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Abstract

In youth, thymic involution curtails production of new naïve T cells, placing the onus

of T‐cell maintenance upon secondary lymphoid organs (SLO). This peripheral main-

tenance preserves the size of the T‐cell pool for much of the lifespan, but wanes in

the last third of life, leading to a dearth of naïve T cells in blood and SLO, and con-

tributing to suboptimal immune defense. Both keratinocyte growth factor (KGF) and

sex steroid ablation (SSA) have been shown to transiently increase the size and cel-

lularity of the old thymus. It is less clear whether this increase can improve protec-

tion of old animals from infectious challenge. Here, we directly measured the extent

to which thymic rejuvenation benefits the peripheral T‐cell compartment of old mice

and nonhuman primates. Following treatment of old animals with either KGF or

SSA, we observed robust rejuvenation of thymic size and cellularity, and, in a repor-

ter mouse model, an increase in recent thymic emigrants (RTE) in the blood. How-

ever, few RTE were found in the spleen and even fewer in the lymph nodes, and

SSA‐treated mice showed no improvement in immune defense against West Nile

virus. In parallel, we found increased disorganization and fibrosis in old LN of both

Abbreviations: A, adult; KGF, keratinocyte growth factor; LN, lymph nodes; O, old; RTE, recent thymic emigrants; SLO, secondary lymphoid organs; SSA, sex steroid ablation.
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mice and nonhuman primates. These results suggest that SLO defects with aging

can negate the effects of successful thymic rejuvenation in immune defense.

1 | INTRODUCTION

The thymus undergoes age‐related involution, that includes progres-

sive loss of thymic epithelial and hematopoietic lineage cellularity, an

increase in adiposity, and reduced T‐cell output (Hale, Boursalian,

Turk, & Fink, 2006; Nikolich‐Žugich, 2014). In the periphery, fewer

naïve T cells are available (Appay & Sauce, 2014), and the old T‐cell
compartment is less able to respond to infections and cancer. This is

believed to contribute to increased vulnerability of older adults to

emerging and reemerging infections (Nikolich‐Žugich, 2014). More

recent evidence suggests that secondary lymphoid organ (SLO) orga-

nization and structure also undergo changes with increased age (Aw

et al., 2016; Becklund et al., 2016; Davies, Thompson, Pulko, Padilla

Torres, & Nikolich‐Žugich, 2017; Thompson, Smithey, Surh, & Niko-

lich‐Žugich, 2017), and the impact of these changes upon naïve T‐cell
survival (Link et al., 2007) and function is beginning to be understood.

A “holy grail” of T‐cell aging research is to achieve functional

rejuvenation of T‐cell function (Nikolich‐Žugich, 2018). Early experi-

ments with surgical castration have shown that transient thymic

rejuvenation is possible, as measured by increased thymic volume

and cellularity (Fitzpatrick, Kendall, Wheeler, Adcock, & Greenstein,

1985). Similar results have since been obtained using pharmacologi-

cal sex steroid blockade as well as injection of growth factors (Heng

et al., 2005; Min et al., 2007; Velardi et al., 2014). While some of

these studies have shown some improvement in peripheral immune

function in treated mice (Heng et al., 2012; Min et al., 2007), the

ultimate tests of functional immunity in the face of microbial chal-

lenge were not performed. Therefore, the question remains how well

thymic rejuvenation improves the peripheral T‐cell pool with aging,

and whether it confers improved protection against infection.

To address this question, we examined the effects of (a) ker-

atinocyte growth factor (KGF) administration in mice and nonhuman

primates, or (b) sex steroid ablation (SSA) in mice using an antagonist

of the luteinizing hormone‐releasing hormone receptor, degarelix

(Firmagon). Despite robust thymic rejuvenation in response to both

interventions, we found no evidence of improved peripheral T‐cell
maintenance. KGF‐treated old mice were not more effective at

mounting CD8 T‐cell responses to, or clearance of, Listeria monocyto-

genes. Similarly, degarelix did not improve CD8 T‐cell responses to,

or survival of old mice following challenge with, West Nile virus

(WNV). While rejuvenated thymi produced substantial numbers of

recent thymic emigrants (RTE), these RTE did not significantly con-

tribute to T‐cell populations in the SLO of old mice compared to

adults. We further found that old lymph nodes exhibited consider-

able fibrosis and degeneration of structure. These data indicate that

restoration of thymic function by itself may not be sufficient to

improve the immune response in elderly and suggest that interven-

tions to simultaneously alleviate defects in aging SLO may need to

be considered when designing strategies to improve immune

response in older organisms.

