
PHYSICAL REVIEW E 99, 062136 (2019)

Critical hysteresis on dilute triangular lattice
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Critical hysteresis in the zero-temperature random-field Ising model on a two-dimensional triangular lattice
was studied earlier with site dilution on one sublattice. It was reported that criticality vanishes if less than one-
third of the sublattice is occupied. This appears at variance with recently obtained exact solutions of the model on
dilute Bethe lattices and prompts us to revisit the problem using an alternate numerical method. Contrary to our
speculation that criticality may not be exactly zero below one-third dilution, the present study indicates it is nearly
zero if approximately less than two-thirds of the sublattice is occupied. This suggests that hysteresis on dilute
periodic lattices is qualitatively different from that on dilute Bethe lattices. Possible reasons are discussed briefly.
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I. INTRODUCTION

The random-field Ising model [1] was introduced to study
the effect of quenched disorder on a system’s ability to sus-
tain long-range order in thermal equilibrium. After a rather
prolonged debate, it was resolved that the lower critical
dimension of the Ising model [2] remains equal to 2 in
the presence of quenched random fields [3]. Subsequently
a zero-temperature version of the model (ZTRFIM) without
thermal fluctuations but an on-site quenched random field
distribution N[0, σ 2] was introduced [4,5] as a model for
disorder-driven hysteresis in ferromagnets and other similar
systems [6]. Numerical simulations of ZTRFIM on a simple-
cubic lattice reveal a critical value of σ = σc ≈ 2.16J (J being
the nearest-neighbor ferromagnetic exchange interaction). For
σ < σc each half of the hysteresis loop shows a discontinuity
in magnetization. The size of the discontinuity decreases
to zero at a critical value of the applied field hc ≈ 1.435J
as σ is increased to σc. The behavior near {hc, σc} shows
scaling and universality quite similar to that caused by critical
thermal fluctuations at an equilibrium critical point. These
aspects of the model are important in understanding hysteresis
experiments and related theoretical issues. Initial numerical
attempts to find a σc on the square lattice were inconclusive,
casting doubt on the lower critical dimension of the model.
More extensive simulations [7] indicate σc ≈ 0.54J and hc ≈
1.275J on the two-dimensional (2D) square lattice.

An exact solution [8] of ZTRFIM on a Bethe lattice of
integer connectivity z shows that criticality occurs only if
z � 4. Normally critical behavior on Bethe lattices is inde-
pendent of z if z > 2 and is the same as in the mean-field
theory. Therefore, the result for hysteresis is unusual, and
efforts have been made [9] to understand the physics behind
it. A useful insight is obtained by extending the analysis to
noninteger values of z [10,11]. This is done by considering
lattices where the connectivity of each node is distributed over
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a set of integers so that the average connectivity of a node has
a noninteger value greater than 2. Fortunately, the problem
can still be solved exactly and leads to the identification of
a general criterion for the occurrence of critical hysteresis.
The general criterion is that there should be a spanning path
across the lattice, and a fraction of sites on this path (even an
arbitrarily small fraction) should have connectivity z � 4.

On periodic lattices, an exact solution of ZTRFIM is not
available. Extant simulations indicate that the existence or
absence of σc on a periodic lattice with uniform connectivity z
is the same as on a Bethe lattice of connectivity z. Criticality is
absent on any lattice with z = 3 irrespective of the dimension
d of the space in which the lattice is embedded [12]. Indeed,
critical hysteresis appears to be determined by a lower integer
connectivity z� = 4 rather than a lower critical dimension
d� = 2. As z increases above z�, the critical point becomes
easier to observe in simulations. Compared with the intensive
simulations on large square lattices, it takes a modest effort to
observe criticality on a triangular lattice [13]. However, the es-
timated value of σc appears to decrease slowly with increasing
size of the lattice. A study on lattices of size L × L with L �
600 gives σc = 1.22 [15], while more extensive simulations
on lattices of size up to L � 65 536 yield σc = 0.85 [14]. We
may remark that the critical exponents on the triangular lattice
appear to be different from those on the square lattice [14].
This is puzzling in the context of the universality of critical
phenomena, and the broader implications of this result are
not clear. At present, L = 65 536 is the largest linear size that
has been studied thoroughly using available computers. One
may ask if σc would decrease further if much larger values
of L were studied. Although extant numerical studies do not
suggest σc → 0 as L → ∞, we are not aware of a rigorous
argument for the same. Questions of this nature cannot be
resolved conclusively by numerical studies. Criticality on
a dilute lattice is even harder to settle numerically due to
additional positional disorder. Keeping this in mind, our focus
in the present paper is on systems of modest size, and we will
try to understand the qualitative trends in the basic data.

