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Abstract
In the present article, we develop tensorial analysis for solutions w of the following nonlinear

elliptic system
∂
π
w = 0, d(w∗λ ◦ j) = 0,

associated to a contact triad (M, λ, J). The novel aspect of this approach is that we work directly
with this elliptic system on the contact manifold without involving the symplectization process.
In particular, when restricted to the case where the one-form w∗λ◦ j is exact, all a priori estimates
for w-component can be written in terms of the map w itself without involving the coordinate
from the symplectization. We establish a priori Ck coercive pointwise estimates for all k ≥ 2 in
terms of the energy density ‖dw‖2 by means of tensorial calculations on the contact manifold
itself. Further, for any solution w under the finite π-energy assumption and the derivative bound,
we also establish the asymptotic subsequence convergence to ‘spiraling’ instantons along the
‘rotating’ Reeb orbit.
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1. Introduction

1. Introduction
Let (M, ξ) denote a 2n+1 dimensional contact manifold M equipped with contact structure

ξ (a completely non-integrable distribution of rank 2n). Moreover, assume that ξ is co-
oriented, so that one is able to choose a one form λ such that ker λ = ξ. Such a one form is
called a contact one form, and is not unique but is determined only up to multiplication by
nowhere vanishing functions. Given a contact one form, the Reeb vector field Xλ associated
to it is uniquely determined by the equations

Xλ�λ ≡ 1, Xλ�dλ ≡ 0.

As an immediate consequence from the definition of contact structure, (ξ, dλ|ξ) is a symplec-
tic vector bundle over M of rank 2n. In the presence of the contact form λ, one considers the
set of endomorphisms J : ξ → ξ that are compatible with dλ in the sense that the bilinear
form gξ = dλ(·, J·) defines a Hermitian vector bundle (ξ, J, gξ) on M. We call such an en-
domorphism J a CR-almost complex structure. As in [5], we extend J to an endomorphism
of T M by setting JXλ = 0. We call the triple (M, λ, J) a contact triad and equip M with the
Riemannian metric

gλ = gξ + λ ⊗ λ
which we refer to as the contact triad metric. With the contact triad metric, a contact triad
carries the same information as a contact metric manifold. (See [5] and the references therein
for more information about contact triads.)

Our goal is to understand the contact manifold without directly using its symplectization.
Therefore, we focus on maps w : Σ̇→ M from the (punctured) Riemann surface (Σ̇, j) to the
contact manifold M. By decomposing the tangent bundle as T M = ξ ⊕ R{Xλ} and denoting
the projection to ξ by π, one can further decompose dπw := πdw = ∂πw + ∂

π
w into the

J-linear and anti-J-linear part as w∗ξ-valued 1-forms on the punctured Riemann surface Σ̇.
We begin by considering maps w satisfying just ∂

π
w = 0, which is a nonlinear degenerate

elliptic equation.

Definition 1.1(Contact Cauchy–Riemann Map). Let (M, λ, J) be a contact triad and let
(Σ̇, j) be a (punctured) Riemann surface. We call a smooth map w : Σ̇ → M a contact
Cauchy–Riemann map if it satisfies ∂

π
w = 0.

To maximize the advantage of using tensor calculus in the analytic study of contact
Cauchy–Riemann maps, we use the contact triad connection the authors introduced in [13]
associated to the contact triad (M, λ, J). The contact triad connection, in particular, preserves
the triad metric. We review the contact triad connection in Section 2.

Denote by ∇ the contact triad connection on M and by ∇π the associated Hermitian con-
nection on the Hermitian vector bundle (ξ, dλ|ξ, J). Various symmetry properties of the
connections ∇ and ∇π enable us to derive precise formulae concerning the second covariant
differential of w and the Laplacian of the π-harmonic energy density function for any contact
Cauchy–Riemann map w.

The following a priori on-shell equation for the π-harmonic energy density is the basis of
our a priori estimates for the contact Cauchy–Riemann map w. This on-shell equation is the
contact analog to the equation for symplectic manifolds derived by the first-named author in
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Theorem 7.3.4 [11].

Theorem 1.2 (Fundamental Equation). Let w be a contact Cauchy–Riemann map. Then

d∇
π

(dπw) = −w∗λ ◦ j ∧
(
1
2

(Xλ J) dπw
)
.

The upshot of this equation is that the second derivatives (the left hand side) of w are
expressed in terms of the first derivatives of w (the right hand side).

Define the ξ-component of the standard harmonic energy density function of general
smooth map w by

eπ = eπ(w) := |dπw|2gλ := |πdw|2gλ ,
and further introduce the following.

Definition 1.3. For any smooth map w : Σ̇ → M, the π-harmonic energy Eπ(λ,J)(w, j) of
the smooth map w is defined as

Eπ(λ,J)(w, j) :=
1
2

∫
Σ̇

eπ(w) =
1
2

∫
Σ̇

|dπw|2gλ .

Since we do not vary λ or j or J in the present article, we will use the shorthand notation
Eπ(w) for Eπ(λ,J)(w, j) from now on. Also, we will omit the subindex gλ from the norm | · |gλ .

Theorem 1.4. Let w be a contact Cauchy–Riemann map. Then

−1
2
Δeπ = |∇π(∂πw)|2 + K |∂πw|2 + 〈Ric∇

π

(w)∂πw, ∂πw〉
+〈δ∇π ((w∗λ ◦ j) ∧ (Xλ J)∂πw

)
, ∂πw〉

where K is the Gaussian curvature of the given Kähler metric h on (Σ̇, j) and Ric∇
π

(w) is the
Ricci curvature operator of the contact Hermitian connection ∇π along the map w.

Again the upshot of this theorem is that for a contact Cauchy–Riemann map, the Lapla-
cian of eπ(w) which involves the 3rd derivatives of w is expressible in terms of the second
and the first derivatives of w.

Notice that due to the mismatch of the dimensions, the contact Cauchy–Riemann map
equation itself is not an elliptic system. To conduct geometric analysis, we augment the
equation ∂

π
w = 0 by an additional equation,

d(w∗λ ◦ j) = 0,

and define the following.

Definition 1.5(Contact Instanton). Let (Σ̇, j) be a (punctured) Riemann surface and w :
Σ̇→ M be a smooth map. We call a pair ( j, w) a contact instanton if they satisfy

(1.1) ∂
π
w = 0, d(w∗λ ◦ j) = 0.

We would like to point out that the system (1.1) (for fixed j) forms an elliptic system,
which is a natural elliptic twisting of the degenerate Cauchy–Riemann equation ∂

π
w = 0.

(We refer to [12] for an elaboration of this point of view.)
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Another worthwhile point is that while the first equation involves first derivatives, the
second equation involves second derivatives of w. Therefore it is not enough to have a W2,2-
bound to get a classical solution out of a weak solution. Rather it is crucial to establish at
least a W3,2 coercive estimate to start the standard bootstrapping arguments. With this in
mind, we will derive an a priori local Ck-estimates for contact instantons with the help of
the contact triad connection.

We start with the following

Theorem 1.6. Let (Σ̇, j) be a punctured Riemann surface with a possibly empty set of
punctures. Equip Σ̇ with a metric which is cylindrical near each puncture. Let w : Σ̇ → M
be a contact instanton. For any relatively compact domains D1 and D2 in Σ̇ such that
D1 ⊂ D2, we have

‖dw‖2W1,2(D1) ≤ C1‖dw‖2L2(D2) +C2‖dw‖4L4(D2),

where C1, C2 are some constants which depend only on D1, D2 and (M, λ, J).

We also establish the following iterative local W2+k,2-estimates on punctured surfaces Σ̇
in terms of the W�,p-norms with � ≤ k+1. Combined with Theorem 1.6, this theorem in turn
provides a priori local W2+k,2-estimates in terms of (local) L2, L4 norms of |dπw|, and |w∗λ|.

Theorem 1.7. Let w be a contact instanton. Then for any pair of domains D1 ⊂ D2 ⊂ Σ̇
such that D1 ⊂ D2, ∫

D1

|(∇)k+1(dw)|2 ≤
∫

D2

k(dπw, w∗λ).

Here k is a polynomial function of degree up to 2k + 4 with nonnegative coefficients of the
norms of the covariant derivatives of dπw, w∗λ up to 0, . . . , k with degree at most 2k + 4
whose coefficients depending on J, λ and D1, D2 but independent of w.

In particular, any weak solution of (1.1) in W1,4
loc automatically becomes a classical solu-

tion.

We refer to Theorem 5.4 and the discussions around them for further exposition on these
estimates.

Next, we focus on cylindrical neighborhoods of the punctures and consider maps w :
[0,∞) × S 1 → M which satisfy (1.1). There are natural asymptotic invariants T and Q
which are defined as

T :=
1
2

∫
[0,∞)×S 1

|dπw|2 +
∫
{0}×S 1

(w|{0}×S 1 )∗λ

Q :=
∫
{0}×S 1

((w|{0}×S 1 )∗λ ◦ j).

Call T the asymptotic contact action and Q the asymptotic contact charge.
For the study of the asymptotic behavior of the contact instanton map near the punctures,

it is important to classify all possible massless instantons (i.e., instantons satisfying Eπ(w) =
0) on the cylinder R×S 1 equipped with the standard complex structure j. This classification
of massless instantons differs greatly between the Q = 0 and Q � 0 regimes.
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Proposition 1.8. Let w : R × S 1 → M be a massless contact instanton. Then there exists
a leaf of the Reeb foliation such that we can write w∞(τ, t) = γ(−Q τ + T t), where γ is a
parameterization of the leaf satisfying γ̇ = Xλ(γ).

In particular, if T � 0, γ is a closed Reeb orbit of Xλ with period T . In addition if Q = 0,
w∞ is invariant under τ-translations.

If T = 0 and Q � 0, the leaf needs not be closed but must be the image of an immersion
of R.

With this classification result, we prove the following convergence result. We refer read-
ers to Theorem 6.4 for more precise assumption for the following theorem.

Theorem 1.9. Let w be any contact instanton on [0,∞)×S 1 with finite π-harmonic energy

Eπ(w) =
1
2

∫
[0,∞)×S 1

|dπw|2 < ∞,

and finite gradient bound

‖dw‖C0;[0,∞)×S 1 < ∞.
Then for any sequence sk → ∞, there exists a subsequence, still denoted by sk, and a
massless instanton w∞(τ, t) (i.e., Eπ(w∞) = 0) on the cylinder R × S 1 such that

lim
k→∞
w(sk + τ, t) = w∞(τ, t)

uniformly on K × S 1 for any given compact set K ⊂ R.
Furthermore if Q = 0 and T � 0, where w∞(τ, t) ≡ γ(T t) for some closed Reeb orbit γ of

period T , the convergence is exponentially fast.

