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ABSTRACT
Transition metal dichalcogenides (TMDs) are considered as promising catalysts for the hydrogen evolution reaction (HER) owing to their
abundant active sites such as atomic vacancies and step edges. Moreover, TMDs have polymorphism, which has stimulated extensive studies
on tuning of surface electronic structures for an active HER. The polymorphism in TMDs provides an opportunity for new hybrid catalysts
with TMDs and other catalytic metals via surface engineering that can create a novel functional surface of the catalytic electrode for the
active HER. Here, we report a hybrid catalyst with monoclinic MoTe2 and platinum (Pt) for the HER. Pt atoms were chemically bound to
the surface of monoclinic MoTe2 that has an atomically distorted lattice structure, which produces a distinct Pt-Te alloy layer. The Pt/MoTe2
hybrid catalyst exhibits an active HER with a Tafel slope of 22 mV per decade and an exchange current density of 1.0 mA/cm2, which are the
best values among those reported for TMD-based catalysts. The use of minimum amount of Pt on atomically distorted metallic TMDs realizes
rich catalytic active sites on large basal planes for efficient hydrogen production.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5094957., s

Recent progress in two-dimensional energy materials has
been highlighted due to their broad applications in photocatalysis,
photovoltaics, batteries, supercapacitors, and electrochemical catal-
ysis.1–6 Electrochemical catalysts based on transition metal dichalco-
genides (TMDs) have been intensively studied in hydrodesulfuriza-
tion, hydrogenation, and the hydrogen evolution reaction (HER).7–9

In particular, most semiconducting group 6 TMDs such as MoS2,
MoSe2, and WS2 have shown excellent electrochemical catalytic
performances for the HER at their highly conducting edges or
atomic defect sites.10–12 Despite the active HER performance at cer-
tain atomic sites on the surface, the limited surface area of such
atomically defined active sites remains an issue, and the industry
of hydrogen production requires more efficient and stable electro-
chemical reactions with reactive sites on the entire surface area.
However, the semiconducting basal plane of TMDs without edges

or defects has been found to be electrochemically inactive for the
HER.13,14

Extensive efforts have been made to exploit the whole basal
plane of TMDs for the HER by fabricating hybrid catalysts. For
example, various catalytic nanoparticles, such as Pt, Pd, and Cu,
have been decorated on semiconducting TMD surfaces to make the
entire basal planes more active.15,16 Moreover, in the HER, hybrid
TMD catalysts with low dimensional electrodes such as graphene
and carbon nanotubes have been suggested as a solution to resolve
the high contact resistance between the semiconducting TMDs and
metal electrodes.17–19 The TMD-based catalysts with external nanos-
tructures (nanoparticles, graphene, or carbon nanotubes) or their
hybrids have shown improved HER performances than pristine
TMDs, but the functional role of the substrate in the simply com-
bined catalyst geometry could not be studied rigorously by density
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functional theory calculations, and thus, further improvement of the
HER has been limited.

Motivated by the polymorphism of group 6 TMD single crys-
tals, structural phase engineering has also been used to achieve
higher HER performances. In the case of MoS2, HER performance is
improved when their most stable (hexagonal) semiconducting phase
is converted to the metastable (monoclinic or octahedral) metal-
lic phase.20–22 Experimental and theoretical studies have revealed
that effective hydrogen evolution occurs at chalcogen atomic sites
on the whole basal plane in the metallic phase, which enhances the
total catalytic activity of the TMDs. Nevertheless, the HER perfor-
mance with metallic TMDs is not high enough for real applica-
tions (compared to Pt or other hybrid catalysts), and the metal-
lic phase is metastable, inevitably implying a stability issue in the
HER.23–25

In contrast to other group 6 TMDs mostly investigated for the
HER, MoTe2 possesses two stable structures under ambient con-
ditions: semiconducting hexagonal (2H) and metallic monoclinic
(1T′) phases that can be selectively synthesized as high quality single
crystals.26 While 2H- and 1T-MoS2 can be controlled by chemi-
cal lithium intercalation, the metallic 1T′-MoTe2 can be converted
from its semiconducting 2H phase via laser-illumination, and strain
and Te vacancy creation, making the 1T′ phase robust against ther-
mal heating or aging.27–29 Recently, an atomic-scale study on the
HER with the metallic MoTe2 single crystals has been reported by
combining DFT calculations and atomic microscopy with the

electrochemical measurement.30,31 The stable metallic 1T′-MoTe2,
allowing efficient charge transfer at the surface, would be promising
for the HER, but the HER performance of 1T′-MoTe2 was not on
par with that of the conventional Pt catalyst.