It has been argued that σc = 0 for an asymmetric distri-
bution of the random field in the case z = 3 and σc > 0 for
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integer values z � 4 [12]. Our objective here is to examine
noninteger values of z > 3. A dilute (partially occupied)
lattice of connectivity z enables us to study a lattice of
average connectivity zav < z. We consider a triangular lattice
T = A + B + C with one of its constituent sublattices, say C,
having a reduced occupation probability c [15]. The average
connectivity on T is then equal to zav = 6(1 + 2c)/(2 + c),
and the average connectivity on an A or B sublattice is equal
to zeff = 3(1 + c). The connectivity of occupied sites on C
is equal to 6. As c is reduced from 1 to 0, we go from
a triangular to a honeycomb lattice. Extant work indicates
that σc drops to zero at c = 1/3 within numerical errors. At
c = 1/3, zeff = 4. Keeping in mind that z � 4 is required
for criticality on lattices of uniform integer connectivity z,
it does look reasonable at first sight that σc = 0 for c < 1/3
on a diluted lattice. However, recent studies [10,11] on Bethe
lattices of mixed coordination number bring out a new twist in
the importance of sites with connectivity z � 4. Criticality has
been shown to exist even if a fraction of occupied sites have
z < 4, but there should be a spanning path through occupied
sites, and a fraction of sites on this path should have z � 4. If
this criterion were to apply to dilute periodic lattices as well,
we may expect a nonzero σc in the entire range 1 � c > 0.

The reason for the discontinuity in the hysteresis loop on
a Bethe lattice is that a fixed point corresponding to zero
magnetization becomes unstable and splits into two stable
fixed points for σ < σc. The size of the splitting is the size of
the discontinuity. This is easily demonstrated by an analysis
of the model on a Cayley tree [11]. We set the applied field
equal to zero, and we consider an initial configuration with
all spins down except the spins on the surface of the tree.
If the surface spins are equally likely to be up or down,
i.e., if the surface magnetization is zero, it remains zero as
spins are relaxed layer by layer toward the interior of the
tree. Small perturbations to the surface magnetization behave
differently depending on the connectivity z of the lattice. If
z � 3, the perturbations decrease and the magnetization in
the deep interior remains zero. If z � 4, the perturbations
diverge. A positive value of magnetization tends to increase,
and a negative value tends to decrease as we move toward
the interior. An important point is that this is not just a
global property of a lattice of uniform connectivity z. On a
lattice with mixed connectivity, each node depending on its
connectivity z increases or decreases the perturbation passing
through it in a similar fashion. The larger the connectivity
of the node, the larger is the enhancement. Thus a small
perturbation on the surface leads to a finite discontinuity in
the deep interior of the tree if a fraction of nodes along the
path have z � 4. Of course a spanning path is a prerequisite to
reach the deep interior. However, spanning paths are always
there under our scheme of dilution. Even if c = 0, there are
spanning paths on the honeycomb lattice; c > 0 introduces
additional paths containing C sites. The C sites have connec-
tivity equal to 6. As long as there are some C sites, there are
spanning paths punctuated by sites with connectivity equal to
6. Of the remaining sites, the A and B sites have connectivity
3(1 + c) on the average. If c � 1/3, the average connectivity
of each site on the spanning path is greater than 4, and we
have a case for a relatively large discontinuity as observed in
extant simulations. On the other hand, if c < 1/3, we should

still expect a discontinuity, albeit a much smaller one. The
argument in favor of it is the enhancement effect of nodes
with z � 4 on a Bethe lattice. It is not clear a priori how loops
on a periodic lattice may vacate this effect. This forms the
motivation to review critical hysteresis on the dilute triangular
lattice. However, simulations presented below suggest that
criticality on a dilute triangular lattice is qualitatively different
from that on a dilute Bethe lattice.

