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1 Introduction

As sensitive to unknown high energy physics, the mass of the Higgs boson in the Standard

Model (SM) seems unnatural and would require an explanation unless new physics beyond

the SM appears around TeV scale. The LHC null results would thus indicate that we need

a new approach to the electroweak hierarchy problem. In this context, it has recently been

proposed to consider dynamical evolution during early universe that drives the Higgs mass

to a value much smaller than the cutoff scale of the theory [1]. This relaxation mechanism

is based on the interplay between the Higgs field h and an axion-like scalar φ, arising from

cosmological evolution such that φ slowly rolls during inflation while scanning the effective

Higgs mass-squared term over a large range until it meets barriers formed by electroweak

symmetry breaking.

The relaxion mechanism crucially relies on how to generate Higgs-dependent barriers

for the relaxion φ, which are to stop the relaxion from rolling and set the Higgs mass to

a naturally small value. A natural source is the QCD anomaly, for which however the

model is generally subject to severe constraints coming from the experimental bound on

the strong CP phase. Alternatively one can consider a non-QCD source of barriers. In

such case, the gauge invariance requires that a barrier potential be proportional to h2,

implying that it should be generated at a scale not much above the electroweak scale since

otherwise closed Higgs loops would produce Higgs-independent high barriers and spoil the

relaxation. The difficulties in each case can be resolved if the relaxion sector is extended

to include more scalars or to be coupled to the inflation sector.

In this paper we present a new possibility where the QCD anomaly is responsible

both for the relaxation mechanism to explain the smallness of the Higgs mass and for the

Peccei-Quinn (PQ) mechanism to solve the strong CP problem [2, 3]. The idea is that

both the relaxion and the QCD axion couple to the QCD anomaly, and in addition each of

them couples to a hidden confining gauge anomaly. A scalar potential induced by hidden

gauge anomalies changes its form due to the roll of an inflation field in such a way that it
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effectively depends only on the QCD axion during inflation but only on the relaxion after

inflation. This allows the QCD-induced potential to serve as Higgs-dependent barriers for

the relaxion during inflation but as a potential to fix the QCD axion after inflation. As a

result, the relaxation mechanism is well implemented and can raise the cutoff scale of the

Higgs boson up to about 107 GeV.

It is interesting to note that in our scheme the relaxion has a negligible mixing with

the Higgs boson, and can obtain a heavy mass compared to other scenarios because it is

stabilized by a hidden confining force after inflation regardless of the Higgs mass. This indi-

cates that reheating temperature higher than the electroweak scale is compatible with the

relaxation as long as the hidden confining scale is high enough, which would be important

for viable cosmology. We also note that the QCD axion does not participate in selecting

the Higgs mass but is still important since it dynamically cancels the strong CP phase. In

addition, the QCD axion can account for the observed dark matter of the universe.

The relaxation mechanism cosmologically sets the Higgs mass to a small value, but

generally at the price of a huge excursion of the relaxion and a long period of inflation. It

has been noticed that the clockwork mechanism provides a technically natural framework

to arrange a long excursion of the relaxion via a collective rotation of multiple axions [4, 5].

On the other hand, the duration and scale of inflation are constrained essentially by the

height of relaxion barriers during inflation. In our scheme the constraints on inflation

can thus be alleviated if SM couplings become stronger during inflation so that the QCD-

induced potential is enhanced. Then it turns out that the Higgs mass selected by the

relaxion can be kept after inflation for a cutoff scale lower than about 104 GeV.

The outline of this paper is as follows. In section 2 we review the relevant features

of the dynamical relaxation mechanism generating a naturally small electroweak scale. In

section 3 we construct a simple model where the relaxion and the QCD axion play their

respective roles via the QCD anomaly, and examine in detail how the relaxation works.

The constraints on inflation are examined in section 4 for the case where SM couplings

become stronger during inflation. Conclusions are given in section 5.