In order to fully exploit the whole metallic basal planes as active
sites for the HER performance, we propose a Pt/MoTe2 hybrid cat-
alyst where metallic basal planes of MoTe2, having an atomically
distorted lattice structure, are coated by Pt atoms via electrochemical
activation. The self-structuring of Pt nanoparticles on the carbon-
based working electrodes has been observed during electrochemical
activation when Pt is used as the counter electrode for the HER.32–34

The dissolution of Pt atoms in the electrolyte leads to the growth of
Pt on the MoTe2 surface by a subsequent reduction process. This
idea provides a breakthrough in two aspects: (1) a new chemical
state of Pt can be formed on the distorted 1T (1T′) MoTe2 sur-
face and (2) the stability can be improved by using a well-defined
stable metallic group 6 TMD (1T′-MoTe2), compared to that of
metastable and inhomogeneous 1T-MoS2. Our Pt/MoTe2 hybrid
catalyst shows an excellent HER performance with a Tafel slope of
22 mV per decade and an exchange current density of 1.0 mA/cm2,
which are the best values among those reported for TMD-based
catalysts.

We prepared a Pt/MoTe2 hybrid catalyst using the electro-
chemical method described in Fig. 1(a). The details of experi-
ment are described in the supplementary material. The electro-
chemical method realized the deposition of a thin Pt layer on the

FIG. 1. Preparation of a Pt/MoTe2 hybrid catalyst. (a) Schematic picture of fabricating a Pt/MoTe2 hybrid catalyst via an electrochemical method. (b) Raman spectra of pristine
MoTe2 and the Pt/MoTe2 hybrid catalyst. (c) Scanning electron microscope (SEM) images of the pristine MoTe2 single crystal and the Pt/MoTe2 hybrid catalyst.
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metallic MoTe2 surface without changing the bulk lattice struc-
tures (the structural phase) of the substrate 1T′-MoTe2. Figure 1(b)
supports the identical lattice vibration modes of the MoTe2 by
Raman spectra. We used an excitation laser with a power of
2.6 mW and a wavelength of 532 nm for the Raman study, which
shows the same Raman modes of Ag and Bg before and after the
electrochemical treatment (thin Pt layer deposition) on the mono-
clinic MoTe2 single crystal. This demonstrates the stability of 1T′-
MoTe2 against additional electrochemical fabrication processes and
the suitability as a new metallic TMD substrate for hybrid cata-
lysts. Accordingly, we expected a new chemical state of the thin
Pt film on the stable, atomically distorted 1T′-MoTe2 substrate,
which could crucially increase the reactive surface sites for the
HER.

Although the bulk crystalline structure of monoclinic MoTe2
was retained in the Pt/MoTe2 hybrid catalyst [Raman spectra in
Fig. 1(b)], the morphology of the pristine MoTe2 was modified
by the electrochemical deposition of Pt on the MoTe2. The sur-
face change is exhibited in the scanning electron microscope (SEM)
images in Fig. 1(c); a clean and flat surface of pristine monoclinic
MoTe2 [left picture in Fig. 1(c)] was changed to a corrugated sur-
face with the Pt atoms (right picture) on the MoTe2. We note that,
unlike former self-structuring of Pt nanoparticles on TMDs,16,35 Pt
nanoparticles were not observed in the SEM; our electrochemical
deposition provided a uniform and well-wetted Pt film on the basal
plane of the MoTe2. We explain the formation of the wetted film,
rather than nanoparticle formation as previous studies reported, by a
unique interaction (a relatively strong bonding) between Pt and dis-
torted chalcogen atoms (Te) in the Pt/MoTe2. More evidence will be

discussed with a chemical state study and corresponding theoretical
calculations on the hybrid catalyst.

A progressive improvement of HER performance, as the cov-
erage of the Pt/MoTe2 hybrid increases on the catalyst surface, is
described in Fig. 2(a). Starting from the lowest HER performance
with pristine monoclinic MoTe2 [orange curve in Fig. 2(a)], the
Pt/MoTe2 hybrid catalyst produced higher HER performances, as
indicated by the magenta, blue, and red curves in Fig. 2(a). The
Tafel slope [22 meV per decade, Fig. 2(b)] and the exchange cur-
rent density (∼1.0 mA/cm2) in the red curve [Fig. 2(a)] are better
than those of Pt or any other TMD-based catalysts. Other catalytic
activities, such as the reversible hydrogen electrode (RHE) poten-
tial for a current density of −10 mA/cm2, the Tafel slope, and the
exchange current density of MoTe2, Pt, and Pt/MoTe2 hybrid cata-
lysts are summarized in Table I. The exchange current density was
derived from the Tafel curves [Fig. 2(b)] using a linear extrapolation
to an overpotential of 0 mV. Figure 2(c) shows that the Pt/MoTe2
hybrid catalyst is more stable than a reference Pt film on SiO2 under
our HER condition over 8000 s. This indicates that the adhesion of
Pt on MoTe2 is more stable or stronger than that from the physisorp-
tion of Pt on SiO2; Pt-MoTe2 has chemisorption characteristics or an
alloy formation, leading to different surface chemistry from bulk Pt.

