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1 Introduction

The dark matter problem remains perhaps the most compelling single piece of evidence for

the existence of new particles. Thermal freeze-out further provides a simple mechanism to

explain the observed relic density with only one or a few states, and can be easily motivated

on particle physics grounds. However, substantial experimental progress in recent years

has covered much of the parameter space of traditional frameworks such as supersymmetry.

In such an environment, it is important to check that the assumptions in conventional

approaches are not too severe; and any generic weakening of the present bounds would

motivate closer study.

One such exception is given by semi-annihilation [1] (SA), non-decay processes with

an odd number of external dark states. Models of particle dark matter (DM) almost al-

ways require a symmetry, either exact or (for decaying DM) very weakly broken, under
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Figure 1. Two types of dark sector-visible sector interactions, where χ (V ) is any dark (visible)

field. (Left): DM annihilation to/from, or scattering off, the SM; this is the only possibility when

the DM is stabilised by a Z2 symmetry. (Right): semi-annihilation, a non-decay process with an

odd number of external dark fields, generically possible when the stabilising symmetry is not a Z2.

We show 2→ 2 processes for illustrative purposes (and because they typically dominate), but any

number of final states are possible.

which the dark sector is charged and the Standard Model (SM) is neutral. In the most

commonly-studied scenarios, that global symmetry is a single Z2. The immediate implica-

tion is that all processes must have an even number of external dark sector particles, and

the dominant number-changing processes are 2 → 2 (co)-annihilation, see the left side of

figure 1. Crossing symmetry then relates the relic density to signal rates at colliders or

direct detection experiments, and it is the combination of all these searches that makes

bounds so severe. However, any other global symmetry may allow SA, illustrated in the

right side of figure 1, which can be important for the determination of the thermal relic

density while irrelevant at colliders and direct detection experiments. We show 2 → 2 SA

in figure 1 since this usually has the highest rate. This is not the only possibility, and in

particular 2→ n processes with final states consisting of one DM and n− 1 visible sector

particles are also common. Semi-annihilating dark matter (SADM) is then both generic

and less constrained than conventional models.

Though constraints are weakened in SADM, they are not absent. The diagram in the

left of figure 1 can not be forbidden by any symmetry, so will always be present; and SA

itself can lead to indirect signals in cosmic ray experiments [2]. It is therefore important

to explore the model space and discover to what extent current constraints do apply.

Ref. [3] made an initial step in this direction by systematically constructing effective field

theories describing all possible 2 → 2 SA with SM final states. However, that approach

implicitly assumed that the low-energy interactions between the dark and visible sectors

are non-perturbative with simple velocity dependence. Exceptions to this behaviour are

well-known, and include the Sommerfeld effect [4, 5], bound state formation [6–9], and the

presence of an s-channel resonance near threshold [10]. All of these have been studied in

the context of DM both for how they affect the relic density, and also for the possibility

that they can lead to enhanced cross sections today. As indirect detection is the most

robust search channel for SADM, it is worth considering the interplay of these two aspects

of phenomenology. For previous work in this direction see [11, 12].

In ref. [13] it was emphasised that when annihilation is enhanced at low temperature,

the final relic density depends sensitively on the DM temperature Tχ. It is usually assumed
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that the DM remains in kinetic equilibrium, Tχ = TSM ≡ T , till all number changing

processes cease to be important. While a safe assumption in conventional scenarios where

freeze-out occurs at relatively high temperatures, mχ/Tχ ∼ 25, enhanced cross sections can

continue to be relevant till much later, mχ/Tχ & 103. This is especially important in the

case of an s-channel resonance; the DM-SM scattering process related by crossing symmetry

will be much smaller, leading to earlier kinetic decoupling of the dark and visible sectors.

The temperature evolution of DM has attracted recent attention in a number of con-

texts [13–21]. The temperature of SADM specifically was previously studied in refs. [22, 23];

however, those works focused on a specific type of single-component SA, and provided ex-

pressions valid only for Maxwellian phase space distributions. We extend their work to

SADM phenomenology of the type discussed in ref. [3], provide expressions valid for arbi-

trary phase space distributions, and derive new approximations useful in the Maxwellian

non-relativistic case. Doing so illustrates the generality of the earlier result that post-

kinetic decoupling, SADM redshifts as radiation, Tχ ∝ T , and not matter, Tχ ∝ T 2. This

is despite the DM remaining strongly non-relativistic, and is instead due to a self-heating

effect where SA converts mass energy to dark sector kinetic energy. For sufficiently large SA

cross sections, the DM can even be hotter than the visible sector prior to matter-radiation

equality. The implications are obvious: if kinetic decoupling occurs before freeze-out of

low-temperature enhanced cross sections, since SADM is warmer than conventional DM it

will have smaller number changing rates. The observed relic density can be obtained for

larger DM-SM couplings, leading to larger potential signals today.

To illustrate this effect, we consider a concrete example: a SADM model for the

positron excess seen by PAMELA [24] and AMS-02 [25–27]. These experiments measure

the cosmic ray positron flux for 10 GeV. E . 1 TeV to be orders of magnitude larger

than the expected secondary backgrounds [28, 29]. While astrophysical explanations exist,

most notably millisecond Pulsars [30–32], this observation has also proved fertile ground

for DM model building, e.g. [33–38] and references therein (see ref. [12] for an earlier model

involving SADM).1 These models require (semi)-annihilation cross sections approximately

three orders of magnitude larger than the thermal relic cross section. However, it was

shown in ref. [40] that the theoretical maximum enhancement possible with a Breit-Wigner

resonance is only . 102. This limit arises precisely because the temperature drop after

kinetic decoupling leads to a suppression in the relic density, bounding the annihilation

cross sections from above. The higher post-decoupling temperature of SADM is then a

natural avenue to circumvent this obstacle.

The outline of this paper is as follows. We first review some details on semi-annihilation,

and in particular the concept of dark partners, in section 2. In section 3 we review how the

dark matter temperature Tχ is defined and evolves, expand on previous results for SADM,

and derive its asymptotic behaviour. In section 4, we discuss cross sections enhanced by an

s-channel resonance, how they depend on the dark matter temperature evolution, and the

role that SA can play. We then perform the positron excess case study, first constructing

1See also ref. [39] for a model of SADM that attempts to fit the AMS-02 anti-proton and anti-Helium

data.
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an explicit model in section 5, then fitting the putative signal in section 6, and finally

demonstrating that our model can simultaneously fit the signal cross section and thermal

relic density in section 7. We end with our conclusions in section 8. Some additional

aspects are deferred to the appendices; appendix A contains more technical details on the

Boltzmann equations and thermally averaged cross sections, and appendix B outlines a

lepton-number motivation for our simplified model.

2 Semi-annihilation and dark partners

We assume the existence of an unbroken global symmetry group D 6= Z2, under which all

SM fields are neutral. We refer to the states (un)charged under D as the dark (visible)

sector, which include at least the dark matter χ (SM). Conservation of D means that

SA has at least three external dark sector particles, with the minimal possibility being

χχ→ χ† + SM . The DM must be neutral under the unbroken SM gauge group; the same

must then hold for the set of SM particles in the final state. For 2 → 2 processes, the

only possible SM final states are then the photon, Z, Higgs and neutrinos. However, as

discussed in ref. [3], only the Higgs is possible in renormalisable minimal models, with the

other states demanding multi-component dark sectors.

If we want to allow other SM final states, we must expand our interest to at least 2 → 3

processes. In general, these processes will be phase-space suppressed, making it harder for

them to be relevant for thermal freeze out. However, we can circumvent that suppression

by introducing additional unstable states, such that the SA is a 2 → 2 process followed

by one or more decays. One commonly studied option uses additional visible sector states

φ; the relevant channel is then χχ → χ†φ, followed by φ decay to the SM. For examples,

see refs. [1, 12, 22, 23, 41].

In this work, we will follow an alternative option introduced in ref. [3], where we

add further dark sector particles Ψ, charged under both D and the SM gauge group.

Such states are common in DM models stabilised by a Z2 symmetry, e.g. superpartners in

supersymmetry or top partners in composite Higgs models that include dark matter. These

particles must be cosmologically unstable to avoid constraints on charged and coloured

relics. In these models, SA is χχ→ Ψ†V , where V is an SM state, followed by Ψ decay. In

order for SA to be relevant during freeze-out, mΨ < 2mχ. The only possible decay channel

for Ψ is Ψ→ χ+ SM , which requires mΨ > mχ and that D is (equivalent to) Z3. Finally,

in order for SA to be a 2→ 2 process, Ψ must have the same SM quantum numbers as V ,

for which reason we call these states dark partners.

One important complication in models which contain dark partners is that the Boltz-

mann equation for the dark matter contains an explicit dependence on the number density

of Ψ. Both the SA term itself as well as the Ψ decay term depend on nΨ and are rel-

evant to dark matter freeze-out. This means that in general it is necessary to integrate

the coupled equations for both Yχ,Ψ = nχ,Ψ/s, with s the entropy density, when determin-

ing the relic abundance of χ. We discuss these expressions more fully in section 3.2 and

appendix A. Here we outline the general evolution of YΨ, its asymptotic behaviour and

approximate solution after Ψ annihilations freeze out, and a useful simplification when Ψ

decays promptly.
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2.1 General form: long-lived dark partners

We first consider the full general expression for the Boltzmann equations for SADM with

dark partners.2 These expressions strictly apply to all such models, but from a practical

point are most relevant when the dark partners decay after DM freeze-out is completed.

The Boltzmann equation for the dark partner is

dYΨ

dx
= − ΓΨ

xHZ

(
YΨ − Yχ

Y eq
Ψ

Y eq
χ

)
+

1

2

s

xHZ
〈σv(χχ→ Ψ†V )〉

(
Y 2
χ − YΨ

(Y eq
χ )2

Y eq
Ψ

)
− s

xHZ
〈σv(Ψ†Ψ→ SM)〉

(
Y 2

Ψ − (Y eq
Ψ )2

)
+ . . . , (2.1)

and for the dark matter

dYχ
dx

=
ΓΨ

xHZ

(
YΨ − Yχ

Y eq
Ψ

Y eq
χ

)
− s

xHZ
〈σv(χχ→ Ψ†V )〉

(
Y 2
χ − YΨ

(Y eq
χ )2

Y eq
Ψ

)
− s

xHZ
〈σv(χ†χ→ SM)〉

(
Y 2
χ − (Y eq

χ )2
)

+ . . . . (2.2)

The factor of one-half in the SA term in eq. (2.1) is a symmetry factor associated with

identical particles. It does not appear in the equivalent term in eq. (2.2) as this term

changes χ number by 2. We have introduced the usual inverse temperature x = mχ/T and

Z =

(
1− x

3g∗S

dg∗S
dx

)−1

, (2.3)

where g∗S is the effective number of relativistic degrees of freedom, such that the entropy

density s = 2π2g∗ST
3/45. The dots in eqs. (2.1) and (2.2) denote contributions from

co-annihilation Ψχ† → SM and semi-co-annihilation Ψχ → χ†V ; these are qualitatively

similar to annihilation, in that the reverse channels are exponentially Maxwell-suppressed

at low temperatures. These three processes all enforce Yχ,Ψ = Y eq
χ,Ψ at early times but

freeze out in the usual manner; they are also typically subdominant to the processes we

explicitly included.