2 | RESULTS

2.1 | Age‐related decline in naïve T cells

Early in life, thymic involution progressively limits the production of

new naïve T cells (Nikolich‐Žugich, 2014). Thereafter, the naïve T‐cell
pool is successfully maintained peripherally until the last tertile or

quartile of life (den Braber et al., 2012), at which point this process

also eventually deteriorates. This leads to a loss of naïve T cells that

is concordant with an increase in susceptibility to infection with

advanced age (Heng et al., 2012; Nikolich‐Žugich, 2014). Figure 1a

shows the cross‐sectional kinetics of naïve CD8 and CD4 T cells

(CD62LHI, CD44LO) decline in our mouse colony, measured as a frac-

tion of total CD8 and CD4 cells, respectively. We have previously

shown a similar loss in the absolute number of naïve CD8 T cells

with age in the mouse spleen (Smithey, Li, Venturi, Davenport, &

Nikolich‐Žugich, 2012). The decline in representation and/or numbers

of naïve CD8 T cells in the blood had also been described by several

groups in nonhuman primates (Janković, Messaoudi, & Nikolich‐
Žugich, 2003; Okoye et al., 2015; Pitcher et al., 2002) and humans

(Fagnoni et al., 2000; Olsson et al., 2001; Wertheimer et al., 2014).

2.2 | SSA or KGF treatment improves thymic
cellularity in aged mice

Thymic rejuvenation has been demonstrated in the old age (Fitz-

patrick et al., 1985; Heng et al., 2005; Sutherland et al., 2005), and

KGF and SSA have been shown to improve thymic cellularity in mid-

dle‐aged (KGF) and old mice (SSA) (Heng et al., 2012; Min et al.,

2007; Velardi et al., 2014). We used mice >18 months old, based on

the NIA definition of old mice (Miller & Nadon, 2000), and the doses

of KGF and degarelix reported to increase thymic cellularity and size

(Min et al., 2002, 2007 ; Seggewiss et al., 2007) and confirmed the

above results. Thus, degarelix induced a robust increase in thymic size

compared to untreated controls (Figure 1b), with a fourfold increase

in the number of thymocytes (from 5.17 × 106 ± 1.16 × 106 in old

controls to 2.11 × 107 ± 2.19 × 106 42 days post‐treatment) (Fig-

ure 1c). The number of CD8/CD4 double‐positive (DP) thymocytes

has been used as a measure of thymic generative activity, because

the ratio of DP cells to RTE remains relatively constant with age (Hale

et al., 2006). Degarelix boosted the numbers of double‐positive thy-

mocytes in old animals by 4.6‐fold (Figure 1d) from

3.42 × 106 ± 1.01 × 106 (old controls) to 1.56 × 107 ± 1.77 × 106

(SSA). KGF also increased total thymocyte numbers by 2.3‐fold from
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6.77 × 106 ± 1.42 × 106 (old untreated) to 1.58 × 107 ± 1.65 × 106,

but this difference did not reach statistical significance, most likely

due to low power (Figure 1e). Similarly, KGF treatment increased the

number of DP thymocytes by 2.4‐fold from 5.21 × 106 ± 1.18 × 106

(old untreated) to 1.24 × 107 ± 1.45 × 106 (Figure 1f). This increase,

also, did not reach statistical significance.

2.3 | KGF or SSA DO not increase naïve CD8 or
CD4 T‐cell numbers in blood

We next examined whether increased thymic size and cellularity

contributed to the peripheral naïve T‐cell pool in the blood and

found that the increase in thymus cellularity failed to increase the

percentage of naïve CD8 (Figure 2a,b) or naïve CD4 (Figure 2c,d) T

cells in the peripheral blood of old mice following either degarelix

(Figure 2a,c) or KGF (Figure 2b,d) treatment. Because the absolute

numbers of CD3 T cells in blood tend to decrease with age (e.g., #

CD3/ml blood 1.99 ± 0.43 × 106 vs. 1.03 ± 0.27 × 106; p = 0.0159),

these results are even more pronounced in absolute terms. Similarly,

old rhesus macaques (RM) treated with KGF showed no statistical

improvement in the percentage of naïve CD8 or CD4 T cells (Fig-

ure 2e,f) (defined, as previously described (Okoye et al., 2015), as

CD28INTCD95LO) in blood. We could not directly measure thymic

cellularity in RM treated with KGF as that would have been a termi-

nal study, and our attempts to measure thymic size by MRI were not

satisfactory. However, we did observe comparable clinical signs of

KGF activity in old and adult RM, as manifested by transient red-

ness/flushing of the face and lips and increased salivation, which sug-

gested that the administered KGF had the expected impact on

epithelia. Moreover, the same dose (in mg/kg) produced a manifest

increase in murine thymus cellularity. We conclude that thymic reju-

venation via SSA or KGF administration did not correlate to an

increased frequency of naïve peripheral T cells in SLO.

