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We report on a lossless information engine that converts nearly all available information from an error-
free feedback protocol into mechanical work. Combining high-precision detection at a resolution of 1 nm
with ultrafast feedback control, the engine is tuned to extract the maximum work from information on the
position of a Brownian particle. We show that the work produced by the engine achieves a bound set by a
generalized second law of thermodynamics, demonstrating for the first time the sharpness of this bound.
We validate a generalized Jarzynski equality for error-free feedback-controlled information engines.
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Understanding the interplay between information and
thermodynamics is a fundamental challenge of nonequili-
brium physics, in particular, in systems of active and living
matter that self-organize into information-rich homeostatic
ensembles. The question emerged with Maxwell’s demon,
who, by measuring the velocity of gas molecules, was able
to sort them into fast and slow ones, thus decreasing the
entropy and apparently violating the second law of thermo-
dynamics [1]. A series of works, starting from Szilard’s
engine [2] through Landauer [3], Bennett [4], and others,
elucidated the link between information gathered by the
demon and thermodynamic entropy, thereby resolving the
apparent paradox. That the demon can extract work from
information has been known since these seminal papers,
but recent breakthroughs in nonequilibrium thermodynam-
ics of classical [5–17] and quantum systems [18–21], and
experimentally realized Brownian and electronic systems
[22–27], set new bounds on the demon’s efficiency. And
the question as to whether these bounds are sharp and how
they can be realized in an experiment is still open.
Here, we examine a bound on demons, i.e., information

engines, that follows from a generalization of a Jarzynski
equality [28] to feedback-controlled systems [8,9,15,17,29]:

hexp½−βðW − ΔFÞ − ðI − IuÞ�i ¼ 1. ð1Þ
The exponent averaged in Eq. (1) augments the terms from
the standard Jarzynski equality—the work performed on the
system W and the free energy change ΔF (in kBT ¼ β−1
units)—with a contribution from the information circuitry: I
is the information gathered by measurements, out of which a
part Iu becomes unavailable due to the irreversibility of the
feedback process [17].
Applying Jansen’s inequality to Eq. (1) yields a gener-

alized second law [17]:

h−βWi ≤ −βΔF þ hIi − hIui: ð2Þ

Namely, the work extracted from the information engine
h−βWi (in kBT ¼ β−1 units) cannot exceed the sum of
the free energy difference between final and initial states
−βΔF and the available information hIi − hIui. In the
absence of information, the inequality recaps the notion of
the free energy as the maximal available work in an
isothermal process, h−Wi ≤ −ΔF, while the additional
term hIi − hIui sets an upper bound on extra work that can
be gained from information on the system.
We call an information engine lossless if it achieves the

tight bound of Eq. (2). This indicates that almost none of
the available information from the feedback protocol is lost,
while it does not exclude other, more energetically efficient
protocols. We also note that the derivation of Eqs. (1) and
(2) does not account for the external energetic cost of
detecting the particle and moving the trap accordingly [17].
In this Letter, we use an information engine made of a

colloidal particle trapped in a harmonic potential to demon-
strate the sharpness of thebound set by thegeneralized second
law in Eq. (2). During each cycle of the engine, a high-
precisionmeasurement of the particle position is followed by
a swift shift of the trap according to the measurement and
thermal relaxation of the particle before the next cycle begins.
Iterating the measurement-feedback-relaxation cycle, the
engine can transport the particle unidirectionally, thereby
extracting work from the random thermal fluctuations of the
surrounding heat bath. We derive the optimal operating point
of the engine when the work extracted per cycle peaks and
show that this peak reaches the bound in Eq. (2). We also
show that the engine satisfies the generalized Jarzynski
equality in Eq. (1). Thus, we validate these basic nonequili-
brium bounds in a nearly error-free feedback control system.
The Brownian information engine.—We investigate a

simple information engine with one degree of freedom, xB,
the position of a Brownian particle immersed in a heat bath
of temperature T (Fig. 1). The experimental setup is
detailed in the following, but first we discuss the basic
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physical features of this information engine in terms of a
simplified model. We consider a particle trapped in the
harmonic potential generated by optical tweezers, VðxBÞ ¼
ðk=2ÞðxB − x0Þ2, where x0 is the center of the trap and k
its stiffness. In the low-Reynolds regime, the dynamics of
the particle is overdamped [30,31], with a relaxation time
τ ¼ γ=k ¼ 6πηR=k ∼ 3 ms, where γ is the Stokes friction
coefficient. Each cycle consists of measurement, feedback
control, and relaxation (Fig. 1). The cycle begins when the
particle is at thermal equilibrium with a Boltzmann dis-
tribution, PðxÞ ¼ ð2πσ2Þ−1=2 exp½−x2=ð2σ2Þ�, where x ¼
xB − x0 is the deviation from the center x0 with a variance
σ2 ¼ kBT=k. A nearly error-free measurement of x is then
taken and serves as an input for the following feedback
response: We define a region R from x0 þ L to infinity
(L > 0). Whenever the particle is found in R, we instanta-
neously (i.e., much faster than τ ∼ 3 ms) shift the potential
center 2L to the right; otherwise, if the particle is outside R,
the potential remains centered at x0. After the feedback step,
we let the particle fully relax before we reiterate the cycle.
Next, we consider the energy balance during a shift

