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Soft Coulomb gap and asymmetric scaling towards
metal-insulator quantum criticality in multilayer
MoS2
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Young Hee Lee 1,2

Quantum localization–delocalization of carriers are well described by either carrier–carrier

interaction or disorder. When both effects come into play, however, a comprehensive

understanding is not well established mainly due to complexity and sparse experimental data.

Recently developed two-dimensional layered materials are ideal in describing such meso-

scopic critical phenomena as they have both strong interactions and disorder. The transport

in the insulating phase is well described by the soft Coulomb gap picture, which demon-

strates the contribution of both interactions and disorder. Using this picture, we demonstrate

the critical power law behavior of the localization length, supporting quantum criticality. We

observe asymmetric critical exponents around the metal-insulator transition through tem-

perature scaling analysis, which originates from poor screening in insulating regime and

conversely strong screening in metallic regime due to free carriers. The effect of asymmetric

scaling behavior is weakened in monolayer MoS2 due to a dominating disorder.
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The first experimental observation of possible metal-insulator
transition (MIT) in Si metal-oxide-field-effect transistors (Si-
MOSFETs)1 is not just phenomenological but conceptual

leap against the widespread belief that the metallic phase is unviable
in two-dimensional (2D) systems, which is suggested in the well-
known non-interacting scaling theory of localization2. With suc-
cessive experimental evidences3, 4, carrier–carrier interactions are
reassessed as the origin of MIT in 2D systems5, 6 from the viewpoint
of quantum phase transition (QPT). The mechanism of MIT is
usually categorized into three phenomena, i.e., Mott, Anderson, and
Mott–Anderson transition upon the relative importance of inter-
actions and disorder. When strong interactions restrict the carrier
hopping among localized atomic orbitals, this leads to an
interaction-driven insulating state, called Mott insulator. On the
other hand, when strong disorder is introduced and dominant over
interactions, carriers can be localized by the quantum interference
effect. This leads to a disorder-driven insulating state, called
Anderson insulator. These two mechanisms are relatively well
comprehended. However, if both interactions and disorder are
comparable, the interplay between two effects is predicted to yield
the complexity. In general, it has been known that a soft Coulomb
gap appears around the Fermi energy in a strongly disordered
system due to Coulomb interactions7, and glassy features are likely
concomitant in the deep insulating phase. However, it remains
inconclusive near MIT as to how their interplay would change this
trend in a critical region, although there are numerous studies
typically in Si-MOSFETs due to their diffusive characters8. A theory
predicts some unusual transport properties such as an intermediate
state9, which has been reported experimentally and characterized as
a glassy state exhibiting non-Fermi liquid behavior in the metallic
phase side10, 11. More complications12 likely exist depending on the
systems. The electronic Griffiths phase could be one of them13. The
screening effect across MIT could also be modified depending on
the existence of such states, thus, drastically changing critical phe-
nomena14. The theoretical phase boundary between metal and
Mott- or Anderson-like insulator, depending on the relative
strength of disorder and interactions, suggests a disorder screening
by interactions13, implying that Mott-like transition can occur in
the presence of quite strong disorder if interactions are sufficiently
large. These subjects still draw considerable interests and more data
for new material systems need to be accumulated to investigate all
these complexities in strongly correlated disordered systems.

Recently developed 2D layered semiconductors, transition
metal dichalcogenides (TMDs), are ideal platforms for such
mesoscopic system because of the coexistence of strong
carrier–carrier Coulomb interactions15 and disorder. In addition,

the degree of interaction and disorder can be further modulated
by the thickness of the film, surface passivation, and substrate
engineering, providing diverse physical conditions. Interactions
increase in general but disorder decreases in proportion to the
thickness of TMDs.

Here, we report the electrical transports and scaling analysis
near MIT in multilayer MoS2 including monolayer. We observe
that the transport in insulating phase of multilayer MoS2 is
consistent with the Coulomb gap description, and using this
picture, we further demonstrate the criticality of MIT with the
power law behavior of the localization length near MIT. The
predicted glass state in the metallic phase side in the presence of
Coulomb gap is nonexistent or exists in the narrow region of
carrier density. With this feature, the observed asymmetric critical
exponents in multilayer are ascribed to the different screenings
across MIT. Lastly, the MIT is attributed to be interaction-driven
in multilayer and disorder-driven in monolayer, which suggests
the substantial screening of disorder induced by strong correla-
tion effects in multilayer.

