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1 Introduction

Resurgence [1–8] has attracted lots of attention by its intriguing property to make in-

timate connection between perturbative and nonperturbative quantities. From data of

higher-order perturbative expansion, resurgence enables us to extract nonperturbative as-

pects. It has been investigated how resurgence works in each of various quantum theories,1

whereas we still do not know much about a unified picture or classification of their resur-

gence structure.2 In addition, even in a specific model or theory, we have not clarified

how resurgence structure changes depending on its physical observables. Namely, some

observables may be strongly affected by nonperturbative effects and resurgence plays an

important role in extracting nonperturbative information, while other observables may

not and their perturbative series may behave too well to get insight into nonperturbative

aspects by resurgent analysis.

Furthermore, we have not known much about relation between resurgence structure

and physics. In general, nonperturbative dynamics is important to explain how interesting

physical phenomena like quark confinement or symmetry breaking take place. When resur-

gence extracts some information on nonperturbative effects from perturbation theory, we

1Resurgence structure has been studied in various models and theories based on several motivations: see

e.g. in quantum mechanics [9–35], string theories [36–52] as well as quantum field theories [53–89].
2Recent progress in this direction have been made, e.g. in [34].
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expect that some insights into such interesting physics are available. Thus, it is desirable

to find various examples where resurgence helps us understand nonperturbative aspects

of physics.

Based on these motivations, in this paper we study resurgence structure in a super-

symmetric double-well matrix model with the action

S = Ntr

[
1

2
B2 + iB(φ2 − µ2) + ψ̄(φψ + ψφ)

]
, (1.1)

where B and φ are N ×N Hermitian matrices, and ψ and ψ̄ are N ×N Grassmann-odd

matrices. µ2 is a parameter of the model. The action S is invariant under supersymmetry

transformations generated by Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0,

Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (1.2)

which lead to the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. One of the most interesting features

of this model is that the supersymmetry is spontaneously broken by nonperturbative effects

in a certain large-N limit called as double scaling limit (defined in (2.2)) [90, 91]. We also

have proposed in [92] that this model under the double scaling limit gives nonperturba-

tive formulation of type IIA superstring theory in two dimensions on a Ramond-Ramond

background. From these, we can regard this model as an invaluable example of sponta-

neously broken target-space supersymmetry in string theory. In this paper, we concentrate

on one-point functions of powers of matrix φ:
〈

1
N trφn

〉
. In the previous work [93], it

is shown that the operators with n even (n ∈ 2N) are essentially supersymmetric, and

1/N or genus expansions of their one-point functions are polynomials in the parameter µ2,

terminating at some genus, which do not lead to any nonanalytic behavior in the double

scaling limit. In [90], taking account of effects nonperturbative in 1/N , we have calculated

the one-point function
〈

1
N tr (φ2 − µ2)

〉
(or equivalently

〈
1
N trB

〉
) as an order parameter of

the spontaneous supersymmetry breaking. On the other hand, the odd-power operators

(n ∈ 2N − 1) are not supersymmetric, and genus expansions of their one-point functions

exhibit stringy growth of the expansion coefficients as (2h)! as genus h grows. In this

paper, we consider the one-point functions of the odd-power operators and study their

resurgence structure. Since instantons in the matrix model (1.1) contribute to the order

parameter
〈

1
N tr (φ2 − µ2)

〉
and trigger spontaneous supersymmetry breaking [90], our main

interest is to clarify how resurgence structure for the odd-power operators is related to such

nonperturbative physics.

Another advantage of considering our model (1.1) is that the existence of the Nicolai

mapping [90]. Although resurgence requires data of large-order perturbation series, it

is not easy to obtain such data in general. In case that a theory is supersymmetric,

we may compute its perturbative expansion to all orders, but in turn it may be Borel

summable and have trivial resurgence structure. One of nice approaches to overcome this

issue is to introduce a parameter explicitly breaking supersymmetry [27–31]. In [96] and

this paper, we propose another way to obtain perturbative expansion to all orders for
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resurgence: we consider nonsupersymmetric quantities in a supersymmetric model. In

fact, even in calculation of nonsupersymmetric quantities in (1.1), the Nicolai mapping is

available reflecting the existence of supersymmetry in the action. This kind of idea will be

useful, in particular, in supersymmetric field theories as in [82–88].

The organization of this paper is as follows. In the next section, we give a brief review

of the supersymmetric double-well matrix model. Correlation functions are expressed in

terms of eigenvalues of the matrix φ and are defined in each instanton sector. In section 3,

we explain how to compute the one-point functions of odd powers of φ by utilizing the

Nicolai mapping. In section 4, we consider contribution from the zero-instanton sector to

the one-point functions, and find that there exists a series of ambiguities after applying

the Borel resummation technique. Then, in section 5 we see that contribution from the

one-instanton sector also has another series of ambiguities, and confirm that these series

exactly cancel each other at the leading and next-to-leading orders. The last section is

devoted to conclusions and discussions.

2 Review of the supersymmetric matrix model

In this section, we give a brief review of the supersymmetric double-well matrix model

defined by the action (1.1), which has been proposed as a nonperturbative formulation of

type IIA superstring theory in two dimensions.

2.1 Supersymmetry and large-N limit

After integrating out the auxiliary variable B in (1.1), the scalar potential of φ reads

V (φ) =
1

2
(φ2 − µ2)2. (2.1)

In the planar limit (N → ∞ with µ2 fixed) of the matrix model, there are infinitely

degenerate supersymmetric vacua parametrized by filling fractions (ν+, ν−) for µ2 ≥ 2.