2 Cosmological relaxation of the electroweak scale

In this section we briefly review the cosmological relaxation of the electroweak scale. The

relaxation mechanism generating a naturally small electroweak scale is implemented by the

relaxion φ that has a scalar potential

V = V0(φ) +m2
h(φ)h2 + Vbr(φ, h), (2.1)

where h is the Higgs field. The sliding potential V0 makes the relaxion slowly roll down

during inflation while scanning the effective Higgs mass-squared term m2
h over a large range.

The last term Vbr appears after electroweak symmetry breaking and provides barriers
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stopping the evolution of the relaxion. The three potential terms take the form

V0(φ) = M4

(
−c1

φ

F
+ c2

φ2

F 2
+ · · ·

)
,

m2
h(φ) = M2

(
k0 − k1

φ

F
+ · · ·

)
,

Vbr(φ, h) = −µ4br(h) cos

(
φ

f

)
, (2.2)

for positive coefficients ci and ki of order unity. Here M is the cutoff scale of the theory,

and M/F � 1 parameterizes the breaking of shift symmetry φ→ φ+ 2πf . Note that the

parameter c1 is bounded from below

c1 &
k1

16π2
, (2.3)

in the presence of the k1-term, because the scalar potential generally receives a contribution

from closed Higgs loops.

For the relaxation mechanism to work, the inflationary energy density should be larger

than the change of the energy density in the relaxion sector, V0 < H2
iM

2
Pl, and the relaxion

evolution is dominated by classical rolling, φ̇/Hi ≈ ∂φV0/H2
i > Hi, implying

√
V0

MPl
< Hi < (∂φV0)

1/3, (2.4)

where Hi is the Hubble scale during inflation. In addition, inflation should last long

enough for the relaxion to scan the Higgs mass-squared term from positive to negative,

which generally requires a large number of e-folds

Ne &
H2
i

∂φV0
F, (2.5)

for ki of order unity, because the relaxion changes by an amount ∆φ ∼ (φ̇/Hi)Ne during

inflation. To stop the relaxion from rolling, high enough barriers for φ should be formed

during inflation, implying that one needs

∂φV0 ∼ ∂φVbr, (2.6)

at the time when the Higgs vacuum expectation value is near its SM value. The QCD

axion solving the strong CP problem can play the role of the relaxion, for which case the

barrier potential is induced by the QCD anomaly and has

QCD : µ4br(h) = yuΛ3
QCDh, (2.7)

where yu is the up quark Yukawa coupling, and ΛQCD ∼ 0.1 GeV is the QCD scale. How-

ever, the potential V0 required for slow rolling of the relaxion during inflation produces too

large strong CP violation. This problem can be avoided if the slope of V0 arises from a

coupling to the inflaton and dynamically decreases after inflation [1], or conversely if the
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slope of Vbr increases after inflation [6]. Another way is to consider a non-QCD model

where barriers are produced by a hidden strong gauge interaction. In such case, one has

non-QCD : µ4br(h) = Λ2
hidh

2, (2.8)

where Λhid is the confining scale of the hidden gauge interaction, and µ4br ∝ h2 ∈ H†H

reflects that the new sector should couple to the Higgs doublet H in a gauge-invariant way.

The strong CP phase is then cancelled by the QCD axion independently of the relaxation

mechanism. However, the barrier potential depends on the Higgs field as µ4br ∝ h2, and

so suffers from the coincidence problem, that is, a requirement that the hidden confining

scale should be around the electroweak scale since otherwise closing Higgs loops would

induce large barriers even before electroweak symmetry breaking and spoil the relaxation

mechanism. This problem may be avoided in an extended model with multiple axions where

h-independent barriers for the relaxion are suppressed by the double-scanning mechanism

working under certain assumptions on the involved phases [7].

