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In this paper, we embed the Z4R parity as a discrete subgroup of a global symmetry Uð1ÞR obtained from
Z12−I compactification of a heterotic string E8 × E0

8. A part of Uð1ÞR transformation is the shift of the
anticommuting variable ϑ to eiαϑ, which necessarily incorporates the transformation of the internal space
coordinate. Out of six internal spaces, we identify three U(1)’s whose charges are denoted as Q18, Q20, and
Q22. The Uð1ÞR is defined as Uð1ÞEE × Uð1ÞKK, where Uð1ÞEE is the part from the E8 × E0

8 and Uð1ÞKK is
the part generated by Q18, Q20, and Q22. We propose a method to define a Uð1ÞR direction. The needed
vacuum expectation values for breaking gauge U(1)’s except for Uð1ÞY of the standard model carry a Uð1ÞR
charge 4 modulo 4 such that Uð1ÞR is broken down to Z4R at the grand unification scale. Z4R is broken to
Z2R between the intermediate (∼1011 GeV) and the electroweak scales (100 GeV ∼ 1 TeV). The
conditions we impose are proton longevity, a large top quark mass, and acceptable magnitudes for the
μ term and neutrino masses.

DOI: 10.1103/PhysRevD.99.093004

I. INTRODUCTION

In supersymmetric (SUSY) extensions of the standard
model (SM) and grand unified theories (GUTs), proton
longevity invites additional symmetries. The most dis-
cussed one is the R parity [1,2].1

“How is the current allocation of flavors realized?” is the
most urgent and also interesting question in the theoretical
problems of the standard model of particle physics.
Advocates of string theory for the heterotic string argue
that string compactification is the most complete answer to
this problem [4–9].
String compactifications aim at obtaining (i) large 3D

space, (ii) standard-like models with three families, and
(iii) no exotics at low energy (or vectorlike representations if
they exist). Regarding a solution to item (i), the string
landscape scenario is suggested [10], predicting about 10500

vacua for a reasonable cosmological constant (CC).
Regarding item (ii), standard-like models from the heterotic

string have been suggested from early days [11,12] until
recently [13–31]. Model constructions are discussed in
detail in Refs. [32–34]. It has been suggested that by
exploring the entire string landscape, one might obtain
statistical data which could lead to probabilistic experimen-
tal statements [35,36]. Yet the clearest statement to date is
that standard-like models are exceedingly rare [37,38]. In
addition, the flavor problem asks for a detailed model
producing the observed Cabibbo-Kobayashi-Maskawa
(CKM) [39,40] and Pontecorvo-Maki-Nakagawa-Sakada
(PMNS) [41,42] matrices. In the future, a more refined
statistical search, satisfying all the observed SM data, can be
performed with the help of an artificial intelligence (AI)
program. At present, an AI program is not available for this
purpose, and hencewe study this flavor problemanalytically
in the simplest orbifold compactification2 based on Z12−I .
Since the number of fields is over 100 in these standard-like
models, we simplify further by choosing GUT models to
ease the analytical study. Therefore, we require the follow-
ing in addition to the above three items:
(iv) Supersymmetry is imposed at the grand unification

(GUT) scale.
(v) We consider GUT-scale gauge groups as simple

groups [43–46] or semisimple groups [47–49].Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For a systematic study of matter parity in addition to R parity,
see Ref. [3], for example.

2Among the nine orbifolds of Ref. [5], we consider Z12−I to be
the simplest one, in the sense that it has only three fixed points.
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SUSY models have been widely used to introduce a
mechanism for generating a hierarchically small electro-
weak (EW) scale compared to the GUT scale. Somewhere
above the EW scale, therefore, SUSYmust be broken, since
no superpartner has been observed up to a TeV scale [50].
In the model, a SUSY-breaking mechanism must be
present. The well-known mechanism for SUSY breaking
applicable to string compactification is the gaugino con-
densation [51–53]. Working in the SUSY-breaking models
from compactification, we require the gauge group to be at
the GUT scale asGGUT ×Gcond. The most probableGcond is
SUð4Þ0, which can trigger SUSY breaking via gaugino
condensation [54].
In SUSY models, R parity PR ¼ ð−1Þ3ðB−LÞþ2S dictates

proton stability, where B is the baryon number, L is the
lepton number, and S is spin. For a conserved R parity, it is
usually assigned to a subgroup of B − L. From string
compactification, R parity has been calculated before in this
framework [27,55,56]. Because of dangerous dimension-5
operators, leading to proton decay, Z4R has been proposed
in contrast to Z2R [57–61]. In this paper, we will present a
detailed study toward R parity from the continuous sym-
metry Uð1ÞR. We will see that Uð1ÞR is also constraining
some couplings, and hence helps to forbid some unwanted
ΔB ≠ 0 operators.
GUTs from string compactification favor the flipped

SU(5) semisimple GUTs [62–64] and anti-SU(7) [65]. For
the simple group of GUTs, SU(5), SO(10), and E6, we need
an adjoint representation to break the GUT groups down to
the SM gauge group, and it is impossible to obtain adjoint
representation at level 1 [32]. [Note, however, that an
adjoint representation of SO(10) was obtained in Ref. [66]
at level 3]. So, for simple studies at level 1, anti-SUðNÞ
GUTs are relevant for phenomenological studies.3

In Sec. II, after recapitulating the need for R parities
toward proton longevity, we discuss the possibilities of
embedding R parities in the global symmetry group Uð1ÞR
from string compactification. A specific example is pre-
sented in the flipped SU(5) model of Ref. [64]. Here the
details of U(1) quantum numbers are presented for all the
spectra. In Sec. III, we define Uð1ÞR global symmetry,
including the R-symmetry transformation of the anticom-
muting variable ϑ. The U(1) charges Q18, Q20, and Q22 are
defined from three tori of the compactified six dimensional
space. In Sec. IV, the neutral singlets which can obtain
GUT-scale vacuum expectation values (VEVs) are dis-
cussed. In Sec. V, we discuss the resulting phenomenology.
In Sec. VI, we discuss the vacuum structure, leading to the
above VEVs, and Sec. VII is a conclusion. In the Appendix,
we present some details for obtaining massless fields and
their Q18, Q20, and Q22 quantum numbers.

II. R PARITIES

Beyond the SM (BSM), the baryon (B) and lepton (L)
numbers are broken. The degree of B and L breaking
depends on a BSM theory. The most widely discussed
one that is also relevant in our paper is the B violation in
SUSY extensions of the SM. Supersymmetric standard
models (SSMs) can start with the gauge symmetry
SUð3ÞC × SUð2ÞW × Uð1ÞY with B- and L-conserving
dimension-4 operators, which has led to the R-party
conservation and predicted the lightest supersymmetric
particle as a dark matter candidate. In standard-like models
from string, a vacuumwith R parity was explicitly shown to
exist first in Ref. [27]. The standard R parity or Z2R,
however, has been known to be dangerous for the proton
longevity due to the dimension-5 operators [1,2]. Without
R parity, a dangerous dimension-5 operator appears as
shown in Fig. 1 [67].
Without R parity, forbidding dimension-5 B-violating

operators involves considering all SUð5Þflip singlets which
can obtain GUT scale VEVs in principle [68]. Therefore, it
will be economic in the discussion if the model contains
some kind of R parity. Dimension-5 B-violating operators
and the μ term are required to be suppressed, but a
dimension-5 L-violating Weinberg operator needs to be
allowed [69], while the μ problem must be resolved
[70,71]. Considering the anomaly coefficients in SUSY
field theory, Lee et al. showed that non-R symmetries
cannot be used to suppress the μ term [59]. Since we
attempt to derive an R symmetry from string compactifi-
cation that leads to consistent anomaly-free models, the
consideration of anomaly coefficients from Lee et al.’s
point of view is not necessary. Anyway, we adopt their
conclusion on Z4R that the needed R parity is a subgroup of
a Uð1ÞR symmetry. So, let our Uð1ÞR be a linear combi-
nation of Uð1ÞEE and Uð1ÞKK, where Uð1ÞEE is a U(1) from
the gauge group E8 × E0

8 [72] and Uð1ÞKK is a U(1) from
the internal space. In Fig. 2, gauge groups shown in 4D

FIG. 1. A diagram for ΔB ≠ 0 without R parity. The cubic
couplings in this diagram break R parity.