2.2 Asymptotic solution

The asymptotic solution for the dark matter number density is Yχ → a constant. This

is true for both annihilating and SADM models. The physical reason is straightforward:

as the Universe expands, the rate for processes initiated by two (or more) particles is

suppressed due to the dilution of matter. The total number, and hence Yχ, become ap-

proximately constant. It can also be easily seen from eq. (2.2): all 2→ n processes involve

a factor of s/xHZ ∼ T 2. They become negligible at sufficiently late times, so that dYχ/dx

vanishes.

In contrast, (inverse) decay processes become more relevant at late times. Decays are

unsuppressed by expansion, and the Hubble time increases while the lifetime remains the

same. We can also examine the temperature dependence of the decay terms in eqs. (2.1)

2We assume that χ-SM and Ψ-SM scattering remain efficient, and relax the former assumption later.
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and (2.2): 1/xHZ ∼ 1/T grows with time. (Inverse) decays will the dominate expansion

for x > xdec where

xdecH(xdec) = ΓΨ , xdec ∼ 10−15

ΓΨ/mΨ

(
mχ

1 TeV

)
. (2.4)

For annihilating dark matter models, the asymptotic number density for unstable states

decaying to dark matter is then given by setting the decay term in eq. (2.1) to zero:

YΨ ≈ Yχ (Y eq
Ψ /Y eq

χ ).

The presence of SA modifies this result. DM annihilation to heavier states vanishes

at threshold, so the thermally averaged cross sections are exponentially suppressed. In

contrast, SA production of a dark partner can have non-vanishing s-wave piece and in

general must be included. After χ freeze out, we can approximate eq. (2.1) by neglecting

all terms proportional to at least one power of Y eq
i . We can also usually neglect terms

quadratic in YΨ � 1; in particular, the decay term will also dominate over the annihilation

term provided that

ΓΨ

mΨ
> 〈σv(Ψ̄Ψ→ SM)〉 nΨ

mΨ
∼ 10−17

(
〈σv(Ψ̄Ψ→ SM)〉
3× 10−26 cm3 s−1

)(
nΨ

neq
Ψ (T = mΨ/25)

)
, (2.5)

which is typically a weaker condition than eq. (2.4). We then have the approximate Boltz-

mann equation

dYΨ

dx
≈ − ΓΨ

xHZ

(
YΨ − Yχ

Y eq
Ψ

Y eq
χ

)
+

1

2

s

xHZ
〈σv(χχ→ Ψ†V )〉Y 2

χ . (2.6)

We estimate the solution by setting the left-hand side to zero:

YΨ ≈ Yχ
Y eq

Ψ

Y eq
χ

+
s 〈σv(χχ→ Ψ†V )〉

2ΓΨ
Y 2
χ , (2.7)

which is a slowly-varying function consistent with our approximation. When the first term

dominates, the dark partner number density is set by inverse decay; it is larger than the

equilibrium density and proportional to Yχ. However, at sufficiently low temperatures the

SA term will always come to dominate. The true asymptotic solution for YΨ is

lim
x→∞

YΨ ≈
s 〈σv(χχ→ Ψ†V )〉T=0

2ΓΨ
Y 2
χ . (2.8)

Physically, since SA production of Ψ is unique in not being Maxwell-suppressed and Yχ
asymptotes to a constant, it is the only relevant production method of dark partners at late

times. The number density of Ψ is then set by balancing this process with the decay rate.

2.3 Approximations for prompt decays

The dark partner number density initially (at high temperatures) takes its equilibrium

value, and at late times is given by eq. (2.7). In the general case, the intermediate values

require solving the coupled equations of eqs. (2.1) and (2.2). However, in a large fraction of

model space the dark partner decay is sufficiently rapid to simplify our problem. A typical
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tree-level decay rate is ΓΨ/mΨ ∼ y2(n−1)/(4π)2n−3, with y a decay coupling and n the

number of final state particles. It follows from eq. (2.4) that generically xdec . 1, unless y

is small, n is large or there is additional phase space suppression. By definition, this means

that (inverse) decays become important before dark partner annihilations freeze out. Prior

to χ freeze out,3 Yχ ≈ Y eq
χ and the decay term drives YΨ towards equilibrium; afterwards

it enforces eq. (2.7). This gives us an approximate solution at all times.

If the decay width is sufficiently large, we can simplify this solution further. If the first

term of eq. (2.7) dominates prior to χ freeze-out, it gives YΨ = Y eq
Ψ , allowing us to describe

our solution with a single expression. This will break down at sufficiently early times, as s

increases without bound; but holding for all non-relativistic temperatures is sufficient for

most purposes. The condition for the first term to dominate is

ΓΨ

mΨ
> 10−3 x−3/2 e−(2−mΨ/mχ)x

(
mχ

mΨ

)5/2( 〈σv(χχ→ Ψ†V )〉
3× 10−26 cm3 s−1

)(
mχ

1 TeV

)2

. (2.9)

Thanks to the exponential suppression, this will generally hold for any unsuppressed two-

body decay for x & 1.

We can use our approximate solution for YΨ to simplify the calculation of the relic

density. In particular, if the decay term of eq. (2.7) is dominant, then we can rewrite the

contribution of SA and Ψ decay to the Yχ Boltzmann equation as

dYχ
dx

=
ΓΨ

xHZ

(
YΨ − Yχ

Y eq
Ψ

Y eq
χ

)
− s

xHZ
〈σv(χχ→ Ψ†V )〉

(
Y 2
χ − YΨ

(Y eq
χ )2

Y eq
Ψ

)
+ . . .

≈ −1

2

s

xHZ
〈σv(χχ→ Ψ†V )〉Yχ

(
Yχ − Y eq

χ

)
+ . . . (2.10)

In the second line, we used eq. (2.1) to eliminate the decay term, substituted the first term

in eq. (2.7) for YΨ, and neglected dYΨ/dx since YΨ � Yχ. More generally, we could use both

terms in eq. (2.7), but the relevance of eq. (2.10) is that it has the usual semi-annihilation

form for theories without dark partners. Physically, if the dark partner decays promptly

during χ freeze-out, we can approximate the combined SA plus decay process as a single

SA event, χχ→ χ†+SM . The factor of one-half means that the cross section required for

a thermal relic through SA alone is enhanced over the usual canonical value. There is an

additional factor of 2 due to SADM always being complex, so the canonical thermal SA

cross section is 〈σv〉0 = 1.2× 10−25 cm3 s−1.

3 Temperature evolution of semi-annihilating dark matter

The details of the temperature evolution of dark matter, and of kinetic decoupling from the

SM, have recently been discussed in a number of contexts [13–23, 42]. How this behaviour

changes in the presence of semi-annihilation was first explored in refs. [22, 23]; we expand on

and provide alternative forms for their results. In this section, we first review the definition

of the dark matter temperature, the consequences of it differing from the SM plasma

3We assume that since mΨ > mχ, dark partner annihilations freeze out first. If Ψ has SM gauge

interactions, its annihilation cross section can be larger than for DM and this might not hold.
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temperature, and its Boltzmann equation. We then give expressions that correspond to

the contributions of SA and dark partner decay. In both cases we assume CP is conserved.

Finally, we discuss the distinct asymptotic behaviour of the temperature in the presence

of SA, first described in ref. [22], where the temperature redshifts like radiation due to a

self-heating effect. We clarify how this behaviour is generic, and under what circumstances

it can lead to dark matter which is asymptotically hotter or colder than the SM.

3.1 Review

We follow ref. [14] in defining the dark matter temperature Tχ and a dimensionless variable

yχ as

Tχ =
gχ

3nχ

∫
d3pχ
(2π)3

~p 2
χ

Eχ
fχ(pχ) , yχ =

mχTχ

s2/3
, (3.1)

where fχ(pχ) is the dark matter phase space distribution, gχ the number of internal degrees

of freedom, and s the entropy density. The former expression is defined for any distribution

function, but produces the expected result if the phase space function is Maxwellian, fχ ∝
e−Eχ/Tχ . The dimensionless parameter is so defined as, for normal dark matter, it is

approximately constant after kinetic decoupling. As discussed below this is no longer true

for SADM, but we retain the same definition to maintain consistency with and make use

of the literature.

The first impact of allowing Tχ 6= TSM is that the thermal averages in the number den-

sity Boltzmann equation are modified. Specifically, forward annihilation must be evaluated

using the actual functions fχ, while the inverse rates use the equilibrium distributions f eq
χ :

dYχ
dx
⊃ − s

xHZ

(
Y 2
χ 〈σv(χχ† → SM)〉neq − (Y eq

χ )2 〈σv(χχ† → SM)〉eq

)
. (3.2)

The thermally averaged cross sections are defined in the usual way, see eq. (A.10) in

appendix A for more details. More importantly, we must include an additional Boltzmann

equation for yχ that describes the evolution of the DM temperature. The general form

is [14]
1

yχ

dyχ
dx

= − 1

Yχ

dYχ
dx

+
1

xZ

1

3T

〈
p4

E3

〉
Tχ

+
mχ

xHZ

∑
i

C
(i)
2 (3.3)

where the C
(i)
2 are moments of collision operators, and the sum includes all terms that

contribute to the Yχ Boltzmann equation plus scattering processes between DM and the

SM. For annihilation-like terms, they are given by a simple extension of eq. (3.2),

C
(ann)
2 = − s

mχ

(
Yχ 〈σv(χχ† → SM)〉2,neq −

(Y eq
χ )2

Yχ
〈σv(χχ† → SM)〉2,eq

)
(3.4)

where the modified thermal averages are

〈σv(χχ† → SM)〉2,neq =
g2
χ

3n2
χTχ

∫
d3pχ
(2π)3

d3pχ†

(2π)3

~p 2
χ

Eχ
fχ(pχ) fχ(pχ†)σ

√
(pχ · pχ†)2 −m4

χ

EχEχ†
.

(3.5)
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The equilibrium terms have the obvious replacement fχ → f eq
χ . For pure s-wave cross

sections, 〈σv〉2 = 〈σv〉, but the two functions differ when higher partial waves are relevant.

For the scattering terms, we have instead

C
(sca)
2 =

γ(T )

mχ

(
yeq

yχ
− 1

)
(3.6)

where yeq is yχ when Tχ = T and the γ-function is [42]

γ(T ) =
gSM

3π2m2
χT

∫
dω fSM(ω)

(
1± fSM(ω)

)
k4

∫
dΩ (1− cos θ)

dσ

dΩ
, (3.7)

with the scattering cross section σ evaluated at centre of mass energy E2
cm = m2

χ + 2mχ ω.