3 Peccei-Quinn relaxion

The viable region of parameter space for the relaxion mechanism crucially depends on

the origin of barriers for the relaxion. Here we present a model involving two axions, the

relaxion (φ) and the QCD axion (a), where the QCD-induced potential plays an essential

role in the relaxation as well as in the PQ mechanism. In our scenario, both φ and a couple

to the QCD anomaly, but nonetheless play their respective roles in cosmologically relaxing

the electroweak scale and dynamically cancelling the strong CP phase. This is achieved

via the barrier potential,

Vbr(a, φ, h) = −µ4br(h) cos

(
a

fa
+
φ

f

)
+ ∆Vbr(a, φ), (3.1)

where the first term comes from the QCD anomaly,

µ4br(h) = yuΛ3
QCDh ' (0.1GeV)4(h/v), (3.2)

with v = 246 GeV being the vacuum expectation value of h in the present universe. The

barrier potential includes an additional term, ∆Vbr, which changes its form during and

after inflation due to the roll of the inflaton:

∆Vbr = µ4a(σ) cos

(
na

a

fa

)
+ µ4φ(σ) cos

(
nφ
φ

f

)
, (3.3)

in which µa and µφ are a function of the inflaton field σ, and both evolve with time but in

the opposite way

µ4a(σ = σ0)� µ4br(h = v) � µ4a(σ = σinf),

µ4φ(σ = σinf)� µ4br(h = v) � µ4φ(σ = σ0), (3.4)

under the assumption that the inflaton slowly rolls with a large field value σinf �M during

inflation, and is stabilized at the true minimum σ = σ0 �M after inflation. The rational
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constants na and nφ will be set to be unity hereafter for simplicity as our results do not

depend much on them. Note that the change of the energy density in the barrier sector

should be much smaller than H2
iM

2
Pl in order not to affect the inflation dynamics, which

puts an upper bound on µa(σ = σinf) and µφ(σ = σ0).

Let us discuss how to generate a barrier potential relying on the evolution of the

inflation field as required for our scenario to work. As the case of the Higgs-dependent

axion potential, a σ-dependent back-reaction potential for a and φ can be generated non-

perturbatively. We consider a hidden confining group Ga×Gφ, where the shift symmetries

U(1)a : a→ a+ constant,

U(1)φ : φ→ φ+ constant, (3.5)

are non-perturbatively broken by the Ga and Gφ anomaly, respectively, in the presence

of hidden vector-like quarks Qa +Qca charged under U(1)a and Ga, and Qφ +Qcφ charged

under U(1)φ and Gφ. The hidden quarks have U(1)i-preserving Yukawa interactions∑
i

yiSiQiQ
c
i , (3.6)

for i = a, φ. The scalar potential ∆Vbr can be obtained if Sa and Sφ undergo non-trivial

time evolution due to a coupling to the inflaton. A simple way is to consider an inflaton-

dependent mass-squared term whose sign is flipped during and after inflation:

V = (M2 − κaσ2)|Sa|2 − (M2 − κφσ2)|Sφ|2 + |Sa|4 + |Sφ|4 + ∆V (Si, e
ia/fa , eiφ/f ), (3.7)

with positive constants κi lying in the range(
M

σinf

)2

< κi � 1, (3.8)

for which Si are fixed at quite different values during and after inflation but without

disturbing the inflaton dynamics. In the scalar potential, we have omitted other constant

coefficients of order unity for simplicity, and ∆V includes U(1)i-preserving interactions of Si
to a and φ responsible for heavy masses of the U(1)a-invariant combination of arg(Sa) and

a, and the U(1)φ-invariant combination of arg(Sφ) and φ. Note that the compositions of

the QCD axion and the relaxion change, a+ 〈Sa〉2
fa

arg(Sa)→ a and φ→ φ+
〈Sφ〉2
f arg(Sφ),

neglecting order unity coefficients. Owing to the inflaton-dependent scalar masses, the

hidden quarks obtain masses according to

mQa(σinf) = ya

√
κaσ2inf −M2,

mQφ(σinf) ' 0, (3.9)

during inflation, whereas they have

mQa(σ0) ' 0,

mQφ(σ0) = yφ

√
κφσ

2
inf −M2 , (3.10)
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after inflation. The hidden gauge anomalies to which the relaxion and the QCD axion

couple generate an inflaton-dependent back-reaction potential of the form, Eq. (3.3), with

the overall size determined by

µ4i (σ) = Min
[
mQi(σ),Λi

]
Λ3
i , (3.11)

for i = a, φ, where Λi denotes the confining scale of the corresponding hidden gauge group.

