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The roles of miRNAs in lung cancer have not yet been explored systemati-

cally at the genome scale despite their important regulatory functions. Here,

we report an integrative analysis of miRNA and mRNA sequencing data

for matched tumor–normal samples from 109 Korean female patients with

non-small-cell lung adenocarcinoma (LUAD). We produced miRNA

sequencing (miRNA-Seq) and RNA-Seq data for 48 patients and RNA-Seq

data for 61 additional patients. Subsequent differential expression analysis

with stringent criteria yielded 44 miRNAs and 2322 genes. Integrative gene

set analysis of the differentially expressed miRNAs and genes using

miRNA–target information revealed several regulatory processes related to

the cell cycle that were targeted by tumor suppressor miRNAs (TSmiR).

We performed colony formation assays in A549 and NCI-H460 cell lines to

test the tumor-suppressive activity of downregulated miRNAs in cancer and

identified 7 novel TSmiRs (miR-144-5p, miR-218-1-3p, miR-223-3p, miR-

27a-5p, miR-30a-3p, miR-30c-2-3p, miR-338-5p). Two miRNAs, miR-30a-

3p and miR-30c-2-3p, showed differential survival characteristics in the

Tumor Cancer Genome Atlas (TCGA) LUAD patient cohort indicating

their prognostic value. Finally, we identified a network cluster of miRNAs

and target genes that could be responsible for cell cycle regulation. Our

study not only provides a dataset of miRNA as well as mRNA sequencing

from the matched tumor–normal samples, but also reports several novel

TSmiRs that could potentially be developed into prognostic biomarkers or

therapeutic RNA drugs.

Abbreviations

DEG, differentially expressed gene; DEmiR, differentially expressed miRNA; LUAD, lung adenocarcinoma; qRT-PCR, quantitative real-time

PCR; TCGA, Tumor Cancer Genome Atlas; TSmiR, tumor suppressor miRNA.
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1. Introduction

miRNAs are an important class of regulators deter-

mining cellular fates in almost all biological processes.

A typical miRNA negatively regulates expression of

multiple target genes by binding to mRNAs and

inhibiting translation or inducing mRNA degradation.

A number of miRNAs have been reported to con-

tribute to tumor development, disease progression, and

treatment response in nearly all human cancers and

have emerged as promising and biologically relevant

biomarkers (Kasinski and Slack, 2011).

Most previous studies are based on investigating

miRNAs that are predicted to target known cancer-

related pathways, oncogenes, and tumor suppressor

genes. For example, the let-7 miRNA plays a tumor-

suppressive role in lung cancer by targeting RAS and

cMYC genes, which are critical regulators of the

prominent oncogenic pathway of RAS-RAF-MEK-

ERK signaling (He et al., 2010; Johnson et al., 2005;

Kumar et al., 2008). On the other hand, the tumor

suppressor TP53 gene often described as ‘the guardian

of the genome’ is regulated directly and indirectly by

multiple miRNAs constituting an intricate regulatory

network to mediate the tumor-suppressive role of p53

(Hermeking, 2012; Liu et al., 2017).

Gene expression profiling is a powerful yet unbiased

method to identify miRNAs of functional significance.

miRNA microarrays, although frequently utilized

owing to their cost-effectiveness, usually suffer from

uneven hybridization. This is in large part due to the

extremely limited probe design based on the short

length of 22 nucleotides in mature miRNAs (Yanai-

hara et al., 2006). Deep sequencing is a potentially

ideal method, but the isolation of mature miRNAs

and sequencing much shorter reads than in mRNA

sequencing are challenging (Ma et al., 2014).