Proposition 1.8 and Theorem 1.9 generalize Hofer’s subsequence convergence result in
[9]. Hofer’s result in the context of symplectization, roughly corresponds to the exact case
(i.e., Q = 0 in our setting). Our asymptotic analysis for the contact instanton equations
reveals the new phenomenon of ‘spiraling’ instantons along a ‘rotating’ Reeb orbit when the
asymptotic charge is nonzero.

As outlined above, our original motivation to study this new elliptic system lies in our at-
tempt to better understand the contact manifold itself instead of its symplectization. Indeed
the question of whether two contact manifolds having symplectomorphic symplectization
are contactomorphic or not was addressed in the book by Cieliebak and Eliashberg ([6,
p.239]). Courte [7] provided a construction of two contact manifolds which are not contac-
tomorphic (actually, even not diffeomorphic) but have symplectomorphic symplectizations.
It would be interesting to see whether our approach could lead to a construction of genuinely
contact topological quantum invariants of the Gromov–Witten or Floer- theoretic type that
could be used to investigate the following kind of question. (See [7] where a similar question
was explicitly stated.)

Question 1.10. Do there exist contact structures ξ and ξ′ on a closed manifold M that
have the same classical invariants and are not contactomorphic, but whose symplectizations
are (exact) symplectomorphic?

We would like also to recall a celebrated result by Ruan [16] in symplectic geometry.
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Using Gromov–Witten invariants, he described a pair of algebraic surfaces which have the
same classical invariants but whose products with S 2 are not symplectically deformation
equivalent.

We note that a similar equation to (1.1) was first mentioned by Hofer in p.698 of [10].
Then Abbas–Cielibak–Hofer in [2] and Abbas [1], as well as by Bergmann in [3, 4] used
this equation to attack the Weinstein conjecture for dimension 3. We would like to point out
that their equations correspond to our instanton equations of vanishing charge, i.e., Q = 0.

However as far as the authors are aware of, systematic a priori estimates without involv-
ing symplectization such as those presented in this article have not been developed in the
previous literature. In this regard, our a priori estimates for w are stronger than those in the
literature in that the s-coordinates do not enter in the a priori estimates of w even for the
pseudoholomorphic maps u = (s, w) in the context of symplectization. We hope that this
kind of s-independent estimate for w will lead to a better understanding of the convergence
behavior of the contact instanton w even for the exact case. For this reason, we split Part I
of the preprint [14] and write the present article. We view this one self-contained with focus
on the tensorial derivation for a priori estimates.

2. Review of the contact triad connection

2. Review of the contact triad connection
As defined Introduction, assume (M, λ, J) is a contact triad of dimension 2n + 1 for the

contact manifold (M, ξ), and equip with it the contact triad metric g = gξ +λ⊗λ. In [13], the
authors introduced the contact triad connection associated to every contact triad (M, λ, J)
with the contact triad metric and proved its existence and uniqueness.

Theorem 2.1 (Contact Triad Connection [13]). For every contact triad (M, λ, J), there
exists a unique affine connection ∇, called the contact triad connection, satisfying the fol-
lowing properties:

(1) The connection ∇ is metric with respect to the contact triad metric, i.e., ∇g = 0;
(2) The torsion tensor T of ∇ satisfies T (Xλ, ·) = 0;
(3) The covariant derivatives satisfy ∇XλXλ = 0, and ∇Y Xλ ∈ ξ for any Y ∈ ξ;
(4) The projection ∇π := π∇|ξ defines a Hermitian connection of the vector bundle
ξ → M with Hermitian structure (dλ|ξ, J);

(5) The ξ-projection of the torsion T , denoted by T π := πT satisfies the following prop-
erty:

(2.1) T π(JY, Y) = 0

for all Y tangent to ξ;
(6) For Y ∈ ξ, we have the following

∂∇Y Xλ :=
1
2

(∇Y Xλ − J∇JY Xλ) = 0.

From this theorem, we see that the contact triad connection ∇ canonically induces a Her-
mitian connection ∇π for the Hermitian vector bundle (ξ, J, gξ), and we call it the contact
Hermitian connection. This connection will be used to study estimates for the π-energy in
later sections.

The following remark provides some intuition of constructing the contact triad connec-
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tion.

Remark 2.2. Recall that the leaf space of Reeb foliations of the contact triad (M, λ, J)
canonically carries a (non-Hausdorff) almost Kähler structure which we denote by
(M̂, d̂λ, Ĵ). We would like to note that Axioms (4) and (5) are nothing but properties of
the canonical connection on the tangent bundle of the (non-Hausdorff) almost Kähler man-
ifold (M̂, d̂λ, Ĵξ) lifted to ξ. In fact, as in the almost Kähler case, vanishing of the (1, 1)-
component also implies vanishing of the (2, 0)-component and hence the torsion must be
of (0, 2)-type. On the other hand, Axioms (1), (2) and (3) indicate this connection behaves
like the Levi-Civita connection along the Reeb direction Xλ. Axiom (6) is an extra require-
ment to connect the information in the ξ part and the Xλ part, which uniquely pins down the
desired connection.

Moreover, the following fundamental properties of the contact triad connection was
proved in [13], which will be used to perform tensorial calculations later.

Corollary 2.3. Let ∇ be the contact triad connection. Then

(1) For any vector field Y on M,

(2.2) ∇Y Xλ =
1
2

(Xλ J)JY;

(2) λ(T |ξ) = dλ.

We refer readers to [13] for more discussion on the contact triad connection and its rela-
tion with other related canonical type connections. In particular, we would like to remark
that

Remark 2.4. Using the identity Xλλ = 0 = Xλdλ it is not hard to see that, the Reeb
vector field is a Killing vector field with respect to the triad metric if and only if Xλ J = 0.
In general, this is a strong additional requirement. For example, for 3-dimensional contact
manifolds, it is equivalent to the Sasakian condition. Hence, for the contact triad connection,
∇Xλ doesn’t vanish, which indicates that it is different from the canonical connection for the
symplectization when lifted. For more details regarding this, refer [13] and the references
therein.

This section ends with introducing the following notation for later use. Associated to the
projection π = πλ from T M to ξ, we use Π = Πλ : T M → T M to denote the corresponding
idempotent, i.e., the endomorphism of T M satisfying Π2 = Π, ImΠ = ξ, kerΠ = R{Xλ}.

3. The contact Cauchy–Riemann maps

3. The contact Cauchy–Riemann maps
Denote by (Σ̇, j) a punctured Riemann surface (including the case of closed Riemann

surfaces without punctures).

Definition 3.1. A smooth map w : Σ̇ → M is called a contact Cauchy–Riemann map
(with respect to the contact triad (M, λ, J)), if w satisfies the following Cauchy–Riemann
equation
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∂
π
w := ∂

π

j,Jw :=
1
2

(πdw + Jπdw ◦ j) = 0.

Recall that for a fixed smooth map w : Σ̇ → M, the triple (w∗ξ, w∗J, w∗gξ) becomes a
Hermitian vector bundle over the punctured Riemann surface Σ̇. This introduces a Hermitian
bundle structure on Hom(T Σ̇, w∗ξ) � T ∗Σ̇ ⊗ w∗ξ over Σ̇, with inner product given by

〈α ⊗ ζ, β ⊗ η〉 = h(α, β)gξ(ζ, η),

where α, β ∈ Ω1(Σ̇), ζ, η ∈ Γ(w∗ξ), and h is the Kähler metric on the punctured Riemann
surface (Σ̇, j).

Let ∇π be the contact Hermitian connection. Combining the pulling-back of this connec-
tion and the Levi-Civita connection of the Riemann surface, we get a Hermitian connection
for the bundle T ∗Σ̇ ⊗ w∗ξ → Σ̇. By a slight abuse of notation, we will still denote by ∇π this
combined connection.

The smooth map w has an associated π-harmonic energy density defined as the norm of
the section dπw := πdw of T ∗Σ̇ ⊗ w∗ξ → Σ̇. In other words, it is the function eπ(w) : Σ̇ → R
defined by eπ(w)(z) := |dπw|2(z). (Here we use | · | to denote the norm from 〈·, ·〉 which should
be clear from the context.)

Similarly to the case of pseudoholomorphic curves on almost Kähler manifolds, we obtain
the following basic identities.

Lemma 3.2. Fix a Kähler metric h on (Σ̇, j), and consider a smooth map w : Σ̇ → M.
Then we have the following equations

(1) eπ(w) := |dπw|2 = |∂πw|2 + |∂πw|2;
(2) 2w∗dλ = (−|∂πw|2 + |∂πw|2) dA where dA is the area form of the metric h on Σ̇;
(3) w∗λ ∧ w∗λ ◦ j = −|w∗λ|2 dA.

As a consequence, if w satisfies ∂
π
w = 0, then

(3.1) |dπw|2 = |∂πw|2 and w∗dλ =
1
2
|dπw|2 dA.

Proof. The proofs of (1) and (2) are exactly the same as the case of pseudo-holomorphic
maps in symplectic manifolds replacing dw by dπw and the symplectic form by dλ and so
they are omitted. See e.g., Proposition 7.2.3 [11] for the statements and their proofs in the
symplectic case corresponding the statements (1) and (2) here. Statement (3) follows from
the definition of the Hodge star operator which implies that for any 1-form β on the Riemann
surface ∗β = −β ◦ j, and we take β = w∗λ. �

Notice that the contact Cauchy–Riemann equation itself is not an elliptic system since the
symbol is of rank 2n which is 1 dimension lower than T M. Here the closedness condition
d(w∗λ ◦ j) = 0 leads to an elliptic system (see [12] for an explanation)

(3.2) ∂
π
w = 0, d(w∗λ ◦ j) = 0.

Definition 3.3. We call a solution of the system (3.2) a contact instanton

Contact instantons are the main objects of our study in the present paper.
To illustrate the effect of the closedness condition on the behavior of contact instantons,
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we look at them on closed Riemann surface and prove the following classification result.
The following proposition is stated by Abbas as a part of [1, Proposition 1.4]. For readers’
convenience, we separate this part for closed contact instantons (which are called homolog-
ically perturbed pseudo-holomorphic curves in [1]) and give a somewhat different proof.

Proposition 3.4. Assume w : Σ → M is a smooth contact instanton from a closed Rie-
mann surface. Then

(1) If g(Σ) = 0, w is a constant map;
(2) If g(Σ) ≥ 1, w is either a constant or the locus of its image is a closed Reeb orbit.

Proof. For contact Cauchy–Riemann maps, Lemma 3.2 implies that |dπw|2 dA = d(2w∗λ).
By Stokes’ formula, we get dπw = 0 if the domain is a closed Riemann surface, and further,
dw = w∗λ ⊗ Xλ, i.e., w must have its image contained in a single leaf of the (smooth) Reeb
foliation.

