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HS-1371, a novel kinase inhibitor
of RIP3-mediated necroptosis
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You-Sun Kim'?

Abstract

Necroptosis is a type of programmed cell death that usually occurs under apoptosis-deficient conditions. Receptor-
interacting protein kinase-3 (RIP3, or RIPK3) is a central player in necroptosis, and its kinase activity is essential for
downstream necroptotic signaling events. Since RIP3 kinase activity has been associated with various diseases, the
development of specific RIP3 inhibitors is an attractive strategy for therapeutic application. In this study, we identified a
potent RIP3 inhibitor, HS-1371, by the extensive screening of chemical libraries focused on kinases. HS-1371 directly
binds to RIP3 in an ATP-competitive and time-independent manner, providing a mechanism of action. Moreover, the
compound inhibited TNF-induced necroptosis but did not inhibit TNF-induced apoptosis, indicating that this novel
inhibitor has a specific inhibitory effect on RIP3-mediated necroptosis via the suppression of RIP3 kinase activity. Our
results suggest that HS-1371 could serve as a potential preventive or therapeutic agent for diseases involving RIP3

hyperactivation.

Introduction

Necroptosis has been well established as an important
form of programmed cell death. It can be initiated by
many cellular stressors, including signaling events acti-
vated by death receptor ligands, such as tumor-necrosis
factor (TNF), TNF-related apoptosis-inducing ligand
(TRAIL), or Fas ligand (FasL)'™. Necroptosis is dis-
tinguished from apoptosis, which has been thought to
occur without triggering inflammatory responses, in that
it is highly pro-inflammatory. Necroptosis plays an
important role in many pathological processes such as
ischemia-reperfusion injury and host defense against viral
infection®™®,  Receptor-interacting protein  kinase-3
(RIP3, or RIPK3) has been identified as a key player
in necroptosis’ !, and the kinase activity of RIP3 is
required for downstream signaling events including the
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recruitment of mixed lineage kinase domain-like protein
(MLKL)'*™'>, Consistent with this finding, RIP3-kinase
dead mutant D160N is unable to induce necroptosis'®"?,
indicating that RIP3 catalytic activity is indispensable for
necroptotic cell death.

Our recent study showed that DNA-damaging agents
activate RIP3-dependent necroptosis in cancer cells, and
MLKL phosphorylation induced by DNA-damaging
agents is dependent on RIP3 kinase activity'®'®, More-
over, Geserick et al. proposed that strategies to upregulate
RIP3 expression may activate the necroptotic signaling
machinery in melanoma and that activation of the RIP3/
MLKL pathway could be a treatment option for metastatic
melanoma®. These studies suggest that the regulation
of RIP3 kinase activity is important in cancer cell death.
It has been reported that the compound, dabrafenib,
interferes with MLKL phosphorylation and necroptosis
through the suppression of RIP3 kinase activity as an
off-target effect®’, as dabrafenib is approved as a treat-
ment for patients with B-RAF V600E mutation-positive
advanced melanoma®>*?, Inhibitors of V60OE-mutated or
V600K-mutated proto-oncogene serine/threonine protein
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kinase B-RAF (e.g., vemurafenib or dabrafenib) suppress
the proliferation of BRAF-mutated melanoma cells** and
have significantly improved patient survival®>. However,
since RIP3 kinase activation potentiates melanoma cell
death, the off-target effects of dabrafenib are potential
issues for patients with B-RAF V600E mutation-positive
advanced melanoma. We also reported that dabrafenib is
a potential therapeutic agent for toxic epidermal necro-
lysis (TEN) via the inhibition of RIP3-mediated MLKL
phosphorylation-induced necroptosis®®. Although the
regulation of RIP3 kinase activity has controversial effects
on various diseases conditions’, novel RIP3 kinase inhi-
bitors will undoubtedly be useful in the clinic.

In this study, we discovered potent RIP3 inhibitors by
extensive cross-screening of our kinase-targeted chemical
libraries and found that HS-1371 is a potent RIP3 kinase
inhibitor. HS-1371 binds to the ATP binding pocket of
RIP3 and inhibits ATP binding to prevent RIP3 enzymatic
activity in vitro. Therefore, the inhibition of RIP3 kinase
activity by HS-1371 protects cells from RIP3-mediated
necroptosis. This novel RIP3 kinase inhibitor could be
used as a therapeutic agent for diseases involving RIP3
hyperactivation.

Materials and methods
Preparation of HS-1371
7-(1-(Piperidin-4-yl)-1H-pyrazol-4-yl)-4-(p-tolyloxy)
quinoline (HS-1371) was synthesized by Suzuki coupling
followed by a Boc-deprotection step. 4-Phenoxyquinoline
starting material and boronic ester reagent as a coupling
partner for Suzuki coupling were prepared by SyAr and
miyaura borylation®*~>°,

1. Preparation of 4-phenoxyquinoline starting mate-
rial.  4-Phenoxy-7-bromo-4-chloroquinoline (100 mg,
0.412 mmol), p-cresol (44.6 mg, 0.412 mmol), and K,CO3
(142 mg, 1.03 mmol) were dissolved in N,N-dimethylfor-
mamide (1.5 mL) under an N, atmosphere. The reaction
mixture was stirred for 12h at 140°C. After cooling
to room temperature, the organic phase was diluted and
extracted with EtOAc (100 mL x 3) from the aqueous
layer. The combined organic phases were dried over
anhydrous MgSO, and filtered. The organic layer was
purified using flash column chromatography (dichlor-
omethane/methanol =40:1) to give 7-bromo-4-(p-toly-
loxy)quinoline (115 mg, 88%).