cycle. After the shift, the particle always returns to the same
equilibrium macrostate and the free energy remains
unchanged, ΔF ¼ 0. Moreover, in the overdamped regime

we can disregard the kinetic energy of the particle, so the
change in the potential energy when the trap shifts, ΔVðxÞ,
is fully converted into heat and work [32]. However, the
potential is shifted much faster than the typical relaxation
time such that the particle has no time to move and dissipate
energy [33]. Therefore, all the potential energy gained by
the shift is converted into work. During the relaxation step,
no work is done, and only heat is produced by thermal
dissipation. We conclude that the extractable work is
−WðxÞ ¼ −ΔVðxÞ ¼ VðxÞ − Vðx − 2LÞ ≥ 0 when the
trap shifts (x ≥ L) and −WðxÞ ¼ 0 otherwise (x ≤ L).
The average work extracted is therefore

h−βWi ¼ −
Z

∞

−∞
dxPðxÞβWðxÞ

¼ 2π−1=2le−l2 − 2l2erfcðlÞ; ð3Þ
where l ¼ 2−1=2ðL=σÞ and erfcðzÞ ¼ 2π−1=2

R∞
z e−t2dt is

the complementary error function. Since h−Wi > 0 for any
positive l, the feedback mechanism always allows us to
extract work from the system.
To examine whether our feedback protocol can achieve

the upper bound on the extractable work, we evaluate the
terms in Eq. (2). Since the measurement is practically error-
free, the net information is simply Shannon’s entropy of a
Gaussian variable [17,34]:

hIi ¼ h− ln½PðxÞΔ�i ¼ − lim
Δ→0

Z
∞

−∞
dxPðxÞ ln½PðxÞΔ�

¼ lim
Δ→0

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeðσ=ΔÞ2

q
; ð4Þ

where the limit of vanishing measurement error Δ → 0
ensures the positive-definiteness of the entropy and the
correspondence between discrete and differential entropies
([35], Chap. 8).
During the relaxation phase of the feedback process, part

of the information in Eq. (4) becomes unavailable [17]. To
calculate the unavailable information hIui, we consider the
inverse process: The particle is initially in equilibrium with
the center of the trap at x0 þ 2L, and we shift the potential
center back to x0 according to the same protocol. The
unavailable information associated with a single measure-
ment is Iu ¼ − ln½PðxÞΔ� for −∞ ≤ x ≤ L and Iu ¼− ln½Pðx − 2LÞΔ� for L ≤ x ≤ ∞. The average unavailable
information is, therefore,

hIui ¼ − lim
Δ→0

�Z
L

−∞
dxPðxÞ ln½PðxÞΔ�

þ
Z

∞

L
dxPðxÞ ln½Pðx − 2LÞΔ�

�

¼ −2π−1=2le−l2 þ 2l2erfcðlÞ
þ lim

Δ→0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeðσ=ΔÞ2

q
: ð5Þ

The upper bound of extractable work is found from
Eqs. (2), (4), and (5), keeping in mind that ΔF ¼ 0:

FIG. 1. The measurement-feedback-relaxation cycle of the
Brownian information engine. A particle is initially in thermal
equilibrium in a harmonic potential VðxBÞ ¼ ðk=2ÞðxB − x0Þ2
generated by an optical trap. The feedback is determined as
following: We set a region R from L to infinity (shaded). (a) If the
particle is outside R, nothing changes. (b) If the particle is inside
R, we instantaneously shift the potential center to 2L. By shifting
the potential center, the system extracts work equal to the change
in the potential energy ΔV. After the feedback step, the system
relaxes back to thermal equilibrium, and the cycle repeats.
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h−βWi ≤ hIi − hIui ¼ 2π−1=2le−l2 − 2l2erfcðlÞ: ð6Þ