To investigate the surface chemical state of the Pt/MoTe2
hybrid catalyst, we conducted X-ray photoemission spectroscopy
(XPS) with the pristine MoTe2 [resulting in the orange curve in
Fig. 2(a)], the as-prepared Pt/MoTe2 hybrid catalyst [resulting in the
red curve in Fig. 2(a)], and the Pt/MoTe2 hybrid catalyst after the
stability test [Fig. 2(c)]. Figure 3 shows the core levels of Mo 3d, Te
3d, and Pt 4f electrons by the XPS with fitted lines by Doniac-Sunsic

FIG. 2. HER measurements. (a) Polar-
ization curves of bulk Pt rod (green, as
a reference), Pt film deposited on SiO2
(black, as a reference), pristine MoTe2
(orange), and Pt/MoTe2 hybrid catalysts
with various treatment times from 7 h
to 21 h (magenta, blue, and red). (b)
Tafel plots obtained from the polarization
curves in Fig. 2(a). (c) A stability com-
parison between the reference bulk Pt
rod (green), Pt thin film deposited on the
SiO2/Si substrate (black), and Pt/MoTe2
hybrid catalyst (red) with a voltage of
0.2 V (vs RHE).
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TABLE I. Comparison of catalytic activities.

Potential for −10 mA/cm2 Tafel slope Exchange current density
Catalyst (V vs RHE) (mV per decade) (mA/cm2)

1T′-MoTe2
30 −0.356 127 2.1 × 10−2

Pt/SiO2 −0.024 48 4.5 × 10−1

Pt/1T′-MoTe2 −0.023 22 1.0

curves. After the electrochemical Pt deposition, Pt 4f and Te 3d pho-
toelectrons were observed as major core levels, indicating that the
thickness of the Pt-Te alloy layer is estimated to be ∼2 nm, which is
the probing depth of the XPS; this enables the minimum amount of
Pt with a unique surface chemistry on MoTe2 for an efficient HER.
On the as-prepared Pt/MoTe2 hybrid catalyst, the binding energies
of Mo 3d and Te 3d electrons [top curves in Fig. 3(a)] are com-
pletely different from those of pristine MoTe2 [bottom curves in
Fig. 3(a)]. Pt 4f electrons appear in the Pt/MoTe2 [middle curve
in Fig. 3(b)], but with chemical states slightly different from the Pt
metal [top curve in Fig. 3(b)]. The broadened and asymmetric bind-
ing energy features of Pt 4f electrons in the Pt/MoTe2 hybrid catalyst
demonstrate the presence of Pt and Pt-Te alloy layers on the surface,
which is a key to understand the hybridization of Pt and monoclinic
MoTe2.

The deconvolution of the Pt 4f spectrum in Fig. 3(b) clearly
shows double peak features (detailed fitting parameters are given in
Table II). Considering the reference XPS of the Pt metal [top curve in
Fig. 3(b)], the Pt 4f peak located at a binding energy (BE) of 70.74 eV
[fitted by a green line in the middle curve in Fig. 3(b)] is assigned
to the signal of the pristine Pt metal with a similar Lorentzian
width (L.W.) and asymmetry factor (α) by the Doniac-Sunsic fitting
(Table II). However, the Pt 4f peak located at 71.72 eV [fitted by a
blue line in the middle curve in Fig. 3(b)] could be assigned to a Pt2+δ

signal. Moreover, the Te 3d peak located at 573 eV [fitted by a blue
line in Fig. 3(a)] could be assigned to a Te2−δ, demonstrating Pt-Te
alloy formation (rather than forming Pt nanoparticles36) at the inter-
face between Pt and monoclinic MoTe2. This explains the stability of
the Pt-MoTe2 hybrid catalyst in the HER, implying a possible unique
surface chemistry of Pt on the top of the catalyst. After the stability

FIG. 3. XPS of pristine MoTe2, as-
prepared Pt/MoTe2, and Pt/MoTe2 after
the stability test. Core level spectra of
(a) Mo 3d and Te 3d electrons, (b) Pt 4f
electrons (Pt films on SiO2 were used as
a reference to identify the binding energy
of Pt 4f in the Pt metal).
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TABLE II. Fitting parameters for Pt 4f spectra of Pt/SiO2 and Pt/MoTe2.

