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We study the effects of the Gauss-Bonnet term on the energy spectrum of inflationary gravitational
waves. The models of inflation are classified into two types based on their predictions for the tensor power
spectrum: red-tilted (nT < 0) and blue-tilted spectra (nT > 0), respectively, and then the energy spectra of
the gravitational waves are calculated for each type of model. We find that the gravitational wave spectra
are enhanced depending on the model parameter if the predicted inflationary tensor spectra have a blue tilt,
whereas they are suppressed for the spectra that have a red tilt. Moreover, we perform the analyses on the
reheating parameters involving the temperature, the equation-of-state parameter, and the number of e-folds
using the gravitational wave spectrum. Our results imply that the Gauss-Bonnet term plays an important
role not only during inflation but also during reheating whether the process is instantaneous or lasts for a
certain number of e-folds until it thermalizes and eventually completes.
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I. INTRODUCTION

Cosmic inflation [1–3] is widely believed to be a
successful paradigm for the early Universe that solves major
problems in standard big bang cosmology. It also predicts
the scale-invariant spectrumof the anisotropies of the cosmic
microwave background (CMB) and provides the seeds to
the large-scale structure of the Universe [4–8]. Moreover,
inflation predicts the generation of the primordial gravita-
tionalwave (PGW), the ripples in the curvature of spacetime.
The existence of the PGW background can be confirmed
indirectly by the detection of the B-mode CMBpolarization,
which is induced by the tensor fluctuationmodes [9–12], and
directly by the ongoing and future mission concepts of the
ground- and space-based laser interferometric detectors and
the pulsar timing experiments [13–15].
The temperature of the Universe during the period of

inflation became almost zero; hence, it is necessary to
reheat the Universe after inflation came to the end. In order
to reheat the Universe, the inflaton field is considered to be
oscillating around the minimum of its potential, and it
transfers its energy to a plasma of the standard model
particles. This period, a transition era between the end of
inflation and the beginning of the radiation-dominated era,
is known as the reheating epoch. Because no direct

cosmological observations are traceable from this period
of reheating, the physics of reheating is highly uncertain
and unconstrained. Thus, this era depends heavily on
models of inflation.
The Universe is transparent to the gravitational waves up

to the Planck era. The detection of the PGW background by
a future observation would open up a new window in
exploring the early Universe, particularly the reheating era.
It was also claimed that the temperature of reheating and
the equation-of-state parameter during reheating can be
probed by looking at the spectrum of the GW background
[16–27]. Therefore, in this work, we consider inflationary
models with a Gauss-Bonnet (GB) term to estimate the
energy spectrum of the PGW and to provide constraints on
the reheating parameters. Inflationary models with a GB
term are not uncommon, and it is well studied in the context
of inflation, dark energy, and the PGW [28–36], as well as
for reheating [37–39].
Following the approach proposed in Refs. [40–43], we

perform the analyses on the reheating parameters including
the equation of state, the duration, and the temperature of
reheating. Since the reheating parameters are often linked
to the observable quantities of inflation such as the scalar
and tensor spectral indices, their running spectral indices,
the tensor-to-scalar ratio, and the number of e-folds during
inflation, one can provide constraints on the model param-
eters in light of current and future observations [4–8,44,45].
The paper is organized as follows. In Sec. II, we review

the basics of inflationary models with a GB term and the
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observable quantities. We classify inflationary models with
a GB term into two types in Sec. III, models that predict the
inflationary tensor power spectrum with a red tilt and those
with a blue tilt, respectively. With these models, we
calculate the energy spectrum of the PGW in Sec. IV.
Motivated by the fact that the reheating temperature can be
determined by the detection of the PGW background, we
further perform the analyses on the reheating parameters
and provide constraints on those parameters in Sec. V.
Finally, the summary and the conclusion of the present
work are provided in Sec. VI.

II. REVIEW: GAUSS-BONNET INFLATION

We consider the following action that involves the
Einstein-Hilbert term and the GB term coupled to a
canonical scalar field ϕ through the coupling function
ξðϕÞ [29,31,33–35]:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R−

1

2
gμν∂μϕ∂νϕ−VðϕÞ−1

2
ξðϕÞR2

GB

�
;

ð1Þ

where R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is known as the

GB term and κ2 ¼ 8πG ¼ M−2
pl is the reduced Planck mass.

In the flat Friedmann-Robertson-Walker (FRW) universe
with the scale factor a,

ds2 ¼ −dt2 þ a2ðdr2 þ r2dΩ2Þ; ð2Þ

the background dynamics of this system yields the Einstein
and the field equations,

H2 ¼ κ2

3

�
1

2
_ϕ2 þ V þ 12 _ξH3

�
; ð3Þ

_H ¼ −
κ2

2
½ _ϕ2 − 4ξ̈H2 − 4 _ξHð2 _H −H2Þ�; ð4Þ

ϕ̈þ 3H _ϕþ Vϕ þ 12ξϕH2ð _H þH2Þ ¼ 0; ð5Þ

where the dot represents the derivative with respect to the
cosmic time t, H ≡ _a=a denotes the Hubble parameter,
Vϕ ¼ ∂V=∂ϕ, ξϕ ¼ ∂ξ=∂ϕ, and _ξ implies _ξ ¼ ξϕ _ϕ. The
coupling function ξðϕÞ is necessary to be a function of the
scalar field; otherwise, the background dynamics will not
be affected by the GB term.
In the context of slow-roll inflation, in which the friction

term in Eq. (5) is dominating and ϕ is considered to be
slowly rolling down to the minimum of its potential, we
define the slow-roll parameters

ϵ≡ −
_H

H2
; η≡ Ḧ

H _H
; ζ ≡ ⃛H

H2 _H
;

δ1 ≡ 4κ2 _ξH; δ2 ≡ ξ̈
_ξH

; δ3 ¼
⃛ξ

_ξH2
: ð6Þ

These parameters can be also expressed in terms of the
potential and the coupling functions as

ϵ ¼ 1

2κ2
Vϕ

V
Q; ð7Þ

η ¼ −
Q
κ2

�
Vϕϕ

Vϕ
þQϕ

Q

�
; ð8Þ

ζ¼Q2

κ4

��
Vϕϕϕ

Vϕ
þVϕϕ

2V

�
þ
�
3Vϕϕ

Vϕ
þVϕ

2V

�
Qϕ

Q
þQ2

ϕ

Q2
þQϕϕ

Q

�
;

