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Abstract
A theory of a thermally induced single-electron ‘shuttling’ instability in amagnetic nano-mechanical
device subject to an externalmagneticfield is presented in theCoulomb blockade regime of electron
transport. Themodelmagnetic shuttle device considered comprises amovablemetallic grain
suspended between twomagnetic leads, which are kept at different temperatures and assumed to be
fully spin-polarizedwith anti-parallelmagnetizations. For a given temperature difference shuttling is
found to occur for a region of externalmagnetic fields between a lower and an upper criticalfield
strength, which separate the shuttling regime fromnormal small-amplitude ‘vibronic’ regimes.We
find that (i) the upper criticalmagneticfield saturates to a constant value in the high temperature limit
and that the shuttle instability domain expandswith a decrease of the temperature; (ii) the lower
criticalmagnetic field depends not only on the temperature-independent phenomenological friction
coefficient used in themodel but also on intrinsic friction (which vanishes in the high temperature
limit) caused bymagnetic exchange forces and electron tunneling between the quantumdot and the
leads. The feasibility of using thermally drivenmagnetic shuttle systems to harvest thermal breakdown
phenomena is discussed.

1. Introduction

Mechanically promoted electric transport, being one of themost interesting features of nanoelectromechanics
(NEM), offers a new functionality to devices on the nanometer length scale. Shuttling of electrons, as predicted
in [1] and actively studied both theoretically and experimentally, is a prominent example of this statement (see,
e.g., the review [2]).

Heat transport in nanostructures is a subject of enhanced interest [3] especially due to the importance of heat
removal on a nanometer length scale. Electrically inducedmechanical shuttling of electrons results in an
exponential decrease of electric resistance (electric breakdown) and this new type of electric conductivity also
significantly affects the heat transport through aNEMdevice. An intriguing question occurring in this context is
whether or not the similar shuttle instability can be induced thermally at zero bias voltage applied to the device.
In otherwords—is there a room formechanically induced thermal breakdown inNEMshuttle devices?

The electric force, which drives a chargedmovable quantumdot (QD), vanishes in the zero voltage limit,
implying that the coupling betweenmechanical and electronic degrees of freedomof theNEMdevice
disappears. No pumping energy can be extracted froman electrically unbiased device. Inwhat followswewill
show that in amagnetic shuttle [4] themagnetic exchange force can provide the necessarywork to induce a
mechanical instability. Therefore a thermal breakdown in amagnetic unbiased shuttle device can take place.
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In amechanically softNEM shuttle device, where aQD is coupled by electron tunneling to source and drain
electrodes, an onset of amechanical instability occurs when the bias voltage exceeds a critical value known as the
instability threshold.When this happens a limit cycle ofmechanical oscillations is reached (self-oscillation
regime) and a steady state electrical current, which providesmechanical transportation of charge, is established.
This current, which typically exceeds the tunnel current in the absence of a shuttle instability by several orders of
magnitude, is called an electrical shuttle current (see [4] and [5]).

In an electric shuttle device both the energy source and the driving force are electrical in nature: the energy
source is a bias voltage applied between the leads and the driving force is the Coulomb force between charges in
the dot and the leads. In amagnetic shuttle device with spin-polarized electrons in the leads the energy source
and the driving forcemay have a different physical nature: the energy source could still be a bias voltage while the
driving force could be themagnetic (exchange) force between electron spins in the dot and themagnetic leads.
(For a nanometer size geometry the exchange forcemay be as strong as theCoulomb force [6].)Therefore, it is in
principle possible to employ a thermal rather than an electrical energy source in amagnetic shuttle device, i.e. to
apply a temperature difference between leads kept at the same chemical potential. In this paper we show that
such thermally inducedmagnetic shuttling is possible.

The action of the spin force is different from that of the Coulomb force.While theCoulomb force tends to
repel electrons transferred to the dot from the lead theywere injected from (Coulomb repulsion), themagnetic
force, caused by the spin of the injected electron, acts in the opposite direction5. Therefore thework done by the
magnetic force has the opposite sign compared to thework performed by theCoulomb force. Hence, the
exchange force itself can not pump energy into themechanical subsystem.However, if an externalmagnetic field
H perpendicular to themagnetization in the leads is applied, this becomes possible. Such afield forces electrons
in the dot toflip their spins and the densities of spin-up and spin-down electrons in the dot oscillate with a
frequency determined by themagnetic field. Therefore the direction of themagnetic exchange forcemay
change. As a result it becomes possible to trigger a shuttle instability in amagnetic device by applying an external
magnetic field.

