PHYSICAL REVIEW A 99, 053424 (2019)

Orientation of linear molecules in two-color laser fields with perpendicularly crossed polarizations
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Molecular orientation methods based on nonresonant two-color laser pulses having parallel polarizations have
been reported theoretically and experimentally. In this work, we demonstrate that perpendicularly polarized
two-color laser fields can be used to achieve stronger molecular orientation when nanosecond laser pulses are
used. The two-color fields align the molecules to the two-dimensional plane parallel to the field polarization; at
the same time, they orient the molecules in the direction of the 2w polarization. We show that the interplay
between the interactions due to the w- and 2w-laser fields provides stronger molecular orientation than the
parallel field configuration. This is due to temporally synchronized generations of alignment and orientation,

which reduce the nonadiabatic effects.
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I. INTRODUCTION

Control of the directional features of molecules, by induc-
ing their alignment and/or orientation, is an important tool for
experimental studies performed in the laboratory-fixed frame.
The alignment techniques are well established and have been
utilized in many interesting applications, such as multiphoton
ionization [1], photoelectron angular distributions [2], and
molecular imaging based on high-order harmonic generation
[3-6].

Molecules are aligned when the molecule-fixed axes are
confined along the laboratory-fixed frame. Alignment is based
on the interaction of the molecular anisotropic polarizabil-
ity and a nonresonant moderately strong laser field [7,8].
Due to the plus-minus inversion symmetry of the laser field,
molecules are aligned along the polarization of the field
without the head-versus-tail order confinement. By breaking
this inversion symmetry, the molecular electric dipole moment
can be confined to a particular direction, and polar molecules
become oriented. Among various experimental techniques,
combined electrostatic and nonresonant laser fields (combined
fields) [9-13], a phase-locked two-color laser field [14,15],
and THz pulses [16—18] create samples of oriented molecules.

For a molecular beam formed from different rotational
states, e.g., a thermal ensemble, the degree of alignment is in-
creased by simply increasing the intensity of the nonresonant
laser pulse. In contrast, the rotational states might be oriented
in opposite directions, and, as a consequence, the orientation
of a molecular beam might be moderate or even small. Par-
ticular experimental efforts have been undertaken to improve
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the orientation of molecular samples. A solution to overcome
this difficulty is the orientation of state-selected molecular
beams created by an electrostatic deflector [13,19-21] or a
hexapole focuser [22]. Another solution is using one-color and
delayed two-color femtosecond laser pulses, which selectively
orients half of the rotational states in the same direction
[23-27].

In spite of these experimental advances, nonadiabatic pro-
cesses prevent one from reaching a high degree of orientation
even when nanosecond laser pulses are used. The nona-
diabatic rotational dynamics provokes transitions between
oppositely oriented adiabatic pendular states contributing to
the field-dressed wave function [28]. As a consequence, the
orientation is significantly reduced in comparison to the pre-
dictions of the adiabatic approximation [28,29], whereas the
alignment is not affected because these two states lead to
the inversion-symmetric alignment [30]. For the combined-
field orientation technique, the angle between the fields, the
laser pulse width, and the strength of the electrostatic field,
as well as the initial state play crucial roles in the field-
dressed rotational dynamics, and become control knobs to
reach higher degrees of orientation [28—33]. For the two-color
laser field technique, the orientation obtained by solving the
time-dependent Schrédinger equation does not agree with the
results from the adiabatic approximation [34]. Possible solu-
tions to reach an adiabatic orientation were investigated for
two-color laser fields with parallel polarizations [34]. Thus,
to reach an adiabatic control of the field-dressed dynamics
has become a challenging subject to achieve higher degrees
of molecular orientation.

In this work, we propose the orientation of linear molecules
using nonresonant two-color laser fields with perpendicularly
crossed polarizations. Analogous to the parallel-polarized
two-color field case, due to the interaction with the molecular
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FIG. 1. (a) Temporal evolutions of the electric-field components
of parallel and perpendicularly polarized two-color laser fields dur-
ing one optical cycle of the w-laser pulse. (b) A sketch (not to
scale) of a triatomic linear molecule OCS and the Euler angles (0,
¢). The degree of orientation along the Z axis, and the degrees of
alignment along the Z and X axes are given by (cos @), (cos?8), and
(sin? 0 cos? ¢), respectively.

hyperpolarizability, pendular states with different parity are
coupled. Thus asymmetry with respect to the plus-minus
inversion of the polarization direction of the 2w-laser field is
introduced and the molecules are oriented. Such a crossed-
polarization configuration was theoretically investigated for
three-dimensional orientation of chiral molecules in the adi-
abatic regime [35]. We propose that the crossed-polarization
configuration can be used for achieving stronger orientation of
linear molecules. We provide an explicit orientation Hamil-
tonian of a linear molecule interacting with two-color laser
fields with perpendicularly crossed polarizations. The field-
dressed rotational dynamics is analyzed by solving the time-
dependent Schrodinger equation (TDSE) and by the adiabatic
approximation (AA).

In an experimental configuration with nanosecond two-
color laser pulses, the second harmonic pulse has a shorter
temporal width than the fundamental pulse. Hence, for paral-
lel fields, the alignment is created by the w-laser field having a
longer temporal width. Once the interaction with the 2w-laser
field becomes significant, the molecules are also oriented due
to the coupling of the pendular states having opposite parity.
In this delayed creation of the orientation, a significant dis-
crepancy between the TDSE and the AA was pointed out [34].
For perpendicular fields, the X-polarized w-laser field aligns
first the molecules in the X direction (see Fig. 1). When the
intensity of the 2w-laser field polarized along the Z direction
increases and exceeds that of the w-laser field, the molecules
become aligned and oriented toward the Z direction. In this
way, the alignment and orientation potentials along the Z
axis are generated simultaneously. We show here that this
gives rise to better adiabaticity and to stronger molecular
orientation.

The paper is organized as follows. In Sec. II, we derive the
Hamiltonian describing the interaction of a molecule and two-
color laser fields with parallel and perpendicular polarizations.
The symmetries of the Hamiltonian and the numerical meth-
ods are also explained in Sec. II. The field-dressed rotational
dynamics for parallel and perpendicular fields is discussed in
Sec. III. A summary and an outlook are provided in Sec. I'V.

II. HAMILTONIAN OF THE SYSTEM

We assume the Born-Oppenheimer and rigid rotor approx-
imations to describe the rotational dynamics of linear polar
molecules. Within this framework, the Hamiltonian of a field-
free linear polar molecule reads

Hyo. = BJ 2, (1)

where B and J are the rotational constant and the angular
momentum operator, respectively.