It may not be out of place to make two general remarks on
hysteresis studies in ZTRFIM before getting into the specifics
of the present paper. First, setting the temperature and driving
frequency equal to zero is an approximation. Hysteresis in
physical systems is necessarily a finite-temperature and finite-
time phenomenon. A key feature of ZTRFIM is the occur-
rence of a fixed point under the zero-temperature dynamics.
Scale invariance around the fixed point is directly related to
experimental aspects of Barkhausen noise. The fixed point
at σc is lost if either of the two approximations is relaxed
[16]. This is disconcerting but does not end the usefulness
of ZTRFIM. The model has been applied to a variety of
social phenomena including opinion dynamics where the
zero-temperature Glauber dynamics is not so unrealistic [17].
Therefore, efforts to improve our technical understanding of
ZTRFIM on different lattices and their associated universality
classes would remain of value in statistical mechanics.

II. THE MODEL AND NUMERICAL RESULTS

To make the paper self-contained and more readable, we
describe the model briefly. Readers may refer to [15] for more
details. The Hamiltonian is

H = −J
∑

i, j

sis j −
∑

i

hisi − h
∑

i

si. (1)

J is ferromagnetic interaction, the double sum is over nearest
neighbors of a 2D triangular lattice of size N = L × L, si =
±1, i = 1, . . . , N are Ising spins, hi is a quenched random
field drawn from a distribution N (0, σ 2), and h is an ex-
ternal field that is ramped up adiabatically from −∞ to
∞ and back down to −∞. The triangular lattice comprises
three sublattices A, B, and C; A and B are fully occupied,
but sites on C are occupied with probability c (0 � c � 1).
Thus we have a triangular lattice at c = 1 but a honeycomb
lattice at c = 0. Hysteresis under zero-temperature Glauber
dynamics is studied as follows. Depending upon the size of
the system N , we start with a sufficiently large and negative
h = −h0 such that the state {si = −1} is stable. A stable
configuration has each spin si aligned along the local field
�i = nJ − (z − n)J + hi + h at its site; here z is the number
of nearest occupied neighbors of i, with n neighbors being up
(s = 1), and (z − n) down (s = −1). The magnetization per
spin in a stable state is m(h) = N−1 ∑

i si. Thus we start with
a stable state with m(−h0) = −1. Now we increase h by the
minimal amount, say h = h1 = −h0 + δh1, which makes one
of the spins unstable. An attempt to stabilize this spin may
make some or all of its neighbors unstable. We hold h = h1

constant and iteratively flip up unstable spins until no spins in
the system are unstable. This results in an avalanche of flipped
spins in the vicinity of the initial unstable spin. The increase of
magnetization from h = h0 to h = h1 is equal to twice the size
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FIG. 1. Hysteresis loops in the zero-temperature random-field
Ising model for N (0, σ 2) distribution of the random field on an
L × L triangular lattice with L = 333 and σc(L) ≈ 1.2. Loops are
discontinuous for σ < σc(L) but macroscopically smooth for σ �
σc(L). At the microscopic level they exhibit Barkhausen noise as
shown in the inset.

of the avalanche. Holding the applied field constant during the
avalanche corresponds to the assumption that the applied field
varies infinitely slowly in comparison with the spin relaxation
rate. The stable state at the end of an avalanche corresponds to
a local minimum in the energy landscape, and it depends on
the history of the system. In our example, the local minimum
retains memory of the initial state with m(−h0) = −1. Under
finite temperature Glauber dynamics, the system may escape
the local minimum and move toward the global minimum,
albeit very slowly. For this reason we may occasionally refer
to the stable state under zero-temperature dynamics as a
metastable state. Employing the above procedure repeatedly,
we determine all the metastable states between m(−h0) = −1
and m(h0) = 1 on the lower half of the hysteresis loop, and
similarly on the upper half as well. Figure 1 depicts the result
for c = 0.90 and σ = 0.9 and 2.5, respectively. The key point
is that for smaller σ the loop has discontinuities, while there
is no discontinuity for larger σ . The upper and lower halves
of the loop are related by symmetry, and therefore it suffices
to focus only on the lower half. Apparently, there is a critical
value σ = σc that separates discontinuity at σ < σc from no
discontinuity at σ > σc, but the numerical determination of σc

