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A new setup of cosmic inflation with a periodic inflaton potential and conformal factor is discussed in 
the metric and Palatini formulations of gravity. As a concrete example, we focus on a natural-inflation-
like inflaton potential, and show that the inflationary predictions fall into the allowed region of cosmic 
microwave background observations in both formulations.
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1. Introduction

Cosmic inflation [1–3] is one of the most important pillars in 
modern cosmology. It not only solves the flatness and horizon 
problems [2] and dilutes possible unwanted relics [3], but also 
successfully produces the primordial density perturbations nec-
essary for late-time cosmic structures [4,5]. Cosmic microwave 
background (CMB) observations have been contributing to narrow 
down inflationary models (e.g. Ref. [6]), and further improvement 
in the experimental sensitivity is expected in the future [7–9].

As the observational constraints become more stringent, there 
have been growing interests in the attractors of inflation models. 
One of the well-known attractors is inflation with the R2 term [1], 
which realizes inflation through a modification of the gravitational 
action. Another well known example is the inflation with non-
minimal coupling, which has been studied from 80’s [10–17], and 
been more extensively studied after Higgs inflation [12,18] became 
one of the main topics in modern particle cosmology [19–22].1

These attractor-type models enjoy their inflationary predictions 
well within the observational sweet spot. Such attractor models 
have been generalized to the α-attractor [23]. In this context, a 
systematic study of small conformal-factor attractor has been pro-
posed in Ref. [24], and as a result a new realization of Higgs 
inflation has been discovered [25].

In this paper we introduce a new attractor setup in the context 
of hillclimbing inflation. The model consists of periodic conformal 
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1 The setup can be generalized to a requirement that V J/�
2 approaches a con-

stant value at the range of inflation [17].
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factor (i.e. scalar field coupling to the Ricci scalar) and potential, 
but it still enjoys the attractor-type inflationary predictions. One 
of the interesting features of the model is that it predicts the ob-
servationally favored values of inflationary observables both in the 
metric and the Palatini formulations of gravity [26,27].2 The Pala-
tini formulation, where the connection � is regarded as another 
independent variable to take variation with in addition to the met-
ric g , has been known as a formulation of gravity distinctive from 
the metric formulation, in which �(g) is set to be the Levi-Civita 
connection and is given as a function of g . Though these two for-
mulations give the identical predictions as long as we consider 
the pure Einstein gravity and minimally-coupled matter fields, it 
is known that they lead to different dynamics once gravity action 
is modified or nontrivial couplings between gravity and matter are 
introduced. This difference has been attracting considerable atten-
tion recently [29–43], especially in the context of Higgs inflation.

The organization of the paper is as follows. First we introduce 
our setup in Sec. 2 where the inflationary predictions are analyti-
cally investigated both in the metric and the Palatini formulations. 
Next we present numerical results in Sec. 3. We finally conclude in 
Sec. 4.

2. Setup

The setup we consider in this paper is

S =
∫

d4x
√−gJ

[
1

2
�R J − κ

2
gμν

J ∂μφJ∂νφJ − V J(φJ)

]
, (1)

2 The paper [26] by Palatini is often referred to for the Palatini formulation, but it 
is reported [28] that the formulation was introduced in the paper [27] by Einstein.
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Fig. 1. Illustration of the setup. Conformal factor � (red), Jordan-frame potential V J

(blue), and Einstein-frame potential V = V J/�
2 (green). The vertical scale is arbi-

trary. In this plot we took η = 2.

with the “natural inflation”-type potential3

V J = 
4 sin4
(

φJ

f

)
. (3)

We adopt the Planck unit MP ≡ 1/
√

8πG = 1 (with G being the 
Newtonian constant) throughout the paper. Also, the subscript “J” 
refers to the Jordan frame. The main purpose of the present paper 
is to point out that this type of potential predicts the observa-
tionally allowed region with the following choice of the conformal 
factor:4

� = ω sin2
(

φJ

η f

)
. (4)

The normalization constant ω = 1/ sin2(π/η) is fixed to give a 
proper value of gravitational interaction � = 1 at the minimum 
of the potential φJ = π f , and η is a real free parameter control-
ling the ratio between the period of the potential (2π f ) and that 
of the conformal factor (2πη f ). We further impose η > 1 in order 
for inflation to successfully end at the potential minimum. Also, 
because of the subtleties discussed in Appendix A, we further re-
strict η to be η ≥ 2. The results for 1 < η < 2 are explained in this 
appendix.

