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I. INTRODUCTION

A fascinating effect in quantum field theory is the Schwinger effect [1]: the creation of

pairs out of the vacuum in the presence of a background electromagnetic field. While it was

Sauter [2], Heisenberg, and student Euler [3] who investigated first this effect, the history

has remembered Schwinger who revisited their works some 20 years later [4]. Despite being

a very useful tool for the theoretical understanding of quantum field theory and for the

development of powerful calculation techniques in strong field background, the Schwinger

effect has so far not been detected in laboratories experiments. The production of electron-

positron pairs, however, was realized in an experiment, in which high energy gammas scatter

with a Coulomb potential [5]. The main reason is that the Schwinger effect is exponentially

suppressed unless the electric field reaches close enough a threshold electric field Ethreshold ≃
1.3 × 1018 V/m [6]. Aiming at detecting this effect a new idea is developing in the past

years: changing the system under study and considering Schwinger effect in astrophysical

and cosmological contexts where huge background fields could naturally be present [7]. We

will investigate in this paper the Schwinger effect in the dS4 under the influence of both a

constant electric field and a magnetic field background.

The Schwinger effect in dS has recently become an active field of research. The seminal

papers studied this effect in the two-dimensional de Sitter spacetime (dS2) [8] and in dS4

[9]. The one-loop vacuum polarization and Schwinger effect in a two-dimensional (anti-

)de Sitter spacetime was explicitly found and a thermal interpretation was proposed for the

Schwinger effect in Ref. [10]. The initial motivation of [8] was to use this framework to

investigate bubble nucleation in the context of the multiverse proposal. However, this toy

model for pair creation turns out to have a wide range of applications, from constraining

magnetogenesis scenarios [9], investigating the ER=EPR conjecture via holographic setups

[11] to pair creation around charged black holes [12–14] and baryogenesis [15].

These physical motivations lead to a series of papers in which the Schwinger mechanism

has been investigated for various types of particles and spacetime dimensions. It was inves-

tigated whether the known equivalence between bosonic and fermionic particles with respect

to the Schwinger effect holds in dS2 [16]. Particles differentiate themselves only if one goes

beyond the semiclassical limit and computes the current which, in turn, is a more physically

relevant quantity to describe the Schwinger mechanism in curved spacetimes. These results
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were generalized to dS4 in [17]. For bosons in dS4, the results of [9] were reinforced by [18]

which considered an alternative renormalization scheme and found the same results. In [19],

an alternative method was employed: the uniform asymptotic method was used to derive

new results for the Schwinger effect in dS4; see also [20]. In [21], the Schwinger mechanism

in three dimensions was explored as an example of odd dimension field theory in dS. In all

these works the gravitational field and electric field were assumed to be background fields

whose variations due to backreactions are negligible during the typical time scale of pair

creation. This approximation can be shown to hold for some range of the parameters. How-

ever, taking a constant background field can only be seen as a toy model to understand some

physical implications of pair creation, and in realistic models of inflation requiring quasi-dS,

the backreaction effects both on the dS metric and on the background electric field should

be taken into account. In [21] and [22], it was shown that both the gravitational and elec-

tromagnetic field would be suppressed by the Schwinger effect. In Refs. [23, 24], it was

pointed out that the quantum-gravity originated cosmological constant term Λgµν results

in the creation of particle-antiparticle pairs and their fields whose energy-momentum tensor

T µν
M in turn backreacts on Λgµν , and that these are important to understand the inflationary

process in the early Universe and the dark-energy-matter interaction for ΩΛ ∼ ΩM ∼ O(1)

in the present Universe. Recently it was argued that the dS was unstable due to quantum

effects [25–27]. The idea is that a non-trivial Bogoliubov transformation leads, after deco-

herence, to a breaking of the dS invariance and therefore to a decrease of the cosmological

constant.

In this article, we propose to take one step further and add a constant magnetic field to

a dS and an already present electric background. This is a common generalization of a flat

spacetime in which the analytic results have been known for long [4], but the Schwinger effect

has never been properly investigated in dS. One motivation to consider a constant magnetic

field in dS is the recent result that a constant magnetic field is a stable configuration of dS

in modified gravity theories [28]. The effect of a constant magnetic field exhibits diversity

of the Schwinger mechanism compared to a pure electric field in dS. And another possible

reason of considering an electromagnetic field in the early Universe would come from the

observation of blazars leading to a lower bound for the magnetic field in the intergalactic

medium: B > 6×10−18 G [29]. The origin of these magnetic fields is now an open question in

cosmology but two main scenarios are emerging: their origin is either after recombination or
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primordial; see reviews [30–33]. In the case of a primordial origin, just as for a scalar field, the

vacuum fluctuations of the gauge field are amplified to larger scales. Once inflation comes to

an end, the Universe becomes conductive, leading the electric field to vanish and the magnetic

field to reside and evolve until the present epoch by the flux conservation. If the primordial

origin of the currently observed magnetic field is adopted, it is necessary for inflation model

builders to investigate physical effects due to the presence of an electromagnetic field, i.e,

the Schwinger effect, which is the main topic of this paper.