When the external electric field is moderately strong
(10'°-10'2 W/cm?), the light-molecule interaction Hamilto-
nian is given by the low-order perturbation theory [36]

1
Hiy = — ZMiEi % ZaijEiEj
i ij

—% Z BikEE;Ey — - -+, (2)
ijk
where u is the permanent dipole moment vector, o the po-
larizability tensor, and B the hyperpolarizability tensor. In
this expression (2), the electric field components, E; with i =
X, Y, z, are expressed in the molecule-fixed frame, and we need
to relate them with the laboratory-fixed frame components.
The transformation between both reference frames is given in
Appendix A.
We consider two-color laser fields, with the two electric-
field components having either parallel polarizations

EV(t) = E,(t) cos (0t )ey + Eay(t)cos Qut)e;  (3)
or perpendicular polarizations
EL(t) = E, (t) cos (wt)ey + Eay(t)cos Qut)ey,  (4)

where E,(t) = E,oexp(—t*/21,°) and E)() =
Es,0exp (—t%/21,%) are the envelopes of the - and
2w-laser fields, respectively. E,, o (Eay.0) is the peak strength
of the w-laser (2w-laser) field and t,,) is related to the
FWHM = 27,0,)v2In2. The phase difference between
the two electric fields is fixed at zero throughout the paper.
The evolutions of the electric field components are plotted in
Fig. 1(a).

Since we further assume that the frequencies of the w-
and 2w-laser fields are far from any molecular resonance and
much higher than the rotational frequency of the molecule,
we can average over the rapid oscillations of the nonresonant
laser fields. Then, the linear term in Eq. (2), which involves
the electric dipole moment, vanishes, whereas the second and
third terms provide the alignment and orientation interactions,
which for parallel fields take the following expressions [14]:

HYL (1) = H} (1) + H o (1), (5)
HYo () = —l[E (1) + Ex(1)’1A 29 (6)
align - 4 3 2w o COoS™ U,
Hypion (1) = —%Ew(r)zEZw(r)Bﬁw cos
+ (Bezz — 3Bax) cos’ 01, @)
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FIG. 2. For parallel fields, (a) and (b) show alignment and ori-
entation Hamiltonians (6) and (7), respectively, as a function of the
Euler angles in units of 7. For perpendicular fields, (c) and (d) show
alignment and orientation Hamiltonians (9) and (10), respectively, as
a function of the Euler angles in units of 7. The peak intensities are
I,0 = 3.0 x 10" W/cm? and I, 9 = 10'2 W/cm?. The interaction
potentials are expressed in units of Hz.

where Ao = o, — ay, is the polarizability anisotropy with
o, and o, being the polarizability components parallel and
perpendicular to the molecular axis; S, and B, are the
hyperpolarizability components parallel and perpendicular
to the molecular axis. In Egs. (6) and (7), we have omit-
ted the terms independent of 6 and ¢ because they only
represent an energy shift. The molecular alignment along
the Z axis is due to the double-well potential of Eq. (6),
with two minima localized at 6 =0 and 6 = 7 as shown
in Fig. 2(a). The strength of this alignment interaction is
determined by the total intensity of the nonresonant laser
fields. The orientation term (7) shows an asymmetry in 6
and the deepest well is located near & = 0 [see Fig. 2(b)].
As a consequence, the molecules tend to be oriented along
the +Z direction. The maximal strength of the orientation
term (7) is smaller than the maximal alignment strength
given by the Hamiltonian (6), by approximately two orders of
magnitude.

Analogously, for the perpendicular-field configuration, the
interaction Hamiltonians read

His (1) = Hygig (1) + Hogion (0), (8)
1 E, (1)
Hzﬁign(’) - _ZA‘X[(EZw(t)2 - T) cos> 0

1 2.2
+§Ew(t) sin“ 6 cos2¢ |, ©)]

Loy L0 _
Hon'em(t) T Ey(t) Exo()[(Brzz — Boxx) cOs O

— (Bozz — 3Boxx)(c0s® @ — sin® @ cos2¢ cos ).
(10)

The w- and 2w-laser field components of H;fign (t) are confined
to the XZ plane, and force the molecules to align along
the X and Z axes, respectively. The molecules are actually
aligned along a polarization direction of the stronger laser
field between the w- and 2w-laser pulses. At the same time,
the two-color perpendicular fields also generate an orientation
potential asymmetric upon the plus-minus inversion of the Z
direction. As we demonstrate in Sec. III, the orientation in the
Z direction can be significant only when the alignment along
the same Z direction also exists. These potentials (9) and (10)
are plotted in Figs. 2(c) and 2(d), respectively. Compared to
the parallel-field configuration, these alignment and orienta-
tion potentials show a more complicated dependence on the
Euler angles (0, ¢). Again, the interaction with the molecular
polarizability is the dominant one.

When the two electric fields have parallel polariza-
tions, the total Hamiltonian H = H,y +Hi|r|1t(t) is invariant
under the rotations around the Z axis. This symmetry ensures
that the magnetic quantum number M is preserved. In this
case, the TDSE is solved by expanding the wave function
in terms of the spherical harmonics with fixed M. For two-
color laser fields with perpendicular polarizations, the total
Hamiltonian H = H, + Hif;t(t) couples field-free states with
different magnetic quantum numbers, but is invariant under
the reflection about the XZ plane. We then solve the TDSE
using a basis set expansion of the wave function in terms of
functions that reflect this symmetry. In particular, we employ
the Wang basis set [29,32] constructed from linear combina-
tions of the spherical harmonics with the proper parity under
the reflection about the X Z plane. For M > 0, these states are
defined as

1
V2

where s = Qor 1, and for M =0,

|/, M, s =0) = |J,0). (12)

J,M,s) = [J, M) + (—1)*|J, —=M)]1, an

In these basis functions, the parity of M + s is the preserved
quantity. This can be checked by multiplying the o,x operator,
which gives the reflection in the X Z plane, to the Wang basis
set. ozx changes the plus-minus sign of ¢ [29], which means
that the spherical harmonic |J, M) converts to (—1)M|J, —M).
The wave functions constructed by the Wang basis set have
either even or odd parity depending on M + s.

Thus the TDSE is solved independently in the two irre-
ducible representations of this symmetry. The nonzero matrix
elements of the Hamiltonian matrices are summarized in
Appendix B.