2. Preparation of boronic ester reagent. Tert-butyl 4-
hydroxypiperidine-1-carboxylate (2.0 g, 9.94 mmol) solution
in dichloromethane (30 mL) was added to triethylamine
(14mL, 9.94mmol), and methane sulfonyl chloride
(774 pL, 9.94 mmol) and 4-dimethylaminopyridine (122 mg,
3.98 mmol) were then added at 0 °C. The reaction mixture
was stirred at room temperature for 14 h. Water was added
to the reaction mixture at 0 °C, and the organic compounds
were extracted with dichloromethane (100 mL x 3) followed
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by drying over Na,SO,. The combined organic layers were
concentrated under reduced pressure, and the residue
was purified using flash column chromatography (hexanes/
EtOAc=2:1) to afford tert-butyl 4-((methylsulfonyl)oxy)
piperidine-1-carboxylate (2.71 g, 96%).

Sodium hydride (60% in mineral oil, 198 mg, 4.95 mmol)
was added to 4-iodopyrazole (800 mg, 4.12 mmol) solu-
tion in N,N-dimethylformamide (16 mL) at 0°C, and the
reaction mixture was stirred for 1h in a water bath.
At room temperature, tert-butyl 4-((methylsulfonyl)oxy)
piperidine-1-carboxylate (1.27 g, 4.54 mmol) was added,
and the resulting mixture was stirred at 100 °C for 16 h.
After quenching with water at 0°C, organic compounds
were extracted with EtOAc (200 mL x 3) and dried over
anhydrous MgSO, followed by concentration in vacuo.
Purification using flash column chromatography (hexane/
EtOAc=2:1) afforded tert-butyl 4-(4-iodo-1H-pyrazol-
1-yl)piperidine-1-carboxylate (1.21 g, 78%).

Tert-butyl 4-(4-iodo-1H-pyrazol-1-yl)piperidine-1-carbox-
ylate (1.19g, 3.16 mmol) was placed in a two-neck round-
bottom flask equipped with a magnetic bar. A three-way
stop cock was connected to one neck, and the other neck
was sealed with an Aldrich septum. The starting material
and flask were dried in vacuo and purged with nitrogen gas.
Anhydrous tetrahydrofuran (12.6 mL) was added, and the
solution was cooled to 0°C. Isopropylmagnesium chloride
solution (2M) in tetrahydrofuran (24 mL) was added
dropwise, and the mixture was stirred for 10 min at 0°C.
The mixture was warmed to room temperature and
stirred for 1h. Next, 2-methoxy-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (0.803 mL, 4.90 mmol) was added at 0°C, and
the resulting mixture was stirred at room temperature for
14 h. After the reaction was complete, a saturated aqueous
NaCl solution was added at 0 °C, and organic materials were
extracted with EtOAc (200 mL x 3), followed by drying over
Na,SO,. Purification using flash column chromatography
(hexane/EtOAc = 2:1) afforded tert-butyl 4-(4-(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)piperidine-
1-carboxylate (891 mg, 75%).

3. Suzuki coupling and deprotection of the Boc group.
The mixture of 7-bromo-4-(p-tolyloxy)quinoline (23.9 mg,
0.0761 mmol), tert-butyl  4-(4-(4,4,5,5-tetramethyl-1,3,
2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)piperidine-1-carbox-
ylate (34.4 mg, 0.0913 mmol), Pd(dppf)Cl,.CH,Cl, (3.1 mg,
0.0038 mmol) and Cs,CO5 (81.8 mg, 0.251 mmol) in toluene:
H,O (=2:1, toluene 0.5 mL) was stirred at 90°C for 16 h.
Water was added, and the extraction was performed with
EtOAc (50 mL x 3). The combined organic phases were
dried over anhydrous MgSQ,, filtered and concentrated in
vacuo. The residue was purified using flash column chro-
matography (DCM/MeOH = 40:1), followed by flash column
chromatography (diethyl ether/EtOAc = 1:20) to afford
tert-butyl 4-(4-(4-(p-tolyloxy)quinolin-7-yl)-1H-pyrazol-1-yl)
piperidine-1-carboxylate ~ (26.9mg, 73%). Next, the
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deprotection of the Boc group was performed with the
solution of tert-butyl 4-(4-(4-(p-tolyloxy)quinolin-7-yl)-1H-
pyrazol-1-yl)piperidine-1-carboxylate (19.8 mg,
0.0409 mmol) in dichloromethane (0.5 mL) in a 10 mL round
bottom flask. After cooling to 0°C, trifluoroacetic acid
(0.3mL) was added dropwise. The resulting mixture was
stirred at room temperature until full conversion was con-
firmed by TLC on silica gel. The solvent was evaporated in
vacuo, and the resulting residue was washed with diethyl
ether (1 mL x 3) to afford 7-(1-(piperidin-4-yl)-1H-pyrazol-4-
y1)-4-(p-tolyloxy)quinoline (15.7 mg, 77%).