Comparing Eqs. (3) and (6), we see that the present
feedback protocol achieves the equality in the generalized
second law in Eq. (2) for any L, h−βWi ¼ hIi − hIui, and
is therefore lossless. This is because the feedback is
instantaneous and WðxÞ has no time to fluctuate. In the
following, we experimentally confirm the equality in
Eq. (6) by measuring the average work h−βWi and
comparing it to the available information hIi − hIui [rhs
in Eq. (6)]. Finally, we verify that the feedback protocol
satisfies the generalized Jarzynski equality in Eq. (1) by
substituting the work and the information terms:

he−βW−IþIui¼
Z

L

−∞
dxPðxÞ

þ
Z

∞

L
dxPðxÞe−β½Vðx−2LÞ−VðxÞ� PðxÞ

Pðx−2LÞ¼1.

ð7Þ
Experimental setup.—The schematic of our home-built

optical tweezers setup is shown in Supplemental Material
as Fig. S1 [36]. A laser with a 1064 nm wavelength is used
for trapping a colloidal particle. The laser is fed to the
acousto-optic deflector (AOD) (Isomet, LS110A-XY). The
AOD is controlled via an analog voltage controlled radio-
frequency (rf) synthesizer driver (Isomet, D331-BS) and is
capable of diffracting the laser light. The first-order
diffracted beam is focused at the sample plane of an optical
microscope (Olympus IX73) using a 100× oil immersion
objective lens of 1.30 numerical aperture. A second laser
with 980 nm wavelength is used for tracking the particle
position. A Quadrant Photo Diode (QPD; S5980,
Hamamatsu) is used to detect the particle position. The
electrical signal from the QPD is preamplified by the signal
amplifier (OT-301, On-Trak Photonics, Inc.) and sampled
periodically with a field-programmable gate array (FPGA)
data acquisition card (National Instruments, PCI-7830R).
The QPD is capable of tracking the particle position with a
high spatial accuracy of 1 nm [37]. This is sufficiently
enough to assume that our system is capable of performing
nearly error-free measurements. We have designed a real-
time feedback control system using LABVIEW programed
on the FPGA target. The feedback control measurement
system is capable of position detection, potential modula-
tion, and data storage. The sample cell consists of the
highly dilute solution of 1.99 μm diameter polystyrene
particles suspended in deionized water. The trapping laser
power at the sample stage is maintained at ∼3 mW,
whereas the laser power of the tracking laser is fixed at
∼5% of the trapping laser power. All experiments were
carried out at a constant temperature of 300� 0.1 K.
Experimental testing of the information engine bounds.—

We first calibrate the parameters of the trap (Fig. 2). By fitting
the probability distribution of the particle position in thermal

equilibrium without a feedback process to the Boltzmann
distribution PðxÞ ¼ ð2πσ2Þ−1=2 exp½−x2=ð2σ2Þ�, we obtain
the standard deviation σ ¼ 28 nm. The trap stiffness was
calibrated using two different techniques based on the
equipartition theorem and the Boltzmann distribution [37],
which together give an estimate of k ¼ 5.28 pN=μm.Prior to
the operation of the information engine, we set the region R
from L > 0 to infinity. The QPD measures the particle
position periodically at intervals of 25 ms. The FPGA board
generates a bias voltage that corresponds to the initial
position of the potential center. This bias voltage is applied
to the AOD via the rf synthesizer driver. If the particle is
found in R, the FPGA board generates an updated bias
voltage that corresponds to the shift of the potential center to
2L. The decision whether to update the bias voltage and
thereby shift the potential center is taken within 20 μs. After
shifting the potential center, wewait for 25ms, about 8 times
the relaxation time τ ∼ 3 ms. Finally, the potential center is
instantaneously shifted back (within ∼20 μs) to the initial
position, we wait for 25 ms for full relaxation of the particle,
and the cycle is repeated.

FIG. 2. (a) Probability distribution PðxÞ of the particle position
in thermal equilibrium (red solid circles) and measured every
25 ms during each engine cycle (blue solid squares) for L ¼ 0.5σ.
The shifted probability distribution Pðx − 2LÞ was obtained by
performing the backward protocol (green open circles). The black
solid curve is a fit to the Boltzmann distribution, PðxÞ ∝
exp½−x2=ð2σ2Þ�. (b) Histogram of the extracted work −βW for
L ¼ 0.5σ.
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We next focus on the energetics of the information engine.
We set the region R from L ¼ 0.5σ ¼ 14 nm to infinity and
perform the measurement and feedback control described
above. The distribution [blue squares in Fig. 2(a)], which is
obtained from 100 000 feedback cycles, is indistinguishable
from the equilibrium distribution (red) with the same
σ ¼ 28 nm. Figure 2(b) shows the distribution of the
measured extracted work, −βWðxÞ¼ β½VðxÞ−Vðx−2LÞ�
for x ≥ L and −βWðxÞ ¼ 0 for x ≤ L, whose average is
h−βWexpi ¼ 0.197� 0.001. We also calculated the
average extractable work from the model in Eq. (3),
h−βWmodeli ¼ 0.198� 0.002, which agrees well with the
experimental value. This shows that the feedback protocol
is capable of extracting positive work from the information
of the system immersed in a single heat bath, thus exceeding
the standard bound of the second law of thermodynamics
(h−Wi ≤ −ΔF ¼ 0).
Using the equilibrium probability distribution PðxÞ and