The effect of a magnetic field background on the scalar pair creation probability [34]

and the number density [35] in the spatially flat Friedmann-Lemaitre-Robertson-Walker

(FLRW) universes have been investigated. In [34], the author showed that in the presence

of a pure magnetic field background, i.e., in the absence of an electric field background,

the gravitational pair creation does not change in dS, whereas in a radiation dominated

universe, a pure magnetic field background minimizes the gravitational pair creation [35]. In

holographic setups, the inclusion of a magnetic field on the Schwinger effect was investigated

in [36]. It is, however, difficult to compare that result directly with the case of dS under

consideration in this paper. Adopting the perturbative QED approach in dS, the first order

amplitude for the fermion production in a magnetic field has been analyzed in [37]; see also

[38, 39]. The authors found that the fermion production is significant only at large expansion

condition. This paper aims at investigating the magnetic field influence on the Schwinger

pair creation of charged scalars in dS4, specifically, by computing the semiclassical decay

rate and analysing the quantum vacuum expectation value of the current operator, which is

equivalent to the exact one-loop approach including all one-loop diagrams.

The organization of this paper is as follows. In Sec. II, we recall the main equations for

charged scalars in a magnetic field as well as an electric field for the pair creation setup.

In Sec. III, we compute the pair creation rate using a semiclassical approach to the exact

one-loop. In Sec. IV, we present an expression for the induced current and discuss several

relevant limiting cases of different field intensities. We draw some conclusions and future lines

of research in Sec. V. Appendix A contains some mathematical aspects of this work: some

useful properties of the Riemann and Hurwitz zeta functions. Eventually, in Appendix B,

the computation and regularization of the current have been reviewed.
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II. KLEIN-GORDON EQUATION

To study the Schwinger effect in dS4, we consider the action of a complex scalar field

coupled to a U(1) gauge field as

S =

∫

d4x
√−g

[

gµν
(

∂ν − ieAν

)

ϕ∗
(

∂µ + ieAµ

)

ϕ−
(

m2 + ξR
)

ϕϕ∗ − 1

4
FµνF

µν
]

, (1)

where e is the gauge coupling: the charge of the particle, m is the mass of the scalar field,

and ξ is a dimensionless nonminimal coupling. We assume that the complex scalar field is

a test field probing two background fields: the gravitational field and the electromagnetic

field. The gravitational field is described by the dS4 metric which reads in the conformal

coordinates as

ds2 = Ω2(τ)
(

dτ 2 − dx2 − dy2 − dz2
)

, τ ∈ (−∞, 0), x = (x, y, z) ∈ R3, (2)

where the scale factor Ω(τ) and the Hubble constant H are given by

Ω(τ) = − 1

Hτ
, H = Ω−2(τ)

dΩ(τ)

dτ
. (3)

A dS4 has a scalar curvature R = 12H2, therefore the inclusion of a nonminimal coupling

term like ξRϕϕ∗ would just modify the mass term from m2 to m2 + 12ξH2. For simplicity,

we will not consider this in this paper and further set ξ = 0. For the electromagnetic field,

we consider that it is composed of a constant electric and a constant magnetic part. The

vector potential describing the constant electric and the magnetic field parallel to each other

in the conformal metric (2) is given by

Aµ(x) = − E

H2τ
δ3µ +Byδ1µ, (4)

where E and B are constants. The Klein-Gordon equation then reads from the action (1),
[

∂20 + 2HΩ(τ)∂0 −
(

∂1 + ieBy
)2 − ∂22 −

(

∂3 +
ieE

H
Ω(τ)

)2

+m2Ω2(τ)

]

ϕ(x) = 0. (5)

The solution of the spatial part of Eq. (5) is a bit more involved than a simple Fourier

transformation because of the explicit y-dependence. Substituting

ϕ(x) = Ω−1(τ)ϕ̃(x), (6)

into Eq. (5) yields
[

∂20 −
(

∂1 + ieBy
)2 − ∂22 −

(

∂3 +
ieE

H
Ω(τ)

)2

+m2Ω2(τ)− 2H2Ω2(τ)

]

ϕ̃(x) = 0. (7)
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Using the ansatz

ϕ̃(x) = e±ix·ky�h±(y)f±(τ), (8)

where we have defined

ky� := (kx, 0, kz), (9)

and ± denotes the positive and negative frequency solutions of Eq. (7), respectively, we

decouple the spatial and time dependent parts of Eq. (7) as

d2h±(y)

dy2
−

(

eBy ± kx

)2

h±(y) = −sh±(y), (10)

d2f±(τ)

dτ 2
+

[

( eE

H2τ
∓ kz

)2

+
m2

H2τ 2
− 2

τ 2

]

f±(τ) = −sf±(τ). (11)

The harmonic wave function h±(y) is a Landau state given by

hn(y±) =

√ √
eB√
π2nn!

exp
(

−y
2
±

2

)

Hn(y±), y± :=
√
eBy ± kx√

eB
, (12)

where Hn with n ∈ N is the Hermite polynomial and s is the Landau energy

s = (2n+ 1)eB. (13)

The normalized wave functions (12) satisfy the orthonormality relation
∫ +∞

−∞

dyhn(y±)hn′(y±) = δn,n′, (14)

and the completeness relation

∞
∑

n=0

hn(y±)hn(y
′
±) = δ(y − y′), (15)

where y′± is given by replacing y by y′ in the definition (12) of y±. We note that the

standard prescription in a flat spacetime applies also to our results; when one adds a magnetic

field, the pair creation in the general case can be deduced from the pure electric field case

(B = 0) by replacing the transverse momentum squared k2

⊥ by the Landau levels (2n+1)eB.

