6 6 89 0.275 1062
FR4Y6 6 19 0.21 337 S ABA2Y8 D 8 61 0.175 1230
S BAB2K 4 9 0.2 366 FR4Y6 6 19 0.45 1577
s9ABA82 6 6 73 0.575 373 ABA82Y8 D 8 121 0.25 1613
S ABA2 2 5 0.07 392 ABA82Y4Y6 6 73 0.125 1702
S BAB2 2 5 0.07 393 ABA82Y4 4 25 0.0375 2113
ABA82Y4Y6 6 73 0.525 398 S ABA2Y4Y6 6 37 0.07 2159
S ABA2Y8 D 8 61 0.525 407 S BAB2Y4Y6 6 37 0.065 2310
s11ABA82 6 6 89 0.675 415 S ABA2KY6 6 19 0.09 2380
s19ABA82 8 8 153 1.15 431 FR4 4 7 0.01 2615
S ABA2Y4Y6 6 37 0.3 444 S ABA2K 4 9 0.03 2651
S BAB2Y4Y6 6 37 0.275 533 S ABA2Y4 4 13 0.018 3016
S ABA2KY6 6 19 0.4 540 S BAB2Y4 4 13 0.018 3585
s15ABA82 8 8 121 0.775 598 S ABA2Y8 A 8 61 0.06 3647
ABA82Y8 D 8 121 0.6 629 S BAB2K 4 9 0.02 3663
S ABA2Y8 A 8 61 0.225 952 ABA82Y8 A 8 121 0.07 5691
LF 2 3 0.018 1059 ABA82 2 5 0.00125 31576
ABA82Y8 A 8 121 0.225 1787 DOP853 8 δ = 10−16 0.05 31709

S ABA2 2 5 0.0007 39333
S BAB2 2 5 0.0007 45690
LF 2 3 0.0002 106653
T IDES - δ = 10−16 0.05 225565
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4.2. The 1D disordered discrete nonlinear Schrödinger equation system

We investigate the performance of various integrators of Section 3 for the 1D DDNLS system
[Eq. (2.2)] by considering a lattice of N = 210 sites and integrating two sets of initial conditions (for
the same reason we did that for the α-FPUT system) up to the final time t f = 106. We note that, as
was already mentioned in Section 3.2.2, this model can be split into three integrable parts, so we will
implement the SIs presented in that section. In particular, we consider the following two cases of initial
conditions:

• Case I1D: We initially excite 21 central sites by attributing to each one of them the same constant
norm s j = (q2

j + p2
j)/2 = 1, 1 ≤ i ≤ N, for W = 3.5 and β = 0.62. This choice sets the total norm

S 1D = 21. The random disorder parameters εi, 1 ≤ i ≤ N, are chosen so that the total energy is
H1D ≈ 0.0212.
• Case II1D: Similar set of initial conditions as in case I1D but for W = 3, β = 0.03. The random

disorder parameters εi, 1 ≤ i ≤ N, are chosen such that H1D ≈ 3.4444.

We note that cases I1D and II1D have been studied in [33] and respectively correspond to the so-called
‘strong chaos’ and ‘weak chaos’ dynamical regimes of this model. As initial normalized deviation vector
we use a vector having non-zero coordinates only at the central site of the lattice, while its remaining
elements are set to zero.

To evaluate the performance of each implemented integrator we check if the obtained trajectory
correctly captures the statistical behavior of the normalized norm density distribution ζ j = s j/S 1D,
1 ≤ j ≤ N, by computing the distribution’s second moment

m2 =

N∑
j=1

(
j − j

)2
ζ j, (4.4)

where j =
∑N

j=1 jζ j is the position of the center of the distribution [22, 24, 26, 29, 33, 49, 50]. We also
check how accurately the values of the system’s two conserved quantities, i.e., its total energy H1D

[Eq. (2.2)] and norm S 1D [Eq. (2.4)], are kept constant throughout the integration by evaluating the
relative energy error Er(t) [similarly to Eq. (4.3)] and the relative norm error

S r(t) =

∣∣∣∣∣S 1D(t) − S 1D(0)
S 1D(0)

∣∣∣∣∣ . (4.5)

In addition, we compute the finite time mLE X1(t) [Eq. (4.1)] in order to characterize the system’s
chaoticity and check the proper integration of the variational equations.

We consider several three part split SIs, which we divide into two groups: (i) those integrators with
order n ≤ 6, which we implement in order to achieve an accuracy of Er ≈ 10−5, and (ii) SIs of order eight
used for Er ≈ 10−9. In addition, the two best performing integrators of the first group are also included in
the second group. We do not use higher order SIs for obtaining the accuracy level of Er ≈ 10−5 because,
as was shown in [49] and also discussed in Section 4.1, usually this task requires large integration time
steps, which typically make the integrators unstable. Moreover, increasing the order n of SIs beyond
eight does not improve significantly the performance of the symplectic schemes for high precision
(Er ≈ 10−9) simulations [49]. Therefore we do not consider such integrators in our study.