3In Ref. [65], anti-SUðNÞ GUTs are defined as those for which
the GUT breaking is achieved by the antisymmetric representa-
tions. In this definition, the flipped SU(5) is “anti-SU(5).”
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contain Uð1ÞEE, and three tori depict three Uð1ÞKK’s
denoted as Uð1Þ18, Uð1Þ20, and Uð1Þ22. For Z3 orbifolds,
it was commented that a dimension-3 μ term is forbidden
[73], but the intermediate scale MI generates the EW scale
as ∼M3

I =M
2
P. It was known that a common scale for

breaking the PQ symmetry and supergravity is needed
[74]. Also, for a multiple appearance of Higgs pairs, the
democratic mass matrix, by some kind of fine-tuning,
always guarantees at least one massless pair of Higgs
doublets [75]. So, we may consider the cases of discrete
groups Z4, Z6, Z8, and Z12 of Ref. [59]. Illustration with
Z4R from Uð1ÞKK of the Z12−I orbifold can be applicable to
the other cases also.
Let us consider the following operators, relevant for the

dimension-5 proton decay and neutrino mass operators:

WΔB ≡ 10m10m10m5m;

Wνmass ≡ 5m5m5̄Hu
5̄Hu

; ð1Þ

where the subscripts m and H denote matter fields and
Higgs fields, respectively. If an operator is present in the
superpotential, Uð1ÞKK transformations of the fields of an
operator are canceled by the transformation of the anti-
commuting variable ϑ. Under a certain normalization, the
superpotential is required to have þ2 units of the Uð1ÞKK
charge. Since the rotation angle of variable ϑ can be taken
as the negative of the previous transformation, −2 units of
the Uð1ÞKK charge must be allowed also, as illustrated in
Fig. 3. So, we have a Z4 symmetry −2≡þ2; i.e.,
minimally we require Z4R symmetry when we consider
the global transformation of ϑ. The Z4R quantum numbers

can be labeled as those in green, and the black number
assignment is identical to those in green. Under Z4R, the
superpotential W leading to the proton decay operator
and the μ term is required to carry þ4≡ 0 units, which is
then forbidden by Uð1ÞR, and the superpotential for the
neutrino mass operator carries þ2 units, which is allowed
by Uð1ÞR. These can be satisfied with the matter charge þ1
and the Higgs charge 0, for example. In string compacti-
fication, the realization may be more complex, because one
must take into account the sectors where these fields
appear.
The R parity is a discrete subgroup of Uð1ÞR,

Uð1ÞR ⊂ Uð1ÞEE ⊗ Uð1ÞKK ð2Þ

Superpotential carries þ2 (modulo 4) units of Uð1ÞR.
On the other hand, the integrand under d2ϑd2ϑ̄ carries
þ4 (modulo 4) units of Uð1ÞR.

A. Model

The shift vector V and Wilson line are

V¼
�
0;0;0;0;0;

−1
6
;
−1
6
;
−1
6

��
0;0;0;0;0;

1

4
;
1

4
;
−2
4

�0
;

a¼
�
2

3
;
2

3
;
2

3
;
2

3
;
2

3
;0;

−2
3
;
2

3

��
2

3
;
2

3
;
2

3
;
2

3
;0;

−2
3
;0;0

�0
; ð3Þ

which gives the 4D gauge group SUð5Þ×SUð5Þ0×SUð2Þ0×
Uð1Þ7.

B. U(1) charges of E8 × E0
8

The Uð1ÞX charge of SUð5Þflip is

X ¼ ð−2;−2;−2;−2;−2; 03Þð08Þ0; ð4Þ

and

Q1 ¼ ð05; 12; 0; 0Þð08Þ0;
Q2 ¼ ð05; 0; 12; 0Þð08Þ0;
Q3 ¼ ð05; 0; 0; 12Þð08Þ0;
Q4 ¼ ð08Þð04; 0; 12;−12; 0Þ0;
Q5 ¼ ð08Þð04; 0;−6;−6; 12Þ0;
Q6 ¼ ð08Þð−6;−6;−6;−6; 18; 0; 0; 6Þ0: ð5Þ

FIG. 2. Matching Uð1ÞR with the rotation of the anticommuting
variable ϑ. Four-dimensional gauge groups are contained in the
brane shown as the parallelogram, and three tori depict three
Uð1ÞKK’s, denoted as Uð1Þ18, Uð1Þ20, and Uð1Þ22.

FIG. 3. Z4R quantum numbers in the region ½−2;þ2�. Numbers
in the region [0, 4] are shown in the brackets.
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Any combination of Qi for i ¼ 1; 2;…; 6 can be used
for Uð1ÞEE.

C. Uð1ÞKK

In this paper, the compactification of six internal
dimensions (coordinate y) is specified as three two-tori.
So, any effective fieldΦ can be a function ofΦðx; yÞ. To an
observer in the 4D x space, gauge symmetries in y are
global symmetries. So, the Uð1ÞR symmetry we discuss
must be a gauge symmetry in the y variable in the three tori.
Let the radii of the three tori be ðradiusÞ1, ðradiusÞ2, and
ðradiusÞ3. Then, the six internal coordinates are parame-
trized by ðradiusÞ1e−iφ1, ðradiusÞ2e−iφ2 , and ðradiusÞ3e−iφ3 .
The right-mover coordinates are given by4

ð⊕jþþþÞ; ð⊕jþ−−Þ; ð⊕j−þ−Þ; ð⊕j−−þÞ ð6Þ

and

ð⊖j−þþÞ; ð⊖jþ−þÞ; ð⊖jþþ−Þ; ð⊖j−−−Þ; ð7Þ

where Eq. (6) is called R-handed (with ⊕) and Eq. (7) is
called L-handed (with ⊖). Gauge transformations in the y
space rotate φ angles, and the generators for these rotations
are called Q18, Q20, and Q22, respectively, specifying the
ranks of the total local group in addition to 16 of E8 × E0

8.
We normalize the charges as

Q18 ¼ diag:ð2; 0; 0Þ;
Q20 ¼ diag:ð0; 2; 0Þ;
Q22 ¼ diag:ð0; 0; 2Þ: ð8Þ

In the standard-like models in this compactification
leading to SUð3ÞC × SUð2ÞW × Uð1ÞY ×Uð1Þn, we have
n ¼ 15. In the flipped SU(5) of Ref. [64], SUð5Þ×
SUð5Þ0 × SUð2Þ0 × Uð1Þn, we have n ¼ 10. To break all
U(1)’s in the standard-like models, we need 16 independent
vacuum expectation values (VEVs) of the Higgs fields.
To obtain superpotentials of massless superfields,

the couplings must have þ2 units of Uð1ÞR charge. An
appropriate combination of three U(1)’s in Eq. (8) can be
used for Uð1ÞKK.

D. Multiplicity

We are interested in the multiplicity of massless states,
M2 ¼ M2

L þM2
R ¼ 0 for M2

L ¼ M2
R ¼ 0,

M2
L ¼ ðPþ kVfÞ2

2
þ c̃k;

M2
R ¼ ðsþ kϕ0Þ2

2
þ ck; ð9Þ

where ϕ0 ¼ ð0;ϕÞ, s ¼ ð⊕ or⊖; s̃Þ, and 2c̃k and 2ck are
listed in the Appendix. With P’s in Ref. [64], one can check
that M2

L ¼ 0 is satisfied. The M2
R ¼ 0 condition is used to

obtain the chirality.
For the Z12−I model of Eq. (3), the multiplicity of the

massless spectrum in the Tk sectors is

PkðfÞ ¼
1

12 · 3

X11
l¼0

χ̃ðθk; θlÞei2πlΘk ; ð10Þ

where fð¼ ff0; fþ; f−gÞ denote twisted sectors associated
with kVf¼kV;kðVþaÞ;kðV−aÞ. The phaseΘk is given by

Θk ¼
X
i

ðNL
i − NR

i Þϕ̂i þ ðPþ kVfÞ · Vf

− ðsþ kϕÞ · ϕ −
k
2
ðV2 − ϕ2Þ; ð11Þ

where 1
2
ðV2 − ϕ2Þ ¼ 2

24
, and ϕ̂j ¼ ϕj and ϕ̂j̄ ¼ −ϕj. For

k ¼ 0, 3, 6, 9,Pkðf0Þ ¼ PkðfþÞ ¼ Pkðf−Þ, and the overall
coefficient in Eq. (10) is 1

12
instead of 1

36
, and we require in

addition

P · a ¼ 0 mod Z in theU; T3; T6; T9 sectors: ð12Þ
Note the four entry s’s and the three entry s̃’s with the
relation s ¼ ð⊕ or ⊖; s̃Þ such that ⊕ or ⊖ is chosen to
make the total number of minus signs even. For the
subsector f ¼ 0, i.e., for Tk

0, from the masslessness con-
dition, 2c̃k ¼

P
iðNL

i Þϕ̂i þ P · V þ k
2
V2, of Table IV, we

have

Θk ¼
X
i

ðNL
i − NR

i Þϕ̂i þ P · V − s · ϕþ k
2
ðV2 − ϕ2Þ

¼
X
i

ðNL
i − NR

i Þϕ̂i þ P · V − s · ϕþ k
12

: ð13Þ

In the ZN orbifold, the k ¼ N
2
sector is self-conjugate in a

sense. The reason is the following: In the prime orbifolds,
there is no sector TN=2. In the nonprime orbifolds, there is
always a sector TN=2. We do not consider the sector TN in
this notation. Instead, we consider the untwisted sector U.5

Then, there are N − 1 twisted sectors where we consider
only k ≤ N=2. With k < N=2, effectively we encompass
2ðN − 1Þ twisted sectors. The remaining two twisted
sectors are in TN=2.

E. Selection rule in ZN

One important selection rule of Yukawa couplings is to
satisfy ZN invariance for both for the L and R sectors. This

4� are � 1
2
.

5The untwisted sector corresponds to k ¼ 0 in Eq. (10). For the
untwisted sector Ui for the torus ið¼ 1; 2; 3Þ, it is a closed string
moving in the bulk of torus Ui.
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amounts to satisfying the sum of phases
P

iΘi ¼ 0 modulo
12 for dimension n superpotential, Wn ∝

Q
n
i¼1Φi.