3.2 Semi-annihilation and kinetic decoupling

In light of our discussion in section 2, SADM models can be divided into two classes: those

with and without dark partners. The latter case was previously discussed in refs. [22, 23],

but we expand on their discussion. The contribution of the forward process to both the

number density and temperature Boltzmann equations have the same form as in eqs. (3.2)

and (3.4), replacing the annihilation cross section with the SA one. The inverse process

is more complicated; the temperature difference prevents us from being able to factor the

collision operator integrals in terms of the forward cross section as usual. The best exact

expression uses the inverse cross section directly, so that

dYχ
dx
⊃ −1

2

s

xHZ
Yχ

(
Yχ 〈σv(χχ→ χ†+SM)〉neq−Y eq

SM 〈σv(χ†+SM → χχ)〉Tχ,T
)
, (3.8)

where the factor of one-half is the usual result of SA changing χ number by one instead of

two, and the thermal average of the inverse process is

〈σv(χ† + SM → χχ)〉Tχ,T =
gχ gSM

nχ n
eq
SM

∫
d3pχ†

(2π)3

d3pSM

(2π)3
fχ(pχ†) fSM(pSM)

× σ(χ† + SM → χχ)

√
(pχ† · pSM)2 −m2

χm
2
SM

Eχ† ESM
. (3.9)

We have written this assuming a single SM particle, but the generalisation to more is

conceptually simple. Even in a 2 → 2 process, however, eq. (3.9) is awkward to compute,

being a function of two inputs (T and Tχ) that requires at least a two-dimensional numerical

integration. To this end, we note a useful simplification that occurs in the non-relativistic

limit. First we rewrite the phase space functions as

fχ(pχ†) fSM(pSM) =
nχ

neq
χ (Tχ)

e
−E

χ†/Tχ e−ESM/T =
nχ

neq
χ (Tχ)

e−(Eχ1+Eχ2 )/T e
−E

χ† ∆χ/mχ ,

(3.10)

where we have defined the difference of inverse temperatures,

∆χ =
mχ

Tχ
− mχ

T
. (3.11)
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Next, we note that the typical momentum of the SA final state χ† is large compared to

the χ thermal momentum pχ,th ∼ T . For a 2 → 2 process and neglecting the SM mass,

|~pχ† | = 3mχ/4; including visible sector masses or extra final state particles will result in

lower momenta but still typically O(mχ). It follows that the boost from the cosmological

frame to the collision centre of mass frame will be a correction of O(x−1). In many cases,

including those studied in this paper, scattering is more important till x & 100 so this is a

negligible sub-percent effect. Then we may define a more easily-computable function

S(T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

1

σ(χχ→ χ†SM)

1

2E2
cm(1− 4m2

χ/E
2
cm)1/2

∫
dΠn

∑
|M|2 e−Eχ†∆χ/mχ ,

(3.12)

with dΠn the n-body Lorentz-invariant phase space (including momentum-conserving delta

funciton) and Ecm the total centre-of-mass frame energy, such that S(T, T ) = 1 and

dYχ
dx
⊃ −1

2

s

xHZ
Yχ

(
Yχ 〈σv(χχ→ χ† + SM)〉neq − Y eq

χ 〈σv(χχ→ χ† + SM)〉eq S(T, Tχ)
)
.

(3.13)

Physically, S is the mean value of the exponential over all energies the χ† has (multiplied by

the ratio of equilibrium densities). It follows that the integral in eq. (3.12) is trivial for 2→
2 processes, and more generally can be reduced to a one-dimensional integral as a function

of one parameter, ∆χ. In the non-relativistic limit, neq
χ (T )/neq

χ (Tχ) = (T/Tχ)3/2 e∆χ , which

reduces the exponential dependence of S on ∆χ. For the usual case Tχ ≤ T , S ≤ 1 is a

suppression factor.

The contribution of this type of SA to the yχ Boltzmann equation follows a simi-

lar pattern. We focus on the non-relativistic approximation for Maxwellian phase space

distributions. We define an analogous function to eq. (3.12),

ST (T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

1

σ

1

USχ
1

2E2
cm(1− 4m2

χ/E
2
cm)1/2

∫
dΠn

∑
|M|2

~pχ†
2

mχEχ†
e
−E

χ†∆χ/mχ ,

(3.14)

where the normalisation constant USχ is chosen to ensure ST (T, T ) = 1, and is the expected

value of γχ†vχ† in the collision centre of mass frame. Using these we can write

mχ

s
CSA2 ≈ −Yχ 〈σv(χχ→ χ†φ)〉2,neq + Y eq

χ S(T, Tχ) 〈σv(χχ→ χ†φ)〉2,eq

+
1

6
USχ xχ

(
Yχ 〈σv(χχ→ χ†φ)〉neq − Y eq

χ ST (T, Tχ) 〈σv(χχ→ χ†φ)〉eq

)
.

(3.15)

We have introduced xχ = mχ/Tχ. See appendix A for details, and more general expressions.

Note that the terms in the second line involve the usual thermally averaged cross sections

of eq. (A.10), not those of eq. (3.5).

When dark partners are included, we must consider the possibility that Ψ will also

have a temperature that deviates from the SM. Since Ψ is normally charged under the

unbroken SM gauge group, it will have unsuppressed scattering with the SM plasma that

remain effective till after χ has decoupled. However, the unstable nature of Ψ implies
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that the relevant question is not whether Ψ-SM scattering dominates over expansion, but

whether the dark partners thermalise before decaying. This will be true if

nsc 〈σv〉sc
T

mΨ
> ΓΨ , or gsc x

−4
Ψ

(
m2

Ψ〈σv〉sc
)
>

ΓΨ

mΨ
, (3.16)

where nsc is the number density of the species that Ψ scatters with, gsc = nsc/T
3, the factor

of T/m represents the typical fractional momentum transfer in collisions, and xΨ = mΨ/T .

We see that for this to be true out to even moderate values of xΨ ∼ 103, we need a highly

suppressed decay width, of order ΓΨ < 10−15mΨ for electroweak scattering. However, this

will be precisely the case we consider later. When eq. (3.16) is true, then we can take

TΨ = T , but we must still include YΨ as a separate integration parameter; we give the

relevant formulae below. Alternatively, if the decay rate is large and eq. (2.9) holds, we

can treat the decay as always prompt and consider the SA followed by decay as a single

process. We need only study the evolution of Yχ and yχ. For the former, we use the results

below but with the approximation of eq. (2.7) to replace for YΨ wherever it appears; for

the latter, we use eq. (3.15) with

ST (T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

∫
dEχ

dNχ

dEχ

~pχ
2

mχEχ
e−Eχ∆χ/mχ , (3.17)

where dN/dE is the spectrum of DM produced in Ψ decay, including a boost corresponding

to the dark partner’s momentum when produced in SA. Finally, for intermediate widths,

the dark matter temperature must be included as an additional parameter that varies with

the cosmological evolution and has its own Boltzmann equation. We defer this case to

future work.

The contribution of SA and decay to the Boltzmann equations for Yχ,Ψ are then simple

extensions of the appropriate terms in eqs. (2.1) and (2.10) to include the effects of Tχ.

For SA, this is very easy since TΨ = T , and so

dYχ
dx
⊃ − s

xHZ

(
Y 2
χ 〈σv(χχ→ Ψ† + SM)〉neq − YΨ

(Y eq
χ )2

Y eq
Ψ

〈σv(χχ→ Ψ† + SM)〉eq

)
,

(3.18)

with the contribution to the YΨ evolution equation being −2 times this. The complications

due to DM kinetic decoupling appear in the contribution of the decay operator, which in

the usual Maxwellian and non-relativistic limit is given by

dYχ
dx
⊃ ΓΨ

xHZ

(
YΨ − Yχ

Y eq
Ψ

Y eq
χ
D(T, Tχ)

)
, (3.19)

where D is analogous to eq. (3.12) except for the decay operator, see appendix A and in

particular eq. (A.17) for details. The contribution to dYΨ/dx is exactly equal and opposite.

The SA effect on the evolution of Tχ is also a natural extension of eq. (3.4):

mχ

s
CSA2 = −Yχ 〈σv(χχ→ Ψ†+SM)〉2,neq +

YΨ

Yχ

(Y eq
χ )2

Y eq
Ψ

〈σv(χχ→ Ψ†+SM)〉2,eq . (3.20)
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Finally, the contribution of Ψ decay is given by

Cdec
2 = UDχ

ΓΨ

3Tχ

(
YΨ

Yχ
−
Y eq

Ψ

Y eq
χ
DT (T, Tχ)

)
, (3.21)

where UDχ is the decay equivalent of USχ , the mean of p2
χ/(Eχmχ) produced in Ψ decay; and

DT is analogous to ST , an integral over the decay matrix element including an exponential

factor depending on ∆χ. Precise definitions are given in eqs. (A.18) and (A.19) respectively

in appendix A.

3.3 Asymptotic dark matter temperature

In ref. [22] it was observed that SA causes a self-heating effect that results in a different

asymptotic temperature behaviour compared to ordinary cold DM. Specifically, once DM-

SM scattering decouples, ordinary DM redshifts as matter with Tχ ∼ pχ ∼ a−2 ∼ T 2,

where a is the expansion scale factor. This is the reason for defining yχ as in eq. (3.1):

after kinetic decoupling, yχ ∼ Tχ/T
2 is constant. In contrast, SA converts DM mass into

kinetic energy, resulting in Tχ ∼ a−1 ∼ T . Note, however, that although this is the redshift

behaviour of radiation, the dark matter remains highly non-relativistic, Tχ � mχ.

To understand the origin of this behaviour, let us first consider the general case. The

interaction rate for 2 → n SA is n2
χ 〈σv(SA)〉neq, and each such event will convert an

average fraction qχ of the mass to kinetic energy. This fraction is process-dependent,

but importantly a temperature-independent constant. The temperature is parametrically

Tχ ∼ Eχ/Nχ, where Nχ is the total number of DM particles, and so

dTχ
dt
∼ 1

Nχ

∫
dV qχmχ n

2
χ 〈σv(SA)〉neq ∼ qχmχ nχ 〈σv(SA)〉neq .

Converting this to dimensionless form (and neglecting entropy production) gives

dyχ
dx

=
yχ
Tχ

1

xHZ

dTχ
dt

=
s1/3

xHZ
qχm

2
χ Yχ 〈σv(SA)〉neq . (3.22)

The right hand side has no explicit dependence on Tχ, and indeed is asymptotically con-

stant: the cross section at late times is given by the s-wave piece, Yχ approaches the

constant relic value, and during radiation-domination the combination s1/3/(xH) is also

constant. Unless SA has no s-wave piece, at late times yχ ∝ x or, equivalently, Tχ ∝ T :

lim
x→∞

Tχ ≈ 18 qχ T

(
g∗S
80

)1/2(Ωχh
2

0.12

)(
〈σv(χχ→ χ†SM)〉T=0

3× 10−26 cm3 s−1

)
. (3.23)

We will shortly see that in practice, qχ is at most a few percent in 2 → 2 SA, so typically

Tχ ≈ T , depending on the relative importance of SA versus annihilation in determining

the relic density. When the low-temperature SA cross section is enhanced, we can expect

the DM to be much hotter. For 2→ n SA with n ≥ 3, qχ will be smaller resulting in lower

temperatures, but the radiation-like redshift behaviour will remain.
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The derivation of eq. (3.23) was based on general arguments, but it is also instructive

to connect it to the results presented above. In the absence of dark partners and neglecting

terms that are exponentially suppressed at late times, the contribution of SA is

dyχ
dx
⊃ s

xHZ
yχ Yχ

[
1

2

(
1 +

1

3
xχ USχ

)
〈σv(χχ→ χ†SM)〉neq − 〈σv(χχ→ χ†SM)〉2,neq

]
≈ 1

6

s1/3m2
χ

xHZ
Yχ USχ 〈σv(χχ→ χ†SM)〉neq . (3.24)

In the second line, we focused on the most enhanced term at low temperatures. We see

that eq. (3.24) has the same form as eq. (3.23), with qχ → USχ /6. For 2 → 2 SA with

a massless visible final state, USχ = 9/20 and so qχ = 7.5%. For dark partner models, if

they decay before thermalising the above holds with the modification that USχ is defined

from eq. (3.17). As discussed above, this is always true at sufficiently late times and hence

gives the asymptotic behaviour. However, even if Ψ-SM scattering remains efficient, we

can still have this behaviour thanks to the Ψ decay still converting mass to kinetic energy.

