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Electric and magnetic gating of Rashba-active weak links
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In a one-dimensional weak-link wire the spin-orbit interaction (SOI) alone cannot generate a nonzero spin
current. We show that a Zeeman field acting in the wire in conjunction with the Rashba SOI there does yield
such a current, whose magnitude and direction depend on the direction of the field. When this field is not parallel
to the effective field due to the SOI, both the charge and the spin currents oscillate with the length of the wire.
Measuring the oscillating anisotropic magnetoresistance can thus yield information on the SOI strength. These
features are tuned by applying a magnetic and/or an electric field, with possible applications to spintronics.
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Spintronics takes advantage of the electronic spins in de-
signing a variety of applications, including giant magnetoresis-
tance sensing, quantum computing, and quantum-information
processing [1,2]. A promising approach for the latter exploits
mobile qubits, which carry the quantum information via the
spin polarization of the moving electrons. The spins of mobile
electrons can be manipulated by the spin-orbit interaction
(SOI), which causes the spin of an electron moving through a
spin-orbit active material (e.g., semiconductor heterostructures
[3]) to rotate around an effective magnetic field that depends
on the momentum [4,5]. In the particular case of the Rashba
SOI [6], both the rotation axis and the amount of rotation can
be tuned by gate voltages [7–10]. Research in this direction
was enhanced following the proposal by Datta and Das [11],
of a spin field-effect transistor based on magnetic leads. It is
still a challenge to achieve polarized mobile electronic spins
avoiding the use of ferromagnetic leads.

In the simplest device, electrons move between two large
electronic reservoirs, via a mesoscopic region. When the
region is spin-orbit active, the single-channel transmission is
described by a 2 × 2 matrix in spin Hilbert space. Since this
matrix is proportional to the unit matrix when time-reversal
symmetry is obeyed [12], spin splitting cannot be achieved
with SOI alone. Time-reversal symmetry is broken by applying
a magnetic field. Indeed, several proposed devices utilize an
orbital Aharonov-Bohm magnetic flux, which penetrates loops
of interferometers to achieve spin splitting [13–15], via the
interference of the spinor wave functions in the two branches
of the loop.

Here we analyze an even simpler geometry: the two reser-
voirs are connected by a single (weak link) spin-orbit active
wire, but we do take into account the Zeeman energy gained
from an external magnetic field acting on the whole wire
(see Fig. 1). Due to this field, both the charge and the spin
conductances of the device are found to exhibit oscillations
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with the length of the wire. These oscillations, as well as
the associated magnetoconductance anisotropy, can be used
to identify the strength of the SOI; remarkably, they can be
tuned by applying electric and/or magnetic fields. Although
earlier papers [16–18] considered the band structure and the
gate-voltage dependence of the conductance of such wires,
they did not discuss these interesting phenomena.

The SOI and the Zeeman field split the spinor wave function
in the wire into two waves, with different wave vectors and
with different spin polarizations. In the presence of both the
external magnetic field, H, and the effective magnetic field
due to the SOI, Hso, each of these accumulates its own phase
along the link, and they interfere to generate a 2 × 2 matrix for
the tunneling amplitude, which contains a mixture of the two
polarizations. Without the external field, this matrix is unitary,
causing only a rotation of the spin polarizations around Hso
by an angle which depends on the SOI strength and the wire
length [19]. The resulting transmission matrix is proportional
to the unit matrix, and there is no net polarization. In contrast, a
nonzero H generates a nonunitary tunneling amplitude. Then,
a bias voltage between the reservoirs induces particle and spin
currents. Thus, the nonunitarity of the transmission matrix
results in a net spin magnetization in the reservoirs. This,
as well as the magnetoconductance of the weak link, do not
depend on the length of the wire unless the magnetic field is
not along Hso. In particular, when H is perpendicular to Hso,
both properties exhibit distinct oscillations with this length, on
length scales related to the SOI and the field strengths. As such,
they are both tunable by electric and magnetic fields. The mag-
netization generated in the reservoirs has components along
H and Hso, and—surprisingly—also perpendicular to both of
these directions. Remarkably, these effects are of the order of
the ratio of the Zeeman energy to the spin-orbit energy [20].