III. U(1) CHARGES Q18, Q20, AND Q22,
AND THE SM FIELDS

In our Z12−I model of Sec. II A, we use the following
normalization:

Q18∶ ð2;0;0Þ; Q20∶ ð0;2;0Þ; Q22∶ ð0;0;2Þ: ð14Þ

A. Untwisted sector

Themultiplicity of themassless spectrum in the untwisted
sector Ui occurs with P · V ¼ ni

12
, where ni ¼ 5, 4, 1 for the

torus index i ¼ 1, 2, 3. The U3 fields in Table I have
P · V ¼ 1

12
. This must be canceled by the phase of right

movers. Note that χ̃ðθ0; θlÞ of Eq. (10) is 3, and

ΘU3
¼ 1

12
− s̃i · ϕ: ð15Þ

The phase in the third torus, ΘU3
¼ 0, is achieved by s̃ ¼

ð⊖;þ−þÞ such that s̃i · ϕ ¼ 1
12
, where ϕ ¼ ð 5

12
; 4
12
; 1
12
Þ. It is

L-handed, i.e., ⊖, in our definition of the handedness, and
we obtain

Q18;20;22 ¼ þ1;−1;þ1; ð16Þ

respectively, which are listed in Table I.

B. Twisted sectors

We will present the most twisted sector fields in detail in
the Appendix, except for the Higgs fields needed in
SUð5Þflip: Hu;d and 10þ1H and 10−1H. V2

f must be the
numbers given in Table IV.
Sector T0

4: Here, two families (ξ2;3; η̄2;3; μc; τc) of Table I
appear, which are calculated in detail in the Appendix.
Sector T6: We locate the light Higgs doublets in this

sector. From Eq. (10), multiplicities in the T6 sector are
calculated6 with the following χ̃ðθ6; θjÞ:

χ̃ðθ6;θjÞ¼
(
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

16; 1; 1; 4; 1; 1; 16; 1; 1; 4; 1; 1
:

ð17Þ

In T6, we have from Eq. (13)

Θ6 ¼
X
i

ðNL
i − NR

i Þϕ̂i − s̃ · ϕþ P · V þ 1

2
: ð18Þ

For HuL ¼ ðþ10000;−100Þð05;−10þ 1Þ0, we have
P · V ¼ þ5

12
. Since 6ϕ ¼ ð1

2
; 0; 1

2
Þ, the masslessness condi-

tion is satisfied for s ¼ ð⊕ or ⊖;−;�;−Þ, and we obtain
the following multiplicity:

s Niϕ̂i; s̃ · ϕ; Θ6; Multiplicity

ð⊕j−þ−Þ∶ 0; −1
12
; 0; 4 ·HuR

ð⊖j−−−Þ∶ 0; −5
12
; þ4

12
; 2 ·HuL

ð19Þ

Similarly, we obtain Hd’s, and there result the following
Higgs doublets from T6:

2 ·HuLð−1;−1;−1Þ þ 2 ·HdLð−1;−1;−1Þ
þ 4 ·HuRð−1;þ1;−1Þ þ 4 ·HdRð−1;þ1;−1Þ: ð20Þ

Since the R-handed fields of Eq. (20) do not contribute to
the superpotential for Yukawa couplings, we list only the
L-handed fields, whose Q18;20;22 quantum numbers are
listed in Table I.

IV. BSM FIELDS: NEUTRAL SINGLETS

The BSM fields must be neutral singlets and vectorlike
representations under SUð3ÞC × SUð2ÞW ×Uð1ÞY. The
state vectors containing neutral singlets are presented in
the second column of Table II. All these neutral singlets
appear in the twisted sectors. Neutral singlets are divided
into two classes: one contained in the SUð5Þflip nonsinglets
Σ� ¼ 10−1 and Σ ¼ 10þ1, and the other in the SUð5Þflip
singlets σ’s. The VEVs of neutral components in Σ� and Σ
are needed to break the SUð5Þflip down to the SM gauge
group. In this section, we present the details on Σ� and Σ.
SUð5Þflip singlets will be discussed in the Appendix.

A. 10− 1 + 10+ 1 needed for spontaneous breaking
of SUð5Þflip

In T3 and T9, we have

χ̃ðθ3;θjÞ¼
(
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

4; 1; 1; 4; 1; 1; 4; 1; 1; 4; 1; 1
:

ð21Þ

In T3, we have from Eq. (13)

Θ3 ¼
X
i

ðNL
i − NR

i Þϕ̂i − s̃ · ϕþ P · V: ð22Þ

For Σ�
1 with P ¼ ðþþþ−−;þþþÞð05;−1;−1;þ2Þ0 and

for Σ2 with P¼ðþþ−−−;−−−Þð05;þ1;þ1;−2Þ0, P · V is
þ 1

4
and − 1

4
, respectively. Without oscillators, the mass-

lessness condition is not satisfied. For s¼ð⊕or⊖;
−;�;−Þ, we obtain the following multiplicities for massless
Σ�
1 and Σ2:

6We use s in the mass relation and s̃ in the phase calculation.
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s ðNL
i − NR

i Þϕ̂i; s̃ · ϕ; Θ3; Multiplicity; P · V

ð⊕j−þ−Þ∶ þ5
12

ðtorus ¼ 1Þ; −1
12
; 0; 2; þ1

4
ðΣ�

1Þ;
ð⊖j−−−Þ∶ −1

12
ðtorus ¼ 3̄Þ; −5

12
; þ4

12
; 1; −1

4
ðΣ2Þ;

ð23Þ

s ðNL
i − NR

i Þϕ̂i; s̃ · ϕ; Θ3; Multiplicity; P · V

ð⊕j−þ−Þ∶ þ1
12

ðtorus ¼ 3Þ; −1
12

; þ8
12

; 1; þ1
4
ðΣ�

1Þ;
ð⊖j−−−Þ∶ −5

12
ðtorus ¼ 1̄Þ; −5

12
; 0; 2; −1

4
ðΣ2Þ:

ð24Þ

We obtain Q18;20;22 ¼ ð−1;þ1;−1Þ and ð−1;−1;−1Þ. The
L-handed field multiplicities are from the oscillators of the
first and third tori, ϕ̂i ¼ � 5

12
;� 1

12
, as shown inEqs. (23) and

(24). These are explicitly shown in Table II, including the
respective multiplicities and charges Q18;20;22.

B. Neutral SUð5Þflip singlets

U(1) charges of all neutral SUð5Þflip singlets σ’s are listed
inTable II. For a fewneutral SUð5Þflip singlets,we present the
explicit calculation in the Appendix. In Table II, we list U(1)
charges of σ-type singlets. Those appearing with oscillators
form vectorlike representations, out of which we kept only
L-handed fields, because R fields would appear with more
mass suppression factors in the Yukawa couplings of the SM
fields. We kept up to one oscillator allowed in Table III,
presented in the Appendix. For Q18;20;22 charges, we listed
only those of L-handed fields. We need some singlets
carrying

Φ ¼ −
1

4
ð25Þ

to cancel all possible phases in the superpotential. But
Table II does not include such a field, and we must
consider ½σiðþ1

4
Þ�� to make a phase-invariant combination

by providing Φ ¼ − 1
4
, which will appear in Sec. V.

V. YUKAWA COUPLINGS

A. μ problem

We find that there remain two pairs of L-handedHuL and
HdL in T6. There exists a superpotential term via T6T6,
where T6 is a field appearing in the twisted sector T6, if the
condition in Sec. II E is satisfied. So, we expect a μ term at
the GUT scale:

W ¼ −μGUTHi
uLH

j
dL; for i; j ¼ fa; bg: ð26Þ

With two HuL and two HdL of Eq. (19), the condition of
Sec. II E is not satisfied, since the phase 4π

3
ofHi

uLH
j
dL does

not allow Eq. (26). This is because it does not carry two

units of 2π, needed for a superpotential term. The basic
reason is that the orbifold contains fixed points divisible
by 3. In this regard, we note that Z3 orbifold has 27 fixed
points, forbidding a dimension-3 μ term as first shown in
Ref. [73]. Z12−I contains twisted sectors where the number
of fixed points is 3. InZ12−I andZ6−I, Higgs doublets in the
sector TN=2ðN ¼ 12; or 6Þ form vectorlike representations
of massless L-handed fields. In Z12−I , these vectorlike
representations do not form a μ term, because of the above
comment on the Uð1ÞR charge condition.Z6−II has 12 fixed
points, and forbidding the dimension-3 μ term may be
possible here also.
Two pairs surviving from the dimension-3 couplings

couple to GUT-scale VEVs by high-dimensional operators.
In this case, since two pairs are just from the phase
condition on Θ6 ¼ 1

3
of Hi

uði ¼ 1; 2Þ and Hj
dðj ¼ 1; 2Þ in

Eq. (20), these two are not distinguished. So, if couplings of
the 2 × 2 μ matrix are democratic,

�
μGUT μGUT

μGUT μGUT

�
; ð27Þ

there remains only one light pair. The heavy pair obtains the
μ term 2μGUT. This is a remarkable result. A possible
Yukawa coupling leading to Eq. (27) arises in a dimension-
4 superpotential:

Wμ ∝
1

M̃2
Hu

�
T6;

1

3

�
Hd

�
T6;

1

3

�

·

�
Σ�
1ðT3; 0ÞΣ2

�
T3;