2.4 | SSA treatment of old mice did not improve
survival after WNV challenge

While in our hands the increased thymic size and cellularity did not

translate into an overall increase in naïve T‐cell frequency in the

blood, it was possible that the newly produced “young” cells
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F IGURE 1 Thymic rejuvenation increases thymocyte populations in old mice. (a) Representation of naïve T cells among total CD4 (gray) or
total CD8 (black) pool from mice across the lifespan is shown. Cells were gated on CD4+ or CD8+ cells, and then on CD62HI CD44LO. The
slopes denote a decline from youth, and are significantly different from zero, p < 0.0001 for CD8 and p = 0.0003 for CD4. Data represent
n = 81 mice of indicated ages across the timeline. (b–f) Mice were treated with either degarelix (D) or KGF and analyzed 42 days or 1 month
post‐treatment, respectively. (b) Thymus from an untreated old mouse (left) and a degarelix‐treated old mouse (right). (c) Thymocyte numbers
from adult, old, and old mice treated with degarelix. (d) Double‐positive thymocytes from adult, old, and old mice treated with degarelix. (e)
Thymocyte numbers from adult, old, and old mice treated with KGF. (f) Numbers of double‐positive thymocytes from adult, old, and old mice
treated with KGF. For degarelix experiments, n = 7 to 13 mice per group pooled from two independent experiments. For KGF experiments,
n = 3–7 mice per group. Means + SEM are shown (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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replaced older naïve T cells. This would be consistent with prior data

from the Fink group, showing the replacement of existing naïve T

cells in the spleen with newly produced RTE (Hale et al., 2006). Such

replacement of “old” naïve T cells could lead to improved immunity

and was invoked by Haynes, Swain, and colleagues to explain

improved T‐cell function following depletion of peripheral T cells in

old mice (Haynes, Eaton, Burns, Randall, & Swain, 2005). To test

whether the T‐cell pool was functionally improved by SSA, we chal-

lenged old degarelix‐treated and control mice with WNV 42 days

after SSA. WNV is an age‐sensitive virus that induces significantly

higher mortality rates in older humans (Petersen & Marfin, 2002)

and mice (Brien, Uhrlaub, Hirsch, Wiley, & Nikolich‐Žugich, 2009)

and is ideal to test possible improvements in protective immunity of

older organisms. We found that the survival of old mice treated with

degarelix was no better, and tended to be worse, compared to

untreated controls (Figure 3a). However, as the defense against

WNV is mediated by multiple arms of immunity (Suthar, Diamond, &

Gale, 2013), it was possible that T‐cell responses could have been

improved regardless of similar mortality. To address this possibility,

we measured the fraction of WNV NS4b‐specific CD8+ T cells in

the blood using the H‐2Db/NS4b2488 tetramer (Uhrlaub, Brien, Wid-

man, Mason, & Nikolich‐Zugich, 2011) and found no improvement in

this response in the blood at day 7 (peak of the response) between

degarelix‐treated and control old mice (Figure 3b). We have also

performed several analogous experiments with KGF in old mice

infected for life with herpesviruses (HSV‐1 and CMV, used to mimic

human exposure to herpesviruses). Following challenge with Listeria

monocytogenes carrying recombinant ovalbumin (Lm‐OVA; protection

is mediated by CD8 T cells), we found no improvement in CD8

responses in KGF‐treated old mice over old untreated controls (re-

gardless of herpesvirus infection). In fact, there was a trend toward

lower total levels of CD8 T cells specific for OVA (not shown), as

well as in their polyfunctionality (Supporting Information Figure S1).

Prior work with KGF treatment of 14‐month‐old mice found

improved anti‐KLH antibody responses and took it as evidence that

CD4 function must have been improved (Min et al., 2007). To assess

that possibility, we examined anti‐WNV antibody responses. Adult

mice exhibited significantly higher overall anti‐WNV IgG than old

mice, and degarelix again provided no advantage over old controls in

that regard (Figure 3c). Together, these results indicate that thymic

rejuvenation using degarelix or KGF was insufficient to improve

immunity against intracellular infections in old mice.