A number of miRNAs were implicated in lung ade-

nocarcinoma (LUAD). Analysis of miRNA-Seq data

from the Tumor Cancer Genome Atlas (TCGA)

LUAD cohort yielded many differentially expressed

miRNAs (DEmiR) with prognostic value including

miR-31, miR-196b, miR-101-1, miR-187, miR-331,

miR-375, miR-519a-1, miR-551b, miR-766, and miR-

3653 (Li et al., 2014; Lin et al., 2016). However, most

of these miRNAs were not validated from independent

data sets to be established as reliable prognostic mark-

ers. Several miRNAs were additionally implicated to

have roles in tumorigenesis of LUAD by targeting

known cancer-related pathways. Examples include

miR-195 targeting CCND3 and BIRC5 (Yu et al.,

2018), miR-378 targeting RBX1 and miR-1827

targeting CRKL (Ho et al., 2018), miR-383-5p target-

ing PPP2CA (Zhao et al., 2017), miR-23b and

miR125a-5p targeting KRAS and NF-kB pathways

(Naidu et al., 2017). Many of these studies, however,

were based on functional assays using cell lines, thus

having limited applicability to patients.

Simultaneous profiling of miRNAs and mRNAs

provides an opportunity to compare the gene expres-

sion of miRNAs and their target mRNAs without

extra efforts in filtering out false positives from

miRNA–target prediction. Cancer genome projects of

the TCGA consortium are good examples, but the

portion of patients with both miRNA and mRNA

sequenced is limited. Furthermore, sequencing matched

tumor–normal samples is important to avoid any indi-

vidual-specific biases, but the number of patients with

matched sequencing is again rather small especially in

the case of miRNA-Seq. Taking the TCGA LUAD

cohort as an example, mRNA sequencing (RNA-Seq)

data are available for 515 tumor and 59 normal sam-

ples, including 58 matched pairs. For miRNA-Seq

data, it includes 450 tumor and 46 normal samples,

including 39 matched pairs (Cancer Genome Atlas

Research, 2014). Only 12 patients have both mRNA-

Seq and miRNA-Seq data for matched tumor–normal

samples. This highlights the difficulties in sample

acquisition and sequencing suitable for study designs

involving simultaneous profiling of miRNAs and

mRNAs.

Here, we performed an integrative analysis on

miRNA and mRNA sequencing data for matched

tumor–normal samples from 109 LUAD patients

and report several tumor suppressor miRNAs (TSmiR)

validated from functional experiments. We further

identify candidate miRNAs that could be developed

into prognostic biomarkers for patient stratification

or therapeutic RNA drugs for repressing target

oncogenes.

2. Materials and methods

2.1. miRNA-Seq and mRNA-Seq data production

Patient samples were obtained from LUAD patients

who had undergone curative surgery in Samsung Med-

ical Center (Seoul, Korea). All samples were collected

with the written informed consent from patient and

the prior approval of the institutional review board

(Samsung Medical Center Institutional Review Board)

in accordance with the Declaration of Helsinki.

RNA purity was determined by assaying 1 lL of

the total RNA extract on a NanoDrop ND-1000 spec-
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trophotometer (ThermoFisher, Waltham, MA, USA).

Total RNA integrity was checked using a Bioanalyzer

2100 with an RNA Integrity Number value greater

than 8 (Agilent, Santa Clara, CA, USA). Then,

mRNA sequencing libraries were prepared according

to the manufacturer’s instructions using the Illumina

Truseq RNA Prep kit v2. The quality of the amplified

libraries was verified again with an Agilent Bioanalyzer

2100. Sequencing of pooled libraries was performed on

the HiSeq 2000 sequencing system with paired-end

reads of 100 bp length (Illumina, San Diego, CA,

USA).

Small RNA sequencing libraries were prepared

according to the manufacturer’s instructions using the

Illumina Small RNA Prep kit. cDNA size selection

was carried out with the Sage Science’s Pippin prep

electrophoresis platform. Sequencing of pooled

libraries was performed on the HiSeq 2000 sequencing

system (Illumina) with single-end reads of 50 bp

length. Deep sequencing data were deposited at the

Gene Expression Omnibus (GSE110907).