The filling fractions represent configurations that ν±N of the eigenvalues of φ are around

the minimum ±|µ| of the double-well potential (2.1) [94, 95]. On the other hand, for

µ2 < 2 we have a unique vacuum which breaks the supersymmetry. The boundary µ2 = 2

is a critical point at which the third-order phase transition occurs. In the planar limit,

it is explicitly seen in [92, 93] that the result of several types of correlation functions in

the matrix model reproduces the tree amplitudes in two-dimensional type IIA superstring

theory on a nontrivial Ramond-Ramond background. In addition, we have considered the

following double scaling limit [90] that approaches the critical point from the inside of the

supersymmetric phase:

N →∞, µ2 → 2 + 0, with s = N
2
3 (µ2 − 2) : fixed. (2.2)

This limit of the matrix model is expected to provide a nonperturbative formulation of

the superstring theory with string coupling constant gs proportional to s−
3
2 . From this

viewpoint the planar limit mentioned above is regarded as gs → 0 limit. In fact, in [96]

one-point functions for the single-trace operators of powers of φ are explicitly calculated at
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arbitrary genus and found to be finite at each genus under the double scaling limit (2.2).

In [90, 91], contribution from matrix-model instantons (isolated eigenvalues of φ located

around the top of the effective potential) to the free energy is found to be also finite and

to have a factor exp (−C/gs) with a constant C of O(1). This form is typical of solitonic

objects in string theory (D-branes). The correspondence between isolated eigenvalues and

solitons is also observed in well-established bosonic noncritical string theories [101–108].

The most interesting feature of the model ever found is that these instantons cause sponta-

neous supersymmetry breaking in the matrix model, which implies violation of target-space

supersymmetry induced by nonperturbative effects in the corresponding superstring the-

ory. The aim of this paper is to investigate connection between contribution from higher

genus in the absence of the instanton (in the zero-instanton sector) and that from the

one-instanton sector through the one-point functions.

2.2 Correlation functions in fixed filling fraction

In this subsection, we define correlation functions of our model (1.1) in a fixed filling

fraction. First, the partition function is expressed in terms of the eigenvalues of φ as

follows [90, 93]:

Z ≡ (−1)N
2

∫
dN

2
B dN

2
φ
(
dN

2
ψ dN

2
ψ̄
)
e−S

= C̃N

∫ ∞
−∞

(
N∏
i=1

2λidλi

)
4(λ2)2 e−N

∑N
i=1

1
2

(λ2i−µ2)2 , (2.3)

where the normalization of the integration measure is fixed as∫
dN

2
φ e−Ntr ( 1

2
φ2) =

∫
dN

2
B e−Ntr ( 1

2
B2) = 1,

(−1)N
2

∫ (
dN

2
ψ dN

2
ψ̄
)
e−Ntr (ψ̄ψ) = 1. (2.4)

C̃N is a constant dependent only on N : C̃N = (2π)−
N
2 N

N2

2

(∏N
k=0 k!

)−1
[95], and 4(x)

stands for the Vandermonde determinant for eigenvalues xi (i = 1, · · · , N): 4(x) ≡∏
i>j(xi−xj). By dividing the integration region of each λi according to the filling fraction,

the total partition function can be expressed as a sum of each partition function with a

fixed filling fraction:

Z =

N∑
ν−N=0

N !

(ν+N)!(ν−N)!
Z(ν+,ν−),

Z(ν+,ν−) ≡ C̃N
∫ ∞

0

(
ν+N∏
i=1

2λidλi

)∫ 0

−∞

(
N∏

j=ν+N+1

2λjdλj

)
4(λ2)2 e−N

∑N
m=1

1
2

(λ2m−µ2)2 .

(2.5)

By changing the integration variables λj → −λj (j = ν+N + 1, · · · , N), it is easy to find

that Z(ν+,ν−) = (−1)ν−NZ(1,0) and the total partition function vanishes.
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Next, we define the correlation function of K single-trace operators 1
N trOa(φ) (a =

1, · · · ,K) in the filling fraction (ν+, ν−) as〈
K∏
a=1

1

N
trOa(φ)

〉(ν+,ν−)

≡ C̃N
Z(ν+,ν−)

∫ ∞
0

(
ν+N∏
i=1

2λidλi

)∫ 0

−∞

(
N∏

j=ν+N+1

2λjdλj

)
4(λ2)2

×

(
K∏
a=1

1

N

N∑
i=1

Oa(λi)

)
e−N

∑N
m=1

1
2

(λ2m−µ2)2 , (2.6)

and express its connected part in the 1/N -expansion:〈
K∏
a=1

1

N
trOa(φ)

〉(ν+,ν−)

C

=
∞∑
h=0

1

N2h+2K−2

〈
K∏
a=1

1

N
trOa(φ)

〉(ν+,ν−)

C, h

. (2.7)

〈 · 〉(ν+,ν−)
C, h denotes the connected correlation function on a handle-h random surface with

the N -dependence factored out; i.e., the quantity of O(N0). Let us consider the case

where Oa(φ) are polynomials of φ. Operators 1
N trBk or (linear combinations of) 1

N trφ2k

(k ∈ N ∪ {0}) are invariant under the supersymmetries (1.2). For these operators, multi-

point functions at the planar level (h = 0) and higher-genus one-point functions do not

exhibit any nonanalytic behavior as s→ 0 [93, 96], which is characteristic of protection by

supersymmetry. On the other hand, operators of odd powers: 1
N trφ2k+1 (k ∈ N ∪ {0})

are not invariant under either of Q or Q̄, and their correlation functions have nontrivial

dependence on s [96] as we will mention in the next section. For simplicity, in the following

we focus on the one-point function of the odd-power operators: (2.7) with K = 1, O1(φ) =

φ2k+1 in the filling fraction3 (ν+, ν−) = (1, 0).