ð9Þ

δ1 ¼ −
4κ2

3
ξϕVQ; ð10Þ

δ2 ¼ −
Q
κ2

�
ξϕϕ
ξϕ

þ 1

2

Vϕ

V
þQϕ

Q

�
; ð11Þ

δ3 ¼
Q2

κ4

��
ξϕϕϕ
ξϕ

þ 3ξϕϕVϕ

2ξϕV
þ Vϕϕ

2V

�
þ
�
3ξϕϕ
ξϕ

þ 2Vϕ

V

�
Qϕ

Q

þQ2
ϕ

Q2
þQϕϕ

Q

�
; ð12Þ

where

Q≡ Vϕ

V
þ 4

3
κ4ξϕV: ð13Þ

The amount of the inflationary expansion is encoded in the
number of e-folds, N:

N ¼
Z

tend

t�
Hdt ≃

Z
ϕ�

ϕend

κ2

Q
dϕ; ð14Þ

where the subscript “�” indicates the moment when a mode
k crosses the horizon during inflation. The primordial
power spectra of the scalar and the tensor perturbations
at the time of horizon crossing are calculated in Ref. [33] as

PS ≃
csc2νSπ

πz2SΓ2ð1 − νSÞ
a2

c3Sjτj2
�
cSkjτj
2

�
3−2νS

; ð15Þ

PT ≃ 8
csc2νTπ

πz2TΓ2ð1 − νTÞ
a2

c3T jτj2
�
cTkjτj
2

�
3−2νT

; ð16Þ
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respectively, where τ is a conformal time, which is related
to the cosmic time via τ ¼ R

a−1dt. The quantities νA, cA,
and zA with A ¼ fS; Tg are given by

νS ≃
3

2
þ ϵþ 2ϵð2ϵþ ηÞ − δ1ðδ2 − ϵÞ

4ϵ − 2δ1
; νT ≃

3

2
þ ϵ;

ð17Þ

c2S ¼ 1 −
ð4ϵþ δ1ð1 − 4ϵ − δ2ÞÞΔ2

4ϵ − 2δ1 − 2δ1ð2ϵ − δ2Þ þ 3δ1Δ
;

c2T ¼ 1þ δ1ð1 − δ2Þ
1 − δ1

; ð18Þ

zS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

κ2
2ϵ − δ1ð1þ 2ϵ − δ2Þ þ 3

2
δ1Δ

ð1 − 1
2
ΔÞ2

s
;

zT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

κ2
ð1 − δ1Þ

s
; ð19Þ

where Δ ¼ δ1=ð1 − δ1Þ. The observable quantities such as
the spectral indices of the scalar and the tensor perturba-
tions, their running spectral indices, and the tensor-to-scalar
ratio are derived, respectively, as follows:

nS − 1 ≃ −2ϵ −
2ϵð2ϵþ ηÞ − δ1ðδ2 − ϵÞ

2ϵ − δ1
; nT ≃ −2ϵ;

αS ¼ −2ϵð2ϵþ ηÞ þ
�
2ϵð2ϵþ ηÞ − δ1ðδ2 − ϵÞ

2ϵ − δ1

�
2

−
2ϵð8ϵ2 þ 7ϵηþ ζÞ þ δ1ðϵ2 þ ϵηþ ϵδ2 − δ3Þ

2ϵ − δ1
;

αT ¼ −2ϵð2ϵþ ηÞ; r ≃ 8ð2ϵ − δ1Þ; ð20Þ

where nS − 1 ¼ d lnPS=d ln k, nT ¼ d lnPT=d ln k, αS ¼
dnS=d ln k, αT ¼ dnT=d ln k, and r ¼ PT=PS. If the
potentials VðϕÞ and the coupling function ξðϕÞ are given,
it is straightforward to calculate Eq. (20) by using
Eqs. (7)–(12). Thus, the theoretical predictions of any
particular model of inflation obtained through Eq. (20) can
be tested by the observational data [7,8].

III. GAUSS-BONNET INFLATION MODELS

The standard single-field models of slow-roll inflation
with a canonical kinetic term, as discussed in Refs. [7,8],
predict a slightly red-tilted primordial tensor power spec-
trum, i.e., nT < 0 with jnT j ≪ 1. However, the spectrum of
the inflationary tensor perturbations could have a blue tilt
nT > 0 [8,46,47]. Therefore, any evidence of the blue-tilted
tensor mode spectrum would support nonstandard models
of inflation. In this section, we consider two types of

inflation model with a GB term based on their predictions
for the nT , a positive and a negative.1 The models that
predict the inflationary tensor power spectrum with a red
tilt (nT < 0) are classified as model I, whereas those that
predict the blue-tilted inflationary tensor power spectrum
are grouped as model II. In order for the tensor mode
spectrum to have a red tilt (blue tilt), the slow-roll
parameter ϵ in Eq. (20) has to be negative (positive). ϵ
could be positive if the potentials and the coupling
functions must satisfy the following conditions from
Eq. (7):

ξϕ > −
3

4κ4
Vϕ

V2
for Vϕ > 0;

ξϕ < −
3

4κ4
Vϕ

V2
for Vϕ < 0:

Among several successful inflationary models that satisfy
these conditions [31,33,34], we consider the power law
potential with an inverse monomial coupling and identify
this model as model I. The inflaton potential and the
coupling function for model I are given by

VðϕÞ ¼ V0

κ4
ðκϕÞn; ξðϕÞ ¼ ξ0ðκϕÞ−n; ð21Þ

respectively, where V0 is a dimensionless constant and
n > 0 is assumed. From Eqs. (14) and (20), the observable
quantities are obtained in terms of N� as

nS−1¼−
2ðnþ2Þ
4N� þn

; nT ¼−
2n

4N� þn
; r¼ 16nð1−αÞ

4N� þn
;

αS ¼−
8ðnþ2Þ

ð4N� þnÞ2 ; αT ¼−
8n

ð4N� þnÞ2 ; ð22Þ

where α≡ 4V0ξ0=3. One can see from the above equations
that the tensor spectral index for model I is always negative
as long as n > 0; hence, the inflationary tensor power
spectrum has a red tilt, nT < 0. The tensor-to-scalar ratio r
is suppressed for a positive α, while it is enhanced for a
negative α.
In order for ϵ to be negative, the potential and the

coupling functions satisfy the following conditions from
Eq. (7):

ξϕ < −
3

4κ4
Vϕ

V2
for Vϕ > 0;