To solve the TDSE, we employ the time-dependent unitary
transformation method. For every time step, we calculate
the eigenstates and the corresponding eigenenergies of the
field-dressed time-independent Hamiltonian. In a single time
step, an initial wave function is expanded by the eigenstates
of the field-dressed Hamiltonian. The time evolution of the
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FIG. 3. For parallel fields, (a) orientation (cos@) and (b) alignment (cos? @) as functions of time and of the peak intensity I, o of the

2w-laser field computed by solving the time-dependent Schrodinger

equation. The adiabatic results of the orientation and alignment are

presented in (c) and (d), respectively. The peak intensity of the w-laser field is I, = 3 x 10" W/cm?.

expanded wave function is obtained by adding a phase shift to
each eigenstate. More details of the method are described in
Ref. [34].

To understand the field-dressed rotational dynamics, we
have also performed AA calculations by solving the time-
independent Schrodinger equation associated with the Hamil-
tonian for each time step. When the field intensity changes,
since there are avoided crossings between energetically adja-
cent states with the same symmetry, the energy order of the
eigenstates is preserved [32]. Hence we can clarify correspon-
dences between the field-free states and their field-dressed
states. The contribution of the adiabatic pendular eigenstates
to the time-dependent wave function allows us to interpret the
nonadiabatic dynamics.

III. FIELD-DRESSED ROTATIONAL DYNAMICS

In this section, we use the OCS molecule as a bench-
mark to illustrate our results, and we focus on its rota-
tional ground state. The constants of OCS used in this work
are B=0.203cm™', o, — apy = 27.15 a0, B = 45.0 a.u,,
and B, = 59.1 a.u. [37]. Note that we have used positive
values for the hyperpolarizability components [37], so that
the ground state becomes oriented i.e., (cos#) > 0. Here, the
FWHM of the w- and 2w-laser pulses are fixed to 3 ns and
2 ns, respectively, and the peak intensity of the w-laser field to
I,0=3x 10! W/cmz.

A. Dynamics for two-color laser fields with
parallel polarizations

We start by analyzing the rotational dynamics of the OCS
ground state exposed to the two-color laser fields with parallel
polarizations. The degrees of alignment and orientation along
the Z axis are characterized by the expectation values (cos” 6)
and (cos 0), respectively. In Figs. 3(a) and 3(b), we present the
time-dependent orientation and alignment as functions of the
time and the peak intensity of the 2w-laser field. The corre-
sponding adiabatic results are shown in Figs. 3(c) and 3(d).
The ground state shows a strong alignment at the peak of
the two pulses. We confirm a good agreement between the
time-dependent and adiabatic results as shown in Figs. 3(b)
and 3(d).

There are significant differences between the time-
dependent and adiabatic orientation as shown in Figs. 3(a)
and 3(c), the former being smaller than the latter. These
differences are a clear signature that the rotational dynamics
is nonadiabatic [28,29]. To get better physical insight into
the nonadiabatic orientation, we explore in detail the field-
dressed rotational dynamics for a 2w-laser pulse having the
peak intensity of L, o =5 x 10'" W/cm?, which is marked
by dotted lines in the contour plots of Fig. 3. The orientation
and alignment evolutions are plotted in Figs. 4(a) and 4(b).
We observe that the TDSE and AA results of alignment
show a very good agreement, in contrast to the results of the
orientation.
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FIG. 4. For fixed peak intensities 7,9 = 3 x 10'' W/cm? and
Do =5 x 10" W/cm?, time evolutions of (a) orientation and
(b) alignment, and (c) squares of the projections of the time-
dependent wave function onto the adiabatic pendular states. The
adiabatic results for the orientation and alignment, and temporal
profiles of the two laser pulses are also plotted.

Due to the difference in the temporal widths, the molecules
show a strong alignment (cos’@) ~ 0.7 already at ¢~
—2.0 ns, which is even before the interaction with the 2w-
laser field becomes significant. The rotational wave packet
is equally confined to 6 = 0 and 8 = m potential wells. In
addition, a quasidegenerate pendular pair is formed between
the field-dressed ground |0, 0), and excited |1, 0), states. In
the two-color laser fields, these two states have the same sym-
metry and are coupled due to the interaction of the molecular
hyperpolarizability with these fields. As time further goes by
and the laser pulse intensities increase, the asymmetry of the
interaction potential increases. As a consequence, a part of the
rotational wave packet tunnels through the potential barrier
from the shallow potential well (0 = 7) to the deeper one
(6 = 0), and the ground state gets oriented. The wave packet
was initially formed only in the adiabatic pendular ground
state |0, 0),. Due to its coupling with the energetically neigh-
boring state |1, 0),, the populations are transferred between
the two states, which now contribute to the change in the

wave packet populations. Hence the field-dressed rotational
dynamics is nonadiabatic.

This nonadiabatic dynamics is illustrated in Fig. 4(c),
with the squares of the projections of the time-dependent
wave function onto the two lowest-lying adiabatic pendular
eigenstates of the full Hamiltonian at each time step. For r <
—2.0 ns, the pendular ground state |0, 0), has the dominant
contribution to the wave packet, which is almost 1. Once
the interaction with the 2w-laser field becomes significant, a
part of the population is transferred to the adiabatic pendular
state |1, 0)p, which is antioriented. This suppresses the net
orientation, i.e., the value (cos®), of the ground-state time-
dependent wave function. For t 2 —1.3 ns, the populations
of the adiabatic states |0, 0), and |1, 0), remain constant at
0.804 and 0.196, respectively. In the adiabatic approximation,
only the adiabatic ground state contributes to the field-dressed
wave packet. Note that the two adiabatic states contributing
to the time-dependent wave functions are oriented in opposite
directions but have almost the same alignment. As a conse-
quence, the nonadiabatic rotational dynamics is manifested
only in the orientation but not in the alignment.

We emphasize that this nonadiabatic dynamics strongly
depends on the FWHM, peak intensities, and temporal pro-
files of the laser fields. By comparing the results in panels
(a) and (c) of Fig. 3, we observe that, for the considered
range of the 2w-laser field intensity, the AA calculations
do not reproduce the TDSE orientation. This indicates that
the rotational dynamics is nonadiabatic, which holds even
for 2w-laser intensities smaller than the w-laser intensity of
I,0=3x 10! W/crnz.

Analogous to the combined-field orientation [28,29,38,39],
the adiabatic dynamics could be achieved by increasing the
temporal widths of the two pulses significantly [28,40]. We
note that, in Ref. [34], where the assumed laser pulses
are four times longer than the ones used in the present work,
the orientation dynamics can be quasiadiabatic by optimizing
the intensities of the two wavelengths. The adiabaticity of ori-
entation dynamics can be improved by optimizing the relative
delay between the w and 2w laser pulses [34]. In the next
subsection, another solution for achieving the quasiadiabatic
and stronger orientation is provided.