2.5 | Increased thymic output does not increase
naïve T cells in secondary lymphoid organs

To examine the mechanistic basis of the failure of the rejuvenated

thymus to improve functional immunity, we took advantage of
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F IGURE 2 Thymic rejuvenation does
not improve the frequency of naïve CD8 in
the blood. (a) Percentage of CD8 T cells
with naïve phenotype (CD62HI CD44LO) in
the blood of adult, old, and old mice
treated with degarelix (D) for 42 days. (b)
Percentage of CD8 T cells with naïve
phenotype in the blood of adult, old, and
old mice treated with KGF at 1 month
post‐treatment. (c) Percentage of CD4 T
cells with naïve phenotype (CD62HI

CD44LO) in the blood of adult, old, and old
mice treated with degarelix for 42 days. (d)
Percentage of CD4 T cells with naïve
phenotype in the blood of adult, old, and
old mice treated with KGF at 1 month
post‐treatment. (e) Percentage of naïve T
cells (CD95LO, CD28MOD) in the CD8 T‐cell
pool of RM adult, old, and KGF‐treated old
at 21 days post‐treatment. (f) Percentage
of naïve T cells (CD95LO, CD28MOD) in the
CD4 T‐cell pool of RM adult, old, and
KGF‐treated old at 21 days post‐treatment.
For RM experiments, n = 3 adults, n = 7
old, and n = 7 treated old from three
independent experiments. For degarelix
experiments, n = 7 to 13 mice per group
pooled from two independent experiments.
Bar graphs means + SEM are shown
(*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). Absolute numbers
provided in the text
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Rag2pGFP transgenic mice, in which the RTE are labeled with GFP,

and where this label persists in newly exported cells until diluted

by cell division and/or until the cell is removed from the population

(Boursalian, Golob, Soper, Cooper, & Fink, 2004; Hale et al., 2006).

The Rag2pGFP reporter marks RTE for approximately 3 weeks fol-

lowing thymic export (Boursalian et al., 2004) and is therefore a

robust marker of RTE production and initial distribution. In this

model, we found a 2.12‐fold increase in the percentage of CD3‐ex-
pressing RTE in the blood in old mice on day 42 following degarelix

(Figure 4a), at the time when the total fraction of naïve T cells in

the blood remained unaltered (Figure 2). This result has been seen

at other time points (Figure 2, day 30 post‐KGF; not shown—day

14 postdegarelix and day 60 post‐KGF), ruling out the possibility

that we have simply missed the time point where the increase in

naïve T cells was evident. This suggests that SSA mediates the

increased RTE output from the thymus, but that this increase is

insufficient to increase the total fraction of naïve T cells in the

blood.

Changes in the stromal microenvironment in secondary lymphoid

organs (SLO), particularly lymph nodes (LN), have recently been

reported to influence naïve T‐cell homeostasis (Becklund et al., 2016;

Link et al., 2007). We found that old LN exhibit a profound decline in T‐
cell cellularity while the total T‐cell numbers in the spleen were not sig-

nificantly altered in old mice (Figure 4b–c). LN in old animals contained

3.4‐fold fewer T cells than adults (Figure 4c), consistent with previous

reports (Davies et al., 2017). Degarelix treatment improved the number

of total T cells compared to old untreated mice, but the T‐cell numbers

in treated animals remained significantly lower (1.9‐fold compared to

adults, Figure 4c). The numbers of naïve T (CD4 plus CD8) cells were

also significantly reduced in the spleen (a 1.4‐fold reduction compared

to the adult, Figure 4d), and even more remarkably, in the LNs (4.9‐fold
vs. adult controls, Figure 4e), and, despite some trending, SSA did not

significantly improve their numbers compared to untreated controls

(Figure 4d–e, unless indicated, no p‐values less than 0.1 by ANOVA).

Finally, we examined the contribution of naïve RTE to the naïve T‐cell
pool in SLO using adult and old RAG2pGFP mice, and found that naïve

RTEs (CD62LHICD44LO, GFP+) were drastically decreased in both old

spleen and LN compared to adult controls (Figure 4f–g, unless indi-

cated, no p‐values less than 0.1 by ANOVA).