Results
Basic device properties. We fabricated a FET using a ~5-nm
thick multilayer MoS2 with four Au electrodes, as shown in the
inset of Fig. 1a. Because this thickness is much smaller than the
reported coherence length, Lϕ ~ 20 nm at temperature T= 10 K16,
this system is effectively 2D. Since Lϕdecreases as T increases, the
crossover from 2D to 3D character would appear at higher
temperature. Thus, our scaling analysis will be limited below 150
K in our experiment. Figure 1a shows the backgate bias (VBG)-
dependent conductivity (σ) for temperatures from 300 to 2 K. The
conductivity crossing, Δσ=ΔT>0and Δσ/ΔT<0 below ~200 K,
occurs around VBG= 10 V, which is designated as a critical field
separating insulating and metallic phases. This separation can be
rationalized more clearly in the field-dependent conductivity
(Fig. 1b) displayed with the channel voltage Vch ¼ Vds � IDRc,
where Vds is applied drain-source voltage, ID drain-source cur-
rent, and Rc contact resistance. Two different field dependences of
σ around VBG= 10 V unmistakably distinguish the metallic and
the insulating regimes. The inset presents the differential con-
ductivity σdiff ¼ dID=dVch for a small range, which equally sup-
ports the determination of critical field.

At VBG= 10 V, the critical carrier density nc is estimated
to be �3.37 × 1012 cm−2 using the simple approximation,
nc ¼ Cox VBG � VTHð Þ=q, where Cox is geometrical oxide
capacitance, VTH threshold voltage, and q elementary
charge, yielding rs ~ 9.0 (~ 2.3 for Si-MOSFET for the
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Fig. 1 Basic transport properties and mobilities. a Conductivity σ vs. backgate bias VBG for various temperatures at a 0.1 drain-source voltage and the optical
image of the device (inset). b σ vs. channel voltage Vch at 2 K for various VBG’s from −20 (bottom trace) to 70 V (top trace) in 5 V steps. Inset displays the
differential conductivity dID=dVch. c Temperature-dependent 4-probe mobility
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same nc), and the Fermi temperature TF ~ 200 K. Here,
rs � EC=EF ¼ m�q2gV=4πεε0�h

2 ffiffiffiffiffiffiffi
n2D

p
is the ratio of Coulomb

energy EC to kinetic energy EF at the Fermi level, usually used as a
measure of carrier–carrier interaction, where m� is effective
electron mass, gV valley degeneracy, ε � 8 relative dielectric
constant for multilayer MoS217, ε0 vacuum dielectric constant, and
n2D carrier density. This value of rs(~9.0) is large for nc ~
3.37×1012 cm−2. This indicates that Coulomb interactions are
important in this system. The actual interaction effect is expected
to be larger because of the poor screening by the underlying SiO2

substrate (εSiO2
� 3:9) and vacuum environment (εvac � 1).

Although the approximation may underestimate nc value, the
importance of interactions in this system is not diminished
appreciably, and more importantly this does not affect the
determination of critical exponents in scaling analysis as long as
the linear relation between n2D and VBG holds (See Supplemen-
tary Note 1). One of the physical quantities that evaluate disorder
is the field effect mobility μFE ¼ ð1=CoxÞ dσ=dVBGð Þ. In this device
structure, unavoidable scatterings from the substrate and the top
surface strongly limit the carrier mobility. Figure 1c presents
four-probe FET mobility as a function of T for a given Vds, where
μFE decreases as Vds increases similar to the metallic phase (blue)
in Fig. 1b. The largest μFE at 10 K is ~720 cm2 V−1 s−1 at Vds=
0.1 V (See Supplementary Note 2 for details). From these
estimations, we conclude that this system is largely disordered
but strongly interacting.