In Figure 2 we show the time evolution of the relative energy error Er(t) [panel (a)], the relative norm
error S r(t) [panel (b)], the second moment m2(t) [panel (d)], as well as the norm density distribution ζ j
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at time t f ≈ 106 [panel (c)] for case I1D (we note that analogous results were also obtained for case II1D,
although we do not report them here). These results are obtained by the implementation of the the second
order SIABC2 (red curves), the fourth order SIABCY4 (blue curves), and the non-symplectic schemes
DOP853 (green curves) and T IDES (brown curves). The results of Figure 2 are indicative of the results
obtained by the integrators listed in Table 3. The integration time step τ of the SIs was selected so that
the relative energy error is kept at Er ≈ 10−5 [Figure 2(a)]. From the results of Figure 2(b) we see that
the SIs do not keep S r constant. Nevertheless, our results show that we lose no more than two orders
of precision (in the worst case of theABC2 scheme) during the whole integration. On the other hand,
both the relative energy [Er(t)] and norm [S r(t)] errors of the T IDES and DOP853 integrators increase
in time, with the T IDES scheme behaving better than the DOP853 one. Figure 2(c),(d) show that all
integrators correctly reproduce the dynamics of the system, as all of them practically produce the same
norm density distribution at t f = 106 [Figure 2(c)] and the same evolution of the m2(t) [Figure 2(d)]. We
note that m2 increases by following a power law m2 ∝ tα with α = 1/2, as was expected for the strong
chaos dynamical regime (see for example [33] and references therein).
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Figure 2. Results for the integration of case I1D (see text for details) of the 1D DDNLS model
[Eq. (2.2)] by the second order SI ABC2 for τ = 0.0002 (red curves), the fourth order SI
ABCY4 for τ = 0.0125 (blue curves) and the non-symplectic schemes DOP853 (green curves)
and T IDES (brown curves): time evolution of (a) the relative energy error Er(t), (b) the
relative norm error S r(t) and (d) the second moment m2(t). In (c) the norm density distribution
at time t f = 106 is shown. The dashed line in (d) guides the eye for slope 1/2.

In Figure 3 we show the evolution of the finite time mLE X1 [panels (a) and (c)] and the required
CPU time TC [panels (b) and (d)] for the integration of the Hamilton equations of motion and the
variational equations for cases I1D [panels (a) and (b)] and II1D [panels (c) and (d)] obtained by using the
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Table 3. Data similar to the ones presented in Tables 1 and 2 but for the performance of the
numerical schemes used for the integration of the equations of motion and the variational
equations of the 1D DDNLS model [Eq. (2.2)] up to the final time t f = 106 for case I1D (see
text for details). See [96] for practical information on the simulations.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

s11ABC6 6 45 0.115 3395 s19ABC8 8 77 0.09 7242
s9ABC6 6 37 0.095 3425 s17ABC8 8 69 0.08 7301
ABCY6 A 6 29 0.07 3720 s11ABC6 6 45 0.025 15692
S S 864S 4 17 0.05 6432 s9ABC6 6 37 0.02 16098
ABCY4 4 13 0.0125 10317 DOP853 8 δ = 10−16 0.05 18408
ABCS 4Y6 6 49 0.015 35417 ABCY8 D 8 61 0.002 258891
ABCY4Y6 6 37 0.008 40109 T IDES − δ = 10−16 0.05 419958
ABCS 4 4 21 0.00085 267911
ABC2 2 5 0.0002 320581

same integrators of Figure 2. Again the results obtained by these integrators are practically the same
for both sets of initial conditions, reproducing the tendency of the finite time mLE to asymptotically
decrease according to the power law X1(t) ∝ tαL with αL ≈ −0.3 (case I1D) and αL ≈ −0.25 (case II1D),
in accordance to the results of [32, 33].

We now check the efficiency of the used symplectic and non-symplectic methods by comparing the
CPU time TC they require to carry out the simulations. These results are reported in Table 3 for case I1D

and in Table 4 for case II1D. These tables show that the comparative performance of the integrators does
not depend on the chosen initial condition, as the ranking of the schemes is practically the same in both
tables. As in the case of the α-FPUT model, the DOP853 and T IDES integrators required, in general,
more CPU time than the SIs, although they produced more accurate results (smaller Er and S r values) at
least up to t f = 106, with T IDES being more precise. The integrators exhibiting the best performance
for Er ≈ 10−5 are the sixth order SIs s11ABC6 and s9ABC6, while for Er ≈ 10−9 we have the eighth
order SIs s19ABC8 and s17ABC8, with the s11ABC6 scheme performing quite well also in this case.

4.3. The 2D disordered discrete nonlinear Schrödinger equation system

We now investigate the performance of the integrators used in Section 4.2 for the computationally
much more difficult case of the 2D DDNLS lattice of Eq. (2.3), as its Hamiltonian function can also be
split into three integrable parts. In order to test the performance of the various schemes we consider a
lattice with N × M = 200 × 200 sites, resulting to a system of 4 × 40 000 = 160 000 ODEs (equations of
motion and variational equations). The numerical integration of this huge number of ODEs is a very
demanding computational task. For this reason we integrate this model only up to a final time t f = 105,
instead of the t f = 106 used for the α-FPUT and the 1D DDNLS systems. It is worth noting that due to
the computational difficulty of the problem very few numerical results for the 2D DDNLS system exist
in the literature (e.g., [39, 65]). We consider again two sets of initial conditions:

• Case I2D: We initially excite 7 × 7 central sites attributing to each one of them the same norm
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Figure 3. Results obtained by the integration of the variational equations of the 1D DDNLS
Hamiltonian [Eq. (2.2)] for the initial conditions described in cases (see text for details) I1D

[panels (a) and (b)] and II1D [panels (c) and (d)]: time evolution of, (a) and (c) the finite time
mLE X1(t) [Eq. (4.1)], and (b) and (d) the required CPU time TC in seconds. The dashed lines
in (a) and (c) guide the eye for slopes −0.3 and −0.25 respectively. The integrators and the
curve colors are the ones used in Figure 2.