Therefore the potential ∆Vbr can have the required properties, Eq. (3.4), if the hidden

confining scales are higher than ΛQCD, under the assumption that U(1)a and U(1)φ are

spontaneously broken at a scale much higher than M by scalar fields other than Si. Note

that the hidden gauge groups confine at different scales during and after inflation:

Λa(σinf) > Λa(σ0),

Λφ(σinf) < Λφ(σ0), (3.12)

because the gauge coupling of Gi runs faster (slower) at low energy scales if Qi+Q
c
i become

heavier (lighter). As discussed below, the above behavior of the hidden sector makes our

scheme more natural.

To solve the strong CP problem, the QCD axion should be stabilized mainly by the

scalar potential induced by the QCD anomaly after inflation. This puts a constraint on

the hidden sector if ∆Vbr is non-perturbatively generated as discussed above, because the

Ga-anomaly induces a small tadpole term for Sa, fixing it at Sa ∼ yaΛ
3
a(σ0)/M

2 after

inflation. As a result, the vacuum of the QCD axion potential is slightly shifted from the

origin while generating a strong CP phase

θ̄ ' yaΛ
3
a(σ0)〈Sa〉
µ4br(v)

∼ 10−12

(
y
1/3
a Λa(σ0)

0.1 GeV

)6(
M

105 GeV

)−2
, (3.13)

which should be smaller than about 10−10 to avoid the experimental bound. Here one

should note that the Ga gauge force is stronger during inflation than in the present universe

due to the hidden quarks with masses ∝ 〈Sa〉. For Λa(σ0)� Λa(σinf), it becomes easier to

satisfy the conditions, µ4br(v)� µ4a(σinf) and θ̄ < 10−10.

A hidden sector with quarks having inflaton-dependent masses provides a simple frame-

work to generate ∆Vbr. Alternatively one may consider explicit breakdown of U(1)a by

higher dimensional operators that are turned on once the inflaton develops a vacuum ex-

pectation value. The dependence of ∆Vbr on the QCD axion can then be explained for

instance by

µ4a = εf3aσ, (3.14)

with ε� 1, because the explicit symmetry breaking effects disappear in the present universe

if the inflaton drops to zero after inflation. The scalar potential ∆Vbr relies on the relaxion

and the QCD axion quite differently in time. Another way to get the proper relaxion-

dependence is to consider an inflaton-dependent confining scale, Λφ = Λφ(σ), which can be

realized if the hidden gauge kinetic term couples to the inflaton. What one needs is that
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the confining scale is larger than ΛQCD in the present universe, but it is sufficiently low

during inflation,

Λφ(σinf) < Hi, (3.15)

so that the anomaly-induced relaxion potential is highly suppressed during the inflation-

ary epoch.

Let us now examine how the cosmological evolution of the relaxion chooses an elec-

troweak scale hierarchically smaller than the cutoff scale of the theory in our scheme.

During inflation, the QCD axion rolls toward the minimum of ∆Vbr and settles down there

after Na e-folds:

Na ∼
Hi∆a

ȧ
∼ faH

2
i

∂a∆Vbr
. (3.16)

For a correct relaxation process, Na should be much smaller than Ne so that the QCD

axion does not affect the relaxion evolution, which is the case for√
fa
F
M < µa(σinf). (3.17)

The above is satisfied in the parameter region of our interest basically because inflation

lasting for a long enough time is required for the relaxion to scan m2
h from M2 to a small

negative value. For the QCD axion fixed at the minimum of ∆Vbr, the relaxation conditions,

eqs. (2.4) and (2.6), lead to

Hi <

(
µ4br(v)

f

)1/3

' 0.5 MeV

(
f

106 GeV

)−1/3( µbr(v)