2.2. Transcriptome data processing

The in-house workflows for analyzing miRNA-Seq

and RNA-Seq data are illustrated in Fig. S1. For

miRNA-Seq data, sequencing reads had adapter

sequences removed and been mapped to the miRBase

release 19 (Kozomara and Griffiths-Jones, 2011) using

BOWTIE V.0.12.9 (Langmead et al., 2009) with the per-

fect match option. The mapping rates ranged from

63% to 70%. miRNA abundance was quantified using

the quantile normalization method in R. mRNA-Seq

data were mapped to the NCBI GRCh 37 genome

using MAPSPLICE version v2.1.6 and the gene model in

Ensembl GRCh 37.72. Transcript abundance was esti-

mated at the gene level by RSEM version 1.2.5 (Li and

Dewey, 2011). Statistics of mapped reads and mapping

rates are summarized in Table S1.

2.3. Identification of differentially expressed

miRNAs and genes

We developed a stringent pipeline to identify DEmiRs

and genes (DEGs), taking advantage of the matched

nature of tumor and normal samples (Fig. S2). Three

different programs, EDGER (Version 3.16.5) (Ritchie

et al., 2015), VOOM (limma 3.30.13) (Ritchie et al.,

2015), and DESEQ2 (Version 1.14.1) (Anders and

Huber, 2010), were used to select DEmiRs with false

discovery rate (FDR) ≤10�5 after initial filtering of

lowly expressed miRNAs. Taking common miRNAs

from the three program outputs yielded 142 DEmiRs.

We further filtered out lowly expressed DEmiRs by

requiring an overall average expression level of

logCPM (counts per million) ≥3. Then, we further

applied two consistency criteria—(a) the direction of

up/down regulation between tumor and normal tissues

consistent in over 80% of the total patients and (b)

the number of patients with over twofold change

equaling over 70% of the total patients. As illustrated

in Fig. S2, the rigorous filtering procedure predomi-

nantly kept commonly predicted miRNAs from the

three algorithms.

For mRNA sequencing data, we applied a slightly

modified pipeline. Instead of looking at the overall

average expression level, we required the overall aver-

age fold change to be |logFC| > 0.5. The consistency

criteria were each relaxed by 10% to allow for more

DEGs. The pipeline and number of DEGs at each step

are illustrated in Fig. S2.

2.4. Compiling and predicting miRNA–target

genes

Two main sources of miRNA–target information

were miRGator 3.0 (Cho et al., 2013) and the latest

TargetScan 7.0 (Garcia et al., 2011). miRGator 3.0 is

a composite database of miRNA targets encompassing

three literature-based knowledgebases (Tarbase, miRe-

cords, and miRTarBase) and six prediction programs

(TargetScan 6.2, PITA, PicTar, miRNA.org, miRDB,

and Microcosm Targets). miRNA targets commonly

predicted by three or more programs are regarded as

reliable and merged into miRNA targets in the knowl-

edgebases. In order to make up for not being up-to-

date in the miRGator 3.0 content, we further imported

the prediction results from the latest TargetScan 7.0

(cumulative weighted context score >0.2 as suggested

by the developers). Our final compilation included

248 543 miRNA–target relations covering 687 miR-

NAs and 16 563 target genes.

For selecting target genes of tumor-suppressive

DEmiRs for validation experiments, we used a new

conservative prediction program based on a recent

study that explored miRNA–target space extensively

(Kim et al., 2016). In essence, it calculates the multiple

linear regression (MLR) score for a target mRNA by

considering four biological contexts (local AU content

of the flanking region of the miRNA–target site,

30UTR length, target-site abundance, and thermody-

namic pairing stability between the miRNA and the

target mRNA). Only the 8mer, 7mer-m8, and 7mer-A1

site types were considered in regression because the

6mer site type was known to exert relatively weak

repression on their target mRNAs and thus can act as
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noise in target prediction (Bartel, 2009). We selected

mRNAs with MLR score <�0.3 as putative targets of

DEmiRs for further validation experiments.