Table 4. Similar to Table 3 but for case II1D (see text for details) of the 1D DDNLS model
[Eq. (2.2)]. See [96] for practical information on the simulations.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

s11ABC6 6 45 0.4 1132 s19ABC8 8 77 0.3 2184
s9ABC6 6 37 0.285 1147 s17ABC8 8 69 0.225 2632
ABCY6 A 6 29 0.2 1308 s11ABC6 6 45 0.1 4137
S S 864S 4 17 0.265 1365 s9ABC6 6 37 0.075 4462
ABCY4 4 13 0.055 2354 ABCY8 D 8 61 0.065 8528
ABCS 4Y6 6 49 0.105 4965 DOP853 8 δ = 10−16 0.05 14998
ABCY4Y6 6 37 0.04 8091 T IDES − δ = 10−16 0.05 420050
ABCS 4 4 21 0.02 9774
ABC2 2 5 0.0055 11700

si, j = (q2
i, j + p2

i, j)/2 = 1/6 so that the total norm is S 2D = 49/6, for W = 15 and β = 6. The disorder
parameters εi, j, 1 ≤ i ≤ N, 1 ≤ j ≤ M, are chosen so that the initial total energy is H2D ≈ 1.96.

Mathematics in Engineering Volume 1, Issue 3, 447–488.



471

Table 5. Similar to Table 3 but for case I2D of the 2D DDNLS model [Eq. (2.3)]. See [96]
practical information details on the simulations.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

s9ABC6 6 45 0.105 13914 s17ABC8 8 77 0.075 36528
s11ABC6 6 37 0.125 14000 s19ABC8 8 69 0.08 38270
ABCY6 A 6 29 0.08 15344 s9ABC6 6 45 0.0235 65287
ABCY4 4 13 0.025 23030 s11ABC6 6 37 0.0275 67314
S S 864S 4 17 0.085 23887 ABCY8 D 8 61 0.008 140506
ABCS 4Y6 6 49 0.03 77424 DOP853 8 δ = 10−16 0.05 218704
ABCY4Y6 6 37 0.0165 87902
ABCS 4 4 21 0.0065 132713
ABC2 2 5 0.005 157694

• Case II2D: We initially excite a single central site of the lattice with a total norm S 2D = 1,
i.e., ζ100,100 = 1, for W = 16, β = 1.25 and H2D = 0.625.

The initial normalized deviation vector considered in our simulations has random non-zero values only at
the 7 × 7 initially excited sites for case I2D, and only at site i = 100, j = 100 for case II2D. In both cases,
all others elements of the vectors are initially set to zero. Both considered cases belong to a Gibbsian
regime where the thermalization processes are well defined by Gibbs ensembles [52, 97]. Therefore,
we expect a subdiffusive spreading of the initial excitations to take place for both cases, although their
initial conditions are significantly different.

As was done in the case of the 1D DDNLS system (Section 4.2), in order to evaluate the performance
of the used integrators we follow the time evolution of the normalized norm density distribution
ζi, j = si, j/S 2D, 1 ≤ i ≤ N, 1 ≤ j ≤ M and compute the related second moment m2 and participation
number P

m2 =

N∑
i=1

M∑
j=1

∥∥∥(i, j)T − (i, j)T
∥∥∥2
ζi, j, P =

1∑N
i=1

∑M
j=1 ζ

2
i, j

, (4.6)

where (i, j)T =
∑

i, j(i, j)Tζi, j is the mean position of the norm density distribution. We also evaluate the
relative energy [Er(t)] and norm [S r(t)] errors and compute the finite time mLE X1(t).

In Figure 4 we present results obtained for case I2D by the four best performing SIs (see Table 5),
the s11ABC6 (red curves), s9ABC6 (blue curves), ABCY6 A (green curves) and ABCY4 (brown
curves) schemes, along with the DOP853 integrator (grey curves). The integration time steps τ of
the SIs were adjusted in order to obtain an accuracy of Er ≈ 10−5 [Figure 4(a)], while results for the
conservation of the second integral of motion, i.e., the system’s total norm, are shown in Figure 4(b). We
see that for all SIs the S r values increase slowly, remaining always below S r ≈ 10−4, which indicates
a good conservation of the system’s norm. As in the case of the 1D DDNLS system, the Er and S r

values obtained by the DOP853 integrator increase, although the choice of δ = 10−16 again ensures high
precision computations.
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Figure 4. Results for the integration of case I2D (see text for details) of the 2D DDNLS
Hamiltonian [Eq. (2.3)] by the fourth order SI ABCY4 for τ = 0.025, the sixth order SIs
s11ABC6 for τ = 0.125, s9ABC6 for τ = 0.105 and ABCY6 A for τ = 0.08, along with
the non-symplectic scheme DOP853 for τ = 0.05 [brown, red, blue, green and grey curves
respectively]. Time evolution of (a) Er(t), (b) S r(t), (e) m2(t), (f) P(t), (g) X1(t) and (f) TC(t).
In (c) and (d) we plot the norm density distributions along the lines i = 100 and j = 100
respectively, at time t f = 105. The dashed line in panels (e) and (f) guides the eye for slope
1/3, while in panel (g) denotes slope -1.
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The norm density distributions at the final integration time t f = 105 along the axis i = 100 [Figure 4(c)]
and j = 100 [Figure 4(d)] obtained by the various integrators practically overlap indicating the ability
of all numerical schemes to correctly capture the system’s dynamics, as well as the fact that the initial
excitations expand along all directions of the 2D lattice. From Figure 4(e) [Figure 4(f)] we see that
m2(t) [P(t)] is increasing according to the power law m2 = t1/3 [P = t1/3] as expected from the analysis
presented in [30], indicating that the 2D lattice is being thermalized. The results of Figure 4(e),(f)
provide additional numerical evidences that all numerical methods reproduce correctly the dynamics.
This is also seen by the similar behavior of the finite time mLE curves in Figure 4(g). From the results
of this figure we see that X1 exhibits a tendency to decrease following a completely different decay
from the X1 ∝ t−1 power law observed for regular motion. This behavior was also observed for the
2D DKG model [56], as well as for the 1D DKG and DDNLS systems in [32, 33] where a power law
X1(t) ∝ tαL with αL ≈ −0.25 and αL ≈ −0.3 for, respectively, the weak and strong chaos dynamical
regimes was established. Further investigations of the behavior of the finite mLE in 2D disordered
systems are required in order to determine a potentially global behavior of X1, since here and in [56] only
some isolated cases were discussed. Such studies will require the statistical analysis of results obtained
for many different disorder realizations, parameter sets and initial conditions. Thus, the utilization of
efficient and accurate numerical integrators, like the ones presented in this study, will be of utmost
importance for the realization of this goal.