The described interference can be compared to the
Aharonov-Bohm effect, where the electron wave function
acquires different extra phases from the motion of an electric
charge along different paths in an external magnetic field. Here
the extra phases—which we may call Aharonov-Casher [21]
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FIG. 1. A spin-orbit active weak-link wire connecting two reser-
voirs. The momentum of the electron is k, the external magnetic field
is H, and the effective field due to the SOI is Hso. The net effective field
(around which the spins rotate) is Heff . The arrows in the reservoirs
show the magnetization rates there, ṀL and ṀR = −ṀL, generated
due to the joint effect of Hso and H.

phases for electrons—are due to the motion of a magnetic
moment in an electric field. Our device can therefore be viewed
as an Aharonov-Casher interferometer. Unlike the Aharonov-
Bohm one, here the phase difference between two “channels”
can appear even though the electrons move along the same
spatial trajectory between two singly connected leads.

Adopting units in which h̄ = 1 and using the linear Rashba
SOI, the Hamiltonian of the system is

H = Hlink + Hleads + Htun. (1)

Here, the Hamiltonian in the weak link is

Hlink = − 1

2m∗ ∇2 − i
k̃so

m∗ n̂ · (σ × ∇) − H · σ , (2)

where σ is the vector of Pauli matrices, m∗ is the effective mass,
and n̂ is a unit vector along the electric field which causes
the SOI. The net strength of this interaction (in momentum
units [22]) is denoted k̃so; the notation kso is used below for
the “full” coupling. The “magnetic field” H contains the factor
(g/2)μB, i.e., the g factor and the Bohr magneton, and therefore
has units of energy. The Hamiltonian of the leads is Hleads =∑

α=L,R Hα
lead, with

Hα=L(R)
lead =

∑
k(p),σ

εk(p)c
†
k(p)σ ck(p)σ , (3)

where c
†
kσ (ckσ ) creates (annihilates) an electron with momen-

tum k and spin σ (at an arbitrary quantization axis at this stage)
in the left lead, with similar definitions in the right lead. The
tunneling between the leads and the weak link is described by

Htun =
∑

k,p,σ,σ ′
([Vkp]σσ ′c

†
kσ cpσ ′ + [V ∗

kp]σσ ′c
†
pσ ′ckσ ), (4)

where [Vkp]σσ ′ is the tunneling amplitude from the state with
momentum p and spin σ ′ in the right lead to the state with
momentum k and spin σ in the left one. This amplitude, the
key ingredient of our approach, is proportional to the spin-
dependent propagator connecting the two states [23].

Our calculation contains three steps. First, Hlink is used to
derive the propagator, i.e., the Green’s function connecting a
pair of electronic spin states along the (one-dimensional) wire.
Second, the time derivatives of the particle number and the
total spin in the reservoirs is found to second order in Htun.
For unpolarized leads the Fermi distribution, e.g., in the left

lead, is

fL(εk) = 1/[eβ (εk−μL) + 1], (5)

where β = (kBT )−1 is the inverse temperature and μL is
the chemical potential. The Fermi distribution in the right
reservoir, fR(εp), is defined similarly. Finally, the transmission
matrix and the particle and spin currents are analyzed. We con-
sider the case where the Fermi energy in the conducting wire,
EF (EF is the common chemical potential of the reservoirs),
exceeds significantly all other energies. The opposite limit of
an insulating wire (EF < 0 in our notation) is addressed in
Ref. [24]; an intriguing interplay between |EF| and both the
Zeeman and SOI energies is found to dominate the transport.

We first consider the propagator. Assuming a plane-wave
solution with a wave vector k directed along the one-
dimensional wire, exp[ik · r] = exp[iks] (s > 0 is the coor-
dinate along the wire), the effective magnetic field associated
with the SOI is

Hso(k) = (kkso/m∗)ĥso; ĥso = (n̂ × k̂)/|n̂ × k̂|, (6)

where kso = k̃so|n̂ × k̂| and ĥso is a unit vector along the
direction of Hso [22]. ThenHlink(k) = k2/(2m∗) − Heff (k) · σ ,
with the net effective magnetic field

Heff (k) = Hso(k) + H = kkso

m∗ ĥso + H. (7)

The (spin-dependent) propagator between two points along the
link is a 2 × 2 matrix in spin space [23,25]

G(s; E) =
∫

dk eiks
E + i0+ − k2

2m∗ − Heff (k) · σ(
E + i0+ − k2

2m∗
)2 − H 2

eff (k)
. (8)

It is evaluated by the Cauchy theorem [26], with E =
k2

F/(2m∗), as the electrons in the link are at the
Fermi energy. The free-particle propagator, G0(s; E) =
−iπm∗ exp[ikFs]/kF, is recovered when H = Hso = 0.