Docking simulation

The calculation of binding modes for HS-1308, HS-
1336, HS-1338, and HS-1371 on RIP3 was performed with
Discovery Studio 4.5 (DS CHARMm-based CDOCKER
docking algorithm) using the all-atom model prepared by
adding missing atoms to the original X-ray crystal struc-
ture. The three-dimensional atomic coordinates required
for the docking study were prepared from the X-ray
crystal structure of RIP3 (PDB entry: 4M66) in complex
with HS compounds under standard conditions (pH 6.5-
8.5). The P-loop of the RIP3 ATP binding site is displayed
with carbon alpha wires for clarity®".

Enzymatic assays

The inhibitory activities of all compounds toward
RIP3 were measured by Reaction Biology Corp (Mal-
vern, PA, USA) by means of radiometric kinase assays
([y—gZP]ATP). The enzymatic activity of RIP3 was
monitored using 20 pM of myelin basic protein (MBP)
dissolved in freshly prepared reaction buffer (20 mM
HEPES (pH 7.5), 10 mM MgCl,, 1 mM EGTA, 0.02%
BRIJ-35, 0.02mg/mL BSA, 0.1mM NazVO, 2mM
DTT, 1% DMSO). Each putative RIP3 inhibitor was
dissolved in 100% DMSO at specific concentrations and
serially diluted with epMotion 5070 in DMSO. Human
RIP3 and 20 uM of peptide substrate (MBP) were added
to the reaction buffer. After delivering the candidate
inhibitor dissolved in DMSO to the kinase reaction
mixture using Acoustic technology (Echo550; nanoliter
range), the reaction mixture was incubated for 20 min at
room temperature. To initiate the enzymatic reaction,
3P-ATP with specific activity of 10 uCi/uL was added to
the reaction mixture to reach a final ATP concentration
of 10 uM. Radioactivity was then monitored using the
filter binding method after incubation of the reaction
mixture for 2h at room temperature. At given con-
centrations of inhibitor, biochemical potency was mea-
sured by the percent remaining kinase activity with
respect to the vehicle (dimethyl sulfoxide) reaction.
Curve fits and ICsy values were then obtained using
the PRISM program (GraphPad Software). The ATP-
competitive inhibitor staurosporine (STSP) was
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employed as a positive control in this study because of
its high biochemical potency against various kinases
including RIP3.

Cell lines and culture conditions

HEK293T, HT-29, H2009, L929, HeLa, and MEF cells
were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum
(FBS). RAW264.7 cells were grown in Roswell Park
Memorial Institute (RPMI) 1640 media supplemented
with 10% EBS. To generate cell lines stably expressing the
RIP3 construct, HeLa and H2009 cells were infected with
pLX303-hRIP3 lentivirus.

Antibodies and chemical reagents

Antibodies used in immunoblotting and immuno-
fluorescence: anti-RIP3 (Cell Signaling Technology,
13526s, 1:1000), anti-p-RIP3 (Abcam, ab209384,
1:1000), anti-MLKL (Abcam, ab184718, 1:2000), anti-p-
MLKL (Abcam, ab187091, 1:1000), anti-mouse p-MLKL
(Abcam, ab196436, 1:5000), anti-RIP1 (BD Biosciences,
610458, 1:1000), anti-p-RIP1 (Cell Signaling Technol-
ogy, 65746, 1:1000), anti-mouse p-RIP1 (Cell Signaling
Technology, 31122, 1:1000), anti-ACTIN (Sigma-
Aldrich, A3853, 1:5000), anti-p-ERK (Cell Signaling
Technology, 9101s, 1:1000) and anti- IkB-« (Santa Cruz
Biotechnology, sc-371, 1:5000). TNF-a and zVAD were
purchased from R&D Systems. SMAC mimetic (LCL-
161) was purchased from Adooq Bioscience. Dabrafenib
and GSK'872 were purchased from Selleckchem.
Necrostatin-1, lipopolysaccharide (LPS), and propidium
iodide (PI) were purchased from Sigma-Aldrich.
Cycloheximide was purchased from Calbiochem. Poly-
ehylenmine was purchased from Polysciences. We pur-
ified GST-TRAIL.

Immunoblot analysis and immunoprecipitation

Cells were rinsed in cold phosphate-buffered saline
(PBS) and lysed in M2 buffer containing 20 mM Tris at
pH 7, 0.5% NP-40, 250 mM NaCl, 3mM EDTA, 3 mM
EGTA, 2mM DTT, 0.5mM PMSF, 20 mM [-glycerol
phosphate, 1 mM sodium vanadate, and 1 pg/mL leu-
peptin. The cell extracts were subjected to western blot
analysis. For immunoprecipitation, lysates were mixed
and precipitated with antibody and protein A-agarose
beads overnight or for 4h at 4°C. Bound proteins were
removed by boiling in SDS and resolved by SDS-PAGE,
and immunoblotting was visualized by enhanced chemi-
luminescence (ECL, Amersham).

Cytotoxicity assays

Cell viability was determined using tetrazolium dye
colorimetric tests (the MTT assay) read at 570 nm. PI
staining was quantified using propidium iodide (Cat. No.
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51-66211E, BD Biosciences). Lactate dehydrogenase
(LDH) leakage was quantified using the CellTiter-Glo
Luminescent Cell Viability Assay kit (Promega, G7570)
according to the manufacturer’s instructions. The LDH
absorbance was read at 490 nm, and the mean + STDEV
of duplicates is presented.