Inwhat followswewill assume for simplicity that themagnetic leads are fully spin-polarized and that their
magnetizations are anti-parallel. Under this condition the electrical current is blocked completely until ‘spin
flips’6 are induced by the externalmagnetic field (which is assumed to be oriented perpendicularly to the
magnetization of the leads). The influence of a partial spin polarization on the shuttle instability was considered
in [7] and [8].

Themodel we use to study a thermally inducedmagnetic shuttle is sketched in figure 1. It is the standard
shuttle device (see, e.g., [4] and [9]), the only difference being that a temperature drop δT is applied to the leads
instead of an electrical bias voltage and that one is interested in the heat flow Jq in response to this temperature
drop. The thermal resistanceRT can be defined in analogywith the electrical resistance asRT=δT/Jq. An
exponential decrease in the thermal resistance (thermal breakdown) is possible due to transduction of thermal
energy into themechanical energy stored in the shuttle vibrations.

Figure 1. Sketch of the nanomagnetic device studied: amovable spin-degenerate single-level (with energy ε0) quantumdot is coupled
by electron tunneling to two fully spin-polarized ferromagnetic leads. The leads are kept at the same chemical potentialμ but at
different temperaturesTL=T andTR=0.Here tL(x), tR(x) and JL(x), JR(x) are dot position-dependent tunneling amplitudes and
exchange energies. An externalmagneticfieldH induces flips between the spin-up and spin-down states on the dot.

5
Nonzeromagnetization of a lead implies spin-split electron energy levels, withmajority-spin electrons occupying the lower split level. The

transfer of such an electron from the lead to the dot diminishes themagnitude of the energy split and therefore increases the total energy of
the electron.Hence, themagnetic force on the dot, which acts to lower the energy of the system,will be oriented towards themagnetic lead
that the electron tunneled from. This interaction is ferromagnetic irrespective of the nature of the exchange interaction (ferromagnetic or
antiferromagnetic) in the bulk leads.
6
Here the term ‘spinflips’ does not refer to any spin relaxationmechanism but to spinflips caused by the coherent spin dynamics (spin-up/

down oscillations) in amagnetic field. The rate of these spinflips ismuch higher than those related to spin relaxation processes.
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Belowwewill show that amechanical shuttle instability occurs within afinite interval of externalmagnetic
fields strengths, < <( )H H Hc c1 2 . The dependence of the upper,Hc2, and lower,Hc1, thresholdmagnetic fields
(which separate the shuttle and tunnel (outside this interval) regimes of electron transport) on the large
temperature difference δT close to the temperatureT of the ‘hot’ lead is themain result of our paper. The lower
thresholdfieldHc1 is determined by the dissipation (friction) coefficient in themechanical subsystem. The
friction coefficient γf=γ0+γJ(T) is the sumof a (phenomenological) friction coefficient γ0 (see e.g. [10]) and
the intrinsic friction coefficient [11] γJ(T) induced in our case bymagnetic exchange forces and electron
tunneling between the dot and the leads atfinite temperatures.Wewill call this coefficient themagnetic friction
coefficient.Wewill show that the phenomenological friction coefficient can be neglected for amechanical
systemwith a high quality factor. Themain contribution tomagnetic friction is due to the hot electron reservoir
(we assume a large temperature difference).We show thatmagnetic friction exists even in the absence of an
externalmagnetic field and that it is a non-monotonic function of temperature: it is exponentially small at low
temperatures, becomes temperature-independent in the regionT;Γ (whereΓ is the characteristic energy of
the dot-lead coupling) and scales as 1/T in the high temperature limit. Since the pumping of energy into the
mechanical subsystem in ourmodel is triggered by the externalmagnetic field (the corresponding rate of
increase of the oscillation amplitude in lowmagnetic fields being proportional toH2) a lower thresholdmagnetic
fieldHc1 with a nontrivial temperature dependence appears. Aswe have shown before [4] themechanical
instability disappears in highmagnetic fields. This is why an upper thresholdfieldHc2 appears in the temperature
driven shuttle as well.