Hopping conduction mechanism. The hopping conduction in
the insulating phase of interacting disordered system, according

to theory by Efros and Shklovskii7, follows as

σ Tð Þ / exp �TES

T

� �1=2
" #

; ð1Þ

where TES ¼ Cq2

εε0ξkB
. Here, C=6.218, ξ localization length, and kB

Boltzmann constant. Figure 2a shows the conductivity in a
logarithmic scale as a function of T�1=2 that is fitted with Eq. (1)
for different VBG. The parameter TES is obtained with fairly
reasonable fitting (inset of Fig. 2a). For critical phenomena, ξ is
scaled as ξ � n2D � ncj j�ν , where ν is the correlation length
exponent. To extend the Efros–Shklovskii theory to the region
near MIT, a phenomenological scaling ansatz for ε is adopted as
ε � ξη�1 � n2D � ncj j�ζ , implying that Coulomb interactions
become weaker near the transition region when approaching
from the insulating phase19, 20. Thus, TES � n2D � ncj jην , where η
is defined by ζ � ν η� 1ð Þ and usually 1<η<3. Figure 2b shows
the power law behavior for TES yielding ην ¼2.60, supporting the
criticality.

In low-temperature and high-field regime, E ¼ Vch=L �
kBT=qξ (L is the channel length), the conduction is driven by a
field with a negligible thermal effect. In the presence of Coulomb
gap, the field-driven conductivity in insulating phase is described
as21, 22

σ Eð Þ / exp � EES
E

� �1=2
" #

; ð2Þ

where EES ¼ kBTES
2qξ . Here TES is the same parameter as in Eq. (1).

Figure 2c shows E-dependent conductivity, which is fitted by Eq.
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(2). The higher field regions deviate from fitting lines due to the
group velocity saturation. The fitting parameter EES is displayed
in the inset of Fig. 2c. In principle, the localization length ξ can be
determined from two fitting parameters TES and EES using Eq. (2).
However, as it approaches to the transition, Eq. (2) applies rather
poorly due to possibly partial heating effects and inapplicability of
Eq. (2)23 near MIT, which prevents from determining the
accurate ξ. Figure 2d shows the results in log–log scale. Since data
points are scattered, it is not evident to determine ν. For the
guideline, we draw two lines as in Fig. 2d, which give ν �2.34 (red
color) and 1.80 (blue color). In this ν range, η= 1.11 ~ 1.44, and
consequently ζ ¼ 0.26 ~ 0.80. From ε � n2D � ncj j�ζ , smaller ζ
indicates that the dielectric screening in insulating phase is lower
near the phase transition. As we will discuss later, this lower
screening in insulating phase would be one of the reasons for the
asymmetry in critical exponents around MIT.

Scaling analysis. Scaling behavior is one of the hallmarks of a
second-order phase transition in which the correlation length
diverges at the transition. In quantum case, scaling the system size
is equivalent to scaling the temperature. Figure 3a shows the
temperature-dependent conductivity for several VBG at a fixed
Vds= 0.1 V. The conductivity at VBG= 10 V is chosen as the
critical conductivity σc for renormalization (closed circles). At
finite temperatures, the effective sample size Leff � T�1=z , leading
to the scaling for conductivity σ T; δnð Þ=σcðTÞ ¼ FT T=T0ðδnÞ½ �,
where F is universal scaling function, δn � n2D=nc � 1ð Þ,
T0 δnð Þ � δnj jzν and z is dynamical exponent. This equation
implies that the renormalized conductivity σ=σc for different n2D
(or VBG) near the transition collapses into a single curve after the
proper rescaling of temperature for each n2D, and the scaling
parameter T0 should follow the power law24 for δn with the
exponent zν. This scaling yields two collapsed branches for
metallic (upper) and insulating phases (lower) (Fig. 3b). T0 is

given in log–log scale and the exponents zν is determined by
linear fits (Fig. 3c).

One remarkable feature is the asymmetrical values of zν for
metallic (� 0.88) and insulating phase (� 1.63). This difference is
too large to be erroneous. A similar small value zν ¼ 0.6 was
reported for metallic phase in multilayer ReS225. In general,
critical exponents are independent of microscopic details but
mainly subject to the symmetry of Hamiltonian and the
dimensionality due to the diverging characteristic length scale
near MIT. This universality is known to also be influenced by
disorder and the range of Coulomb interactions. Experimentally,
there seems to be a tendency that zν increases with disorder11, 26.
The screening or Coulomb interactions can be also modulated
across MIT, which can lead to asymmetric scaling behavior27, 28.
Further discussion will be presented in a later section.