0.1 GeV

)4/3

,

M <

(
µ4br(v)

f

)1/6√
MPl ' 3.3× 107GeV

(
f

106 GeV

)−1/6( µbr(v)

0.1 GeV

)2/3

, (3.18)

with F given by

F

f
∼ c1M

4

µ4br(v)
' 6.3× 1021

(
c1

1/16π2

)(
µbr(v)

0.1 GeV

)−4( M

105 GeV

)4

. (3.19)

Thus one needs a huge excursion of the relaxion, F � f , which can be realized in a

technically natural manner within the clockwork framework. Combined with the fact that

f cannot be much smaller than the cutoff scale at which the barrier potential is generated,

the above relation leads to

M . 2× 107 GeV. (3.20)

One can also find the condition on the number of e-folds,

Ne >

(
F

MPl

)2

, (3.21)

which is necessary for φ to scan the effective Higgs mass-squared term from large positive

to negative values. The cutoff scale should not exceed 6 × 105 GeV if one demands, for

instance, Ne < 1024 to avoid fine-tuning of the initial condition in the inflation sector.
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After inflation, the role of the potential ∆Vbr dramatically changes. For

µ4φ(σ0)� µ4br(v), the relaxion settles near a minimum of ∆Vbr, and therefore the QCD-

induced potential stabilizes a, allowing it to implement the PQ mechanism solving the

strong CP problem. One should note that the relaxion vacuum shift due to ∆Vbr would

change the effective Higgs mass-squared term roughly by the amount, ±M2f/F , and so it

should be small enough not to spoil the relaxation mechanism. This requires

F

f
>

(
M

v

)2

. (3.22)

The above constraint is satisfied for F given by eq. (3.19). The reheating temperature after

inflation is also constrained to be lower than the hidden confining scale

Treh < Λφ(σ0), (3.23)

since otherwise the relaxion-dependent part in ∆Vbr is highly suppressed by thermal effects.

Because the barriers for the relaxion after inflation are insensitive to the Higgs vacuum

expectation value, reheating temperature higher than the electroweak scale is compatible

with the relaxation mechanism as long as Λφ is sufficiently high. This would be important

for viable cosmology, for instance, as required in many baryogenesis scenarios. Let us

examine how high Treh can be in our scheme. The main constraint comes from that a

tadpole term induced by the hidden gauge anomaly slightly displaces Sφ from the origin,

〈Sφ〉 ∼ yφΛ3
φ(σinf)/(κφσ

2
inf), during inflation. For the relaxation process not to be disturbed,

one needs µ4φ(σinf)� µ4br(v), implying

Λφ(σinf) < 103 GeV ×
( yφ

10−2

)−1/3( µbr(v)

0.1 GeV

)2/3(√κφσinf
109 GeV

)1/3

, (3.24)

with M .
√
κφσinf . Combined with the fact that Λφ(σ0) is larger than Λφ(σinf), the above

relation indicates that reheating temperature can be higher than the electroweak scale in

a large parameter space.

It is worth noting that the QCD axion can account for the dark matter in the uni-

verse because in our scheme it does not participate in the relaxation mechanism for

µ4a(σinf)� µ4br(v). The relic energy density of the QCD axion is determined by the con-

ventional misalignment mechanism [8–10]

Ωah
2 = ka

(
fa

1012 GeV

)1.19

θ2ini , (3.25)

where ka = O(0.1) − O(1) for reheating temperature higher than ΛQCD. Here θini is the

initial misalignment angle of the QCD axion after inflation, and it is determined by ∆Vbr.