2.3 Correlation functions in fixed instanton sector

In this subsection, we divide correlation functions in the (1, 0) sector into contributions

from definite instanton numbers as done in [90]. In (2.5), the partition function Z(1,0) with

the filling fraction (1, 0) is expressed as the integrations of N eigenvalues along the positive

real axis. The eigenvalue distribution in the planar limit is given as [93, 94]〈
1

N

N∑
i=1

δ(x− λi)

〉(1,0)
∣∣∣∣∣∣
planar

=


x

π

√
(x2 − a2)(b2 − x2) (a < x < b)

0 (otherwise),
(2.8)

with a =
√
µ2 − 2 and b =

√
µ2 + 2, which means that all the eigenvalues are confined in

the interval [a, b]. Dividing the integration region of each eigenvalue R+ = [0,∞) into the

inside and outside of the support:∫ ∞
0

dλi =

∫ b

a
dλi +

∫
R+\[a,b]

dλi, (2.9)

3It is shown in [93] that at least at the planar level (h = 0) and up to the three-point functions (1 ≤ K ≤
3), it is easy to recover filling fraction dependence of correlation functions from those in (ν+, ν−) = (1, 0).
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we decompose the partition function as

Z(1,0) =
N∑
p=0

Z(1,0)

∣∣
p-inst.

,

Z(1,0)

∣∣
p-inst.

=

(
N

p

)
C̃N

∫ b

a

N−p∏
i=1

2λidλi

∫
R+\[a,b]

p∏
i=1

2λjdλj ∆(λ2)2e−N
∑N
i=1

1
2

(λ2i−µ2)2 .

(2.10)

Each contribution with fixed p is regarded as the partition function in the p-instanton

sector. In fact, an instanton in our model corresponds to a saddle point of effective potential

Veff(λi) with respect to a single eigenvalue λi, which is obtained by integrating out all the

eigenvalues other than λi in (2.3). Its saddle point turns out to be the origin λi = 0 [90].

For large s (small gs) under the double scaling limit (2.2), the main contribution from the

outside of the support R+ \ [a, b] is provided by such an instanton located at the origin.

Then as mentioned in Introduction, leading contribution from the instanton takes the form

of exp (−C/gs). Correlation functions in the p-instanton sector can also be defined in a

similar manner:

〈O〉(1,0) =

N∑
p=0

Z(1,0)

∣∣
p-inst.

Z(1,0)
〈〈O〉〉(1,0)

∣∣∣
p-inst.

, (2.11)

where 〈〈O〉〉(1,0)
∣∣
p-inst.

denotes an expectation value of O within the p-instanton configura-

tions normalized by Z(1,0)

∣∣
p-inst.

. According to [90, 91], the partition functions behave as

Z(1,0)

∣∣
0-inst.

= 1, Z(1,0)

∣∣
p-inst.

=

e− 4
3
s
3
2

16πs
3
2

p

×
[
1 +O(s−

3
2 )
]

(2.12)

in the double scaling limit with s finite but large, whereas 〈〈O〉〉(1,0)
∣∣
p-inst.

has no such

exponential suppression. Hence (2.11) is a trans-series expanded by the instanton weight

e−
4
3
s
3
2 /(16πs

3
2 ):

〈O〉(1,0) = 〈〈O〉〉(1,0)
∣∣∣
0-inst.

+ Z(1,0)

∣∣
1-inst.

(
〈〈O〉〉(1,0)

∣∣∣
1-inst.

− 〈〈O〉〉(1,0)
∣∣∣
0-inst.

)
+ Z(1,0)

∣∣
2-inst.

(
〈〈O〉〉(1,0)

∣∣∣
2-inst.

− 〈〈O〉〉(1,0)
∣∣∣
0-inst.

)
+
(
Z(1,0)

∣∣
1-inst.

)2 (
− 〈〈O〉〉(1,0)

∣∣∣
1-inst.

+ 〈〈O〉〉(1,0)
∣∣∣
0-inst.

)
+ (contribution from the total instanton number p ≥ 3), (2.13)

where the first line on the r.h.s. has no exponential suppression, while other lines have

according to (2.12). In the previous work [96], we have computed the one-point function

〈〈O〉〉(1,0)
∣∣
0-inst.

to all orders in expansion by g2
s ∝ s−3 for O = trφn. In what follows we will

– 6 –
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find that for odd n, the Borel resummation of this expansion has a series of ambiguities,

but explicitly show that it is indeed canceled by another series of ambiguities arising in

the one-instanton sector given in the second line in (2.13) up to the next-to-leading order.

This provides a strong support that there is no ambiguity in the trans-series form up to

the instanton number one.

In the following, we use the notation:

〈O〉(1,0)
∣∣∣
0-inst.

= 〈〈O〉〉(1,0)
∣∣∣
0-inst.

,

〈O〉(1,0)
∣∣∣
1-inst.

= Z(1,0)

∣∣
1-inst.

(
〈〈O〉〉(1,0)

∣∣∣
1-inst.

− 〈〈O〉〉(1,0)
∣∣∣
0-inst.

)
. (2.14)

3 One-point functions via Nicolai mapping

In this section, following the derivation in [96], we express the one-point function〈
1
N trφ2k+1

〉(1,0)
in terms of quantities in the Gaussian matrix model. Let us first con-

sider the φ2-resolvent

〈
R2(z2)

〉(1,0)
=

〈
1

N
tr

1

z2 − φ2

〉(1,0)

. (3.1)

In terms of the eigenvalues, R2(z2) becomes

1

N

N∑
i=1

1

z2 − λ2
i

=
1

N

1

2z

N∑
i=1

(
1

z − λi
+

1

z + λi

)
, (3.2)

and 1/ (z − λi) (1/ (z + λi)) has poles only on the positive (negative) real axis for the filling

fraction (1, 0). This leads to〈
1

N
trφ2k+1

〉(1,0)

=

∮
C0

dz

2πi
2z2k+2

〈
R2(z2)

〉(1,0)
, (3.3)

where C0 is a contour which encloses only the poles at z = λi for ∀i counterclockwise. In par-

ticular, in the zero-instanton sector, λi’s are all confined in the interval [a, b], and therefore,〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0−inst.