The setup is summarized in Fig. 1. As we will see later, one 
of the interesting features of the present setup is that it predicts 
the observationally allowed region both in the metric and Palatini 
formulations of gravity. Also, for the metric formulation, the exis-
tence of the kinetic term in the action (1) is not even mandatory 
to achieve successful inflation. Therefore we consider both κ = 0
and κ = 1 for the metric case, while we exclusively take κ = 1 for 
the Palatini case.

3 Note that the potential (3) is realized for example as the difference of two 
cos-type potentials:

sin4(φJ/ f ) = 1 − cos(2φJ/ f )

2
− 1 − cos(4φJ/ f )

8
. (2)

This type of potential has been used for example in Ref. [44], and its UV completion 
has been discussed for example in Ref. [45]. As will become clear in the following 
discussion, V J needs to behave as φ4

J around a potential minimum in order for 
inflation to occur in the Palatini formulation.

4 The form of � is chosen from phenomenological requirement V J/�
2 → const.

at a point of V J = 0 as discussed in Ref. [24]. The existence of coincident zero of �
with the V J = 0 point is motivated by the generalized multiple-point principle: this 
model fits into the class of “new” version of MPP corresponding to the weak energy 
condition [46].
In the following discussion, we redefine the metric:

gμν = �gJμν. (5)

This gives the transformation law of the Ricci scalar, which de-
pends on the choice of the formulation. It also gives the relation 
between the original inflaton φJ and the canonical inflaton φ after 
the redefinition. The resulting Einstein-frame action becomes

S =
∫

d4x
√−g

[
1

2
R − 1

2
(∂φ)2 − V (φ)

]
, (6)

with (∂φ)2 ≡ gμν∂μφ∂νφ. The Einstein-frame potential V in terms 
of the original inflaton φJ becomes

V = V J

�2
= 
4 sin4(φJ/ f )

ω2 sin4(φJ/η f )
. (7)

This is one of the hillclimbing setups [24], namely, around φJ = 0, 
the potential behaves like V J ∝ φ4

J while the conformal factor be-

haves like � ∝ φ2
J . As a result, as we see from Fig. 1, the potential 

minimum around φJ = 0 is no more a minimum in the Einstein 
frame. At the same time, the relation between the Jordan and Ein-
stein frame inflatons gives an exponential stretching in the canoni-
cal field in the latter frame. Here the relation between the original 
and new inflatons φJ and φ depends on the formulation of gravity 
and the choice of the kinetic term κ . As a result, our basic scenario 
is as follows:

• First, inflation occurs around φJ = +0 (corresponding to φ =
∞), which is no more a minimum but a maximum in the Ein-
stein frame.

• Next, the inflaton rolls down to the minimum φJ = π f (corre-
sponding to φ = 0), where the inflation ends.

The slow-roll parameters and e-folding are calculated in terms of 
the original inflaton as

εV ≡ 1

2

(
dV /dφ

V

)2

= 1

2

(
dV /dφJ

V

)2 1

(dφ/dφJ)2
, (8)

ηV ≡ d2 V /dφ2

V

=
[

d2 V /dφ2
J

V

1

(dφ/dφJ)2
− dV /dφJ

V

d2φ/dφ2
J

(dφ/dφJ)3

]
, (9)

N =
∫

dφ√
2εV

=
∫

dφJ

d ln V /dφJ

(
dφ

dφJ

)2

. (10)

We take the lower end of the integration to be φ = 0 so that N = 0
at φ = 0.5

The inflationary predictions become

Pζ 	 1

24π2

V

εV
, ns 	 1 − 6εV + 2ηV , r 	 16εV . (11)

In the following analysis we fix Pζ = 2.1 × 10−9 [6]. This gives the 
overall height of the potential ∝ 
4 as a function of f for each 
setup. In the following we examine the metric and the Palatini 
formulations one by one.