Immunofluorescence staining

HT-29 cells were fixed in 4% paraformaldehyde for
10 min. To stain phospho-MLKL, cells were permeabi-
lized with 0.25% Triton X-100 for 10 min. After incuba-
tion in a blocking buffer (10% fetal bovine serum in DPBS)
for 30 min, the primary antibody to phospho-MLKL was
incubated overnight at 4°C, and FITC-conjugated sec-
ondary antibody (goat anti-rabbit IgG, 1:250, dilution,
Invitrogen) was incubated for 1h at room temperature.
A mounting medium containing DAPI (VECTASHIELD,
Cat No. 94010, Vector Laboratories) was used for
counterstaining. Representative images were taken by
confocal microscope.

Lentiviral shRNA experiments

MISSION  short-hairpin  RNA  (shRNA) plasmids
targeting hRIP3 mRNA (NM_006871), hMLKL mRNA
(NM_152649), and non-targeting control sequences
(NM_027088) were obtained from Sigma-Aldrich.
Lentiviral plasmids were transfected into 293TN cells
(System Biosciences, LV900A-1) using Lipofectamine
2000 (Invitrogen, 11668019). Pseudoviral particles
were collected 2 days after the transfection and infected
into cells with polybrene (8 pug/mL). Infected cells
were puromycin selected two days after infection, and
knockdown was confirmed by immunoblotting.

Reverse transcription-PCR and real-time PCR

Total RNA was extracted using the TRIzol reagent
(Life Technologies) according to the manufacturer’s
instructions. Total RNA (1 pg) from each sample was
converted to cDNA using MMLV reverse transcriptase
(MGmed, Seoul, Korea). Equal amounts of cDNA product
were used in reverse transcription-PCR conducted using
the GoTaq® Green Master Mix (Promega). Real-time PCR
amplification was performed using iQ™ SYBR® Green
Supermix (Bio-rad). Amplification was performed using
the following primers: IL-1p forward (5-TGCCACC
TTTTGACAGTGATG-3'), IL-1p reverse (5'-AAGG
TCCACGGGAAAGACAC-3'), IL-6 forward (5'-TCCA
GTTGCCTTCTTGGGAC-3'), IL-6 reverse (5-GTAC
TCCAGAAGACCAGAGG-3'), TNF-a forward (5'-CGAG
TGACAAGCCTGTAGCC-3'), TNF-a reverse (5-ACA
AGGTACAACCCATCGGC-3'), GAPDH forward (5'-GG
AGCCAAAAGGGTCATCAT-3’), and GAPDH reverse
(5’'-GTGATGGCATGGACTGTGGT-3').
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Statistical analysis

Independent experiments were performed at least in
triplicate. Statistical significance was evaluated in paired
analyses using the Mann—Whitney U-test (nonpara-
metric), depending on the data distribution. Data values
are expressed as the mean + SEM. Statistical significance
is defined as P < 0.05.

Results
HS-1371, a novel inhibitor of RIP3 kinase

Small molecule RIP3 inhibitors have potential pre-
ventive or therapeutic applications in multiple patholo-
gical conditions. To search for potent RIP3 inhibitors,
we screened our chemical libraries that were focused
toward kinases, revealing that quinolone-based com-
pounds combined with a 4-(1H-pyrazol-1-yl)piperidine
group at the C7 position exhibited excellent inhibitory
activity against RIP3 (HS-1371, IC50=20.8nM). The
chemical structures and biochemical ICs, potencies
of the four inhibitors (HS-1308, 1336, 1338, and 1371)
are summarized in Fig. 1a, b, respectively. To the best
of our knowledge, RIP3 inhibitors bearing a quinoline
scaffold have not yet been reported.

Overlaid in Fig. 1c are the docked poses of HS-1308,
1336, 1338, and 1371 around the ATP-binding site of
RIP3 (PDB ID: 4M66). All four inhibitors appear to be
accommodated in the well-established ATP binding site
of RIP3: they involve two hydrogen bonds and van der
Waals contacts with residues in the hinge region of RIP3.
Figure 1d illustrates the most stable binding mode of
HS-1371 derived with Discovery Studio 4.5 software.
We note that the nitrogen of the quinoline group receives
a hydrogen bond from the backbone amidic nitrogen
of Met98. In addition, the piperidine group appeared
to form a hydrogen bond with the backbone carbonyl
group of Val28. The simulation suggests that the ability
of HS-1371 to establish such hydrogen bonds with the
backbone groups in the hinge region of RIP3 is necessary
for its tight binding in the ATP-binding site of RIP3.
Our data also suggest that compound HS-1371 could
be further stabilized in the ATP-binding site via a m—m
interaction with Phe97 and hydrophobic interactions with
Thr95, Aspl61 and catalytic Lys51 side chains enclosing
the 4-methylphenoxy group in the back pocket.