2.6 | Increased thymic output contributes
differently in adult and old mice to the peripheral T‐
cell pool in Slo

Old mice exhibit defects in the stromal architecture of SLO (Aw et al.,

2016; Becklund et al., 2016; Davies et al., 2017; Masters, Haynes, Su, &

Palmer, 2016; Thompson et al., 2017) and that could play a role in the

suboptimal ability of old LN to recruit and properly direct T‐cell traffick-
ing during an immune response (Richner et al., 2015). Less is known

about whether such defects could also affect ingress of RTE into old

LN. To test whether the kinetics of thymic and peripheral (SLO) recon-

stitution may be different between adult and old mice, we treated old

and adult mice with degarelix and measured numbers of double‐posi-
tive (DP) thymocytes (as a measure of thymic generative activity (Hale

et al., 2006)) against the number of naïve CD3 T cells (CD3+CD62LHIC-

D44LO) in different lymphoid tissues. We found a linear relationship

between the number of DP thymocytes and numbers of total naïve T

cells in the blood and spleen regardless of age or treatment. Conse-

quently, all dots could be fitted around a single line by linear regression

(Figure 5a–b). That relationship, however, did not hold between DP thy-

mocyte numbers and the numbers of naïve T cells in the LN, where

many fewer naïve T cells were present, causing the two regression lines

to differ significantly between adult and old mice (p = 0.0142; Fig-

ure 5c). To track how RTE were contributing to the naïve T‐cell pool
during degarelix‐mediated rejuvenation, we used RAG2pGFP mice. DP

thymocyte numbers directly and linearly correlated to the naïve CD3

RTE pool found in the adult and old blood (Figure 5d), suggesting that

newly produced T cells migrate into blood with no restriction. However,

the same was not observed for the old SLO (spleen, Figure 5e; LN, Fig-

ure 5f), where there were many fewer RTE than would have been pre-

dicted based on the number of thymic DP cells. Therefore, increasing
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thymic output with degarelix produced RTE that incorporated readily

into adult, but not old, SLO (Figure 5e–f). We hypothesize that age‐re-
lated changes in the SLO are an additional barrier to immune rejuvena-

tion in old animals that limits the beneficial effects of thymic

rejuvenation.

2.7 | Old LN exhibit pronounced fibrotic changes
with aging

LN are the main sites of naïve T‐cell maintenance, and the key cell

in that maintenance is the fibroblastic reticular cell (FRC) (Link et al.,

2007; Mueller & Ahmed, 2008). FRC secretes IL‐7 critical for naïve

T‐cell maintenance and deposits it on the extracellular matrix (domi-

nantly collagenous) that they themselves also produce. Both the

extracellular matrix and the process of FRC branch to form the criti-

cal 3‐D meshwork of conduits that allow directional T‐cell migration

and the delivery of homeostatic maintenance signals. We have

recently shown in two separate and independent studies that num-

bers of FRC (Becklund et al., 2016; Davies et al., 2017) as well as of

lymphoid endothelial cells (LEC) (Davies et al., 2017) diminish signifi-

cantly in old LN, with the FRC network showing marked disorganiza-

tion (Becklund et al., 2016). By contrast, we found no evidence that

production of IL‐7 was reduced in old LN at the mRNA (Becklund

et al., 2016) or protein (Figure 6a) levels.

This raised the possibility that bioavailability/access to IL‐7 may

be the key mechanism behind the above inability of old LN to recruit

and/or retain RTE. Indeed, in response to TGFβ and/or Th2 cytokines

(particularly IL‐13), FRC has the potential to produce excessive colla-

gen, and to lead to the process of fibrosis, that results in a thick-

ened, sclerotic capsule, disorganized LN areas and an accumulation

of thick collagen fibers in the LN parenchyma (Fletcher, Acton, &

Knoblich, 2015). To assess whether fibrotic changes may occur in

the aged LN, we stained LN of old and adult RM and mice with

Picrosirius Red (Figure 6b–e). This allowed visualization and quantifi-

cation of collagen, with the intensity of the red signal being propor-

tional to the thickness of collagen (Figure 6f). LNs in both RM and

mice exhibited pronounced signs of fibrosis with age, manifested as

outer capsule thickening, overall LN size reduction, and stromal infil-

tration with thick collagen bundles, so that more than 10% of the

fields in murine LN contained collagen fibers, as opposed to <2% for

the adult animal (Figure 6f). Preliminary analysis of gene expression

in old and adult LN was consistent with the above findings, with

increased production of TGFβ and IL‐13 in old mice (I. Jeftic et al., in

preparation), and experiments are in progress to conclusively assign

such production to defined lymphocyte or stromal subsets in SLO.

These results are consistent with impaired influx into and/or
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F IGURE 4 Secondary lymphoid compartments are not restored
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retention of RTE into, LN as a consequence of aging, although addi-

tional studies will be needed to fully establish mechanistic connec-

tion(s).