=

∮
C

dz

2πi
2z2k+2

〈
R2(z2)

〉(1,0)
, (3.4)

where C denotes a contour encircling the interval [a, b] counterclockwise as depicted in

figure 1. C does not contain z = 0 inside, and hence contribution from the instanton at

the origin is not included in (3.4). Note that the φ2-resolvent is mapped to the resolvent

in the Gaussian matrix model. In fact, the Nicolai mapping xi = µ2 − λ2
i (i = 1, · · · , N)

recasts the partition function Z(1,0) and the one-point function (2.6) with K = 1 in the

filling fraction (1, 0) as

Z(1,0) = C̃N

∫ µ2

−∞

(
N∏
i=1

dxi

)
4(x)2 e−N

∑N
i=1

1
2
x2i ≡ Z(G’) (3.5)

– 7 –
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Figure 1. Integration contour C on the complex z-plane.

and〈
1

N
trφ2k+1

〉(1,0)

=
C̃N

Z(G’)

∫ µ2

−∞

(
N∏
i=1

dxi

)
4(x)2

(
1

N

N∑
i=1

(
µ2 − xi

)k+ 1
2

)
e−N

∑N
i=1

1
2
x2i ,

(3.6)

respectively. Differently from the standard Gaussian matrix model, the integrals of the

eigenvalues xi are not over the entire real axis, but are bounded from the above by µ2. The

superscript (G’) indicates a quantity in such a Gaussian matrix model. By introducing an

N ×N Hermitian matrix M whose eigenvalues are xi (i = 1, · · · , N), (3.6) can be written

as 〈
1

N
trφ2k+1

〉(1,0)

= −
∮
C0

dz

2πi
2z2k+2

〈
RM (µ2 − z2)

〉(G’)
, (3.7)

and 〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0−inst.

= −
∮
C

dz

2πi
2z2k+2

〈
RM (µ2 − z2)

〉(G’)
, (3.8)

where RM (x) ≡ 1
N tr 1

x−M and the expectation value 〈·〉(G’) is taken in the Gaussian matrix

model (3.5).

It is also useful to express the one-point function by introducing the orthogonal poly-

nomials Pn(x) (n = 0, 1, · · · ) associated with the Gaussian matrix model (3.5) [90]:

Pn(x) = xn +

n−1∑
i=1

p(i)
n x

i (3.9)

with p
(i)
n coefficients, which satisfies the orthogonality∫ µ2

−∞
dx e−

N
2
x2Pm(x)Pn(x) = hmδmn, (3.10)

– 8 –
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and the recursion relation

xPn(x) = Pn+1(x) + SnPn(x) +RnPn−1(x). (3.11)

Then (3.5) and (3.6) are expressed as

Z(1,0) = C̃NN !

N−1∏
n=0

hn, (3.12)

and 〈
1

N
trφ2k+1

〉(1,0)

=
1

N

N−1∑
n=0

1

hn

∫ µ2

−∞
dx (µ2 − x)k+ 1

2Pn(x)2e−
N
2
x2 . (3.13)

Likewise eigenvalue distribution of the Gaussian matrix model

ρ
(G’)
M (x) ≡

〈
1

N
tr δ(x−M)

〉(G’)

=

〈
1

N

N∑
i=1

δ(x− xi)

〉(G’)

(3.14)

becomes

ρ
(G’)
M (x) =

1

N

N−1∑
n=0

1

hn
Pn(x)2e−

N
2
x2 . (3.15)

From (3.13) and (3.15), we find a formula of the one-point function as an integral of the

eigenvalue distribution〈
1

N
trφ2k+1

〉(1,0)

=

∫ µ2

−∞
dx (µ2 − x)k+ 1

2 ρ
(G’)
M (x). (3.16)

In [90], the orthogonal polynomials Pn(x) are expressed in terms of the orthogonal

polynomials P
(H)
n (x) in the standard Gaussian matrix model (without the upper bound for

eigenvalues). P
(H)
n (x) is also a monic polynomial of degree n satisfying∫ ∞

−∞
dx e−

N
2
x2P (H)

m (x)P (H)
n (x) = h(H)

n δmn,

xP (H)
n (x) = P

(H)
n+1(x) + S(H)

n P (H)
n (x) +R(H)

n P
(H)
n−1(x) (S(H)

n = 0).

(3.17)

We determine differences P̃n(x) = Pn(x)− P (H)
n (x), h̃n = hn − h(H)

n , S̃n = Sn − S(H)
n = Sn,

R̃n = Rn−R(H)
n by taking account of the boundary effect of (3.10) in an iterative manner:

P̃n(x) = P̃ (1)
n (x) + P̃ (2)

n (x) + · · · ,

S̃n = S̃(1)
n + S̃(2)

n + · · · ,

R̃n = R̃(1)
n + R̃(2)

n + · · · ,

h̃n = h̃(1)
n + h̃(2)

n + · · · , (3.18)
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where the numbers (1), (2), · · · denote the steps of the iteration and turn out to correspond

to the instanton numbers of the contributions [90]. Namely, quantities with the number

(p) are suppressed by the factor exp
(
−4ps3/2/3

)
as s grows as in (2.12).