Another consequence of the vanishing dπw = 0 is that dw∗λ = 0. Now this combined
with the equation d(w∗λ ◦ j) = 0, which is equivalent to δw∗λ = 0, implies that w∗λ (so is
∗w∗λ) is a harmonic 1-form on the Riemann surface Σ.

If the genus of Σ is zero, w∗λ = 0 by the Hodge’s theorem. This proves statement (1).
Now assume g(Σ) ≥ 1. Suppose w is not a constant map. Since Σ is compact and con-

nected, w(Σ) is compact and connected. Furthermore recall w(Σ) is contained in a single leaf
of the Reeb foliation which we denote by . We take a parametrization γ : R →  ⊂ M
such that γ̇ = Xλ(γ(t)). By the classification of compact one dimensional manifolds, the
image w(Σ) is homeomorphic either to the unit closed interval or to the circle. For the latter
case, we are done.

For the former case, we let I denote ω(Σ) which is contained in the leaf . We slightly
extend the interval I to I′ ⊂  so that I′ still becomes an embedded interval contained
in . The preimage γ−1(I′) is a disjoint union of a sequence of intervals [τk, τk+1] with
· · · < τ−1 < τ0 < τ1 < · · · for k ∈ Z. Fix any single interval, say, [τ0, τ1] ⊂ R.

We denote by γ−1 : I′ → [τ0, τ1] ⊂ R the inverse of the parametrisation γ restricted to
[τ0, τ1]. Then by construction γ−1(I) ∩ [τ0, τ1] ⊂ (τ0, τ1).

Now we denote by t the standard coordinate function of R and consider the composition
f := γ−1 ◦ w : Σ→ R. It follows that f defines a smooth function on Σ satisfying

γ ◦ f = w

on Σ by construction. Then recalling γ̇ = Xλ(γ), we obtain

w∗λ = f ∗(γ∗λ) = f ∗(dt) = d f .

Therefore Δ f = δd f = δw∗λ = 0, i.e., f is a harmonic function on the closed surface Σ and
so must be a constant function. This in turn implies w∗λ = 0. Then dw = dπw + w∗λXλ(w) =
0 + 0 = 0 i.e., w is a constant map which contradicts the standing hypothesis. Therefore the
map w must be constant unless the image of w wraps up a closed Reeb orbit. �

4. Calculation of the Laplacian of π-harmonic energy density

4. Calculation of the Laplacian of π-harmonic energy density
In this section, we use the contact triad connection to derive some identities related to

the π-harmonic energy for contact Cauchy–Riemann maps. Our derivation is based on
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coordinate-free tensorial calculations. The contact triad connection fits well for this pur-
pose which will be seen clearly in this section.

We start with looking at the (Hodge) Laplacian of the π-harmonic energy density of an
arbitrary smooth map w : Σ̇ → M, which is not necessarily contact Cauchy–Riemann,
i.e., in the off-shell level in physics terminology. As the first step, we apply the standard
Weitzenböck formula to the connection ∇π on T ∗Σ̇⊗w∗ξ that is induced by the the pull-back
connection on bundle w∗ξ and the Levi-Civita connection on T Σ̇, and obtain the following
formula

−1
2
Δeπ(w) = |∇π(dπw)|2 − 〈Δ∇πdπw, dπw〉 + K · |dπw|2 + 〈Ric∇

π

(dπw), dπw〉.(4.1)

Here eπ := eπ(w), K is the Gaussian curvature of Σ̇, and Ric∇
π

is the Ricci tensor of the
connection ∇π on the vector bundle w∗ξ. (For readers’ convenience, we give the proof of
(4.1) in Appendix A. For the basic differential notations, such as d∇, δ∇ etc., we also refer
readers to that section if necessary.)

Next we derive an important expression for d∇πdπw in the off-shell level, which is the
analog to a similar formula [11, Lemma 7.3.2] in the symplectic context.

Lemma 4.1. Let w : Σ̇→ M be any smooth map. Denote by T π the torsion tensor of ∇π.
Then as a two form with values in w∗ξ, d∇π(dπw) has the expression

(4.2) d∇
π

(dπw) = T π(Πdw,Πdw) + w∗λ ∧
(
1
2

(Xλ J) Jdπw
)
.

Proof. For given ξ1, ξ2 ∈ Γ(TΣ), evaluate d∇π(dπw)(ξ1, ξ2) as

d∇
π

(dπw)(ξ1, ξ2)

= (∇πξ1 (πdw))(ξ2) − (∇πξ2 (πdw))(ξ1)

=
(
∇πξ1 (πdw(ξ2)) − πdw(∇ξ1ξ2)

)
−

(
∇πξ2 (πdw(ξ1)) − πdw

(
∇ξ2ξ1

))
= π

( (
∇ξ1 (dw(ξ2)) − ∇ξ1 (λ(dw(ξ2))Xλ)

)
−

(
∇ξ2 (dw(ξ1)) − ∇ξ2 (λ(dw(ξ1))Xλ)

)
−dw

(
∇ξ1ξ2 − ∇ξ1ξ2

) )
= π

(
∇ξ1 (dw(ξ2)) − ∇ξ2 (dw(ξ1)) − [dw(ξ1), dw(ξ2)]

)
−∇ξ1 (λ(dw(ξ2))Xλ) + ∇ξ2 (λ(dw(ξ1))Xλ)

)
= π(T (dw(ξ1), dw(ξ2)) − λ(dw(ξ2))∇ξ1 Xλ − ξ1[λ(dw(ξ2))]Xλ

+λ(dw(ξ1))∇ξ2 Xλ + ξ2[λ(dw(ξ1))]Xλ
)

= π(T (dw(ξ1), dw(ξ2))) − λ(dw(ξ2))∇ξ1 Xλ + λ(dw(ξ1))∇ξ2 Xλ
= T π(Πdw(ξ1),Πdw(ξ2))

+
1
2
λ(dw(ξ2))J(Xλ J)πdw(ξ1) − 1

2
λ(dw(ξ1))J(Xλ J)πdw(ξ2)

= T π(Πdw(ξ1),Πdw(ξ2))

−1
2
λ(dw(ξ2))(Xλ J)Jπdw(ξ1) +

1
2
λ(dw(ξ1))(Xλ J)Jπdw(ξ2).

Here we used (2.2) and Axiom (3) for the last second equality. Rewrite the above result as
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d∇
π

(dπw) = T π(Πdw,Πdw) + w∗λ ∧
(
1
2

(Xλ J) Jdπw
)

for any w, and we have finished the proof. �

We warn that readers should not get confused with the wedge product we have used here,
which is the wedge product for forms in the usual sense, i.e., (α1 ⊗ ζ) ∧ α2 = (α1 ∧ α2) ⊗ ζ
for α1, α2 ∈ Ω∗(P) and ζ a section of E. This is not the wedge product defined in Appendix
B.

We now restrict the above lemma to the case of contact Cauchy–Riemmann maps, i.e.,
maps satisfying ∂

π
w = 0. In [11, Theorem 7.3.4] the author proves that for any standard

J-holomorphic map u in an almost Kähler manifold, the u∗T M-valued one-form du is har-
monic with respect to the canonical connection. Now the following Theorem 4.2 is its
contact analogue, which describes how much dπw(= ∂πw) deviates from being a w∗ξ-valued
harmonic one-form. The formula explicitly calculates the difference, which is caused by
Reeb projection and corresponds to the second term of (4.2).

As an immediate corollary of the previous lemma applied to the contact Cauchy–Riemann
maps, we derive the following formula, calling it the fundamental equation.

Theorem 4.2 (Fundamental Equation). Let w be a contact Cauchy–Riemann map, i.e., a
solution of ∂

π
w = 0. Then

(4.3) d∇
π

(dπw) = d∇
π

(∂πw) = −w∗λ ◦ j ∧
(
1
2

(Xλ J) ∂πw
)
.

Proof. The first equality follows since dπw = ∂πw for the solution w. Also notice that
being a contact Cauchy–Riemann map implies that

T π(Πdw,Πdw) = T π(∂πw, ∂πw) = 0,

which is due to the torsion T π|ξ being of (0, 2)-type (in particular, having vanishing (2, 0)-
component). Furthermore we write (4.2) as

d∇
π

(dπw) = w∗λ ∧
(
1
2

(Xλ J) J∂πw
)

= w∗λ ∧
(
1
2

(Xλ J) ∂πw
)
◦ j

= −w∗λ ◦ j ∧
(
1
2

(Xλ J) ∂πw
)
,

using the identity J∂πw = ∂πw ◦ j. �

Corollary 4.3 (Fundamental Equation in Isothermal Coordinates). Let (τ, t) be an isother-
mal coordinates. Write ζ := π∂w

∂τ
as a section of w∗ξ → M. Then

(4.4) ∇πτζ + J∇πt ζ −
1
2
λ

(
∂w

∂t

)
(Xλ J)ζ +

1
2
λ

(
∂w

∂τ

)
(Xλ J)Jζ = 0.

Proof. We denote π∂w
∂t by η. By the isothermality of the coordinate (τ, t), we have J ∂

∂τ
=

∂
∂t . Using the ( j, J)-linearity of dπw, we derive
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η = dwπ
(
∂

∂t

)
= dwπ

(
j
∂

∂τ

)
= Jdwπ

(
∂

∂τ

)
= Jζ.

Now we evaluate each side of (4.3) against ( ∂
∂τ
, ∂
∂t ). For the left hand side, we get

∇πτη − ∇πt ζ = ∇πτJζ − ∇πt ζ = J∇πτζ − ∇πt ζ.
For the right hand side, we get

1
2
λ
(
∂w

∂τ

)
(Xλ J)Jη − 1

2
λ
(
∂w

∂t

)
(Xλ J)Jζ

= −1
2
λ
(
∂w

∂τ

)
(Xλ J)ζ − 1

2
λ
(
∂w

∂t

)
(Xλ J)Jζ

where we use the equation η = Jζ for the equality. By setting them equal and applying J to
the resulting equation using the fact that Xλ J anti-commutes with J, we obtain the equation.

�

The fundamental equation in cylindrical coordinates (τ, t) ∈ [0,∞)×S 1 plays an important
role in the derivation of the exponential decay of the derivatives at cylindrical ends. (See Part
II of [14].)

Remark 4.4. The fundamental equation in cylindrical coordinates is nothing but the lin-
earization of the contact Cauchy–Riemann equation in the direction ∂

∂τ
.

The following lemmas will be needed in the calculation of 〈Δ∇πdπw, dπw〉 for contact
Cauchy–Riemann maps dπw = ∂πw.

