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Abstract

Background: As time series experiments in higher eukaryotes usually obtain data from different individuals
collected at the different time points, a time series sample itself is not equivalent to a true biological replicate but
is, rather, a combination of several biological replicates. The analysis of expression data derived from a time series
sample is therefore often performed with a low number of replicates due to budget limitations or limitations in
sample availability. In addition, most algorithms developed to identify specific patterns in time series dataset do not
consider biological variation in samples collected at the same conditions.

Results: Using artificial time course datasets, we show that resampling considerably improves the accuracy of
transcripts identified as rhythmic. In particular, the number of false positives can be greatly reduced while at the
same time the number of true positives can be maintained in the range of other methods currently used to
determine rhythmically expressed genes.

Conclusions: The resampling approach described here therefore increases the accuracy of time series expression
data analysis and furthermore emphasizes the importance of biological replicates in identifying oscillating genes.
Resampling can be used for any time series expression dataset as long as the samples are acquired from
independent individuals at each time point.
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Background
Even with decreasing costs for sequencing and micro-
array experiments, time series experiments are still ex-
pensive and require a large number of samples. Thus,
most time series currently have a very limited number of
biological replicates. This makes it difficult to identify
genes that truly show time-dependent expression pat-
terns (true positives) and genes that just seem to have
similar patterns due to biological variance (false posi-
tives). The biological variance is likely to be relatively
high, especially when samples are collected from higher
eukaryotes, because animals and plants are usually sam-
pled from different individuals to avoid perturbation
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artifacts during sampling. Thus, in most time course ex-
periments, the samples at each time point are usually
from different individuals, resulting in a high biological
variance among samples. This is the main reason why
sufficient numbers of replicates are necessary. Lee et al.
proposed that three replicates are sufficient, but this
number also depends on the type of experiment [1-4].
However, the importance of biological replicates is often
neglected in time series experiments, especially when
circadian rhythms in gene expression are examined
using transcriptomics datasets.
Many organisms have an endogenous clock, known as

a circadian clock, to coordinate daily activities. The out-
put of the circadian clock has the period of approxi-
mately 24 h; for example, the body temperature and
sleep-wake cycle in humans, leaf movement in Mimosa,
and flower opening in night-blooming jasmine all show
24 h diurnal rhythms under both light/dark and approx.
24 h rhythms under constant conditions [5-7]. Although
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the molecular components of circadian clocks are not con-
served between animals and plants, negative and positive
feedback loops in transcriptional and post-translational
levels are the core system of circadian clocks in both ani-
mals and plants [8]. These multiple interlocked feedback
loops confer stability and protection from stochastic per-
turbations on the complexity of the circadian system
[9,10]. To understand this complex network on a tran-
scriptional level, time series microarrays have been fre-
quently used to examine the oscillation of genes on a
genomic scale [11,12].
Diurnal rhythms in transcript accumulation can be de-

scribed in mathematical terms, including period, phase,
and amplitude [10]. There are several different algorithms
that can be used to calculate these parameters from real
data; they can furthermore be applied to identify oscil-
lating genes in microarray or RNA-sequencing data.
From the algorithms available we selected ARSER [13],
HAYSTACK [14] as well as the algorithms implemented
in BIODARE (http://www.biodare.ed.ac.uk/) [15,16].
ARSER was selected as it has been shown to outperform
earlier available algorithms such as COSOPT and Fisher’s
G-Test [13]. The BIODARE platform is not originally de-
signed for the analysis of gene expression data as the max-
imal list length of datasets that can be submitted is limited
to 2500. Thus, gene expression data has to be split into
multiple datasets. Nevertheless BIODARE has the ad-
vantage of providing 6 additional different algorithms
for the analysis.
Using these algorithms we show the influence of repli-

cates and resampling on the accuracy of predictions of
rhythmically expressed genes. Although we perform the
analysis to identify oscillating genes in circadian expres-
sion datasets, the resampling method can be similarly
used to improve the detection of other time dependent
expression patterns as long as the samples are collected
from different individuals at the specific time points.