Following Refs. [13, 21], we find the positive and negative frequency solutions with desired

asymptotic forms at early times (τ → −∞), i.e., the in-vacuum mode functions are given

by the Hadamard states

Uin

(

x;ky�, n
)

=
e

iπκ
2√
2k

Ω−1(τ)e+ix·ky�hn(y+)Wκ,γ

(

e
−iπ
2 2p

)

, (16)

Vin
(

x;ky�, n
)

=
e−

iπκ
2√
2k

Ω−1(τ)e−ix·ky�hn(y−)Wκ,−γ

(

e
+iπ
2 2p

)

. (17)



7

Similarly, the positive and negative frequency solutions with desired asymptotic forms at

late times (τ → 0), i.e., the out-vacuum mode functions are given by

Uout

(

x;ky�, n
)

=
e

iπγ

2

√

4|γ|k
Ω−1(τ)e+ix·ky�hn(y+)Mκ,γ

(

e
−iπ
2 2p

)

, (18)

Vout
(

x;ky�, n
)

=
e

iπγ

2

√

4|γ|k
Ω−1(τ)e−ix·ky�hn(y−)Mκ,−γ

(

e
+iπ
2 2p

)

. (19)

Here, Wκ,γ andMκ,γ are some hypergeometrical functions known as the Whittaker functions

[40] and the parameters have been defined as

k =
√

k2z + (2n+ 1)eB, r =
kz
k
, p = −τk,

py� = −τky�, ℓ = eBτ 2, µ =
m

H
,

λ =
eE

H2
, κ = iλr, γ =

√

9

4
− λ2 − µ2. (20)

In Secs. II and III of this paper, we assume the semiclassical condition,

λ2 + µ2 ≫ 1, (21)

hence the parameter γ is purely imaginary. We adopt the sign convention γ = +i|γ|.
The orthonormality relations

(

Uin(out)(x;ky�, n), Uin(out)(x;k
′
y�, n

′)
)

= −
(

Vin(out)(x;ky�, n), Vin(out)(x;k
′
y�, n

′)
)

= (2π)2δ2(ky� − k′
y�)δn,n′,

(

Uin(out)(x;ky�, n), Vin(out)(x;k
′
y�, n

′)
)

= 0, (22)

can be shown to hold. Using two complete sets of orthonormal mode functions, we expand

the scalar field operator. In terms of the in-mode functions we can express the field operator

as

ϕ(x) =
∞
∑

n=0

∫

d2ky�
(2π)2

[

Uin

(

x;ky�, n
)

ain(ky�, n) + Vin
(

x;ky�, n
)

b†in(ky�, n)
]

, (23)

where the operator ain annihilates a particle and the operator b†in creates an antiparticle in

the state with the momentum ky� and the Landau level n. The quantization is implemented

by imposing the commutation relations

[

ain(ky�, n), a
†
in(k

′
y�, n

′)
]

=
[

bin(ky�, n), b
†
in(k

′
y�, n

′)
]

= (2π)2δ2(ky� − k′
y�)δn,n′, (24)
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and the in-vacuum state is defined as

ain(ky�, n)
∣

∣in
〉

= 0, ∀ky�, n. (25)

We can expand the scalar field operator in terms of the out-mode functions and we similarly

define the out-annihilation aout and creation b†out operators as

ϕ(x) =

∞
∑

n=0

∫

d2ky�
(2π)2

[

Uout

(

x;ky�, n
)

aout(ky�, n) + Vout
(

x;ky�, n
)

b†out(ky�, n)
]

, (26)

where the quantization commutation relations are given by

[

aout(ky�, n), a
†
out(k

′
y�, n

′)
]

=
[

bout(ky�, n), b
†
out(k

′
y�, n

′)
]

= (2π)2δ2(ky� − k′
y�)δn,n′, (27)

and the out-vacuum state is defined as

aout(ky�, n)
∣

∣out
〉

= 0, ∀ky�, n. (28)

The canonical momentum π(x) conjugated to the scalar field ϕ(x) is defined through the

Lagrangian. It reads from Eq. (1),

π(x) =
∂L

∂(∂0ϕ)
= Ω2(τ)∂0ϕ

∗. (29)

Then, using the explicit form of the scalar field operator ϕ(x) and the canonical momentum

π(x) in terms of the mode functions, one can verify that the canonical equal-time commu-

tation relation correctly holds

[

ϕ(τ,x), π(τ,x′)
]

= iδ3(x− x′). (30)

III. SCHWINGER EFFECT

The usual quantity describing the Schwinger effect is the pair creation or decay rate which

is derived from the Bogoliubov coefficients [41, 42],

A
(

ky�, n;k
′
y�, n

′
)

=
(

Uout

(

x;ky�, n
)

, Uin

(

x;k′
y�, n

′
)

)

, (31)

B
(

ky�, n;k
′
y�, n

′
)

= −
(

Uout

(

x;ky�, n
)

, Vin
(

x;k′
y�, n

′
)

)