Applying this expansion to the eigenvalue distribution (3.15) with

L̃n(x) ≡ P̃n(x)

P
(H)
n (x)

= L̃(1)
n (x) + L̃(2)

n (x) + · · · , (3.19)

we obtain

ρ̃M (x) ≡ ρ(G’)
M (x)− ρ(G)

M (x)

=
1

N

N−1∑
n=0

1

h
(H)
n

P (H)
n (x)2e−

N
2
x2

(
2L̃(1)

n (x)− h̃
(1)
n

h
(H)
n

+ · · ·

)
, (3.20)

where ρ
(G)
M (x) is the eigenvalue distribution of the standard Gaussian matrix model, and

the ellipsis represents contribution from higher instanton numbers (p ≥ 2) [90]. Then the

one-point function (3.16) is decomposed as〈
1

N
trφ2k+1

〉(1,0)

=

∫ µ2

−∞
dx (µ2 − x)k+ 1

2 ρ
(G)
M (x) +

∫ µ2

−∞
dx (µ2 − x)k+ 1

2 ρ̃M (x). (3.21)

From straightforward calculation similar to what is done in section 5 in [90], the second

term of the r.h.s. turns out to be a quantity with higher instanton numbers (p ≥ 2), and can

be neglected as far as cancellation between the zero- and one-instanton sectors is concerned:〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0−inst.+1−inst.

=

∫ µ2

−∞
dx (µ2 − x)k+ 1

2 ρ
(G)
M (x). (3.22)

By the same reason, we can replace the resolvent in (3.8) by that of the standard

Gaussian matrix model (with the superscript (G)):〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0-inst.

= −
∮
C

dz

2πi
2z2k+2

〈
RM (µ2 − z2)

〉(G)
. (3.23)

4 Ambiguities in the zero-instanton sector

In [96], the all-order result of genus expansion of the one-point functions
〈

1
N trφ2k+1

〉(1,0)

is obtained at the zero-instanton sector in the double scaling limit (2.2). In this section,

we apply the Borel resummation technique to the result and find that ambiguities arise.

4.1 Genus expansion to all orders

For the resolvent of the standard Gaussian matrix model 〈RM (z)〉(G), the expression of

genus expansion is obtained at arbitrary genus in the literature e.g. [97]. In [96], utilizing
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the result there to (3.23), we have arrived at the expression

〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0-inst., univ.

= N−
2
3

(k+2) Γ
(
k + 3

2

)
2π

3
2

sk+2

{[ 13 (k+2)]∑
h=0

1

h!

(
− 1

12

)h 1

Γ (k + 3− 3h)
s−3h ln s

+ (−1)k+1
∞∑

h=[ 13 (k+2)]+1

1

h!

(
1

12

)h
Γ (3h− k − 2) s−3h

}
(4.1)

in the double scaling limit (2.2), where [x] denotes the greatest integer less than or equal to

x. We can see that the infinite series in the bracket on the r.h.s. gives the genus expansion

where the power of g2
s ∝ s−3 counts the number of handles. The suffix “univ.” on the

l.h.s. means that the most dominant nonanalytic term at s = 0 is taken in the limit (2.2)

(the universal part). The overall factor N−
2
3

(k+2) can be absorbed in the “wave function

renormalization” of the operator 1
N trφ2k+1.

4.2 Borel resummation

The second line on the r.h.s. in (4.1) is a series exhibiting factorial growth as Γ(3h−k−2)
h! ∼

(2h)!, which is a characteristic feature of string perturbation series and gives further support

that the matrix model describes a string theory in the double scaling limit [98].

The factorial growth means that (4.1) is a divergent series with convergence radius

zero. In order to try to make the series well-defined, let us apply the Borel resummation

technique to (4.1). It amounts to inserting

1 =
1

Γ (2h+ 1)

∫ ∞
0

dz z2he−z (4.2)

into (4.1) and interchanging the order of the sum on h and the integral on z. Use of

Stirling’s formula Γ(x) ∼
√

2π xx−
1
2 e−x

[
1 + 1

12x +O(x−2)
]

(x→∞) leads to

Γ(3h− k − 2)

h!Γ(2h+ 1)
∼ 1

2
√
π 3k+ 5

2

(
27

4

)h
h−k−

7
2

×
[
1 +

{
(k + 2)(k + 3)− 7

12

}
1

6h
+O(h−2)

]
(4.3)

for large h. In addition, a binomial coefficient
(
α
h

)
with α /∈ Z asymptotically behaves(

α

h

)
= (−1)h+1 sin(πα)

π
Γ(α+ 1)

Γ(h− α)

h!

∼ (−1)h+1 sin(πα)

π
Γ(α+ 1)h−α−1

[
1 +

α(α+ 1)

2h
+O(h−2)

]
. (4.4)
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Combining these two, we can express (4.3) as an expansion by binomial coefficients:4

Γ(3h− k − 2)

h! Γ(2h+ 1)
∼ (−1)h+k+1√π

2 · 3k+ 5
2

(
27

4

)h [ 1

Γ(k + 7
2)

(
k + 5

2

h

)

+
12k2 + 78k + 125

36

1

Γ(k + 9
2)

(
k + 7

2

h

)
+O(h−k−

11
2 )

]
. (4.5)

Then the Borel resummed series of (4.1) becomes

N
2
3

(k+2)

〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣

B.R.

0-inst., univ.