5 Note that the difference between this definition and the usual definition N = 0
at max(|εV |, |ηV |) = 1 gives only next-leading corrections in N to the inflationary 
predictions.
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Fig. 2. Einstein-frame potential as a function of the canonical inflaton φ in the met-
ric formulation without the kinetic term (κ = 0). The blue, red, yellow and green 
(from top to bottom) lines are for η = 2, 3, 4 and ∞, respectively. Note that φ = 0
corresponds to φJ = π f , while φ = ∞ corresponds to φJ = +0 (see Fig. 1 and 
Eq. (13) or (21)).

2.1. Metric formulation

The redefinition of the metric (5) gives the relation between the 
Ricci scalars in the Jordan and the Einstein frames:

R J = �

[
R + 3� ln� − 3

2
(∂ ln�)2

]
. (12)

A new contribution to the kinetic term appears from the last term 
in this expression. As a result, the canonical inflaton φ is related 
with the field in the Jordan frame

dφ

dφJ
= −

√
κ

�2
+ 3

2

(
d ln�

dφJ

)2

, (13)

with the boundary condition φ = 0 at φJ = π f . Here we put the 
minus sign so that the field value during inflation φJ = +0 corre-
sponds to φ = ∞ (see Fig. 1).

2.1.1. Case κ = 0
We first consider the case without the inflaton kinetic term in 

the Jordan frame (κ = 0).6 The inflaton φ is still dynamical due 
to the contribution found in Eq. (12). In this case, we can solve 
Eq. (13) analytically:

φ = −
√

3

2
ln� ↔ � = e−

√
2
3 φ

. (14)

Using Eq. (4), we can replace φJ in terms of φ in the expression for 
the potential:

V = 
4e2
√

2
3 φ sin4

[
η arcsin

[
sin

(
π

η

)
e− 1

2

√
2
3 φ

]]
. (15)

We see that the inflationary predictions depend only on the peri-
odicity ratio η, not on f . The potential (15) is plotted in Fig. 2.

The blue, red, yellow, and green lines correspond to η = 2, 3, 
4, and ∞, respectively. To understand the potential shape, it is in-
structive to expand the potential assuming e−√

2/3φ � 1:

V 	 
4η4 sin4
(

π

η

)

6 This setup can be mapped to an F (R J) setup by solving the constraint equation 
for φJ in the Jordan frame: 1

2 R Jd�/dφJ = dV J/dφJ or R J = 2 (dV J/dφJ
)
/ (d�/dφJ

) ≡
G(φJ). By feeding φJ = G−1(R J) back into the original action, we get an equivalent 
F (R J) theory with F (R J) = 1

2 �(G−1(R J))R J − V J(G−1(R J)).
×
[

1 − 2

3
(η2 − 1) sin2

(
π

η

)
e−

√
2
3 φ + · · ·

]
. (16)

From this expression we see that the potential indeed develops an 
exponentially flat plateau for φ � 1. Also, for η → ∞, the potential 
(15) becomes simpler

V → 
4e2
√

2
3 φ sin4

[
πe− 1

2

√
2
3 φ

]
for η → ∞. (17)

Later we see that this potential coincides with the one in the Pala-
tini formulation with a specific choice of f .

For the exponentially flat potential (16), the slow-roll parame-
ters at the leading order in N become

εV 	 3

4N2
, ηV 	 − 1

N
, (18)

and therefore the inflationary predictions are given by

ns 	 1 − 2

N
, r 	 12

N2
. (19)

2.1.2. Case κ = 1
We next consider the case with the inflaton kinetic term (κ =

1). In this case we do not show the analytic solution to Eq. (13)
since it is rather lengthy. The kinetic term in the Einstein frame 
has contributions both from the original and new ones, and as a 
result the Einstein-frame potential as a function of the canonical 
inflaton depends on the value of f . However, as long as the new 
kinetic term ∼ (d ln �/dφJ)

2 dominates in Eq. (13), we expect that 
the potential is exponentially stretched in the horizontal direction 
and the resulting predictions become the attractor values.