From Tables 5 and 6, where the CPU times TC required by the tested integrators are reported, we see
that, as in the case of the 1D DDNLS model, the SIs s11ABC6 and s9ABC6 have the best performance
for Er ≈ 10−5 and the SIs s19ABC8 and s17ABC8 for Er ≈ 10−9.

Table 6. Similar to Table 3 but for case II2D of the 2D DDNLS model [Eq. (2.3)]. See [96] for
practical information on the simulations.

Er ≈ 10−5 Er ≈ 10−9

Integrator n Steps τ TC Integrator n Steps τ TC

s11ABC6 6 45 0.1515 11443 s19ABC8 8 77 0.135 20952
s9ABC6 6 37 0.11 13408 s17ABC8 8 69 0.0875 28966
ABCY6 A 6 29 0.0775 14607 s11ABC6 6 45 0.0335 50301
S S 864S 4 17 0.0915 15564 s9ABC6 6 37 0.024 58187
ABCY4 4 13 0.0215 25898 ABCY8 D 8 61 0.009 150045
ABCS 4Y6 6 49 0.035 64423 DOP853 8 δ = 10−16 0.05 166145
ABCY4Y6 6 37 0.01375 102580
ABCS 4 4 21 0.005 185615
ABC2 2 5 0.00155 198534

5. Conclusions

In this work we carried out a methodical and detailed analysis of the performance of several symplectic
and non-symplectic integrators, which were used to integrate the equations of motion and the variational
equations of some important many-body classical Hamiltonian systems in one and two spatial dimensions:
the α-FPUT chain, as well as the 1D and 2D DDNLS models. In the case of the α-FPUT system we used

Mathematics in Engineering Volume 1, Issue 3, 447–488.



474

two part split SIs, while for the integration of the DDNLS models we implemented several three part
split SIs. In order to evaluate the efficiency of all these integrators we evolved in time different sets of
initial conditions and evaluated quantities related to (a) the dynamical evolution of the studied systems
(e.g., the second moment of norm density distributions for the DDNLS models), (b) the quantification of
the systems’ chaotic behavior (i.e., the finite time mLE), and (c) the accurate computation of the systems’
integrals of motion (relative energy and norm errors), along with the CPU times needed to perform the
simulations.

For the α-FPUT system several two part split SIs showed very good performances, among which
we mention the ABA864 and ABAH864 SIs of order four to be the best schemes for moderate energy
accuracies (Er ≈ 10−5), while the S RKNa

14 and S RKNb
11 SIs of order six were the best integration

schemes for higher accuracies (Er ≈ 10−9). In particular, the ABA864 scheme appears to be an efficient,
general choice as it showed a quite good behavior also for Er ≈ 10−9. Concerning the 1D and the 2D
DDNLS models our simulations showed that the SIs s9ABC6 and s11ABC6 (order six), along with the
SIs s17ABC8 and s19ABC8 (order eight) are the best integrators for moderate (Er ≈ 10−5) and high
(Er ≈ 10−9) accuracy levels respectively.

The DOP853 and T IDES non-symplectic integrators required, in general, much longer CPU times
to carry out the simulations, although they produced more accurate results (i.e., smaller Er and S r values)
than the symplectic schemes. Apart from the drawback of the high CPU times, the fact that Er (and S r)
values exhibit a constant increase in time signifies that such schemes should not be preferred over SIs
when very long time simulations are needed.

It is worth noting that two part split SIs of order six and higher often do now not produce reliable
results for relative low energy accuracies like Er ≈ 10−5 for the α-FPUT system (similar behaviors were
reported in [56] for the DKG model). This happens because the required integration time step τ needed
to keep the relative energy error at Er ≈ 10−5 is typically large, resulting to an unstable behavior of the
integrator i.e., the produced Er values do not remain bounded. Thus, SIs of order n ≥ 6 are more suitable
for calculations that require higher accuracies (e.g., Er ≈ 10−9 or lower).

We note that we presented here a detailed comparison of the performance of several two and three part
split SIs for the integration of the variational equations through the tangent map method and consequently
for the computation of a chaos indicator (the mLE), generalizing, and completing in some sense, some
sporadic previous investigation of the subject [56, 58–60], which were only focused on two part split SIs.

We hope that the clear description of the construction of several two and three part split SIs in
Section 3, along with the explicit presentation in the Appendix of the related differential operators for
many commonly used classical, many-body Hamiltonians will be useful to researchers working on
lattice dynamics. The numerical techniques presented here can be used for the computation of several
chaos indicators, apart from the mLE (e.g., the SALI and the GALI methods [98]) and for the dynamical
study of various lattice models, like for example of arrays of Josephson junctions in regimes of weak
non-integrability [53], granular chains [99] and DNA models [91], to name a few.
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Appendix

A. Explicit forms of tangent map method operators

We present here the exact expressions of the operators needed by the various SIs we implemented in
our study to simultaneously solve the Hamilton equations of motion and the variational equations, or in
order words to solve the system of Eq. (3.7)

Ẋ = (ẋ(t), δ̇x(t)) = f (X) =

[
J2N · DH(x(t))[

J2N · D2
H(x(t))

]
· δx(t)

]
. (A.1)

A.1. The α-Fermi-Pasta-Ulam-Tsingou model

The Hamiltonian of the α-FPUT chain [Eq. (2.1)] can be split into two integrable parts as