Results and discussion
The determination of oscillating genes is a binary classi-
fication. There are only two possible outcomes: either a
gene is rhythmically expressed or it is not. The accuracy
of this classification can be estimated by a confusion
matrix. There are four fundamental members of the
matrix: true positives (expression profiles correctly clas-
sified as periodic), false negatives (expression profiles
incorrectly classified as non-periodic), true negatives
(expression profiles correctly classified as non-periodic),
and false positives (expression profiles incorrectly classi-
fied as periodic). As the number of true negatives and
false negatives can be directly calculated from the total
number of oscillating and non-oscillating genes and the
number of true- and false positive genes identified, we
only analyzed true- and false-positives in our calculations.
The total number of oscillating and non-oscillating genes
was set to 8400 in our simulated datasets (see Methods
section for details).
To calculate the performance of ARSER, HAYSTACK

and the algorithms implemented in BIODARE, we simu-
lated different conditions and wave forms for oscillating
transcripts. To do this we used three different simulation
procedures.
To simulate entrained, synchronized oscillations all

simulations were done with a fixed period ranging from
22 to 28 h (LD-dataset). In contrast, the differences in
free running period between different individuals under
constant conditions were simulated by generating a
dataset that contained 36 time courses that differed in
period according to published standard deviations for
individual cells [17] (LL-dataset). In addition we gener-
ated a time course based on a published ordinary equa-
tion model of the mammalian circadian model [18]
(ODE-dataset) (see Methods section for details).
For each simulation procedure 36 time courses were

initially calculated, corresponding to the common ex-
perimental time courses for gene expression analysis in
the literature that resample 2-day time courses with 4 h
sampling intervals and 3 replicates. From these initial
time courses we generated the initial dataset (3 replicate
time courses) by randomly selecting one time point from
each simulated time course. These initial datasets were
in addition averaged to generate a fourth, averaged time
course. True and false positives were then calculated for
ARSER, HAYSTACK and using BIODARE. From BIO-
DARE we initially tested all implemented algorithms but
found that FFT-NLLS was performing best, confirming
the observations form Zielinski et al. [15,16]. We there-
fore only present the results from this BIODARE algo-
rithm (Figure 1). In comparison ARSER detects the
largest number of true positives but at the cost of a rela-
tively high number of false positives.
In the averaged time courses the number of true posi-

tives detected by ARSER is in most cases slightly higher
than in the individual replicates but this again comes at
the cost of a higher number of false positives. HAY-
STACK and BIODARE FFT-NLLS show similar per-
formance but HAYSTACK has more problems to detect
oscillating genes in ODE-based simulations. As detected
false positive genes can be experimentally quite costly in
follow up studies, we wanted to improve the accuracy of
the prediction without increasing the number of repli-
cates or time points required as this too would be ex-
perimentally costly if not infeasible.
We hypothesized that transcripts identified several

times in resampled datasets contain more true positive
and fewer false positive transcripts. To test this hypoth-
esis, we generated 36 resampled datasets and identified
oscillating genes by ARSER and HAYSTACK algorithms