B. Dynamics for two-color laser fields with
perpendicular polarizations

For perpendicular fields, the orientation along the Z axis,
and the alignment along the Z and X axes, i.e., (cos6),
(cos?0), and (sin’ @ cos® ¢), respectively, are presented in
Fig. 5 as functions of the time and of the peak intensity of
the 2w-laser pulse. The peak intensity of the w-laser field is
I,.0 = 3 x 10" W/cm?. As in the parallel field configuration,
we confirm a good agreement between the degrees of align-
ment computed by solving the TDSE, panels (b) and (c) of
Fig. 5, and those computed by using the AA, panels (e) and
(f) of Fig. 5. The corresponding field-dressed Hamiltonian
H = H,, + Hif;l(t) does not have azimuthal symmetry, and the
interaction with the two fields competes to align the molecules
in mutually perpendicular directions. Indeed, the ground state
is aligned along the Z or X axis if the interaction with the
2w- or w-laser field is dominant, respectively [compare the
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FIG. 5. For perpendicular fields, (a) orientation {cos68), (b) alignment along the Z-axis (cos?#), and (c) alignment along the X -axis
(sin? @ cos’ ¢) as functions of time and of the peak intensity L, o of the 2w-laser field computed by solving the time-dependent Schrodinger
equation. The adiabatic results of the orientation along the Z axis and the alignment along the Z and X axes are presented in (d), (e), and (f),
respectively. The peak intensity of the w-laser field is I, o = 3 x 10'! W/cm?. In the perpendicular configuration, either orientation along the
Z axis or alignment along the X axis can be created depending on time and the relative intensities of the w- and 2w-laser pulses. The inset in
(a) illustrates that the molecules are oriented (and aligned) along the Z axis under the condition I marked in (a) and (b), where ¢+ = 0 ns and
Do =5 x 10" W/cm?, while the inset in (c) illustrates that the molecules are aligned along the X axis under the condition II marked in (c),

where t = 0 ns and b, o = 1.5 x 10" W/cm?.

insets in Figs. 5(a) and 5(c)]. We emphasize that molecules
are not purely aligned along one direction. For 1,0 = Ip,.0,
the molecules are almost equally aligned along the two axes,
with (cos? ) = 0.459 and (sin? 8 cos’ ¢) = 0.456 at the peak
of the laser fields ¢ = 0 ns; the ground state is then considered
to be antialigned against the Y axis.

In contrast, the orientation is significant when the inter-
action with the 2w-laser field is dominant, i.e., when the
molecules are aligned along the Z axis [see the inset in

Fig. 5(a)]. In addition, the AA calculation [see Fig. 5(d)]
does not reproduce the time-dependent orientation presented
in Fig. 5(a), which again indicates that the rotational dynamics
is nonadiabatic. Compared to the parallel field configuration,
stronger orientation is achieved. This stronger orientation can
be explained in terms of a weaker alignment along the Z
axis as a tradeoff, which is accompanied by a larger en-
ergy splitting in the lowest-lying pendular doublet, when the
interaction with the 2w-laser field starts to dominate. For
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orientation and alignment and the temporal profiles of the two laser
pulses are also plotted.

instance, (cosf) = 0.566 and (cosf) = 0.862 at t =0 ns,
for the parallel and perpendicular configurations, respectively,
with I, 0 = 3 x 10" W/cm? and I, o = 5 x 10" W/cm?.
In Figs. 6(a)-6(d), we analyze in detail the nonadiabatic
dynamics of the ground state for L, o =5 x 10" W/cm?
and 1,0 =3 x 10" W/cm?. The corresponding dynamics
are marked with dotted lines in the contour plots of Fig. 5.
The alignment along the Z axis (X axis) initially decreases
(increases) as time goes by, and reaches broad minimum

(maximum) at t &~ —1.68 ns. As time further goes by,
(cos” 6) increases reaching a maximum at ¢ = 0 ns, whereas
(sin® @ cos? ¢) reaches a minimum. These time evolutions
of (cos?6) and (sin?6 cos®¢) illustrate the interplay be-
tween the interactions with the 2w- and w-laser fields as
t passes. Indeed, at + &~ —1.16 ns, we find that (cos?6) ~
(sin? @ cos® @) ~ 0.445. As t further goes by, the alignment
along the Z axis increases because the interaction due to the
2w-laser field becomes dominant.

The combination of the 2w- and w-laser fields forms a
potential orienting the molecules in the +Z direction. The
orientation (cos#) increases for + 2> —1 ns, when the 2w-
laser field becomes stronger than the w-laser field. We find
a relatively good agreement between the time-dependent and
adiabatic results. This can be explained in terms of the weaker
alignment along the Z axis for + & —1 ns than that in the
parallel-field configuration as shown in Fig. 4(b), which im-
plies a large energy gap between the adiabatic states |0, 0, 0),
and |1, 0, 0), forming the pendular pair. The large energy gap
between the two states is associated with a better adiabatic
criterion [28,29] for the corresponding rotational dynamics.
From the perspective of the tunneling of the rotational wave
packet between the two potential wells at 6 =0 and 6 = 7
[34], in the perpendicular-field configuration, the alignment
and orientation along the Z axis are created at nearly the same
time, giving rise to a quasiadiabatic rotational dynamics. Fur-
thermore, the rotational wave packet has a larger probability to
move due to the elaborate forms of the potential in the angular
space as shown in Figs. 2(c) and 2(d), which have smaller
potential wells.

In Fig. 6(d), we show the population distributions of the
time-dependent wave function of the two adiabatic pendular
states. Compared to the parallel-field configuration presented
in Fig. 4(c), the population transferred from |0, 0, 0),,, which
forms the wave packet when the dynamics is adiabatic, to
[1,0,0), is much smaller. As in the parallel-field configura-
tion, the difference between the time-dependent and adiabatic
orientation dynamics becomes larger for higher intensities
of I, 0 as shown in Figs. 5(a) and 5(d), which illustrates
that the nonadiabatic dynamics strongly depends on the field
parameters.

IV. SUMMARY AND OUTLOOK

In this work, we have investigated the rotational dynamics
of OCS molecules in the presence of two-color laser fields
with the parallel and perpendicular polarizations. In particular,
we have analyzed the degrees of orientation and alignment
of the ground state as functions of the peak intensity of the
2w-laser field and of time. Together with the time-dependent
analysis of the field-dressed rotational dynamics, we also
present an adiabatic rotational dynamics.