. (32)
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Substituting the explicit form of the mode functions (16)-(19) into Eqs. (31) and (32) leads

to

A
(

ky�n;k
′
y�n

′
)

= (2π)2δ2(ky� − k′
y�)δn,n′α, α =

(2|γ|) 1

2Γ
(

2γ
)

Γ
(

1
2
+ κ+ γ

)e
iπ
2
(κ−γ), (33)

B
(

ky�n;k
′
y�n

′
)

= (2π)2δ2(ky� + k′
y�)δn,n′β, β = −i(2|γ|)

1

2Γ
(

−2γ
)

Γ
(

1
2
+ κ− γ

) e
iπ
2
(κ+γ), (34)

where the coefficients satisfy the bosonic relation |α|2− |β|2 = 1. A Bogoliubov transforma-

tion relates the out-operator aout to the in-operator ain as

aout(ky�, n) =
∞
∑

n′=0

∫

d2k′y�
(2π)2

[

A∗
(

ky�, n;k
′
y�, n

′
)

ain(k
′
y�, n

′)− B∗
(

ky�, n;k
′
y�, n

′
)

b†in(k
′
y�, n

′)
]

. (35)

Using the out-operator aout(ky�, n), we can calculate the expected number of the created

pairs with the comoving momentum ky� and the Landau level n carried by the in-vacuum

state
1

LxLz

〈

in
∣

∣

∣
a†out(ky�, n)aout(ky�, n)

∣

∣

∣
in
〉

=
∣

∣β
(

kz, n
)
∣

∣

2
, (36)

where we have used Eqs. (34), (35) and, for convenience, the three-volume of the dS4 is

normalized into a box with dimensions V = LxLyLz. Then the decay rate Γ, i.e., the

number of created pairs N per unit of the physical four-volume of the dS4 is given by

Γ :=
N

√

|g|TV
=

1

Ω4(τ)TLy

∞
∑

n=0

∫

dkz
(2π)

dkx
(2π)

∣

∣β
(

kz, n
)
∣

∣

2
, (37)

where T is the time interval of the pair creation. The Bogoliubov coefficient β is independent

of the momentum component kx which determines the position of the center of the Gaussian

wave packet on y axis by the relation y = kx/(eB). Consequently, the integral gives [43]

∫

dkx
(2π)

=
eBLy

(2π)
. (38)

To perform the kz-integral on the right hand side of Eq. (37), we adopt the semiclassical

method used in Refs. [8, 9]: most of the particles are created around the time

τ ∼ −|γ|
kz
. (39)

Imposing the relation (39) and transforming the kz-integral into a τ -integral, we then obtain

Γ =
H4ℓ|γ|
4π2

∞
∑

n=0

e2π|κ| + e−2π|γ|

e2π|γ| − e−2π|γ|
, (40)
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where

|κ| = λ|γ|
√

|γ|2 + (2n + 1)ℓ
. (41)

A physical magnetic field in a spatially flat FLRW universe with a cosmological scale factor

Ω(τ) dilutes as BΩ−2(τ) where B behaves as a magnetic field in the comoving spacetime

[44, 45]. This preserves the flux conservation for the physical magnetic field. Recalling that

ℓ = eBτ 2, consequently, the decay rate Γ depends on the time τ due to the dilution of the

physical magnetic field. We may write Eq. (40) in another form

Γ =
(eBΩ−2

2π

)(H2|γ|
2π

)

∞
∑

n=0

[

e2π|κ| − 1

e2π|γ| − e−2π|γ|
+

1

e2π|γ| − 1

]

. (42)

The first term in the square bracket in Eq. (42) is the pair creation rate from the electromag-

netic field while the second term is the dS radiation with a new temperature T = m/(2π|γ|)
weighted by the density of states for the electromagnetic field.

A few comments are in order. First, there is a term independent of the Landau levels,

whose sum apparently gives a diverging factor. We tackle this issue by using the Riemann

zeta function prescription as in Ref. [47]. We also use the n = 0 term which gives a constant

factor
∞
∑

n=0

= 1 + ζ(0) =
1

2
, (43)

where Eq. (A3) has been used. Thus, the pair production from the zeta regularization

technique leads to a finite result

Γ =
(eBΩ−2

2π

)(H2|γ|
2π

)( 1

e4π|γ| − 1

)

[

1

2
+

∞
∑

n=0

e2π(|κ|+|γ|)

]

. (44)

Second, in the regime of the weak magnetic field: ℓ ≪ min(1, µ, λ) and the strong electric

field: λ≫ max(1, µ, ℓ), Eq. (44) leads to

Γ =
1

2

(eBΩ−2

2π

)(eE

2π

)

e
−πm2

|eE| . (45)

Third, in the limit of zero electric field E = 0, the first term in the square bracket of Eq. (42)

vanishes and the second term is the dS radiation with the Gibbons-Hawking temperature

[48]

Γ =
1

2

(eBΩ−2

2π

)(H2|γ|
2π

) 1

e2π|γ| − 1
. (46)

The factor 1/2 comes from the spin multiplicity for spinless bosons while it is 1 for spin 1/2

fermions. The radiation in the pure dS4 without electromagnetic fields consists of massive
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particles m ≥ 3H/2 and the leading term of H2|γ| is Hm for the density of states [49]. Thus,

the presence of a cosmic magnetic field enhances the dS radiation through the density of

states by a factor of eBΩ−2. The density of states eB becomes H2 when there is no magnetic

field. Finally, in the Minkowski spacetime limit H = 0, Eq. (40) gives the Schwinger formula

in scalar QED [4]