the shifted one Pðx − 2LÞ from Fig. 2(a), we measured
available information hIi − hIui from definitions in Eqs. (4)
and (5), where integration was approximated by a discrete
summation. The experimental value of the available
information, hIi − hIui ¼ 0.200� 0.002, is close to the
measured extracted work. This demonstrates the sharpness
of the bound set by the generalized second law with
an efficiency of information-to-energy conversion of
h−βWi=ðhIi − hIuiÞ ¼ 98.5� 1.1%.
To find the optimal feedback protocol, we evaluated the

extracted work as a function of L=σ [red solid circles in
Fig. 3(a)]. The fit to the theoretical curve in Eq. (3) agrees
well with the measurement, implying that the engine indeed
achieves the upper bound of the generalized second law in
Eq. (2) for any L > 0. The maximum of Eq. (3) is obtained
when expð−l2Þ ¼ 2π1=2lerfcðlÞ at L ≈ 0.612σ. Another
quantity of interest is the average step per cycle hΔxi,
which measures the average unidirectional motion of the
Brownian particle:

hΔxi ¼ 2L
Z

∞

L
dxPðxÞ ¼ 21=2σlerfcðlÞ: ð8Þ

The average step exhibits a maximum of hΔxi ¼ 0.34σ at
L ¼ 0.75σ. The blue solid diamonds in Fig. 3(a) show that
the plot of hΔxi as a function of L=σ fits well with Eq. (8).
This demonstrates that the optimal working points of
maximal extracted work and maximal step are rather close
to each other.
We also demonstrated that the generalized Jarzynski

equality in Eq. (1) is satisfied by the feedback protocol.
To this end, we evaluated the integration in Eq. (7) for
L ¼ 0.5σ and found it to be equal to 1.02� 0.06 (see
Fig. S2 in Ref. [36]) as in Eq. (1). Another formulation of
the generalized Jarzynski equality is in terms of the efficacy
γ, defined as the sum of probabilities that time-reversed
trajectories are observed:

hexpð−βWÞi ¼ γ ¼
Z

L

−∞
dxPðxÞ þ

Z
∞

L
dxPðx − 2LÞ

¼ erfcð−lÞ: ð9Þ

To verify Eq. (9), we measured the value of
hexpð−βWexpÞi ¼ 1.378� 0.004. We also measured the
efficacy parameter from the integral in Eq. (9) and found
γexp ¼ 1.390� 0.003. Similarly, we calculated the value of
erfcð−lÞ ¼ 1.383� 0.013. All three values agree well with
each other, implying that the generalized Jarzynski equality
in Eq. (9) is satisfied. Figure 3(b) shows a plot of
hexpð−βWexpÞi as a function of L=σ, which agrees well
with a fit to the model erfcð−lÞ.
In conclusion, we examined a simple information engine

consisting of a colloidal particle trapped by optical twee-
zers. By precisely measuring the particle position and
shifting the potential center practically instantaneously,
we can extract positive work from a system in a single
heat bath at a constant temperature, thus exceeding the
conventional bound of the second law of thermodynamics.
The extra work originates from information on the system,
which allows the feedback protocol to generate unidirec-
tional motion. The measured work agrees well with the

FIG. 3. (a) Extracted work as a function of L=σ (red curve).
Bars denote the standard error of the mean. The red solid curve is
a fit to Eq. (3). Plot of average step per cycle (blue curve). The
blue solid curve is a fit to Eq. (8). (b) Plot of hexpð−βWÞi as a
function of L=σ. The solid curve is obtained by fitting the data
with erfcð−lÞ.
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theoretical prediction, and we found that maximum work
can be extracted from the engine when L ≈ 0.612σ. Finally,
we demonstrated that the feedback protocol satisfies the
generalized Jarzynski equality and is able to achieve the
equality in the generalized second law under error-free
measurements. Hence, the bound on information engines
(demons) from Eq. (2) is sharp.
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