1

3

��
· fσig; ð28Þ

where M̃ is a string/GUT-scale mass parameter, and the
multiplicity of Σ�

1 and Σ2 with the phase 0 is 2, and the
multiplicity with the phase 1

3
is 1. A σi is attached to make

theUð1ÞR charge 2modulo 4. Since theVEVof σiði¼2;3;4Þ
breaksZ4R symmetry, M̃ and μGUT are constrained such that
the dimension-5 proton decay operator is sufficiently sup-
pressed. We note that μGUT in Eq. (27) is of order
jhΣ�

1Σ2σ2ij=M̃2, where hΣ�
1i ¼ hΣ2i at a GUT scale is needed

to break the SUð5Þflip to the SM. If we take jhΣ2ij ∼ M̃≃
1017 GeV, the scale μGUT is about hσ2iwhereZ4R is broken.
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If we take the democratic form in Eq. (27), the massless
component of two Hu’s, Hua and Hub, is

ðHuÞSM ¼ 1ffiffiffi
2

p ðHua −HubÞ: ð29Þ

B. Vectorlike exotics

Z4R is broken at an intermediate scale by singlet VEVs
of QR ¼ 2 modulo 4, and all vectorlike exotics would
obtain masses at the intermediate scale. The gauge coupling
unification toward the low-energy value of sin2 θW ≃ 0.231
[76–78] can be studied for all the intermediate-scale masses
of these vectorlike exotics.

C. Negative masses

2M2
L ¼ ðPþ kVfÞ2 þ 2c̃k;

2M2
R ¼ s20 þ ðs̃þ kϕÞ2 þ 2ck; ð30Þ

where c̃k and ck are given in Tables IV and V, respectively.

For the SM masses, we need some SUð5Þflip singlets
developing GUT/string-scale VEVs. There are no SUð5Þflip
singlets in the untwisted sector U. So, some tachyonic
scarars may be needed in the twisted sectors; i.e., at the
origin some scalar mass must be negative. This condition
for the right movers in the kth twisted sector is accom-
panied by the condition M2

L ¼ M2
R:

Right mover∶2M2
R ¼ ðs̃þ kϕÞ2 < −2ck −

1

4

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

5
24

for k ¼ 1;
1
4

for k ¼ 2;
3
8

for k ¼ 3;
1
12

for k ¼ 4;
5
24

for k ¼ 5;
1
4

for k ¼ 6.

ð31Þ

For L-handed fields, we have

s s̃ · ϕ; ðs̃þ kϕÞ2; CheckM2 < 0 for k ¼
ð⊖j−−−Þ∶ −5

12
; 5

24
; 1
4
; 3
8
; 12
144

; 5
24
; 1
4

1ð×Þ; 2ð×Þ; 3ð×Þ; 4ð×Þ; 5ð×Þ; 6ð×Þ
ð⊖j−þþÞ∶ 0; 1ð×Þ; 2ð×Þ; 3ð×Þ; 4ð×Þ; 5ð×Þ; 6ð×Þ
ð⊖jþ−þÞ∶ þ1

12
; 1ð×Þ; 2ð×Þ; 3ð×Þ; 4ð×Þ; 5ð×Þ; 6ð×Þ

ð⊖j−−þÞ∶ þ4
12
; 1ð×Þ; 2ð×Þ; 3ð×Þ; 4ð×Þ; 5ð×Þ; 6ð×Þ

: ð32Þ

We checked the first row to see whether some mass is
negative, but there are no negative-mass states,
which is symbolically shown with ×. The next three
rows have larger values of ðs̃þ kϕÞ2, and again there
are no negative-mass states. Overall, there are no
negative-mass states from string compactification.
The needed VEVs must arise with appropriate Yukawa
couplings.

D. GUT breaking and Z4R

Let us define UR charges such that matter fields carryþ1
unit in the following way:

QR ¼ 1

2
ðQ1 þQ2 þQ3Þ þ

1

6
ðQ5 þQ6Þ þ 2Q20; ð33Þ

which is listed in Tables I and II. By giving VEVs to QR ¼
4 SUð5Þflip field(s), we obtain the discrete symmetry Z4.
This is possible with the GUT-breaking VEVs hΣ�

1i ¼ hΣ2i.
If any other σ singlet, carrying QR ≠ 4 modulo 4, develops
a VEV, then it will break Z4.

E. Top quark mass

The top quark is in the U sector. The selection rule of
Sec. II E requires the following coupling:

∼
1

M̃2
tðU3; 0ÞtcðU3; 0ÞHu

�
T6;

1

3

�
Σ�
1

�
T3;

2

3

�
Σ2ðT3; 0Þ;

ð34Þ
where M̃ is some string/GUT scale, and the second numbers
in the brackets are Θi’s given in Tables I and II. TheQR’s of
T3 fields [necessarily developing GUT-scale VEVs, as
required for breaking SUð5Þflip] add up to 0 modulo 4.
Thus, the totalQR of (34) isþ2, which is the required Uð1ÞR
charge in the superpotential. Then, the top quark mass is

mtt ∼ hHuLi
M2

10

M̃2
; ð35Þ

whereM10 ¼ jhΣ�
1ij ¼ jhΣ2ij. The bottomquarkmass arises

similarly from

∝bðU3;0ÞbcðU3;0ÞHd

�
T6;

1

3

�
Σ�
1

�
T3;

2

3

�
Σ2ðT3;0Þ: ð36Þ
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F. Proton decay problem

The most dangerous operator for proton decay is the
dimension-5 operator composed of matter fields, u, d, s, c,
b; t; e; μ; τ; νe; νμ; ντ in Table I:

qIqJqKlL; ð37Þ

where I, J, K, and L are family indices. As shown in
Table I, the Z4R quantum numbers are −1 for the SM
fermions. A superpotential term is allowed if QR ¼ 2
modulo 4. Thus, the dimension-5 proton decay operator
from the superpotential (37) is not allowed.

G. Neutrino masses

The neutrino mass operator is

Mν
33 ∝

1

M̃3
3

Z
d2ϑη̄3ðU3; 0Þη̄3ðU3; 0ÞHuL

�
T6;

1

3

�

×HuL

�
T6;

1

3

�
Σ�
1

�
T3;

2

3

�
Σ�
1

�
T3;

2

3

�
;

Mν
22 ∝

1

M̃4
2

Z
d2ϑη̄2

�
T0
4;
1

4

�
η̄2

�
T0
4;
1

4

�
HuL

�
T6;

1

3

�

×HuL

�
T6;

1

3

�
Σ�
1

�
T3;

2

3

�
Σ�
1

�
T3;

2

3

�
σ5

�
T6;

1

2

�
;

ð38Þ
where M̃3;2 are some GUT-scale mass parameters, and we
have satisfied QR ¼ 2 above for d2ϑ integration. Then, the
above masses are estimated as

Mν
33 ∼

v2EW
M̃3

M2
10

M̃2
3

; Mν
22 ∼

v2EW
M̃2

M2
10jhσ5ij
M̃3

2

: ð39Þ

Then, the above neutrino masses are of order v2EW=M̃, since
the SM singlet VEVs, M10, and jhσ5ij can be at the GUT
scale without breaking Z4R.
To obtain mixing between U3 and T0

4 neutrinos, we need
d2ϑd2ϑ̄ integration; i.e., we require QR ¼ 0 modulo 4 for
d2ϑd2ϑ̄ integration:

Mν
32;M

ν
31 ∝

1

M̃5
m

Z
d2ϑd2ϑ̄η̄3ðU3; 0Þη̄2;1

�
T0
4;
1

4

�

×HuL

�
T6;

1

3

�
HuL

�
T6;

1

3

�
Σ�
1

�
T3;

2

3

�

× Σ�
1ðT3; 0Þ · σ1

�
T0
4;
1

2

��
: ð40Þ

Then, the above mass mixing is estimated as

Mν
13;23 ∼

v2EW
M̃m

M2
10jhσ1ij
M̃3

m
: ð41Þ

Σ�
1 and Σ2 can have the GUT-scale VEVs because all of

them carry QR ¼ 4, but jσ1j ≪ M̃m because it breaks Z4R.
Depending on the ratio M2

10jhσ1ij=M̃3
m, the mixing masses

can be tuned.
Comparing Mν

11;22;31;32 and Mν
33,

Mν
11;M

ν
22

Mν
33

≈
���� σ5M̃

����; Mν
31;M

ν
32

Mν
33

≈
���� σ1M̃

����; ð42Þ

we note that the neutrino mass hierarchy favors the normal
hierarchy (in the sense that ντ is the heaviest) if the VEVs of
σ singlets are comparably small, jσ1j; jσ5j ≪ M̃.

H. Mass matrices, and CKM and PMNS mixing angles

Mass matrices obtained in the weak basis are diagon-
alized to give the CKM matrix in the quark sector and the
PMNS matrix in the lepton sector. The Yukawa couplings
allowed by the Z4R quantum numbers, shown in Tables I
and II, dictate the forms of mass matrices in the weak basis.
Fitting to the observed CKM angles in some detail is
presented in a separate paper [79]. For the PMNS matrix,
the observed data are not accurate enough to analyze it now.

