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Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines,
but global charges do not carry flux lines and are not conserved by gravitational interaction. For
discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since
the realization of discrete symmetries in the Universe must involve the vacuum expectation values
of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs
vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
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I. INTRODUCTION

It has been known for a long time that discrete sub-groups of gauge groups, the so-called discrete gauge symmetries,
are not broken by gravitational interactions [1, 2]. Effects of quantum gravity are studied by looking at various
topologies of the metric tensor gµν . If some gauge charges are separated from our Universe by metric change, the
separated gauge charges cannot be completely hidden from our Universe because they leave long range flux lines. On
the other hand, if global charges are separated from our Universe, the lost charges leave no hint to an observer in our
Universe and he notices that global charges are not conserved in our Universe. Thus, gauge symmetries are not broken
but global symmetries are broken by metric changes. This is the basic reasoning that discrete gauge symmetries are
used in particle physics [3]. This top-down approach on discrete symmetries fits to the string compactification [4, 5]
because string theory does not allow any global symmetry.

In the bottom-up approach, the flux line argument is not so clear. It uses just the classical gauge fields and does
not rely on the renormalizability in the theory of elementary particles. To be specific, let us consider a continuous
symmetry U(1). If U(1) is a gauge symmetry, it does not have any gauge anomaly. If U(1) is a global symmetry,
it may have a gauge anomaly U(1)–G − G where G is a gauge group as in the Peccei-Quinn (PQ) global symmetry
U(1)PQ [6]. Obstructing the PQ symmetry needed for an “invisible” axion was based on this argument [7].

However, the absence of any gauge anomaly is not a guarantee for a gauged U(1) symmetry. Some global U(1)
symmetries may not have any gauge anomaly. The difference in the gauge and global symmetries resides in the
property on the local transformation, i.e. using a covariant derivative Dµ = ∂µ − iAµ in gauge theories, or just an
ordinary one ∂µ in global symmetries. A discrete subgroup of U(1) cannot know whether the mother U(1) is gauged
or not. In the bottom-up approach, there must be some other reason for the effects of the metric change.

In this paper, we adopt the concept of “hair” which means that hair’s thickness is the same at any distance from
the surface of the head. At the surface, there must be fields at the surface for a hair to be defined. This definition
excludes any possibility for hairs of global symmetries. In gauge theories, there are gauge fields at the surface. In
gauge theories, the relation of the fields at the surface with the charge Q in the volume enclosed by the surface
is provided by the equations of motion and current conservation. Existence of hairs is crucial in guaranteeing the
symmetry in the presence of the gravitational interaction. It is known that black holes have gauge-charge hairs, which
will be briefly commented in parallel with our method.

For a gauge charge Q, we have gauge fields spreading out from Q. Consider the current jµ and the corresponding
electric field E along a line to be interpreted as a hair. We can perform local transformations such that E is the same
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FIG. 1: Multiple discrete vacua. Some of minima are shown as green bullets.

along a line but zero outside the line, which behaves as a hair.1

In this paper, we show how discrete charges can have hairs in the bottom-up approach, and derive that discrete
symmetries are not broken by gravity. For an explicit presentation, we will present examples with the Abelian discrete
symmetry ZN and in particular with Z2 illustrations.

II. DISCRETE CHARGES OF ZN VACUA

A discrete symmetry is defined by the number of minima of the potential V such as in Fig. 1. Let us consider one
minimum, say a green bullet in Fig. 1. We can choose the value of the Higgs field to be zero at that point so that
the discrete symmetry is realized by the Wigner-Weyl manner. If it has a flat direction there, then one must consider
a continuous symmetry, which has been spontaneously broken already. Not considering continuous symmetries, with
the multiple vacua of Fig. 1, the discrete symmetry is good at any point of the minima. We will consider the discrete
charges at such a minimum.

Realization of discrete symmetries in the Universe leads to domain walls [8]. In the “invisible” axion case [9], the
Peccei-Quinn symmetry leads to ZN domain walls [10]. For the Kim-Shifman-Vainstein-Zakharov “invisible” axion
where there is only one vacuum [11], even the Z1 domain wall can be considered in the Universe evolution [12]. In
this case, however, all space points except at the wall are in the same vacuum. Different vacua arise for the cases of
N ≥ 2. Two kinds of walled vacua are possible for Z2, viz. Fig. 2. Two vacua of Z2 are defined with discrete charges
q = 2n and 2n+ 1, mod. 2 (n= integer).

In Fig. 2 (a), the (red, Qtotal = 1) vacum is seen from the q = 0 (yellow) vaccum. A closed domain wall separates
these two. This wall viewed from the yellow vacuum is symbolized by the limegreen color. In Fig. 2 (b), the q = 0
(yellow, Qtotal = 0) vacum is seen from the q = 1 (red) vaccum. The wall viewed from the red vacuum is symbolized
by the blue color. In Fig. 2 (a), the dashed boundary encloses the walled q = 1 vacuum. A scalar field φ in the q = 0
or q = 1 vacua is represented by eiqπR(x).