is a challenging task.
Our main interest is to understand the qualitative depen-

dence of σc on L and c, and to check in particular if σc drops
to zero abruptly when c drops below c = 1/3. The defining
feature of σc is that the discontinuity in the magnetization
m(h), say on the lower half of the hysteresis loop, reduces to
zero as h → hc and σ → σc from below. The exact solution
on the Bethe lattice and simulations on periodic lattices reveal
that a discontinuity in magnetization is accompanied by a
reversal of magnetization. Numerical determination of a dis-
continuity is rather problematic. For small σ , the graph m(h)
versus h near m(h) = 0 tends to be almost vertical anyway. A
simulation based on a single realization of the random-field
distribution necessarily shows a broken curve comprising a
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FIG. 2. Number of metastable states M vs σ comprising the
lower half of a hysteresis loop on a triangular lattice of size 33 × 33
for Gaussian random field distributions N[0, σ 2]; for each σ the
value of M is averaged over 104 independent realizations of the
distribution. The first inset on the left shows an enlarged view of the
graph in the range 0 < σ < 4. The second inset on the right shows
the same data as in the first inset but on a logarithmic scale along the
y axis.

few irregularly placed discontinuities due to large fluctuations
in the system. The number as well as positions of discontinu-
ities vary from configuration to configuration, and averaging
over configurations results in a steep but smooth m(h) curve.
A genuine underlying discontinuity, if any, has to be inferred
from the character of fluctuations. An added complication is
that fluctuations at a discontinuity are different from those at
the critical point where the discontinuity vanishes. Finally,
finite-size scaling has to be employed to infer σc in the
thermodynamic limit. The estimate for σc using finite-size
scaling should be independent of system sizes used in numer-
ical simulations. However, numerical uncertainties are large
and diminish extremely slowly with increasing system size.
As mentioned earlier, initial studies on triangular lattices of
size L × L with L � 600 indicated σc = 1.22 [15], but more
extensive simulations on lattices up to L = 65 536 yield σc =
0.85 [14]. The procedure for determining σc is rather indirect,
tedious, and cpu-intensive, and various compromises have to
be made in order to draw reasonable conclusions [15].

In this paper, we adopt a different approach from that
used in previous studies. The basic idea is simple, although
the details have issues similar to those in earlier studies.
Our approach is useful in discerning important trends in the
behavior of the model based on simulations of systems of
modest size. For a fixed σ on an L × L lattice, we count
the total number of metastable states M(σ ; L) (fixed points
under zero-temperature Glauber dynamics) comprising the
lower half of the hysteresis loop. As indicated in the previous
paragraph, we increase the applied field h by a minimal
amount to go from one fixed point to the next and keep h
fixed during the relaxation process. We plot M(σ ; L) as a
function of σ . It is a monotonically increasing function of
σ without any discontinuity. The cpu time increases rapidly
with increasing L and σ . Figure 2 shows the result on a mod-
est 33 × 33 triangular lattice and 0 < σ � 50. The general
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FIG. 3. log10 M vs σ in the range 0 < σ < 2 on an L × L trian-
gular lattice; L = 33, 99, 198, 333, 666, and 999. M is averaged over
104 configurations for L � 198 and 103 configurations for L > 198.
As L increases, the inflection point σc(L) in the corresponding graph
shifts to lower σ .