Our calculations do not give any information about the low temperature limit, (δT=Γ), since we use an
approximationwhere the thermal energy is large compared to thewidth of the energy levels on the dot
(sequential electron tunneling) and since in ourmodel δT=T. However, our previous results (see, e.g., [12])
allowus to expect that the instability occurs at temperature differences not smaller than a value of the order of
ÿω. Therefore onemay expect a non-monotonic dependence of the upper thresholdfield on the temperature
difference with amaximumat δT∼Γ.

This paper is organized as follows. In section 2 themodel systemwe use to discuss thermo-induced single-
electron shuttling is introduced; an equation for the reduced density operator of theQD and an equation of
motion for the classical coordinate of the dot are obtained. In section 3 the domainwhere amagnetic shuttle
instability occurs in the adiabatic regime of electron transport is characterized. In the concluding section 4we
highlight themain results obtained and discuss possible applications of a temperature induced shuttle
instability.

2. Thermo-induced single-electron shuttle

The systemunder consideration (see figure 1) consists of a single-level QD that is coupled by electron tunneling
to two ferromagnetic electrodes (leads). The leads are fully spin-polarizedwith theirmagnetization pointing in

opposite directions. There is an externalmagnetic field
¾
H in the gap between the source and drain leads, which

is directed perpendicular to themagnetization in the leads.We assume that the leads are kept at equal chemical
potentials (μL=μR≡μ) but at different temperatures ¹T TL R, so that a temperature gradient δT=TL−TR
is applied to the system. The proposed design of the electrodes (suitable for thermal transportmeasurements as
in [13]) allows one tomaintain a temperature difference between the leads, while keeping their chemical
potentials equal. To simplify calculations inwhat followswewill assume thatTL=T andTR=0. It follows that
in our system the temperature difference δT=T and themean temperatureTm=T/2 are not independent
quantities.

TheHamiltonian of the systemhas three terms,

 = + +ˆ ˆ ˆ ˆ ( )H H H . 1l d t

TheHamiltonian, Ĥl, describes non-interacting electrons in the electrodes,

å e=
k

k k kˆ ( )†H a a , 2l
k

k k k
,

, , ,

where k k( )†a ak k, , is the creation (annihilation) operator of electronwithmomentum k (energy e kk, ) in the lead
κ=(L,R). TheQDHamiltonian reads (s =   = + -( ) ( ), , is the spin projection index),

å e
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where e e s= -s ( ) ( )J x20 is spin- and position-dependent energy ofQD split levels (ε0 is the level energy),
a= - -( ) ( ) ( )J x J x J x J xL R 0 (α>0 andwe consider only small deviations, x, of the dot center-of-mass

coordinate from its equilibriumposition) is the coordinate-dependent exchange energy produced by the
ferromagnetic coupling between the dot and the leads, the operator s s( )†c c creates (annihilates) an electronwith
spin projectionσ in the dot;H is the externalmagnetic field directed along the z-axis (see figure 1), g is the
gyromagnetic ratio,μB is the Bohrmagneton,U is the Coulomb repulsion energy in the dot. Vibrations of the
dot are described by the harmonic-oscillatorHamiltonian Ĥv (m andω are themass and angular vibration
frequency of the dot). Inwhat followswewill consider x and p as classical time-dependent variables.

Tunneling of electrons between dot and leads is described by the standard tunnelingHamiltonian

å å= + + 
ˆ ( ) ( ) ( )† †H t x c a t x c a h.c., 4t L

k
k L R

k
k R, ,

where l=k k ( ) [ ( )]t x t xexp 4 is the tunneling amplitude, which has an exponential dependence on the dot
center-of-mass coordinate (λ>0 is the tunneling length, the signs ‘m’ correspond to the left and right
electrodes respectively).