Γ =
1

2

(eB

2π

)(eE

2π

) e
−πm2

|eE|

sinh
(

πB
E

) . (47)

IV. INDUCED CURRENT

Semiclassically, the conductive current Jsem of the newly created Schwinger pairs having

a charge e, a number density N , and a velocity v due to the background electric field is

defined as Jsem = 2eN v. The number density of the semiclassical Schwinger pairs at the

time τ reads

N (τ) = Ω−2(τ)

∫ τ

0

Ω4(τ ′)Γ(τ ′)dτ ′ ∼ Γ(τ)

H
, (48)

where Γ is given by Eq. (40). The current Jsem is valid under the semiclassical condition,

which is given by Eq. (21). In this section we investigate the in-vacuum expectation value

of the current operator which is referred to as the induced current, without assuming the

constraint (21) on the parameters. Hence, γ can be real or purely imaginary depending on

the value of involved parameters, λ and µ.

The current operator is defined by

jµ(x) =
ie

2
gµν

(

{(

∂ν + ieAν

)

ϕ, ϕ∗
}

−
{(

∂ν − ieAν

)

ϕ∗, ϕ
}

)

, (49)

and can be shown to be conserved ∇µj
µ = 0 [41]. In order to compute the expectation

value of the current operator, we will use the in-vacuum state since it is a Hadamard state

[8, 50]. Substituting the scalar field operator (23) into the current expression (49) and using

Eqs. (24) and (25), we find that the only nonvanishing component of the current is the one

parallel to the electric field which is given by

〈

in
∣

∣j3(x)
∣

∣in
〉

=
eH2

4π2
Ω−2(τ)

∞
∑

n=0

∫ +∞

−∞

dpz
p

(

rp+ λ
)

e−πλr
∣

∣Wiλr,γ(−2ip)
∣

∣

2

×
∫ +∞

−∞

dpxh
2
n(y+). (50)
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Using the orthonormality relation (14) the px-integral is performed

∫ +∞

−∞

dpxh
2
n(y+) = −eBτ. (51)

If we parameterize the induced current as

J = Ω(τ)
〈

in
∣

∣j3(x)
∣

∣in
〉

, (52)

then Eq. (50) is simplified to

J =
eH3ℓ

4π2

∞
∑

n=0

∫ +∞

−∞

dpz
p

(

rp+ λ
)

e−πλr
∣

∣Wiλr,γ(−2ip)
∣

∣

2
. (53)

The remaining integral in the induced current expression (53) deals with the Whittaker

functions. In the absence of the magnetic field background, the translational symmetry helps

performing the integral using the Mellin-Barnes representation of the Whittaker functions;

see [8, 9]. However, even in this case the exact expression for the induced current is very

complicated and one has to look at limiting regimes to better grasp the physics of the

results. In the regime of λ≫ 1 the semiclassical condition (21) is satisfied, and the induced

current (53) is comparable to the semiclassical current Jsem = 2eN v. Considering the

ultrarelativistic particles with velocity v ∼ 1, Fig. 1 shows that the induced current J

approaches the semiclassical current Jsem for the strong electric field regime λ≫ max(1, µ, ℓ).

In Figs. 2 and 3 we plot the induced current expression (53) as a function of the electric and

magnetic fields, respectively. The figures illustrate that the induced current of a massive

scalar field responds to the strong electromagnetic field as J ∝ B ·E; for additional numerical

investigations see [51]. As a matter of consistency, we will now analytically investigate the

limiting behavior of the induced current (53) to show that it agrees with the numerical

investigations.

A. Weak magnetic field regime

In the weak magnetic field regime the relation ℓ ≪ min(1, µ, λ) is satisfied. Taking the

limit ℓ → 0 in the momentum p gives p ∼ |pz|; see definition of p in Eq. (20). Then the

induced current expression (53) is simplified to

J ≃ eH3ℓ

4π2

∞
∑

n=0

∑

r=±1

∫ ∞

0

dpz
pz

(

rpz + λ
)

e−πλr
∣

∣Wiλr,γ

(

− 2ipz
)
∣

∣

2
. (54)
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FIG. 1: The normalized induced current J/eH3 (upper surface) and semiclassical current Jsem/eH
3

(lower surface) are plotted as functions of λ and ℓ, in the lowest Landau state n = 0 with µ = 1.

The integrand in the right hand side of Eq. (54) is independent of the Landau states. Hence,

similarly to the prescription used in Sec. III, using the zeta function representation (43), the

current expression (54) is regularized to

J ≃ eH3ℓ

8π2

∑

r=±1

∫ ∞

0

dpz
pz

(

rpz + λ
)

e−πλr
∣

∣Wiλr,γ

(

− 2ipz
)
∣

∣

2
. (55)

The computation and adiabatic regularization of the current (55) have been reviewed in

Appendix B and the final result can be read from Eq. (B14). We then obtain

Jreg =
(eH3

4π2

)ℓγ sinh
(

2πλ
)

sin
(

2πγ
) . (56)

We comment here that our result is unlike the case of a pure electric field in dS4 [9], where in

order to renormalize the current an adiabatic expansion up to order two has been performed

to remove the quadratic divergence, here the adiabatic order zero is enough as in the dS2

case [8]. The reason is that we deal here with an effective integration in 1+1 dimensions, and

the integration over momentum in the directions orthogonal to the magnetic field is replaced

by a discrete sum over quantized Landau levels, which is regularized and renormalized by

using the Riemann zeta function technique; see Appendix A.
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FIG. 2: For different values of ℓ, the normalized induced current J/eH3 is plotted as a function of

λ, in the lowest Landau state n = 0 with µ = 1.