http://www.biodare.ed.ac.uk/
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Figure 1 Identification of oscillating transcripts in each replicate and the average dataset. True positives (A-C) and false positives (D) for
LD. LL and ODE-based time courses using ARSER, HAYSTACK or BIODARE FFT-NLLS The results are displayed for each individual replicate and the
average dataset. The replicates were generated as described in the Methods section.
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in each resampled dataset. Subsequently, we calculated
the consensus of detected oscillating genes in these 36
resampled datasets. A consensus of 10 means that the
genes were detected in at least 10 out of the 36 resampled
datasets. The consensus graphs for the analysis performed
with ARSER and HAYSTACK are shown in Figures 2 and
3, respectively. We compared the number of true and false
positives to the number of true and false positives found
in the averaged dataset, as well as to the consensus be-
tween the initial datasets and the initial simulations. The
initial simulations represent the ideal situation that sam-
ples could be retrieved from the same individual, this is,
however, not possible for gene expression analysis in most
cases. It nevertheless represents the maximal detectable
number of true positive transcripts in a noisy dataset. As
can be seen from Figure 2, up to a required consensus be-
tween 15 datasets, the resampled datasets show a larger
number of true positives compared to average and the
overlap between initial datasets. To acquire the same con-
sensus the number of false positives is 8 of 8400. A similar
number of false positives is found if a full overlap between
the 3 initial datasets is required. The number of true posi-
tives for the latter is, however, much lower for all types of
simulations. We can therefore conclude that the resam-
pling of datasets increases the number of true positive
oscillating transcripts detected in a dataset without in-
creasing the number of false positives compared to the ini-
tial replicates. Except when very low consensus is required
(less than 7 for resampled dataset and 2 for initial data-
sets), the number of false positives detected with ARSER
is always higher for averaged datasets, and hence not well
suited to reliably identify oscillating genes.
We next analyzed the influence of the number of

resampled datasets on the detection of true and false posi-
tive oscillating transcripts. As can be seen in Figure 4,
higher consensus is required for a higher number of
resampled datasets but the consensus range in which no
false positives are found and in which the number of
true positives remains high, is larger when a larger num-
ber of randomized datasets are analyzed. For the analysis



 4000

 5000

 6000

 7000

 8000

 9000

 0  5  10  15  20  25  30

N
um

be
r 

of
 o

sc
ill

at
in

g 
ge

ne
s

Consensus required

True positive Genes for LD simulationsA

averaged
initial dataset

original simulations
resampled datasets

 4000

 5000

 6000

 7000

 8000

 9000

 0  5  10  15  20  25  30

N
um

be
r 

of
 o

sc
ill

at
in

g 
ge

ne
s

Consensus required

True positive genes for LL simulationsA B

averaged
initial dataset

original simulations
resampled datasets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  5  10  15  20  25  30

N
um

be
r 

of
 o

sc
ill

at
in

g 
ge

ne
s

Consensus required

True positive genes for ODE based simulations

A B

C

averaged
initial dataset

original simulations
resampled datasets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  5  10  15  20  25  30

N
um

be
r 

of
 o

sc
ill

at
in

g 
ge

ne
s

Consensus required

False positive genes
D

averaged
initial dataset

original simulations
resampled datasets

Figure 2 Performance evaluation of the resampling method to identify oscillating transcripts. For LL-, LD- and ODE-based time courses 36
time courses were simulated (original simulations). From these original simulations 3 replicates (initial dataset) for each type of time course were
generated by randomly selecting one time point from each of the original simulations to mimic experimental sampling procedures. To generate
the averaged dataset, the expression values of the 3 replicates at each time point were averaged. The initial datasets were furthermore used to
generate 36 resampled datasets by random sampling at each time point. All datasets were analyzed with ARSER and true positives (A-C) and false
positives (D) were calculated requiring increasing consensus between the datasets (see Methods for details). A consensus of 10 thereby means
that a gene is found in at least 10 different resampled or originally simulated datasets. For the averaged time course the true and false positives
calculated are displayed as a line for comparison.
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of real data we therefore chose to generate 70 resampled
datasets. Unfortunately there are very few circadian datasets
available with sufficient replicates and time points. We
found one study with two replicates performed in two dif-
ferent mouse tissues (liver and muscle) [19] and one other
mouse study with 3 replicates [20]. The overall number of
oscillating genes found in the dataset from Miller et al.
[19] is similar to that reported in the original article.
The overlap, however, was not analyzed in the original
work and we only found 2 and 3 transcripts, respectively
(Figure 5A and B) in both replicates. Using our resampling
approach we identified 74 and 96 genes when requiring
consensus between at least 10 sets and 10 and 5 tran-
scripts, respectively, if a consensus of 20 was required.
For the dataset from Na et al. [19] 147 transcripts