Lemma 4.5. For any smooth map w, we have

〈d∇πδ∇π∂πw, ∂πw〉 = 〈δ∇πd∇π∂πw, ∂πw〉.
As a consequence,

〈Δ∇π∂πw, ∂πw〉 = 2〈δ∇πd∇π∂πw, ∂πw〉.(4.5)

Proof.

〈δ∇πd∇π∂πw, ∂πw〉 = −〈∗d∇π ∗ d∇
π

∂πw, ∂πw〉(4.6)

= −〈d∇π ∗ d∇
π

∂πw, ∗∂πw〉
= −〈d∇π ∗ d∇

π

∂πw,−∂πw ◦ j〉
= 〈d∇π ∗ d∇

π

∂πw, J∂πw〉(4.7)

= −〈Jd∇
π ∗ d∇

π

∂πw, ∂πw〉
= −〈d∇π ∗ d∇

π

J∂πw, ∂πw〉
= −〈d∇π ∗ d∇

π

∂πw ◦ j, ∂πw〉(4.8)

= 〈d∇π ∗ d∇
π ∗ ∂πw, ∂πw〉

= 〈d∇πδ∇π∂πw, ∂πw〉.
Here for (4.6) and (4.8), we use ∗α = −α ◦ j for any 1-form α. For (4.7), we use the fact that
the connection is J-linear. �
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The following formula expresses 〈Δ∇πdπw, dπw〉, which involves the third derivative of w,
in terms of terms involving derivatives of order at most two.

Lemma 4.6. For any contact Cauchy–Riemann map w,

(4.9) −〈Δ∇πdπw, dπw〉 = 〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], dπw〉.
Furthermore we can write

δ∇
π

[(w∗λ ◦ j) ∧ (Xλ J)∂πw](4.10)

= − ∗ 〈(∇π(Xλ J))∂πw, w∗λ〉
− ∗ 〈(Xλ J)∇π∂πw, w∗λ〉 − ∗〈(Xλ J)∂πw,∇w∗λ〉.

Proof. The first equality (4.9) immediately follows from the fundamental equation, The-
orem 4.2, and (4.5) of Lemma 4.5 for contact Cauchy–Riemann maps.

For the second equality (4.10), using the identities δ∇π = − ∗ d∇π∗ for two-forms and
∗α = −α ◦ j for general one-form α, we rewrite

δ∇
π

[(w∗λ ◦ j) ∧ (Xλ J)∂πw] = − ∗ d∇
π ∗ [(Xλ J)∂πw ∧ (∗w∗λ)],

and then apply the definition of the Hodge ∗ (see Appendix B) to the expression
∗[(Xλ J)∂πw ∧ (∗w∗λ)], and get

δ∇
π

[(w∗λ ◦ j) ∧ (Xλ J)∂πw]

= − ∗ d∇
π〈(Xλ J)∂πw, w∗λ〉

= − ∗ 〈(∇π(Xλ J))∂πw, w∗λ〉 − ∗〈(Xλ J)∇π∂πw, w∗λ〉 − ∗〈(Xλ J)∂πw,∇w∗λ〉.
This finishes the proof. �

Here in the above lemma 〈·, ·〉 denotes the inner product induced from h, i.e., 〈α1 ⊗
ζ, α2〉 := h(α1, α2)ζ, for any α1, α2 ∈ Ωk(P) and ζ a section of E. This inner product
should not be confused with the inner product of the vector bundles.

By applying δ∇π to (4.3) and the resulting expression of Δ∇π(dπw) = Δ∇π(∂πw) thereinto
and (4.9), we can convert the Weitzenböck formula (4.1) into

−1
2
Δeπ(w) = |∇π(∂πw)|2 + K|∂πw|2 + 〈Ric∇

π

(∂πw), ∂πw〉(4.11)

+〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉
for any contact Cauchy–Riemann map, i.e., any map w satisfying ∂

π
w = 0.

5. A priori estimates for contact instantons

5. A priori estimates for contact instantons
In this section, we derive some basic estimates for the (full) energy density |dw|2 of contact

instantons w. These estimates are important for the derivation of local regularity and ε-
regularity needed for the compactification of certain moduli space. (See [12] for further
study along this lines.)

5.1. W2,2-estimates.
5.1. W2,2-estimates. Recall from the last section that we have derived the following iden-

tity
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−1
2
Δeπ(w) = |∇π(∂πw)|2 + K|∂πw|2 + 〈Ric∇

π

(∂πw), ∂πw〉(5.1)

+〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉.
By (4.10), the first entry in 〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉 can be written as

δ∇
π

[(w∗λ ◦ j) ∧ (Xλ J)∂πw](5.2)

= − ∗ 〈(∇π(Xλ J))∂πw, w∗λ〉 − ∗〈(Xλ J)∇π∂πw, w∗λ〉 − ∗〈(Xλ J)∂πw,∇w∗λ〉.
Hence we get a bound for the last term 〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉 by

|〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉|
≤ ‖∇π(Xλ J)‖C0(M)|dw|4
+|〈(Xλ J)∇π(∂πw), w∗λ〉||dw| + |〈(Xλ J)∂πw,∇w∗λ〉||dw|.

We further bound the last two terms of (5.2) via

|〈(Xλ J)∇π(∂πw), w∗λ〉||dw| ≤ ‖Xλ J‖C0(M)|∇π(∂πw)||dw|2

≤ 1
2c
|∇π(∂πw)|2 + c

2
‖Xλ J‖2C0(M)|dw|4

and

|〈(Xλ J)∂πw,∇w∗λ〉||dw| ≤ 1
2c
|∇w∗λ|2 + c

2
‖Xλ J‖2C0(M)|dw|4

similarly. Here c is any positive constant.
Finally, we get the upper bound for

|〈δ∇π[(w∗λ ◦ j) ∧ (Xλ J)∂πw], ∂πw〉|(5.3)

≤ 1
2c

(
|∇π(∂πw)|2 + |∇w∗λ|2

)
+

(
c‖Xλ J‖2C0(M) + ‖∇π(Xλ J)‖C0(M)

)
|dw|4

for any contact Cauchy–Riemann map w.
Now we consider contact instantons which are Cauchy–Riemann maps satisfying δw∗λ =

0 in addition. Using the Bochner–Weitzenböck formula (applied to differential forms on a
Riemann surface), we get the following identity

(5.4) −1
2
Δ|w∗λ|2 = |∇w∗λ|2 + K|w∗λ|2 − 〈Δ(w∗λ), w∗λ〉.

Write

Δ(w∗λ) = dδ(w∗λ) + δd(w∗λ),

in which the first term vanishes since δw∗λ = −d(w∗λ ◦ j) = 0. Then

〈Δ(w∗λ), w∗λ〉 = 〈δd(w∗λ), w∗λ〉
= −1

2
〈∗d|∂πw|2, w∗λ〉

= −〈∗〈∇π∂πw, ∂πw〉, w∗λ〉.
Similarly as in the previous estimates for the Laplacian term of ∂πw, we can bound
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| − 〈Δ(w∗λ), w∗λ〉| = |〈∗〈∇π∂πw, ∂πw〉, w∗λ〉|(5.5)

≤ |∇π∂πw||dw|2

≤ 1
2c
|∇π∂πw|2 + c

2
|dw|4.

At last, we calculate the total energy density which is defined as

e(w) := |dw|2 = eπ(w) + |w∗λ|2.
Summing up (5.1) and (5.4), and applying the estimates (5.3) and (5.5) respectively, we
obtain the following inequality for any contact instanton w

−1
2
Δe(w)(5.6)

≥
(
1 − 1

c

)
|∇π(∂πw)|2 +

(
1 − 1

2c

)
|∇w∗λ|2

−
(
c‖Xλ J‖2C0(M) + ‖∇π(Xλ J)‖C0(M) +

c
2
+ ‖Ric‖C0(M)

)
e(w)2 + Ke(w)

≥ −
(
c‖Xλ J‖2C0(M) + ‖∇π(Xλ J)‖C0(M) +

c
2
+ ‖Ric‖C0(M)

)
e(w)2 + Ke(w),

for any c > 1. We fix c = 2 and get the following

Theorem 5.1. For a contact instanton w, we have the following differential inequality

Δe(w) ≤ Ce(w)2 + ‖K‖L∞(Σ̇)e(w),

where

C = 2‖Xλ J‖2C0(M) + ‖∇π(Xλ J)‖C0(M) + ‖Ric‖C0(M) + 1

which is a positive constant independent of w.

Once we have this differential inequality, we obtain the following interior density esti-
mates by the standard argument from [17]. (Also see the proof of [11, Theorem 8.1.3] given
in the context of pseudoholomorphic curves.)

Corollary 5.2 (ε-regularity and interior density estimate). There exist constants C, ε0 and
r0 > 0, depending only on J and the Hermitian metric h on Σ̇, such that for any C1 contact
instanton w : Σ̇→ M with

E(r0) :=
1
2

∫
D(r0)
|dw|2 ≤ ε0,

and discs D(2r) ⊂ IntΣ with 0 < 2r ≤ r0, w satisfies

(5.7) max
σ∈(0,r]

(
σ2 sup

D(r−σ)
e(w)

)
≤ CE(r)

for all 0 < r ≤ r0. In particular, letting σ = r/2, we obtain

(5.8) sup
D(r/2)

|dw|2 ≤ 4CE(r)
r2

for all r ≤ r0.
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Now we rewrite (5.6) into(
1 − 1

c

)
|∇π(∂πw)|2 +

(
1 − 1

2c

)
|∇w∗λ|2(5.9)

≤ −1
2
Δe(w) − Ke(w)

+

(
c‖Xλ J‖2C0(M) + ‖∇π(Xλ J)‖C0(M) +

c
2
+ ‖Ric‖C0(M)

)
e2

We want to get a coercive L2 bound for ∇dw, which consists of the two parts given below
according to the decomposition dw = dπw + w∗λ ⊗ Xλ.

(5.10) |∇dw|2 = |∇(dπw) + ∇(w∗λ ⊗ Xλ)|2 ≤ 2|∇(dπw)|2 + 2|∇(w∗λ ⊗ Xλ)|2.
For the first term on the right hand side of (5.10), we write

|∇(dπw)|2 = |∇π(dπw)|2 + |〈∇(dπw), Xλ〉|2(5.11)

= |∇π(dπw)|2 + 1
4
|〈dπw, (Xλ J)Jdπw〉|2

≤ |∇π(dπw)|2 + 1
4
|Xλ J|2|dπw|4

≤ |∇π(dπw)|2 + 1
4
‖Xλ J‖2C0(M)|dπw|4,

where (5.11) comes from the metric property of the contact triad connection together with
(2.2).