In the present universe, the QCD axion obtains a mass dominantly from the QCD anomaly

and is fixed at a CP preserving minimum. On the other hand, the relaxion becomes massive

mainly due to the potential induced by the hidden gauge anomaly, and thus it has different

properties from other models [11–13]. First, the relaxion can have a large mass

mφ '
µ2φ(σ0)

f
= 102 GeV

(
µφ(σ0)

104GeV

)2( f

106 GeV

)−1
, (3.26)
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for µφ(σ0) < M , and it decays into SM gauge bosons and possibly into hidden sector

particles depending on a model. Another crucial difference is that the relaxion, which

becomes heavy due to ∆Vbr, has negligibly small mixing with the Higgs boson because the

QCD-induced potential ∝ h cos(a/fa + φ/f) is responsible both for relaxion-Higgs mixing

and the stabilization of the QCD axion. For f � v, therefore, it would be difficult to

detect the relaxion at collider experiments.

Let us examine a cosmological constraint arising due to tunneling from a local mini-

mum φ = φ∗ to the other minima φ ' φ∗+2πnf for an integer n. The slow-rolling potential

lifts the vacuum degeneracy of the barrier potential, Vbr = µ4φ(σ0) cos(φ/f), and thus the

potential difference between two nearby minima is estimated by δV ' c1M
4 2πf/F ∼

µ4br(v) � µ4φ(σ0). Applying the thin-wall approximation [14], one finds that the tun-

neling rate from φ∗ to φ∗ + 2πnf is proportional to e−B, where B is roughly given by

B ∼ 100nf4µ8φ(σ0)µ
−12
br (v). For reasonable values of µφ(σ0) and f , our scenario leads to

B & 400, and therefore is quite safe from the vacuum decay constraint.

An important issue in the relaxation mechanism is to find a viable inflation sector

accommodating very low scale inflation with a huge number of e-folds, which still requires

significant progress to be made. Low scale inflation can reproduce the observed amplitude of

primordial curvature power spectrum for the CMB scales if there is a large hierarchy of the

slow-roll parameters, ε=M2
Pl(∂σV/V )2/2∼10−30(Hi/GeV)2 and η=M2

Pl(∂
2
σV/V )∼−0.01.

This leads to consider a hybrid-type inflation with

V (σ, χ) = Vinf(σ) + (cσ2 −m2
χ)χ2 + λχ4 + · · · , (3.27)

where inflation driven by Vinf ends when the waterfall field χ becomes tachyonic. In order

to implement the relaxation mechanism, one can consider a Coleman-Weinberg potential,

Vinf = V0 + g2ξ2 ln(σ2/M2) + · · · from the Fayet-Iliopoulos D-term ξ with an extremely

small gauge coupling g, which is realized in a supersymmetric theory with no-scale struc-

ture [13]. However, in this case, it is nontrivial to suppress other supersymmetry breaking

contributions. Another possibility is to consider a scalar potential, Vinf = V0 +m2σ2 + · · · ,
for which η is positive and thus one needs to introduce a curvaton field to generate the

observed power spectrum [1]. Here m2 should be smaller than H2
i , and it may be the con-

sequence of additional (shift) symmetries. Note that, in the case that the field excursion

of σ is sub-Planckian, a large enough e-folds can be achieved without fine-tuning of initial

conditions if Vinf is very flat. There are interesting approaches to obtain a periodic scalar

potential with a very flat plateau and sharp edges as a variation of natural inflation [15–17].

Such a nontrivial scalar potential is generated by extra-dimensional dynamics or a large

N gauge symmetry. On the other hand, our scheme is based on inflaton-dependent dy-

namics of the QCD axion and the relaxion. If the hidden sector with the potential (3.7) is

responsible for ∆Vbr, the inflaton mass-squared receives corrections

δm2 ∼
(
κa +

κφ
16π2

)
M2, (3.28)

during inflation. Here we have used that there are quantum corrections arising from closed

scalar loops, and that Sa is tachyonic during inflation and fixed at a value depending
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ϕ

V
(ϕ
)

a

V
(a
)

Figure 1. Illustration of the cosmological relaxation of the electroweak scale in the PQ relaxion

scenario where the QCD anomaly is responsible for selecting both the Higgs mass and the strong

CP phase. The left (right) pannel shows the scalar potential along the direction of the relaxion