were found in all 3 initial replicates (Figure 5C). In our
resampled dataset 796 transcripts were identified as
oscillating when we require a consensus of 10, 183
genes remain if we require a consensus of 20.
As the study by Na et al. resulted in a larger number

of oscillating transcripts we used our simulated LL data-
sets to analyze how the number of replicates influences
the number of true and false negatives and thus the accur-
acy of the detection of oscillating transcripts. To do so we
initially simulated 72 datasets. Those were used to gener-
ate the different numbers of initial replicated datasets. The
analysis showed that the number of oscillating transcripts
detected for a full overlap between all replicates is de-
creasing with the number of replicates (Figure 6A) with
increasing consensus required. But starting from a re-
quired consensus of 4, false positives were no longer de-
tected in the initial datasets (Figure 6C), thus a consensus
of 4 is sufficient to accurately detect oscillating transcripts
for initial datasets. Taken this into account the amount of
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Figure 3 Analysis of resampled time courses with HAYSTACK. For LL-, LD- and ODE-based time courses 36 time courses were simulated
(original simulations). From these original simulations 3 replicates (initial dataset) for each type of time course were generated by randomly
selecting from each of the original simulations one time point to mimic experimental sampling procedures. To generate the averaged dataset,
the expression values of the 3 replicates at each time point were averaged. The initial datasets were furthermore used to generate 36 resampled
datasets by random sampling at each time point. All datasets were analyzed with HAYSTACK and true positives (A-C) and false positives (D) were
calculated requiring increasing consensus between the datasets (see Methods for details). A consensus of 10 thereby means that a gene is found
at least in 10 different resampled or originally simulated datasets. For the averaged time course the true and false positives calculated are displayed as
a line for comparison.
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true positives transcripts is higher for higher numbers of
replicates as would be expected. Looking at the resampled
datasets we see that with increasing number of replicates
lower consensus is required to avoid detection of false
positives, emphasizing the importance of replicates for the
detection of circadian regulated transcripts.

Conclusions
In this analysis, we conclude that in comparison to single
replicates and averaged datasets, our resampling method
improves the detection of oscillating transcripts without
increasing the number of false positives. The resampling
method particularly outperformed the average method to
reduce the number of false positive transcripts. Further-
more, the resampling method shows that biological repli-
cates are important to accurately identify true oscillating
transcripts using time series gene expression datasets, and
that the average method may result in a large number of
false positives. To reliably identify oscillating transcripts,
resampled datasets should be generated from at least 3 ex-
perimental samples per time point.
Methods
Simulated time series
As there is no way to determine whether an algorithm
can distinguish true oscillating transcripts (true positives)
from non-oscillating transcripts (false positives) in a real
gene expression dataset, we generated artificial time series
to analyze the performance of different algorithms. The
artificially generated time series contained the expression
values of 8400 transcripts. To generate periodic patterns
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for synchronized datasets (LD dataset), we used the for-
mula by Yang and Su [13]. Thus the model is defined by:

xt ¼ SNR_2cos
2π
τ

t−φð Þ þ εt ð1Þ

where SNR = 2 is the signal-to-noise ratio; τ is the period
in the range of 22 and 28 hours; ϕ is phase (0-28 h with
0.1 h intervals); and εt is the normally distributed noise
term (mean =0 standard deviation =1).
Desynchronizing individuals under constant condition

(for example constant light (LL)) were simulated using
the above formula but with a fixed period that was ran-
domly selected for each of the 36 initially simulated time
courses. The periods were normally distributed with a
mean of 25 hours and a standard deviation of 3 h ac-
cording to published experimental data [9].
For more realistic circadian simulations we used the