Let us illustrate examples in Z2. Then, q can be 0 or 1. For q = 0, we use the field VEV φ = 0.2 For a ball of

1 Here, the line is not a mathematical one but has some physical thickness. Thus, gauge charges can have hairs but global charges cannot,
and metric changes know only hairs.

2 If φ = −v corresponds to q = 0, we add a constant v to simplify the value of φ.
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FIG. 2: (a) A walled vacum (red, qtotal = 1) seen from the q = 0 (yellow) vaccum. Inside the wall, the opposite q = 1 (red)
vacuum is seen through a crack in the wall. This view of the wall is colored limegreen. (b) A walled vacum (yellow, qtotal = 0)
seen from the q = 1 (red) vaccum. This view of the wall is colored blue. Dashes represent closing surfaces and black dots
represent particles.

discrete charge q, the radius of the ball is determined by minimizing the energy

Eω = E + ω

[
q − 1

2i

∫
d3x (Φ∗∂tΦ− Φ∂tΦ

∗)

]
, (1)

where ω (with the energy dimension) is the Lagrange multiplier and q of the ball can be defined as

q =
1

2i

∫
d3x , (Φ∗∂tΦ− Φ∂tΦ

∗). (2)

In the evolving Universe, the vacuum inside the ball expands such that φ in the red becomes constant. For a
spherically symmetric R(x), let us parametrize it as

Φ =

√
3k3

4π4ω
eiωt

{
1, for 0 ≤ r < π

k

0, for r > π
k

(3)

where π/k is the radius of the ball, and Φ = 0 in the yellow part of Fig. 2 (a). So, we obtain

1

2i

∫
(inside dashed)

d3x (Φ∗∂tΦ− Φ∂tΦ
∗) = 1.

The total charge q inside the dashed surface of Fig. 2 (a) is 1, and the dashed string symbolyzes this fact.
Definition of charge q by Eq. (2) is not by the Nöther current. It is simply defined by the vacuum expectation

value (VEV) of the phase of a Higgs field Φ. To relate this charge q to the charge defined by the Nöther current, the
t dependence of Φ is introduced as the example in Eq. (3). To make it an integer, the VEV which is designed as a
constant3 is appropriately chosen. Equation (1) is the matching condition to the charge q calculated by the Nöther
current. Discrete symmetries in the Universe are realized by the VEVs of Higgs field Φ having degenerate minima as
shown in Fig. 1. So, it is appropriate to figure out the discrete charges in the vacuum of spin-0 bosons as shown in
Fig. 2 where the limegreen surface separates two different Higgs portions in the Universe. In case of Fig. 2 (b), we
apply discrete transformation eiπQ. Then it is equivalent to the discussion in Fig. 2 (a).

In Fig. 2 (b), qtotal = 4 = even = 0 within the white dashed surface, which must be the case for any closed surface.
So, the white dashed surface of Fig. 2 (b) can be shrunk to naught. In Fig. 2 (a), qtotal = 3 = odd = 1 within the
dashed surface, which must be the case for any closed surface, which encloses the limegreen ball. To identify qtotal,
we extend a dash line from the limegreen ball up to the horizon. The dashed surface of Fig. 2 (a) is named as an

3 In the connected portion in the Universe, the minimum of the potential with a fixed value of Φ is chosen everywhere.
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infinite-tail “tadpole”, having a head and a long tail. At the limegreen surface, there exists the Higgs field which
provides the logistics for a hair to exist in our case.

Suppose that the U(1) charges of Φ and ψ are 2 and 1, respectively, and there is no U(1)−G − G anomaly where
G is a gauge group. Then, this U(1) can be a gauge or global group. The U(1) transformations by an angle θ on the
fields are Φ→ ei 4πθΦ and ψ → ei 2πθψ. A potential invariant under U(1) is

V = −
(√

2µψ∗ 2Φ + h.c.
)

+ · · · (4)

where · · · are other U(1) invariant terms. At a high scale f , the U(1) is broken to Z2 by the VEV, 〈Φ〉 = f/
√

2. Let
us split ψ to a radial and phase fields,

ψ =
v + ρ√

2
ei 2πθ (5)

For a moment, let 〈v〉 = 0 where θ = φ/v. At this stage, there is no θ dependence in the potential because 〈φ〉 = 0.

There is no way to distinguish the U(1) as a global or gauge group. Now, let |ψ| develop a VEV, 〈|ψ|〉 = v/
√

2, so
that the Z2 symmetric potential, −(fµψ∗ 2 + h.c.), develops a θ dependence,

V = −fµ v2 cos θ + · · · (6)

In the region φ = −v (yellow) and +v (red), let q = 0 (yellow) and 1 (red), respectively.4 Now, the difference appears.
In a gauged U(1), θ becomes redundant in the sense that it can be removed from V by a gauge transformation [2].
But, a global U(1) manifests itself in the form of the domain-wall energy density shown in Eq. (6). The effective
thickness of the domain wall is

λthickness ≈
√
λ

v

√
f

µ
(7)

where λ is a quartic coupling constant, determining f from the neglected terms in (4). So, the domain wall can be
seen as we discussed above, and the intersection of domain walls works as a hair.