features of Fig. 2 are easy to understand. In the limit of small
σ, σ � 0.4 approximately, the first spin to flip up initiates an
infinite avalanche of flipped spins giving M(σ < 0.4; L) = 2.
In the limit σ → ∞, spins flip up independently and M(σ →
∞; L) increases toward L × L. We expect M(σ ; L) to increase
continuously from 2 to L × L as σ increases from 0 to ∞
on a finite lattice. This expectation is borne out by Fig. 2. If
there is a critical value of σ separating discontinuous m(h) for
σ < σc(L) with continuous m(h) for σ > σc(L), we ought to
see its signature in the M(σ ; L) graph. A discontinuity in m(h)
for σ < σc would effectively reduce M(σ ; L) in proportion to
its size. This would result in some change in shape of the
M(σ ; L) versus σ graph at σc(L). We find that this effect is
present but too weak to be seen with the naked eye in the main
graph of Fig. 2 or its magnified portion in the range 0 < σ < 4
shown in the left inset there. However, we do see an apparent
inflection point around σ ≈ 1.8 if M(σ ; L) is plotted on log
scale scale as in the right inset. We tentatively identify this
inflection point with σc(L), the critical σc on an L × L lattice.
A scaling property of M(σ ; L) with respect to L presented
below confirms this identification.

Figure 3 shows log10 M(σ ; L) versus σ on a triangular
lattice for 0 < σ < 2 and L = 33, 99, 198, 333, 666, 999. The
results have been averaged over 104 configurations of the ran-
dom field distribution for L � 198 and 103 configurations for
L � 333. As expected, the graphs start at log10 2 and fan out
toward log10 L with increasing σ . There is an apparent scaling
with respect to L. Figure 4 brings out this scaling explicitly by
plotting G(σ ; L), where G(σ ; L) = log10

M(σ )
L×L . The quantity

G(σ ; L) is the logarithm of the density of metastable states
per unit area of the lattice. Each G(σ ; L) has an apparent
inflection point at σc(L) being concave up for σ < σc(L) and
convex up for σ > σc(L). Graphs for σ > σc(L) merge into
each other from above, meaning they maintain their relative
order in L as they merge. It is easy to understand this behavior.
Each metastable state is associated with an avalanche that
precedes it. Therefore, we may visualize a metastable state
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FIG. 4. The data in Fig. 2 for the triangular lattice are replotted to
show log10

M
L2 vs σ . M → 2 as σ → 0 irrespective of L. It is therefore

an artifact of scaling that graphs fan out for smaller values of σ . The
interesting feature is that they overlap for larger values of σ . This
feature may be exploited to estimate σc.

as an area on the L × L lattice occupied by spins that turn up
together in an avalanche. It helps to understand the following
discussion if we imagine coloring the area occupied by each
avalanche with a different color. G(σ, L) is then the logarithm
of the density of colors when colors fill the entire lattice. The
inverse of the density gives the average area occupied by a
randomly chosen color. Independence of G(σ ; L) from L for
σ > σc(L) suggests that colors are well dispersed, and each
color is spread over a much smaller area than L × L. In other
words, it suggests the absence of a large spanning avalanche
of the order of L × L. The curve is convex up because G(σ ; L)
increases with increasing σ and approaches saturation in the
limit σ → ∞. In contrast, G(σ ; L) for σ < σc(L) depends
on L and is concave up. This too is understandable. In this
regime, there is a spanning cluster on the scale L × L. Let
us color it black. The black cluster contributes merely one
color to the lattice but takes up a disproportionately huge
area preventing more colors from getting in. This significantly
reduces G(σ ; L). The black cluster shrinks to zero as σ →
σc(L) from below. The area vacated by the shrinking cluster
is gradually filled up by smaller clusters of different colors,
thus increasing G(σ ; L). This explains the concave-up shape
as well as the L dependence of G(σ ; L) for σ < σc(L). These
considerations lead us to associate the inflection point on
the G(σ ; L) curve with σc(L). In the following, we examine
how σc(L) shifts to lower values with increasing L. However,
before describing the numerical work, we may draw attention
to a practical limitation of our analysis.