The quantumdescription of the electron subsystem is based on the assumption that the densitymatrix of the
system can be factorized,

r r r= Äˆ ( ) ˆ ˆ ( )t , 5d l

where r̂l is the equilibriumdensitymatrix (Gibbs distribution function) of the leads. This assumption is always
valid forT?Γ (Γ is the tunnel coupling energy—level width), when sequential electron tunneling is themain
process of electron transport. In equation (5) r̂d is the densitymatrix of theQD interacting with themagnetic
leads.

In a general case one has to pay attention to the appearance of an implicit time dependence of both the
unperturbedHamiltonian, = +ˆ ˆ ˆH H Hl d0 , and the tunnelingHamiltonian, Ĥt , due to the time dependence of
the dot coordinate (andmomentum), x(t), p(t). Therefore the derivation of the kinetic equations in [14]
requires somemodifications.

The equation for the density operator (in units where ÿ=1),

r
r

¶
¶

+ + =
ˆ ( ) [ ˆ ˆ ˆ ( )] ( )t

t
ı H H t, 0, 6t0

has the formal solution

òr r r= = -¥ - ¢ ¢ ¢ ¢ ¢
-¥

ˆ ( ) ˆ ( ) ˆ ( )[ ˆ ( ) ˆ ( )] ˆ ( ) ( )†t t ı t u t t H t t u t td , , , , 7
t

t

where ¢ˆ ( )u t t, is the evolution operator of the unperturbedHamiltonian,

¢ = ¢ =- - ¢ˆ ( ) ˆ ( ) ˆ ( ) ( )ˆ ( )u t t u t t u t t, e , , , 1. 8ıH t t
d d

l

In equation (8) ¢ˆ ( )u t t,d is a dot evolution operator. After substitution of equations (5) and (7) into equation (6)
and tracing out the electronic degrees of freedom in the leads one gets

ò
r

r

r

¶
¶

+ = - ¢ ¢

´ ¢ ¢ ¢
-¥

- - ¢

- ¢

ˆ ( )
[ ˆ ˆ ] [ ˆ ( ) ˆ ( )

[ ˆ ( ) ˆ ( )] ˆ ( )] ( )

ˆ ( )

ˆ ( ) †

t

t
ı H t H t u t t

H t t u t t

, Tr d , e ,

, e , . 9

d
d d

t

t
ıH t t

d

t
ıH t t

d

l

l

The termon the rhs of equation (9) has the sense of a collision integral, = +ˆ ˆ ˆI I IL R, due to the interaction
between the dot and the leads. The kernel of this integral is expressed through the function ¢k ( )K t t, that can be
evaluated exactly in thewide-band approximation limit, when one assumes that the density of states in the leads
is energy independent,

åt e
pn
p t

¢ = - ¢ º = =
+

k k k
e t

k
k k

mt

k

-
-

k( ) ( ) ( ) ( )
( )

( )K t t K t t K f
ı T

T ı
, e

e

sinh 0
. 10

k

ı
k

ı

,
k,

In equation (10) n b= =k k k
-( )Tconst, 1 are the density of states and the temperature (inverse temperature) in

the leadκ, f (ε) is the Fermi–Dirac distribution function,μ is the chemical potential. As stated abovewe restrict
ourselves to the case of zero temperature in the right lead,TR=0. Then using thewell-known formula from the
theory of distribution functions,

t
pd t

-
=

 ¥
 -¥

t ⎧⎨⎩
( )

ı

ı z
z

e

0

2 , ,
0, ,

ı z

one readily gets the following expression for the collision integral ÎR in the regime of non-resonant tunneling,
(ε0−μ)/Γκ?1,

4
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r r= G -    +
⎡
⎣⎢

⎤
⎦⎥ˆ ( ) ˆ ( ) [ ˆ ( ) ] ( )† †I x c t c t c c

1

2
, , 11R R d d

where = ++[ ˆ ˆ] ˆ ˆ ˆ ˆA B AB BA, is an anticommutator and pnG =k k k( ) ( )x t x2 2 is the partial level width.
The reduced density operator r̂ ( )td acts in Fock space, which in our case is the finite dimensional space of a

single-electron level on the dot.Matrix elements of the density operator are

r r r s r s r s r s r r= á ñ = á ñ = á ¢ñ = á ñs ss¢∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ( )0 0 , , , 2 2 , 12d d d d0 2

where sñ = ñ ñ = ñs  ∣ ∣ ∣ ∣† † †c c c0 , 2 0 , r rºs ss, s s¹ ¢. Inwhat followswe restrict ourselves to theCoulomb
blockade regime,U?T. Under this condition the doubly occupied state is forbidden, ρ2=0.