The top panel of Fig. 3 is the Einstein-frame potential with 
η = 2 for various choices of f . The two thick lines in the figure 
correspond to f = MP (upper) and f = 10MP (lower). We see that 
the potential shape is almost quadratic for larger f (� 1), while 
it becomes exponentially flat for smaller f (� 1). Note that the 
asymptotic shape f → 0 is identical to η = 2 in Fig. 2, since in this 
limit the original kinetic term becomes negligible.

2.2. Palatini formulation

In the Palatini formulation, the Ricci tensor R Jμν is no more 
a function of the metric gJμν but instead regarded as a func-
tion of the connection (symbolically denoted as �).7 As a re-
sult, the metric redefinition (5) works only on the first factor of 
R J = gμν

J R Jμν(�):

R J = �R. (20)

Note that this redefinition does not give rise to a new kinetic term. 
The relation between the original inflaton φJ and new inflaton φ is 
now given by

dφ

dφJ
= −

√
1

�
, (21)

with the boundary condition φ = 0 at φJ = π f . Here we put the 
minus sign because of the same reason as the metric case. We can 
explicitly solve Eq. (21) and obtain

φ = −η f sin

(
π

η

)
log

[
tan(φJ/2η f )

tan(π/2η)

]
. (22)

7 In this paper we assume that the connection is torsion-free for simplicity.
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Fig. 3. Einstein-frame potential as a function of the canonical inflaton φ. Note that φ = 0 corresponds to φJ = π f , while φ = ∞ corresponds to φJ = +0 (see Fig. 1 and 
Eq. (13) or (21)). (Left) The metric formulation with the kinetic term κ = 1 and η = 2. (Right) The Palatini formulation with η = 2. In both panels, the upper and lower thick 
lines correspond to f = MP and f = 10MP, respectively.
Note that we identified φ = 0 with φJ = π f to obtain this ex-
pression. Since � is quadratic in φJ around φJ ∼ +0, the relation 
between the two fields (21) gives αφ ∼ − ln φJ or φJ ∼ e−αφ with 
α = √

ω/η f = 1/η f sin(π/η). On the other hand, the Einstein-
frame potential approaches to a constant value V → 
4η4/ω2 for 
φJ → +0 as shown in Fig. 1. Therefore, in terms of the canonical 
field φ, the Einstein-frame potential is exponentially “stretched” in 
the horizontal direction around φJ ∼ +0.

In fact, the exact potential shape becomes

V = 
4 cos8
(

π

2η

)

×
[

e
1

η sin(π/η)
φ
f + tan2

(
π

2η

)
e− 1

η sin(π/η)
φ
f

]4

× sin4
[

2η arctan

[
tan

(
π

2η

)
e− 1

η sin(π/η)
φ
f

]]
. (23)

The potential for η = 2 is plotted in the right panel of Fig. 3 for 
various values of f . It is again instructive to expand the potential 
assuming e−φ/η sin(π/η) f � 1:

V 	 
4η4 sin4
(

π

η

)

×
[

1 − 8

3
(η2 − 1) tan2

(
π

2η

)
e− 2

η sin(π/η)
φ
f + · · ·

]
. (24)

We see that the potential develops a plateau for φ � 1/α =
η f sin(π/η). Note that, in contrast to the metric formulation, the 
potential becomes steeper and steeper as f decreases. This can be 
seen by comparing the exponent of Eqs. (16) and (24). Also, for 
η → ∞, the potential (23) becomes simpler

V → 
4e
4φ
π f sin4

[
πe− φ

π f

]
for η → ∞. (25)

We see that the potential (25) indeed coincides with the potential 
(17) in the metric formulation with the choice f = √

6/π .
For the exponentially flat potential (24), the slow-roll parame-

ters at the leading order in N become

ε 	 η2 sin2(π/η)

8N2
f 2, η 	 − 1

N
, (26)

and therefore the inflationary predictions are given by

ns 	 1 − 2

N
, r 	 2η2 sin2(π/η)

N2
f 2. (27)
The results coincide with those for the metric formulation with 
κ = 0 in Eq. (19) when f = √

6/η sin(π/η) 	 √
6/π , which holds 

for η � 1.