We evaluate G(σ ) on six lattices of size 33 � L � 999 for
0.1J � σ � 2.0J . The range of σ is chosen because σc(L) ≈
1.8J for L = 33 and it is expected to decrease for larger L.
We increment σ in steps of δσ = 0.1, getting 20 data points
for each L. Fitting the 20 points to a polynomial of degree
10 or so results in a reasonably good looking fit, but the
fitted curve has a wavy nature on a magnified scale. Taking
the second derivative of the curve to find the inflection point
σc(L) introduces errors and creates spurious inflection points
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FIG. 5. log10
M
L2 vs σ on an L × L honeycomb lattice for 0 < σ �

0.8 and different values of L. A comparison with Fig. 3 indicates that
critical hysteresis is absent on the honeycomb lattice (see the text).

as well. To avoid the spurious inflection points, we adopt
an alternate method that does not require fitting the data
to a polynomial and serves to double-check our results. We
take σc(L) as the point where the G(σ ; L) versus σ curve
merges with the corresponding curve for the next higher
value of L. In other words, we take the G(σ ; L) curve for
L = 999 as the boundary and σc(L) for L < 999 as the point
where the corresponding curve merges with the boundary.
This procedure necessarily introduces an error due to the fixed
increment δσ . In the absence of interpolations between values
of σ at fixed intervals, σc(L) is restricted to one of the input
values. However, it produces a qualitatively similar result to
that obtained by fitting the data to polynomials. We will return
to this point when discussing our results in the following.

Let us call L33 the graph in Fig. 4 corresponding to L = 33
and similarly L99, etc. We find that L33 merges with L99 for
σ � 1.8; L99 merges with L198 for σ � 1.5; L198 merges
with L333 for σ � 1.4; L333 merges with L666 for σ � 1.3;
and L666 merges with L999 for σ � 1.2. As discussed in the
preceding paragraph, we interpret these results as indicating
σc(L) = 1.8, 1.5, 1.4, 1.3, 1.2 for systems of linear size L =
33, 99, 198, 333, 666, respectively. If we fit σc(L) to a power-
law scaling of the form

σc(L) = σc + aL−b (2)

we find that σc(L) converges to σc = 0.81 ± 0.19 in the
limit L → ∞ with a = 2.85 ± 0.37 and b = 0.30 ± 0.09.
We have also fit G(σ ) versus σ data to polynomials of
degree 11, and we looked for inflection points on the re-
sulting continuous curve. Ignoring the spurious inflection
points near the boundaries of the range [0.1 � σ � 2.0],
we obtain σc(L) = 1.68, 1.48, 1.38, 1.32, 1.25, 1.20 for L =
33, 99, 198, 333, 666, 999, respectively. Fitting these values
to Eq. (2) yields σc = 0.84 ± 0.06, a = 1.97 ± 0.05, and b =
0.24 ± 0.03. It is satisfying that the values of σc obtained by
the two methods are reasonably close to each other and also
close to the estimate σc = 0.85 ± 0.02 obtained in Ref. [14]
by studying large systems of size up to L = 65 536.
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FIG. 6. Metastable states vs σ on a partially diluted triangular
lattice with c = 0.30 in the range 0.1 � σ � 0.8.

Simulations presented in Fig. 4 demonstrate the existence
of critical hysteresis on a triangular lattice. Of course, the
result is not new [13–15], but it validates a new method. Our
goal is to apply the new method to examine criticality on
a dilute triangular lattice and compare with previous results
[15]. In preparation for this goal, we apply the new method to
the case c = 0 as well, i.e., on a honeycomb lattice. Figure 5
shows the results. Earlier studies have indicated the absence
of critical hysteresis on a honeycomb lattice [12]. Therefore,
any prominent difference between the trends of Figs. 4 and
5 may be used as a tool to detect the presence or absence of
critical hysteresis on a dilute lattice. Interestingly, both figures
have some common features as well as some prominent differ-
ences. Both show a threshold σth such that M(σ � σth; L) = 2
and consequently G(σ � σth; L) = log10 2 − 2 log10 L. Thus
in both cases the set of G(σ ; L) graphs for different L are
widely separated for σ � σth and merge into each other for
σ � σth, as may be expected.