2.5. Cell culture, transfection, and colony

formation assay

Human lung cancer cell lines A549 and NCI-H460

were obtained from the American Type Culture Col-

lection (Manassas, VA, USA). Cells were maintained

at 37 °C and 5% CO2 in RPMI 1640 supplemented

with 10% fetal bovine serum (Hyclone, Logan, UT,

USA) and 1% penicillin/streptomycin (Gibco, Invitro-

gen Corporation, Grand Island, NY, USA).

miRNA mimics were transfected into 1 9 105 cells

in a 35-mm dish using Lipofectamine RNAiMAX

(Invitrogen, Carlsbad, CA, USA) at the concentration

of 40 nM for 48 h according to the manufacturer’s

instructions. Candidate TSmiR mimics and the nega-

tive control (NC) mimics were purchased from

Ambion (Austin, TX, USA).

Two days after transfection with miRNA or NC

mimics, 500 cells were replated in a 35-mm dish in

duplicate and incubated at 37 °C and 5% CO2 for 6–
8 days. Colonies were stained with 0.1% Coomassie

Blue in a 45% methanol and 10% acetic acid solution,

and colony numbers were determined using the Gel

Doc XR system (Bio-Rad, Hercules, CA, USA) with

the Quantity One� 1-D analysis software (Bio-Rad).

Each experiment was performed in triplicates.

2.6. RNA extraction and quantitative reverse

transcriptase–PCR (qRT-PCR)

Total RNA was extracted from the miRNA mimic-

transfected cells using the miRNeasy Mini kit (Qiagen,

Valencia, CA, USA) according to the manufacturer’s

instructions. Single-stranded cDNAs were synthesized

from 1 lg of the total RNA using the ImProm-IITM

reverse transcriptase (Promega, Madison, WI, USA).

For quantitative analysis of miRNA–target mRNA

levels, cDNAs generated from 10 ng of the total RNA

were subjected to PCR amplification using the CFX96

Real-time PCR detection system (Bio-Rad) with the

SYBR Select Master Mix (Applied Biosystems by Life

Technologies, Austin, TX, USA; Table S2). ACTB

and HPRT1, two housekeeping genes, were used as

dual reference genes. Cycling conditions were as fol-

lows: pre-denaturation for 2 min at 95 °C, a 2-step

reaction (40 cycles) for 10 s at 95 °C and 40 s at

60 °C, and a dissociation peak analysis. mRNA

expression values of target genes were calculated with

the Bio-Rad CFX Manager Software.

3. Results

3.1. Patient cohort and transcriptome sequencing

Matched tumor–normal samples were obtained from

109 LUAD patients who had undergone curative

surgery. All samples were collected with written

informed consent from the patients and prior approval

of the institutional review board (Samsung Medical

Center). All cases were first-time lung cancer patients

and were females. Most patients were never-smokers

except eight smoker cases. Clinicopathological charac-

teristics of what we call ‘ES_Korea’ samples are

summarized in Table 1 (with further details provided

in Table S3).

We performed both miRNA-Seq and mRNA-Seq

for the matched tumor–normal samples from 48 indi-

viduals. For the remaining 61 individuals, we produced

only mRNA-Seq data for the matched tumor–normal

samples. We also downloaded the miRNA-Seq data

from the TCGA LUAD consortium (version

2016_01_28 from the Broad GDAC Firehose), which

included 39 cases with sequencing data from both

matched tumor–normal samples. Both ES_Korea and

the TCGA miRNA-Seq data sets were processed using

our own computational pipeline as described in the

Materials and methods section.

Table 1. Patient characteristics of the Korean and Tumor Cancer

Genome Atlas cohorts.