3 | DISCUSSION

KGF and SSA have been shown to rejuvenate old thymus (Alpdo-

gan et al., 2006; Chinn, Blackburn, Manley, & Sempowski, 2012;

Heng et al., 2012; Velardi et al., 2014). Consistent with this, we

found an improvement in thymocyte number following either KGF

or SSA/degarelix treatment of old mice (Heng et al., 2012; Velardi

et al., 2014) (Figure 1). However, while the thymi of old mice trea-

ted with degarelix or KGF were rejuvenated, we found no increase

in naïve CD8 and CD4 T‐cell frequencies in the blood in mice or

monkeys (Figure 2). We also found that thymic rejuvenation

resulted in a surge of RTE in the blood, but that it did not signifi-

cantly improve the number of naïve T cells or RTE in spleen or LN

in old mice (Figures 4, 5). Even when RTE numbers were trending

higher (but were not significantly improved), these numbers were

too low (only 2%–10% of all total naïve T cells) to contribute to an

increase in the naïve T‐cell pool or overall LN cellularity. This fur-

ther suggested that LN were not capable of either recruiting and/or

retaining new RTE produced by the thymus, an issue discussed fur-

ther below.

It has been shown that a fraction of RTE can home directly to

the gut and produce intraepithelial lymphocytes (Staton et al., 2006).
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We did not examine this migration, as our aim was to deal with

immunity and homeostasis in SLO, and therefore, aging of mucosal

lymphoid tissues will have to be addressed at a later date.

KGF is secreted by mesenchymal stem cells and is known to pro-

mote the proliferation of epithelial cells including thymic epithelial

cells (Chaudhry, Velardi, Dudakov, & Brink, 2016; Nikolich‐Žugich,
2007). KGF is currently licensed for the reduction in oral mucositis

after bone marrow transplantation (Seggewiss et al., 2007). KGF was

shown to increase thymopoiesis and total T‐cell numbers in the

spleen of aged mice (18 months old) due to an expansion of both

naïve and memory subsets (Chaudhry et al., 2016). However, T‐cell
proliferation in mixed lymphocyte reactions or following con-

canavalin A stimulation was not improved by KGF (Alpdogan et al.,

2006). Min et al. treated 14‐month‐old mice with KGF and observed

increased thymopoiesis and increased total CD4 and CD8 T cells in

the blood 1 month after treatment, which correlated to improved

secondary T‐dependent antibody responses to keyhole limpet hemo-

cyanin (KLH) given in adjuvant (Min et al., 2007). There are several

differences between these experiments and the ones described here

that may explain the discrepancy of the results. First, we performed

our experiments on bona fide old animals (18–20 months at treat-

ment), as opposed to the “almost” old 14‐month‐old mice (Min et al.,

2007). Second, it is possible that secondary KLH + adjuvant stimula-

tion is a more potent stimulus compared to live WNV in our experi-

ments; third, the experiments may not be directly comparable due to

different rejuvenation reagents. Finally, there was a difference in the

immunization route (s.c. for WNV following degarelix, and i.v. for Lis-

teria following KGF in our hands; vs. i.p. for KLH + IFA in the experi-

ments of Min et al. [2007]). At a minimum, protective immunity

against Listeria, that is mediated by CD8 T cells, was not improved

by any parameter tested (CD8 tetramer + cell numbers or CD8+ T‐
cell polyfunctionality).

Sex steroid ablation has also been extensively studied for its abil-

ity to rejuvenate the aged thymus and the naïve T‐cell compartment

(Chaudhry et al., 2016; Heng et al., 2012). SSA via surgical castration

(Heng et al., 2012) or degarelix (Shore, 2012) can restore both thy-

mic cellularity and the ratios of naïve to memory peripheral T cells in

9‐month‐old mice. However, surgical castration is progressively less

effective in restoring peripheral naïve:memory T‐cell ratios in 18‐
month‐old and 24‐month‐old mice (Heng et al., 2005), and degarelix

has not been studied in that regard so far. More importantly, surgical

SSA in 9‐month‐old mice led to improved virus‐specific CD8 T‐cell
percentages and numbers following influenza A viral infection (Heng

et al., 2012). That effect was somewhat reduced at 18 months and

abrogated in 24‐month‐old mice (Heng et al., 2012). In our hands,

degarelix improved thymic cellularity and the numbers of RTE in the

peripheral blood of old (>18, typically 20 months) mice, but did not

improve either total naïve or RTE numbers in their SLO. Further,

degarelix treatment did not improve survival, or T‐ or B‐cell
responses against WNV in old mice. Our functional data are reminis-

cent to data of Heng et al. (2012), in that they both highlight the

existence of age limits to the ability of SSA to improve T‐ and B‐cell
responses in truly old mice.