ξϕ > −
3

4κ4
Vϕ

V2
for Vϕ < 0:

1We exclude the scale-invariant case where nT ¼ 0 in the
present work.
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This kind of model is identified as model II. We take the
following potential and the coupling function for this type,
which was first introduced in Ref. [35], as2

VðϕÞ ¼ 1

κ4
½tanh ðκϕÞ þ ffiffiffi

μ
p

sechðκϕÞ�2;

ξðϕÞ ¼
3½sinh2ðκϕÞ − 1ffiffi

μ
p sinhðκϕÞ�

4½ ffiffiffi
μ

p þ sinh ðκϕÞ�2 ; ð23Þ

where μ > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtained as

nS−1¼−
2

N�þμ
; nT ¼

2μðN�−1Þ
ðN�þμÞðN2�þμÞ ; r¼ 8

N2�þμ
;

αS¼−
2

ðN�þμÞ2 ; αT ¼−
2

ðN�þμÞ2þ
2ðN2�−μÞ
ðN2�þμÞ2 :

ð24Þ

Since nS is well constrained by the current observation, the
range of the model parameter μ can be determined from
Eq. (24) to be μ ¼ 2=ð1 − nSÞ − N� ∼Oð10Þ, where
40 ≤ N� ≤ 70 is assumed. nT is positive as long as
N� > 1, which is a necessary condition for inflation to
successfully solve the horizon and the flatness problems of
standard big bang cosmology. Thus, the inflationary tensor
power spectrum of model II always has a blue tilt, nT > 0.
We plot the theoretical predictions of model I for n ¼ 1

(dotted line), 2 (dashed line), and 4 (dot-dashed line) and
model II (solid line) when N� ¼ 60 against the observa-
tional data [8] in the nS − r plane in Fig. 1. Red dots
indicate the predictions for α ¼ 0, which corresponds to the
standard single-field slow-roll inflation model. One can
find from Eq. (22) that ns is independent of α but r is
decreasing as α (>0) is increasing and r ¼ 0 if α ¼ 1.
Therefore, the vertical dotted, dashed, and dot-dashed lines
in Fig. 1 represent the effect of α on r for n ¼ 1, 2, and 4,
respectively. In this work, we limit our interests to only
0 ≤ α ≤ 1. The predictions of model II are plotted as a solid
line with 0 < μ ≤ 50, where the big blue dot corresponds to
μ ¼ 0. By using the marginalized mean value for nS ¼
0.9655� 0.0062 from the observation [8], we get the upper
limit of the tensor-to-scalar ratio for model II to be r ≃
0.0032 for N� ¼ 50 and r ≃ 0.0022 for N� ¼ 60 which are
nearly insensitive on μ. Further details of the each inflation
model can be found in the corresponding Refs. [31,33–35].

IV. PRIMORDIAL GRAVITATIONAL WAVES
INDUCED BY THE BLUE-TILTED AND

RED-TILTED TENSOR SPECTRA

We discussed two types of GB inflation model in the
previous section. In this section, we calculate the energy
spectrum of the PGW background for selected models:
model I and model II. We start the present section by
reviewing a formalism to calculate the energy spectrum of
the PGW background. The PGWs are described by a tensor
part of the metric fluctuations in the linearized flat FRW
metric of the form

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ð25Þ

where hij is symmetric under the exchange of indices
and satisfies the transverse-traceless condition ∂ihij ¼ 0,
δijhij ¼ 0. The tensor perturbation can be expanded in
Fourier space as

hijðτ;xÞ ¼
X
λ

Z
dk

ð2πÞ3=2 ϵ
λ
ijhλ;kðτÞeikx; ð26Þ

where λ denotes each polarization state of the tensor
perturbations and ϵλij is the symmetric polarization tensor,
which satisfies the transverse-traceless condition and is
normalized by the relation

P
i;jϵ

λ
ijðϵλ0ijÞ� ¼ 2δλλ

0
. The GW

energy density ρGW is defined by ρGW ¼ −T0
0 and can be

written as

Planck2015 TT+lowP

n=1

n=2

n=4

0.945 0.955 0.965 0.975 0.985

10–4

10–3

10–2

10–1

ns

r 0
.0

02

FIG. 1. The marginalized 68% and 95% confidence level
contours for nS and r0.002 from Planck2015 TTþ lowP [8]
and the theoretical predictions of models in Eqs. (21) and
(23). The red dots indicate model I with fixed α ¼ 0 but varying
n. The parameter α then grows from zero to unity along each
n ¼ 1 (dotted), n ¼ 2 (dashed), and n ¼ 4 (dot-dashed) line. For
model II, the black solid line, the values of μ also increase from
the larger blue end point to a smaller one, where 10−4 < μ ≤ 50.
The e-folding number is set to N� ¼ 60 along each line.

2The shape of the potential in Eq. (23) is similar to that of the
“T model” in Ref. [48] in the μ → 0 limit. For μ ≠ 0, there
appears a small bump on the side of the potential, which differs
the model from the T model.
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ρGW ¼ M2
p

4

Z
d ln k

�
k
a

�
2 k3

π2
X
λ

hh†λ;khλ;ki; ð27Þ

where the bracket h� � �i indicates the spatial average. The
strength of GW is characterized by their energy spectrum,
which is written by

ΩGWðkÞ ¼
1

ρcrit

dρGW
d ln k

; ð28Þ

where ρcrit ¼ 3H2
0M

2
p is the critical density and H0 is the

present Hubble constant, which is measured by the obser-
vation asH0 ¼ 100h0 km s−1Mpc−1 with h0 ¼ 0.6731 [8].
By using Eqs. (27) and (28), we rewrite

ΩGWðkÞ ¼
k2

12H2
0

PTðkÞ; ð29Þ

where PT is the power spectrum of the PGW observed
today and is related to that of the inflationary one PTðkÞ
through the transfer function T ðkÞ as follows:

PT ≡ k3

π2
X
λ

hh†λ;khλ;ki ¼ T 2ðkÞPTðkÞ: ð30Þ

The inflationary power spectrum for the tensor perturba-
tions can be parameterized as follows:

PTðkÞ ¼ PTðk�Þ
�
k
k�

�
nTþαT

2
lnðk=k�Þ

; ð31Þ

where k� is the reference pivot scale. The amplitude
PTðk�Þ is often characterized by the tensor-to-scalar
ratio r as PTðk�Þ ¼ rPSðk�Þ, where PSðk�Þ is well mea-
sured by the observation as lnð1010PSÞ¼3.089þ0.024