A (p) =

N∑
i=0

p2
i

2
, B (q) =

N∑
i=0

1
2

(qi+1 − qi)2 +
α

3
(qi+1 − qi)3. (A.2)

As we have already stated, the split into two integrable parts is not necessarily unique. In this particular
case another possible choice of integrable splits for the α-FPUT chain is to group together the quadratic
terms of the Hamiltonian [i.e., A(p,q) =

∑N
i=0

p2
i

2 + 1
2(qi+1 − qi)2] and keep separately the nonlinear

terms [i.e., B(q) =
∑N

i=0
α
3 (qi+1 − qi)3]. The set of equations of motion and variational equations for the

Hamiltonian function A (p) is

dX
dt

= LAZ X :


q̇i = pi

ṗi = 0
δ̇qi = δpi

δ̇pi = 0

, for 1 ≤ i ≤ N, (A.3)

and the corresponding operator eτLAZ , which propagates the values of qi, pi, δqi and δpi for τ time units
in the future, obtaining q′i , p′i , δq

′
i and δp′i , takes the form

eτLAZ :


q′i = qi + τpi

p′i = pi

δq′i = δqi + τδpi

δp′i = δpi

, for 1 ≤ i ≤ N. (A.4)

In a similar way for the B (q) Hamiltonian of Eq. (A.2) we get

dX
dt

= LBZ X :


q̇i = 0
ṗi = (qi+1 + qi−1 − 2qi) + α

[
(qi+1 − qi)2 − (qi − qi−1)2]

δ̇qi = 0
δ̇pi = [2α(qi−1 − qi+1) − 2]δqi + [1 + 2α(qi+1 − qi)]δqi+1 + [1 + 2α(qi − qi−1)]δqi−1

,

(A.5)
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and

eτLBZ :


q′i = qi

p′i = pi + τ
{
(qi+1 + qi−1 − 2qi) + α

[
(qi+1 − qi)2 − (qi − qi−1)2]}

δq′i = δqi

δp′i = δpi + τ
{
[2α(qi−1 − qi+1) − 2]δqi + [1 + 2α(qi+1 − qi)]δqi+1 + [1 + 2α(qi − qi−1)]δqi−1

} .
(A.6)

According to Eq. (3.26) the accuracy of the S ABAn and S BABn integrators can be improved by using
a corrector Hamiltonian K [55]. In the case of a separable Hamiltonian H(q, p) = A(p) + B(q) with
A (p) =

∑N
i=1 p2

i /2, the corrector K becomes

K(q) = {B{B, A}} =

N∑
i=1

(
∂B
∂qi

)2

. (A.7)

For the α-FPUT chain, the corrector Hamiltonian K is

K(q) =

N∑
i=1

[(
2qi − qi+1 − qi−1

)(
1 + α(qi+1 − qi−1)

)]2
. (A.8)

As the equations of motion and variational equations associated to the corrector Hamiltonian K are
cumbersome, we report here only the form of the operator eτLKZ

eτLKZ :



q′i = qi

p′i = pi + 2τ
{
2
(
qi+1 + qi−1 − 2qi

)[
1 + α

(
qi+1 − qi−1

)]2

−
(
qi+2 + qi − 2qi+1

)[
1 + α

(
qi+2 − qi

)][
1 − 2α

(
qi − qi+1

)]
−
(
qi−2 + qi − 2qi−1

)[
1 + α

(
qi − qi−2

)][
1 − 2α

(
qi−1 − qi

)]}
δq′i = δqi

δp′i = δpi + τ
{
γiδqi + γi+1δqi+1 + γi+2δqi+2 + γi−1δqi−1 + γi−2δqi−2

}
, (A.9)

where

γi = −2
{
4
[
1 + α

(
qi+1 − qi−1

)]2

+
[
1 + α

(
qi+2 − qi

)][
1 − 2α

(
qi − qi+1

)]
+

[
1 + α

(
qi − qi−2

)][
1 − 2α

(
qi−1 − qi

)]
+ α

(
2qi+1 − qi+2 − qi

)[
3 − 4αqi + 2αqi+1 + 2αqi+2

]
− α

(
2qi−1 − qi−2 − qi

)[
3 + 4αqi − 2αqi−1 − 2αqi−2

]}
γi+1 = 4

{[
1 + α

(
qi+1 − qi−1

)][
1 − α

(
4qi − 3qi+1 − qi−1

)]
+

[
1 + α

(
qi+2 − qi

)][
1 + α

(
4qi+1 − 3qi − qi+2

)]}
γi−1 = 4

{[
1 + α

(
qi+1 − qi−1

)][
1 + α

(
4qi − 3qi−1 − qi+1

)]
+

[
1 + α

(
qi − qi−2

)][
1 − α

(
4qi−1 − 3qi − qi−2

)]}
γi+2 = 2

[
1 − 2α

(
qi − qi+1

)][
2α

(
qi+1 − qi+2

)
− 1

]
γi−2 = 2

[
1 − 2α

(
qi−1 − qi

)][
2α

(
qi−2 − qi−1

)
− 1

]

. (A.10)
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We did not specify the range of index i in Eqs. (A.5), (A.6) and (A.9) intentionally, because it depends
on the type of the used boundary conditions. In particular, the expression of Eqs. (A.5), (A.6) and (A.9)
are accurate for the case of periodic boundary conditions, i.e., q0 = qN , p0 = pN , δq0 = δqN , δp0 = δpN ,
qN+1 = q1, pN+1 = p1, δqN+1 = δq1, δpN+1 = δp1. In the case of fixed boundary conditions we considered
in our numerical simulations, some adjustments have to be done for the i = 1 and i = N equations, like
the ones presented in the Appendix of [56] where the operators for the 1D and 2D DKG models were
reported (with the exception of the corrector term).