In particular, combining eq. (3.21) with the late-time approximation (2.8) for YΨ gives

dyχ
dx
⊃ mχ yχ

xHZ
UDχ

ΓΨ

3Tχ

1

Yχ

(
s 〈σv(χχ→ Ψ†V )〉T=0

2ΓΨ
Y 2
χ

)
=

1

6

s

xHZ
yχ Yχ xχ UDχ 〈σv〉T=0 ,

(3.25)

which again reproduces eq. (3.23) with qχ → UDχ /6.

4 Late-time resonantly enhanced semi-annihilation

In the previous section we outlined how the presence of SA modifies the thermal evolution

of dark matter. Most important is the general feature of eq. (3.23), that at late times Tχ
is proportional to, and potentially larger than, the SM temperature. However, in most

models we expect kinetic decoupling to occur after chemical decoupling, making this fea-

ture less important. One possible signal was discussed in ref. [23], where for light DM the

different kinetic behaviour can modify small scale structure. Here we instead consider sce-

narios where the cross section is modified at low temperatures, such that number-changing

processes continue to be important during epochs when Tχ 6= T .

Specifically we consider weak- or TeV-scale DM where the (semi)-annihilation cross

section features a narrow s-channel resonance, which we can model as a Breit-Wigner peak,

σv ∝ 1

(E2 −M2)2 +M2Γ2
. (4.1)

Here, E is the centre of mass energy, and M and Γ are the mass and width of the inter-

mediate resonance. At relatively high temperatures x ∼ 25, the thermal kinetic energy is

large compared to the width, E −M � Γ, and the first term in the numerator dominates.

As the temperature drops, E −M becomes comparable to the width and the total rate is

enhanced. Such models have been considered as possible ways to enhance signals in indi-

rect detection experiments while retaining thermal freeze-out [10, 12, 13, 33, 34, 43], and in

particular as ways to explain the positron excess seen by AMS-02 and earlier experiments.

– 13 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
5

Näıvely one can obtain arbitrarily large cross sections by taking the width sufficiently

small, at the cost of fine-tuning the model parameters. However, it was shown in ref. [40]

that the possible enhancement available through this mechanism is bounded from above

by O(102) for TeV DM. This is due to a period of enhanced annihilation during kinetic

decoupling, when the DM temperature decreases rapidly and the typical kinetic energy

becomes closer to the resonance. To see this more clearly, let us briefly review their

argument. We define E2 = 4m2(1 + z), M = 2m
√

1− δ, and MΓ = 4m2γ, where m is the

mass of the initial state particles; then the cross section (4.1) takes the form

σv = σ0
δ2 + γ2

(δ + z)2 + γ2
, (4.2)

where σ0 = σv|z=0. For δ > 0 and in the non-relativistic limit, this has thermal average [10]

〈σv〉 ≈ σ0
δ2 + γ2

(δ + ξx−1)2 + γ2
, (4.3)

where ξ ≈ 1/
√

2 is a constant. Note that this will continue to increase with temperature till

x = xb ≈ max[δ, γ]−1. A simple estimate for the relic density is to integrate the Boltzmann

equation only over the epoch where both the equilibrium density can be neglected and the

cross section is constant. This tells us that the correct relic abundance is obtained for

σ0

σc
≈ xb
xf
≈ max[δ, γ]−1

25
, (4.4)

where σc ≈ 3×10−26 cm3 s−1 is the usual thermal cross section. Eq. (4.4) assumes equality

of the temperatures of the two sectors; if the dark and visible sectors kinetically decouple at

some temperature xkd ∈ (xf , xb), then we must replace xb with the SM temperature when

Tχ = mχ/xb. For conventional DM that redshifts as matter, xχ = x2/xkd, this temperature

is x′b ≈
√
xkd max[δ, γ]−1/2 < xb, resulting in a smaller value of σ0. To get the maximum

possible cross section today we must evaluate eq. (4.2) for z ∼ 10−6,

σG ≈ σ0
max[δ, γ]2

max[γ2, δ2, 2δz]
∼ σ0 min

[
1, 106 max[δ, γ]

]
. (4.5)

This suggests that the maximum possible boost occurs for δ ∼ γ ∼ 10−6, which is supported

by more careful numerical calculations of ref. [40]. Finally, that work made the additional

assumption that thermal contact between the SM and DM is maintained by the same

couplings responsible for annihilation. That implies the upper limit σG . 102σc; and the

maximum enhancement is only obtained when xkd is comparable to the usual temperature

of freeze-out, xf ∼ 25.

The last assumption is key. It is well-motivated both on the grounds of minimality, and

that any coupling which allows the DM to scatter off the SM will also contribute to DM

annihilation. But there are two obvious loopholes, both of which we will exploit. First, for

any DM model, interactions that lead to p-wave annihilation will be suppressed compared

to s-wave processes that determine the relic density and indirect detection signals, but

can still dominate the scattering rate. This requires multiple mediators between the dark
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and visible sectors, but this is not rare in top-down models and can even be required for

UV-completeness [44–47]. In models where SA (dominantly) determines the relic density,

any scattering must involve different (combinations of) interactions, and so they naturally

fall into this category.

The second loophole is precisely the point discussed in section 3.3: after kinetic de-

coupling, the temperature of SADM does not redshift as matter. Additionally, for cross

sections which are enhanced at low temperatures, eq. (3.23) demonstrates that the temper-

ature after decoupling is typically higher than the SM. This could potentially allow x′b > xb,

increasing the enhancement over what would be expected from eq. (4.4). It also raises the

possibility of models where scattering is absent, and the DM temperature is maintained

only by SA; however, we defer this more exotic possibility to future work.

There is one additional extension we make. It was shown in ref. [13] that eq. (4.1)

is an inadequate approximation when the resonance is nearly on-shell. The Breit-Wigner

propagator is an approximation that neglects some of the energy dependence. Specifically,

the Green’s function is

D−1
F (E) = E2 −M2

0 −M2
2(E) = E2 −M2

0 −<M2(E)− i=M2(E) , (4.6)

where M0 is the bare (unrenormalised) mass and M2 encodes loop corrections. Ordinarily

it is satisfactory to take the loop correction as a constant evaluated at the physical mass

M , where the Cutkosky rules give =M2(M) = M Γ. However, this breaks down in the

presence of a threshold for a new decay, where the imaginary part changes rapidly. Small δ

by definition means that non-relativistic processes are taking place near such a threshold,

and is especially prominent from taking z ∼ δ in eq. (4.5). To correct for this effect we

make the replacement M Γ→ E Γ(E), where Γ(E) is the width the resonance would have,

if it had mass E (and all other model parameters where unchanged). We also make the

natural definition 4m2 γ̃(z) = E Γ(E). For δ > 0, the on-shell resonance cannot decay

to DM, but that process will contribute to Γ(E) for all E ≥ 2m. Large enhancements

require small resonance-DM couplings, so that Γ(E) ∼ Γ near threshold. Since we need

Γ(E) ∼ 10−6M to maximise eq. (4.5), the actual width that maximises the enhancement

will be slightly smaller. However, since Γ(E) is a monotonically increasing function, the

width at low temperatures is less than at high, and so this represents a modest increase in

the overall enhancement.

5 UV-complete simplified model

We now construct a simplified model to serve as a case study of the phenomenology

discussed so far. Our intention is to fit the AMS-02 positron excess using the process

χχ→ Ψ†µR, so our theory must contain a minimum of three states charged under the dark

sector symmetry: the dark matter χ, a fermion dark partner Ψ, and a bosonic resonance

Φ. We take the minimal case for Φ (a SM-singlet complex scalar) and Ψ (a Dirac fermion).

We consider fermion dark matter to avoid a tree-level Higgs portal annihilation channel.

As discussed in section 2, the symmetry that stabilises χ must be equivalent to a global

Z3, so for simplicity we make that choice.

– 15 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
5

Particle Spin D = Z3 SU(2)L ×U(1)Y
χ 1/2 exp 2πi/3 10

Ψ 1/2 exp 2πi/3 1−1

Φ 0 exp 2πi/3 10

Σ 0 exp 2πi/3 21/2

Table 1. New particle content in our simplified model.

A model with this dark matter and dark partner was among those catalogued using

effective field theories in ref. [3], which also discussed the possible choices for the dark

partner decay. The minimal possibility involving muon final states is the three-body decay

Ψ→ χµν̄, which can be derived from the dimension-7 operator

Ldecay =
1

Λ3
(Ψ̄µR)

(
(L̄H̃)χ

)
, (5.1)

where H̃ = iσ2H∗ and L is the (left-handed) lepton doublet. Constructing a UV-complete

theory requires opening this operator into renormalisable terms. There are eight possible

ways to do this at tree-level. We choose the unique option which introduces only one

additional degree of freedom: a complex scalar doublet Σ, charged under D and coupling χ

and L. This Yukawa coupling will also lead to χL→ χL scattering that maintains thermal

contact to x ∼ 103, provided that Σ is not too heavy.

The sum total of new particles is listed in table 1. The Lagrangian is

L = LSM/V (H) + Lkin + LY − V (H,Φ,Σ) , (5.2)

with kinetic terms

Lkin = χ̄
(
i∂/−mχ)χ+ Ψ̄(iD/−mΨ)Ψ + |∂µΦ|2 + |DµΣ|2 , (5.3)

Yukawa interactions

LY = gχ Φ χ̄cγ5χ+ gΨ Φ Ψ̄µR + gΣ Σ χ̄L+ h.c. , (5.4)

and scalar potential

V (H,Φ,Σ) =
1

2
λh

(
H†H − 1

2
v2
h

)2

+m2
Φ Φ†Φ +m2

Σ Σ†Σ +
1

2
λΦ(Φ†Φ)2 +

1

2
λΣ(Σ†Σ)2

+ λhΦ

(
H†H − 1

2
v2
h

)
Φ†Φ + λhΣ

(
H†H − 1

2
v2
h

)
Σ†Σ + λΦΣ Φ†Φ Σ†Σ

+

(
µΣ Φ Σ†H +

1

6
µΦ e

iαΦΦ3 +
1

2
λ3 e

iα3 (Φ†)2Σ†H + h.c.

)
. (5.5)

We have used phase rotations to set the Yukawa couplings and µΣ to be real and positive

without loss of generality. All other couplings are automatically real except the last two on

the last line of eq. (5.5), where we have written the phases explicitly. We chose the Φ-dark

matter Yukawa to be a pseudoscalar-like coupling in order to have s-wave semi-annihilation.
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Note that if we did not include the Σ field, there would be an additional accidental Z4

symmetry under which χ → iχ, Ψ → −Ψ and Φ → −Φ. This would enforce dark partner

stability for the mass range of interest, mΨ < 2mχ,mΦ. Further, this symmetry is restored

in the limit µΣ, µΦ, λ3 → 0, which means it is technically natural for all three couplings

to be simultaneously small. In appendix B, we outline a theory where D is a residual

subgroup of U(1)Lµ−Lτ , where µΦ = λ3 = 0 and µΣ is technically natural by itself. This

alternate theory can also explain the particular flavour structure of the Yukawa couplings,

by forbidding interactions with the tau or electron prior to the breaking of the flavour

symmetry.