−0.027 at
k�¼0.05Mpc−1 [8].
The transfer function reflects the evolution of GWs after

horizon reentry; hence, it depends on the thermal history of
the Universe. One can attempt a task to calculate the
transfer function by numerically integrating the evolution
equation for the PGW following Refs. [16–27]. The
evolution equation of the PGW for our models is given
by [35]

h00λ;k þ 2
z0T
zT

h0λ;k þ k2c2Thλ;k ¼ 0; ð32Þ

where 0 ≡ d=dτ. The mode solutions to this equation have
qualitative behavior in two regimes [47]: either outside the
horizon (k ≪ aH) where the amplitude of hλ;k remains
constant,

hλ;k ¼ CðkÞ; ð33Þ

or inside the horizon (k ≫ aH) where the amplitude begins
to damp,

hλ;k ¼
1

zT
½c1eicTkτ þ c2e−icTkτ�: ð34Þ

The exact solutions for z ∝ jτjq, c2T ¼ const are

hλ;k ¼
ffiffiffiffiffiffiffiffi
πjτjp
2zT

½c1ðkÞHð1Þ
ν ðcTkjτjÞ þ c2ðkÞHð2Þ

ν ðcTkjτjÞ�;

ð35Þ

where ν ¼ 1=2 − q.
For modes that reenter the horizon during the matter-

dominated (MD) era, the solution to Eq. (32) evolves as
hλ;k ∼ 3j1ðkτÞ=ðkτÞ [16–18,47] for zT ∼ a ∼ τ2, where we
have assumed the GB effect is negligible during the matter-
dominated era. The changes in the relativistic degrees of
freedom (d.o.f.) g�ðT inÞ and their counterpart g�sðT inÞ for
entropy give another damping factor; see the third and
fourth terms on the right-hand side of Eq. (36) [18]. Here
T in is the temperature of the Universe at which the mode
reenters the horizon. The amplitude of modes that reenter
the horizon before matter and radiation equality would be
suppressed by the expansion of the Universe. The sup-
pression should be larger for modes that reenter the horizon
earlier, as g� and g�s would be larger than those for modes
that reenter the horizon later; see the midfrequency range in
Fig. 3. However, the modes that reenter the horizon during
the MD era should not be affected by changes in the g� and
g�s, as they do not change during the MD era [18]. Taking
all these into account, a good fit to the transfer function is
given by

T 2ðkÞ ¼ Ω2
m

�
3j1ðkτ0Þ

kτ0

�
2
�
g�ðT inÞ
g�0

��
g�s0

g�sðT inÞ
�

4=3

× T 2
1

�
k
keq

�
T 2

2

�
k
kth

�
; ð36Þ

whereΩmh20 ¼ 0.1344 is the matter density of the Universe,
g�sðT thÞ is the effective number of light species for the
entropy at the end of reheating and T th is the reheating
temperature, and the subscript “0” denotes that the quantity is
evaluated at the present time [8]. In thekτ0 → 0 limit, the first
spherical Bessel function becomes j1ðkτ0Þ ¼ 1=ð ffiffiffi

2
p

kτ0Þ,
where τ0 ≃ 2H−1

0 is the present conformal time. The transfer
functions T 2

1ðk=keqÞ and T 2
2ðk=kthÞ are calculated by

numerically integrating Eq. (32). For modes that reenter
the horizon before or after matter and radiation equality,
we get

T 2
1

�
k
keq

�
¼ 1þ 1.65

�
k
keq

�
þ 1.92

�
k
keq

�
2

; ð37Þ
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where keq ¼ 7.3 × 10−2Ωmh20 Mpc−1 is the comoving wave
numbers corresponding to the scale at the time of matter and
radiation equality. The transfer function for modes that
reenter the horizon after the end of inflation and before
the end of reheating is calculated as

T 2
2

�
k
kth

�
¼

�
1þ γ

�
k
kth

�3
2 þ σ

�
k
kth

�
2
�−1

; ð38Þ

where kth ¼ 1.7 × 1013 Mpc−1ðg�sðT thÞ=106.75Þ1=6 ×
ðT th=106 GeVÞ is the comoving wave number correspond-
ing to the scale at the time of the completion of reheating
when the Universe became radiation dominated.3 The
coefficients γ and σ are different for different inflationary
models. In Fig. 2, we plot the result of Eq. (38) for model I
(dashed black line) and model II (green line) in comparison
withEq. (2.16) ofRef. [23] (red line),which is the casewhere
the GB term is absent. In the figure, “o” and “ ” denote the
numerical solutions of the transfer function,while the dashed
black and green lines are the fitted transfer functions of
Eq. (38) for model I and model II, respectively. One can see
that the transfer functions for model I and model II have the
same shape with coefficients of γ ≃ −0.23 and σ ≃ 0.58.
By substituting Eqs. (31) and (36) into Eq. (30) and then

into Eq. (29), we obtain

h20ΩGW ¼ 3h20
32π2H2

0τ
4
0f

2
Ω2

mT 2
1

�
f
feq

�

× T 2
2

�
f
fth

�
rPS

�
f
f�

�
nTþαT

2
lnðf=f�Þ

; ð39Þ

where the frequency relation k ¼ 2πf is used. The quan-
tities nT , αT , and r are the functions of the slow-roll
parameters. However, they can be expressed in terms of nS

and the model parameters α and μ through Eqs. (22) and
(24) once the potential and coupling functions are given.
For selected models from the last section, we obtain

model I : r ¼ −
8nð1 − αÞðnS − 1Þ

nþ 2
; nT ¼ nðnS − 1Þ

nþ 2
;

αT ¼ −2n
�
nS − 1

nþ 2

�
2

; ð40Þ

model II : r ¼ 8ðnS − 1Þ2
μðnS − 1Þ2 þ ½2þ μðnS − 1Þ�2 ;

nT ¼ μðnS − 1Þ2½nS þ 1þ μðnS − 1Þ�
4þ μðnS − 1Þ½nS þ 3þ μðnS − 1Þ� ;