3. Observational predictions

In this section we present numerical results for the inflationary 
predictions in the setup explained in the previous section, and also 
discuss possible reheating processes.

Figs. 4 and 5 are the inflationary predictions of the setup (1). 
The former is for η = 2 (left panel) and 3 (right panel), while the 
latter is for η = 10. The lines starting from the smiley markers and 
ending at the blue stars (from f = 102 MP to f = 10−1MP) are for 
the metric formulation with the kinetic term (κ = 1). The left and 
right lines correspond to N = 50 and 60, respectively. The value of 
f is also indicated in color.

We see that, for the metric formulation, the prediction is the 
same as that of the quartic chaotic inflation (smiley markers) for 
larger f (� 1), while it approaches to the attractor points (stars) 
for smaller f (� 1). For the metric formulation without the kinetic 
term (κ = 0), the prediction is f -independent and always comes 
at the position of the stars. We also note that their positions are 
almost η-independent, as seen from the leading-order predictions 
(19).

On the other hand, the lines going into the r � 1 region are 
for the Palatini formulation. The prediction is again the same as 
that of the quartic chaotic inflation for larger f (� 1), while it 
behaves differently from the metric case for smaller f (� 1). This 
behavior can be understood from Eq. (27), and therefore we see 
that, if r is observationally found to much smaller than 10−2, the 
Palatini formulation can provide a better fit to the data. We also 
see that the prediction with f = √

6/π in the Palatini formulation 
coincides with that of the metric formulation for η � 1.

Before moving on to conclusions, we comment on possible re-
heating mechanisms. First, preheating [47,48] is very likely to oc-
cur in the current setup. However, as expected from earlier studies, 
the dynamics is highly sensitive to (1) the existence of the kinetic 
term in the original frame [49], (2) the existence of other degrees 
of freedom (e.g. whether the inflaton is real or complex [49–51], or 
whether the scalaron degree of freedom exists or not [22,52,53]), 
(3) the choice of formulations [54], and so on. All of these need 
further investigation, but are beyond the scope of the present pa-
per. Second, reheating via the perturbative inflaton decay can be 
implemented in both metric and Palatini formulations. In the cur-
rent setup the inflaton actually becomes massless at the potential 
minimum in both formulations, and thus perturbative inflaton de-
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Fig. 4. Inflationary predictions of the setup (1)–(4) for η = 2 (left) and 3 (right). The left lines are for N = 50 while the right ones are for N = 60. The metric formulation 
with the kinetic term in the Jordan frame (κ = 1) predicts the lines starting from the smiley markers and ending at the stars. In the absence of the kinetic term (κ = 0), 
the prediction comes at the position of the stars independently of f . The Palatini formulation predicts the lines going into the r � 1 region. The value of f is also shown 
as a color plot, while f = MP and f = 10MP are indicated by the small and large open circles, respectively. The blue (red) open circles correspond to the metric (Palatini) 
formulations. The large open circles for both formulations almost overlap with each other.
Fig. 5. The same as Fig. 4, except that η = 10. The small open circles are for f = MP, 
while the large ones are for f = 10MP. For the small open circles, the blue and 
red ones correspond to the metric and Palatini formulations, respectively, while the 
large ones overlap for both formulations.

cay does not occur.8 A remedy may be to incorporate a coupling to 
the SM Higgs field H . For instance, if we modify the Jordan-frame 
potential to include