In a classical description of the vibrational degrees of freedom, equation (3), theHamilton equations for the
dot coordinate andmomentum take the form

r
¶
¶

=
¶
¶

=
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⎫⎬⎭ˆ ( )
ˆ

( )x

t
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t

H

x
m xTr

2
. 14d

d 2

The oscillator coordinate x(t) obeys the integro-differential equation

w
a

r r
¶
¶

+ = - - ( ) ( )x

t
x

m2
, 15

2

2
2

where r , are functionals of coordinate, r r=   { ( )}x t, , .

3. Adiabatic regime of dot oscillations

In the adiabatic limitω=Γκwhen evaluating the collision integral ÎL one can neglect the dependence of
coordinate on time. Then the evolution operator of the dot takes the form,

¢ = - - ¢ˆ ( ) [ ˆ ( )] ( )u t t ıH t t, exp . 16d d

After straightforward calculations the collision integral ÎL in equation (9) can be represented in the form (we
omit the index ‘d’ in r̂ ( ) ˆt H,d d and index ‘L’ inβL,TL):
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ı
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(here τ is the dimensionless integration variable). In equation (17) the singular integrals are understood in the
sense of the principal value. In the limit of high temperatures, G  TL , one can neglect the retardation effects
and replace r bt r- ( ) ( )t t in equation (17).

From equations (9), (11), (17) one gets the following systemof equations for thematrix elements of the
density operator (note, that theHamiltonian Ĥd is not diagonal inσ-representation, but it can be easily
diagonalized by unitary transformation):

*
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To simplify the problemwe consider the symmetricQD, = G = G = G( ) ( )J 0, 0 0L R0 .We are interested in
the conditionswhen the stationary position of the dot (x=0) is not stable. In this case it is sufficient to consider
small deviations x/λ=1 and to linearize the coordinate dependence of lG Gk  ( ) ( )x x1 2 .

Atfirst we solve the problem in the high temperature limit, b  = =- +( )f f0 0, 1 2 . It is convenient to
rewrite the system, equations (18)–(21), in new variables,

* *r r r r r r=  = - - = +     ( ) ( )R R ı R, , . 261,2 3 4

Inwhat followswewill assume that the dimensionless parameter a a lw=˜ ( )m 2 is small, a ˜ 1. Sincewe
study small vibrations of the dot, one can solve the system, equations (18)–(21) by perturbations,
ñ = ñ + ñ +∣ ∣ ∣( ) ( )R R R ...0 1 , where ñ =∣ ( )R R R R, , T

1 2 3 (note, that the equation forR4 is decoupled from the
other equations and it is not relevant). In zero order of perturbation theory one gets
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In thefirst order of perturbation theory the equation for ñ∣ ( )R 1 takes the form
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Substituting the solution of equation (28) into the rhs of equation (15)we derive the desired equation for single-
electron shuttle coordinate
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where á =∣ ( )e 0, 1, 00 .
In the adiabatic limitω=Γ one can expand t t- -( ) ( ) ˙ ( )x t x t x t .We see that the electro-mechanical

coupling results in (small) additive renormalization of vibrational frequencyω and the appearance of damping
(or pumping) term gẋ in themechanical equation, where the coefficient γ(Γ,ΩH) reads



òg
a
l

tt

a
l

G W =-
G

á ñ

=
GW
D

W -
G

t
¥

⎛
⎝⎜

⎞
⎠⎟

( ) ∣ ∣

( )

ˆ

m
e g

m

,
4

d e

4

7

4
31

H
A

H
H

0
0

2

3
2

2

(we restored the dimension in the last formula). It is easy tofind from equation (31) that inweakmagnetic fields,

m m
< = G ( )

g H g H

2 2

7

2
, 32cB B 2
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the shuttle instability occurs. Note, that the increment gG W = - G W( ) ( )r , , 2H H of the exponential growth of
shuttle oscillations amplitude in the limitω=Γ does not depend on the dot frequencyω.