=
1

4π

sk+2

3k+ 5
2

(
k + 3

2

) (
k + 5

2

) [∫ ∞
0

dz

(
1− z2

z2
0

)k+ 5
2

e−z

+
12k2 + 78k + 125

36
(
k + 7

2

) ∫ ∞
0

dz

(
1− z2

z2
0

)k+ 7
2

e−z + · · ·

]
, (4.6)

with

z0 ≡
4

3
s

3
2 . (4.7)

Here the ellipsis stands for integrals containing higher powers of
(

1− z2

z20

)
and lower genus

contributions up to h =
[

1
3(k + 2)

]
. The former contributes to a series of ambiguities as

well as the first two terms, whereas the latter is a finite sum providing nothing ambiguous.

The integrals in (4.6) yield ambiguities due to the cut of the integrands [z0,+∞) on the

integration contour. As depicted in figure 2, there are two ways to avoid the cut in the

integrals of z, but the result will change depending on which choice we take. This means

that the divergent series cannot be made well-defined (non-Borel summable) for the zero-

instanton sector alone. However, by taking account of contributions from nonzero instanton

numbers, there is a possibility that ambiguity arising there cancels the ambiguity from the

zero-instanton sector. Therefore, the theory is free from ambiguity and well-defined as

a whole. This is the idea of resurgence. In the following, we will actually see that a

series of ambiguities from (4.6) cancels that from one-instanton contribution (up to the

next-to-leading order).

In order to identify the precise form of ambiguities, let us give a tiny imaginary part

to s: s → s ± iε with ε > 0. For s + iε (s − iε), the integration contour of z in (4.6)

shifts slightly below (above) the positive real axis to C+ (C−) as in figure 2. Then the

ambiguities are given as difference between contribution from s + iε (C+) and that from

4For m = 0, 1, 2, · · · ,
(k+ 5

2
+m

h

)
is a quantity of O

(
h−k− 7

2
−m

)
from eq. (4.4).
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Figure 2. Integration contours C+ and C− on the Borel plane.

s− iε (C−), i.e., integrated discontinuity of the integrands across the cut:

(Ambiguities of (4.6)) ≡ (4.6)|s→s+iε − (4.6)|s→s−iε

= i(−1)k
1

2π

sk+2

3k+ 5
2

(
k + 3

2

) (
k + 5

2

) [∫ ∞
z0

dz

(
z2

z2
0

− 1

)k+ 5
2

e−z

−12k2 + 78k + 125

36
(
k + 7

2

) ∫ ∞
z0

dz

(
z2

z2
0

− 1

)k+ 7
2

e−z + · · ·

]

= i(−1)k
1

3
1
2π

3
2

Γ
(
k + 3

2

)
2k+2s

1
2
k+1

[
Kk+3(z0)− 12k2 + 78k + 125

18z0
Kk+4(z0) + · · ·

]
, (4.8)

where the ellipsis in the last line stands for terms of modified Bessel function Kk+3+ν(z0)

with ν ≥ 2. They are accompanied with z−ν0 as in the second term and hence suppressed

by s−3ν/2 compared to the first term. By using the asymptotic form

Kν(z) ∼
√

π

2z
e−z

[
1 +

4ν2 − 1

8z
+O(z−2)

]
(z → +∞), (4.9)

we finally find

(Ambiguities of (4.6)) = i(−1)k
Γ
(
k + 3

2

)
2k+ 7

2π

e−
4
3
s
3
2

s
k
2

+ 7
4

[
1− 1

8s
3
2

(
k2 + 8k +

185

12

)
+O(s−3)

]
.

(4.10)

Notice that the exponential factor e−
4
3
s
3
2 is characteristic of the one-instanton contribution

and its exponent comes from the value of the branch point z0. This opens a profound

connection between perturbative ambiguities and nonperturbative effects [99]. In addition,

ambiguities from higher powers of
(
z2

z20
− 1
)

seem to be related to higher corrections by

holes and handles which are created by D-branes and closed strings, respectively.
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5 Ambiguities in the one-instanton sector

In the previous section, we have seen that the one-point functions of the odd-power opera-

tors provide divergent string perturbation series in the zero-instanton sector, and explicitly

computed a series of ambiguities of its Borel resumed series at the leading and next-to-

leading orders. Here we find that another series of ambiguities appears in the one-instanton

sector, and that these two series with different origins indeed cancel each other.

5.1 One-point functions in the one-instanton sector

By using the fact that the eigenvalue distribution of the standard Gaussian matrix model

becomes the (diagonal) Airy kernel in the double scaling limit (2.2) [91, 100]:

N
1
3 ρ

(G)
M (x)→ KAi(ξ, ξ) ≡ Ai′(ξ)2 − ξAi(ξ)2 (5.1)

with x = 2 +N−
2
3 ξ, we obtain the expression of (3.22) in the double scaling limit as

N
2
3

(k+2)

〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
0−inst.+1−inst.

→
∫ s

−∞
dξ (s− ξ)k+ 1

2KAi(ξ, ξ). (5.2)

From the relation of the Nicolai mapping 2 +N−
2
3 ξ = x = µ2 − λ2, we see that the region

[a, b] for λ in (2.10) is mapped to (−∞, 0] for ξ, while the region [0, a) is mapped to (0, s]

in the double scaling limit. (ξ = s corresponds to the location of the instanton λ = 0.)

Thus the latter gives contribution from the one-instanton sector:

N
2
3

(k+2)

〈
1

N
trφ2k+1

〉(1,0)
∣∣∣∣∣
1−inst.