Besides this temperature scaling (T-scaling), the nonlinear
transport property near MIT for an electric field E allows for
electric field scaling (E-scaling)29 with an associated characteristic
length ‘E � E�1=ð1þzÞ, which strongly corroborates the quantum
phase transition. This leads to the scaling form,
σ E; δnð Þ=σcðEÞ ¼ FE E=E0ðδnÞ½ �, where E0 δnð Þ � δnj jð1þzÞν . Fig-
ure 3d reproduces the electric field-dependent conductivity,
which yields E-scaling (Fig. 3e). The scaling parameter E0 for δn
is plotted in Fig. 3f. The extracted exponent, 1þ zð Þν = 3.50 for
metallic and 4.32 for insulating regime. From these two scaling
analyses, exponents ν and z are separately determined; νM = 2.62
and zM = 0.34 for metallic regime, while νI = 2.69 and zI = 0.61
for insulating regime.

Hot electron effect and the relevance of E-scaling. At this point,
we point out that E-scaling should be taken into account with
caution. The critical exponents in E-scaling may deviate if there is
a significant heating effect on electrons30. In general, the input
power P= IV is used to make electrons hot if no phonons are
generated. Energy of hot electrons is dissipated by releasing heat
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to phonons. At low temperature, electron–phonon coupling is
reduced by the reduced phonons and thus hot electrons can be
generated more easily than high temperature. This effect is
expressed by a following power law relation,

P ¼ IV ¼ g Tα
e � Tα

� �
; ð3Þ

where g is the effective coupling constant and α exponent of
the power law. In disordered thin film including monolayer MoS2
at low temperature, where only acoustic phonons are relevant, i.e.,
below Bloch Grüneisen temperature, it has been observed that
α ¼ 4 � 631–34. This value decreases with temperature increasing.
For example, this value becomes 1 in monolayer MoS233.

In order to check the relevance of E-scaling in obtaining the
critical exponents in multilayer MoS2 systems, we fabricated
another MoS2 device of 3.5 nm thickness and performed E-scaling
at wide temperature range (4K-300K) with many more data
points (See Supplementary Note 3). Figures 4a, b show the
temperature-dependent conductivity for several backgate biases
and electric field-dependent conductivity at T= 4 K, respectively.
The arrows in these figures indicate the traces corresponding to
the critical field Vc= 37 V (nc � 2.65 × 1012 cm−2). From these
two measurements, we again determine the critical exponents
zMνM ¼ 1.33, zM ¼ 0.56, and νM ¼ 2.37 for metallic phase and
zIνI ¼ 2.06, zI ¼ 0.80, and νI ¼ 2.58 for insulating phase. We
obtain the qualitatively similar features to the first MoS2 sample,
asymmetric zν values and small z (<1) value. Also, we find that
this system is well described by Efros and Shklovskii variable
range hopping (ES-hopping) (See Supplementary Note 3). To
demonstrate the hot electron effect, we choose two electric field-
dependent conductivity traces, one in metallic corresponding to
VBG= 58 V and the other in insulating phase corresponding to
VBG= 34 V. Figures 4c, d show the conductivity behaviors of
these two traces as a function of Vch at several different
temperatures. The zero voltage limit of conductivity σ0 for each

temperature is shown in Fig. 4e. Based on the observed σ0, we
convert the voltage (or E field)- dependent conductivity at T= 4
K to the effective electron temperature Te. Figures 4f, g show the
injected power as a function of Te for VBG= 58 V and VBG= 34
V, respectively.

For metallic phase (Fig. 4f), the exponent α � 3:4, which is
close to 4 at low temperature (<TBG ~ 20 K35, Bloch Grüneisen
temperature). At high temperature (>20K), α is 1.3, close to 1,
which is predicted in monolayer MoS2. Therefore, the possibility
of contribution from hot electron effects cannot be excluded in
metallic phase. The non-monotonic behavior at Te	 100 K in
Fig. 4f implies additional effects and remain elusive at current
stage. On the other hand, α ~ 11 in the insulating phase as shown
in Fig. 4g is too large to have any significant hot electron effects.