For finite temperatures the calculations are similar to the previous ones but they aremore lengthy. For
simplicity we restrict ourselves to the case of relatively largemagnetic fields, alW ∣ ∣H . Under this condition
for the damping (pumping) coefficient one gets the expression
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The shuttle instability condition is given by the inequality

W G - W G + <( ) ( ) ( )C C C 0, 37H H1
4
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As a consequence, the shuttle instability region is defined by the (transcendental) relation

W < W < W ( ), 41Hc H Hc1
2 2

2
2

where

W = G
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2 2 2 2
2

1 3

1

The lower criticalmagnetic field WHc1 lies outside the range of applicability of our calculations. (We
neglected the amplitude of shuttle oscillations compared toΩH/α.)Physically the existence of the lower critical
magnetic field can be easily explained. Even in the absence of an externalmagnetic field (and in the absence of
phenomenological friction) atfinite temperature there is dissipation in themechanical subsystem induced by
magnetic forces and back-tunneling of electrons to the hot lead. The corresponding friction coefficient γJ(T) (in
what followswewill call itmagnetic friction) can be estimated from simple physical considerations.Magnetic
friction appears due to afinite work performed bymagnetic driving force along the closed trajectory of
oscillatingQD and therefore it is proportional to the coordinate derivative of Fermi distribution function
e m-[ ( ) ]f x . Sincemagnetic force is nonzero onlywhen the electron level is occupied,magnetic friction

depends on the dot-lead coupling energyΓ. By taking into account retardation effects7 this contribution to
magnetic friction is represented by a factor wG G +( ( ) )2 2 . As the result friction coefficient takes the form




a
w

de
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G
G +
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⎠( )

( )
( )r T
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1
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2
, 43J

2

2 2
2

7
Note that in our approximation the equation for the dot densitymatrix is local; retardation effects are related to the nonlocality of the

effective force in the equation ofmotion for the oscillator coordinate (see equation (30)).
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where de e m= -0 . Note that friction coefficient is defined as g = -( ) ( )T r T2J J . The calculation of the
decrement of shuttle vibrations in the absence of externalmagnetic field (ΩH=0) by using equations (15), (18)–
(25) leads to equation (43)with the numerical prefactor 1/32.We see that in high-T limitT?δεmagnetic
friction is decreasedwith the growth of temperature. At temperaturesΓ=T=δε dissipation is exponentially
small, deµ -( )r TexpJ . Our calculations are not valid at temperaturesT=Γwhere resonant electron
tunneling takes place.However it is evident fromphysical considerations that dissipation vanishes when T 0.
Anomalous temperature behavior of rJ(T) is a specific feature ofmagnetic dissipationwhich takesmaximum
value atT∼Γ∼δε and it vanishes in the limits of both small and high temperatures.

The shuttle instability appears when the increment of exponential growth of dot oscillations amplitude
exceeds the decrement γJ(T)/2. For smallmagnetic fields,ΩH→0, the increment reads

a
l

G W 
G

W( ) ( )r
m

, 0
14

3
. 44H H3

2

Therefore, by comparing equations (43) and (44)we can estimate the lower criticalmagnetic field in the high-T
limit as

al
W G ( )

T
0.1 . 45Hc1

The phenomenological friction coefficient γ0=ω/Q can be neglected in comparisonwith the optimal intrinsic
friction coefficient γJ(T) if the quality factorQ of themechanical subsystem is sufficiently large.We estimate the
minimal quality factor required to be ~ ¸Q 10 10min

2 3 for wG ~ ~ 1 meV, ~ ~( ) ( )J J0 0 10 meVL R ,
values taken from experimental work [6, 15] onC60-basedmolecular transistors.