One key difference between our and the above studies is that

we conclusively tracked RTE export and migration by rejuvenated

thymi into the blood, spleen, and LN. Our finding of the reduced

presence of RTE in SLO of old mice raises important issues about

the exact mechanism of the age‐related defect in this case. Such a

defect(s) could be intrinsic to newly produced T cells, or intrinsic to

LN stroma, or both, and experiments are in progress to address this

issue. Regardless, this defect results in impaired homing and/or

retention in SLO of the aged animals.

While there is much to be learned about long‐term maintenance

of stromal and lymphoid compartments in SLO with aging, we know

that RTE need signals from SLO to survive and mature properly

(Houston, Nechanitzky, & Fink, 2008; Link et al., 2007). Our data are

consistent with recent work documenting a decline in FRC in old LN

(Becklund et al., 2016) and showing that fewer transferred naïve T

cells can be recovered from the old compared to adult SLO post‐
WNV infection (Richner et al., 2015). Of interest, this study and a

prior study of one of us (Becklund et al., 2016) have demonstrated

that IL‐7 does not decline with age at the mRNA (Becklund et al.,

2016) and protein (this study) levels, even though the FRC, a critical

component of LN stroma, that produce IL‐7, is reduced with aging

(Becklund et al., 2016; Davies et al., 2017). Together with our results

demonstrating increased LN fibrosis with age, and our data, to be

reported separately, on the increase in profibrotic cytokines in old

LN, this suggests that IL‐7 bioavailability may be suboptimal with

aging, making LN fibrosis an interesting potential target for both

mechanistic and therapeutic studies.

We conclude that restoration of thymic cellularity and of new T‐
cell production is not, by itself, sufficient to improve immune protec-

tion against intracellular pathogens. Rather, we show that deteriora-

tion of SLO in aged animals contribute to the decline of T‐cell
maintenance and function, and have the potential to negate the ben-

eficial effects of thymic rejuvenation. These defects, therefore, must

be taken into account when considering immune rejuvenation in the

old age.

4 | EXPERIMENTAL PROCEDURES

4.1 | Animals, KGF, and degarelix treatments

Old (O, 18–22 months of age, male) and adult (A, 2–4 months, male)

C57BL/6 (B6) mice were obtained from the National Institute of

Aging breeding colony and/or The Jackson Laboratory (Bar Harbor,

ME). B6.Rag2pGFP mice were a kind gift from Dr. Michel Nussen-

zweig (Rockefeller University, New York, NY) via Dr. Pam Fink

(University of Washington, Seattle, WA) (Houston, Higdon, & Fink,

2011); they were crossed to B6.SJL‐PtprcaPepcb/BoyJ mice (Ly5.1,

CD45.1) and maintained at the University of Arizona vivarium under

specific pathogen‐free conditions. B6 and B6.Rag2pGFP‐Ly5.1 mice

from 3 to 21 months of age were used to generate a cross‐sectional
time course of the decline in naïve T cells. Mice were treated with

degarelix (Firmagon) with a single dose of 40 μg per gram of mouse

i.p. (Velardi et al., 2014) or with KGF (Palifermin, Kepivance; Amgen,
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Thousand Oaks, CA) at 5 mg kg−1 day−1 for 3 consecutive days i.p.

(Min et al., 2007). Experiments were conducted under the approval

of the Institutional Animal Care and Use Committee (IACUC) and the

Institutional Biosafety Committee, in accordance with all applicable

federal, state, and local regulations. All WNV experiments were com-

pleted within a USDA‐inspected biosafety level 3 facility.

Colony‐bred rhesus macaques (Macaca mulatta, RM, Indian ori-

gin) of both sexes (two females and one male per group) were main-

tained according to federal, state, and local guidelines at the Oregon

National Primate Research Center under the approval of the Center's

IACUC. Old (20–30 years of age) and adult (9–15 years of age) RM

were given a low‐dose (250 μg/kg KGF) (Seggewiss et al., 2007) or

high‐dose treatments of 1,000 μg/kg or 5,000 μg/kg KGF for 3 con-

secutive days subcutaneously.

4.2 | WNV and Lm‐OVA infections

West Nile virus NY 385–99, isolated from the liver of a snowy owl,

and in its second passage, was a kind gift from Dr. Robert Tesh

(University of Texas Medical Branch at Galveston, Galveston, TX)

(Pugh et al., 2016). Virus was prepared as previously described

(Uhrlaub et al., 2011). Mice were infected by footpad (f.p.) with

1,000 pfu WNV/50 µl/mouse or i.v. with 105 colony‐forming units

of Listeria monocytogenes carrying the ovalbumin gene at 42–60 d

post rejuvenation treatment. Mice were monitored for survival until

45 days p.i.