The scalar cubic coupling µΣ introduces a mass mixing between the resonance Φ and

the neutral component Σ0 of the extra doublet. This mixing is necessary to allow the dark

partner to decay, but the coupling introduces an additional decay mode for the resonance,

Φ → ΣH†. This must be subdominant to the decay to the dark partner, since it will

produce a large number of soft photons from Higgs and gauge boson decay and is subject

to stringent constraints from CMB observations and galactic centre observations. For

ΓΦ ∼ 10−6mΦ, the relevant region of parameter space is

gΨ . 10−2 , µΣ . 5× 10−3mΦ . (5.6)

For TeV-scale DM, this corresponds to GeV-scale µΣ.

We introduced the coupling gΣ as a UV completion of eq. (5.1) to allow Ψ to decay.

However, it also leads to two other phenomenologically important processes: DM-SM scat-

tering and DM annihilation to the visible sector. In particular, we want the former to be

important while keeping the latter small. This can be achieved as the scattering process is

also resonantly enhanced (though much less so than our main processes of interest). We

can estimate the kinetic decoupling temperature Tkd by equating the expansion rate to the

scattering momentum transfer rate,

H(Tkd) ≈ nL 〈σv〉s
Tkd
mχ

, (5.7)

where nL is the number density of L, and the factor of Tkd/mχ represents the approximate

momentum transfer per collision. This gives us a relation between yΣ and xkd = mχ/Tkd,

which we can then insert in the annihilation cross section:

σanv = 0.77 pb

(
xkd
103

)4(1 TeV

mχ

)2(m2
Σ −m2

χ

m2
Σ +m2

χ

)2

. (5.8)

Compared to the thermal relic cross section, this is already suppressed by over an order

of magnitude for mΣ ≈ 1.4mχ, with greater suppression for lighter Σ. Annihilation will

be a subleading correction to the thermal relic density, and negligible compared to SA for

indirect detection today.

There are two important qualitatively different phases in this model, according to

whether the dark partner decays through the direct three-body (3B, Ψ → χµν) or sequen-

tial two-body (S2B, Ψ → Σµ, Σ → χν) channel. This will lead to different spectra of the
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muon decay product, and ultimately of the positrons produced in muon decay. In partic-

ular, the latter process produces a harder spectrum, where the muon is monochromatic

in the dark partner rest frame. In the following section, we will see how this qualitative

difference affects the ability to explain the positron excess.

6 Fitting the AMS-02 positron excess

In this section we investigate how well the DM model described above can explain the

AMS-02 positron excess. We do not consider factors such as the relic density or other

experimental constraints, but simply focus on what masses and cross sections provide the

optimal fit to the data. Rather than attempt a full parameter scan, we consider two

ansatzes for the ratios of dark sector masses ρΨ ≡ mΨ
mχ

and ρΣ ≡ mΣ
mχ

, namely

{ρΣ, ρΨ} =

{
{1.2, 1.3} S2B,

{1.4, 1.3} 3B.
(6.1)

This reduces the relevant parameter space to the DM mass mχ and SA cross section

〈σv(χχ → Ψ̄µ)〉. Other processes can be neglected as they are either not resonantly

enhanced (e.g. annihilation χχ̄ → µµ̄), or suppressed by small µΣ as discussed around

eq. (5.6).

To study DM (semi)-annihilation, we implement this model in FeynRules [48]. Since

DM in the galaxy today has a velocity v ∼ 10−6, we can efficiently simulate the kinematics

of the final states using only the decay of the resonance Φ. We generate parton-level

events for the resonance decay in MadGraph [49]. Showering and hadronisation are later

performed with PYTHIA 8.2 [50]. We cross-checked the positron spectra per annihilation

derived this way by using the same tools to analyse DM annihilation to muon pairs, and

comparing with PPPC 4 DM ID [51]. There are minor discrepancies for positron energies

above a few hundred GeV, due to the absence of electroweak (EW) corrections in our

spectra. However, experimental uncertainties at high positron energies are relatively large,

such that including EW corrections would hardly change the results of the analysis. We

show the positron spectrum generated this way in figure 2 for our two choices of ρΨ,Σ and

a fixed DM mass mχ = 1.5 TeV. The two spectra are very similar, though we see that the

S2B decay mode leads to slightly harder positrons, as expected based on our qualitative

arguments of the previous section.

The propagation of the positron spectra from their point of origin to detection can be

performed using the diffusion-loss equation [52],

∂f

∂t
−∇

(
K(E, ~x)∇f

)
+ ~Vc · ~∇f −

∂

∂E

(
b(E, ~x)f

)
= Q(E, ~x) , (6.2)

where f(t, ~x,E) is the positron number density, K the diffusion coefficient, Vc the galactic

wind, b the energy loss coefficient function and Q the source term. This last object contains

the particle physics input:

Q =
1

2
n2
χ

∑
f

〈σv〉f
dNf

e+

dE
≈ 1

4
n2
χ 〈σv(χχ→ Ψ̄µ)〉

dNSA
e+

dE
, (6.3)
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Figure 2. Positron spectrum at production for the two dark partner decays modes, with S2B (3B)

in blue (red). The specific parameters are as labelled.

Model δ K0 [kpc2/Myr] L [kpc] Vc [km/s]

MIN 0.85 0.0016 1 13.5

MED 0.70 0.0112 4 12

MAX 0.46 0.0765 15 5

Table 2. Parameters for propagation models MIN, MED and MAX. L is the height of the galactic

disc, Vc the magnitude of the galactic wind, and K0 and δ are the parameters of eq. (6.4).

where we assume that SA dominates due to the resonant enhancement. The additional

factor of one-half is due to a difference in how the cross sections are normalised; 〈σv〉f av-

erages over both particle and anti-particle, while 〈σv(χχ→ Ψ̄µ)〉 does not. The remaining

terms in eq. (6.2) describe the propagation itself, and different choices of these parameters

allow us to explore the astrophysical uncertainties. As the goal of this work is to explain

the positron spectrum with dark matter physics, we restrict ourself to the choice of several

benchmark scenarios. For the diffusion coefficient and galactic wind, we consider the MIN,

MED and MAX models defined in refs. [53, 54] as illustrative of the range of possibili-

ties. These model the galaxy as a disc of varying height L and parameterise the diffusion

coefficient as

K(E) = K0 (E/GeV)δ , (6.4)

with the specific model parameters given in table 2. The energy loss function depends on

the galactic magnetic field, for which we use the parameterisation of ref. [55],

Btot = B0 exp

(
−r − r�

rD
− |z|
zD

)
, (6.5)

where (r, z) are the Galactic coordinated, r� the location of the Sun, and the different

choices of B0, rD and zD are given in table 3. Other possible uncertainties come from the

choice of DM density profile. As detailed in the following section, cuspy profiles such as

NFW or Einasto are heavily constrained by the absence of a γ-ray signal from the galactic

centre, so we use an isothermal profile (Iso) as representative of a cored distribution. With
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Magnetic Field B0 [µG] rD [kpc] zD [kpc]

MF1 4.78 10 2

MF2 5.1 8.5 1

MF3 9.5 30 4

Table 3. Parameters for the magnetic field parameterisation of eq. (6.5).
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Figure 3. The best fit spectra for the S2B (left) and 3B (right) cases. The points mark the AMS

data with error bars.

these choices, we can integrate the diffusion equation using the numerical Green’s functions

provided by PPPC 4 DM ID [55].

In addition to the primary positrons from SA, we must include the astrophysical con-

tribution to the positron flux. Pulsars are a potential source of primary positrons, and have

been used as an alternative explanation for the excess [30–32]. As we are focusing on DM

explanations, we do not include any such contribution. Secondary cosmic positrons are

produced by spallation reactions of cosmic nuclei with interstellar medium. The predicted

spectra vary with the choice of modelings of nuclear cross sections and the propagation

parameters [56]. We adopt the secondary positron flux proposed in the model from ref. [29]

and parameterised in ref. [57] as

dΦsec
e+

dEe+
=

4.5 E0.7
e+

1 + 650 E2.3
e+

+ 1500 E4.2
e+

GeV−1cm−2s−1sr−1 , (6.6)

where Ee+ is the positron energy in GeV.

With these choices, we vary our parameters in the DM model space and over our

discrete set of astrophysical ansatzes. We add the positron spectra generated this way to

the secondary flux of eq. (6.6). We restrict our attention to energies Ee+ > 10 GeV; below

this point, the contribution to the flux from DM is negligible compared to the secondary

background, while the experimental uncertainties are very small, and the quality of our

fit would be driven by astrophysics rather than the particle physics we focus on. We

show the best fit spectra for each decay mode in figure 3; the associated SA cross sections

are 〈σv〉 = 3.5 × 10−23 cm3 s−1 and 2.6 × 10−23 cm3 s−1 respectively, with a statistical

uncertainty of 1–2%. For positron spectrum with energy larger than 10 GeV, the best fits

have χ2 = 56.9 and 208.3 for 49 degrees of freedom.
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7 Thermal relic density and late-time cross section enhancement

In the previous section, we showed that SA can provide a good fit to the AMS positron

excess for TeV-scale DM and a cross sections σ(χχ → Ψ†µ) ≈ 3 × 10−23 cm3 s−1. As

expected, this cross section is several orders of magnitude larger than the thermal relic

cross section. In this section we show that the model of section 5 can simultaneously

explain this signal cross section and provide the correct relic density due to the s-channel

resonance. We also discuss other experimental bounds, most notably from the CMB but

also other indirect channels such as gamma rays.

The majority of the technical details for χ freeze out have already been discussed in a

general context in sections 3 and 4, but there are some specific points in this model that

need explanation. Most important is the presence of the additional scalar Σ, which can

be produced by χχ SA and dark partner decay, and has two-body decay to DM. All our

Boltzmann equations will explicitly depend on fΣ, which in general requires its own set

of evolution equations. However, we exploit the relatively large width for the two-body

decay, ΓΣ/mΣ ∼ g2
Σ/8π ∼ 10−3. As discussed below eq. (2.9), this decay dominates over

both expansion and production prior to χ freeze-out, especially given that SA production is

somewhat suppressed. We can use a variant of eq. (2.7) to approximate for YΣ at all times:

YΣ ≈ Yχ
Y eq

Σ

Y eq
χ
S(Σ)(T, Tχ) +

1

2
Θ(mΨ −mΣ)

ΓΨ

ΓΣ
YΨ +

s 〈σv(χχ→ Σ†H)〉neq

4ΓΣ
Y 2
χ , (7.1)

where Θ is the Heaviside-Lorentz function. We included an additional term for the contri-

bution of dark partner decay. This is relevant despite the small ratio of widths, ΓΨ/ΓΣ .
10−10, because YΨ ∝ Γ−1

Ψ at late times as can be seen from eq. (2.8). We also corrected

the contribution from inverse decay due to Tχ 6= T using a variation of eq. (3.12),

S(Σ)(T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

∫
dEχ

dNχ

dEχ
≈ exp

(
−(mΣ −mχ)2

2mΣmχ
∆χ

)
, (7.2)

with dNχ/dEχ the spectrum of DM produced in Σ decay. The second equality assumes

the non-relativistic limit and that Σ is at rest; this will be a good approximation if inverse

decay dominates production, which is when this correction is most important. Accordingly,

we use eq. (7.1) to replace for YΣ whenever it appears in our Boltzmann equations. For

computing the contributions of inverse processes, we assume Σ is in kinetic equilibrium

with the SM; this is true whenever they are relevant, as inverse decay processes dominate

Σ production during these early epochs. However, when computing the effect of SA on Tχ,

we follow the discussion on prompt decays in section 3.2 and approximate production and

decay as a single process.