The shuttle instability domain (shaded region infigure 2) is plotted in mG GT g H, 2B parameter space for
δε/Γ=2. The shuttle domain is shownonly forT�Γ becausewe solved the problem in the perturbation
theory in small parameterβΓ=1. Although our calculations are not valid at low temperatures, at T 0 the
increment r(Γ,ΩH) behaves as b de~ - - W[ ( )]r exp 2 H . Exponential smallness of rT(ΩH) for T 0 is
physically reasonable result. In the high temperature limit,  ¥T , we return to the result of equation (32) for
Hc2. Leaving the next term in expansion in small parameterβδε, we obtain such an asymptotic behaviour of the
criticalmagnetic field at large temperatures,

m de
+ G

⎡
⎣⎢

⎤
⎦⎥ ( )

g H

T2

7

2
1

2

7
. 46cB 2

In adiabatic limit (ω=Γ)weused the evolution operator of the dot, ¢ˆ ( )u t t,d , in the formof equation (16).
However the criterion of validity of the expression for the evolution operator in this form formagnetic shuttle is
not equivalent to conditionω=Γ. In fact, the analysis shows that the criterion of the validity of equation (16) is
(W G ¹, 0H )

Figure 2.The lower (Hc1, dashed curve) and upper (Hc2, full curve) thresholdmagnetic fields plotted as functions of normalized
temperature,T/Γ, for δε/Γ=2 in the adiabatic regime,ω=Γ/ÿ. Thesefields define the border between the shuttle regime
( < <H H Hc c1 2, shaded region) and the vibronic regime (outside this interval). For  ¥T the lower threshold fieldHc1 saturates to
a constant value determined by the phenomenological friction coefficient γ0.
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w al
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( )1. 47H

H
2 2

Therefore, in the limitαλ/ΩH=1 the ratioω/Γ can take large values (ω/Γ�1)without violation of
adiabaticity ofmechanicalmotion.

Besides in our considerationwe assume that the parameter a a lw=˜ ( )m 2 is small, a ˜ 1.When both
inequalities are taken into account one gets upper bound for frequencies

w w
l

=
W G

⎡
⎣⎢

⎤
⎦⎥ ( )

m
48m

H
2

1 3

when the evolution operator can be considered in the form corresponding to adiabaticmotion.
When the conditions of equations (47), (48) are fulfilled one can use the systemof kinetic equations,

equations (18)–(21), and to analyze the behavior of the system at high frequencies similar to the previous
calculations. As a result the shuttle instability at frequencies higher thanΓ is defined by the inequality

wW < W∣ ∣ ( ) ( )C T, , 49H H

where

W =
- - - + -

- - +
+ + + - - + -

+ - + + -
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f f f f f f f

f f f f f
,
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. 50H
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(In formulas (49)–(50)we assumedω?Γ.)
The shuttle instability domain plotted in  w m wT g H, 2B parameter space has the same form as the

shuttle instability domain at small frequencies plotted infigure 2.
Wewould like to note here another interesting fact. In the limit  ¥T the problemunder consideration

can be solved exactly for arbitrary relationship between themodel parametersΩH,Γ,ω. Physically the
considered infinite temperature limit is realized for temperaturesT?max(ÿω,Γ). In this limit the kernel of
collision integral in equation (9) can be replaced by δ-function and the integro-differential equation for density
operator becomes local in time. Indeed at  ¥T

p t
d t

+
= -

¥ ( )
( ) ( )T

T ı
ılim

sinh 0
51

T

and the function ¢( )K t t,L that defines the kernel of collision integral, equation (9), is reduced to
pn d¢ = - ¢( ) ( )K t t t t,L L . As a consequence the evolution operator of the dot is trivial (unit operator) and the

systemof kinetic equations for the components of the density operator has aMarkovian form. It is obvious that
in the limitΓ<ω=ωm this system coincides with equations (18)–(21) for adiabatic case in the limit  ¥T .
Therefore the dot dynamics is described by equation (30) and the criterion of shuttle instability (the range of
magnetic field) for high frequencies is


m m

w< = ( )
g H g H

2 2

7

2
. 52cB B 2

This result is in agreementwith equations (49), (50).
The increment r(Γ,ΩH,ω) of the exponential growth of shuttle center-ofmass coordinate in the limit of high

temperatures (note that in ourmodel δT=T) takes the form (we restore the dimensions)
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whereΔ is defined by equation (27) and
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Themaximal value of the increment is reached at wW = 2H when  w w aG W = = G( ) ˜r , 2, 60Hmax .

