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Zitterbewegung of exciton-polaritons
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Macroscopic wave packets of spin-polarized exciton-polaritons in two-dimensional microcavities experience
the zitterbewegung, the effect manifested by the appearance of the oscillatory motion of polaritons in the direction
normal to the initial propagation direction. The oscillating trajectories of exciton-polaritons are adjustable by the
control parameters: the splitting of the longitudinal and transverse exciton-polariton modes, the wave vector, and
the width of the resonant cw pump. Our theoretical analysis supported by the numerical calculations allowed us
to optimize values of the control parameters suitable for a direct experimental observation of the zitterbewegung
effect.
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The zitterbewegung is a counterintuitive trembling motion
of a quantum particle or a quasiparticle around the ballistic
trajectory [1]. It was first discussed by Schrödinger for Dirac
free electrons [2] and later predicted for the electrons in crystals
with the Rashba and Dresselhaus spin-orbital coupling in
Refs. [3–5]. The experimental evidence of the zitterbewegung
of electrons in the solid was reported in [6]. The authors
conclude about the zitterbewegung of phase-synchronized
electrons in n-InGaAs on an ac current oscillating at the
characteristic frequency of several gigahertz. Nevertheless,
the trembling of electron trajectories has not been directly
observed. The zitterbewegung was studied in various systems
with spectra possessing energy gaps including Bose-Einstein
condensates of ultracold atoms [7,8], ions [1], photonic lattices
[9], photonic crystals [10], graphene and carbone nanotubes
[11], and even in ordinary sonic crystals (acoustic zitterbe-
wegung) [12]. The similar trajectory effects for light beams
in specially designed photonic structures have been recently
predicted [13,14].

In this paper, we report on the zitterbewegung of the
nondegenerate in pseudospin condensate of exciton polari-
tons in a 2D microcavity containing an embedded set of
quantum wells. Semiconductor microcavities in the strong
exciton-photon coupling regime are host for a number of
remarkable bosonic effects such as polariton lasing [15] and
superfluid behavior [16]. Exciton-polaritons are quasiparticles
that combine properties of excitons and photons [17]. They
keep coherence over macroscopic distances of propagating in
plane of semiconductor microcavities [18,19]. Cavity polari-
tons also exhibit strong spin-orbit interaction effects including
the optical spin Hall effect [20]. The flat microcavity polariton
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system provides a prominent opportunity for directly observing
quivering trajectories of polaritons in their near-field photolu-
minescence. The experiment geometry that would allow for
the observation of the predicted effect is schematically shown
in Fig. 1(a). The splitting of the longitudinal and transverse
polariton modes (LT splitting) in a microcavity gives rise to the
pseudospin precession of polaritons in microcavities [21,22].
The LT splitting can be conveniently controlled by the detuning
between the cavity photon mode and the central frequency
of Bragg stop-bands and it may be tuned by varying the
cavity width [23]. In this context, the experimental geometry
we consider is similar to one used by Amo et al. [16] to
demonstrate the superfluid behavior of exciton polaritons.
The difference is in the specific choice of the incident probe
polarization (circular polarization), incidence angle, and, most
importantly, a carefully selected LT splitting.

The propagation of polarized exciton-polaritons in the plane
of the microcavity is described by the following effective
Hamiltonian:

Ĥ = h̄2k̂2

2m∗ + h̄�̂ · Ŝ, (1)

where m∗ = 2mlmt/ (ml + mt ), with ml and mt being the
effective masses of longitudinal (transverse-magnetic) and
transverse (transverse-electric) polariton modes, respectively;
k̂ = (k̂x,k̂y) = (−i∂x, − i∂y) is the two-dimensional polariton
wave vector. The polariton quantum state is described by the
spinor |ψ〉 = (ψ+,ψ−)T, and we use the three-dimensional
spin operator Ŝ = 1