Despite the overall similarity in RIP3 binding modes,
one difference in the interaction features can be observed
in the region surrounded by Aspl61 (DFG motif) and
Glu6l (aC helix). The 4-anilino and 4-phenoxy groups of
compounds are oriented toward the space between Thr95
and Lys51 in a direction perpendicular to the quinoline
core. Whereas HS-1371 can be further stabilized by
favorable hydrophobic interaction with Thr95, Aspl6l,
and catalytic Lys51 residues enclosing the terminal
4-methylphenoxy group of HS-1371, electron-rich F
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substituents on the aryl group (HS-1308, 1336, and 1338)
appear to approach the negatively charged side chains of
Aspl61 and Glu6l (Supplementary Figure S1).

To understand the interaction modes of these inhibi-
tors within RIP3, the mechanisms of action studies
including ATP competition were further performed with
HS-1371. A 20 min pre-incubation of the compound and
RIP3 enzyme was performed to ensure HS-1371 binding
to the enzyme and equilibration. The reactions were
monitored every 5-15 min to obtain progress curves with
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a time course. At each time point, radioisotope signal
(**P) was converted into M phosphate transferred to
substrate and was plotted against time. The slopes (or
velocity; M/min) were then plotted against ATP con-
centrations to generate a Michaelis—Menten plot and a
subsequent Lineweaver—Burk plot (double-reciprocal
plot) using GraphPad Prism software (GraphPad Soft-
ware Inc., San Diego, CA). The results were further
analyzed with global fit using GraFit software. The
apparent K, was increased when the concentration of
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(see figure on previous page)

were analyzed by Western blotting

Fig. 2 Novel inhibitors can block RIP3 S227 phosphorylation. a Western blotting showing various kinase inhibitor effects on RIP3 S227 auto-
phosphorylation. HT-29 cells were treated with four tested kinase inhibitors (1308, 1336, 1338, and 1371, 10 uM) for 9 h. As a control, KK5101 (Trk alpha
inhibitor) and HS829 (IKK beta inhibitor) were also treated at a concentration of 10 uM for 9 h. Prototypical necroptosis stimuli (TNF ++ zVAD + either
cycloheximide or SMAC mimetic; hereafter referred to as TCZ or TSZ) were applied for 6 h. Cell lysates were analyzed with a S227 specific p-RIP3
antibody. b Four tested kinase inhibitors displayed kinase inhibitory effects on basal levels of RIP3 auto-phosphorylation in a dose-dependent
manner. HT-29 cells were treated with indicated concentrations for 9 h, and cell lysates were analyzed by immunoblotting. ¢ Four tested kinase
inhibitors showed small amounts of cytotoxicity in a dose-dependent manner. HT-29 cells were treated with 4 tested kinase inhibitors for 24 h, and
cell viability was analyzed by MTT assay or phase-contrast microscopy. The results are presented as means + SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
d Various necroptosis inhibitors blocked TNF-induced RIP3 phosphorylation. HT-29 cells were pretreated with necrostatin-1 (Nec-1, 40 uM),
dabrafenib (DAB, 10 uM) or necrosulfonamide (NSA, 1 uM) for 2 h and then treated with TSZ for 6 h. Cell lysates were analyzed by immunoblotting.
e HS-1371 efficiently blocked TNF-induced RIP3 phosphorylation. HT-29 cells were pretreated with four tested kinase inhibitors for 2 h and then
treated with TSZ for 6 h. Cell lysates were analyzed by immunoblotting. f HT-29 cells were pretreated with Nec-1 (40 uM), DAB (5 uM) or HS-1371
(5 uM) for 2 h and then treated with TSZ for 4 h. Cell lysates were immunoprecipitated with anti-RIP3 antibody. Immunoprecipitates and total lysates

HS-1371 was increased in the Michaelis—Menten plot,
and all lines converged on the Y-axis in the
Lineweaver—Burk plots (Fig. le, f), indicating that the
mechanism of action was time-independent and ATP-
competitive upon binding to RIP3.

HS-1371 blocks RIP3 kinase activity

Since our data show that all four inhibitors appear to
be accommodated in the well-established ATP-binding
site and that the mechanism of action is ATP-competitive
upon binding to RIP3 in vitro, we would expect that the
drug would inhibit RIP3 kinase activity and abolish
downstream signaling in an in vivo cell system. RIP3
kinase activity is essential for TNF-induced necroptosis,
and human S227 auto-phosphorylation sites of RIP3
are required for the interaction of RIP3 with its substrate
MLKL"', which is indispensable for downstream
necroptotic cell death signaling. To test the possible
effects of the RIP3 inhibitors on necroptosis, HT-29 cells
were treated with the kinase inhibitors, and RIP3 kinase
activity was determined by examining its phosphorylation
status. Four tested inhibitors (HS-1308, HS-1336, HS-
1338, and HS-1371) showed an inhibitory effect on S227
auto-phosphorylation of RIP3 at the basal level, and the
other two kinase inhibitors (KK5101 and HS829) had no
effect (Fig. 2a). The results were further confirmed in a
dose-dependent manner (Fig. 2b), indicating that these
four tested compounds can be used as potential pre-
ventive agents in RIP3-mediated necroptotic cell death.
However, these inhibitors showed a certain degree of
cytotoxicity at high concentrations of 10 uM (Fig. 2c).