ODE-model of the mammalian circadian oscillators by
Leloup et al. [18]. We first generated time courses for all
variable model species and then generated phase shifted
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copies thereof. Phase shifts had 0.1 h intervals. From
these time courses, datasets with 4 h sampling intervals
were generated. Normally distributed white noise was
added as for the cosine wave simulations. To simulate
non-periodic time series, we used normally distributed
white noise with the same mean and standard deviation
as above.
The simulations described above were repeated 36

times for each type of data. If not described otherwise
we generated 3 initial datasets from these time courses
by randomly selecting once from each original simula-
tion to generate a new 4 hour interval time course. This
mimics the sampling procedure from different individ-
uals in real experiments.
Python scripts used to generate time series and initial

datasets are provided as Additional file 1.

ARSER, HAYSTACK and BIODARE
Recently, Yang and Su developed the algorithm ARSER,
which combines frequency domain and time domain
analyses [13]. The algorithm first removes any linear
trend from time series data (data preprocessing), and
then the period is determined by AR spectral analysis
(period detection). Because the period can differ from
24 h depending on the experimental conditions, the al-
gorithm takes a range from 20 h to 28 h into account.
With each period, ARSER employs harmonic regression
to determine the four cyclic parameters: period, ampli-
tude, mean level, and phase (rhythm modeling). Finally,
false discovery rate (FDR) q-values are calculated for
multiple comparisons and the output was filtered and
only those transcripts with a q-value greater than 0.05
were consider in the analysis.
To exclude the possibility that our results depend on the

chosen algorithm, the analysis was repeated with the HAY-
STACK algorithm [21] and the FFT-NLLS algorithm imple-
mented in BIODARE [15,16]. HAYSTACK was designed to
find periodic patterns in any large-scale dataset representing
at least three data points. The web version and 120 cycling
patterns are available at http://haystack.mocklerlab.org/.

http://haystack.mocklerlab.org/
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The HAYSTACK algorithm compares gene expression
profiles with predefined cycling patterns. Different cutoffs
are used to detect oscillating patterns in gene expression.
The most important parameter is the correlation coeffi-
cient. The higher value means a higher correlation be-
tween the experimental data and the predefined models.
A coefficient of +1 indicates perfect positive correlation.
Other cutoff values are the fold change and p-value, and
these values are used to achieve statistical significance.
The HAYSTACK algorithm searches for at least six dif-
ferent patterns, including “asymmetric,” “rigid,” “spike,”
“cosine,” “sine,” and “box-like” patterns. The models that
most successfully identify rhythmically expressed genes
are “cosine” and “spike.”
BIODARE and the implemented algorithms are de-

scribed elsewhere [15]. Shortly, FFT-NLLS (Fast Fourier
Transform - Non-Linear Least Square) is a curve fitting
method which models a sum of cosine functions and
calculates confidence levels for period, phase and ampli-
tude. The BIODARE FFT-NLLS algorithm detection was
limited to period range from 20 to 28 h to match the
period range of ARSER. Linear detrending was applied.

Resampling
The artificially generated time series dataset consists of 12
time points at 4 h sampling intervals, representing 48 h of
observation. To generate resampled datasets, expression
values of each gene were randomly selected from (if not
stated otherwise) three initial replicate time series, and the
values were combined to generate the new resampled
dataset. Each expression value has an equal probability
of selection, and the time points are treated independ-
ently of one another. If not stated otherwise, the proced-
ure was repeated 36 times, and we created 36 different
resampled datasets (python script provided as Additional
file 1). Each resampled dataset was analyzed by the ARSER
algorithm with the stringency threshold (q-value) set to
0.05. HAYSTACK algorithm was used with the following
parameter: p-value = 0.05; fold change = 2.0, correlation
cutoff = 0.8; and background cutoff = 0.01. Using the oscil-
lating transcripts detected the consensus between the 36
resampled datasets were calculated.

Additional file

Additional file 1: Models and simulations. Python scripts used to
generate time series, initial and resampled datasets are provided as
ZIP-archive.
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