For the second term on the right hand side of (5.10), we again apply (2.2) and derive

|∇(w∗λ ⊗ Xλ)|2 = |(∇w∗λ) ⊗ Xλ + (w∗λ) ⊗ ∇Xλ|2

= |∇w∗λ|2 + |w∗λ|2|1
2

(Xλ J)Jdπw|2

≤ |∇w∗λ|2 + 1
4
‖Xλ J‖2C0(M)|w∗λ|2|dπw|2.

Summing up the two terms and going back to (5.10), we get

|∇(dw)|2 ≤ 2|∇π(dπw)|2 + 2|∇w∗λ|2(5.12)

+
1
2
‖Xλ J‖2C0(M)|dπw|4 +

1
2
‖Xλ J‖2C0(M)|w∗λ|2|dπw|2.

Hence from this, we have

|∇(dw)|2 ≤ 2
1 − 1

c

[(
1 − 1

c

)
|∇π(∂πw)|2 +

(
1 − 1

2c

)
|∇w∗λ|2

]
+‖Xλ J‖2C0(M)|dw|4

and combine it with (5.9), we get

|∇(dw)|2

≤
[( 2c2

c − 1
+ 1

)
‖Xλ J‖2C0(M) +

2c
c − 1

(
‖∇π(Xλ J)‖C0(M) +

c
2
+ ‖Ric‖C0(M)

)]
|dw|4

−2c · K
c − 1

|dw|2 + c
1 − c

Δe(w)
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for any constant c > 1. We still take c = 2 and get the following coercive estimate for
contact instantons

(5.13) |∇(dw)|2 ≤ C1|dw|4 − 4K|dw|2 − 2Δe(w)

where

C1 := 9‖Xλ J‖2C0(M) + 4‖∇π(Xλ J)‖C0(M) + 4‖Ric‖C0(M) + 4

denotes a constant.
The following local a priori estimate can be easily derived from (5.13) by the standard

usage of cut-off function. We give its proof in Appendix C.

Proposition 5.3. For any pair of domains D1 and D2 in Σ̇ such that D1 ⊂ D2,

‖∇(dw)‖2L2(D1) ≤ C1(D1,D2)‖dw‖2L2(D2) +C2(D1,D2)‖dw‖4L4(D2)

for any contact instanton w, where C1(D1,D2), C2(D1,D2) are some constants which depend
on D1, D2 and (M, λ, J), but are independent of w.

We remark that this proposition is nothing but a re-statement of Theorem 1.6 in the intro-
duction.

5.2. Local W2+k,2 estimates for k ≥ 1.
5.2. Local W2+k,2 estimates for k ≥ 1. Starting from the above W2,2-estimate, we pro-

ceed to higher W2+k,2-estimates inductively. For this purpose, we consider the decomposition

dw = dπw + w∗λ ⊗ Xλ

and estimate |∇k+1dw| inductively staring from k = 0 which is done in the previous subsec-
tion.

The rest of this subsection will be occupied by the proof of the following theorem.

Theorem 5.4. Let w be a contact instanton. Then for any pair of domains D1 ⊂ D2 ⊂ Σ̇
such that D1 ⊂ D2, we have∫

D1

|(∇)k+1(dw)|2 ≤
∫

D2

k(dπw, w∗λ).

Here k is a polynomial function of degree up to 2k + 4 with nonnegative coefficients of the
norms of the covariant derivatives of dπw, w∗λ up to 0, . . . , k with degree at most 2k + 4
whose coefficients depending on J, λ and D1, D2 but independent of w.

We start with the following lemma

Lemma 5.5. For any k ≥ 0,

∇k+1dw = (∇π)k+1dπw + ∇k+1w∗λ ⊗ Xλ + Ok(dπw, w∗λ),

where Ok(dπw, w∗λ) denotes some tensor living in  k+1 ⊗Ω1(w∗T M) ⊂  k+1
1 (w∗T M). More

specifically Ok(dπw, w∗λ) can be written into the form of a polynomial which consists of
monomials of one of the following forms
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a · (
⊗

i=1,··· ,|m|
(∇π)midπw ⊗

⊗
j=1,··· ,|n|

∇n jw∗λ) ⊗ dπw,

b · (
⊗

i′=1,··· ,|m|′
(∇π)m′i′dπw ⊗

⊗
j′=1,··· ,|n|′

∇n′j′w∗λ) ⊗ Xλ(w)

with i, j, i′, j′, mi, n j,m′i′ , n
′
j′ ≤ k and

1 ≤ Σimi + Σ jn j ≤ k + 1, 2 ≤ Σi′m′i′ + Σ j′n′j′ ≤ k + 1

and a, b are some C∞ bounded functions on Σ̇.

Proof. For the case k = 0, we compute

∇dw = ∇dπw + ∇(w∗λ ⊗ Xλ)

= ∇πdπw + 〈∇(dπw), Xλ〉Xλ + ∇w∗λ ⊗ Xλ + w∗λ ⊗ ∇Xλ
= ∇πdπw − 〈dπw,∇Xλ〉Xλ + (∇w∗λ) ⊗ Xλ + w∗λ ⊗ ∇Xλ
= ∇πdπw + (∇w∗λ) ⊗ Xλ(w)

+ w∗λ ⊗ 1
2

(Xλ J)Jdπw −
〈
dπw,

1
2

(Xλ J)Jdπw
〉
⊗ Xλ.

It is obviously of the form in our induction assumption with the help of the metric tensor
over M. (Here |m| = 0, |n| = 1, n1 = 1, and |m|′ = 2, m′1 = m′2 = 1, |n|′ = 0.)

Now assuming the expression for any 0 ≤ i ≤ k with k ≥ 0 holds, we show that it holds
for k + 1 too. First by the induction hypothesis, ∇k+1dw can be decomposed into

∇k+1dw = ∇(∇kdw)

= ∇((∇π)kdπw) + ∇(∇kw∗λ ⊗ Xλ) + ∇Ok−1(dπw, w∗λ).

We examine them one by one. For the term, we compute

∇((∇π)kdπw) = (∇π)k+1dπw + 〈∇((∇π)kdπw), Xλ〉 ⊗ Xλ
= (∇π)k+1dπw − 〈(∇π)kdπw,∇Xλ〉 ⊗ Xλ

= (∇π)k+1dπw −
〈
(∇π)kdπw,

1
2

(Xλ J)Jdπw
〉
⊗ Xλ,

where the second term is absorbed into Ok(dπw, w∗λ).
For the second term, we obtain

∇(∇kw∗λ ⊗ Xλ) = ∇k+1w∗λ ⊗ Xλ + ∇kw∗λ ⊗ ∇Xλ

= ∇k+1w∗λ ⊗ Xλ + ∇kw∗λ ⊗ 1
2

(Xλ J)Jdπw,

where the second term again goes into Ok(dπw, w∗λ).
For the third one, we observe that when we take one more derivative of each term

Ok−1(dπw, w∗λ), the result becomes one of the following six types,
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(∇a) ⊗ (
⊗

i=1,··· ,|m|
(∇π)midπw ⊗

⊗
j=1,··· ,|n|

∇n jw∗λ) ⊗ dπw(5.14)

a · ∇(
⊗

i=1,··· ,|m|
(∇π)midπw ⊗

⊗
j=1,··· ,|n|

∇n jw∗λ) ⊗ dπw(5.15)

a · (
⊗

i=1,··· ,|m|
(∇π)midπw ⊗

⊗
j=1,··· ,|n|

∇n jw∗λ) ⊗ ∇dπw(5.16)

(∇b) ⊗ (
⊗

i′=1,··· ,|m|′
(∇π)m′i′dπw ⊗

⊗
j′=1,··· ,|n|′

∇n′j′w∗λ) ⊗ Xλ(5.17)

b · ∇(
⊗

i′=1,··· ,|m|′
(∇π)m′i′dπw ⊗

⊗
j′=1,··· ,|n|′

∇n′j′w∗λ) ⊗ Xλ(5.18)

b · (
⊗

i′=1,··· ,|m|′
(∇π)m′i′dπw ⊗

⊗
j′=1,··· ,|n|′

∇n′j′w∗λ) ⊗ ∇Xλ.(5.19)

The (5.14) and (5.17) live in Ok because we assume ∇a (so it ∇b) can be written as a bounded
function tensor along dw = dπw + w∗λ ⊗ Xλ. Other four terms live in Ok because they all
raise the order by 1 either via a direct differentiation or via a usage of the metric property to
rewrite

∇(∇π)mdπw = ∇m+1dπw − 〈(∇π)mdπw,∇Xλ〉Xλ
followed by the insertion ∇dwXλ = 1

2 (Xλ J)Jdπw.
This completes the induction step and hence the proof of the lemma. �

Then applying Proposition 5.3 and using the Cauchy–Schwarz inequality inductively, we
immediately get

Corollary 5.6. For any pair of domains D1 and D2 in Σ̇ such that D1 ⊂ D2,

‖∇k+1dw‖2L2(D1) ≤ ‖(∇π)k+1dπw‖2L2(D1) + ‖∇k+1(w∗λ)‖2L2(D1)

+

∫
D2

Gk(dπw, w∗λ)

for any contact instanton w, for another polynomial function of Gk of the type described in
Theorem 5.4.

Remark 5.7. Starting from Proposition 5.3, and applying Cauchy–Schwarz inequaltiy
and the induction, we can further obtain the inequality of the form∫

D2

Gk(dπw, w∗λ) ≤ Ck;D1,D2 (‖dw‖2L2(D2), ‖dw‖4L2(D2))

where Ck;D1,D2 (r, s) is a polynomial function of r, s satisfying Ck;D1,D2 (0, 0) = 0.

Now we estimate |(∇π)k+1dπw|2 + |∇k+1(w∗λ)|2 inductively. We first denote

S k = (∇π)kdπw, Tk = ∇k(w∗λ).

The general Weitzenböck formula (see (C.7) Appendix [8] e.g.) applied to S k and Tk re-
spectively, we obtain
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|∇πS k|2 = −1
2
Δ|S k|2 + 〈ΔπS k, S k〉 − 〈R̃S k, S k〉(5.20)

|∇Tk|2 = −1
2
Δ|Tk|2 + 〈ΔTk, Tk〉 − K|Tk|2.(5.21)

where R̃ is a zeroth order operator acting on the sections of w∗ξ ⊗ T ∗Σ̇ which depends only
on the curvature of the pull-back connection w∗∇π and the Levi-Civita connection of (Σ̇, h).
In particular, R̃ is a bounded bilinear form.

Now it remains to prove

Proposition 5.8. For any pair of domains D1 and D2 in Σ̇ such that D1 ⊂ D2,

‖∇k+1dπw‖2L2(D1) + ‖∇k+1w∗λ‖2L2(D1) ≤
∫

D2

Mk(dπw, w∗λ)

for any contact instanton w, where Mk is another polynomial function of the type described
as in Theorem 5.4.