TNFa Smac mimetic and the caspase inhibitor zZVAD
(hereafter referred to as TSZ) is a classical combination
that is used to induce RIP3-mediated necroptotic cell
death'®*, We first verified that three established phar-
macological inhibitors of necroptosis, necrostatin-1
(Nec-1), necrosulfonamide (NSA), and dabrafenib (DAB)
could block TNF-induced necroptosis (Fig. 2d). Of these
inhibitors, Nec-1 inhibits RIP1 kinase activity’>**, DAB
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inhibits RIP3 kinase activity’', and NSA inhibits MLKL
functions downstream of RIP3 phosphorylation'*. As
RIP3 underwent auto-phosphorylation when over-
expressed in 293T cells, we further tested an antibody for
$227 auto-phosphorylation of RIP3 to determine whether
this antibody recognizes a specific band and whether this
phosphorylation is inhibited by DAB; this was shown to
be the case (Supplementary Figure S2a). Next, we tested
whether these four inhibitors would inhibit TNF-induced
necroptosis signaling by blocking RIP3 kinase activity.
Although all of the tested inhibitors had an inhibitory
effect on basal S227 auto-phosphorylation of RIP3,
only HS-1371 displayed a complete inhibitory effect on
TNEF-induced necroptosis signaling, showing no phos-
phorylation of RIP3 and MLKL, similar to DAB (Fig. 2e).
Although these four inhibitors bind to the ATP site of
RIP3 in vitro, in the cell system, only HS-1371 could
potently inhibit RIP3 kinase activity. The effect of HS-
1371 on RIP3 kinase activity was compared with another
RIP3 inhibitor, GSK’872'°. As expected, HS-1371 showed
a similar level of inhibitory effect on RIP3 kinase
activity and cellular cytotoxicity through increased
apoptosis when compared with GSK’872 (Supplementary
Figure S2b-2d). Inhibition of RIP3 kinase activity by
HS-1371 blocked necrosome complex formation, showing
disruption of MLKL recruitment (Fig. 2f and Supple-
mentary Figure S2e).

HS-1371 rescues cells from TNF-induced necroptosis

We further determined whether these small molecules
could rescue cells from TNF-induced cell death. We
treated HT-29 cells with these inhibitors followed by TSZ
to induce necroptosis. Only HS-1371 rescued TSZ-
induced cell death, similar to DAB, and the reduced
cytotoxicity was consistent with western blot data show-
ing that HS-1371 effectively blocked RIP3 kinase activity
(Fig. 3a). The effect of HS-1371 on TNF-induced cell
death was similar to other necroptosis inhibitors, Nec-1,
DAB, and NSA (Fig. 3b, left panel). The inhibitory effect
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Fig. 3 HS-1371 protects cells from TNF-induced necroptosis. a TNF-induced necroptosis was completely blocked by HS-1371 treatment. HT-29
cells were pretreated with four tested inhibitors for 2 h and then treated with TSZ (6 h for immunoblotting, 24 h for cell death assay). Cell lysates were
analyzed by immunoblotting, and cell viability was analyzed by MTT assay or phase-contrast microscopy. The results are presented as the means +
SEM. *P < 0.05, **P < 0.01, ***P < 0.001. b Protection of necroptosis by HS-1371 treatment is similar with dabrafenib, which abolished downstream
events. HT-29 cells were pretreated with various necroptosis inhibitors and HS-1371 before TSZ treatment. Cell lysates were analyzed by
immunoblotting, and cell viability was analyzed by MTT assay (left panel). Cells were stained with phospho-MLKL antibody and analyzed by confocal
fluorescence microscopy (middle panel), and cell death was further analyzed by FACS analysis after Pl staining (right panel). ¢ HS-1371 protects cells
from TNF-induced necroptosis in a dose-dependent manner. HT-29 cells were pretreated with indicated concentrations of HS-1371 and then treated
with TSZ (6 h for immunoblotting, 24 h for cell death assay). Cell lysates were analyzed by immunoblotting, and cell viability was analyzed by MTT
assay or phase-contrast microscopy. The results are presented as means + SEM. *P < 0.05, **P < 0.01, ***P < 0.001

on TNF-induced necroptosis was further analyzed by
immunofluorescence and FACS. When cells undergo
TNEF-induced necroptosis, RIP3 phosphorylates MLKL
and p-MLKL translocates into the plasma membrane’>”.
Nec-1, DAB, and HS-1371 prevented RIP1 and RIP3
kinase activity, resulting in no detection of p-MLKL
(Fig. 3b, middle panel). NSA functions as an inhibitor of
MLKL translocation, but not its phosphorylation, and as
expected, TSZ could induce MLKL phosphorylation in
the presence of NSA, but the resulting p-MLKL could not
translocate into the plasma membrane and stayed in the
cytosol. PI-positive cells, which are a marker of membrane
permeability during necroptosis, decreased in the pre-
sence of HS-1371 in response to TSZ as measured by flow
cytometry (Fig. 3b, right panel). Viability in response to
TSZ-mediated necroptosis was effectively restored by HS-
1371 in a dose-dependent manner (Fig. 3c). Taken toge-
ther, our results indicate that the novel small molecule
HS-1371 acts as a RIP3 inhibitor.