4. Conclusions

Wehave shown that in amagnetic shuttle structure [4] a temperature gradient between the leads can trigger a
shuttle instability, which leads to an exponential growth of the amplitude of shuttle oscillations, even in the
absence of a voltage bias. This leads to a ‘mechanically supported thermal breakdown’ in the formof an
exponential growth of the heat current (aswell as of the electrical current) through the device. In ourmodel [5]
of fully (and oppositely) spin-polarized electrons in the leads a spin blockade prevents a current toflow in the
absence of an externalmagnetic field. Lifting the spin blockade by applying such afield results in a shuttle
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instability if the field strength exceeds a certain threshold value,Hc1, determined by the amount of dissipation in
themechanical subsystem.When the leads are kept atfinite temperatures, there is an intrinsic dissipation
mechanism [11] (‘magnetic friction’; independent ofmagnetic field for lowfield strengths) caused by the
magnetic force and the exchange of electrons between theQDand the leads. In addition there is
phenomenological friction, which can be neglected if the quality factor of themechanical subsystem is large
enough. The amount ofmagnetic friction in ourmodel is determined by the temperature of the ‘hot’ lead, the
level energy δε=ε0−μ, the dot-lead coupling energyΓ, and the dot vibration frequency. In the general case of
an asymmetric junction, G ¹ GL R, and nonzero temperatures in both leads, ¹ ¹T T 0L R , themagnetic friction
is the sumof contributions produced by each lead.We predict that a specific feature of themagnetic friction is its
anomalous temperature dependence. It vanishes in the limits of small and high temperatures and attains a
maximumvalue at temperaturesT∼Γ∼δε. No shuttle instability occurs in such highmagnetic fields,

>H Hc2, that the spin-flip time exceeds the characteristic time scale determined by themaximumof the
mechanical (∼ω−1) or electronic (∼ÿ/Γ) time scales. For sequential electron tunnelingHc2 saturates atT?Γ
and slightly increases with the decrease of temperature (see figure 2).

It is useful to qualitatively discuss the dependence ofHc1 on the temperature difference between the two heat
reservoirs when they are held at almost equal temperatures, δT=T. In this case the rate of increase, r, of the
amplitude of the shuttle oscillations after an instability has occurred has a linear dependence on δT (for an
electric shuttle the dependence of the corresponding rate on bias voltageV andmodel parameters, r∝VΓ, was
calculated in [16]). IfTL;TR?Γ our approach (using the density operatormethod) is valid and fromphysical
considerations one can deduce that the rate of energy pumping is proportional to dH Tc1

2 . The temperature
dependence of themagnetic friction is still determined by an equation similar to equation (43) and therefore the
friction coefficient g µ( )T T1J , whereT is the average temperature.We see that now dµH T T1c1 and that
it ismuch larger than the corresponding field calculated for δT;T. Therefore, itmay be an unrealistic
proposition to use such high values of the static externalmagnetic field in experiments.

The exponential increase of the amplitude of the center-of-mass oscillations of the dot saturates when the
energy pumped into the dot vibrations equals the energy dissipated by themagnetic friction. From a general
point of view our device works as a spintronic quantumheat engine [17]. A spin-polarized (spin-‘up’) electron
tunnels from the hot lead to the vibratingQD and for a certain time it is localized in the dot. In the absence of an
externalmagnetic field the only further dynamics of the spin-up electron allows it to tunnel back to the ‘source’
electrode. In this case thework done by the exchange forces results in the dotmotion being damped.

An externalmagnetic field induces coherent electron spin dynamics in the dot (spin-up/downoscillations)
and therefore a new channel of electron tunneling (from the dot to the ‘drain’ lead) is opened. This process
results in positive work being done by the exchange forces, which amounts to pumping energy from the hot lead
to themechanicalmotion of theQD (the device becomes a spintronic single-electron heat engine). Note that the
transformation of heat intomechanical energy in our device is carried out by strongly nonequilibrium and
nonlinear processes. The shuttle instability is an intrinsically threshold phenomenon (there is aminimum
temperature difference δT∼ÿω for which amechanical instability can occur). Therefore it can not be described
by thermoelectric coefficients obtained using linear response theory.

We speculate that the predicted phenomenon of amechanically induced thermal breakdown could find
useful applications in spintronic devices, when it is essential to avoid high temperature gradients on a chip.
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