1. Strong electric field regime

In the strong electric field regime the relation λ ≫ max(1, µ, ℓ) is satisfied. Taking the

limit λ→ ∞ in the regularized induced current (56) with µ and ℓ fixed, to the leading order

term, gives rise to

Jreg ≃
e

H

(eBΩ−2

2π

)(eE

2π

)

e
−πm2

|eE| . (57)

In this regime the decay rate is given by Eq. (45) and does the semiclassical current fol-

low from Eq. (48). Then, one can verify that the induced current (57) agrees with the

semiclassical current for particles with the velocity v ∼ 1.

2. Weak electric field and heavy scalar field regime

In this regime the relations λ≪ 1 and µ≫ 1 are satisfied. Taking the limits λ→ 0 and

µ→ ∞ in the regularized induced current expression (56) with ℓ fixed, to the leading order,

gives rise to

Jreg ≃
4πem

H2

(eBΩ−2

2π

)(eE

2π

)

e
−2πm

H . (58)

In this regime the decay rate reads from Eq. (46) and the induced current (58) agrees with

the semiclassical current Jsem for particles with the velocity v ∼ (4πeE)/H2.
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FIG. 3: For different values of λ, the normalized induced current J/eH3 is plotted as a function

of ℓ, in the lowest Landau state n = 0 with µ = 1.

3. Infrared regime

In this regime the relations ℓ≪ µ≪ λ≪ 1 are satisfied. Hence the semiclassical current

cannot be compared to the induced current in this regime. Taking the limits λ → 0 and

µ→ 0 in the induced current expression (56), we then find

Jreg ≃
9eH3

8π2

( ℓλ

λ2 + µ2

)

, (59)

or in terms of dimensionful variables

Jreg ≃
9eH3

2

(eBΩ−2

2π

)(eE

2π

)

(

1
(

eE
)2

+
(

mH
)2

)

. (60)

In this regime for an interval of µ . λ . 1 a decreasing electric field gives rise to an

increasing current and consequently hyperconductivity. This infrared phenomenon was first

discovered in [8] and dubbed as the infrared hyperconductivity (IRHC) for the case of a

scalar field coupled to a constant, purely electric field background in dS2. In Ref. [9], using

an alternative approach in Ref. [19], the authors have computed the current due to a pure

electric field in dS4 and found the IRHC. In [9], the second order adiabatic expansion leads

to a term of the form log(m/H) in the regularized induced current expression. Therefore,

it was not possible to discuses IRHC for the case of a massless minimally coupled scalar
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field. However, we note here that the inclusion of the magnetic field and the change of the

renormalization prescription allow to explore IRHC in the massless limit. We find indeed

that the induced current responds as J ∼ B/E and increases unboundedly in the case of a

massless minimally coupled scalar field. For a massive scalar field, an upper bound on the

induced current occurs at λ = µ and is given by

Jreg ≃
9eH2

8πm

(eBΩ−2

2π

)

. (61)

The exact nature of IRHC remains a mystery but has been reported in various works in

the previous years. It is unexpected as for a decreasing cause: the electric field background,

the consequence: the induced current due to the creation of Schwinger pairs increases. It

might be a signal for the need for backreaction and the breaking of the working assumptions

of the toy model used to derive it or could have a deeper physical meaning that is to be

understood. In any case, if it is confirmed within the next years, it has to be taken into

account and will give constraints on inflation scenarios.

B. Strong magnetic field regime

In the strong magnetic field regime the relation ℓ ≫ max(1, µ, λ) is satisfied. In this

regime, in order to examine the limiting behaviour of the induced current, it is convenient

to rewrite Eq. (53) in the form of

J =
eH3ℓ

4π2

∞
∑

n=0

∫ +1

−1

dr

(1− r2)

(

rp(r) + λ
)

e−πλr
∣

∣

∣
Wiλr,γ

(

−2ip(r)
)

∣

∣

∣

2

, (62)

where the momentum p as a function of r is given by

p(r) =

√

(1 + 2n)ℓ

1− r2
. (63)

In the limit of ℓ→ ∞ and as a consequence p(r) → ∞, the Whittaker function approximates

∣

∣

∣
Wiλr,γ

(

−2ip(r)
)

∣

∣

∣

2

∼ eπλr. (64)

Substituting the asymptotic form (64) into Eq. (62) and using the prescription (43), we

obtain

J ≃ eH3ℓλ

8π2

∫ +1

−1

dr

(1− r2)
. (65)
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In order to regularize the integral in Eq. (65), we use following prescription