Characteristic

ES_Korea
TCGA_LUAD

miRNA

(n = 48)

mRNA

(n = 109)

miRNA

(n = 39)

Sex

Female 48 (100%) 109 (100%) 20 (51%)

Male – – 19 (49%)

Age at diagnosis

Median 59 61.5 66

Range 37–78 29–83 47–85

Stage

I 30 (63%) 72 (66%) 24 (62%)

II 6 (12%) 15 (14%) 10 (25.5%)

III 12 (25%) 22 (20%) 5 (12.5%)

Ethnicity

Black or African

American

– – 6 (15%)

White – – 33 (85%)

Asian 48 (100%) 109 (100%) –

Smoking status

Never-smoker 41 (85%) 102 (94%) 2 (5%)

Smoker 7 (15%) 7 (6%) 34 (87%)

Unknown – – 3 (8%)
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3.2. Identification of differentially expressed

miRNAs and genes

The matched tumor–normal samples enabled us to

obtain a robust list of DEmiRs and mRNAs (DEGs).

We devised a stringent computational pipeline to pre-

dict DEmiRs and DEGs, combining three different

programs and rigorous filtering steps such as a consis-

tency criterion that required consistent direction of

expression change in more than 80% of the total

patients (Fig. S1). Analyzing miRNA-Seq data from

the ES_Korea cases with our pipeline, we obtained 44

highly reliable DEmiRs including 18 up- and 26 down-

regulated miRNAs in tumor (Table S4). The MA plot

shows the average fold change vs. the average

expression level of these DEmiRs (Fig. 1A). The heat-

map and multidimensional scaling views indicate that

tumor and normal samples were perfectly classified

into two groups according to the expression of these

44 DEmiRs (Fig. 1B,C).

Identical analysis of miRNA-Seq data from 39

patients of the TCGA LUAD yielded 47 DEmiRs (19

up- and 28 downregulated ones), 25 of which over-

lapped with the ES_Korea DEmiRs. Expression of

DEmiRs in tumor and normal tissues is depicted in

the box plot (Figs 2 and S3), and we observed that

most miRNAs are consistently differentially regulated

between ES_Korea and TCGA LUAD data sets except

a few cases (miR-450b-5p, miR-486-3p, and miR-

511-5p).

Fig 1. miRNA expression in 48 Korean patients of LUAD. (A) The MA plot where the log fold change (log2 exp_tumor/exp_normal) and the

average expression (½log2 exp_tumor9exp_normal) are shown in the y-axis and x-axis, respectively. Average miRNA expression values over

48 individuals were used in the plot. DEmiRs were indicated in red (upregulated in tumor) and blue (downregulated in tumor) colors.

(B) Representation of tumor and normal samples in two-dimensional space obtained by a multidimensional scaling method. (C) Hierarchical

clustering of samples using 44 DEmiRs.
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Paired RNA-Seq data were subjected to the computa-

tional pipeline for DEGs, where the filtering criteria were

alleviated a little bit to prevent missing genuine miRNA

targets (Fig. S2). We obtained 2322 DEGs as the final

result (935 upregulated and 1387 downregulated genes).

Next, we characterized biological processes repre-

sented by the 2322 DEGs. Functional enrichment analy-

sis for 935 up- and 1387 downregulated DEGs using 50

hallmarks gene sets of MSigDB revealed 24 hallmark

signatures (Fig. 3). Representative activated processes

included cell cycle regulators such as the G2M_check-

point, E2F_targets, and the mitotic spindle. Most pro-

cesses related to inflammation and immune signaling

were downregulated. Epithelial–mesenchymal transi-

tion, estrogen responses, KRAS signaling, and hypoxia

signaling showed mixed enrichments, suggesting their

important but complicated regulatory roles.

3.3. Integrative analysis of miRNA and mRNA

expression using miRNA–target information

Molecular and cellular functions of miRNAs are typi-

cally inferred through functions of their target

mRNAs. However, accurate prediction of miRNA tar-

gets is challenging because miRNA targeting is medi-

ated in a complicated manner by many functional site

types and there are still unknown biological features

that affect the efficacy of miRNA targeting (Kim

et al., 2016). Having both miRNA–Seq and mRNA-

Seq data from matched tumor–normal samples is a

big advantage because it provides an opportunity to

explore the negative correlation of miRNA and

mRNA expressions, a condition that meaningful

miRNA–mRNA target pairs must satisfy.