For completeness sake in Section A.4 we provide the explicit expression of the eτLBZ and eτLKZ

operators for some commonly used Hamiltonians, which can be split into two integrable parts, one of
which is the usual kinetic energy A (p) =

∑N
i=1 p2

i /2.

A.2. The 1D disordered discrete nonlinear Schrödinger equation

Here we focus on the 1D DDNLS system, whose Hamiltonian [Eq. (2.2)] can be split into three
integrable parts as

A1 =

N∑
i=1

εi

2
(q2

i + p2
i ) +

β

8
(q2

i + p2
i )2, B1 = −

N∑
i=1

pi+1 pi , C1 = −

N∑
i=1

qi+1qi. (A.11)

The set of equations of motion and variational equations associated with the Hamiltonian functionA1 is

dX
dt

= LA1Z X :


q̇i = piθi

ṗi = −qiθi,

δ̇qi =
[
θi + βp2

i

]
δpi + βqi piδqi

δ̇pi = −
[
θi + βq2

i

]
δqi − βqi piδpi

, for 1 ≤ i ≤ N (A.12)

with θi = εi + β(q2
i + p2

i )/2 for i = 1, 2, . . . ,N being constants of the motion. The corresponding operator
eτLA1Z takes the form

eτLA1Z :


q′i = qi cos(ταi) + pi sin(ταi)
p′i = pi cos(ταi) − qi sin(ταi)
δq′i =

qi cos(ταi)+pi sin(ταi)
2Ji

δJi + (pi cos(ταi) − qi sin(ταi)) (βδJiτ + δθi)

δp′i =
pi cos(ταi)−qi sin(ταi)

2Ji
δJi − (qi cos(ταi) + pi sin(ταi)) (βδJiτ + δθi)

, for 1 ≤ i ≤ N

(A.13)
with Ji , 0 and

Ji =
1
2

(q2
i + p2

i ) , αi = εi + βJi , δJi = qiδqi + piδpi , δθi =
pi

2Ji
δqi −

qi

2Ji
δpi. (A.14)

We note that in the special case of Ji = 0 we have qi = pi = 0. Then the system of Eq. (A.12)
takes the simple form q̇i = 0, ṗi = 0, δ̇qi = εiδpi, δ̇pi = −εiδqi, leading to q′i = qi, p′i = pi, δq′i =

δqi cos(εiτ) + δpi sin(εiτ), δp′i = δpi cos(εiτ) − δqi sin(εiτ).
The set of equations of motion and variational equations associated to the intermediate Hamiltonian

Mathematics in Engineering Volume 1, Issue 3, 447–488.



478

functions B1 and C1 are respectively

dX
dt

= LB1Z X :


q̇i = −pi−1 − pi+1

ṗi = 0
δ̇qi = −δpi−1 − δpi+1

δ̇pi = 0

, and
dX
dt

= LC1Z X :


q̇i = 0
ṗi = qi−1 + qi+1
˙δqi = 0
˙δpi = δqi−1 + δqi+1

. (A.15)

These yield to the operators eLB1Z and eLC1Z given by

eτLB1Z :


q′i = qi − τ(pi−1 + pi+1)
p′i = pi

δq′i = δqi − τ(δpi−1 + δpi+1)
δp′i = δpi

eτLC1Z :


q′i = qi

p′i = pi + τ(qi−1 + qi+1)
δq′i = δqi

δp′i = δpi + τ(δqi−1 + δqi+1)

. (A.16)

As in the case of the α-FPUT model, Eqs. (A.15) and (A.16) correspond to the case of periodic boundary
conditions and adjustments similar to the ones presented in the Appendix of [56] for the 1D DKG model,
should be implemented when fixed boundary conditions are imposed.

A.3. The 2D disordered discrete Nonlinear Schrödinger equation

The Hamiltonian H2D of Eq. (2.3) can be split into three integrable partsA2, B2 and C2 as

A2 =

N∑
i=1

M∑
j=1

εi, j

2

[
q2

i, j + p2
i, j

]
+
β

8

[
q2

i, j + p2
i, j

]2
, B2 =

N∑
i=1

M∑
j=1

−pi, j+1 pi, j − pi+1, j pi, j,

C2 =

N∑
i=1

M∑
j=1

−qi, j+1qi, j − qi+1, jqi, j.

(A.17)

The equations of motion and the variational equations associated with theA2 Hamiltonian are

dX
dt

= LA2Z X :


q̇i, j = pi, jθi, j

ṗi, j = −qi, jθi, j,

δ̇qi, j =
[
θi, j + βp2

i, j

]
δpi, j + βqi, j pi, jδqi, j

δ̇pi, j = −
[
θi, j + βq2

i, j

]
δqi, j − βqi, j pi, jδpi, j

, (A.18)

for 1 ≤ i ≤ N, 1 ≤ j ≤ M, with θi, j = εi, j + β(q2
i, j + p2

i, j)/2 being constants of motion for the Hamiltonian
A2. Then, the operator eτLA2Z is

eτLA2Z :


q′i, j = qi, j cos(ταi, j) + pi, j sin(ταi, j)
p′i, j = pi, j cos(ταi, j) − qi, j sin(ταi, j)
δq′i, j =

qi, j cos(ταi, j)+pi, j sin(ταi, j)
2Ji, j

δJi, j +
(
pi, j cos(ταi, j) − qi, j sin(ταi, j)

) (
βδJi, jτ + δθi, j

)
δp′i, j =

pi, j cos(ταi, j)−qi, j sin(ταi, j)
2Ji, j

δJi, j −
(
qi, j cos(ταi, j) + pi, j sin(ταi, j)

) (
βδJi, jτ + δθi, j

) (A.19)

with Ji, j , 0 and

Ji, j =
1
2

(q2
i, j + p2

i, j) , αi, j = εi, j + βJi, j ,

δJi, j = qi, jδqi, j + pi, jδpi, j , δθi, j =
pi, j

2Ji, j
δqi, j −

qi, j

2Ji, j
δpi, j

. (A.20)
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Again, in the special case of Ji, j = 0, the system of Eq. (A.18) takes the form q̇i, j = 0, ṗi, j = 0,
δ̇qi, j = εi, jδpi, j, δ̇pi, j = −εi, jδqi, j, leading to q′i, j = qi, j, p′i, j = pi, j, δq′i, j = δqi, j cos(εi, jτ) + δpi, j sin(εi, jτ),
δp′i, j = δpi, j cos(εi, jτ) − δqi, j sin(εi, jτ).