The dark partner lifetime is highly suppressed by our demand that Σ-Φ mixing be

small. Even for the more rapid two-body decay, the lifetime is parametrically

ΓΨ

mΨ
∼

g2
Ψ

32π
sin2 θ

(
1−

m2
Σ

m2
Ψ

)2

∼ 10−15 , (7.3)

where θ is the appropriate mixing angle. The three-body decay is naturally even smaller.

Note that as discuss in section 3.2, this is a slow enough decay that the DP thermalises
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Figure 4. SA cross-sections in the galaxy today after imposing the relic density constraint, in

the (δ – γ) plane, for the sequential two-body (left) and three-body (right) decay modes. The blue

contours are labelled in cm3 s−1; the shaded blue regions explain the results of section 6. The

red hatched area is excluded by CMB measurements; we also show sub-leading constraints from

H.E.S.S. observations of the galactic centre (brown dot-dashed line) and BBN (green dotted line).

The grey shaded area is where the relic density can not be obtained with SA coupling gχ < 1. The

CMB constraints fully (partially) exclude the S2B (3B) preferred region, but these bounds can be

weakened in the presence of a small O(1) substructure enhancement. See the text for more details.

before decay till at least x & 103. We therefore make the approximation that Ψ has the

same temperature as the SM in evaluating processes that involve it.

We are left with three Boltzmann equations, for Yχ,Ψ and yχ. We numerically integrate

these till Yχ and yχ/x are approximately constant, and YΨ is given by eq. (2.8). We cross-

check our numerical code by comparing to micrOMEGAs 4.1 [11, 58] for semi-annihilating

non-resonant models with Tχ = T , from which we include a 15% theoretical uncertainty

in the relic density. Our model contains a large number of parameters; at a minimum, the

relic density depends on four masses, three Yukawas, and the cubic coupling µΣ. Rather

than attempt a detailed scan of the whole model space, we focus on the values of mχ,

mΨ and mΣ corresponding to our two best-fit points in the previous section. We fix the

Σ-Φ mixing angle θ to discrete values, which determines the cubic coupling; set gΣ = 1, to

maximise the scattering cross section while remaining perturbative; use the relic density

to fix gχ; and convert the remaining parameters {mΦ, gΨ} → {δ, γ}. We also apply the

conservative constraint that gχ ≤ 1 to ensure numerical stability; as discussed in section 4,

we expect large enhancements to require small DM-resonance coupling, so this should not

significantly effect the preferred parameter space.

The results are plotted in figure 4 for sin θ = 10−4, or µΣ ∼ 2 GeV. We found little

qualitative difference for other values of sin θ < 10−3, beyond two restrictions on the

parameter space. There is a lower bound on γ coming from the decay Φ→ ΣH†,

γ &
µ2

Σ

8πm2
Φ

∼
m2

Φ −m2
Σ

4πv2
h

sin2 θ ∼ 5 sin2 θ . (7.4)
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This explains the region plotted in figure 4, and reduces the parameter space for smaller

mixing angles. For larger mixing angles, the parameter space does not increase as values of

γ . 10−8 require gχ > 1 to reproduce the correct relic density. Our choice of mixing angle

then is roughly maximal in the {δ, γ} plane. Aside from these effects, sin θ only changes

the rate for χχ → Σ†H, which for sin θ . 10−3 is always subdominant; and so the signal

cross section is independent of θ and the relic density only weakly dependent on it.

The most important conclusion from figure 4 is that the annihilation today can reach

values as large as 10−20 cm3 s−1 while still reproducing the observed relic density. This

represents an enhancement of five orders of magnitude over the thermal relic cross section

for SADM, significantly larger than was found in ref. [40] for annihilating DM. The cross

sections of section 6 are easily obtainable, and are shown in the blue shaded bands. As

expected from eq. (4.5), the SA cross section is approximately set by max (δ, γ) and hits its

maximal value for δ . 10−6. The contribution of off-shell Φ→ χχ to the imaginary part of

the two-point function leads to the optimal width γ ∼ 10−7 and gχ . 0.1. Our condition

gχ < 1 is not significantly affecting the preferred parameter space, with gχ ∼ 0.02 (0.04)

in most of the S2B (3B) best fit regions.

To help understand the effects of SA and kinetic decoupling, we show the evolution of

Tχ, Yχ, and YΨ in figure 5. In these plots we fix δ = 10−7 and vary γ as labelled; all other

parameters are as described above. The DM temperature relative to the SM is shown in

the top row of that figure, and its behaviour is simple: Tχ = T till scattering ceases to be

efficient around x . 103, after which the self-heating effect of SA increases the temperature

ratio (Tχ continues to decrease, just more slowly than T ). Smaller values of γ correspond

to larger SA cross sections and so more warming, but also a higher asymptotic temperature

ratio: models with smaller SA cross sections also reach their final value sooner. The obvious

features at x ∼ 104 and 107 in each line are SM physics: the QCD phase transition and

e+e− annihilation at T ≈ 511 keV, both of which warm the SM and so lower Tχ/T .

The effect this has on Yχ, shown in the middle row of figure 5, is relatively simple.

Since Tχ does not undergo the rapid decrease discussed in section 4 for conventional DM

after kinetic decoupling, SA remains effective till x ∼ min(γ−1, δ−1). The relatively high

DM temperature means semi-annihilation is efficient for a long time, but the enhancement

is not too great and we obtain the correct relic density for larger yχ than would be true

without self-heating. The only notable feature occurs for γ = 10−6 and the 3B decay mode,

where Yχ is approximately constant for 100 . x . 300. This feature can be understood

by examining the evolution of YΨ, shown in the bottom row of figure 5. We see that in

all cases, the dark partner number density rapidly approaches the approximate value of

eq. (2.7) after Yχ departs from its equilibrium value. Small values of γ correspond to small

dark partner widths, increasing this asymptotic value, while the width is also larger in the

3B decay mode. In some cases, Ψ must actually be replenished above its equilibrium value

by SA. For the specific case of γ = 10−6 and the 3B decay mode, this increases YΨ to a

sufficiently large value that the reverse process, Ψ̄µ → χχ, becomes important again and

slows the depletion of DM. This effect reduces the time available for SA to deplete the DM

number density, requiring larger values of yχ to compensate, and explains the pseudo-lower

bound on γ discussed above.
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Figure 5. DM temperature Tχ (top), DM number density Yχ (middle), and dark partner number

density YΨ (bottom) as a function of the SM inverse temperature x for the S2B (left) and 3B (right)

decay modes and δ = 10−7. The top two rows plot four different values of the resonance width

parameter γ as labelled in the top line. The bottom row shows both the results of our numerical

integration and the approximation of eq. (2.7) for two values of γ.

The fact that YΨ is well-approximated by eq. (2.7) for nearly all its evolution supports

our use of eq. (7.1) for YΣ, rather than including an additional Boltzmann equation. As

discussed in section 2, we expect our approximations to be better for states which decay

more rapidly. One possible concern is that since SA remains valid till x ∼ 106, we can no

longer assume the dark partner will be in kinetic equilibrium with the SM, despite the very

narrow widths we consider. Since Ψ-SM scattering transfers energy from the dark sector, it

has the effect of lowering Tχ and thus decreasing the SA cross section. Therefore if Ψ also

kinetically decouples from the SM before χ freeze out, we would need even larger values of

yχ to match the relic density. Our approach is in this sense a conservative estimate of the

possible enhancement.
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We also consider a number of possible constraints, of which the most robust are from

the cosmic microwave background (CMB). Annihilation to electromagnetically charged

states before or during recombination increases the ionisation fraction of the universe,

suppressing the power spectrum at small angular scales and enhancing the polarisation

power spectrum [59, 60]. The observations of these quantities then place bounds on SA at

that epoch. The cross section then need not equal its present value; specifically, DM was

colder then resulting in smaller γ̃ and larger cross sections. We include this effect, though

the small values of gχ in our best-fit regions make this a minor effect. We use the results

of ref. [61] based on the Planck 2015 data [62], which exclude complex DM annihilating to

muons at 95% if σv/mχ > 5.8 × 10−27 cm3 s−1 GeV−1. The limit is weaker for our model

as only 39% (35%) of the collision energy is transmitted to the muons for the S2B (3B)

case. This still excludes all the preferred S2B parameter region; this can be reopened with

a small additional substructure enhancement, at the cost of model elegance. The 3B case

is not completely excluded, due to the smaller preferred cross section and that less of the

collision energy being mediated to muons. There are also CMB bounds from the other

SA channel, χχ → ΣH, as well as direct annihilation. The former are suppressed by the

smaller cross section and that even less energy is deposited into the visible sector, and for

sin θ = 10−4 are an order of magnitude smaller. The annihilation bounds are negligible as

the cross section is orders of magnitude weaker than for SA.

An additional early-Universe constraint comes from big-bang nucleosynthesis (BBN).

DM (semi)-annihilations can modify the predictions for the primordial elemental abun-

dances; in particular, leptonic final states can induce photo-dissociation of 4He [63], leading

to stronger bounds than the CMB constraints in some models. Ref. [64] studied the effect

of DM with Breit-Wigner-enhanced cross sections, and found an approximate bound of

σv . 5× 10−22 cm3 s−1 for real DM annihilating at TSM ≈ 10−4 MeV. Including a factor of

2 for complex DM, the fraction of the collision energy transmitted to the muons, and the

post-decoupling evolution of Tχ, we get the constraints shown by the green dotted line in

figure 5.

The next most important constraints are those from galactic centre annihilation. In

particular, cuspy DM profiles lead to bounds on TeV-scale DM from the H.E.S.S. telescope

that are only slightly weaker than the thermal relic cross section [65]. These exclude all the

parameter space plotted in figure 4, hence our focus on cored density profiles in section 6.

The bounds on complex DM annihilating to light quarks for a cored NFW profile are

6 × 10−23cm3 s−1 GeV−1 [66], which we use as a conservative estimate for the bounds on

annihilation to muons. The resultant limits are weaker than those from the CMB, and also

do not reach the best-fit regions. Future bounds from CTA are likely to improve constraints

by up to an order of magnitude [67].