We sought miRNA and target gene pairs (a) where

both the miRNA and the target gene were differen-

tially regulated, (b) whose directions of differential

expression were opposite to each other, and (c) that

were associated by miRNA targeting as compiled by

merging contents in miRGator 3.0 and the latest Tar-

getScan 7.0 predictions (Materials and methods sec-

tion). We identified 1948 DEmiR-DEG paired

relations, covering 44 DEmiRs (22 and 22 up- and

downregulated in tumor, respectively) and 1014 DEGs

(452 and 562 up- and downregulated in tumor,

respectively). Such DEmiR-DEG pairs have a good

Fig 2. Expression box plots for 26 miRNAs downregulated in tumor samples of the ES_Korea cohort. Tumor and normal samples are

indicated in red and blue colors, respectively. miRNA expression in the TCGA cohort (39 patients with the matched tumor–normal samples)

is shown on the right for comparison. The heatmap in the middle shows the q-value of the FDR test for differential expression in �log10(q-

value). Note that box plots for miRNAs upregulated in tumor samples are provided in Fig. S3.
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chance to be functional in the pathophysiology of

LUAD.

We performed gene set analysis for the 1014 target

DEGs regulated by DEmiRs using the MSigDB hall-

mark gene sets (Fig. 3). Enriched biological processes

for miRNA–target DEGs included the G2M_

checkpoint and E2F_targets for activated pathways

and TNFa_signaling_via_NFjB and Inflammatory_re-

sponse for suppressed processes. DEmiRs that target

genes in each enriched process were investigated using

our compilation of miRNA–target information and

the recently updated miRTarBase 7.0 knowledgebase

(Fig. 3 and Table S5) (Chou et al., 2018). To identify

biological processes under miRNA regulation, we

looked for biological processes enriched by both

DEGs and DEmiR targets. We identified several

miRNAs known to target specific processes from lit-

erature survey (marked as an asterisk in Fig. 3). For

example, miR-138-5p and miR-144-3p are known to

target the EZH2 gene (Guo et al., 2013; Liang et al.,

2013) and miR-30a-5p targets the MYBL gene to reg-

ulate the G2M_checkpoint and E2F_target processes

(Martinez et al., 2011). However, many processes did

not have literature basis to identify regulatory

miRNAs and their targets, including the p53_path-

way, glycolysis, estrogen_responses, KRAS_signaling,

TNFa_signaling, inflammatory_response, and IL2_

STAT5_signaling (Table S5). Thus, our analysis pro-

vides an ample opportunity for further functional

studies.

3.4. Colony formation assay for DEmiRs

identified 8 tumor suppressor miRNAs

Tumor suppressor miRNAs are of particular interest

because they could potentially be developed into prog-

nostic biomarkers or therapeutic RNA drugs since

miRNA mimics can be used as anticancer agents

(Adams et al., 2017). Colony formation assay was per-

formed to screen for miRNAs with growth suppression

ability. We subjectively selected 14 candidate miRNAs

from the 26 downregulated DEmiRs from the

ES_Korea data set based on the fold change ratio

(logFC < �2), average expression level (logCPM > 10),

Fig 3. Functional enriched terms of hallmark signatures from MSigDB and relevant miRNAs. The heatmap on the left indicates the q-value

of enrichment in �log10(q-value) for DEGs where up- and downregulations in tumor samples are shown in red and blue colors, respectively.

The first and third columns were calculated using all DEGs (935 up- and 1387 downregulated DEGs), and the second and fourth columns

were obtained by using subset of DEGs that were targets of DEmiRs (452 up- and 562 downregulated DEGs). The black and white

heatmap on the right indicates presence or absence of miRNAs targeting DEGs involved for each process where validated and predicted

targets are indicated in black and gray colors, respectively. Target genes with literature evidence are marked with an asterisk where further

details were provided in Table S5.
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and literature evidence (Table S6). Known TSmiRs were

excluded from the candidates except miR-486-5p, which

was used as a positive control.