V J ⊃ λ
2|H|2 sin2(φJ/ f ), (28)

with a certain coupling λ, the inflaton acquires a mass mφ ∼
λ
〈H〉/ f once the inflation ends and the electroweak symmetry is 
broken, whereas during inflation the Higgs is stabilized at the ori-
gin by this coupling and thus the inflaton dynamics would be kept 

8 This can be seen as the inflaton mass mφ is given by

m2
φ = K

(
∂ K

∂φJ

∂V J

∂φJ
+ K

∂2 V J

∂φ2
J

)
,

with K (φJ) ≡ dφJ/dφ , and ∂V J/∂φJ = ∂2 V J/∂φ2
J = 0 at φJ = π f . Note that this is 

valid except for η = 2 in the κ = 0 case.
intact.9 Once the inflaton acquires a heavier mass than the Higgs, 
the reheating may take place by the inflaton decay into Higgs 
bosons. Even if the tree-level decay is kinematically forbidden, the 
inflaton can decay into a pair of lighter SM particles through the 
Higgs loop diagrams.

4. Conclusion

In this paper we discussed a new realization of cosmic infla-
tion where both the inflaton potential and conformal factor are 
periodic functions of the inflaton field. In particular, we focused 
on the realization both in the metric and Palatini formulations of 
gravity, adopting a specific type of the potential and conformal fac-
tor, namely, sinusoidal functions as a variant possibility of natural 
inflation. We showed that our setup gives inflationary predictions 
well consistent with cosmic microwave background observations in 
both formulations. We also argued that, for the metric formulation 
case, the existence of the kinetic term in the Jordan frame is not 
mandatory, and the consistent predictions can be obtained. Future 
observations, particularly those sensitive to r = O(10−3), may be 
able to distinguish between the metric and the Palatini formula-
tions in our setup [7–9].
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Appendix A. Limiting values of η

In this appendix we discuss η → 1 limit in the metric formula-
tion with κ = 0.

9 The inflaton mass thus induced may fall within the reach of low energy exper-
iments such as the ones searching for Axion-like particle or dark photons. Further 
details are reserved for future study.
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Fig. 6. Inflaton potential V for η = 1.1 (blue), 1.2 (red) and 1.3 (yellow) for the 
metric formulation without the kinetic term κ = 0.

Fig. 7. Inflationary predictions of the setup (1)–(4) for η = 1.1. The small and large 
open circles indicate f = MP and 10MP, respectively.

For η < 2, the conformal factor � takes its maximum between 
φJ = +0 and φJ = π f . As a result, Eq. (13) needs a special care for 
κ = 0. We obtain

V = 
4e2
√

2
3 φ sin8

(
π

η

)

× sin4
[
η arcsin

[
e− 1

2

√
2
3 φ

/
sin

(
π

η

)]]
, (A.1)

� = sin2 (
φJ/η f

)
sin2 (π/η)

= e−
√

2
3 φ

, (A.2)

for 0 < φJ < ηπ f /2 (i.e. φ > −√
6 log [sin (π/η)]), while

V = 
4e−2
√

2
3 φ sin4

[
ηπ − η arcsin

[
sin

(
π

η

)
e

1
2

√
2
3 φ

]]
, (A.3)

� = sin2 (
φJ/ f

)
sin2 (π/η)

= e

√
2
3 φ

, (A.4)

for ηπ f /2 < φJ < π f (i.e. 0 < φ < −√
6 log [sin (π/η)]).

Fig. 6 is the inflaton potential V for η = 1.1 (blue), 1.2 (red) 
and 1.3 (yellow) for the metric formulation without the kinetic 
term κ = 0. We see that the potential is monotonic and continuous 
at the boundary value φJ = −√

6 log [sin (π/η)], which corresponds 
to the junction of the solid lines to the dashed lines. However, we 
also see that the derivative diverges at this point. As long as we do 
not care about this divergence, we can calculate the inflationary 
predictions in the same procedure as the main text. Fig. 7 is the 
inflationary predictions for η = 1.1.
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