HS-1371 rescues cells from RIP3-dependent necroptotic
cell death but not apoptotic cell death

It is possible that the effect of HS-1371 on inhibition of
TSZ-mediated necroptosis is an off-target effect and not
dependent on regulation of RIP3 kinase activity. To rule out
this possibility, RIP3-expressing HT-29 cells were infected
with either an shRIP3 or shMLKL lentiviral plasmid to
knockdown RIP3 and MLKL, respectively. Knockdown
efficiency was analyzed by western blotting (Fig. 4a, upper
panel), and these cells were treated with TSZ to examine
necroptosis signaling (Fig. 4a, middle panel). HS-1371 did
not obviously affect cell viability in either RIP3 or MLKL-
deficient cells (Fig. 4a, bottom panel), suggesting that the
effect of HS-1371 in preventing TNF-induced necroptosis is
dependent on RIP3 kinase activity.

In addition to TNF, various stimuli have also been
shown to induce necroptosis. Next, we tested whether
HS-1371 could block TRAIL-induced necroptosis. As
shown in Fig. 4b, HT-29 cells were treated with TRAIL
plus Smac mimetic and zVAD to induce TRAIL-mediated
necroptosis; HS-1371 decreased TRAIL-induced S227
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phosphorylation of RIP3 and RIP3-mediated phosphor-
ylation of MLKL in a dose-dependent manner. Reduced
phosphorylation was consistent with a reduction in
cytotoxicity. These data indicate that RIP3-mediated
necroptosis could be inhibited by HS-1371. However,
HS-1371 did not inhibit apoptosis induced by TNF plus
CHX (Fig. 4c) or apoptosis induced by TNF plus Smac
mimetic (Fig. 4d), which does not require RIP3 kinase
activity, suggesting that this novel inhibitor has a specific
inhibitory effect on RIP3-mediated necroptosis.

Inhibition of RIP3 kinase activity by HS-1371 in various
cells

Previously, we reported that most cancer cells do not
express RIP3 due to methylation-dependent silencing'®'?;
therefore, we tested whether ectopically expressed RIP3 was
also affected by HS-1371 in RIP3-mediated necroptosis. In
HeLa cells that lack endogenous RIP3 expression, the
ectopic expression of RIP3 resulted in basal activation of
RIP3 phosphorylation; this activity was decreased by HS-
1371 in a dose-dependent manner (Fig. 5a, left upper panel).
RIP3 phosphorylation was markedly increased by TSZ
treatment, but pretreatment of HS-1371 effectively blocked
RIP3 phosphorylation and MLKL phosphorylation (Fig. 5a,
left bottom panel). Consistent with effects on phosphor-
ylation status, cell viability was gradually increased in a
dose-dependent manner (Fig. 5a, right panel). HS-1371 also
prevented TSZ-induced necroptosis in H2009 cells, which
have very low expression levels of endogenous RIP3, with
ectopic expression of RIP3 (Fig. 5b). The data further sup-
port the evidence that HS-1371 acts as a RIP3 inhibitor and
will lead to potential preventive or therapeutic uses in
multiple pathological states.

Importantly, HS-1371 also prevented TNF plus zVAD-
induced necroptosis in the mouse fibrosarcoma cell line,
1929 (Fig. 5¢), suggesting that the inhibitor blocks activity
of both mouse and human RIP3. Additionally, HS-1371 also
effectively prevented MLKL phosphorylation and cell death
in mouse embryonic fibroblast (MEF) cells treated with
TNF plus cycloheximide (CHX; protein synthesis inhibitor)
and zVAD (hereafter referred to as TCZ) (Fig. 5d).
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Fig. 4 HS-1371 only rescues cells from RIP3-dependent necroptosis. a Knockdown of RIP3 had no inhibitory effect on HS-1371 in necroptosis.
HT-29 cells expressing RIP3 shRNA, MLKL shRNA, or non-silencing control were analyzed by western blotting (upper panel), and these cells were
treated with TSZ (6 h for immunoblotting, 24 h for cell death assay). Cell lysates were analyzed by immunoblotting (middle panel), and cell viability
was analyzed by MTT assay (bottom panel). The results are presented as means + SEM. *P < 0.05, **P < 0.01, ***P < 0.001. b HS-1371 protected
cells not only from TNF-induced necroptosis but also from TRAIL-induced necroptosis. HT-29 cells were pretreated with indicated concentrations
of HS-1371 and then treated with TRAIL 4+ Smac + zZVAD (6 h for immunoblotting, 24 h for cell death assay). Cell lysates were analyzed by
immunoblotting, and cell viability was analyzed by MTT assay or phase-contrast microscopy. The results are presented as means + SEM. *P < 0.05,
**P <001, **P <0.001. ¢, d HS-1371 had no effect on TNF-induced apoptosis. HT-29 cells were pretreated with HS-1371 (5 uM) for 2 h and then
treated with TC or TS (TNF + either cycloheximide or SMAC mimetic, hereafter referred to as TC or TS, 6 h for immunoblotting, 24 h (TC) or 36 h (TS)
for cell death assay). Cell lysates were analyzed by immunoblotting, and cell viability was analyzed by MTT assay (TC) or CellTiter-Glo Luminescent Cell
Viability Assay Kit (TS). The results are presented as means + SEM. *P < 0.05, **P < 0.01, ***P < 0.001

Post-treatment of HS-1371 also has an inhibitory effect on
RIP3-mediated necroptosis