(the QCD axion), where the dotted (solid) curves are the potential during (after) inflation. The red

dotted and solid curve are the potential induced by the QCD anomaly during and after inflation,

respectively, while the gray curves are those generated by an inflaton-dependent coupling to hidden

gauge anomalies. In the present universe, the relaxion (the QCD axion) is stabilized at the black

dot in the left (right) pannel.

on σ. The slow-roll conditions require m2 + δm2 � MPl
σinf

H2
i . Combining this with the

constraint (3.8), one finds that the relaxation can work in the hybrid inflation setup for

κi lying in the range, ( M
σinf

)2 < κi � MPl
σinf

(HiM )2, barring fine-tunings. It is interesting to

notify that Sφ can play the role of the waterfall field. We should also comment that some

evolving scalar field other than the inflaton can provide the desired properties to Sa and

Sφ. For instance, noting that inflation is over due to a waterfall phase transition driven by

χ in hybrid inflation, one can consider V = (−M2 + κ′aχ
2)|Sa|2 + (M2 − κ′φχ2)|Sφ|2 + · · ·

instead of the inflaton-dependent mass-squared terms in the potential (3.7). Here κ′i are

positive constants larger than λ(M/mχ)2.

We close this section by summarizing how the relaxation is implemented in our scenario.

The cosmological evolution of the relaxion φ due to the sliding potential V0 changes the

effective Higgs mass-squared term from m2
h ∼M2 to a negative value. The QCD anomaly

generates Higgs-dependent barriers for φ during inflation which stop the relaxion at the

position giving m2
h ∼ −v2 with v �M . However it is a hidden confining gauge group that

generates higher barriers for φ after inflation ends, implying that the correct selection of

the effective Higgs mass-squared is not spoiled and the QCD axion obtains a mass from

the QCD anomaly. The cutoff scale can then be as high as about 107 GeV. On the other

hand, the QCD axion acquires a large mass from a hidden strong dynamics whose effects

are turned off after inflation, and it explains why the strong CP phase is so tiny in the

present universe. Our scheme works owing to the barrier potential ∆Vbr, whose role changes

dramatically during and after inflation due to the roll of the inflaton. Figure 1 illustrates

how the relaxation works in our scheme where the QCD anomaly is responsible for fixing
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both the Higgs mass and the strong CP phase. Finally we note that, as in other relaxion

models, the cosmological relaxation of electroweak scale requires a huge excursion F � f

and a long period of inflation.

4 Stronger SM couplings during inflation

In this section, we discuss the possibility to alleviate the constraints on the relaxion excur-

sion and the number of e-folds in the relaxation mechanism. The idea is to make the SM

couplings stronger during inflation so that the QCD effects can be enhanced,

µ4br(σ = σinf)� µ4br(σ = σ0), (4.1)

where µbr(σ = σ0, h = v) = (muΛ3
QCD)1/4 ' 0.1 GeV. Let us consider the case that the

strong coupling constant αs and the Yukawa couplings yi depend on the inflation field:

αs(σinf ,M) = αs(σ0,M) + ∆αs,

yi(σinf ,M) = yi(σ0,M) + ∆y, (4.2)

where the inflaton-dependent contributions ∆αs and ∆y are assumed to be positive and

disppear after inflation. To get ∆αs > 0, one may introduce for instance extra quarks

whose masses receive an additional contribution depending on the inflation field. The

QCD then becomes strong at a higher energy scale during inflation than in the present

universe. Note that some quarks should be lighter than the QCD scale in order for the

QCD anomaly to generate Higgs-dependent barriers for φ.

Stronger SM couplings during inflation can relax the constraints on F and Ne, but

require the cutoff scale to be low since otherwise the relaxation mechanism would be spoiled.