In the presence of the effective magnetic field, Eq. (7),
the external magnetic field H is decomposed into components
parallel (H‖) and perpendicular (H⊥) to ĥso. The poles of the
integrand in Eq. (8) are the solutions of(

k2 − k2
F

)2 = (2m∗H⊥)2 + (2ksok + 2m∗H‖)2 (9)

in the upper half of the complex k plane [27]. Denoting these
by k±, with k2

± − k2
F = ±2m∗Heff (k±), the propagator is

G(s; E) = G0(s; E) exp[−ikFs][eik+sA+(1 + q̂+ · σ )

+ eik−sA−(1 − q̂− · σ )], (10)

where the real coefficients A± (i.e., the residues of the corre-
sponding poles) and the unit vectors [see Eq. (7)]

q̂± ≡Heff (k±)

Heff (k±)
(11)

depend on k±. The two terms in the square brackets of
Eq. (10) correspond to waves with wave numbers k+ and
k− [27]. The corresponding tunneling amplitudes contain the
spin projection matrices (1 ± q̂± · σ ), so that the transmitted
electrons are fully polarized along q̂+ and −q̂−, respectively.

At zero magnetic field q̂+ = q̂− = ĥso, and the propagator is
proportional to a unitary matrix, G(s; E) ∝ exp[−iksosĥso · σ ]
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[23]. Applied to any spinor, it describes a rotation of its spin
polarization, by an amount which is determined by the distance
s and by the spin-orbit “momentum” kso. This rotation is the
same for all spinors, and hence does not change the total
spin polarization. As expected from time-reversal symmetry,
the SOI alone cannot generate any spin splitting [12]. In the
presence of H the matrix in the square brackets in Eq. (10) is not
unitary; as shown below, this leads to a finite spin polarization,
whose magnitude increases with H .

Using these peculiar properties of the spin-dependent tun-
neling amplitude, we analyze the particle current and the
magnetization rate. Both are determined by [26,28]

RL
σσ ′ = d

dt

∑
k

〈c†kσ ckσ ′ 〉

= i
∑

k,p,σ1

〈
[V ∗

kp]σσ1
c†pσ1

ckσ ′ − [Vkp]σ ′σ1
c
†
kσ cpσ1

〉
, (12)

where the angular brackets indicate a quantum average and
where we used the assumption that the leads are not polarized.
The total particle current is then

IL =
∑

σ

RL
σσ , (13)

while the magnetization rate, which can be interpreted as a spin
current, is

ṀL =
∑
σ,σ ′

RL
σσ ′[σ ]σσ ′ . (14)

The spin-dependent rate, Eq. (12), is found to second order in
the tunneling [26],

RL
σσ ′ = 2π

∑
k,p

[VkpV
†

kp]σ ′σ δ(εk − εp)[fL(εk) − fR(εp)]. (15)

This is the Landauer formula, with the 2 × 2 transmission
matrix T = [VkpV

†
kp]; it implies that in the linear-response

regime both IL and ṀL are proportional to the bias volt-
age μL − μR . The transmission matrix, T , evaluated at the
Fermi energy, is given in terms of the propagator Eq. (10),
T = |C|2G(d,EF)G(d,EF)† where C is a constant which is
independent of Hlink and d is the length of the wire. It has the
generic form

Tσ ′σ = T0(Uδσ ′σ + W · [σ ]σ ′σ ), (16)

where T0 is the (spin-independent) transmission of the junction
in the absence of the external magnetic field and the SOI,
and where U and W are a real number and a real vector,
respectively. For H = 0 the matrix Vkp is proportional to a
unitary matrix [23], the transmission matrix is proportional to
the unit matrix, the rate matrix RL is also proportional to the
unit matrix, and consequently, ṀL = 0. The eigenstates of this
matrix, given by W · σ |v±〉 = ±W |v±〉, represent spins which
are fully polarized in the direction of the vector W.

Our central results are the particle current (i.e., the magneto-
conductance) and the magnetization rate (i.e., the spin current),

IL ∝ Tr{T } = T0(2U ), ṀL ∝ Tr{T σ } = T0(2W). (17)

When W = 0 the two eigenvalues of the transmission are
identical and the magnetization-rate vector vanishes. When

FIG. 2. The magnetoconductance difference, Uii − Ui , calcu-
lated for kFd = 20, as a function of the spin-orbit coupling (kso)
measured in units of the Fermi wave vector, and the Zeeman energy,
measured in units of k2

F/m∗. The oscillations shown are due to the
term ∝cos(α) of Uii ; α = (k+ − k−)d .

they are not equal, ṀL is directed along the vector W, and its
magnitude is proportional to W .