B.E. L.W. S.O. split
(eV) (eV) (eV) Asymmetry Comments

Pt/SiO2 71.19 0.14 3.34 0.19 Metallic Pt
Pt/MoTe2 70.74 0.14 3.34 0.14 Metallic Pt

71.72 0.35 3.34 0 Pt-Te alloy

test of the Pt-MoTe2 hybrid catalyst, there are small signals from
oxide compounds, MoO3 and TeO2 [magenta lines in Fig. 3(a)] with
Mo 3d and Te 3d electrons (at 232 eV and 576 eV, respectively) and
from absorbed acidic sulfur [light green in Fig. 3(a)] with Mo 3d
electrons (at 233 eV), which might arise during the electrochemical
process.

To clarify the origin of the high catalytic HER performance of
Pt/MoTe2 [Figs. 2(a) and 2(b)], we investigated the Pt adsorption on
the top of the MoTe2 surface by first-principles calculations. Since
Pt-Te alloys are observed in XPS with a probing depth of ∼2 nm
(without a pristine Pt signal), we considered the most stable con-
figuration of Pt adsorption at several thicknesses, 0.5 ML, 1.0 ML,
1.5 ML, and 2.0 ML, where 1 ML (monolayer) is defined as two
adsorbed Pt atoms in 1 × 1 unit cell of MoTe2 [Fig. 4(a)]. The cal-
culated adsorption energy of the Pt atom on the top of the MoTe2
was found to be large, −4.23 eV, which supports the formation of

FIG. 4. Schematics of the Pt/MoTe2 hybrid structure at different Pt coverages and
ΔGH of pristine 1T′-MoTe2 and the Pt decorated MoTe2 surface. At a Pt coverage
of 1–1.5 ML, the Pt/MoTe2 hybrid catalyst shows an ideal hydrogen adsorption
Gibbs free energy change. Green, yellow, gray, and red spheres represent Mo, Te,
Pt, and H atoms, respectively.

the Pt-Te alloy rather than Pt nanoparticles as reflected in the XPS
measurements (Fig. 3).

Optimizing HER catalysts, a moderate hydrogen adsorption
Gibbs free energy change (ΔGH), close to zero, is critical. In our
DFT calculations, the thickness-dependent atomic structure of the
Pt/MoTe2 surface results in a significant variation in the ΔGH. While
the ΔGH on the Pt (111) surface was calculated to be −0.14 eV,
the ΔGH values of the Pt/MoTe2 hybrid catalysts with different Pt
thicknesses, 0.5 ML, 1 ML, 1.5 ML, and 2.0 ML, were found to be
−0.25 eV, 0.08 eV (±0.22 meV),−0.11 eV (±1.75 meV), and−0.32 eV
(±72 meV), respectively.

The calculations of ΔGH indicate that the buckled geometry of
the metallic MoTe2 surface provides a unique surface reconstruc-
tion of Pt atoms, which maximizes the catalytic activity and results
in excellent HER performances (Fig. 2). Based on the performance
of Pt/MoTe2 [red curve in Fig. 2(a)], which is better than that of
the reference Pt electrode, we estimate that the coverage (or the
thickness) of Pt would be between 1 ML and 1.5 ML. We note
that, in contrast to previous TMD-based HER studies that have used
unclear active sites, our calculations are convincing given that single-
crystalline MoTe2 (and its surface) was adopted for fabricating the
hybrid catalyst.

We investigated the catalytic performance of a novel Pt/MoTe2
hybrid catalyst fabricated with a single-crystalline metallic mon-
oclinic MoTe2. The Pt/MoTe2 hybrid catalyst exhibits excellent
HER performance, with a Tafel slope of 22 mV per decade and an
exchange current density of 1.0 mA/cm2, which exceeds the HER
performance of previous TMD-based catalysts. The highly improved
HER originates from rich active sites of the surface of the Pt/MoTe2
hybrid catalyst via a unique reconstruction of Pt atoms on the buck-
led metallic basal plane. First-principles calculations indicate that
H atoms can be adsorbed on the reconstructed Pt/MoTe2 surface
with an ideal ΔGH of 0.08 eV. The strategy of the metallic TMD-
based hybridized catalyst has potential for superior catalysis with
rich active sites as well as high electric conductivity, which are essen-
tial for an active HER with a minimum amount of precious catalytic
metals.

See supplementary material for the experimental and calcula-
tion schemes.
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