VI. THE VACUUM STRUCTURE

In this section, our main interest is how the vacuum at the
GUT scale, leading to the Z4R discrete symmetry [59], is
realized in our scheme. The following Uð1ÞR quantum
numbers are determined if Σ�

1, Σ2, σ5, σ6, σ7, and σ8
develop GUT-scale VEVs. All the other fields are not
required to have a GUT-scale VEV. Then, there remains a
degeneracy which we remove by requiring a simple form
for QR. Let us start by parametrizing the Uð1ÞR charge,
without including the anomaly-free Q4, as

QR ¼ x1Q1 þ x2ðQ2 þ a3Q3Þ þ x5Q5 þ x6Q6

þ x20ðk18Q18 þQ20 þ k22Q22Þ: ð43Þ
Tobreak the SUð5Þflip down to a supersymmetric SM,Σ�

1 and
Σ2 must develop the samemagnitude of VEV. Therefore, the
contributions from the KK sector must be mutually exactly
opposite (by considering effective D terms) for Σ�

1 and Σ2.
This condition is on the gauge charges and hence, toward
SUSYbelow theGUTscale,wemust require k18 ¼ k22 ¼ 0.
Nonzero VEVs of σ5 and σ6, leading to the same discrete
charge of σ5 and σ6 (for σ7 and σ8 also), give a possibility
a3 ¼ 1. If x1 ¼ x2, we have

QR ¼ x1ðQ1 þQ2 þQ3Þ þ x5Q5 þ x6Q6 þ x20Q20:

As an illustration, let us try x20 ¼ 2. To have a Z4 subgroup
from the VEVs of Σ�

1 and Σ2, fromQ5,Q6, andQ20 charges
in Table II, we have x5Q5 þ x6Q6 ¼ �2 for Σ�

1 and Σ2,
respectively. Then, note that x5Q5 þ x6Q6 ¼ �2 or 0 in
Tables I and II. For thematter fields of Table I to have an odd
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QR, we fix x1 ¼ x2 ¼ 1
2
. Still, x5 and x6 are not determined.

For an illustration, we can choose x5 ¼ x6 ¼ 1
6
such that

QR ¼ 1

2
ðQ1 þQ2 þQ3Þ þ

1

6
ðQ5 þQ6Þ þ 2Q20: ð44Þ

In Tables II and III, theQR’s of Eq. (44) are presented. This
illustration is realized if the following conditions are met for
the vacuum from gauge symmetries:
(a) SUSY is realized below the GUT-breaking scale.
(b) There exist VEVs for σ5 and σ6, and also for σ7 and σ8.

Also, there exists a VEV of σ1.
(c) x1 ¼ x2 ¼ 1

4
x20.

(d) Realization of Z4R.
Items (a) and (d) are what wewant. Item (a) is automatically
fulfilled in our construction because we obtained a SUSY-
flipped SU(5) from the orbifold construction [5,6]. Item
(d) follows if items (b) and (c) are fulfilled. We can see it by
choosing x20 ¼ 2, for which we obtain odd numbers for
matter fields of Table I, and there are no fractional numbers
in Tables I and II. Thus, Z4R is realized. In the remainder of
this section, therefore, we discuss the points related to items
(b) and (c).
Item (b) requires showing that σ5 and σ6 and also σ7 and

σ8 develop VEVs. The BSM fields in Table II can have the
following ϑ-dependent gauge-invariant terms in the super-
potential:

Σ�
1

�
T3;

2

3

�
Σ2

�
T3;

1

3

�
; Σ�

1ðT3; 0ÞΣ2

�
T3;

1

3
; 0

�
;

σ5

�
T6;

1

2

�
σ̄7

�
T6;−

1

2

�
;

σ6

�
T6;

1

2

�
σ̄8

�
T6;−

1

2

�
;

σ5

�
T6;

1

2

�
σ6

�
T6;

1

2

�
σ̄7

�
T6;−

1

2

�
σ̄8

�
T6;−

1

2

�
;

plus any combinations of gauge-invariant field products
in Table II, having

P
iΘi ¼ 0. Consider a superpotential

constructed with the above quadratic combinations:

W ¼ −m1Σ�
1Σ2 −m2σ5σ̄7 −m0

2σ6σ̄8 þ
λ1
2M

ðΣ�
1Σ2Þ2

þ λ2
2M

ðσ5σ̄7Þ2 þ
λ02
2M

ðσ6σ̄8Þ2 þ
λ002
M

σ5σ6σ̄7σ̄8

þ λ3
M

Σ�
1Σ2σ5σ̄7 þ

λ03
M

Σ�
1Σ2σ6σ̄8; ð45Þ

where, for simplicity, we consider only one combination of
Σ�
1Σ2. Since σ5, σ6, σ̄7, and σ̄8 appear in the same twisted

sector, T6, later we set for simplicity m2¼m0
2, λ2¼λ02¼λ002 ,

and λ3 ¼ λ03. The SUSY conditions require

δΣ�
1∶ −m1Σ2 þ

λ1
M

Σ2Σ�
1Σ2 þ

λ5
M

Σ2σ5σ̄7 þ
λ6
M

Σ2σ6σ̄8 ¼ 0;

δΣ2∶ −m1Σ�
1 þ

λ1
M

Σ�
1Σ2Σ�

1 þ
λ5
M

Σ�
1σ5σ̄7 þ

λ6
M

Σ�
1σ6σ̄8 ¼ 0;

δσ5∶ −m2σ̄7 þ
λ2
M

σ̄7σ5σ̄7 þ
λ4
M

σ6σ̄7σ̄8 þ
λ5
M

Σ�
1Σ2σ̄7 ¼ 0;

δσ6∶ −m3σ̄8 þ
λ3
M

σ̄8σ6σ̄8 þ
λ4
M

σ5σ̄7σ̄8 þ
λ6
M

Σ�
1Σ2σ̄8 ¼ 0;

δσ̄7∶ −m2σ5 þ
λ2
M

σ5σ̄7σ5 þ
λ4
M

σ5σ6σ̄8 þ
λ5
M

Σ�
1Σ2σ5 ¼ 0;

δσ̄8∶ −m3σ6 þ
λ3
M

σ6σ̄8σ6 þ
λ4
M

σ5σ6σ̄7 þ
λ6
M

Σ�
1Σ2σ6 ¼ 0:

ð46Þ
We choose the vacuum where all of the above fields
develop VEVs, Vi ¼ hσii and V10 ¼ hΣ�

1i ¼ hΣ2i. In terms
of m1;2 and λ1;2;3, we obtain two independent relations,

−m1 þ
λ1
M

V2
10 þ

λ3
M

ðV5V7 þ V6V8Þ ¼ 0;

−m2 þ
λ3
M

V2
10 þ

λ2
M

ðV5V7 þ V6V8Þ ¼ 0; ð47Þ

from which we conclude that the singlets Σ�
1, Σ2, and

σiði ¼ 5; 6; 7; 8Þ develop GUT-scale VEVs:

V2
10 ¼

ðλ2m1 − λ3m2Þ
λ1λ2 − λ23

M;

V5V7 þ V6V8 ¼
ðλ3m1 − λ1m2Þ

λ23 − λ1λ2
M: ð48Þ

We also need σiði ¼ 1; 2; 3; 4Þ VEVs which are much
smaller than the GUT scale, such that the B-violating
dimension-5 operators are sufficiently suppressed because
hσiði ¼ 1; 2; 3; 4Þi would break Z4 down to Z2. These
VEVs are considered to be a perturbation to the VEVs of
Eq. (48), and hσiði ¼ 1; 2; 3; 4Þi would be close to 0. Note
that the σ’s in Table II are not moduli, and there is no σi
with all gauge charges vanishing. Therefore, in order not to
produce runaway solutions of σi, the mass parameters in the
numerator of renormalizable terms and in the denominator
of nonrenormalizable terms, leading to hσiði ¼ 1; 2; 3; 4Þi,
are required to be of sub-GUT scale. Consider the
following gauge and Θ invariant D terms containing
σiði ¼ 1; 2; 3; 4Þ for mI, MI ≪ M̃:

−
1

2
mI

X4
i¼1

Z
d2ϑd2ϑ̄σiσ�i ;

λI
2M8

I

Z
d2ϑd2ϑ̄σ21σ

2
2σ

2
3σ

2
7σ

2
8;

ð49Þ
where σi carry ϑ, and σ7;8 and σ�i carry ϑ̄. One among σ7 and
σ8 carries two KK windings and the others carry one KK
winding, such that Uð1Þ20 invariance is satisfied. Then, V
contains the following:

R PARITY FROM STRING COMPACTIFICATION PHYS. REV. D 99, 093004 (2019)