The equations of motion and the variational equations for Hamiltonians B2 and C2 are

dX
dt

= LB2Z X :


q̇i, j = −pi−1, j − pi, j−1 − pi, j+1 − pi+1, j

ṗi, j = 0
δ̇qi, j = −δpi−1, j − δpi, j−1 − δpi, j+1 − δpi+1, j

δ̇pi, j = 0

, (A.21)

and

dX
dt

= LC2Z X :


ṗi, j = qi−1, j + qi, j−1 + qi, j+1 + qi+1, j

q̇i, j = 0
δ̇pi, j = δqi−1, j + δqi, j−1 + δqi, j+1 + δqi+1, j

δ̇qi, j = 0

, (A.22)

while the corresponding operators eLB2Z and eLC2Z are respectively

eτLB2Z :


q′i, j = qi, j − τ

(
pi−1, j + pi, j−1 + pi, j+1 + pi+1, j

)
p′i, j = pi, j

δq′i, j = δqi, j − τ
(
δpi−1, j + δpi, j−1 + δpi, j+1 + δpi+1, j

)
δp′i, j = δpi, j

, (A.23)

and

eτLC2Z :


q′i, j = qi, j

p′i, j = pi, j + τ
(
qi−1, j + qi, j−1 + qi, j+1 + qi+1, j

)
δq′i, j = δqi, j

δp′i, j = δpi, j + τ
(
δqi−1, j + δqi, j−1 + δqi, j+1 + δqi+1, j

) . (A.24)

Here again Eqs. (A.21)–(A.24) correspond to the case of periodic boundary conditions. For fixed
boundary conditions adjustments similar to the ones report in the Appendix of [56] for the 2D DKG
lattice should be performed.

A.4. Other Hamiltonian models which can be split into two integrable parts

We present here the exact expressions of the tangent map operators needed in symplectic integration
schemes which can be used to numerically integrate some important models in the field of classical
many-body systems: the β-FPUT chain, the KG model, and the classical XY model (a JJC system) [53,
100–102]. Similarly to the α-FPUT chain of Eq. (2.1), the Hamiltonians H(q, p) of each of these systems
can be split as

H(q, p) = A(p) + B(q) =

N∑
i=1

p2
i

2
+ B (q) (A.25)

with appropriately defined potential terms B (q):

β-FPUT: Bβ (q) =

N∑
i=0

1
2

(qi+1 − qi)2 +
β

4
(qi+1 − qi)4, (A.26)
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KG: BK (q) =

N∑
i=1

q2
i

2
+

q4
i

4
+

k
2

(qi+1 − qi)2, (A.27)

JJC: BR (q) =

N∑
i=1

EJ
[
1 − cos(qi+1 − qi)

]
, (A.28)

where β, k and EJ are real coefficients. Obviously for all these systems the operator eτLAZ of the kinetic
energy part is the same as for the α-FPUT chain in Eq. (A.4). Thus, we report below only the expressions
of the operators eτLBZ and eτLKZ when periodic boundary conditions are imposed.

1. The β-Fermi-Pasta-Ulam-Tsingou chain
The operator eτLBZ of the β-FPUT chain of Eq. (A.26) is

eτLBZ :



q′i = qi

p′i =
{
qi−1 + qi+1 − 2qi + β

[
(qi+1 − qi)3 − (qi − qi−1)3]}τ + pi

δq′i = δqi

δp′i =
{[
− 3β

[
(qi − qi−1)2 + (qi+1 − qi)2] − 2

]
δqi

+
[
1 + 3β(qi+1 − qi)2]δqi+1 +

[
1 + 3β(qi − qi−1)2]δqi−1

}
τ + δpi

. (A.29)

The corrector Hamiltonian K of Eq. (A.7) becomes

K(q) =

N∑
i=1

{
2qi − qi−1 − qi+1 + β

[
(qi − qi−1)3 − (qi+1 − qi)3]}2

, (A.30)

while the corresponding operator is

eτLKZ :



q′i = qi

p′i = 2
{[

qi−1 + qi+1 − 2qi + β
[
(qi+1 − qi)3 − (qi − qi−1)3]][2 + 3β

[
(qi − qi−1)2 + (qi+1 − qi)2]]

−
[
qi + qi+2 − 2qi+1 + β

[
(qi+2 − qi+1)3 − (qi+1 − qi)3]][1 + 3β(qi+1 − qi)2

]
−
[
qi + qi−2 − 2qi−1 + β

[
(qi − qi−1)3 − (qi−1 − qi−2)3]][1 + 3β(qi − qi−1)2

]}
τ + pi

δqi = δqi

δpi =
{
γiδqi + γi+1δqi+1 + γi+2δqi+2 + γi−1δqi−1 + γi−2δqi−2

}
τ + δpi

,

(A.31)
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with

γi = −2
{[

2 + 3β
[
(qi − qi−1)2 + (qi+1 − qi)2]]2

+
[
1 + 3β(qi+1 − qi)2

]2
+

[
1 + 3β(qi − qi−1)2

]2

+ 6β
(
2qi − qi−1 − qi+1

)[
2qi − qi−1 − qi+1 + β

[
(qi − qi−1)3 − (qi+1 − qi)3]]