∫ +1

−1

dr

(1− r2)
=

∞
∑

n=0

∫ +1

−1

drr2n =

∞
∑

n=0

1

n + 1
2

, (66)

and using the definition of the Hurwitz zeta function given by Eq. (A4), we represent the

summation as
∞
∑

n=0

1

n + 1
2

= − ∂2

∂a∂s
ζ
(

s = 0, a =
1

2

)

. (67)

Finally, with Eqs. (65)-(67) and (A12), we obtain the regularized induced current in the

strong magnetic field regime

Jreg ≃
(

γEuler + log(4)
)eH3ℓλ

8π2
∼ e

H

(eBΩ−2

2π

)(eE

2π

)

, (68)

where γEuler = 0.577 · · · is the Euler’s constant. This result shows the new contribution

of the magnetic field in the strong magnetic field regime. As for the strong electric field

regimes, the induced current presents a linear behavior in the magnetic field. As expected,

it is the pair production due to the electromagnetic field which dominates its gravitational

counterpart, in this regime.

V. CONCLUSION

We have investigated for the first time the effect of a uniform magnetic field on the

Schwinger pair production and the induced current due to a uniform electric field in dS4.

On the one hand, in Minkowski spacetime, a strong constant electric field can create pairs

of charged particles from the vacuum at the cost of electrostatic energy. This is known as

the Schwinger effect. A pure magnetic field does not produce any pair of charged particles

since the virtual pair from the vacuum immediately annihilates each other. On the other

hand, dS can emit radiation of all species of particles. This is known as the Gibbons-

Hawking radiation. Considering those two effects together has been done in the past years.

In this case, two important results are that the Gibbons-Hawking radiation enhances the

pair production [10] and the super-horizon behavior of the field leads to a phenomenon of

infrared hyperconductivity for the induced current [8, 9, 19, 21].

In this paper, we add one more ingredient to this setup: we include a uniform magnetic

field parallel to the electric field in dS4. The results of this paper recover the Schwinger effect
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and the induced current in the absence of a magnetic field, which has been systematically

investigated in Ref. [9]. The consequence of a constant magnetic field on the Schwinger

effect and the induced current with or without an electric field in dS4 has been extensively

studied.

First, the Schwinger effect is enhanced due to the density of states proportional to the

magnetic field. Even in the absence of the electric field, the pair production rate is a product

of the Gibbons-Hawking radiation and the magnetic field. This means that a strong magnetic

field indeed assists the pair production in dS; see the result in Eq. (46). This is in contrast to

the Schwinger effect due to parallel electric and magnetic fields in the Minkowski spacetime,

in which the density of states is proportional to both the electric field and the magnetic field

and vanishes when the electric field is absent because a pure magnetic field is stable against

spontaneous pair production.

Second, the infrared hyperconductivity has been observed in the regime µ ≪ λ ≪ 1,

for weak magnetic fields; see the result in Eq. (60). This indicates that in the dS: (i)

µ = m/H ≪ 1, i.e., the Compton wavelength m−1 of the charge is much bigger than the

Hubble radius H−1; (ii) λ = eE/H2 ≪ 1, i.e., the electric field E is much smaller than the

scalar curvature R = 12H2; (iii) µ ≪ λ or eE/H ≫ m, i.e., the electric potential energy

across the Hubble radius H−1 is much larger than the mass of charge. This is in contrast to

the regime eE/m≫ m for the Schwinger effect for a pure electric field in flat spacetime, i.e.,

the electric potential energy across one Compton wavelength of the charge is much larger

than the mass of charge. The upper bound for the induced current in the magnetic field

and electric field is given by eBΩ−2H2/m modulo a constant of order one, while in the pure

electric field, the induced current has an upper bound given by eH4/m, independently of

the electric field.

Finally, in the limit of a magnetic field stronger than the mass of charges, the electric

field and scalar curvature of the dS, the induced current is proportional to the pseudo-scalar

of the Maxwell theory, [see the result in Eq. (68)] which corresponds to the chiral magnetic

effect for spin-1/2 fermions [52]. The chiral magnetic effect for fermions in the dS, which is

likely to hold for spinor QED considering the analogy with scalar QED, would be physically

interesting but is beyond the scope of this paper and will be addressed in a future study.

Going further, an extension of the setups already known to investigate the Schwinger

effect in dS would be to consider anisotropic inflationary spacetime where a constant electric
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field could be naturally sustained. Links to axion inflation and possibly a mechanism of

baryogenesis with the help of the Schwinger effect could also be exhibited.
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Appendix A: Riemann and Hurwitz zeta functions

In this appendix some useful properties of the Riemann and Hurwitz zeta functions are

reviewed; for more properties see, e.g., [40].