There is one more requirement for E-scaling to be valid. E-
scaling is based on the standard scaling theory of localization for
disorder-driven transitions. In principle, this should hold in the
diffusive regime, i.e., lowest temperature. Since 2 K or 4 K is just a
small fraction of the Fermi temperature (150 ~ 200 K) and lower
than Dingle temperature TD ~ 10 K in our samples, the diffusive
regime appears to be accomplished. On the other hand, T-scaling
is generally accepted to hold for the interaction-driven transition
also and unsubject to hot electron effects as long as the drain-
source voltage Vds (or channel voltage Vch) is small. We used Vds

= 0.1 V, which results in nearly zero channel voltage limit (See
Supplementary Note 3). Hence, the fact of asymmetric critical
exponents zν across the MIT is affirmative regardless of E-
scaling. However, the separation of z and ν at least for the
metallic phase is not reliable due to the heating effect. Even in
insulating phase, each value of critical exponents should be taken
with a caution. We will discuss this issue in the discussion section.

Screening and asymmetric critical exponents. The change in
screening properties across the MIT has been suggested for an
asymmetric ν28, 36. It is argued that z ¼2 for the non-interacting
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case or short-range interactions and z ¼1 for long-range inter-
actions for superconductor-insulator transition37–40. Although
this argument for the z value may not be exact for the interacting
2D MIT case41, 42, it appears that both z and ν are susceptible to
the range of interaction.

The screening effect is generally stronger in metallic phase.
Moreover, an apparent intermediate metallic feature with a power
law-dependent conductivity, in which screening is expected to be
poor, is not clearly visible or exists in a very narrow range10 (See
Supplementary Note 4 for more details). This characteristic with
poor screening in insulating phase even near MIT appears to
result in an asymmetric scaling property. The possibility of a
drastic change in critical phenomena across the MIT due to the
change of screening was noted early by Mott27. However, it has
not been discussed by most conventional theories for its
importance. It requires further theoretical and experimental
studies. In contrast, monolayer MoS2 shows significantly more
symmetry, which is ascribed to the severer disorder effect. In
other words, the MIT in monolayer MoS2 is more likely disorder-
driven. However, the possibility of inaccuracy inherent from
rather high drain-source voltage (0.5 V) especially at low
temperature in scaling analysis for monolayer cannot be excluded
(See Supplementary Note 5 for more details).

Discussion
The distinct features of two multilayer MoS2 with additional
monolayer MoS2 are demonstrated in Fig. 5. zν value increases
and asymmetry is reduced as the thickness decreases. The origin
is not clear but it is consistent with aforementioned experimental
observations that zν tend to increase in more disordered systems,
or they are in a different universality class. The asymmetric cri-
tical exponent is interpreted as a result of different screening
across the MIT, which naturally indicates the importance of
correlation in this system. In addition, relatively small field effect
mobility entails the soft Coulomb gap description, and data well
fitted by ES-hopping transport in the insulating phase support
this description. One important feature here is the power law
behavior of TES as in Fig. 2b, which demonstrates the criticality of
MIT as the evidence opposing to the viewpoint of crossover
phenomena between strong and weak localization effects at rather
high temperature for 2D MIT43.

There is an approach to check the self-consistency for the
quantum phase transition. The critical conductivity σc, in general,
has the power law with temperature as σc � Tx . From the
Wegner scaling, it is expected that x ¼ d� 2ð Þ=z. Thus, x= 0 for
two dimension (d= 2), i.e., σc is temperature-independent.
However, it was argued that x≠0 does not contradict any fun-
damental principle for 2D systems44, 45. Usually, when strong
disorder is introduced into a system, it was experimentally shown
that the relation μ ¼ xðzνÞ is applied11, 44, where μ is the expo-
nent in the relation σ n2D;T ¼ 0ð Þ � δnμ. Here, σ n2D;T ¼ 0ð Þ is
the conductivity in the limit of zero temperature. For a low dis-
order system, it has been experimentally known that x is usually
indecisive and μ �1–1.545, 46. We have applied the relation μ ¼
xðzνÞ to our 5 nm thick MoS2. We obtained x ~ 0.91 and μ ~ 0.87.
The value x zνð Þ ¼0.91×0.88= ~ 0.80 agrees well with μ ~ 0.87 as
shown in Fig. 6.