4.3 | Tissue harvest, cell counts, and flow
cytometry

Mouse tissues were analyzed 30–45 days post‐treatment or at indi-

cated times following infection. Blood was collected and leukocytes

isolated either by hypotonic lysis or by density centrifugation with

Lympholyte‐Mammal (Cederlane). Thymus, spleen, and peripheral

lymph nodes (one popliteal, inguinal, and brachial were pooled

together) were collected and Accutase (Thermo Fisher Scientific)‐di-
gested as previously described (Davies et al., 2017). Tissues were

pushed through 40 μm cell strainers. Cell counts were obtained from

a Hemavet cell counter (Drew Scientific, Dallas, TX, USA) (Pugh

et al., 2016). Cells were stained with a saturating, pretitrated dose of

each antibody (>5 μg/ml). Thymocytes were stained with CD44

(IM7), CD117 (ACK2), CD3 (17A2), CD24 (M1/69), CD25 (PC61),

NK1.1 (PK136), CD11b (M1/70), Gr‐1 (Ly‐6G), CD19 (eBio1D3),

B220 (RA3–6B2), CD4 (RM4–5), and CD8 (53–6.7). Spleen and LN

cells were stained for 30 min with antibodies against CD44 (IM7),

CD62L (MEL‐14), CD3 (17A2), CD4 (RM4–5), and CD8a (53–6.7)
(eBioscience and BioLegend). Cells were then stained with Live/Dead

viability dye (Thermo Fisher Scientific). To determine the T‐cell
response to WNV or Lm‐OVA, cells were stained overnight with the

above antibodies and the H2‐Db/NS4b tetramer (NIH Tetramer Facil-

ity, Atlanta, GA) and I‐Ab/E641 tetramer, a gift from Dr. Mike Kuhns

(University of Arizona, Tucson, AZ) or with H‐2Kb‐OVA tetramer,

stained for Live/Dead viability, fixed, permeabilized, and stained for

intracellular granzyme B (GzB (gb12; Thermo Fisher Scientific). For

RM, blood was obtained by venipuncture into heparinized tubes,

PBMC isolated by gradient centrifugation (Ficoll‐Hypaque), and

stained fresh or cryopreserved as previously described (Okoye et al.,

2015). Cells were stained with antibodies against CCR7 (3D12), CD4

(L200), CD95 (DX2), CD28 (CD28.2), CCR5 (3A9), CD3 (SP34–2),
CD8a (SK1), and Ki67 (B56) (all from BD Biosciences, Thousand

Oaks, CA), as previously described (Okoye et al., 2015). Optimization

procedures for flow cytometry are based on current standards and

include full‐minus‐one (FMO) gating controls (Roederer, 2002).

Samples (5 × 104 to 1 × 106 cells/sample) were acquired using

the Fortessa cytometer (BD Immunocytometry Systems) and then

analyzed with FlowJo software (Tree Star).

4.4 | WNV‐specific IgG ELISA

ELISA was used to determine serum antibody titer against WNV E

protein as previously described (Uhrlaub et al., 2011; Widman, Ishi-

kawa, Fayzulin, Bourne, & Mason, 2008).

4.5 | LN analysis for the presence of fibrosis

LN were immediately fixed in 4% paraformaldehyde/PBS (mouse) or

10% neutral‐buffered formalin (RM) at 4°C overnight, then routinely

processed for paraffin embedding, and cut to obtain 5‐μm‐thick sec-

tions. Before use, sections were deparaffinized, rehydrated, and incu-

bated with a 0.1% Sirius Red solution (Direct Red 80, Sigma‐Aldrich,
St. Louis, MO, USA) in aqueous saturated picric acid, washed in acid-

ified water (0.5% Acetic acid), dehydrated, and mounted with Per-

mount medium. Sections were photomicrographed with a digital

camera (Leica DFC450) mounted on light microscope (Leica

DMI6000), digitized (LAS X, Inc. software), and analyzed with ImageJ

software (NIH, Bethesda, MD, USA).

4.6 | Statistical analysis

Statistics were performed using Prism 7 (GraphPad, San Diego, CA).

One‐way and two‐way ANOVA were used to compare groups. Some

of the data were not normally distributed as determined by Shapiro–
Wilk normality test. In those cases, we ran the Kruskal–Wallis test to

confirm significance and it was maintained. Adjusted p‐values of

<0.05 were considered significant. Nonlinear fit analysis was used to

compare whether best‐fit values were shared between data sets. Sig-

nificance is noted as follows throughout: ns = not significant,

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Error bars

denote SEM.
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