The effective Higgs mass-squared term selected by the relaxion evolution would generally

change after inflation due to ∆αs and ∆y. The variation can be estimated using its

sensitivity to the cutoff scale

m2
h =

(
6λh − 6

∑
i

y2i +
3

4
g2Y +

9

4
g22 + · · ·

)
M2

16π2
, (4.3)

for the Higgs quartic coupling λh and SM gauge couplings gY and g2. Here the ellipsis

indicates terms from higher loops. For the given change of the couplings in eq. (4.2), the

relaxation works if

|∆m2
h| '

∣∣∣∣∆yyt − 0.1∆αs

∣∣∣∣ 3y2tM
2

4π2
. v2, (4.4)

where we have taken ∆y � yt with yt being the top quark Yukawa coupling, and included

two-loop quadratic divergent contributions to the Higgs mass squared [18, 19]. The above

relation shows that the cutoff scale should be

M .
10 TeV√

|∆y|/0.01 + |∆αs|/0.1
, (4.5)
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barring accidental cancellation. The constraint on M is stronger than that required for the

relaxation unless ∆αs and ∆y are very tiny. In the presence of such inflaton-dependent

contributions, the QCD-induced barriers can be enhanced by

µbr(σinf , v) ' 10 GeV

(
yu + ∆y

0.01

)1/4(ΛQCD(σinf)

20 GeV

)3/4

, (4.6)

in which the QCD scale during inflation is given by

ΛQCD(σinf) = Exp

[
2π

11− 2nf/3

(
1

αs(σ0,M)
− 1

αs(σ0,M) + ∆αs

)]
ΛQCD, (4.7)

where nf counts the number of SM quarks lighter than ΛQCD(σinf). For instance, one

obtains ΛQCD(σinf) ' 60 ΛQCD for ∆αs = 0.2 and nf = 3. Note that the QCD anomaly

leads to µ4br ∝ h if nf 6= 0, that is for ∆y . 2× 10−3 ΛQCD(σinf)/ΛQCD.

Let us examine the requirements for the relaxation mechanism. The inflation scale

should be constrained to be

Hi < 0.2 GeV

(
f

106 GeV

)−1/3(µbr(σinf , v)

10 GeV

)4/3

. (4.8)

In addition, one needs F much larger than f :

F

f
∼ 0.6× 1010

(
c1

1/16π2

)(
µbr(σinf , v)

10 GeV

)−4( M

10 TeV

)4

, (4.9)

showing that the required hierarchy between F and f is reduced due to stronger SM

couplings during inflation. It also follows that the relaxation can be implemented without

a huge number of e-folds:

Ne >

(
F

MPl

)2

∼ 20

(
F/f

1013

)2( f

106 GeV

)2

, (4.10)

for the cutoff scale M lower than about 10 TeV.

5 Conclusions

In this paper, we have explored the Peccei-Quinn relaxion scenario, in which the QCD

anomaly is responsible for selecting the Higgs mass as well as the strong CP phase. Our

scenario involves two axion-like scalars, the relaxion and the QCD axion, which couple

simultaneously to the QCD anomaly, and also separately to a hidden gauge anomaly via

inflaton-dependent dynamics. During inflation, the QCD axion becomes heavy due to

the hidden strong force, and the Higgs-dependent scalar potential induced by the QCD

anomaly plays the role of a back-reaction potential implementing the relaxation of the

electroweak scale. On the other hand, after inflation, the hidden strong force makes the

relaxion heavy so that the QCD axion can be stabilized dominantly by the QCD-induced

potential, yielding a vanishing strong CP phase. In our scheme, the relaxation mechanism

is compatible with reheating temperature higher than the electroweak scale, and the QCD
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axion becomes a natural candidate for dark matter, whose amount is mostly determined

by the misalignment mechanism. We have also studied a more general case where the

Yukawa and gauge couplings of the SM are dependent on the field value of the inflaton.

If the SM couplings become stronger during inflation, the relaxation can be achieved by

a sub-Plankian field excursion of the relaxion during inflation for a cutoff scale below

10 TeV. This would imply that the relaxion may play a partial role in stabilizing the

electroweak scale against radiative corrections and need helps from other physical effects

such as supersymmetry.
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