αT ¼ −
ðnS − 1Þ2

2
þ 2

��
2þ μðnS − 1Þ

nS − 1

�
2

− μ

�

×

��
2þ μðnS − 1Þ

nS − 1

�
2

þ μ

�
−2
: ð41Þ

We plot the frequency dependence of the energy spec-
trum from Eq. (39) for model I with n ¼ 2 and model II in
Fig. 3. Along with the predicted energy spectrum, the
sensitivities of the future space-based laser interferometric
experiment DECIGO [15], including correlated-DECIGO
and ultimate-DECIGO (single), are presented.
As we can see in Fig. 3, both model I and model II

predict an observable GW spectrum around a frequency of
0.1–10 Hz. The amplitude of the PGW spectrum sourced
by model I is suppressed as α increases; see Fig. 3(a). On
the other hand, for model II, the amplitude is enhanced for
increasing values of μ as is seen in Fig. 3(b). In the figure,
we used observationally preferred values of α and μ from
Fig. 1, namely, 0 ≤ α ≤ 1 for model I and 0 < μ ≲ 50 for
model II. The running of the spectral index of the tensor
perturbations, αT , further suppresses (enhances) the spec-
trum for model I (model II) as the frequency increases as is
seen in Fig. 3(c) [Fig. 3(d)], where the spectra with and
without αT are compared. This suppression (enhancement)
implies that αT is negative (positive).
Although the amount of suppression or enhancement of

the energy spectrum is determined by the value of the
model parameters (α and μ), the bending frequency of the
spectrum depends only on the reheating temperature T th. In
Fig. 3, for simplicity, we set the reheating temperature to be
T th ¼ 108 GeV for Figs. 3(a)–3(d); hence, the spectrum is
significantly suppressed near frequency fth ≃ 2.6 Hz,
which resides in the most sensitive frequency range
(0.1–10 Hz) of the planned future space-based experiment
DECIGO. The lower limit of the reheating temperature by
DECIGO is about T th ≳ 106 GeV [see Figs. 3(e) and 3(f)].
We thus use this bound in our analysis of the reheating
parameters including the temperature T th, equation of state
ωth, and the duration of reheatingNth in the next section. As
we mentioned before, the suppression of the spectrum
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o
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0.0

0.2
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T
2

2
(k

/k
th

)

FIG. 2. Transfer functions given in Eq. (38) for model I and
model II in comparison with that of Ref. [23].

3The coefficients of the transfer functions depend on the choice
of reference wave number, keq and kth.
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between 10−12 Hz≲ f ≲ 10−8 Hz in Fig. 3 is due to the
changes in the relativistic d.o.f. g� and its counterpart for
entropy g�s, the third and fourth terms in Eq. (36) [18].

V. CONSTRAINTS ON THE REHEATING
PARAMETERS FROM THE PRIMORDIAL
GRAVITATIONAL WAVE SPECTRUM

If the PGWs induced by inflationary models are
detected, one of the important consequences would be
its constraint on the reheating temperature T th, which

can be determined through the relation fth≃0.27×
1013Mpc−1ðg�sðT thÞ=106.75Þ1=6ðT th=106GeVÞ. We, there-
fore, aim in this section to perform the analyses on the
reheating parameters for model I and model II. Since
the reheating process is very sensitive to the shape of
the potential as well as the coupling function, we limit our
discussions only for Eqs. (21) and (23) in this section. The
effects of the GB term during reheating epoch can be
understood by how much it would change the results
that are already known. By following Refs. [40–43], we
calculate the reheating parameters first.

(a)

(c) (d)

(e) (f)

(b)

FIG. 3. The frequency dependence of the energy spectrum for model I and model II together with sensitivities of DECIGO [15]. We set
nS ¼ 0.9655 and T th ¼ 108 GeV for (a)–(d). The red lines in (a), (c), and (e) indicate the absence of the GB term.
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We start our computation by considering a mode with
comoving wave number k� which crosses the horizon
during inflation at a ¼ a�. The comoving Hubble scale
at the horizon crossing, a�H� ¼ k�, is related to that of the
present time through the following relation:

k�
a0H0

¼ a�
aend

aend
ath

ath
aeq

aeq
a0

Heq

H0

H�
Heq

; ð42Þ

where a0, a�, aend, ath, and aeq denote the scale factor at the
present time, time of horizon crossing, end of inflation, end
of reheating, and the time of matter and radiation equality,
whereas H0 and Heq are the Hubble constant at the present
time and the time of matter and radiation equality, respec-
tively. We rewrite Eq. (42) in terms of the number of e-folds
N as

ln
k�

a0H0

¼ −N� − Nth þ ln
ath
a0

þ ln
H�
H0

; ð43Þ

where N� ≡ lnðaend=a�Þ is the number of e-folds between
the time when a mode exits the horizon and the end of
inflation and Nth ≡ lnðath=aendÞ is the number of e-folds
between the end of inflation and the end of reheating.
Assuming that no entropy production took place after the
completion of reheating, one can write [40–43]

ath
a0

¼ T0

T th

�
43

11g�sðT thÞ
�1

3

; ð44Þ

where T0 is the current temperature of the Universe. The
reheating temperature T th determines the energy density ρth
at the end of reheating:

ρth ¼
π2

30
g�ðT thÞT4

th; ð45Þ

where g�ðT thÞ is the number of relativistic d.o.f. at the
end of reheating. On the other hand, ρth is related to the
energy density at the end of inflation, ρend, through Nth and
ωth [40–42]:

ρth ¼ ρende−3ð1þωthÞNth : ð46Þ

The ρend is a model-dependent quantity and is determined
by the potential at the end of inflation Vend as follows:

ρend ¼ λendVend; ð47Þ

where λend is an effective ratio of kinetic energy to potential
energy at the end of inflation. In our case, however, it
includes the effect of the Gauss-Bonnet term and is
calculated as follows (see Appendix A):

λend ¼
6

6 − 2ϵ − δ1ð5 − 2ϵþ δ2Þ
����
ϕ¼ϕend

: ð48Þ

Substituting Eqs. (45)–(47) into Eq. (44) and then into
Eq. (43), we get the duration of reheating:

Nth ¼
4

3ωth − 1

�
ln

�
k

a0T0

�
þ 1

3
ln

�
11g�s
43

�

þ 1

4
ln
�
30λend
π2g�

�
þ 1

4
ln
�
Vend

H4�

�
þ N�

�
: ð49Þ

With fiducial valuesMpl¼κ−1¼2.435×1018GeV, a0 ¼ 1,
T0 ¼ 2.725 K, g� ¼ g�s ≃ 106.75, and Planck’s pivot scale
of k� ¼ 0.05 Mpc−1 [7,8], Eq. (49) is simplified as