Finally, we discuss the value of z. The dynamic critical expo-
nent z is defined by τc � ξz , physically describing how fast the
system restores equilibrium against fluctuation, where τc is the
characteristic time for the decay of fluctuation. As the transition
approaches, τc increases with a diverging ξ, i.e., the system slows
down. Thus, a smaller value of z indicates faster equilibrium.
However, z < 1 as in our multilayer MoS2 is unusual based on the
majority theories that evaluate z 	 1 for most phase transitions.
For the 2D MIT case, it is shown that the compressibility χ in the
presence of Coulomb gap vanishes at the transition as it
approaches from metallic phase47. Since χ � δnνð2�zÞ, z is
bounded by z < 2 with an unknown lower bound. In a 2D
superconductor-insulator transition, it is argued that the
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relevance of long-range Coulomb interaction requires z= 140.
The theoretical finding of z < 1 is attributed to the emergence of
new low energy excitation48. At current stage, the origin of z < 1
in multilayer MoS2 is unidentified. Perhaps, E-scaling requires the
lower temperature than 4 K to be valid in strong correlation or it
is a new class of universality in this Mott–Anderson transition
type. This requires further study. Assuming that our E-scaling is
unreliable due to some non-negligible heating effects or the
measurement at rather high temperature to be in diffusive regime,
and thus, in fact, z≳ 1, we can exclude a disorder-dominated
transition in this thick multilayer MoS2 since zMνM ¼ 0.88, which
is congruent with previous report of small value (0.6) in a few
layer ReS225, violates Harris criterion49, 50, i.e., νM < 1. For thin-
ner multilayer MoS2, z � 0.80 (for insulating phase) seems quite
close to 1 considering all the difficulties in E-scaling.

When both disorder and interaction effects are important, it
was predicted that the metallic glass phase can appear with the
power law temperature dependence9, i.e., σc nc;Tð Þ / T3=2, and
experimentally observed10, 44. In our multilayer MoS2, such phase
seems to possibly exist in a narrow window of a carrier density,
which suggests an interaction-dominated transition also. This
Mott-like transition in multilayer MoS2, which is quite strongly
disordered in terms of the field effect mobility, supports the
theoretical prediction that disorder tends to be screened by cor-
relation effects13.

In summary, we observed MIT in multilayer MoS2. In this
system, disorder and interactions are both important, leading to
soft Coulomb gap picture to describe hopping transport in
insulating phase. However, the metallic glass feature is rarely seen
possibly due to strong interaction effects. The T-scaling analysis
and a criticality in localization length are consistent with quan-
tum phase transition. The asymmetric critical behavior across the
MIT is interpreted as a result of asymmetric screening. Although
E-scaling is uncertain for its validity, the clear feature of MIT in
electric field-dependent conductivity is in harmony with quantum
phase transition. While the transition in multilayer MoS2 is likely
interaction-dominated, a disorder-dominated transition is
speculated in monolayer MoS2.

Methods
Device fabrication and electrical transport measurement. A multilayer MoS2
flake was mechanically exfoliated on a highly doped 300 nm SiO2/Si substrate. To
pattern the electrodes, PMMA A4 was spin-coated (3000 rpm, 50 s) and then, the
electron beam lithography (EBL) was performed, followed by Cr/Au (2/60 nm)
evaporation in high vacuum (~10−6 Torr). For monolayer MoS2 device, multilayer
(15–20 nm thick) h-BN flakes were, first, mechanically exfoliated on a highly doped
300 nm SiO2/Si substrate, and then a CVD-grown monolayer MoS2 flake was
transferred onto it. The post processes, EBL and metal evaporation, were the same
as those of the multilayer MoS2 device. The dimensions of multilayer MoS2
(thickness= 5 nm, length= 7.1 μm, and width= 6 μm for first sample and thick-
ness= 3.5 nm, length= 11.1 μm, and width= 6.5 μm for second sample) and
monolayer MoS2 device (length= 12 μm and width= 10.4 μm) were confirmed by
an atomic force microscope (SPA 400, SEIKO).

Four-probe electrical measurements were performed in high vacuum (~10−6

Torr) using a commercial semiconductor characterization system (4200-SCS,
Keithley) for monolayer MoS2, and a cryostat (PPMS, Quantum Design, Inc.) with
a characterization system (B1500A, Keysight Technologies).

Data availability. The data supporting this study are available from the corre-
sponding authors upon request.
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