− 6β(qi − qi+1)
[
2qi+1 − qi − qi+2 + β

[
(qi+1 − qi)3 − (qi+2 − qi+1)3]]

− 6β(qi − qi−1)
[
2qi−1 − qi − qi−2 + β

[
(qi−1 − qi−2)3 − (qi − qi−1)3]]}

γi+1 = 2
{[

1 + 3β(qi+1 − qi)2
][

4 + 3β
[
(qi − qi−1)2 + 2(qi+1 − qi)2 + (qi+2 − qi+1)2]]

− 6β(qi+1 − qi)
[
3qi − qi−1 − 3qi+1 + qi+2 + β

[
(qi − qi−1)3 − 2(qi+1 − qi)3 + (qi+2 − qi+1)3]]}

γi−1 = 2
{[

1 + 3β(qi − qi−1)2
][

4 + 3β
[
(qi+1 − qi)2 + 2(qi − qi−1)2 + (qi−1 − qi−2)2]

− 6β(qi−1 − qi)
[
3qi − 3qi−1 − qi+1 + qi−2 + β

[
(qi − qi+1)3 − 2(qi−1 − qi)3 + (qi−2 − qi−1)3]}

γi+2 = −2
[
1 + 3β(qi+2 − qi+1)2

][
1 + 3β(qi+1 − qi)2

]
γi−2 = −2

[
1 + 3β(qi−1 − qi−2)2

][
1 + 3β(qi − qi−1)2

]

.

(A.32)

2. The 1D Klein-Gordon chain model
The operator eτLBZ of the Klein-Gordon chain [Eq. (A.27)] is

eτLBZ :


q′i = qi

p′i =
{
− qi(1 + q2

i ) + k(qi+1 + qi−1 − 2qi)
}
τ + pi

δq′i = δqi

δp′i =
{
− [1 + 3q2

i + 2k]δqi + kδqi+1 + kδqi−1
}
τ + δpi

. (A.33)

The corresponding corrector Hamiltonian K [Eq.(A.7)] is written as

K(q) =

N∑
i=1

[
qi(1 + q2

i ) + k(2qi − qi+1 − qi−1)
]2
, (A.34)

while eτLKZ takes the form

eτLKZ :



q′i = qi

p′i = 2
{[
− qi(1 + q2

i ) + k(qi+1 + qi−1 − 2qi)
][

1 + 3q2
i + 2k

]
+k

[
qi−1(1 + q2

i−1) − k(qi + qi−2 − 2qi−1)
]

+k
[
qi+1(1 + q2

i+1) − k(qi+2 + qi − 2qi+1)
]}
τ + pi

δq′i = δqi

δp′i =
{
γiδqi + γi+1δqi+1 + γi+2δqi+2 + γi−1δqi−1 + γi−2δqi−2

}
τ + δpi

, (A.35)

with

γi = −2
{[

1 + 3q2
i + 2k

]2
+ 6qi

[
qi(1 + q2

i ) + k(2qi − qi+1 − qi−1)
]
+ 2k2

}
γi+1 = 2k

[
2 + 4k + 3q2

i + 3q2
i+1

]
γi−1 = 2k

[
2 + 4k + 3q2

i + 3q2
i−1

]
γi+2 = −2k2

γi−2 = −2k2

. (A.36)
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3. The XY model of a Josephson junctions array
The operator eτLBZ for the potential of Eq. (A.28) is

eτLBZ :



q′i = qi

p′i = EJ
[
sin(qi+1 − qi) + sin(qi−1 − qi)

]
τ + pi

δq′i = δqi

δp′i =
{
− EJ

[
cos(qi+1 − qi) + cos(qi − qi−1)

]
δqi

EJ
[
cos(qi+1 − qi)

]
δqi+1 + EJ

[
cos(qi − qi−1)

]
δqi−1

}
τ + δpi

. (A.37)

In this case the corrector Hamiltonian K of Eq.(A.7) becomes

K(q) =

N∑
i=1

E2
J
[
sin(qi+1 − qi) + sin(qi−1 − qi)

]2 , (A.38)

and the operator eτLKZ is given by the following set of equations

eτLKZ :



q′i = qi

p′i = E2
J

{
2
[
sin(qi+1 − qi) + sin(qi−1 − qi)

]
·
[
cos(qi+1 − qi) + cos(qi−1 − qi)

]
−2

[
sin(qi+2 − qi+1) + sin(qi − qi+1)

]
· cos(qi − qi+1)

−2
[
sin(qi − qi−1) + sin(qi−2 − qi−1)

]
· cos(qi − qi−1)

}
τ + pi

δq′i = δqi

δp′i =
{
γiδqi + γi+1δqi+1 + γi+2δqi+2 + γi−1δqi−1 + γi−2δqi−2

}
τ + δpi

(A.39)

with

γi = E2
J

{
− 4 cos(2(qi+1 − qi)) − 4 cos(qi−1 − 2qi + qi+1) − 4 cos(2(qi−1 − qi))

+ 2 sin(qi+2 − qi+1) sin(qi − qi+1) + 2 sin(qi−2 − qi−1) sin(qi − qi−1)
}

γi+1 = E2
J

{
2 cos(qi−1 − 2qi + qi+1) + 4 cos(2(qi+1 − qi)) + 2 cos(qi+2 − 2qi+1 + qi)

}
γi−1 = E2

J

{
2 cos(qi−1 − 2qi + qi+1) + 4 cos(2(qi − qi−1)) + 2 cos(qi−2 − 2qi−1 + qi)

}
γi+2 = E2

J2 cos(qi+2 − qi+1) cos(qi − qi+1)
γi−2 = E2

J2 cos(qi−2 − qi−1) cos(qi − qi−1)

. (A.40)
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