Nth ¼
4

3ωth − 1

�
−60.0085þ 1

4
ln

�
3λend
100π2

�

þ 1

4
ln

�
Vend

H4�

�
þ N�

�
; ð50Þ

where ωth ≠ 1=3 is assumed. If ωth is larger (smaller) than
1=3 in Eq. (50), the sign of the factor in front of the
parentheses is positive (negative). Since Nth ≥ 0, we obtain
N� ≥ Nextra for ωth > 1=3 or N� ≤ Nextra for ωth < 1=3,
where

Nextra ¼ −60.0085þ 1

4
ln

�
3λend
100π2

�
þ 1

4
ln

�
Vend

H4�

�
: ð51Þ

The expression for the reheating temperature is derived
from Eqs. (45) and (46):

T th ¼
�
30λendVend

π2g�

�1
4

e−
3
4
ð1þωthÞNth : ð52Þ

The reheating temperature reaches to its maximum value if
Nth ¼ 0 or N� ¼ Nextra, which implies that reheating
occurs instantaneously after the end of inflation. From
Eqs. (50) and (52), we see that Nth and T th are linked to the
inflationary quantities through λend, Vend, N�, and H�.
These quantities need to be calculated for each model we
consider in this work.
Inflation ends when the slow-roll parameters (ϵ or δ1)

become of the order of unity; ϵðϕendÞ ≃ 1 or δ1ðϕendÞ ≃ 1.
The substitution of Eqs. (21) and (23) into Eqs. (7) and
(10), therefore, gives the inflaton value at the end of
inflation, ϕend. Once ϕend is obtained for both model I
and model II, one can also calculate Vend and λend as
follows:
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model I : Vend ¼
V0

κ4

�
n2

2
ð1 − αÞ

�n
2

; λend ¼ −
3n

4αðnþ 1Þ − 2n
; ð53Þ

model II : Vend ¼
ðμþ xÞ2
κ4ð1þ x2Þ ;

λend ¼
6μ3=2ðx2 þ 1Þ2ð ffiffiffi

μ
p þ xÞ

6μ3=2ðx5 þ 4x3 þ 3xÞ þ 6μ2ðx2 þ 1Þ2 − 3μðx2 þ 3Þ þ ffiffiffi
μ

p ð5x3 þ 2xÞ þ 2x2 − 1
; ð54Þ

where x is a function of μ given by

x ¼ −
ffiffiffi
μ

p
3

�
1þ ðμ − 6Þ

�
2

x1

�1
3 þ 1

μ

�
2

x1

�
−1
3

�
ð55Þ

and

x1 ¼ 2μ3 þ 9μ2 − 27μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ð4μ5 − 17μ4 þ 14μ3 þ 27μ2Þ

q
:

ð56Þ

The detailed calculations for Eq. (54) are given in
Appendix B. Notice from Eq. (50) that λend must be
positive for both models. In order for model I to yield
λend > 0, the model parameter must be in the range

0 ≤ α <
n

2þ 2n
: ð57Þ

In Fig. 1, we found that the 0 ≤ α ≤ 1 range is favored by
the observations at least in a 2σ confidence level. For
reheating, however, the positivity of λend in Eq. (50) puts
another strong constraint on the model parameter. The
parameter space of α therefore reduces for n > 0. Thus, we
emphasize that reheating can be used as an additional
constraint to the models of inflation. On the other hand, for
model II, it is not simple to obtain the range of μ from
Eq. (54) that gives λend > 0. However, we can show the
allowed range of μ numerically as is seen in Fig. 4. One can

notice from Fig. 4 that λend diverges above a certain value of
μð∼0.3517Þ. Thus, we consider 0 < μ ≤ 0.3517 in our
numerical analyses in the following.
The Hubble parameter at the time of horizon crossing is

obtained by substituting ϕ�ðN�Þ into the slow-roll limit of
Eq. (3):

model I : H4� ¼
�
V0

3κ2

�
2
�
n
2
ð1 − αÞð4N� þ nÞ

�
n
; ð58Þ

model II : H4� ¼
� ðN� þ μÞ2
3κ2ðN2� þ μÞ

�
2

; ð59Þ

where we have used from Eq. (14)

model I : κϕ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
2
ð1 − αÞð4N� þ nÞ

r
; ð60Þ

model II : κϕ� ¼ sinh−1
�

1ffiffiffi
μ

p N�

�
: ð61Þ

In obtaining Eq. (61), large field inflation (ϕ� ≫ ϕend) is
assumed. Here,N� can be expressed in terms of nS, n, and μ
from Eqs. (22) and (24).
Having obtained these quantities, we can proceed to our

numerical investigation on the reheating parameters. We
plot Eqs. (50) and (52) in Figs. 5–8 for model I and model II
with ωth ¼ const. We choose four different values for ωth,
namely, ωth ¼ −1=3 ðsolid linesÞ, 0 (dashed lines), 1=4
(dot-dashed lines), and 1 (dotted lines). The smallest
possible value for ωth comes from the requirement that
inflation has to end when wth ¼ −1=3, whereas the largest
value ωth ¼ 1, the most conservative upper limit, comes
from the causality. The values ωth ¼ 0 and ωth ¼ 1=4 are
suggested by the literature on reheating [42].
We plot model I with n ¼ 1, 2, and 4 case in Fig. 5,

where the black lines indicate the absence of the GB term
(α ¼ 0) while the red ones correspond to the presence of
the GB term (α ≠ 0). The different curves correspond to
different ωth. However, all curves intersect to the Nth ¼ 0
points, at which the instant reheating occurs. Each dot
represents different α, and α increases from a black dot to a
red dot. The background green shaded region corresponds
to the current 1σ range nS ¼ 0.9655� 0.0062 from Planck

Model−II
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FIG. 4. The functional dependence of λend on μ from Eq. (54).
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data [8], while the yellow band assumes the future CMB
experiments with sensitivity�10−3 [44,45], using the same
central nS ¼ 0.9655 value as Planck. The horizontal blue
lines at TEW ¼ 102 GeV and T th ¼ 106 GeV indicate the
electroweak energy scale and the lower bound from PGW
detection by DECIGO, respectively. The arrows in Fig. 5
indicate that N� increases along the line. The direction of
the arrow is determined by the sign of the factor in front of
the square bracket in Eq. (50). They move toward the point
of Nth ¼ 0 for ωth < 1=3 and move away for ωth > 1=3.
Since Nth indicates the duration of reheating, it must be

positive or zero. To yield Nth ≥ 0, N� must be smaller than
Nextra in Eq. (50) for ωth < 1=3 and be larger for ωth > 1=3.
Thus, the direction of the arrow indicates the increasing of
N� during inflation. One can notice that N� increases as ns
increases for a given n and α from Eq. (22).
The reheating temperature appears to be significantly

increasing as α increases. In Fig. 6, therefore, we plot the α
dependence of T th from Eq. (52) with ωth ¼ 0 for n ¼ 1
and 2. The black vertical dashed lines at α ¼ 0 and the red
vertical dashed lines at 1=4 and 1=3 correspond to the same
ωth ¼ 0 dashed lines in Figs. 5(a) and 5(b), respectively.