For the parallel-field configuration, the ground state shows
a significant alignment at ¢ = 0, but a moderate orientation. A
comparison between the time-dependent and adiabatic anal-
yses has proved that the field-dressed rotational dynamics is
not adiabatic. We have shown that a nonadiabatic transfer of
the population takes place when the interaction with the 2w-
laser field becomes significant, and the laser intensities further
increase. Compared to a fully adiabatic rotational dynamics,
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the degree of orientation obtained by solving the TDSE is
significantly suppressed. This is explained in terms of the
transfer of population from the ground pendular state to the
first excited pendular state, which is antioriented.

For perpendicular fields, the ground state is aligned along
the X or Z axis if the interaction with the w- or 2w-laser
field is dominant, respectively. Due to this interplay between
the interactions with the two fields, the orientation reached
at + = 0 is stronger than in the parallel-field configuration.
Most important, we have found a range of field parameters,
which are more favorable for realizing an adiabatic field-
dressed dynamics. The method proposed here for achieving
quasiadiabatic control of the orientation dynamics of the
ground-state molecules is generally applicable to a thermal
molecular ensemble [34].

The field-dressed rotational dynamics has been discussed
so far in the literature for two-color lasers having paral-
lel polarizations. In this work, we have shown that many
unexplored opportunities to control the molecular dynamics
emerge by using perpendicular fields or even more elab-
orate field configurations. Actually, the advantage of the
combination of a linearly polarized w-laser field and an
elliptically polarized 2w-laser field has been discussed in
Ref. [41]. Three-dimensional orientation of asymmetric top
molecules, which was demonstrated by the technique with
combined electrostatic and elliptically polarized laser fields
[21,33,42—44], has recently been achieved by the all-optical
technique with the crossed-polarization configuration [45]. In
addition, postpulse dynamics induced after two-color laser

J

pulses having short temporal widths or with a rapid turn off
[46—48] could be significantly affected by changing the polar-
ization direction of one or both of the two-color laser pulses.
Recently, it has been reported that two one-color pulses with
perpendicular polarizations can be used for orienting angular
momentum of linear molecules, i.e., unidirectional rotation of
linear molecules [49-51]. Furthermore, if a molecule has off-
diagonal components of the polarizability tensor, one-color
laser pulses with crossed or orthogonal polarizations can be
used not only for the orientation of the molecular angular
momentum but also for the orientation of the molecules
themselves [52,53]. Therefore, our two-color field approach
with perpendicularly crossed polarizations can generalize the
controlling techniques of unidirectional molecular rotation to
the oriented molecules.
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APPENDIX A: MOLECULAR AND LABORATORY FIXED FRAMES

The transformation between the laboratory-fixed frame (X, Y, Z) and the molecule-fixed frame (x, y, z) is given by [54]

X cpchcxy — spsy spchcy +cpsy  —sOcx\ (X
v | = | —cpclsy —spcy —spchOsy + copcy sOsx Y, (A1)
Z cost NoNd ch Z

where 6 is the polar angle between the molecular axis, i.e., the z axis of the molecule-fixed frame, and the Z axis in the laboratory-
fixed frame. ¢ is defined as the angle between the X axis and the projection of the z axis to the XY plane and x represents the
rotated angle of the molecule with respect to the z axis. ¢ and s stand for cosine and sine functions, respectively. Linear molecules
are symmetric with respect to the rotation around the molecule-fixed z axis and x can be given as a constant, which is fixed at
zero in this work.

APPENDIX B: MATRIX ELEMENTS OF THE HAMILTONIAN

In this Appendix, we provide the matrix elements of different terms appearing in the field-free and interaction Hamiltonians
Hrol and Hint'
The rigid-rotor Hamiltonian has a nonzero diagonal element given by
(. MIT2, M) = J(J +1).

For the matrix elements of the interaction Hamiltonian, (J', M'|Hyy|J, M), we use the integral of three spherical harmonics
[54]

(2J1+1)(2J2+1)(2J3+1)T<J1 I J3>(J1 A 13)

/dQng,M3(‘9v¢)YJ2,M2(9v¢)YJ1,M1(9a¢):|: o= o 0 oJ\mM M M

b

where (§

¢) are Wigner-3j symbols.
The functions cos 8, cos? 6, and sin® @ cos 2¢ are expressed in terms of the spherical harmonics Y; 0(6, ¢), Y2.0(6, ¢), and
Y2 40(0, @), respectively, whereas the functions cos’ 0 and sin® @ cos6 cos 2¢ are expressed as the combinations of ¥3 ¢(0, ¢)

and Y 0(0, ¢), and of Y3 1»(0, ¢) and Y3 _»(6, ¢), respectively.
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The resultant nonzero matrix elements are

+1+MJ+1-M)
J + 1)(2J +3)

)

(J,M|cosO|J + 1, M) :\/

1 2[J(J +1)—3M?]
J,M|cos*0|J, M) = — ,
V. Mlcos" 0. M) = 3+ 35 327 = 1)

[(J + 1) = M?][(J +2)* — M?]
(27 + 1)(2] +3)2(2J + 5)

’

(J,M|cos*0|J +2, M) = \/

1
(J, M|sin® 0 cos2¢|J +2, M +2) = 3

’

+1+M)J+2+M)J+3+M)J+4+M)
(27 + (2T +3)*(2J +5)

1
(J, M|sin® 0 cos2¢|J +2,M —2) = 3

’

+1I-MJ+2-M)IJ+3-M)J+4-M)
(27 + (2T +3)*(2J +5)

NJIT+M+DUI+M+2)-M-1D{J —M)
2J—-1D(2J+3)

’

(J, M| sin® 0 cos2¢|J, M +2) = —

J+3+M)J+3-M)
2J+52J+17)

(J, M| cos®6|J + 3, M) =\/ (J, M| cos’>0|J + 2, M),

J+2+M)YJ+2-M)
(2J 4+ 3)(2J+5)

J+1+M)(J +1-M)
2J+ 1)(2J +3)

(J, M| cos®0|J + 1,M):\/ (J, M| cos*0|J+2, M)—i—\/ (J, M| cos*>6|J, M),

J+M+50J -M+1)
QI +350QJ+7)

(J, M| sin® 6 cos 0 cos2¢|J + 3, M + 2) =\/ (J, M| sin® 0 cos2¢|J +2, M +2),

J+M+1DJ —M+5)

J, M|sin?0 cos2¢|J +2, M —2),
i+ M P+ )

(J, M| sin® 60 cos 6 cos2¢p|J +3, M —2) = \/

+M+4HJ -M)

(J, M| sin®6 cos2¢|J +2, M +2
3 15y o MIsinm0 cos2gl) 42, M +2)

(J, M| sin®6 cos 0 cos2p|J + 1, M +2) =\/

(J, M| sin® 0 cos2¢|J, M + 2),

(J+M+3)(J-M—-1)
(27 +1)(2J +3)

+M)J-M+4)

(J,M|sin?0 cos2¢|J +2, M —2
@32l 5y o MIsn0 cos2gl+ )

(J, M| sin®6 cos O cos2¢|J +1,M —2) = /

(J, M| sin?6 cos2¢|J, M —2).