Colony formation assays using A549 and NCI-H460

human lung cancer cell lines revealed seven novel

TSmiRs (miR-338-5p, miR-30a-5p, miR-30c-2-3p,

miR-144-5p, miR-27a-5p, miR-223-3p, miR-218-1-3p),

in addition to miR-486-5p used as the positive control,

with tumor suppressor activity in both cell lines

(Fig. 4A). High success rate, 8 out of 14 candidates,

likely stemmed from the stringency in selecting

DEmiRs from our data set.

Next, we investigated whether the expression level of

the eight TSmiRs could serve as a prognostic marker

for predicting patient survival. Using OncoLnc (http://

www.oncolnc.org/) that provided online survival anal-

ysis for the TCGA patients (490 LUAD cases

analyzed), we found that survival curves of two miR-

NAs, miR-30a-3p and miR-30c-2-3p, showed meaning-

ful separation between patient groups of top and

bottom 10 percentiles in miRNA expression (Fig. 4B,

C). Furthermore, SERPINH1, one of the predicted

target genes of miR-30c-2-3p, showed a clear separa-

tion between patient groups of top and bottom 20 per-

centiles (Fig. 4D). These data strongly suggest that

miR-30c-2-3p could be a TSmiR with prognostic value

in LUAD.

3.5. Validation of candidate target genes for

miRNAs with tumor suppressor activity

In an effort to identify target genes for TSmiRs

whose activity was validated from the colony forma-

tion assay, we performed quantitative RT-PCR to

Fig 4. Functional and survival characteristics of TSmiR candidates. (A) Colony number relative to negative controls in the colony formation

assay for A549 (top) and NCI-H460 (bottom) cell lines. Error bars indicate the standard error of the mean. Each measurement was done in

triplicate, and the P-value was calculated with two-tailed t-test. (B-D) Kaplan–Meier survival plots using the TCGA LUAD patients by

expression value of miR-30a-3p (B), miR-30c-2-3p (C), SERPINH1 (D), and the target gene of miR-30c-2-3p.
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quantify mRNA expression changes resulting from

transfection of a miRNA mimic of interest. For five

miRNAs (miR-30c-2-3p, miR-144-5p, miR-486-5p,

miR-27a-5p, miR-218-1-3p) that significantly reduced

colony-forming ability in two lung cancer cell lines,

we selected 42 candidate target genes using a state-of-

the-art algorithm to predict miRNA–target genes

(Materials and methods section) (Kim et al., 2016).

We identified 17 target genes that showed reduced

mRNA expression upon transfection with a miRNA

mimic by more than 30% compared to the control

sample in both cell lines (Fig. 5). Notably, SER-

PINH1 gene was one of the validated targets of

miR-30c-2-3p, again indicating its oncogenic function

in agreement with the tumor-suppressive role of

miR-30c-2-3p.

Several target genes (E2F8, MYBL2, HMGB3, and

TOP2A) belonged to the gene sets of E2F_Targets and

the G2M_Checkpoint, which were inferred from the

MSigDB enrichment analysis. We constructed a net-

work model for regulating the cell cycle by collecting

miRNAs and their target genes, which were validated

experimentally (Fig. 6). This network module is highly

likely to be functional in tumorigenesis of lung cancer

since all miRNA and genes were differentially regu-

lated between tumor and normal tissues (see the Dis-

cussion section below).

4. Discussion

Studies that have sequenced mRNAs and miRNAs

simultaneously are uncommon even though its benefit

is well acknowledged. This is most likely due to the

difficulties in generating miRNA–Seq data. Experimen-

tal design of matched tumor–normal samples requires

additional efforts in the sample acquisition process.

Thus, our data set, providing both miRNA–Seq and

mRNA-Seq data for matched tumor–normal samples

from 48 Korean patients with LUAD, is a unique

resource that includes ideal control data to avoid per-

son-to-person variations when comparing tumor vs.

normal or mRNA vs. miRNA expressions. This may

serve as an optimal data set to test and evaluate

advanced algorithms for identifying miRNA targets,

discovering cancer biomarkers, or deciphering molecu-

lar mechanisms in tumorigenesis.