093004-9



V ∋ −
1

2
m2

I

X4
i¼1

jσij2 þ
λI

2M8
I
½σ1ðσ�1Þ2σ22σ23σ27σ8ðσ�8Þ2 þ � � ��

þ
���� −m2σ6 þ

λ2
M

σ6σ̄8σ6 þ
λ2
M

σ5σ6σ̄7 þ
λ3
M

Σ�
1Σ2σ6

����2;
ð50Þ

dV
dσ�1

¼ 0 →
λI
M8

I
½σ1σ�1σ22σ23σ27σ8ðσ�8Þ2 þ � � �� ¼ m2

Iσ1; ð51Þ

or

σ�1 ¼
m2

IM
8
I

λIðσ22σ23σ27σ8ðσ�8Þ2 þ � � �Þ : ð52Þ

For σ5 ¼ σ6¼ σ8¼ σ̄7¼V5 and σ1 ¼ σ2 ¼ σ3 ¼ σ4 ¼ VI ,

VI ¼
�
m2

IM
3
I

λI

�
1=5 MI

V5

: ð53Þ

where we neglect � � � in Eq. (52). If ffiffiffiffiffiffiffiffiffiffiffiffi
mIMI

p
≈ 10−3V5, then

we obtain an intermediate scale VI ≈ ðλIÞ1=510−6V5. This
can be a kind of model realizing the scale of the “very light”
axion in supergravity models [74]. So, we conclude that the
vacuum, satisfying item (b), can be realized. In addition, if
the solution for the μ term is realized à la Ref. [70], then the
electroweak scale may be obtained along our vacuum
direction.
Item (c) requires showing that the quantum numbers of

x2 are 3
4
times ð3x5 þ x6Þ. Referring to the six U(1) gauge

quantum numbers of Tables I and II, integers are possible
if x1, x2, x2a3, x5, x6, and x20 are integer multiples of
1
2
; 1
2
; 1
2
; 1
3
; 1
3
, and 1, respectively. Item (a) requires the

relation

3x5 þ x6 ¼
x20
3

: ð54Þ

If we choose x20 ¼ 2x, we obtain x2 ¼ 1
2
x. So far, there

remain two degrees of freedom, i.e., arbitrary x1 and
x6ð¼ x20

3
− 3x5Þ. Requiring a VEV for σ1, we note that

hσ1i breaks one U(1) gauge symmetry: Uð1Þσ1 . The break-
ing direction of Uð1Þσ1 should not affect other gauge
symmetries. Thus, we require x1 ¼ x2 ¼ x2a3 in
Eq. (43) because the Q1, Q2, and Q3 quantum numbers
of σ1 in Table II are the same. This proves item (c).
There remains one free parameter x6. We cannot deter-

mine this parameter by VEVs of scalars. To give a smaller
number for coefficients, we choose x5 ¼ x6, and the result
is given by Eq. (44) and Tables I and II.

VII. CONCLUSION

We obtained an R parity as a discrete subgroup of Uð1ÞR
global symmetry of Uð1ÞEE × Uð1ÞKK, where Uð1ÞEE is the
part from E8 × E0

8 and Uð1ÞKK is the part generated by Q18,

Q20, and Q22. We checked that the needed VEVs toward
flavor mixing, the μ term, the neutrino mass operators, and
forbidding dangerous dimension-5 ΔB ≠ 0 operators,
are consistent with the Uð1ÞR direction. This has been
possible because the number of QR ¼ 4 (modulo 4) fields
of Table II is enough to render the needed operators. One
more interesting feature is that the SM quarks and leptons
of Table I carrying QR ¼ �1 (modulo 4) are not enough
by themselves to cancel the unwanted dimension-5 ΔB ≠ 0
operators. But the oringinal Uð1ÞR charge helps to forbid
these unwanted terms because the origin of Z4R symmetry
in the ultraviolet completed theory is the global
Uð1ÞR which forbids the unwanted dimension-5 ΔB ≠ 0
operators.
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Note added in the proof.—Recently, a dynamical breaking
in SU(5) is suggested [80].

APPENDIX: Uð1ÞKK CHARGES OF
NEUTRAL SINGLETS

The definition of shift ϕ and the number of fixed points χ
in ZN orbifolds are presented in Table III together with the
allowed oscillating modes. The smallest number of fixed
points is 3, which are possible in Z12−I and Z6−I . Among
these, we studied Z12−I, which allows more possibilities of
Yukawa couplings.
For the massless modes, the phase determining the

multiplicity is given in Eq. (11). The massless modes
relevant for the Higgs mechanism in our model are for just
V; i.e., we do not use the fields from Wilson line added
shifts. So, we set Vf ¼ V in Eq. (11):

Θ0
k ¼

X
i

ðNL
i − NR

i Þϕ̂i þ P · V − s · ϕþ k
2
ðV2 − ϕ2Þ

¼
X
i

ðNL
i − NR

i Þϕ̂i þ P · V − s · ϕþ k
12

; ðA1Þ

V2 ¼ 11

24
; ϕ2 ¼ 7

24
;

V2 − ϕ2

2
¼ 1

12
: ðA2Þ

In the main text, we illustrated the U(1) charge calcu-
lation for SUð5Þflip nonsinglets. In this Appendix, we
illustrate the calculational methods of massless spectrum
and U(1) charges explicitly. The left-mover and right-
mover massless states satisfy
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Left mover∶ M2
L ¼ ðPþ kVfÞ2

2
þ c̃k ¼ 0;

Right mover∶ M2
R ¼ ðsþ kϕÞ2

2
þ ck ¼ 0;

s ¼ ð⊕ or ⊖; s̃Þ: ðA3Þ

In Eq. (3), ⊕ or ⊖ is chosen such that the total number of
minus signs is even.

1. Two families from T0
4

For matter fields in T0
4 without oscillators, we insert

P · V ¼ − 1
4
for k ¼ 4 in Eq. (1):

Θ0
4ðmatterÞ ¼ −s̃ · ϕþ 1

12
: ðA4Þ

Note that 4ϕ is ð20
12
; 16
12
; 4
12
Þ → ð2

3
; 1
3
; 1
3
Þ, where we must use

the entries in the region [0, 1). It is like the shift in Z3

orbifold. With this 4ϕ, the masslessness condition is
s20 þ ðs̃þ kϕÞ2 ¼ −2c ¼ 1

3
; i.e., ðs̃þ kϕÞ2 ¼ 1

12
, which is

satisfied by s̃ ¼ ð−−−Þ. So, we choose s ¼ ð⊖; s̃Þ, i.e., it is
L-handed, and we obtain Θ0

4ðmatterÞ ¼ 1
2
. With the multi-

plicity contribution

χ̃ðθ4;θjÞ¼
�
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

27; 3; 3; 3; 27; 3; 3; 3; 27; 3; 3; 3
;

ðA5Þ

we obtain P ¼ 2, and the charges Q18, Q20, and Q22 of
matter from T0

4 are −1;−1, and −1, respectively, which are
listed in Table I.
For Higgs fields Hu with P ¼ ð10000; 111Þð08Þ0 in T0

4,
we have P · V ¼ − 1

2
. For k ¼ 4 in Eq. (1),

Θ0
4ðHiggsÞ ¼ −s̃ · ϕþ −2

12
: ðA6Þ

Since 4ϕ is ð2
3
; 1
3
; 1
3
Þ, the masslessness condition is the same

as above, s ¼ ð⊖;−−−Þ; i.e., it is left handed (L-handed),
and we obtain Θ0

4ðHiggsÞ ¼ 1
4
. Again, we obtain P ¼ 2

using Eq. (A5), and the chargesQ18,Q20, andQ22 of Higgs
from T0

4 are −1;−1, and −1, respectively. These were used
for the Higgs fields in Ref. [68], but here we will not use
these for the Higgs fields for breaking the SM.

2. σ1–4 from T0
4

For T0
4, we have calculated above the chirality as

s ¼ ð⊖;−−−Þ. With P ¼ ð08Þð05;−1;−1; 0Þ0 for σ1, we
have P · V ¼ −1

2
, Θ4 ¼ þ3

12
, and we obtain P ¼ 2 without an

oscillator. With P ¼ ð05; 0;þ1;þ1Þð08Þ0 for σ2, we have
P · V ¼ −4

12
and Θ4 ¼ þ5

12
. With the oscillator 11̄, we obtain

P ¼ 3. For σ1;2;3;4, we have

Q18;20;22 ¼ ð−1;−1;−1Þ: ðA7Þ

3. σ5–8 from T6

For T6, the multiplicity factor and the phase are given
in Eqs. (17) and (18). The allowed chiralities are s ¼
ð⊕j−þ−Þ and s ¼ ð⊖j−−−Þ for 6ϕ ¼ ð1

2
; 0; 1

2
Þ. For σ5,

we use P ¼ ð05;þ1;þ2;þ1Þð05; 0;−1;þ1Þ0 and obtain
P · V ¼ −5

12
, and massless fields arise without oscillators:

s Ni; s̃ · ϕ; Θ6; Multiplicity

ð⊕j−þ−Þ∶ 0; −1
12
; þ2

12
; 0 · σ5;6

ð⊖j−−−Þ∶ 0; −5
12
; þ6

12
; 2 · σ5;6

: ðA8Þ

TABLE I. U(1) charges of matter fields in the SM. ξi and η̄i contain the left-handed quark and lepton doublets, respectively, in the ith
family.