J+M—-1D)J -M+3)
QJ+1DRJ+3)

The other matrix elements used in this work can be evaluated by combining the above matrix elements.

[1] T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, Phys. Rev. Lett. [2] L. Holmegaard, J. L. Hansen, L. Kalhgj, S. Louise Kragh, H.
92, 133005 (2004). Stapelfeldt, F. Filsinger, J. Kiipper, G. Meijer, D. Dimitrovski,

053424-9


https://doi.org/10.1103/PhysRevLett.92.133005
https://doi.org/10.1103/PhysRevLett.92.133005
https://doi.org/10.1103/PhysRevLett.92.133005
https://doi.org/10.1103/PhysRevLett.92.133005

MUN, SAKAIL, AND GONZALEZ-FEREZ

PHYSICAL REVIEW A 99, 053424 (2019)

M. Abu-samha, C. P. J. Martiny, and L. Bojer Madsen,
Nat. Phys. 6, 428 (2010).

[3] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C.
Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature (London)
432, 867 (2004).

[4] T. Kanai, S. Minemoto, and H. Sakai, Nature (London) 435, 470
(2005).

[5] T. Kanai, S. Minemoto, and H. Sakai, Phys. Rev. Lett. 98,
053002 (2007).

[6] C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De
Silvestri, and S. Stagira, Nat. Phys. 7, 822 (2011).

[7] B. Friedrich and D. Herschbach, Phys. Rev. Lett. 74, 4623
(1995).

[8] B. Friedrich and D. Herschbach, J. Phys. Chem. 99, 15686
(1995).

[9] B. Friedrich and D. Herschbach, J. Chem. Phys. 111, 6157
(1999).

[10] B. Friedrich and Herschbach, J. Phys. Chem. A 103, 10280
(1999).

[11] H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, and T. Suzuki,
Phys. Rev. Lett. 90, 083001 (2003).

[12] S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki,
and H. Sakai, J. Chem. Phys. 118, 4052
(2003).

[13] L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F.
Filsinger, J. Kiipper, and G. Meijer, Phys. Rev. Lett. 102,
023001 (2009).

[14] T. Kanai and H. Sakai, J. Chem. Phys. 115, 5492 (2001).

[15] K. Oda, M. Hita, S. Minemoto, and H. Sakai, Phys. Rev. Lett.
104, 213901 (2010).

[16] C.-C. Shu, K.-J. Yuan, W.-H. Hu, and S.-L. Cong, J. Chem.
Phys. 132, 244311 (2010).

[17] S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, Phys. Rev.
Lett. 107, 163603 (2011).

[18] K. Kitano, N. Ishii, and J. Itatani, Phys. Rev. A 84, 053408
(2011).

[19] F. Filsinger, J. Kiipper, G. Meijer, L. Holmegaard, J. H. Nielsen,
I. Nevo, J. L. Hansen, and H. Stapelfeldt, J. Chem. Phys. 131,
064309 (2009).

[20] J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, Phys. Rev. A
89, 051402(R) (2014).

[21] D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, Phys. Rev. A
94, 013401 (2016).

[22] O. Ghafur, A. Rouzée, A. Gijsbertsen, W. K. Siu, S. Stolte, and
M. J. J. Vrakking, Nat. Phys. §, 289 (2009).

[23] J. Wu and H. Zeng, Phys. Rev. A 81, 053401 (2010).

[24] S. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, Phys. Rev. A 83,
043410 (2011).

[25] P. M. Kraus, A. Rupenyan, and H. J. Worner, Phys. Rev. Lett.
109, 233903 (2012).

[26] P. M. Kraus, D. Baykusheva, and H. J. Worner, J. Phys. B: At.,,
Mol., Opt. Phys. 47, 124030 (2014).

[27] K. Sonoda, A. Iwasaki, K. Yamanouchi, and H. Hasegawa,
Chem. Phys. Lett. 693, 114 (2018).

[28] J. H. Nielsen, H. Stapelfeldt, J. Kiipper, B. Friedrich, J. J.
Onmiste, and R. Gonzélez-Férez, Phys. Rev. Lett. 108, 193001
(2012).

[29] J. J. Omiste and R. Gonzdlez-Férez, Phys. Rev. A 86, 043437
(2012).

[30] J. J. Omiste, M. Girttner, P. Schmelcher, R. Gonzélez-Férez, L.
Holmegaard, J. H. Nielsen, H. Stapelfeldt, and J. Kiipper, Phys.
Chem. Chem. Phys. 13, 18815 (2011).

[31] J. J. Omiste and R. Gonzalez-Férez, Phys. Rev. A 88, 033416
(2013).

[32] J. J. Omiste, R. Gonzalez-Férez, and P. Schmelcher, J. Chem.
Phys. 135, 064310 (2011).

[33] J. L. Hansen, J. J. Omiste, J. H. Nielsen, D. Pentlehner, J.
Kiipper, R. Gonzdlez-Férez, and H. Stapelfeldt, J. Chem. Phys.
139, 234313 (2013).

[34] J. H. Mun and H. Sakai, Phys. Rev. A 98, 013404 (2018).

[35] N. Takemoto and K. Yamanouchi, Chem. Phys. Lett. 451, 1
(2008).

[36] A. D. Buckingham, Advances in Chemical Physics (John Wiley
& Sons, New York, 2007), pp. 107-142.

[37] G. Maroulis and M. Menadakis, Chem. Phys. Lett. 494, 144
(2010).

[38] Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, Phys. Rev.
A 77,031403(R) (2008).

[39] J. S. Kienitz, S. Trippel, T. Mullins, K. Dlugolecki, R.
Gonzdlez-Férez, and J. Kiipper, ChemPhysChem 17, 3740
(2016).