Finally, we briefly comment on direct and collider searches. These are to a good

approximation independent of δ and γ. DM-nucleon scattering arises at one loop through

Higgs, Z, and photon penguins. We follow ref. [68] and find that the photon-mediated
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interaction dominates, leading to a differential cross section [69]

dσ

dER
≈ α2

4π
µ2
χ Z

2

(
1

ER
− mA

2µ2
χAv

2

)
F 2
SI(ER) +

mA

2πv2
A2

eff F
2
SI(ER) . (7.5)

Here, ER is the recoil energy, v the DM incident velocity, mA the nucleon mass, µχA
the DM-nucleon reduced mass, FSI the nuclear form factor, and we have neglected the

spin-dependent term. The DM magnetic moment µχ and charge radius coupling Aeff are

approximately

µχ ≈
g2

Σ

8mχ

(
1−

m2
Σ

m2
χ

log

[
1−

m2
χ

m2
Σ

])
∼ 10−4 GeV−1 , (7.6)

Aeff ≈
α g2

Σ Z

12π (m2
Σ −m2

χ)
log

[
mΣ

mµ

]
∼ Z 10−9 GeV−2 . (7.7)

The two contributions to eq. (7.5) are similar in magnitude, though the second term is

always larger. We can make a simple estimate of the constraints by integrating the dif-

ferential cross section using the Helm form factor [70] and averaging over a Maxwell-

Boltzmann DM velocity distribution [71]. This gives a per-nucleon cross section for Xenon

of ΣN ≈ 1.6 (1.8) × 10−49 cm2 in the S2B (3B) case, three orders of magnitude below the

current Xenon 1T limit of 2 × 10−46 cm2 [72]. The analysis of ref. [69] that includes the

full effect of the photon-mediated recoil spectrum suggests that there might be sensitivity

for the full data set of Xenon 1T; otherwise we must wait for next-generation experiments

such as DARWIN [73].

Since all our dark sector particles are at the TeV-scale, only the LHC has reach for

direct production. The absence of any new coloured particles results in no sensitivity.

The scalar Σ+ behaves very similarly to a smuon, being produced through electroweak

processes and decaying to a muon plus missing energy. The current bounds from CMS and

ATLAS are mΣ & 450 GeV [74] and 350 GeV [75], respectively. The bounds on the dark

partner are weaker, due to its visible decay products being softer. Precision observables in

the lepton sector can also be highly constraining; in particular, flavour-changing neutral

currents essentially force us to consider a χ-Σ Yukawa coupling only to muons, with zero

tau or electron component. The next most interesting observable is the muon anomalous

magnetic moment, where the one-loop contribution is [68, 76]

aµ = −
g2

Σ

32π2

m2
µ

m2
Σ

f

(
m2
χ

m2
Σ

)
≈

{
−1.75× 10−12 S2B,

−9.57× 10−13 3B,
(7.8)

where

f(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log(x)

6(1− x)4
. (7.9)

This has the wrong sign to explain the discrepancy [77] ∆aµ = aexpµ − aSM
µ = 288 ± 63 ±

49 × 10−11. However, the additional term is smaller than the uncertainty on ∆aµ and so

our model is no less compatible than the SM.
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8 Conclusions

Semi-annihilation is a generic feature of particle dark matter phenomenology that is resis-

tant to searches at colliders and direct detection experiments. With cosmic ray searches

being the primary tool to explore SADM phenomenology today, it is important to study

the range of potential signals that can exist. In this work, we have considered models where

SA is enhanced at low temperatures, allowing for greater cross sections today than during

thermal freeze-out. Such models are of obvious interest, as they are likely to be the easiest

to test and thus the first to be discovered or excluded.

This paper may be divided into two parts. The first consists of sections 2, 3 and 4,

where we discussed general features of SADM phenomenology. We began in section 2

by reviewing the concept of dark partners, first introduced in ref. [3]. These are states

charged under both dark and visible sector symmetries, that are not DM but can appears

as final states in DM-initiated SA processes. This allows 2 → 2 SA with arbitrary SM final

states. In addition to presenting the relevant Boltzmann equations for dark partners for

the first time, we derived useful analytic approximations and asymptotic solutions given in

eqs. (2.7) and (2.8).

However, our most important general results are found in section 3 (with additional

details in appendix A), where we discuss the thermal evolution of SADM. We generalise

earlier results from ref. [22] to include models with dark partners, and discuss the asymp-

totic evolution of the DM temperature, Tχ. SA converts mass into DM kinetic energy,

self-heating the dark sector. Consequently, after DM-SM scattering ceases to be efficient,

Tχ redshifts as radiation, not matter, despite remaining highly non-relativistic. We clarified

the generality of this result, particularly how it applies to dark sectors with dark partners.

Most interestingly, when the SA cross section is enhanced at late times, it is possible to

have the dark sector hotter than the SM, at least during the radiation-dominated epoch,

as shown in eq. (3.23).

In section 4 we consider the implications of this temperature evolution on one specific

type of enhanced cross section, where there is an s-channel resonance nearly on-threshold.

Annihilating DM has a theoretical bound on the possible enhancement of O(102) that arises

from early kinetic decoupling. This does not apply to SADM due to this self-heating effect,

potentially expanding the available model space.

The second part of this paper applied these general results to a case study, a specific

model using a Breit-Wigner resonance to explain the positron excess seen by AMS-02

and earlier experiments. We first describe this model in section 5, with a possible UV

motivation given in appendix B. This model has two important phases, according to the

different decay modes of the dark partner, either a direct three-body or sequential two-

body decay. In section 6 we fit the model to the AMS-02 positron data. As expected, the

required cross sections are orders of magnitude larger than the thermal relic cross section.

The role of the different decay modes is also clearly seen in figure 4. Finally, we solve the

Boltzmann equations and compare the best-fit regions to other experimental constraints

in section 7. We see that the self-heating effect allows SA to continue to deplete the DM

number density till late times, x ∼ 106. This in turn allows the correct relic density to
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be obtained for small widths and large enhancements; SA cross sections today at least

five orders of magnitude larger than the thermal relic cross section are achievable. We see

that there are stringent constraints from CMB observations and, for cuspy DM profiles,

γ-rays from the galactic centre; though these are generic constraints on any putative DM

explanation of the positron excess. We also see that, as expected, direct and collider bounds

on the SADM model are currently quite weak.

In this work, we restricted our attention to a fairly narrow possibility among the

model space of SADM with interactions with a non-trivial temperature dependence. One

obvious future extension is to consider other processes than an s-channel resonance. Non-

perturbative interactions such as the Sommerfeld effect or bound state formation are an

alternative possibility where the cross section can be enhanced at low temperatures. SA

and the subsequent modification to the DM temperature could be interesting for its effect

on the relic density and signals. Another line of inquiry would be to consider a more

general interplay of SA, annihilation, and scattering. Our specific model included DM-SM

scattering to maintain kinetic equilibrium, but the case where Tχ is determined by SA alone

is potentially interesting. This could also include theories where annihilation is enhanced,

and dominates the determination of the relic density, but SA is important as it governs

the late-time temperature evolution. These ideas demonstrate that the theory space for

SADM remains rich and open to investigation.
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A Boltzmann equations with kinetic decoupling

The general Boltzmann equation for the evolution of the phase space density of a particle

species is

L̂[fi] = Ĉ[fi] , (A.1)

where L̂ is the Liouville operator encapsulating the effects of the metric (or in a cosmological

sense, the expansion) and Ĉ the collision operator describing interactions. In a FRW

cosmology and taking fi ≡ f(E, t),

L̂[fi] = E
∂fi
∂t
−H ~p 2 ∂fi

∂E
, (A.2)

with H the Hubble rate. Rather than deal with eq. (A.1) directly, we deal with its moments,

converting an evolution equation for a function of momentum into one for scalar functions

of time (only). In particular, we note that

ni = gi

∫
d3p

(2π)3
fi(E) , Ti =

Pi
ni

=
g

3

∫
d3p

(2π)3

~p 2

E
fi(E) , (A.3)
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where g is the number of internal degrees of freedom, P is the pressure, and in the second

relation we used the ideal gas law. Let us define the dimensionless parameters

Yi =
ni
s
, yi =

mi Ti

s2/3
, x =

m0

T
, Z =

(
1−

xg′∗S(x)

3g∗S(x)

)−1

, (A.4)

where s is the entropy density, T the SM temperature, m0 any reference mass, and g∗S(x)

the effective number of relativistic degrees of freedom. Then we derive the standard results

xsHZ
dYi
dx

= gi

∫
d3p

(2π)3

1

E
L̂[fi] = gi

∫
d3p

(2π)3

1

E
Ĉ[fi] , (A.5)

3s5/3xHZ

mi

(
yi
dYi
dx

+ Yi
dyi
dx

)
− sHYi

〈
p4

E3

〉
= gi

∫
d3p

(2π)3

~p 2

E2
L̂[fi] = gi

∫
d3p

(2π)3

~p 2

E2
Ĉ[fi] ,

(A.6)

where the first equality in each line follows from the FRW Liouville operator, eq. (A.2),

and the second trivially by eq. (A.1). Comparing eq. (A.6) to eq. (3.3), we see that the

operators C2 introduced in the latter are given by

C2 =
gi

3miTini

∫
d3p

(2π)3

~p 2

E2
Ĉ[fi] . (A.7)

The collision operator includes terms for all possible processes. However, only num-

ber changing processes have non-zero contribution to eq. (A.5) (so DM-SM and DM-DM

scattering vanish), and only processes that change the total DM kinetic energy contribute

to eq. (A.6) (so DM-DM scattering is zero). The general form for the integral in eq. (A.5)

is [78]

gi

∫
d3p

(2π)3

1

E
Ĉ[fi] = −

∫ ( ∏
α=i,j,k,...

dΠα

)
(2π)4 δ(4)

(∑
p
)∑

|M(ij . . .→ k . . .)|2

×
(
fi(pi) fj(pj) . . . (1± fk(pk)) . . .− fk(pk) . . . (1± fi(pi))(1± fj(pj)) . . .

)
. (A.8)

We have introduced the Lorentz-invariant momentum integral including a factor of the

internal degrees of freedom, dΠα = gαd
3pα/((2π)32Eα). The integral in eq. (A.6) contains

an additional factor of ~p 2/E, as is clear from the definition. Making the assumptions that

CP is conserved, the phase space functions can be approximated as Maxwellian, and that

fα � 1 for all species leads to the usual results for the Boltzmann equation for Yi in terms

of thermally averaged (co)-annihilation cross sections. Specifically, with these assumptions

the first combination of phase space factors in the second line of eq. (A.8) depends only on

the the initial (dark sector) momenta. The second depends only on the total centre-of-mass

frame energy, and can be rewritten using conservation of energy in terms of the equilibrium

phase space factors for the initial state particles. All these terms factor out, so that

gi

∫
d3p

(2π)3

1

E
Ĉ[fi] = −

∫
dΠi dΠj . . .

(
fi(pi) fj(pj) . . .− f eq

i (pi) f
eq
j (pj) . . .

)
×
∫
dΠk dΠl . . . (2π)4 δ(4)

(∑
p
) ∑

|M(ij . . .→ k . . .)|2 . (A.9)
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The second line is proportional to the cross section or decay rate multiplied by some kinetic

factors. The overall expression then takes the usual form; for example, for 2 → n processes

defining

〈σv(χχ†→SM)〉neq =
g2
χ

n2
χ

∫
d3pχ
(2π)3

d3pχ†

(2π)3
fχ(pχ) fχ(pχ†)σ(χχ†→SM)

√
(pχ · pχ†)2 −m4

χ

EχEχ†
,

(A.10)

and 〈σv〉eq using the equilibrium functions f eq
χ , obviously implies eq. (3.2) even in the

presence of kinetic decoupling, Tχ 6= T . In practice we usually compute eq. (A.10) assuming

that fχ has a Maxwellian form, or physically that χ self-scattering remains efficient till after

kinetic decoupling. The contribution to eq. (A.6) from annihilation can be done in the

same way, giving eqs. (3.4) and (3.5). The scattering term is more complicated, since these

assumptions do not apply; see ref. [42], but the final result is given by eqs. (3.6) and (3.7).