2 σ̂ acting on |ψ〉, where σ̂x,y,z are the
Pauli matrices. Spin precession of noninteracting polaritons
around the effective field �̂ = [�LT(k̂2

x − k̂2
y),2�LTk̂x k̂y,0] is

due to the longitudinal-transverse splitting of the eigenmodes
of the Hamiltonian (1), where �LT = (h̄/2)(m−1

l − m−1
t ) is the
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FIG. 1. (a) Schematic of the considered experimental configura-
tion. The exciton-polariton condensate is excited by a resonant cw
probe in a microcavity with embedded QWs in the presence of a
subthreshold nonresonant cw pump. (b) The spatial distribution of
the polariton condensate intensity in the steady state. Values of the
parameters used for modeling are given in [24].

splitting constant [21]. The position operators x̂(t) and ŷ(t)
evolve according to the Heisenberg equations

dx̂

dt
= h̄

m∗ k̂x + 2�LT(k̂x Ŝx + k̂y Ŝy), (2a)

dŷ

dt
= h̄

m∗ k̂y − 2�LT(k̂y Ŝx − k̂x Ŝy), (2b)

accompanied by the equation for the precession of the pseu-
dospin operator dŜ/dt = �̂ × Ŝ.

We consider the initial polariton wave function in
the form |�(r)〉 = f (r)|ϕ〉, where f (r) = (2π )−1

∫
F (k −

k0)exp(ikr)dk describes the spatial distribution and |ϕ〉 defines
the polarization. In the case of a ballistic polariton condensate
moving in y direction, k0||̂y, the effect of zitterbewegung
consists in the appearance of the nonzero displacement x(t) =
〈x̂(t)〉 and the nonzero velocity vx(t) = 〈dx̂/dt〉 in the initial
direction perpendicular to the direction of propagation. In
the case of the initial circular polarization, |ϕ〉 = (1,0)T, the
displacement is found to be

x(t) =
∫

ky

k2
|F (k − ky0)|2[1 − cos(�LTk2t)]dk. (3)

For a wide in space polariton wave packet with the size d �
λ = 2π/k0, F (k − k0) is a narrow peak centered at k0. The x

displacement as a function of y position of the packet can be
found from Eq. (3):

x(y) = k−1
0 [1 − cos(�LTk0m

∗y/h̄)], (4)

which is similar to the corresponding limit for the electron
wave packet in the presence of Rashba spin-orbit coupling
[3]. Equation (4) describes an undamped in space but very
low-amplitude zitterbewegung: the maximal displacement of
the packet is about the wavelength. As a result, Eq. (3) predicts
the strongest zitterbewegung for the polariton packet size
comparable to its wavelength, d ∼ λ.

To analyze the zitterbewegung in the realistic experimental
conditions and to identify the best structure and experimental
setup characteristics for the observation of the effect, we use
the macroscopic mean-field model describing the dynamics of
the exciton-polariton condensate. The model is based on the
generalized Gross-Pitaevskii equation for the components of
the spinor |�(r,t)〉 = (�+(r,t),�−(r,t))T [25,26]

ih̄
∂�±
∂t

=
[
− h̄2

2m∗ ∇2 + α1|�±|2 + α2|�∓|2

+αRn± + ih̄

2
(Rn± − γC)

]
�±

− h̄�LT

2

(
∂

∂x
∓ i

∂

∂y

)2

�∓ + iEp±(r)e−iωpt (5)

coupled to the rate equation describing the evolution of the
exciton reservoir density n±(r,t):

∂n±
∂t

= P± − (γR + R|�±|2)n±. (6)

In Eqs. (5) and (6), α1 and α2 are the interaction constants
for polaritons in the triplet configuration (parallel spins) and
in the singlet configuration (opposite spins), respectively, αR

describes the interaction of the condensate polaritons and the
reservoir excitons,R is the stimulated scattering rate describing
the particle exchange between the condensate and the reservoir,
and γC and γR are the loss rates of the condensate polaritons
and the reservoir excitons, respectively. In the absence of the
incoming flow of particles from the reservoir, the polariton
condensate would only live a short time comparable with
the polariton lifetime, which is typically of the order of
γ −1