The prominent difference between Figs. 4 and 5 lies in the
crossover from a set of widely separated curves at σ � σth

to their merger into each other at σ � σth. On the triangular
lattice, the curves maintain their relative order in L, but on
the honeycomb lattice they reverse it. In the case c = 1 each
curve changes from concave up to convex up at the inflection
point σc(L). As L increases, σc(L) decreases. In contrast, on
the honeycomb lattice we do not see any clear indication of
an inflection point or a concave-up portion. The threshold
value of σ below which M(σ ; L) = 2 depends on L and varies
somewhat from one configuration of random fields to another.
The average over different configurations makes the curve
rounded in this region but otherwise G(σ ; L) rises sharply
with increasing σ as well as increasing L. The sharp rise of
M(σ ; L) with σ and L causes the reversal of the ordering of
G(σ ; L) with respect to L before the curves merge into each
other from below. This crossover takes place over a relatively
narrow window [0, σ ] that shrinks further with increasing L
and moves toward lower σ . We take this to be a signature of
the absence of criticality on finite lattices. It is plausible that
in the limit L → ∞, the flat and concave-up portions of the
curves in Fig. 5 may shrink to zero resulting in convex-up
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FIG. 7. Metastable states vs σ on a partially diluted triangular
lattice with c = 0.40 in the range 0.1 � σ � 1.0.

curves over the full range σ > 0, but it is difficult to prove
it numerically on lattice sizes studied here. The absence of
critical hysteresis on a honeycomb lattice has been proven
theoretically for an asymmetric distribution of the random
field. It was shown that if on-site quenched random fields
are positive with the half-width of their distribution going
to zero, m(h) would increase smoothly from −1 to 1 as h
increases from −∞ to J . A similar argument can be used
to prove that more than half-spins in the system would have
turned up continuously at h = J for a Gaussian random field
distribution. In other words, magnetization reversal would
occur without a discontinuity as σ → 0. Therefore, critical
hysteresis on the honeycomb lattice may be ruled out in the
thermodynamic limit. Keeping in mind that finite-size effects
decrease logarithmically slowly, we take Fig. 5 as showing the
absence of criticality on the honeycomb lattice.

The above discussion provides us with a reasonable signa-
ture of critical hysteresis, which can be read off from G(σ ; L)
versus σ graphs. Figures 6–8 show the results of simulations
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FIG. 8. Metastable states vs σ on a partially diluted triangular
lattice with c = 0.60 in the range 0.1 � σ � 2.0.

on a dilute triangular lattice with c = 0.3, 0.4, and 0.6, re-
spectively. It is evident that the case c = 0.3 as well as c = 0.4
are similar to the case c = 0. Thus we conclude that critical
hysteresis is absent in these cases. The graphs for c = 0.6
seem to have a mixed character. Results for L = 33, 99, 198
have the features of c = 0 while those for L = 333, 666, 999
appear closer in character to c = 1. To us it seems that the
lattice with c = 0.6 supports critical hysteresis, although it is
a borderline case.

III. DISCUSSION AND CONCLUDING REMARKS

Hysteresis in the zero-temperature random-field Ising model
on honeycomb (z = 3) and triangular (z = 6) lattices is a
difficult problem analytically as well as numerically. Extant
work indicates that a honeycomb lattice does not support
critical hysteresis but the triangular lattice does. However,
the critical point σc(L) on the triangular lattice decreases
extremely slowly with increasing system size L. Intensive
numerical simulations on large systems (N ≈ 1010) have been
used to estimate σc in the limit L → ∞. The problem on the
dilute triangular lattice is even more challenging. Simulations
on modest systems (N ≈ 106) along with finite-size scaling
and percolation arguments predict σc = 0 for c < 1/3. At first
sight this appears reasonable. It is similar to the behavior on
Bethe lattices of uniform integer connectivity; σc > 0 if z � 4.
A dilute triangular lattice with c < 1/3 corresponds to zav < 4
and one may expect it to have σc = 0. However, recently
obtained exact solutions of the model on noninteger Bethe
lattices predict σc > 0 for 3 < zav � 4. If similarity between
Bethe and periodic lattices were to hold in general, it would
mean σc > 0 on a dilute triangular lattice for 0 < c < 1/3 as
well. The motivation for the present work was to examine this
point.