The Riemann zeta function is a function of the complex variable s that analytically

continue the Dirichlet series

ζ
(

s
)

=
∞
∑

n=1

1

ns
, (A1)

for when ℜ(s) > 1. Another representation of it is

ζ
(

s
)

=
1

1− 2−s

∞
∑

n=0

1
(

2n+ 1
)s . (A2)

Via the analytic continuation of (A1), it is possible to assign a finite result to the divergent

series
∞
∑

n=1

1 = ζ
(

0
)

= −1

2
. (A3)

Similarly, the Hurwitz zeta function is defined by the series expansion

ζ
(

s, a
)

=
∞
∑

n=0

1
(

n+ a
)s , ℜ(s) > 1, a 6= 0,−1,−2, . . . . (A4)

The Riemann zeta function is nothing but a special case

ζ
(

s, 1
)

= ζ
(

s
)

. (A5)
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The following special values of the Hurwitz zeta function are relevant here

ζ
(

s,
1

2

)

=
(

2s − 1
)

ζ
(

s
)

, s 6= 1. (A6)

ζ
(

0, a
)

=
1

2
− a. (A7)

The Hurwitz zeta function satisfies the symmetry of second derivatives and its derivative in

the second argument is a shift

∂2

∂s∂a
ζ
(

s, a
)

=
∂2

∂a∂s
ζ
(

s, a
)

, (A8)

∂

∂a
ζ
(

s, a
)

= −sζ
(

s+ 1, a
)

, s 6= 0, 1, 2, . . . ; ℜ(a) > 0. (A9)

One of its limiting behavior reads

lim
s→1

[

ζ
(

s, a
)

− 1

s− 1

]

= −ψ
(

a
)

, (A10)

where ψ(a) is the digamma function which has the special value

ψ
(1

2

)

= −γE − log(4). (A11)

With Eqs. (A8)-(A11), one can verify the useful mathematical formula

∂2

∂a∂s
ζ
(

s = 0, a =
1

2

)

= −γEuler − log(4). (A12)

Appendix B: Adiabatic regularization of the current

In order to compute the one-dimensional momentum integral in the right hand side of

Eq. (55), we adopt the integration procedure that have been introduced in [8, 9]. The

Mellin-Barnes representation of the Whittaker function is given by [40]

Wκ,γ(z) = e
−z
2

∫ +i∞

−i∞

ds

2πi

Γ(1
2
+ γ + s)Γ(1

2
− γ + s)Γ(−κ− s)

Γ(1
2
+ γ − κ)Γ(1

2
− γ − κ)

z−s,
∣

∣ph(z)
∣

∣ <
3π

2
,

1

2
± γ − κ 6= 0,−1,−2, . . . , (B1)

where the contour of integration separates the poles of Γ(1
2
+ γ + s)Γ(1

2
− γ + s) from those

of Γ(−κ − s). Substituting the integral representation (B1) into Eq. (55) and choosing the

contour of integration similar to [9], leads to the final result

J =
eH3ℓ

4π2

(

γ sinh
(

2πλ
)

sin
(

2πγ
) + λ

)

. (B2)
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In order to regularize the current (B2) we apply the adiabatic subtraction method. Start-

ing from Eq. (11), for positive frequency modes it can be rewritten as

d2fA(τ)

dτ 2
+ ω2(τ)fA(τ) = 0, (B3)

where the ω reads

ω(τ) = +

(

k2 − 2λkz
τ

+
λ2 + µ2

τ 2
− 2

τ 2

)
1

2

. (B4)

A Wentzel-Kramers-Brillouin (WKB) type solution for the mode equation (B3) is

fA(τ) =
(

2W (τ)
)

−1

2 exp
(

−i
∫ τ

W (τ ′)dτ ′
)

, (B5)

provided that the function W (τ) satisfies the equation

W 2(τ) = ω2(τ) +
3Ẇ 2

4W 2
− Ẅ

2W
, (B6)

where the dot indicates a derivative with respect to the conformal time τ . For the zeroth

order adiabatic expansion of W (τ), the derivative terms on the right hand side of Eq. (B6)

are neglected, and we then obtain

W (0)(τ) = ω2
0(τ). (B7)

Since the last term in Eq. (B4) is of second adiabatic order

2

τ 2
= 2

Ω̇2

Ω2
, (B8)

we then have

ω0(τ) = +

(

k2 − 2λkz
τ

+
λ2 + µ2

τ 2

)
1

2

. (B9)

With Eqs. (6), (8), (B5), (B7), and (B9) the zeroth adiabatic order for the positive and

negative frequency mode functions are

UA

(

x;ky�, n
)

= Ω−1(τ)e+ix·ky�h(y+)
(

2ω0(τ)
)

−1

2 exp
(

−i
∫ τ

ω0(τ
′)dτ ′

)

, (B10)

VA
(

x;−ky�, n
)

= Ω−1(τ)e+ix·ky�h(y+)
(

2ω0(τ)
)

−1

2 exp
(

+i

∫ τ

ω0(τ
′)dτ ′

)

. (B11)

This adiabatic complete set of orthonormal mode functions can be used to construct the

Fock space. Then, the zeroth adiabatic order expansion of the vacuum expectation value of

the current operator is given by

jA = eΩ−2(τ)

∞
∑

n=0

∫

d2ky�
(2π)2

(

kz −
λ

τ

)(

|UA|2 + |VA|2
)

. (B12)
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After some algebra and using (43), it can be shown that

JA = Ω(τ)jA =
eH3ℓλ

4π2
. (B13)

The adiabatic regularization scheme consists in subtracting the counterterm (B13) from the

original expression (B2),

Jreg = J − JA. (B14)
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[37] C. Crucean and M. A. Băloi, Phys. Rev. D 93, no. 4, 044070 (2016) [arXiv:1602.08220 [gr-qc]].

[38] N. Nicolaevici and A. Farkas, Phys. Rev. D 95, no. 4, 048501 (2017) [arXiv:1610.07951 [gr-qc]].
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