C ∼ 10 ps. In this case the condensate would propagate
only over tens of micron. We note, however, at this point that
recently substantially longer polariton lifetimes γ −1

C ∼ 200 ps
and much longer travel distances (hundreds of microns to
millimeters) have been achieved [27,28]. In order to obtain
a strong zitterbewegung effect at long distances, we propose
to excite polaritons resonantly by a cw probe beam Ep±(r)
with ωp being the frequency of the resonant pump relative to
the minimum of the lower polariton branch. The wave vector
of the probe beam is preserved by the polariton condensate
resulting in the appearance of the polariton current. The power
of the probe is assumed to be low enough to enable us
considering the system in the linear regime when interaction
terms in Eq. (5) are not important and the analytical predictions
of Eqs. (3) and (4) should be valid. We also introduce a
nonresonant spatially homogeneous spin-polarized cw pump
P± in the “dark regime,” P± < Pth, where Pth = γCγR/R is the
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FIG. 2. Effect of the zitterbewegung on the spatial distribution of
the normalized Stokes parameters characterizing the polarization of
the polariton condensate.

threshold pump [29]. The pump and the probe are considered
to be linearly and circularly polarized, respectively.

We solve numerically Eqs. (5) and (6) with an initial
condition of zero polariton density everywhere in the cavity
plane. The time evolution of the system is calculated in order to
find the steady state regime that is usually established on a time
scale of 300–400 ps. We plot the polariton space distributions
of the polariton density I (r) = |�+(r)|2 + |�−(r)|2 in the
steady state at t = 700 ps in Fig. 1(b). In simulations, we use
the parameters of Ref. [24]. The zitterbewegung results in a
trembling spatial oscillatory motion of the polariton conden-
sate center of mass. The center-of-mass steady-state trajectory
x(y) found as x(y) = ∫

I (r)x dx/
∫

I (r)dx is shown by the
white curve in Fig. 1(b).

Although the zitterbewegung of exciton-polaritons is clearly
observed in the spatial intensity distribution, it is even
better seen in the spatial distribution of the polariton po-
larization, characterized by the pseudospin (Stokes) vector
S = 1

2 〈�|σ̂ |�〉 with the components Sx = Re(�∗
+�−), Sy =

Im(�∗
+�−), and Sz = (|�+|2 − |�−|2)/2. Figure 2 demon-

strates the spatial distribution of the components of the
normalized vector s = S/S in the zitterbewegung regime in
the steady state. The effect results in the appearance of the
real-space patterns resembling interlocked fingers for sy and
sz components. We note that the predicted polarization effect
is expected to be easily observable experimentally due to the
wider area in which it is manifested.

The zitterbewegung can be generally characterized by the
period of oscillations of the displacement L, the amplitude of
oscillations A, and the decay length 
 (the distance at which
the amplitude A decreases by a factor of e). To optimize the
characteristics of the zitterbewegung trajectories we calculate
them as functions of the most important parameters of the
sample and of the experimental configuration. Among them
are the splitting constant �LT, the wave number of the probe
k0, and the size of the condensate d governed by the spatial
width of the probe beam wp [24].

Color maps in Fig. 3 demonstrate the characteristics of the
zitterbewegung as functions of the control parameters of �LT

and k0 for two values of the probe beam width wp. Areas with
the preferential from the point of view of the zitterbewegung

FIG. 3. Period L [(a) and (d)], the amplitude A [(b) and (e)],
and the decay length 
 (c) of the zitterbewegung as functions of the
LT-splitting constant �LT and the wave number k0 of the probe. Upper
and lower panels correspond to the different widths of the probe,
wp = 10 μm and 30 μm, respectively. The panel (f) shows variation
in space of the expectation value of position of the center of mass
of the polariton condensate x(y) for different parameters: h̄�LT =
90 μeV μm2 (red) and 300 μeV μm2 (green). The other parameters
for (f) are k0 = 0.8 μm and wp = 30 μm.

observation values of the parameters are shown by a red color.
Figures 3(a) and 3(d) show that the period L decreases with the
increase of either �LT or k0, and both dependencies are close to
hyperbolic. The same character of the dependence is predicted
by the expression (4). The probe width wp hardly influences
the zitterbewegung period, as one can see from Figs. 3(a)
and 3(d).