(a) (b) (c)

FIG. 5. The ns dependence onNth and T th for model I with V0 ¼ 0.5 × 10−12. The solid black and red lines correspond to ωth ¼ −1=3,
the dashed lines to ωth ¼ 0, the dot-dashed lines to ωth ¼ 1=4, and the dotted lines to ωth ¼ 1. The black dots reaching up to the red one
indicate the instantaneous reheating process with Nth ¼ 0 and the increasing of α. The direction of the arrow indicates that N� increases
along the line. The green shaded region corresponds to the current 1σ range nS ¼ 0.9655� 0.0062 from Planck data [8], while the
yellow band assumes the future CMB experiments with sensitivity �10−3 [44,45], using the same central nS ¼ 0.9655 value as Planck.
The horizontal blue lines at TEW ¼ 102 GeV (dotted) and T th ¼ 106 GeV (dashed) indicate the electroweak (EW) scale and the lower
bound from PGW detection by DECIGO, respectively.

(a) (b)

FIG. 6. The reheating temperature T th as a function of α when ωth ¼ 0. The vertical black and red dashed lines correspond to ωth ¼ 0
dashed lines in Fig. 5. The black dots reaching up to the red one indicate the instantaneous reheating with Nth ¼ 0. The background
shared regions, as well as the horizontal lines, are as for Fig. 5.
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There is no vertical red line in Fig. 6(b), because the red
point in Fig. 5(b) locates at the boundary of the 1σ region.
When α ¼ 0, the reheating temperature peaks at T th ∼
1015 GeV in each of the three cases; see the bigger black
intersecting points in Figs. 5 and 6. When α ≠ 0, the
maximum T th is denoted by the red points, but the exact
values depend on α for each n.
Similar results are also obtained for model II. Although

the wide range of μ is acceptable, the reliable range must be
given from the condition λend > 0. From Fig. 4, we
obtained 0 < μ ≤ 0.3517. With this reliable range of μ,
we plot Fig. 7. Together with Fig. 8, where ωth ¼ 0, it
shows that the reheating temperature is increasing as μ
increases. The result is valid for other constant values of
ωth. Our results therefore imply that the presence of the GB
term during inflation significantly enhances the thermal-
ization temperature at the end of reheating. Once the
reheating temperature is determined by the detection of
PGWs, other parameters including ωth and Nth can also be
determined with a help of Figs. 5 and 7 in light of the
current or future observational data.

VI. CONCLUSION

After a brief review on the basics, we discuss two types
of inflation model with the GB term [31,33–35]: the models
that predict a red-tilted (nT < 0) primordial tensor power
spectrum (model I) given in Eq. (21) and those that predict
a blue-tilted (nT > 0) spectrum (model II) given in Eq. (23).
For model I and model II, we estimated the energy
spectrum of the PGW and the reheating parameters after
GB inflation.
The expression for the energy spectrum of the PGW

background is calculated in Eq. (39), which is the main
analytic result of Sec. IV, and is plotted as a function of the
frequency in Fig. 3 for model I and model II. The amplitude
of the PGWs for model I is suppressed for increasing values
of α, because the inflationary tensor power spectrum given
in Eq. (31) has a red tilt for the positive α. On the other
hand, the amplitude for model II is significantly enhanced
as the model parameter μ increases, in which the infla-
tionary tensor power spectrum is predicted to have a blue
tilt. Moreover, if the running of the tensor spectral index is
considered in the estimation, the spectrum of model I is
more suppressed, whereas that of model II is more
enhanced as the frequency increases; see Figs. 3(c) and
3(d). This implies αT < 0 for model I, but αT > 0 for model
II. This indicates the running of the tensor spectral index
found to be an important quantity for the detectability of
the PGW background if the inflationary tensor power
spectrum have a blue tilt, e.g., in the 0.1–1 Hz range by
DECIGO [15].
It is worth noting from Eqs. (22) and (24) that the tensor-

to-scalar ratio is inversely proportional to the number of
e-folds for model I, whereas it is inversely proportional to

FIG. 7. The ns dependence on Nth and T th for model II with
V0 ¼ 0.5 × 10−12. The solid black and red lines correspond to
ωth ¼ −1=3, the dashed lines to ωth ¼ 0, the dot-dashed lines to
ωth ¼ 1=4, and the dotted lines to ωth ¼ 1. The black dots
reaching up to the red one indicate the instantaneous reheating
process with Nth ¼ 0 and the increasing of μ between
10−4 ≤ μ ≤ 0.3517. The direction of the arrow indicates that
N� increases along the line. The shaded regions, as well as the
horizontal lines, are same as for Fig. 5.

FIG. 8. The black and red dots, respectively, at ðμ; T thÞ ¼
ð10−4; 1.27 × 1017 GeVÞ and ð0.3517; 2.69 × 1019 GeVÞ corre-
spond to the maximum reheating temperatures for instantaneous
reheating (Nth ¼ 0). The vertical black and red dashed lines
represent ωth ¼ 0 lines in Fig. 7. The shaded regions, as well as
the horizontal lines, are same as for Fig. 5.
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the square of the number of e-folds for model II. Therefore,
the expected GW signal in the region of interferometers is
not dramatically different for the two models we consider in
this study. However, we showed that the small changes in
model parameters α and μ significantly modify the GW
energy spectrum. The values of α and μ within the range
0 ≤ α < 1 for model I and 0 < μ≲ 50 for model II seem to
provide detectable GW signals by the DECIGO experi-
ment. For other models that belong to either of the two
categories but have not been discussed in this work, there
could be a possible detection by other ground- or space-
based experiments such as LIGO/VIRGO and LISA or
pulsar timing array experiments [13–15].
An important consequence of Sec. IV is that the reheat-

ing temperature can be determined by the frequency
at which the PGW background would be detected. If
signals of the PGW induced by model I and model II
are detected, the bound on the T th can be read off from
Fig. 3. Since the signals of the PGW produced by
both model I and model II are observable by DECIGO
around f ≃ 0.1–10 Hz, the reheat temperature would be
T th ≳ 106 GeV. Once the thermalization temperature at the
end of reheating is determined, the other reheating param-
eters (the duration Nth and equation of state ωth) could also
be determined.
In Sec. V, we derived the reheating parameters after