We tested the inhibitory effect of HS-1371 before and
after RIP3 activation. HT-29 cells were pretreated with
HS-1371 for 1 h, and then TNF-mediated necroptosis was
induced. Alternatively, TNF-mediated necroptosis was
induced and then HS-1371 was applied 1 or 2 h later. As
shown in Fig. 6a, b, low concentrations of HS-1371
showed a partial inhibitory effect on RIP3 phosphoryla-
tion in both pre-treatment and post-treatment, but 5 uM
HS-1371 completely inhibited RIP3 phosphorylation
and TNF-induced cell death. Since HS-1371 was able
to suppress necroptosis after this process was initiated
(Fig. 6a, b), we further analyzed the time point at which
HS-1371 could no longer prevent cell death. Until after
approximately 5h of treatment, MLKL phosphorylation
was partially blocked, and cellular cytotoxicity was sig-
nificantly reduced (Fig. 6¢); this phenomenon was corre-
sponded with necrosome complex formation (Fig. 6d),
indicating that HS-1371 may serve as a potential ther-
apeutic candidate for necroptosis-related diseases.

It has been reported that high or upregulated RIP3
expression can lead to spontaneous auto-phosphorylation,
then potentiating MLKL mediated necroptotic cell death
in keratinocytes from TEN patients®®. We also tested
whether HS-1371 blocks upregulated RIP3 expression-
mediated cell death. As shown in Fig. 6e, RIP3 ectopic
expression led to cell death detected by PI-positive
staining, and this was completely blocked by HS-1371
treatment, suggesting that HS-1371 could effectively
inhibit necroptosis induced by RIP3 overexpression.
Another possible application model for this drug would
be sepsis. Several reports suggest the clinical relevance
of RIP3 kinase inhibition in sepsi536, which is a high
mortality pathological condition that is classified as
uncontrollable. TNF, LPS, and other microbial com-
pounds are involved in the pathogenesis of sepsis, leading
to tissue damage®’. Management of the overwhelming
inflammatory response is an important issue for the
treatment of sepsis, so we tested the anti-inflammatory
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activity of HS-1371 under LPS-induced septic shock
conditions. Activation of the TNFR-1 and TLR (Toll-like
receptor)-4 signaling pathway plays an important role
in regulating the secretion of pro-inflammatory cytokines
through the NF-«B pathway. Because RIP3 kinase activity
is not required for the NF-kB pathway, HS-1371 did not
affect TNF-induced NF-«kB signaling in various cells
(Supplementary Figure S3). Similarly, LPS-induced
induction of the NF-kB pathway was not altered (Fig-
ure S4a and data not shown); however, systematic
inflammation contributed by RIP3-mediated necroptosis
was inhibited by HS-1371, which was associated with
reduced IL-1f, IL-6, and TNF-a expression in RAW264.7
macrophage cells (Supplementary Figure S4b—4e). These
results suggest that by using HS-1371 to specifically
target necroptosis, it may be possible to therapeutically
target sepsis.

Discussion

The study of cell death mechanisms is important
to understand the ultimate outcome of a pathological
process, whether cell death is induced by pathogen
infection, cancer therapeutics, or any other stressor 48,
Indeed, identification of a cell death mechanism is also
important if one seeks to intervene therapeutically to
inhibit or enhance a given cell death process. In cancer
cells, necroptosis is an alternative cell death pathway;
for this process, RIP3 is required, and its kinase activity
is necessary to form a stable necrosome complex to
propagate necroptosis®®. Conversely, in normal cells,
high RIP3 expression can lead to spontaneous auto-
phosphorylation and inopportune necroptosis®. Because
inhibition of RIP3 kinase activity shows beneficial effects
in certain pathological settings but cancer therapies may
require RIP3 activity to induce necroptosis, regulation
of kinase activity should be considered depending on the
drugs used as therapeutic targets.

In this study, we systematically tested four kinase inhi-
bitors and found that they have similar structures; their
binding activity to RIP3 is also similar in an in vitro assay
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system, but HS-1371 showed a much stronger inhibitory
effect on RIP3 kinase activity in an in vivo cellular system.
HS-1371 is a kinase inhibitor that has a potential use
for kinase-dependent cell death, but in our study, we
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identified this compound as a new potent RIP3 inhibitor,
thereby highlighting the risk of misinterpretation when
developing drugs as selective kinase inhibitors in
cancer therapy’. Dabrafenib in combination with MEK
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inhibitors has already yielded impressive results, but
dabrafenib also blocks necroptosis by interference with
RIP3 kinase activity*!, suggesting that the selection of
kinase inhibitors to target cancer cell death must consider
how cell death machinery is involved and the RIP3
expression pattern in cancer cells. In contrast to dabra-
fenib, another BRAF inhibitor vemurafenib, which also
suppresses proliferation of BRAF-mutated melanoma
cells, does not suppress RIP3 activity, indicating that these
kinase inhibitors act similarly, but their effect on cancer
cells may differ depending on cellular context.

RIP3 is widely involved in physiological and pathologi-
cal processes, and new RIP3 inhibitors can be used as
probes to explore the roles of RIP3 enzymatic activity in
addition to their potential applications in RIP3
hyperactivation-associated pathological settings such as
inflammatory bowel disease, chronic obstructive pul-
monary disease, multiple sclerosis, and toxic epidermal
necrolysis.
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