Proof. The k = 0 case is proved by Proposition 5.3.
For k ≥ 1, we first quote the following general lemma whose proof is a direct calculation

which we leave to the readers.

Lemma 5.9. For any ξ-valued 1-form α over the map w,

(5.22) d∇
π

(∇π(·)α) = ∇π(·)(d∇
π

α) + (Rπ(dw, dw(·))α)skew

where (Rπ(dw, dw(·))α)skew is the skew-symmetrization of the bilinear map (ξ1, ξ2) �→
Rπ(dw(ξ1), dw(·))α(ξ2), with Rπ the ξ-projection of the curvature of the triad connection
∇.

Now we choose and fix a domain D and a smooth non-negative cut-off function χ : D2 →
R, such that D1 ⊂ D ⊂ D ⊂ D2, and χ ≡ 1 on D1, χ ≡ 0 on D2 − D. Obviously we have∫

D1

|(∇π)k+1dπw)|2 =
∫

D1

|∇πS k|2 ≤
∫

D
χ2|∇πS k|2.

On the other hand, applying the Weitzenböck formula similarly as k = 0, we write∫
D
χ2|∇πS k|2 = −

∫
D

χ2

2
Δ|S k|2 +

∫
D
χ2〈ΔπS k, S k〉 −

∫
D
χ2〈R̃S k, S k〉,(5.23)

for k ≥ 1, where D and χ are chosen the same as in the proof of Proposition C.1. Obviously
the last term can be bounded by the norm ‖dw‖2k,2;D2

, and so we will focus on the first two
terms henceforth.

Similarly as before we get∫
D
|〈ΔπS k, S k〉| ≤

(
1 + ‖dχ‖C0(D)

) ∫
D2

(|d∇πS k|2 + |δ∇πS k|2) + 2
∫

D2

|S k|2(5.24)

= 2
(
1 + ‖dχ‖C0(D)

) ∫
D2

|d∇πS k|2 + 2
∫

D2

|S k|2,

where the last equality follows from the J-linearity of ∇π similarly as for Lemma 4.5. Again
the last term

∫
D2
|S k|2 can be bounded by the norm ‖dw‖2k,2;D2

, and so it remains to focus on
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D2
|d∇πS k|2.

We first observe the following

Lemma 5.10. For any k ≥ 0, d∇πS k can be written as a sum of tensors of forms ai j⊗S i⊗T j

with 0 ≤ i, j ≤ k, where ai j’s are some C∞-bounded sections in Ω1(Σ̇) ⊗ w∗T M.

Proof. The proof of this lemma is again by an induction argument. For k = 0, we have
S 0 = dπw and the fundamental equation (4.3)

d∇
π

S 0 = d∇
π

dπw = −1
2
w∗λ ◦ j ∧ (Xλ J)dπw.

It can be easily checked

−1
2
w∗λ ◦ j ∧ (Xλ J)dπw =

1
2
w∗λ ∧ (Xλ J)Jdπw.

Combining the two, the initial case k = 0 holds.
Now suppose the lemma holds for k − 1 with k ≥ 1. Applying Lemma 5.9, we derive

d∇
π

S k = d∇
π∇πS k−1(5.25)

= ∇π(d∇πS k−1) + (Rπ(dw, dw(·)) S k−1)skew.

The curvature term is certainly of form required in the lemma (even for k − 1 instead of k)
by the induction hypothesis.

On the other hand, for the first term ∇π(d∇πS k−1) in (5.25), the induction hypothesis im-
plies d∇πS k−1 is a summand of the terms each of which of the form ai j ⊗ S i ⊗ T j with
0 ≤ i, j ≤ k− 1. By differentiating this and applying Lemma 5.5, we have proved the lemma
for k. This finishes the proof. �

Using this lemma, we have obtained∫
D2

|d∇πS k|2 ≤
∫

D2

Hk(dπw, w∗λ),

where Hk is some polynomial function of the type as in Theorem 5.4. Combining the above
two terms in (5.24), we have obtained the desired polynomial integral bound∫

D
|〈ΔπS k, S k〉| ≤ Ik(dπw, w∗λ)

again with the same kind of polynomial Ik, which in particular implies

(5.26)
∫

D
χ2|〈ΔπS k, S k〉| ≤ Ik(dπw, w∗λ).

Next we go back to the first term in (5.23), which is − ∫
D
χ2

2 Δ|(∇π)kdπw|2. For this one,
using similar computation as in Appendix C, one can obtain∣∣∣∣∣

∫
D
χ2Δ|S k|2

∣∣∣∣∣ ≤ 1
ε

∫
D
χ2|∇πS k|2 + ε

∫
D2

|dχ|2|S k|2(5.27)

≤ 1
ε

∫
D
χ2|∇πS k|2 + ε‖dχ‖2C0(D)

∫
D2

|S k|2.

The second term is bounded by a similar polynomial integral bound, which we denote by
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I′k. Then by substituting this inequality into (5.23), setting ε = 1, using the two polynomial
integral bounds from Ik and I′k, and applying a back-substitution, we obtain∫

D
χ2|∇πS k|2 ≤ 1

2

∫
D
χ2|∇πS k|2 +

∫
D2

(Ik + I′k)

which is equivalent to ∫
D
χ2|∇πS k|2 ≤ 2

∫
D2

(Ik + I′k).

Therefore we obtain ∫
D1

|∇πS k|2 ≤
∫

D
χ2|∇πS k|2 ≤ 2

∫
D2

(Ik + I′k).

The treatment for
∫

D1
|∇Tk|2 is similar but much simpler, so we omit details.

These together finish the proof of Proposition 5.8. �

Combining Proposition 5.8 and Corollary 5.6, we have proved Theorem 5.4, where the
polynomial k can be taken as the sum of all the polynomials arising from the proofs of
Proposition 5.8 and Corollary 5.6. The order of k can be limited to 2k + 4 with a careful
look at the induction steps.

The following is an immediate consequence of Theorem 1.6, Theorem 5.4 and Remark
5.7.

Corollary 5.11. Any weak solution of equation (3.2) in W1,4
loc automatically lies in W3,2

loc
and becomes a classical solution, hence smooth.

6. Asymptotic behavior of contact instantons

6. Asymptotic behavior of contact instantons
In this section, we study the asymptotic behavior of contact instantons on the Riemann

surface (Σ̇, j) associated with a metric h with cylindrical ends. To be precise, we assume
there exists a compact set KΣ ⊂ Σ̇, such that Σ̇ − Int(KΣ) is a disjoint union of punctured
disks each of which is isometric to the half cylinder [0,∞) × S 1 or (−∞, 0] × S 1, where the
choice of positive or negative cylinders depends on the choice of analytic coordinates at the
punctures. We denote by {p+i }i=1,··· ,l+ the positive punctures, and by {p−j } j=1,··· ,l− the negative
punctures. Here l = l+ + l−. Denote by φ±i such isometries from cylinders to disks. We first
state our assumptions for the study of the behavior of punctures.

Definition 6.1. Let Σ̇ be a punctured Riemann surface with punctures{p+i }i=1,··· ,l+
∪ {p−j } j=1,··· ,l− equipped with a metric h with cylindrical ends outside a compact subset KΣ.
Let w : Σ̇→ M be any smooth map. We define the total π-harmonic energy Eπ(w) by

(6.1) Eπ(w) = Eπ(λ,J;Σ̇,h)(w) =
1
2

∫
Σ̇

|dπw|2

where the norm is taken in terms of the given metric h on Σ̇ and the triad metric on M.

We put the following hypotheses in our asymptotic study of the finite energy contact
instanton maps w:
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Hypothesis 6.2. Let h be the metric on Σ̇ given above. Assume w : Σ̇ → M satisfies the
contact instanton equations (3.2), and

(1) Eπ
(λ,J;Σ̇,h)

(w) < ∞ (finite π-energy);
(2) ‖dw‖C0(Σ̇) < ∞.

Throughout this section, we work locally near one puncture, i.e., on Dδ(p)\{p}. By taking
the associated conformal coordinates φ+ = (τ, t) : Dδ(p) \ {p} → [0,∞) × S 1 → such that
h = dτ2 + dt2, we need only look at a map w defined on the half cylinder [0,∞) × S 1 → M
without loss of generality.

The above finite π-energy hypothesis implies

(6.2)
∫

[0,∞)×S 1
|dπw|2 dτ dt < ∞, ‖dw‖C0([0,∞)×S 1) < ∞

in these coordinates.
Let w satisfy Hypothesis 6.2. We can associate two natural asymptotic invariants at each

puncture defined as

T :=
1
2

∫
[0,∞)×S 1

|dπw|2 +
∫
{0}×S 1

(w|{0}×S 1 )∗λ(6.3)

Q :=
∫
{0}×S 1

((w|{0}×S 1 )∗λ ◦ j).(6.4)

(Here we only look at positive punctures. The case of negative punctures is similar.)

Remark 6.3. For any contact instanton w, since 1
2 |dπw|2 dA = d(w∗λ), by Stokes’ formula,

T =
1
2

∫
[s,∞)×S 1

|dπw|2 +
∫
{s}×S 1

(w|{s}×S 1 )∗λ, for any s ≥ 0.

Moreover, since d(w∗λ ◦ j) = 0, the integral∫
{s}×S 1

(w|{s}×S 1 )∗λ ◦ j, for any s ≥ 0

does not depend on s whose common value is nothing but Q.

We call T the asymptotic contact action and Q the asymptotic contact charge of the
contact instanton w at the given puncture.

For a given contact instanton w : [0,∞) × S 1 → M, we consider the family of maps
ws : [−s,∞) × S 1 → M defined by ws(τ, t) = w(τ + s, t). For any compact set K ⊂ R, there
exists some s0 large enough such that K ⊂ [−s,∞) for every s ≥ s0. For such s ≥ s0, we can
also get an [s0,∞)-family of maps by defining wK

s := ws|K×S 1 : K × S 1 → M.
The asymptotic behavior of w at infinity can be understood by studying the limiting be-

havior of the sequence of maps {wK
s : K × S 1 → M}s∈[s0,∞), for each given compact set

K ⊂ R.
First of all, it is easy to check that under Hypothesis 6.2, the family {wK

s : K × S 1 →
M}s∈[s0,∞) satisfies the following

(1) ∂
π
wK

s = 0, d((wK
s )∗λ ◦ j) = 0, for every s ∈ [s0,∞)

(2) lims→∞ ‖dπwK
s ‖L2(K×S 1) = 0
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(3) ‖dwK
s ‖C0(K×S 1) ≤ ‖dw‖C0([0,∞)×S 1) < ∞.