[40] M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, Phys. Rev.
A 79,011403(R) (2009).

[41] M. M. Hossain, Ph.D. thesis, The University of Tokyo, 2019.

[42] H. Tanji, S. Minemoto, and H. Sakai, Phys. Rev. A 72, 063401
(2005).

[43] A. S. Chatterley, B. Shepperson, and H. Stapelfeldt, Phys. Rev.
Lett. 119, 073202 (2017).

[44] L. V. Thesing, J. Kiipper, and R. Gonzilez-Férez, J. Chem.
Phys. 146, 244304 (2017).

[45] K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang,
H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, 1. Sh.
Averbukh, and J. Wu, Nat. Commun. 9, 5134 (2018).

[46] A. Goban, S. Minemoto, and H. Sakai, Phys. Rev. Lett. 101,
013001 (2008).

[47] J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead,
B. J. Sussman, and A. Stolow, Phys. Rev. Lett. 90, 223001
(2003).

[48] A. S. Chatterley, E. T. Karamatskos, C. Schouder, L.
Christiansen, A. V. Jgrgensen, T. Mullins, J. Kiipper, and H.
Stapelfeldt, J. Chem. Phys. 148, 221105 (2018).

[49] S. Fleischer, Y. Khodorkovsky, Y. Prior, and 1. S. Averbukh,
New J. Phys. 11, 105039 (2009).

[50] K. Kitano, H. Hasegawa, and Y. Ohshima, Phys. Rev. Lett. 103,
223002 (2009).

[51] G. Karras, M. Ndong, E. Hertz, D. Sugny, F. Billard, B. Lavorel,
and O. Faucher, Phys. Rev. Lett. 114, 103001 (2015).

[52] E. Gershnabel and I. Sh. Averbukh, Phys. Rev. Lett. 120,
083204 (2018).

[53] 1. Tutunnikov, E. Gershnabel, S. Gold, and 1. Sh. Averbukh,
J. Phys. Chem. Lett. 9, 1105 (2018).

[54] R. N. Zare, Angular Momentum: Understanding Spatial Aspects
in Chemistry and Physics (John Wiley & Sons, New York,
1988), pp. 79-81.