State(Pþ kV0) Θi RX (Sect.) QR Q1 Q2 Q3 Q4 Q5 Q6 Q18 Q20 Q22

ξ3 ðþþþ−−;−−þÞð08Þ0 0 10−1ðU3Þ −5 −6 −6 þ6 0 0 0 þ1 −1 þ1

η̄3 ðþ−−−−;þ−−Þð08Þ0 0 5þ3ðU3Þ −5 þ6 −6 −6 0 0 0 þ1 −1 þ1

τc ðþþþþþ;−þ−Þð08Þ0 0 1−5ðU3Þ −5 −6 þ6 −6 0 0 0 þ1 −1 þ1

ξ2 ðþþþ−−;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4 10−1ðT0
4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

η̄2 ðþ−−−−;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
5þ3ðT0

4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

μc ðþþþþþ;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
1−5ðT0

4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

ξ1 ðþþþ−−;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4 10−1ðT0
4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

η̄1 ðþ−−−−;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
5þ3ðT0

4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

ec ðþþþþþ;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
1−5ðT0

4Þ −5 −2 −2 −2 0 0 0 −1 −1 −1

HuL ðþ10000; 000Þð05; −1
2

þ1
2
0Þ0 þ1

3
2 · 5−2ðT6Þ −2 0 0 0 −12 0 0 −1 −1 −1

HdL ð−10000; 000Þð05; þ1
2

−1
2
0Þ0 þ1

3
2 · 5̄þ2ðT6Þ −2 0 0 0 þ12 0 0 −1 −1 −1
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For σ7, we useP¼ð05;þ1;0;þ1Þð05;0;−1;þ1Þ0 and obtain
P · V ¼ −1

12
, and massless fields arise without oscillators:

s Ni; s̃ · ϕ; Θ6; Multiplicity

ð⊕j−þ−Þ∶ 0; −1
12
; þ6

12
; 2 · σ7;8

ð⊖j−−−Þ∶ 0; −5
12
; þ10

12
; 0 · σ7;8

: ðA9Þ

Here, Q18;20;22 charges are as ð−1;−1;−1Þ for L-handed
fields σ5;6 and ð−1;þ1;−1Þ for R-handed fields σ7;8.

4. σ11–18 from T3 and T9

In T3, the multiplicity factor is given as

χ̃ðθ3;θjÞ¼
�
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

4; 1; 1; 4; 1; 1; 4; 1; 1; 4; 1; 1
:

ðA10Þ
Since 3ϕ ¼ ð1

4
; 0; 1

4
Þ, the allowed chiralities are s ¼ ð⊕;�;

−;∓Þ, and s ¼ ð⊖;�;þ;∓Þ. We have massless conditions
for right movers as s̃ · ϕ ¼ 0;− 1

3
for ⊕ (R-handed fields)

and as s̃ · ϕ ¼ 0;þ 1
3
for ⊖ (L-handed fields).

TABLE II. U(1) charges of L-handed neutral scalars (but σ7;8 for R-handed). We kept up to one oscillator represented in ðNLÞj,
meaning Number of resulting fields ð½number of oscillating mode�torus of oscillating modeÞ. For example, nð11̄Þ means that there result n
multiplicities with one oscillator with phase −5

12
. For Q18;20;22 charges, here we listed only those of L-handed fields, participating in the

Yukawa couplings.

State(Pþ kV0) Θi ðNLÞj P ·RX (Sect.) QR Q1 Q2 Q3 Q4 Q5 Q6 Q18 Q20 Q22

Σ�
1 ðþþþ−−;03Þð05;−1

4
−1
4
þ2
4
Þ0 0 2ð11Þ 210−1ðT3ÞL þ4 0 0 0 0 þ9 þ3 −1 þ1 −1

Σ�
1 ðþþþ−−;03Þð05;−1

4
−1
4
þ2
4
Þ0 þ2

3
1ð13Þ 110−1ðT3ÞL þ4 0 0 0 0 þ9 þ3 −1 þ1 −1

Σ2 ðþþ−−−;03Þð05;þ1
4
þ1
4
−2
4
Þ0 0 2ð11̄Þ 210þ1ðT3ÞL −4 0 0 0 0 −9 −3 −1 −1 −1

Σ2 ðþþ−−−;03Þð05;þ1
4
þ1
4
−2
4
Þ0 þ1

3
1ð13̄Þ 110þ1ðT3ÞL −4 0 0 0 0 −9 −3 −1 −1 −1

σ1 ð05; −2
3

−2
3

−2
3
Þð08Þ0 þ1

4
0 2 · 10ðT0

4Þ −14 −8 −8 −8 0 0 0 −1 −1 −1
σ2 ð05; −2

3
þ1
3

þ1
3
Þð08Þ0 0 3ð11̄Þ 3 · 10ðT0

4Þ −2 −8 þ4 þ4 0 0 0 −1 −1 −1
σ3 ð05; 1

3
−2
3

1
3
Þð08Þ0 0 3ð11̄Þ 3 · 10ðT0

4Þ −2 þ4 −8 þ4 0 0 0 −1 −1 −1
σ4 ð05; 1

3
1
3
−2
3
Þð08Þ0 0 3ð11̄Þ 3 · 10ðT0

4Þ −2 þ4 þ4 −8 0 0 0 −1 −1 −1
σ5 ð05; 010Þð05; 1

2
−1
2
0Þ0 þ1

2
0 2 · 10ðT6Þ þ4 0 þ12 0 þ12 0 0 −1 −1 −1

σ6 ð05; 001Þð05; −1
2

1
2
0Þ0 þ1

2
0 2 · 10ðT6Þ þ4 0 0 þ12 −12 0 0 −1 −1 −1

σ7 ð05; 0 − 10Þð05; −1
2

1
2
0Þ0 þ1

2
0 2 · 10ðT6ÞR þ8 0 þ12 0 þ12 0 0 −1 þ1 −1

σ8 ð05; 00 − 1Þð05; 1
2
−1
2
0Þ0 þ1

2
0 2 · 10ðT6ÞR þ8 0 0 þ12 −12 0 0 −1 þ1 −1

σ11 ð05; −1
2

−1
2

−1
2
Þð05; 3

4
−1
4

−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ −9 −6 −6 −6 þ12 −9 −3 þ1 þ1 −1

σ011 ð05; −1
2

−1
2

−1
2
Þð05; 3

4
−1
4

−1
2
Þ0 0 4ð11þ13;11̄þ13̄Þ 4 · 10ðT3Þ −9 −6 −6 −6 þ12 −9 −3 −1 þ1 þ1

σ12 ð05; −1
2

1
2
1
2
Þð05; 3

4
−1
4

−1
2
Þ0 þ1

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 −6 þ6 þ6 þ12 −9 −3 þ1 þ1 −1

σ012 ð05; −1
2

1
2
1
2
Þð05; 3

4
−1
4

−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 −6 þ6 þ6 þ12 −9 −3 −1 þ1 þ1

σ13 ð05; 1
2
1
2
−1
2
Þð05; −1

4
3
4
−1
2
Þ0 þ1

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 þ6 þ6 −6 −12 −9 −3 þ1 þ1 −1

σ013 ð05; 1
2
1
2
−1
2
Þð05; −1

4
3
4
−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 þ6 þ6 −6 −12 −9 −3 −1 þ1 þ1

σ14 ð05; 1
2
1
2
−1
2
Þð05; −1

4
−1
4

1
2
Þ0 þ2

3
2ð11̄Þ þ 1ð13̄Þ 3 · 10ðT3Þ þ7 þ6 þ6 −6 0 þ9 þ3 −1 þ1 þ1

σ15 ð05; −1
2

−1
2

−1
2
Þð05; þ3

4
−1
4

−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ −9 −6 −6 −6 þ12 −9 −3 þ1 þ1 −1

σ015 ð05; −1
2

−1
2

−1
2
Þð05; þ3

4
−1
4

−1
2
Þ0 0 2ð11þ13;11̄þ13̄Þ 4 · 10ðT3Þ −9 −6 −6 −6 þ12 −9 −3 −1 þ1 þ1

σ16 ð05; −1
2

þ1
2

þ1
2
Þð05; þ3

4
−1
4

−1
2
Þ0 þ1

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 −6 þ6 þ6 þ12 −9 −3 þ1 þ1 −1

σ016 ð05; −1
2

þ1
2

þ1
2
Þð05; þ3

4
−1
4

−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 −6 þ6 þ6 þ12 −9 −3 −1 þ1 þ1

σ17 ð05; þ1
2

þ1
2

−1
2
Þð05; −1

4
þ3
4

−1
2
Þ0 þ1

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 þ6 þ6 −6 −12 −9 −3 þ1 þ1 −1