From (1) and (3) together with the compactness of the target manifold M (which provides
a uniform L2(K × S 1) bound) and Theorem 1.7, we obtain

‖wK
s ‖W3,2(K×S 1) ≤ CK;(3,2) < ∞,

for some constant CK;(3,2) independent of s. Then by compactness of the embedding of
W3,2(K×S 1) into C1,α(K×S 1) for some 0 < α < 1, {wK

s : K×S 1 → M}s∈[s0,∞) is sequentially
pre-compact. Therefore, for any sequence sk → ∞, there exists a subsequence, still denoted
by sk, and some limit wK∞ ∈ C1(K × S 1,M) (which may depend on the subsequence {sk}),
such that

wK
sk
→ wK

∞, as k → ∞,
in the C1(K × S 1,M)-norm sense. Further, combining this with (2), we get

dwK
sk
→ dwK

∞ and dwK
∞ = (wK

∞)∗λ ⊗ Xλ,

and both (wK∞)∗λ are (wK∞)∗λ ◦ j are harmonic 1-forms by (1).
Notice that these limiting maps wK∞ have a common extension w∞ : R × S 1 → M by a

diagonal sequence argument where, one takes a sequence of compact sets K one including
another and exhausting R. Then w∞ is C1, satisfies

‖dw∞‖C0(R×S 1) ≤ ‖dw‖C0([0,∞)×S 1) < ∞
and dπw∞ = 0 and hence

dw∞ = (w∞)∗λ ⊗ Xλ.

Then we derive from Theorem 1.7 that w∞ is actually in C∞. Also notice that both (w∞)∗λ
and (w∞)∗λ ◦ j are bounded harmonic 1-forms on R × S 1, and hence they must be written in
the form

(w∞)∗λ = a dτ + b dt, (w∞)∗λ ◦ j = b dτ − a dt,

where a, b are some constants. We will show that such a and b are actually related to T and
Q as

a = −Q, b = T.

By taking an arbitrary point r ∈ K, since w∞|{r}×S 1 is the limit of some sequence wsk |{r}×S 1

in the C1 sense, we derive

b =

∫
{r}×S 1

(w∞|{r}×S 1 )∗λ =
∫
{r}×S 1

lim
k→∞

(wsk |{r}×S 1 )∗λ

= lim
k→∞

∫
{r}×S 1

(wsk |{r}×S 1 )∗λ = lim
k→∞

∫
{r+sk}×S 1

(w|{r+sk}×S 1 )∗λ

= lim
k→∞

(T − 1
2

∫
[r+sk ,∞)×S 1

|dπw|2)

= T − lim
k→∞

1
2

∫
[r+sk ,∞)×S 1

|dπw|2 = T ;
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−a =

∫
{r}×S 1

(w∞|{r}×S 1 )∗λ ◦ j =
∫
{r}×S 1

lim
k→∞

(wsk |{r}×S 1 )∗λ ◦ j

= lim
k→∞

∫
{r}×S 1

(wsk |{r}×S 1 )∗λ ◦ j

= lim
k→∞

∫
{r+sk}×S 1

(w|{r+sk}×S 1 )∗λ ◦ j = Q.

Here in the derivation, we use Remark 6.3.
As we have already seen in the proof of Proposition 3.4, the image of w∞ is contained in

a single leaf of the Reeb foliation by the connectedness of [0,∞) × S 1. Let γ : R→ M be a
parametrisation of the leaf so that γ̇ = Xλ(γ). Then we can write w∞(τ, t) = γ(s(τ, t)), where
s : R× S 1 → R and s = −Q τ+T t+ c0 since ds = −Q dτ+T dt, where c0 is some constant.

From this we derive that, if T � 0, γ is a closed orbit of period T . If T = 0 but Q � 0, we
can only conclude that γ is a Reeb trajectory parameterized by τ ∈ R. Of course, if both T
and Q vanish, w∞ is a constant map.

In summary, we have given the proof of the following subsequential convergence theo-
rem. This includes the special case of [9, Theorem 31] given in the framework of symplec-
tization which corresponds to the case Q = 0, T � 0 and K = {0} here. Besides looking at
two constants T and Q, this also strengthens the convergence statement of [9, Theorem 31]
in that the s-coordinates do not enter into the convergence statement or its proof. Moreover,
uniform convergence on any compact subset K × S 1 ⊂ [0,∞) × S 1 (which enhances the
result for K = {0} shown in [9]) is an important ingredient which enables us to follow the
three-interval method in deriving the exponential decay result for the case of Morse–Bott
type contact forms in [15] (see also Part II of [14]).

Theorem 6.4 (Subsequence Convergence). Let w : [0,∞) × S 1 → M satisfy the contact
instanton equations (3.2) and Hypothesis (6.2).

Then for any sequence sk → ∞, there exists a subsequence, still denoted by sk, and a
massless instanton w∞(τ, t) (i.e., Eπ(w∞) = 0) on the cylinder R × S 1 such that

lim
k→∞
w(sk + τ, t) = w∞(τ, t)

in the Cl(K × S 1,M) sense for any l, where K ⊂ [0,∞) is an arbitrary compact set.
Furthermore, w∞ has the formula w∞(τ, t) = γ(−Q τ + T t), where γ is some Reeb trajec-

tory, and for the case of Q = 0 or T � 0, the trajectory γ is a closed Reeb orbit of Xλ with
period T .

From the previous theorem, we immediately get the following corollary.

Corollary 6.5. Let w : [0,∞)×S 1 → M satisfy the contact instanton equations (3.2) and
Hypothesis (6.2). Then

lim
s→∞

∣∣∣∣∣π∂w∂τ (s + τ, t)
∣∣∣∣∣ = 0, lim

s→∞

∣∣∣∣∣π∂w∂t (s + τ, t)
∣∣∣∣∣ = 0

lim
s→∞ λ

(
∂w

∂τ

)
(s + τ, t) = −Q, lim

s→∞ λ
(
∂w

∂t

)
(s + τ, t) = T

and
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lim
s→∞ |∇

ldw(s + τ, t)| = 0 for any l ≥ 1.

All the limits are uniform for (τ, t) in K × S 1 with compact K ⊂ R.

Proof. We first consider the first derivative estimate, i.e., the C1-decay estimate. If any of
the above limits doesn’t hold uniformly (take |π∂w

∂τ
(s + τ, t)| for example), then there exists

some ε0 > 0 and a sequence k → ∞, (τ j, t j) ∈ K × S 1 such that |π∂w
∂τ

(sk + τ j, t j)| ≥ ε0. Then
we can take a subsequence limit (τ j, t j) → (τ0, t0) such that |π∂w

∂τ
(sk + τ0, t0)| ≥ 1

2ε0 for k
large enough.

However, by Theorem 6.4, we can take a subsequence of sk such that w(sk+τ, t) converges
to γ(−Q τ + T t) in a neighborhood of (τ0, t0) ∈ K × S 1, in the C∞ sense. Here γ is some
Reeb trajectory. Then we get lims→∞ |π∂w∂τ (sk + τ0, t0)| = 0 and get a contradiction.

Once we establish this uniform C1-decay result, the higher order decay result is an im-
mediate consequence of the uniform local pointwise higher order a priori estimates on the
cylinder from Theorem 5.4. �

Appendix A. The Weitzenböck formula for vector valued forms

Appendix A. The Weitzenböck formula for vector valued forms
In this appendix, we recall the standard Weitzenböck formulas applied to our current

circumstance. A good exposition on the general Weitzenböck formula is provided in the
appendix of [8].

Assume (P, h) is a Riemannian manifold of dimension n with metric h, and D is the Levi-
Civita connection. Let E → P be any vector bundle with inner product 〈·, ·〉, and assume ∇
is a connection on E which is compatible with 〈·, ·〉.

For any E-valued form s, calculating the (Hodge) Laplacian of the energy density of s,
we get

−1
2
Δ|s|2 = |∇s|2 + 〈Tr∇2s, s〉,

where for |∇s|we mean the induced norm in the vector bundle T ∗P⊗E, i.e., |∇s|2 = ∑
i |∇Ei s|2

with {Ei} an orthonormal frame of T P. Tr∇2 denotes the connection Laplacian, which is
defined as Tr∇2 =

∑
i ∇2

Ei,Ei
s, where ∇2

X,Y := ∇X∇Y − ∇∇XY .
Denote by Ωk(E) the space of E-valued k-forms on P. The connection ∇ induces an

exterior derivative by

d∇ : Ωk(E)→ Ωk+1(E)

d∇(α ⊗ ζ) = dα ⊗ ζ + (−1)kα ∧ ∇ζ.
It is not hard to check that for any 1-forms, equivalently one can write

d∇β(v1, v2) = (∇v1β)(v2) − (∇v2β)(v1),

where v1, v2 ∈ T P.
We extend the Hodge star operator to E-valued forms by

∗ : Ωk(E)→ Ωn−k(E)

∗β = ∗(α ⊗ ζ) = (∗α) ⊗ ζ
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for β = α ⊗ ζ ∈ Ωk(E).
Define the Hodge Laplacian of the connection ∇ by

Δ∇ := d∇δ∇ + δ∇d∇,

where δ∇ is defined by

δ∇ := (−1)nk+n+1 ∗ d∇ ∗ .
The following lemma is important for the derivation of the Weitzenböck formula.

Lemma A.1. Assume {ei} is an orthonormal frame of P, and {αi} is the dual frame. Then
we have

d∇ =
∑

i

αi ∧ ∇ei

δ∇ = −
∑

i

ei�∇ei .

Proof. Assume β = α ⊗ ζ ∈ Ωk(E). Then

d∇(α ⊗ ζ) = (dα) ⊗ ζ + (−1)kα ∧ ∇ζ
=

∑
i

αi ∧ ∇eiα ⊗ ζ + (−1)kα ∧ ∇ζ.

On the other hand,∑
i

αi ∧ ∇ei(α ⊗ ζ) =
∑

i

αi ∧ ∇eiα ⊗ ζ + αi ∧ α ⊗ ∇eiζ

=
∑

i

αi ∧ ∇eiα ⊗ ζ + (−1)kα ∧ ∇ζ,

so we have proved the first statement.
For the second equality, we compute

δ∇(α ⊗ ζ) = (−1)nk+n+1 ∗ d∇ ∗ (α ⊗ ζ)
= (δα) ⊗ ζ + (−1)nk+n+1 ∗ (−1)n−k(∗α) ∧ ∇ζ
= −

∑
i

ei�∇eiα ⊗ ζ +
∑

i

(−1)nk−k+1 ∗ ((∗α) ∧ αi) ⊗ ∇eiζ

= −
∑

i

ei�∇eiα ⊗ ζ −
∑

i

ei�α ⊗ ∇eiζ

= −
∑

i

ei�∇ei(α ⊗ ζ).