→
∫ s

0
dξ (s− ξ)k+ 1

2KAi(ξ, ξ). (5.3)

5.2 Saddle point method

We consider contribution to the integral (5.3) from ξ ∼ s � 1, which is expected to be

comparable with the ambiguities (4.10). From asymptotic behavior of the Airy function,

we find that the Airy kernel behaves as

KAi(ξ, ξ) ∼
e−

4
3
ξ
3
2

8πξ

[
1− 17

24 ξ
3
2

+O
(
ξ−3
)]

(ξ →∞), (5.4)

where we take account of the expansion up to the next-to-leading order in order to compare

the result in the zero-instanton sector (4.10). This leads us to consider the following integral∫ s

0
dξ (s− ξ)k+ 1

2KAi(ξ, ξ) → 1

8π

∫ s

dξ e−f(ξ), (5.5)

with

f(ξ) ≡ 4

3
ξ

3
2 −

(
k +

1

2

)
ln(s− ξ) + ln ξ +

17

24
ξ−

3
2 +O(ξ−3). (5.6)
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For a while, we do not specify the lower bound of the integral region in (5.5), since our

concern is contribution around ξ = s. Let us evaluate the integral (5.5) by a saddle point

method. The saddle point around ξ = s is found to be

ξ∗ = s+
k + 1

2

2
s−

1
2 v(s), v(s) ≡ 1−

k + 5
2

4
s−

3
2 +O(s−3), (5.7)

where v(s) represents corrections by subleading contributions. We see that the saddle point

corresponding to the instanton ξ∗ = s slightly shifts due to the presence of the operator

depending on k.

In the standard saddle point method, we first find a saddle point and rotate an original

integration contour so that it will go along the steepest descent path passing through the

saddle point. In our case, the original integration contour is not an infinite line, but a

finite interval [0, s], which is major difference from the standard case. The region [0, s] is

along the steepest descent path, but it terminates at the branch point ξ = s. The saddle

point (5.7) is not in the interval [0, s], but on the branch cut [s,∞). This can be treated

by the shift s→ s± iε as in section 4. Here we rotate the contour by the angle π (or −π)

around ξ = s. The rotated contour goes in the opposite direction decreasing ξ on the real

axis, passes through ξ∗ and ends at ξ = s. We should choose the π rotation or the −π
rotation of the contour of ξ in accordance with s→ s+ iε or s→ s− iε, respectively.

Here it is worth noticing that what resurgence implies in the present setting. We

first note that (3.22) itself is a well-defined real quantity without ambiguity, and we are

interested in it after taking the double scaling limit. Because of technical difficulty, without

explicit computation of the integral (3.22), we are trying to deduce its expression in the

double scaling limit in the form of trans-series. Quantity in each instanton sector would

have ambiguities, but resurgence ensures that reflecting the well-definedness of the original

expression, such ambiguities are expected to cancel among instanton sectors. Even if

the integration region does not contain a saddle point, we should develop perturbation

theory around it in order to construct trans-series. As we will see later, information of the

original contour can be included in how to rotate the contour and the end point of the

rotated contour.

Let us go back to the computation. In calculating f(ξ∗), we should use the shift

s→ s± iε to the term of ln(s− ξ∗):

ln(s− ξ∗)→ ln(s± iε− ξ∗) = ln(ξ∗ − s)± iπ (s→ s± iε). (5.8)

Then

f(ξ∗) = ± iπ
(
k +

1

2

)
+ f̃(ξ∗), (5.9)

f̃(ξ∗) ≡
4

3
s

3
2 +

(
k

2
+

5

4

)
ln s−

(
k +

1

2

)
ln

(
k + 1

2

2

)
+ k +

1

2

+
1

8

{(
k +

1

2

)(
k +

9

2

)
+

17

3

}
s−

3
2 +O

(
s−3
)
, (5.10)
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while ξ-derivatives have no ambiguity:

f ′′(ξ∗) =
4s

k + 1
2

1

v(s)2
+ s−

1
2 +O(s−2),

f (n)(ξ∗) = (−1)n
(
k +

1

2

)
Γ(n)

(
2s

1
2

k + 1
2

1

v(s)

)n (
1 +O(s−3)

)
(n ≥ 3). (5.11)

The Taylor expansion of f(ξ) is summed up as

f(ξ) = f(ξ∗) +

∞∑
n=2

1

n!
f (n)(ξ∗)x

n

= f(ξ∗) +
2s

1
2x

v(s)
−
(
k +

1

2

)
ln

(
1 +

2s
1
2

k + 1
2

x

v(s)

)
+

1

2
s−

1
2x2 +O(s−3) (5.12)

with x = ξ − ξ∗. Looking at the factor of the Gaussian integral f ′′(ξ∗) in (5.11), we can

regard x as a quantity at most O(s−
1
2 ). From this, we find that all the terms in the Taylor

expansion are of the same order and should be kept.

By changing the integration variable to

t =
2s

1
2

v(s)
x (5.13)

in order to zoom in the vicinity of the saddle point, the upper bound of the integral

x = s − ξ∗ still remains a finite value t = −k − 1
2 , whereas the lower bound becomes far

away from the saddle point by O(s
1
2 ). The integral we should evaluate becomes5

1

8π

∫ s

dξ e−f(ξ)

= ± i

8π
(−1)ke−f̃(ξ∗) v(s)

2s
1
2

∫ −k− 1
2

∞
dt

(
1 +

t

k + 1
2

)k+ 1
2

e−t
[
1− v(s)2

8s
3
2

t2 +O
(
s−3
)]

= ∓i(−1)k
Γ
(
k + 3

2

)
2k+ 9

2π

e−
4
3
s
3
2

s
k
2

+ 7
4

[
1− 1

8

(
k2 + 8k +

185

12

)
s−

3
2 +O(s−2)

]
. (5.14)

We end up with

(Ambiguities of (5.3)) ≡ (5.14)|s→s+iε − (5.14)|s→s−iε

= −i(−1)k
Γ
(
k + 3

2

)
2k+ 7

2π

e−
4
3
s
3
2

s
k
2

+ 7
4

[
1− 1

8

(
k2 + 8k +

185

12

)
s−

3
2 +O(s−3)