Fig 5. Relative change of target gene expression in qRT-PCR experiment when cells were transfected with miRNA mimic in A549 (top) and

NCI-H460 (bottom) cell lines. Each measurement was done in triplicate and the P-value was calculated with two-tailed t-test.
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Our efforts were focused on identifying TSmiRs and

target oncogenes that could be developed into prog-

nostic biomarkers or therapeutic targets of cancer

drugs. We identified seven novel TSmiRs with demon-

strated tumor-suppressive activity and 17 target genes

whose expression was dependent on miRNA transfec-

tion in two lung cancer cell lines. Many of those

TSmiRs and target genes were reported as prognostic

markers in diverse types of tumor. Examples include

miR-30c-2-3p in breast cancer (Shukla et al., 2015),

miR-218 in hepatocellular carcinoma (Yang et al.,

2016), CXCL14 in colorectal carcinoma (Zeng et al.,

2013), and SERPINH1 in clear cell renal cell carci-

noma (Qi et al., 2018).

Biological regulation is an elaborate process typi-

cally involving a complex network of regulatory loops.

TP53 is a good example where more than 20 miRNAs

are known to regulate TP53 by binding directly or tar-

geting indirectly regulators of the p53 gene (Hermek-

ing, 2012; Liu et al., 2017). On the other hand, TP53

itself regulates the transcriptional expression of a

group of miRNAs, thus creating feedback loops.

We have discovered several DEmiRs and their target

genes that are involved in cell cycle regulation (Fig. 6).

E2F8 is a transcription factor for the HMGB3 gene

whose overexpression is associated with poor progno-

sis in diverse types of cancer including non-small cell

lung cancer (Song et al., 2013). Notably, HMGB3 is

the target of miR-338-5p that was consistently down-

regulated in LUAD (46 out of 48 patients). This

miRNA is an intronic miRNA within the AATK gene

that is also downregulated in tumor. Tumor-suppres-

sive roles of the hosting AATK gene are well estab-

lished in melanoma and lung cancer cells (Haag et al.,

2014; Ma and Rubin, 2014). We also observed that the

AATK gene is the target of miR-182-5p that is upreg-

ulated in cancer. Thus, a regulatory cascade of miR-

182-5p, the AATK gene, miR-338-5p and the E2F8

transcription factor possibly leads to overexpression of

HMGB3.

Fig 6. A network model of regulating cell cycles. All miRNAs and their target genes are differentially expressed between tumor and normal

samples in concordant direction with negative regulation of miRNAs.
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Another regulatory network for the cell cycle con-

sists of MYBL2 and TOP2A, which are targets of

miR-30c-2-3p and miR27a-5p, respectively. Both genes

are involved in the G2M_Checkpoint, and all members

were differentially expressed in our data. MYBL2 is

known to promote cell proliferation and EMT in

many tumor types (Jin et al., 2017; Liang et al., 2017;

Tao et al., 2015), and TOP2A is associated with worse

prognosis in non-small-cell lung cancer patients (Hou

et al., 2017).

Altogether, we present two regulatory paths respon-

sible for cell cycle regulation. The detailed interplay of

these regulatory elements remains to be elucidated, but

our network model should enhance current under-

standing of the regulatory roles of miRNAs in LUAD.

5. Conclusions

Our study reports integrative analyses of high-through-

put sequencing data of miRNA and mRNA from 49

tumor–normal paired LUAD samples, which is the lar-

gest patient cohort of this kind for LUAD to date. We

further identified and experimentally validated seven

novel TSmiRs, two of which (miR-30a-3p and miR-

30c-2-3p) showing merits of prognostic molecular

markers as well as potential targets for therapeutic

manipulations. Multilayered deep sequencing with

proper control samples followed by in-depth integra-

tive analysis proves to be a powerful approach to

delineate molecular mechanisms behind cancer etiology

and to identify molecular biomarkers of prognostic

value.
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