�

Theorem A.2 (Weitzenböck Formula). Assume {ei} is an orthonormal frame of P, and
{αi} is the dual frame. Then when applied to E-valued forms

Δ∇ = −Tr∇2 +
∑
i, j

α j ∧ (ei�R(ei, e j)·)

where R is the curvature tensor of the bundle E with respect to the connection ∇.
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Proof. Since the right hand side of the equality is independent of the choice of orthonor-
mal basis, and it is a pointwise formula, we can take the normal coordinates {ei} at a point
p ∈ P (and {αi} the dual basis), i.e., hi j := h(ei, e j)(p) = δi j and dhi, j(p) = 0, and prove that
the given formula holds at p for such coordinates. For the Levi-Civita connection, the con-
dition dhi, j(p) = 0 of the normal coordinate is equivalent to letting Γk

i, j(p) := αk(Deie j)(p)
be 0.

For β ∈ Ωk(E), using Lemma A.1 we calculate

δ∇d∇β = −
∑
i, j

ei�∇ei(α
j ∧ ∇e jβ)

= −
∑
i, j

ei�(Deiα
j ∧ ∇e jβ + α

j ∧ ∇ei∇e jβ).

At the point p, the first term vanishes, and we get

δ∇d∇β(p) = −
∑
i, j

ei�(α j ∧ ∇ei∇e jβ)(p)

= −
∑

i

∇ei∇eiβ(p) +
∑
i, j

α j ∧ (ei�∇ei∇e jβ)(p)

= −
∑

i

∇2
ei,ei
β(p) +

∑
i, j

α j ∧ (ei�∇ei∇e jβ)(p).

Also,

d∇δ∇β = −
∑
i, j

αi ∧ ∇ei(e j�∇e jβ)

= −
∑
i, j

αi ∧ (e j�∇ei∇e jβ) −
∑
i, j

αi ∧ ((Deie j)�∇e jβ).

As before, at the point p, the second term vanishes.
Now we sum the two parts d∇δ∇ and δ∇d∇ and get

Δ∇β(p) = −
∑

i

∇2
ei,ei
β(p) +

∑
i, j

α j ∧ (ei�R(ei, e j)β)(p).

�

In particular, when acting on zero forms, i.e., sections of E, the second term on the right
hand side vanishes, and there is

Δ∇ = −Tr∇2.

When acting on full rank forms, the above also holds by easy checking.
When β ∈ Ω1(E), which is the case we use in this article, there is the following

Corollary A.3. For β = α ⊗ ζ ∈ Ω1(E), the Weizenböck formula can be written as

Δ∇β = −
∑

i

∇2
ei,ei
β + RicD∗(α) ⊗ ζ + Ric∇β,

where RicD∗ denotes the adjoint of RicD, which acts on 1-forms.
In particular, when P is a surface, we have
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Δ∇β = −
∑

i

∇2
ei,ei
β + K · β + Ric∇(β)

−1
2
Δ|β|2 = |∇β|2 − 〈Δ∇β, β〉 + K · |β|2 + 〈Ric∇(β), β〉,(A.1)

where K is the Gaussian curvature of the surface P, and Ric∇(β) := α ⊗ Σi, jR(ei, e j)ζ.

Appendix B. Wedge products of vector-valued forms

Appendix B. Wedge products of vector-valued forms
In this section, we continue with the setting from Appendix A. To be specific, we assume

(P, h) is a Riemannian manifold of dimension n with metric h, and denote by D the Levi-
Civita connection. E → P is a vector bundle with inner product 〈·, ·〉 and ∇ is a connection
of E which is compatible with 〈·, ·〉.

We remark that we include this section for the sake of completeness of our treatment of
vector valued forms, and the content of this appendix is not used in any section of this article.
Actually one can derive exponential decay using the differential inequality method from the
formulas we provide here. We leave the proof to interested reader.

The wedge product of forms can be extended to E-valued forms by defining

∧ : Ωk1 (E) ×Ωk2 (E)→ Ωk1+k2 (P)

β1 ∧ β2 = 〈ζ1, ζ2〉α1 ∧ α2,

where β1 = α1 ⊗ ζ1 ∈ Ωk1 (E) and β2 = α2 ⊗ ζ2 ∈ Ωk2 (E) are E-valued forms.

Lemma B.1. For β1, β2 ∈ Ωk(E),

〈β1, β2〉 = ∗(β1 ∧ ∗β2).

Proof. Write β1 = α1 ⊗ ζ1 and β2 = α2 ⊗ ζ2. Then

∗(β1 ∧ ∗β2) = ∗((α1 ⊗ ζ1) ∧ ((∗α2) ⊗ ζ2)
)

= ∗(〈ζ1, ζ2〉α1 ∧ ∗α2)

= 〈ζ1, ζ2〉 ∗ (α1 ∧ ∗α2)

= 〈ζ1, ζ2〉 h(α1, α2)

= 〈β1, β2〉.
�

The following lemmas exploit the compatibility of ∇ with the inner product 〈·, ·〉.
Lemma B.2.

d(β1 ∧ β2) = d∇β1 ∧ β2 + (−1)k1β1 ∧ d∇β2,

where β1 ∈ Ωk1 (E) and β2 ∈ Ωk2 (E) are E-valued forms.

Proof. We write β1 = α1 ⊗ ζ1 and β2 = α2 ⊗ ζ2 and calculate
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d(β1 ∧ β2) = d(〈ζ1, ζ2〉α1 ∧ α2)

= d〈ζ1, ζ2〉 ∧ α1 ∧ α2 + 〈ζ1, ζ2〉 d(α1 ∧ α2)

= 〈∇ζ1, ζ2〉 ∧ α1 ∧ α2 + 〈ζ1,∇ζ2〉 ∧ α1 ∧ α2

+〈ζ1, ζ2〉 dα1 ∧ α2 + (−1)k1〈ζ1, ζ2〉α1 ∧ dα2,

while

d∇β1 ∧ β2 = d∇(α1 ⊗ ζ1) ∧ (α2 ⊗ ζ2)

= (dα1 ⊗ ζ1 + (−1)k1α1 ∧ ∇ζ1) ∧ (α2 ⊗ ζ2)

= 〈ζ1, ζ2〉 dα1 ∧ α2 + 〈∇ζ1, ζ2〉 ∧ α1 ∧ α2.

A similar calculation shows that

(−1)k1β1 ∧ d∇β2 = (−1)k1〈ζ1, ζ2〉α1 ∧ dα2 + 〈ζ1,∇ζ2〉 ∧ α1 ∧ α2.

Summing these up, we get the equality we want. �

Lemma B.3. Assume β0 ∈ Ωk(E) and β1 ∈ Ωk+1(E), then we have

〈d∇β0, β1〉 − (−1)n(k+1)〈β0, δ
∇β1〉 = ∗d(β0 ∧ ∗β1).

Proof. We calculate

∗d(β0 ∧ ∗β1) = ∗(d∇β0 ∧ ∗β1 + (−1)kβ0 ∧ (d∇ ∗ β1)
)

= 〈d∇β0, β1〉 + (−1)n ∗ (β0 ∧ ∗(∗d∇ ∗ β1
)

= 〈d∇β0, β1〉 − (−1)n(k+1)〈β0, δ
∇β1〉.

�

Appendix C. Local coercive estimates

Appendix C. Local coercive estimates
In this appendix, we give the proof of Proposition 5.3 which we restate here.

Proposition C.1. For any open domains D1 and D2 in Σ̇ satisfying D1 ⊂ D2,

‖∇(dw)‖2L2(D1) ≤ C1(D1,D2)‖dw‖2L2(D2) +C2(D1,D2)‖dw‖4L4(D2)

for any contact instanton w, where C1(D1,D2) and C2(D1,D2) are some constants, which
are independent of w.

Proof. For the pair of given domains D1 and D2, we choose another domain D such that
D1 ⊂ D ⊂ D ⊂ D2 and a smooth cut-off function χ : D2 → R such that χ ≥ 0 and χ ≡ 1 on
D1, χ ≡ 0 on D2 − D. Multiplying (5.13) by χ2 and integrating over D, we get∫

D1

|∇(dw)|2 ≤
∫

D
χ2|∇(dw)|2

≤ C1

∫
D
χ2|dw|4 − 4

∫
D

Kχ2|dw|2 − 2
∫

D
χ2Δe

≤ C1

∫
D2

|dw|4 + 4‖K‖L∞(Σ̇)

∫
D2

|dw|2 − 2
∫

D
χ2Δe
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where C1 is the same constant as the one appearing in (5.13).
We now deal with the last term

∫
D2
χ2Δe. Since

χ2Δe dA = ∗(χ2Δe) = χ2 ∗ Δe = −χ2d ∗ de

= −d(χ2 ∗ de) + 2χdχ ∧ (∗de),

we get ∫
D
χ2Δe dA =

∫
D

2χdχ ∧ (∗de)

by integrating the identity over D and applying Stokes’ formula. Here we use the fact that χ
vanishes on D2 − D, in particular on ∂D.

To deal with the right hand side, we have∣∣∣∣∣
∫

D
χdχ ∧ (∗de)

∣∣∣∣∣ =
∣∣∣∣∣
∫

D
χ〈dχ, de〉 dA

∣∣∣∣∣ ≤
∫

D
|χ||〈dχ, de〉 dA| ≤

∫
D
|χ||dχ||de| dA.

Notice also

|de| = |d〈dw, dw〉| = 2|〈∇(dw), dw〉| ≤ 2|∇(dw)||dw|.
Hence ∣∣∣∣∣

∫
D
χdχ ∧ (∗de)

∣∣∣∣∣ ≤
∫

D
2|χ||dχ||∇(dw)||dw| dA

≤ 1
ε

∫
D
χ2|∇(dw)|2 dA + ε

∫
D
|dχ|2|dw|2 dA

≤ 1
ε

∫
D
χ2|∇(dw)|2 dA + ε‖dχ‖2C0(D)

∫
D
|dw|2 dA

Then we can sum all the estimates above and get∫
D
χ2|∇(dw)|2 ≤

∫
D

2χ2

ε
|∇(dw)|2

+
(
4‖K‖L∞(Σ̇) + 2‖dχ‖C0(D)ε

) ∫
D2

|dw|2

+C1

∫
D2

|dw|4.

We take ε = 4. Then ∫
D1

|∇(dw)|2 ≤
∫

D
χ2|∇(dw)|2

≤
(
8‖K‖L∞(Σ̇) + 16‖dχ‖2C0(D)

) ∫
D2

|dw|2 + 2C1

∫
D2

|dw|4.

By setting C1(D1,D2) = 8‖K‖L∞(Σ̇)+16‖dχ‖2C0(D) and C2(D1,D2) = 2C1 with C1 the constant
given in (5.13), we have finished the proof. �
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