]
, (5.15)

5We can check that the integrand does not depend on the contour rotation by π or −π. Setting s− ξ =

reiθ, θ is supposed to rotate from 0 to ±π in accordance with s → s ± iε as mentioned before. Then

t becomes t = −k − 1
2
− 2s

1
2

v(s)
reiθ. Only the subtle factor in the integrand

(
1 + t

k+ 1
2

)k+ 1
2

is written as(
e∓iπ 2s

1
2

(k+ 1
2 )v(s)

reiθ
)k+ 1

2

due to −s∓ iε = e∓iπ s. Hence it becomes the same irrespective of rotating θ by

π or −π.
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which precisely cancels the series of ambiguities in the zero-instanton sector (4.10) regard-

ing the leading and next-to-leading contributions. In the above derivation, we identify the

origin of ambiguities as the saddle point value of the integrand, more precisely, of the op-

erator 1
N trφ2k+1. In fact, the imaginary ambiguities come from the logarithmic term (5.8)

whose origin is the operator (s− ξ)k+ 1
2 after the Nicolai mapping. It is reasonable because

the partition function or even-power operators 1
N trφ2k do not have any ambiguity and

hence the existence of ambiguities must not depend on the eigenvalue distribution or the

Airy kernel, but on the kind of operators.

In (5.12), we manage to sum up the Taylor series to obtain the logarithmic term which

is a key to quickly derive the Gamma function Γ
(
k + 3

2

)
in the ambiguities (5.14). If we

perform the ordinary saddle point calculation, i.e., Gaussian integral over the whole real

axis by bringing down the higher terms of n ≥ 3 in (5.12) from the exponent, the Gamma

function will appear in the form of the asymptotic series as k + 1
2 grows.6 A similar

situation was found in [27] where difference between a Gamma function factor and its form

of Stirling’s formula is supplemented by terms whose order is higher than quadratic. There,

it is necessary to go beyond the one-loop determinant since quasi zero-modes appear. In

our case, there is no such zero-mode since f ′′(ξ∗) is positive definite, but still all order terms

needs to be taken into account in order to confirm resurgence. It would be interesting that

in both cases we need all order terms in the saddle point method for different reasons.

In order to derive the trans-series around the instanton saddle for the finite interval,

we took a prescription to rotate the integration contour so that it will pass the saddle

point with taking care of the direction and the end point of the original contour. We have

explicitly seen that this prescription realizes the cancellation not only at the leading order

but also at the next-to-leading order. This result supports validity of our prescription.

Some powerful technique will be necessary to check the cancellation to all orders or at the

level of higher instanton numbers. It is also desirable to give more justification of this

prescription from the viewpoint of general theory on resurgence applied to an interval.

Finally, concerning our motivation mentioned in Introduction, we make a comment on

a relation to physics, in particular spontaneous supersymmetry breaking. As shown in [90]

(eqs. (5.25) and (5.26) there7), its order parameter is given by the Airy kernel (5.1) as

N
4
3

〈
1

N
tr (φ2 − µ2)

〉(1,0)

= KAi(s, s) + · · · , (5.16)

where the ellipsis stands for contribution from higher instantons. As explicitly seen

from (5.4), this expression can be interpreted as contribution of the instanton, namely

an isolated eigenvalue at the top of the potential. It would be important to understand

physical aspects of a connection between the ambiguity computed here and the order pa-

rameter (5.16).

6From (5.11), x = ξ − ξ∗ can be regarded as a quantity at most O
((
k + 1

2

) 1
2

)
in the Gaussian integral

with respect to the k-dependence. Thus the n-th order term in (5.12) is suppressed as O
((
k + 1

2

)1−n
2

)
.

7The variable t there should be read as s/4.
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6 Conclusions and discussions

In this paper, we have investigated resurgence structure in the one-point functions of non-

supersymmetric operators in the supersymmetric double-well matrix model which is pro-

posed as nonperturbative formulation of two-dimensional type IIA superstring theory. In

the zero-instanton sector, the Borel resummation technique is applied to a divergent string

perturbation series, and a series of ambiguities arises depending on how to avoid the cut

on the Borel plane. In the one-instanton sector, a special care is necessary for the inte-

gration contour of a finite interval which does not pass through a saddle point. Another

series of ambiguities arise from the integrand itself evaluated at the saddle point. We have

confirmed that these two series of ambiguities cancel each other both at the leading and

next-to-leading order. Our prescription of the integration contour in the one-instanton sec-

tor is worth studying further and needs to be understood from the viewpoint of resurgence

theory extended to cases of integrals over finite intervals.

Another interesting question is how resurgence structure changes for other correlation

functions in the same model. In fact, we have developed a derivation of multi-point func-

tions of odd-power operators in [96] by using the result in the Gaussian matrix model [97].

There, it should be possible to read off large-order behavior of genus expansion for the two-

point (or multi-point) functions of the odd-power operators [109]. It would be interesting

to check that it again shows the stringy growth of the expansion coefficient as (2h)! and to

find structure of singularities on the Borel plane. On the other hand, in the one-instanton

sector, we need to treat off-diagonal components of the Airy kernel KAi(ξ, η), and it is ex-

pected that we find richer resurgence structure with variety of saddle points and steepest

descent paths (Lefschetz thimbles).

It is also anticipated that our analysis here can be extended to other models where the

Nicolai mapping is available. If they are mapped to the Gaussian matrix model via the

Nicolai mapping, correlation functions will be calculated from the result in the Gaussian

matrix model as in (3.7). If one is interested in the soft edge scaling limit, studies on the

Airy kernel and resurgence structure in this paper will be useful there as well.
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