Gauss-Bonnet inflation in Eqs. (50) and (52) and showed
that the reheating parameters are highly sensitive to the
presence of the GB term for both models. By assuming the
constant equation-of-state ωth parameter during reheating,
and no entropy production took place after reheating, we
numerically estimated the reheating parameters using our
analytic results in Figs. 5 and 7. As the figures show, the
thermalization temperature at the end of reheating is
significantly enhanced for both models due to the presence
of the GB term. Moreover, the duration of reheating can be
read off from the upper panels of Figs. 5 and 7 if the
temperature T th is determined. T th is assumed to be
determined by the detection of the PGW in this work.
Both model I and model II support the equation-of-state
parameter between −1=3 ≤ ωth ≤ 1. In the preferred range
ofωth, the physically meaningful range of temperature from
∼100 GeV to around ∼1016 GeV can be safely accom-
modated. An important consequence of this section that we
emphasize is that reheating can be used as an additional
constraint to the models of inflation and can reduce the
parameter space.
We have reached the conclusion that the GB term seems

to be important not only during inflation but also during
reheating whether the process is instantaneous or lasts for a
certain number of e-folds until it completes. Once T th is
determined, the other reheating parameters can be esti-
mated in our models. Thus, it would be interesting to
investigate the physics of reheating in light of forthcoming
GW experiments.
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APPENDIX A: THE CALCULATION ON λend

In this Appendix, we derive the expression given in
Eq. (48). We start our calculation with the energy density of
inflaton, which can be read off from Eq. (3), at the end of
inflation,

ρend ¼
�
1

2
_ϕ2 þ V þ 12 _ξH3

�����
ϕ¼ϕend

¼ λendVend; ðA1Þ

where λend is defined as follows:

λend ≡
�
1

2

_ϕ2

V
þ 1þ 12 _ξH3

V

�����
ϕ¼ϕend

: ðA2Þ

On the other hand, the potential energy can be obtained
from Eq. (3) as

V ¼ 3

κ2
H2 −

1

2
_ϕ2 − 12 _ξH3: ðA3Þ

Substituting Eq. (A3) into Eq. (A2), we get the λend which is
given by

λend ≡
�
1þ

�
6H2

κ2 _ϕ2
− 1 −

24κ2 _ξH3

κ2 _ϕ2

�
−1

þ
�

1

4κ2 _ξH
−

κ2 _ϕ2

24κ2 _ξH3
− 1

�
−1
�����

ϕ¼ϕend

: ðA4Þ

Here, we use Eq. (6) together with the following equation
from Eq. (39) of Ref. [33]:

κ2 _ϕ2

H2
¼ 2ϵ − δ1ð1þ 2ϵ − δ2Þ; ðA5Þ

to express Eq. (A4) in terms of the slow-roll parameters:

λend ¼
6

6 − 2ϵ − δ1ð5 − 2ϵþ δ2Þ
����
ϕ¼ϕend

: ðA6Þ
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When δ1 ¼ 0 in Eq. (A6), the Gauss-Bonnet term becomes
absent, which shows the consistency between our result and
that of Refs. [40–42].

APPENDIX B: THE CALCULATION
ON ϕend FOR MODEL II

Inflation ends when either one of the slow-roll param-
eters in Eqs. (7)–(12) becomes of the order of unity. For
example, ϵðϕendÞ≡ 1 at the end of inflation. For model II,
that has the potential and the coupling functions of the form
given in Eq. (23), we obtain

ϵðϕÞ ¼ sech2ðκϕÞ½1 − ffiffiffi
μ

p
sinhðκϕÞ�

μþ ffiffiffi
μ

p
sinhðκϕÞ : ðB1Þ

By defining a new variable x≡ sinhðκϕÞ in Eq. (B1), we
can write ϵðϕendÞ ¼ 1 as follows:

ffiffiffi
μ

p
x3 þ μx2 þ 2

ffiffiffi
μ

p
xþ μ − 1 ¼ 0: ðB2Þ

This equation has a real solution of the form

x ¼ −
ffiffiffi
μ

p
3

�
1þ ðμ − 6Þ

�
2

x1

�1
3 þ 1

μ

�
2

x1

�
−1
3

�
; ðB3Þ

where

x1 ¼ 2μ3 þ 9μ2 − 27μ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ð4μ5 − 17μ4 þ 14μ3 þ 27μ2Þ

q
: ðB4Þ

It is worth noting that x1 is positive for μ > 0. However, x is
positive for 0 < μ < 1 and is negative for μ > 1. When
μ ¼ 1, we have x ¼ 0.
Solving sinhðκϕendÞ ¼ x for κϕend, we find the inflaton

field value at the end of inflation as

κϕend ¼ −arcsinh
� ffiffiffi

μ
p
3

�
1þ ðμ − 6Þ

�
2

x1

�1
3 þ 1

μ

�
2

x1

�
−1
3

��
þ 2πic1; ðB5Þ

where c1 is an arbitrary constant. The potential energy at
the end of inflation therefore becomes

Vend ¼
1

κ4
ðμþ xÞ2
1þ x2

; ðB6Þ

and λend gets

λend ¼
6μ3=2ðx2 þ 1Þ2ð ffiffiffi

μ
p þ xÞ

6μ2ðx2 þ 1Þ2 − 3μðx2 þ 3Þ þ ffiffiffi
μ

p
xð5x2 þ 2Þ þ 2x2 þ 6μ3=2xðx4 þ 4x2 þ 3Þ − 1

: ðB7Þ

Since x is given in Eq. (B3) as a function of μ, both Vend and λend are functions only of μ. As we mentioned earlier, λend must
be positive in order to yield Nth ≥ 0. Thus, in Fig. 4, we plot the positive range of λend as a function of μ. We see that λend
diverges around μ ≃ 0.3517.
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