053424-10


https://doi.org/10.1038/nphys1666
https://doi.org/10.1038/nphys1666
https://doi.org/10.1038/nphys1666
https://doi.org/10.1038/nphys1666
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03577
https://doi.org/10.1038/nature03577
https://doi.org/10.1038/nature03577
https://doi.org/10.1038/nature03577
https://doi.org/10.1103/PhysRevLett.98.053002
https://doi.org/10.1103/PhysRevLett.98.053002
https://doi.org/10.1103/PhysRevLett.98.053002
https://doi.org/10.1103/PhysRevLett.98.053002
https://doi.org/10.1038/nphys2029
https://doi.org/10.1038/nphys2029
https://doi.org/10.1038/nphys2029
https://doi.org/10.1038/nphys2029
https://doi.org/10.1103/PhysRevLett.74.4623
https://doi.org/10.1103/PhysRevLett.74.4623
https://doi.org/10.1103/PhysRevLett.74.4623
https://doi.org/10.1103/PhysRevLett.74.4623
https://doi.org/10.1021/j100042a051
https://doi.org/10.1021/j100042a051
https://doi.org/10.1021/j100042a051
https://doi.org/10.1021/j100042a051
https://doi.org/10.1063/1.479917
https://doi.org/10.1063/1.479917
https://doi.org/10.1063/1.479917
https://doi.org/10.1063/1.479917
https://doi.org/10.1021/jp992131w
https://doi.org/10.1021/jp992131w
https://doi.org/10.1021/jp992131w
https://doi.org/10.1021/jp992131w
https://doi.org/10.1103/PhysRevLett.90.083001
https://doi.org/10.1103/PhysRevLett.90.083001
https://doi.org/10.1103/PhysRevLett.90.083001
https://doi.org/10.1103/PhysRevLett.90.083001
https://doi.org/10.1063/1.1540110
https://doi.org/10.1063/1.1540110
https://doi.org/10.1063/1.1540110
https://doi.org/10.1063/1.1540110
https://doi.org/10.1103/PhysRevLett.102.023001
https://doi.org/10.1103/PhysRevLett.102.023001
https://doi.org/10.1103/PhysRevLett.102.023001
https://doi.org/10.1103/PhysRevLett.102.023001
https://doi.org/10.1063/1.1398311
https://doi.org/10.1063/1.1398311
https://doi.org/10.1063/1.1398311
https://doi.org/10.1063/1.1398311
https://doi.org/10.1103/PhysRevLett.104.213901
https://doi.org/10.1103/PhysRevLett.104.213901
https://doi.org/10.1103/PhysRevLett.104.213901
https://doi.org/10.1103/PhysRevLett.104.213901
https://doi.org/10.1063/1.3458913
https://doi.org/10.1063/1.3458913
https://doi.org/10.1063/1.3458913
https://doi.org/10.1063/1.3458913
https://doi.org/10.1103/PhysRevLett.107.163603
https://doi.org/10.1103/PhysRevLett.107.163603
https://doi.org/10.1103/PhysRevLett.107.163603
https://doi.org/10.1103/PhysRevLett.107.163603
https://doi.org/10.1103/PhysRevA.84.053408
https://doi.org/10.1103/PhysRevA.84.053408
https://doi.org/10.1103/PhysRevA.84.053408
https://doi.org/10.1103/PhysRevA.84.053408
https://doi.org/10.1063/1.3194287
https://doi.org/10.1063/1.3194287
https://doi.org/10.1063/1.3194287
https://doi.org/10.1063/1.3194287
https://doi.org/10.1103/PhysRevA.89.051402
https://doi.org/10.1103/PhysRevA.89.051402
https://doi.org/10.1103/PhysRevA.89.051402
https://doi.org/10.1103/PhysRevA.89.051402
https://doi.org/10.1103/PhysRevA.94.013401
https://doi.org/10.1103/PhysRevA.94.013401
https://doi.org/10.1103/PhysRevA.94.013401
https://doi.org/10.1103/PhysRevA.94.013401
https://doi.org/10.1038/nphys1225
https://doi.org/10.1038/nphys1225
https://doi.org/10.1038/nphys1225
https://doi.org/10.1038/nphys1225
https://doi.org/10.1103/PhysRevA.81.053401
https://doi.org/10.1103/PhysRevA.81.053401
https://doi.org/10.1103/PhysRevA.81.053401
https://doi.org/10.1103/PhysRevA.81.053401
https://doi.org/10.1103/PhysRevA.83.043410
https://doi.org/10.1103/PhysRevA.83.043410
https://doi.org/10.1103/PhysRevA.83.043410
https://doi.org/10.1103/PhysRevA.83.043410
https://doi.org/10.1103/PhysRevLett.109.233903
https://doi.org/10.1103/PhysRevLett.109.233903
https://doi.org/10.1103/PhysRevLett.109.233903
https://doi.org/10.1103/PhysRevLett.109.233903
https://doi.org/10.1088/0953-4075/47/12/124030
https://doi.org/10.1088/0953-4075/47/12/124030
https://doi.org/10.1088/0953-4075/47/12/124030
https://doi.org/10.1088/0953-4075/47/12/124030
https://doi.org/10.1016/j.cplett.2018.01.009
https://doi.org/10.1016/j.cplett.2018.01.009
https://doi.org/10.1016/j.cplett.2018.01.009
https://doi.org/10.1016/j.cplett.2018.01.009
https://doi.org/10.1103/PhysRevLett.108.193001
https://doi.org/10.1103/PhysRevLett.108.193001
https://doi.org/10.1103/PhysRevLett.108.193001
https://doi.org/10.1103/PhysRevLett.108.193001
https://doi.org/10.1103/PhysRevA.86.043437
https://doi.org/10.1103/PhysRevA.86.043437
https://doi.org/10.1103/PhysRevA.86.043437
https://doi.org/10.1103/PhysRevA.86.043437
https://doi.org/10.1039/c1cp21195a
https://doi.org/10.1039/c1cp21195a
https://doi.org/10.1039/c1cp21195a
https://doi.org/10.1039/c1cp21195a
https://doi.org/10.1103/PhysRevA.88.033416
https://doi.org/10.1103/PhysRevA.88.033416
https://doi.org/10.1103/PhysRevA.88.033416
https://doi.org/10.1103/PhysRevA.88.033416
https://doi.org/10.1063/1.3624774
https://doi.org/10.1063/1.3624774
https://doi.org/10.1063/1.3624774
https://doi.org/10.1063/1.3624774
https://doi.org/10.1063/1.4848735
https://doi.org/10.1063/1.4848735
https://doi.org/10.1063/1.4848735
https://doi.org/10.1063/1.4848735
https://doi.org/10.1103/PhysRevA.98.013404
https://doi.org/10.1103/PhysRevA.98.013404
https://doi.org/10.1103/PhysRevA.98.013404
https://doi.org/10.1103/PhysRevA.98.013404
https://doi.org/10.1016/j.cplett.2007.11.037
https://doi.org/10.1016/j.cplett.2007.11.037
https://doi.org/10.1016/j.cplett.2007.11.037
https://doi.org/10.1016/j.cplett.2007.11.037
https://doi.org/10.1016/j.cplett.2010.06.006
https://doi.org/10.1016/j.cplett.2010.06.006
https://doi.org/10.1016/j.cplett.2010.06.006
https://doi.org/10.1016/j.cplett.2010.06.006
https://doi.org/10.1103/PhysRevA.77.031403
https://doi.org/10.1103/PhysRevA.77.031403
https://doi.org/10.1103/PhysRevA.77.031403
https://doi.org/10.1103/PhysRevA.77.031403
https://doi.org/10.1002/cphc.201600710
https://doi.org/10.1002/cphc.201600710
https://doi.org/10.1002/cphc.201600710
https://doi.org/10.1002/cphc.201600710
https://doi.org/10.1103/PhysRevA.79.011403
https://doi.org/10.1103/PhysRevA.79.011403
https://doi.org/10.1103/PhysRevA.79.011403
https://doi.org/10.1103/PhysRevA.79.011403
https://doi.org/10.1103/PhysRevA.72.063401
https://doi.org/10.1103/PhysRevA.72.063401
https://doi.org/10.1103/PhysRevA.72.063401
https://doi.org/10.1103/PhysRevA.72.063401
https://doi.org/10.1103/PhysRevLett.119.073202
https://doi.org/10.1103/PhysRevLett.119.073202
https://doi.org/10.1103/PhysRevLett.119.073202
https://doi.org/10.1103/PhysRevLett.119.073202
https://doi.org/10.1063/1.4986954
https://doi.org/10.1063/1.4986954
https://doi.org/10.1063/1.4986954
https://doi.org/10.1063/1.4986954
https://doi.org/10.1038/s41467-018-07567-2
https://doi.org/10.1038/s41467-018-07567-2
https://doi.org/10.1038/s41467-018-07567-2
https://doi.org/10.1038/s41467-018-07567-2
https://doi.org/10.1103/PhysRevLett.101.013001
https://doi.org/10.1103/PhysRevLett.101.013001
https://doi.org/10.1103/PhysRevLett.101.013001
https://doi.org/10.1103/PhysRevLett.101.013001
https://doi.org/10.1103/PhysRevLett.90.223001
https://doi.org/10.1103/PhysRevLett.90.223001
https://doi.org/10.1103/PhysRevLett.90.223001
https://doi.org/10.1103/PhysRevLett.90.223001
https://doi.org/10.1063/1.5028359
https://doi.org/10.1063/1.5028359
https://doi.org/10.1063/1.5028359
https://doi.org/10.1063/1.5028359
https://doi.org/10.1088/1367-2630/11/10/105039
https://doi.org/10.1088/1367-2630/11/10/105039
https://doi.org/10.1088/1367-2630/11/10/105039
https://doi.org/10.1088/1367-2630/11/10/105039
https://doi.org/10.1103/PhysRevLett.103.223002
https://doi.org/10.1103/PhysRevLett.103.223002
https://doi.org/10.1103/PhysRevLett.103.223002
https://doi.org/10.1103/PhysRevLett.103.223002
https://doi.org/10.1103/PhysRevLett.114.103001
https://doi.org/10.1103/PhysRevLett.114.103001
https://doi.org/10.1103/PhysRevLett.114.103001
https://doi.org/10.1103/PhysRevLett.114.103001
https://doi.org/10.1103/PhysRevLett.120.083204
https://doi.org/10.1103/PhysRevLett.120.083204
https://doi.org/10.1103/PhysRevLett.120.083204
https://doi.org/10.1103/PhysRevLett.120.083204
https://doi.org/10.1021/acs.jpclett.7b03416
https://doi.org/10.1021/acs.jpclett.7b03416
https://doi.org/10.1021/acs.jpclett.7b03416
https://doi.org/10.1021/acs.jpclett.7b03416