σ017 ð05; þ1
2

þ1
2

−1
2
Þð05; −1

4
þ3
4

−1
2
Þ0 þ2

3
2ð11þ13;11̄þ13̄Þ 2 · 10ðT3Þ þ3 þ6 þ6 −6 −12 −9 −3 −1 þ1 þ1

σ18 ð05; 1
2
þ1
2

−1
2
Þð05; þ3

4
−1
4

−1
2
Þ0 þ2

3
2ð11̄Þ þ 1ð13̄Þ 2 · 10ðT3Þ þ7 þ6 þ6 −6 0 þ9 þ3 −1 þ1 þ1

σ21 ð05; −1
6

−1
6

−1
6
Þð05; 1

4
1
4
−1
2
Þ0 0 1ð11̄Þ 10ðT0

1Þ −3 −2 −2 −2 0 þ9 þ3 −1 −1 −1
σ22 ð05; −5

6
1
6
1
6
Þð05; 1

4
1
4
−1
2
Þ0 0 1ð11̄ þ 13Þ 10ðT0

5Þ þ1 −10 þ2 þ2 0 þ9 þ3 −1 þ1 þ1

σ23 ð05; 1
6
−5
6

1
6
Þð05; 1

4
1
4
−1
2
Þ0 0 1ð11̄ þ 13Þ 10ðT0

5Þ þ1 −10 þ2 þ2 0 þ9 þ3 −1 þ1 þ1

σ24 ð05; 1
6
1
6
−5
6
Þð05; 1

4
1
4
−1
2
Þ0 0 1ð11̄ þ 13Þ 10ðT0

5Þ þ1 −10 þ2 þ2 0 þ9 þ3 −1 þ1 þ1
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P ¼ ð08Þð05; 0;−1;þ1Þ0 of σ11 gives P · V ¼ þ1
4
, and we obtain

s Ni; s̃ · ϕ; Θ3; Multiplicity

ð⊕jþ−−Þ∶ 0; 0; þ6
12
; 0 · σ11

ð⊕j−−þÞ∶ 0; −4
12
; þ10

12
; 0 · σ11

ð⊖jþþ−Þ∶ 0; þ4
12
; þ2

12
; 0 · σ11

ð⊖j−þþÞ∶ 0; 0; þ6
12
; 0 · σ11

: ðA11Þ

To have massless modes, we need additional phases �2
12

and �6
12
. But �2

12
cannot be used as shown in Table III, and we have the

following:

s Ni; s̃ · ϕ; Θ3; Multiplicity

ð⊕jþ−−Þ∶ �6
12

; 0; þ12;0
12

; ½2ð11 þ 13Þ; 2ð11̄ þ 13̄Þ� · σ11;15
ð⊕j−−þÞ∶ �6

12
; −4

12
; þ4;þ4

12
; ½1ð11 þ 13Þ; 1ð11̄ þ 13̄Þ� · σ11;15

ð⊖jþþ−Þ∶ �6
12

; þ4
12

; þ8;−4
12

; ½1ð11 þ 13Þ; 1ð11̄ þ 13̄Þ� · σ11;15
ð⊖j−þþÞ∶ �6

12
; 0; þ12;0

12
; ½2ð11 þ 13Þ; 2ð11̄ þ 13̄Þ� · σ11;15

: ðA12Þ

P ¼ ð05; 0;þ1;þ1Þð05; 0;−1;þ1Þ0 of σ12 gives P · V ¼ −1
12
, and we obtain

s Ni; s̃ · ϕ; Θ3; Multiplicity

ð⊕jþ−−Þ∶ �6
12

; 0; þ8;−4
12

; ½1ð11 þ 13Þ; 1ð11̄ þ 13̄Þ� · σ12;13;16;17
ð⊕j−−þÞ∶ �6

12
; −4

12
; þ12;0

12
; ½1ð11 þ 13Þ; 2ð11̄ þ 13̄Þ� · σ12;13;16;17

ð⊖jþþ−Þ∶ �6
12

; þ4
12

; þ4;−8
12

; ½1ð11 þ 13Þ; 1ð11̄ þ 13̄Þ� · σ12;13;16;17
ð⊖j−þþÞ∶ �6

12
; 0; þ8;−4

12
; ½1ð11 þ 13Þ; 1ð11̄ þ 13̄Þ� · σ12;13;16;17

: ðA13Þ

P ¼ ð05;þ1;þ1; 0Þð05;−1;−1; 0Þ0 of σ14 gives P · V ¼ −5
6
and Θ0 ¼ P · V þ k

12
¼ −7

12
. So, we have

TABLE IV. Two times the right-mover vacuum energy 2c̃ of
Ref. [32]. Typos in Z2ð6DÞ of Ref. [32] are corrected here.

2c̃ðk¼Þ 1 2 3 4 5 6

Z12−I − 35
24

− 3
2

− 13
8

− 4
3

− 35
24

− 3
2

Z12−II − 103
72

− 31
18

− 11
8

− 14
9

− 103
72

− 3
2

Z8−I − 47
32

− 11
8

− 47
32

− 3
2

Z8−II − 45
32

− 13
8

− 45
32

− 3
2

Z7 − 10
7

− 10
7

− 10
7

Z6−I − 3
2

− 4
3

− 3
2

Z6−II − 25
18

− 28
18

− 3
2

Z4 − 11
8

− 3
2

Z3 − 4
3

Z2ð6DÞ − 3
2

TABLE III. Allowed mode Ni for calculating Θ.

ZN ϕ χ Allowed oscillating mode Ni

Z12−I ð 5
12
; 4
12
; 1
12
Þ 3 11, 11̄; 13; 13̄

Z12−II ð 6
12
; 5
12
; 1
12
Þ 4 12, 12̄;13;13̄;22;22̄;23;23̄;

32;32̄;33;33̄
Z8−I ð3

8
; 2
8
; 1
8
Þ 4 12, 12̄; 11þ3; 11̄þ3̄

Z8−II ð4
8
; 3
8
; 1
8
Þ 8 11, 11̄; 12þ3; 12̄þ3̄

Z7 ð3
7
; 2
7
; 1
7
Þ 7 0

Z6−1 ð2
6
; 1
6
; 1
6
Þ 3 0

Z6−II ð3
6
; 2
6
; 1
6
Þ 12 11, 11̄

Z4 ð2
4
; 1
4
; 1
4
Þ 16 11, 11̄

Z3 ð2
3
; 1
3
; 1
3
Þ 27 0
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s Ni; s̃ ·ϕ; Θ3; Multiplicity

ð⊕jþ−−Þ∶ −5;−1
12

; 0; −12;−8
12

; ½2ð11̄Þ;1ð13̄Þ� ·σ14;18
ð⊕j−−þÞ∶ −1

12
; −4

12
; −12

12
; 2ð13̄Þ ·σ14;18

ð⊖jþþ−Þ∶ ×; þ4
12
; ×; 0 ·σ14;18

ð⊖j−þþÞ∶ −5;−1
12

; 0; −12;−8
12

; ½2ð11̄Þ;1ð13̄Þ� ·σ14;18

:

ðA14Þ

We list only L-handed fields in Table II.

5. σ9–10 from T0
2

We have

χ̃ðθ2;θjÞ¼
�
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
:

ðA15Þ

For T2, the masslessness condition of the R sector is
ðsþ ð2ϕÞÞ2 ¼ 1

2
, which is satisfied by s ¼ ð⊖;−−−Þ. With

P ¼ ð08Þð05;−1; 0;þ1Þ0, we have P · V ¼ 1
4
and Θ0

2 ¼ −2
12
.

We cannot make up −3
12
with the modes allowed in Table III.

6. σ19–21 from T0
1

For T1, we have the following multiplicity factor:

χ̃ðθ1;θjÞ¼
�
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
:

ðA16Þ

For T0
1, ðsþ ϕÞ2 ¼ 11

24
is satisfied by s ¼ ð⊖j−−−Þ. With

P ¼ ð08Þð05;−1; 0;þ1Þ0 and P · V ¼ 1
4
, Eq. (1) gives

s Ni; s̃ · ϕ; Θ0
1; Multiplicity

ð⊖j−−−Þ∶ 0; −5
12
; þ9

12
; 0 · σ19;20;21

; ðA17Þ

and there is no massless field without oscillators. We
cannot make up þ3

12
with the modes allowed in Table III.

7. σ22–24 from T0
5

For T5, we have the following multiplicity factor:

χ̃ðθ7;θjÞ¼
�
j¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11

3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
:

ðA18Þ

For T0
5, ðsþ 5ϕÞ2 ¼ 11

24
is satisfied by s ¼ ð⊕jþ−−Þ and

ð⊖j−þþÞ. With P ¼ ð05; 0;þ1;þ1Þð05;−1;−1; 0Þ0, we
have P · V ¼ þ2

12
. Equation (1) gives

s Ni; s̃ · ðϕÞ; Θ0
5; Multiplicity

ð⊕jþ−−Þ∶ 0; 0; þ4
12
; 0 · σ22;23;24

ð⊖j−þþÞ∶ 0; 0; þ4
12
; 0 · σ22;23;24

; ðA19Þ

and there is no massless field without oscillators. With the
modes allowed in Table III, we obtain

s Ni; s̃ · ðϕÞ; Θ0
5; Multiplicity

ð⊕jþ−−Þ∶ −4
12
ð11̄þ13Þ; 0; 0; 1 ·σ22;23;24

ð⊖j−þþÞ∶ −4
12
ð11̄þ13Þ; 0; 0; 1 ·σ22;23;24

;

ðA20Þ

and the charges of L-handed fields are

Q18;20;22 ¼ ð−1;þ1;þ1Þ: ðA21Þ

TABLE V. Two times the right-mover vacuum energy 2c of
Ref. [32]. Typos in Z6−II of Ref. [32] are corrected here.

2cðk ¼Þ 1 2 3 4 5 6

Z12−I − 11
24

− 1
2

− 5
8

− 1
3

− 11
24

− 1
2

Z12−II − 31
72

− 13
18

− 3
8

− 5
9

− 31
72

− 1
2

Z8−I − 15
32

− 3
8 − 15

32
− 1

2

Z8−II − 13
32

− 5
8

− 13
32

− 1
2

Z7 − 3
7

− 3
7

− 3
7

Z6−I − 1
2

− 1
3

− 1
2

Z6−II − 7
8 − 5

9
− 1

2

Z4 − 3
8

− 1
2

Z3 − 1
3

Z2ð6DÞ − 1
2
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