We analyze the charge and spin currents in two con-
figurations. (i) The external magnetic field is along the
direction of the effective magnetic field due to the SOI,
H‖ ‖ ĥso. In this case q̂+ = q̂− = ĥso, A± = kF/[2(k2

F + k2
so ±

2m∗H‖)1/2], and the magnetoconductance of the weak link is
[29]

Ui = 1 + k2
so/k2

F(
1 + k2

so/k2
F

)2 − (
2m∗H‖/k2

F

)2 . (18)

The magnetoconductance increases monotonically with H‖
and decreases monotonically with kso. The magnetization rate
in this configuration is directed along H‖,

Wi = − 2m∗H‖/k2
F(

1 + k2
so/k2

F

)2 − (
2m∗H‖/k2

F

)2 . (19)

The magnetic moment grows with H‖, and decreases with kso.
Neither the charge current nor the spin current depend on the
length of the weak-link wire. Since our calculation holds for
2m∗H < k2

F, the ratio of the magnetization rate to the particle
number rate remains small.

FIG. 3. The magnitude of the spin current along Wplane with the
same parameters as in Fig. 2.
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FIG. 4. The magnitude of the spin current Wperp with the same
parameters as in Fig. 2.

(ii) The more intriguing configuration is when H ≡ H⊥ ⊥
ĥso because then the transmission results from the interference
of two waves of wave vectors k±,

k2
± = k2

F + 2k2
so ± 2

[
k4

so + k2
sok

2
F + (mH⊥)2

]1/2
. (20)

These correspond to two spin-projection matrices [see
Eqs. (10) and (11)], determined by the unit vectors q̂± =
[ksok±ĥso + m∗H⊥]/[(ksok±)2 + (m∗H⊥)2]1/2. In this case the
magnetoconductance is given by Uii ,

Uii = 2(A2
+ + A2

− + A+A− cos(α)[1 − q̂+ · q̂−]), (21)

where α = (k+ − k−)d, and

A± = 2kF

[
k2

sok
2
± + (m∗H⊥)2]1/2

/[k±(k2
+ − k2

−)]. (22)

The magnetoconductance oscillates with the length of the weak
link. The oscillations are more pronounced when the difference
Uii − Ui is plotted for the same magnitudes of the field; this is
displayed in Fig. 2.

The spin-current vector W in this configuration is
conveniently separated into components Wperp along

q̂+ × q̂− ‖ ĥso × H⊥, and Wplane in the {q̂+,q̂−} (or {ĥso,H⊥})
plane. The magnitudes of those are [26]

Wperp = 2A+A−| sin(α)q̂+ × q̂−|,
Wplane = 2|(A2

+ − A2
−)2 + 2A+A−[1 − q̂+ · q̂−]

× [A+A−+cos(α)(A2
++A2

−)+A+A− cos2(α)]|1/2.

(23)

The magnitudes of Wplane and Wperp are displayed in Figs. 3
and 4, respectively. The (almost) double periodicity in Fig. 4
as compared with Fig. 3 appears since |Wperp| is proportional
to sin(α).

In summary, we have shown that a net amount of charge and
magnetic moment per unit time is transferred through a biased
spin-orbit active weak link from a source to a drain electrode.
Electrons enter and leave the weak-link wire at injection points,
whose small volumes are characterized by the cross-section
radius r0 of the wire. Assuming the volumes of the electrodes
are much larger than these injection volumes, and if the
system is part of a closed electrical circuit, the density of
the injected electrons, δn(r), and the density of the associated
magnetic moment, M(r), will decrease with the distance r from
the ends of the wire due to a geometrical spreading effect,
δn(r)/δn(r0) , M(r)/M(r0) ∝ (r0/r)x , where x = 2 (x = 1)
in the ballistic (diffusive) transport regime [30,31]. The in-
jected magnetization can be measured, e.g., by a properly
positioned superconducting quantum interference device, or by
a magnetic-resonance force microscope. In an open electrical
circuit, the injection of magnetic moments will lead to a finite
magnetization, proportional to the bias voltage, in the entire
volume of each electrode.
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