The analytical expression (4) describing the trajectory of
polaritons, valid for large k0, also predicts the hyperbolic
dependence of the amplitude of the zitterbewegung on the
wave number k0. In general, it is confirmed by the results of
modeling for the probe beam of width not exceeding the period
of oscillations; see Fig. 3(b). Notably, the amplitude hardly
depends on the LT splitting. For a wider probe [Fig. 3(e)], the
amplitude still decreases with the increasing wave number but
the dependence is stronger for larger LT splitting in this case.

In all cases, the zitterbewegung exhibits a transient char-
acter. Figure 3(c) shows that the decay length 
 decreases
with the increase of �LT and with the decrease of k0. The
effect of the pump width on the shape of the polariton wave
packet trajectory has also been investigated by us. However,
we are unable to provide a diagram similar to Fig. 3(c) for
a wider probe beam. If the probe width wp is comparable
or exceeds the period L, it directly affects the condensate
distribution in the close to the injection spot region. The decay
length 
 hardly can be defined in this case. The direct effect
of the probe is clearly seen in the panel Fig. 3(e), where the
amplitude A is plotted for large �LT and k0 corresponding to
the small period compared to wp. To qualitatively demonstrate
the effect of the pump width, in Fig. 3(f) we show the spatial
variation of the center of mass of the polariton condensates
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with different periods of the zitterbewegung excited by the
probe beam of width wp = 30 μm. The effect of the probe on
the condensate with the smaller period (green curve) results
in the significantly smaller amplitude and the extremely rapid
decay of the zitterbewegung in the region close to the injection
spot in comparison with the condensate with the wider period
(red curve). Also, one should mention that once the condensate
leaves the probe beam area, the zitterbewegung amplitude
becomes weakly damped with the distance. Consequently,
the effect of zitterbewegung of exciton-polaritons cannot be
observed in two opposite limits of small and large LT splittings,
as either the inversed period or the amplitude vanish in these
limits: 1/L → 0 for �LT → 0 and 
 → 0 for �LT → ∞. In
the case of small �LT the effect of zitterbewegung results in the
drift of a polariton condensate in x direction until its eventual
decay. Analogously, the zitterbewegung becomes indiscernible
both for small and large wave numbers k0. In the former case,
although the amplitude increases, the period increases as well.
In the latter case, the amplitude drops down with the increasing
k0. Notably, the polariton lifetime does not affect the zitterbe-
wegung in the considered regime of the subthreshold cw pump.

In conclusion, we have theoretically studied the zitterbe-
wegung of exciton-polaritons in the driven-dissipative system
of a 2D microcavity characterized by the LT splitting of
polariton modes. We have shown that the condensed polaritons

propagate in the cavity plane following an oscillating trajectory
that appears as a result of the pseudospin rotation in the course
of the motion of the polariton wave packet. This prediction
opens the way to a direct observation of the counterintuitive
zitterbewegung trajectories in an optical experiment. Such an
observation would have a significant fundamental importance
as evidence of an effect predicted in the early days of quantum
mechanics. The planar semiconductor microcavities with a
tailored LT splitting of eigenmodes may serve us a convenient
laboratory for studies of nontrivial trajectories of quantum
particles. The polariton polarization degree is strongly affected
by the zitterbewegung, which helps experimental observation
of the effect. We propose the optimized control parameters of
the system that would help observation of the zitterbewegung
on the length scale of tens of micrometers.
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