For semi-annihilation, the only relevant difference is that both the initial and final

states contain a dark sector particle. However, when Tχ 6= T this prevents us from factoring

the integral as in eq. (A.9). Let us first consider the case where the only external dark

sector particles are dark matter. The contribution to eq. (A.5) instead takes the form

gi

∫
d3p

(2π)3

1

E
Ĉ[fi] =

−
∫
dΠi dΠj . . . fi(pi) fj(pj) . . .

∫
dΠk dΠl . . . (2π)4 δ(4)

(∑
p
) ∑

|M(ij . . .→ kl . . .)|2

+

∫
dΠk dΠl . . . fk(pk) fl(pl) . . .

∫
dΠi dΠj . . . (2π)4 δ(4)

(∑
p
) ∑

|M(kl . . .→ ij . . .)|2 .

(A.11)

The second (third) line is a thermally averaged cross sections of the forward (reverse)

process. In particular, if we consider the 2 → 2 case χχ → χ†φ, with φ a visible-sector

particle, then this reproduces eqs. (3.8) and (3.9).

When computing the effect of this type of SA on the DM temperature, we must include

the contribution on the kinetic energy of both the initial and final states. To be concrete,

let us focus on precisely the process χχ→ χ†φ; then

C2 = − 1

6mχTχnχ

∫
dΠidΠjfifj

∫
dΠkdΠl(2π)4δ(4)

(∑
p
)∑

|M(ij → kl)|2
(
~pi

2

Ei
+
~pj

2

Ej
− ~pk

2

Ek

)
+

1

6mχTχnχ

∫
dΠkdΠlfkfl

∫
dΠidΠj(2π)4δ(4)

(∑
p
)∑

|M(kl→ ij)|2
(
~pi

2

Ei
+
~pj

2

Ej
− ~pk

2

Ek

)
.

Though we have written the ~pi,j terms separately, their contribution is equal by symmetry.

If we define

Uij→kl(pi, pj) =
1

σ(ij → kl)

1

4
√

(pi · pj)2 −m2
im

2
j

∫
dΠ2

∑
|M(ij → kl)|2 ~pk

2

mkEk
, (A.12)
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then we can write

C2 = − nχ
mχ

(
〈σv(χχ→ χ†φ)〉2,neq +

mχ

6Tχ
〈σv(χχ→ χ†φ)Uχχ→χ†φ〉neq

)
−
neq
φ

mχ

(
mχ

3Tχ
〈σv(χ†φ→ χχ)Uχ†φ→χχ〉neq − 〈σv(χ†φ→ χχ)〉2,neq

)
. (A.13)

This expression is exact and (unlike those in refs. [22, 23]) defined for any phase space

distribution. It can also be extended to 2 → n processes with an appropriate change to

eq. (A.12).

Before discussing some simplifications of eq. (A.13), let us comment on the two terms

with factors of mχ/Tχ that become large at low temperatures. For the third term in

eq. (A.13), this enhancement is not realised. The reverse process χφ† → χχ requires the

initial states to have a minimum kinetic energy to proceed, and as such will be exponentially

suppressed by the phase space factors at late times. In contrast, the second term in

eq. (A.13) can proceed at threshold and has no such suppression. Indeed, in the non-

relativistic limit Uχχ→χ†φ asymptotes to a constant,

USχ ≡ Uχχ→χ†φ(0, 0) =
(9m2

χ −m2
φ)(m2

χ −m2
φ)

4m2
χ (5m2

χ −m2
φ)

. (A.14)

Physically, this is the effect discussed in section 3.3, namely that SA provides a roughly

fixed kinetic energy to the final state particle which becomes large compared to the thermal

kinetic energy at late times.

While eq. (A.13) is exact, it is not the most convenient form for calculation or inter-

pretation. In practice, we usually assume that the dark matter phase space distribution

is Maxwellian, i.e. that DM self-scattering remains efficient, even after DM-SM scattering

decouples. In that case, we can use eqs. (3.10) and (3.11) to convert the reverse cross

sections into forward ones:

1

nχ

∫
dΠkdΠl fkfl

∫
dΠidΠj (2π)4δ(4)

(∑
p
) ∑

|M(kl→ ij)|2
(

2~pi
2

Ei
− ~pk

2

Ek

)
=

1

neq
χ (Tχ)

∫
dΠidΠj f

eq
i f

eq
j

×
∫
dΠkdΠl (2π)4δ(4)

(∑
p
) ∑

|M(ij → kl)|2
(

2~pi
2

Ei
− ~pk

2

Ek

)
e−Ek∆χ/mχ . (A.15)

If we further make the non-relativistic approximation that the χ† energy and momenta in

the centre-of-mass frame and cosmological frames are equal, then we can use the functions

S and ST defined in eqs. (3.12) and (3.14) to straightforwardly derive eq. (3.15).

For models that include dark partners, as discussed in section 3.2 we restrict ourselves

to models where we can assume TΨ = T during relevant eras. The contribution of SA to

the various Boltzmann equations is then simple, as the reverse process can be written in

terms of the forward process at equilibrium in the usual manner:

fΨ(pΨ) fl(pSM) . . . =
nΨ

neq
Ψ

f eq
i f eq

j , (A.16)
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which implies eqs. (3.18) and (3.20). The dark partner decay contribution in general

requires using the inverse process again,

dYχ
dx
⊃ ΓΨ

xHZ
YΨ

〈
mΨ

E

〉
Ψ

− 1

xsHZ

∫
dΠi dΠj . . . fi fj . . .

π

2
δ(E2

cm −m2
Ψ)
∑
|M(ij . . .→Ψ)|2

=
ΓΨ

xHZ
YΨ

〈
mΨ

E

〉
Ψ

− s

xHZ
YχYSM 〈σv(χ+ SM → Ψ)〉Tχ,T .

where the average in the first term is over the Ψ phase space function and is the effect of

time dilation. The thermal average of the n → 1 inverse decay cross section is, for two-

body decays, directly proportional to the width. Taking Ψ to be non-relativistic implies

〈mΨ/E〉 ≈ 1, while taking fχ to be Maxwellian allows us to define the function

D(T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

1

2mΨΓΨ

∫
dΠi dΠj . . .

∑
|M(ij . . .→ Ψ)|2 e−Eχ∆χ/mχ , (A.17)

from which eq. (3.19) follows.

To describe the effect of Ψ decay on yχ we introduce the dimensionless parameter

UDχ =
1

2mΨΓΨ

∫
dΠi dΠj . . .

∑
|M(ij . . .→ Ψ)|2

p2
χ

mχEχ
, (A.18)

which is the mean value of the DM Lorentz boost times velocity, in the parent rest frame.

Additionally we define the function

DT (T, Tχ) =
neq
χ (T )

neq
χ (Tχ)

1

γvχ

1

2mΨΓΨ

∫
dΠi dΠj . . .

∑
|M(ij . . .→ Ψ)|2

p2
χ

mχEχ
e−Eχ∆χ/mχ .

(A.19)

Together with our usual assumptions, these allow us to write the forward decay contribu-

tion as

Cdec
2 ⊃ 1

3nχTχ

∫
dΠΨfΨ

∫
dΠi dΠj . . .

∑
|M(ij . . .→ Ψ)|2

p2
χ

mχEχ
≈ UDχ

ΓΨ

3Tχ

nΨ

nχ
,

(A.20)

and the reverse as

Cdec
2 ⊃ − 1

3nχTχ

∫
dΠΨ

∫
dΠi dΠj . . . fifj . . .

∑
|M(ij . . .→ Ψ)|2

p2
χ

mχEχ

= − 1

3neq
χ (Tχ)Tχ

∫
dΠΨ f

eq
Ψ

∫
dΠi dΠj . . .

∑
|M(ij . . .→ Ψ)|2

p2
χ

mχEχ
e−Eχ∆χ/mχ

≈ −UDχ DT (T, Tχ)
ΓΨ

3Tχ

neq
Ψ

neq
χ
, (A.21)

from which eq. (3.21) follows.

B Lepton-number model

In section 5 we defined our model, based on an ad hoc global Z3 symmetry and a particular

flavour structure for the Yukawa couplings. While not required, there is a theoretical
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Particle Spin U(1)Lµ−Lτ SU(2)L ×U(1)Y

χ 1/2 1/3 10

Ψ 1/2 1/3 1−1

Φ 0 −2/3 10

Σ 0 −2/3 21/2

H 0 0 21/2

µR 1/2 1 1−1

τR 1/2 −1 1−1

Lµ 1/2 1 2−1/2

Lτ 1/2 −1 2−1/2

H 0 1 10

Table 4. Particle content of the lepton number dark matter model. The top section contains the

same matter as the theory of section 5; the middle section contains SM particles; and the last is (a

possible choice for) the additional Higgs that breaks the new gauge symmetry.

preference that global symmetries derive either from the breaking of a gauge symmetry,

or as accidental symmetries. The latter possibility is not possible in our model, as the

gauge content and charges given in table 1 would allow a Yukawa coupling Φ χ̄χ, which

breaks the global Z3. Additionally, there is nothing in the model as constructed that would

prevent couplings to the electron and/or tau. Couplings to the first generation would lead

to a much harder positron spectrum from DM SA, while a generic flavour structure of

the couplings would lead to tightly constrained contributions to FCNC operators involving

electrons.

In this section we show that both these problems can be explained using a U(1)Lµ−Lτ
symmetry. Additionally, certain unnecessary terms in the scalar potential (5.5) can be

forbidden, and the cubic µΣ rendered technically natural. This symmetry is anomaly-free

within the SM, and all of our new fermions are Dirac, so it can be gauged. A gauge

symmetry of this form has been used to explain the structure of neutrino masses and

mixings [79–83] and also has been invoked in other attempts to explain the positron ex-

cess [33, 79, 84].

The charges under the new gauge symmetry are given in table 4. In addition to the

four dark sector fields considered previously, we include the charges of the relevant SM

fields. We must also introduce at least one new scalar field H to break the new gauge

symmetry. The details of the breaking are only relevant to the DM phenomenology in two

respects. First, we need H to break U(1)Lµ−Lτ → Z3, which requires that H have integer

charge. Second, we also require 〈H〉 ∼ mχ, so that the annihilation χχ̄→ Z ′Z ′, where Z ′

is the new gauge boson, is kinematically suppressed. This in turn points to breaking by

SM singlets. We note that while table 4 lists only a single new Higgs, it is possible that

there could be additional scalars that contribute to the breaking, as in ref. [79], provided

that they all have integer charge.
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The dark sector charge assignment given in table 4 is the unique one which allows the

Yukawa couplings of eq. (5.4), as well as the scalar cubic Φ Σ†H necessary for dark partner

decay. It is thus the only possibility without adding further new particles. However, it has

the convenient feature that no further couplings are generated; in particular, the fact the tau

multiplets have the same hypercharge but opposite U(1)Lµ−Lτ quantum numbers means the

dark sector fields couple at tree-level only to the second generation. The scalar potential

couplings µΦ and λ3 are likewise generated radiatively.4 The accidental Z4 symmetry

discussed in section 5 still exists if µΣ → 0, ensuring that radiative corrections to that

coupling are proportional to it, i.e. it is technically natural.
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