We have used an approach based on the number of
metastable states in the system M(σ ; L) and G(σ ; L) =
log10 M(σ ; L) − 2 log10(L). For a random field distribution
N (0, σ 2) on lattices of size 33 � L � 999 we find G(σ ; L) =
log10 2 − 2 log10 L in the range 0 � σ � 0.3. It rises mono-
tonically toward zero in the limit σ → ∞. The manner of rise
depends on c and indicates whether criticality is present or
not. Drawing upon a general agreement in the literature that
critical hysteresis exists for c = 1 but not for c = 0, we take
the differences in the behavior of G(σ ; L) for these two cases
as signatures of the presence or absence of criticality on a di-
luted lattice. The signatures are as follows. Consider G(σ ; L1)
and G(σ ; L2) with L2 > L1. At very small values of σ , we
have G(σ ; L1) > G(σ ; L2). If criticality is present, this order
is maintained as both graphs go from concave up to convex
up at inflection points σc(L1) and σc(L2), respectively. For
σ � σc(L1), G(σ ; L1) merges with G(σ ; L2) from above. If
criticality is not present, the graphs do not show an inflection
point. Both appear convex up but G(σ ; L2) overtakes G(σ ; L1)
before it merges with it from below for larger σ . These
signatures are understandable consequences of the presence or
otherwise of an infinite avalanche in the system. Apart from
the absence of an infinite avalanche that causes G(σ ; L) to
rise sharply with increasing σ , the connectivity z of the lattice
also plays a role. Lattices that do not support criticality have
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a lower connectivity, e.g., z = 3 for the honeycomb lattice. A
typical avalanche on such a lattice is smaller because there are
fewer pathways going out from an unstable site to a potentially
flippable site.

Somewhat unexpectedly, the simulations presented here
indicate σc = 0 for 0 < c < 0.6 approximately. We have used
systems of the same order (N ≈ 106) as used in [15], but
processing of data under a finite-size scaling hypothesis has
been avoided. The reason is that even if there is a theoretical
argument for σc → 0 as L → ∞, a finite system would neces-
sarily have an instability in the region σ < σth, where the first
spin to flip up would cause all other spins to flip up as well.
Fluctuations are extremely large in this region, and finite-size
scaling used in Ref. [15] may not be reliable. Figures 6–8
show that σth is in the same ballpark as σc predicted by
finite-size scaling in the range 0 � c � 0.6. Thus an alternate
method used in the present paper may be more reliable and a
correction in earlier results is warranted. We note that earlier
results [15] also showed a change of behavior at c ≈ 0.6.
Table II and Fig. 6 of Ref. [15] show a nearly linear decrease
of σc from 1.22 at c = 1 to 0.33 at c = 0.6; a more rapid
decrease to 0.26 at c = 0.5; then a constant value equal to 0.25
at c = 0.40 and 0.34 before an abrupt drop to 0 at c = 0.33.

The change of behavior near c = 0.6 and the qualitative
difference from dilute Bethe lattices most likely originate
from closed loops on the diluted triangular lattice. It appears
that closed loops on a lattice affect critical hysteresis more
strongly than we expected beforehand. There are other indi-
cations as well. A square lattice is similar to a z = 4 Bethe
lattice in that both have the same connectivity and support
critical hysteresis but σc is quite different on the two lattices;
σc = 0.54 on a square lattice and σc = 1.78 on a z = 4 Bethe
lattice. The difference is even more pronounced between a
simple cubic and a z = 6 Bethe lattice. A diluted lattice has
positional disorder as well as the random field. Although the
average connectivity of the diluted lattice varies linearly with
c, the fraction of nodes with different connectivities varies
differently with c. This possibly changes the nature of loops
on the lattice. Our work suggests that positional disorder on a
periodic lattice has a much stronger effect on σc than it has on
a Bethe lattice.
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