III. DISCRETE CHARGE CONSERVATION IN THE BOTTOM-UP APPROACH

A conserved current of a continuous symmetry is constructed with an infinitesimal shift of fields, Ψ→ ei 2πε(x)QΨ
where Q is the generator of the transformation. For a discrete charge I of Ψ in ZN symmetry, we adopt this around
a specific discrete value I with I = {1, 2, · · · , N − 1},

Ψ→ ei 2π[ I
N +ε(x)]Ψ. (8)

The vacua of fields are defined for specific values of scalar fields as in Sec. II, which is related to the charges of quanta,
Eq. (8), in the volume via conservation of the current.

For a discrete symmetry, the vacuum structure of Higgs fields allows a hair(s) as shown in Sec. II. This string-like
hair starts from a nonzero discrete charge q and ends at another discrete charge or at the horizon. In Fig. 3 (a), we
show ZN hairs spreading out from a nonzero discrete charge. The Higgs vacua are defined by the VEVs of Higgs
fields. In Fig. 3 (a), we enclose the discrete charges by two dashed surfaces, the thick and thin ones. The discrete
charges inside the thin and thick surfaces are exactly the same. If we assign one discrete charge to one dashed line,
the discrete charges inside the thin and thick surfaces are exactly the same, i.e. the hair interpretation of the dashed
lines equates these two estimations. For example, the Higgs vacuum value at the star at the dashed line is the same
as that at the triangle. Calculating the discrete charge in 3 (b) is like calculating the discrete charge in Fig. 3 (c)
where we made it clear by moving the dashed surface touching the wall at the RHS of 3 (c). So, when discrete charges
move, we can consider them dragging dash lines corresponding to some units of discrete charges.

Now let us proceed to discuss the wormhole effects in the metric theory of gravity. Through wormholes, discrete
charges can flow out from our Universe O. For simplicity, now let us focus on Z2. An infinite-tail “tadpole” is

4 The discrete charges are the phase values of scalar fields.
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FIG. 3: (a) A ZN walled ball seen in the q = 0 vacuum. The tail of the “tadpole” can have n = 0, 1, · · · , N − 1 dashed lines.
N dashed line is equivalent to no tail, i.e. no ZN charge. (b) Another view of (a) by the discrete flux, and (c) an expanded
view of (b) with the dashed boundary touching the wall. In (a), the discrete charges inside two dashed surfaces are the same.

FIG. 4: (a) A walled ball seen in the q = 0 vacuum. The tail of a tadpole-like configuration extends to the horizon. (b) A
tadpole passing through a wormhole. (c) The wormhole cut in the gray plane in (b). The observer O recovers the discrete
charge.

symbolized in Fig. 4 (a), where Qtotal = 1. Discrete charge flow can be visualized as a “tadpole” passing through the
wormhole as shown in Fig. 4 (b). If one tries to separate out the shadow world S from O by cutting the wormhole
through the gray plane in Fig. 4 (b), it cuts the infinite tail of “tadpole”. Then, at the cut plane, dashed lines are
attached to a walled ball at each surface as shown in Fig. 2 (c). Recovering the wormhole throat, the observer O
confirms that no discrete charge is lost. To the observer O, gravitational effects do not break the discrete symmetry
in consideration. This type of wormhole argument was used for a U(1) gauge symmetry in Ref. [5].

IV. SCALAR VACUA

Let us illustrate how such hairs from discrete charges are set up in the spontaneously broken ZN vacua. For
simplicity, we present it in Z2. Let us consider a dashed surface of Fig. 2 (a) . Our objective is to obtain a two
dimensional delta function at the surface of radius r in the spherical-polar coordinate system, (θ0, ϕ0). Consider an
effective Z2 symmetric action,

Leff =
1

M2
eff

(∂µ∂νψ∗) (∂µ∂νψ) . (9)

At a closed surface, we can consider an effective Lagrangian where the Lorentz symmetry is broken as in Fig. 2 (a),
and contract with the (µi) indices in (9), jµi. To have currents related to (9), consider a shift in the discrete vacuum
I, viz. Eq. (8). There are two index current, proportional to ∂µ∂iε(x), and one index currents, proportional to ∂µε(x)
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FIG. 5: A Z2 string.

and ∂iε(x). One index currents are not of interest here. The two-index current is

∝ i ei 2π( I
N−

I
N )
(
ψ∗[Qψ∂

µ∂iψ]− [Qψ∂
µ∂iψ]∗ψ

)
. (10)

Let us consider the two-index phase at I = 1 and N = 2, i.e. for Qψ = 1 and ψ = f+ρ√
2f
ei 2πφ/f ,

1

2πi
jij =

f

M2
eff

∂i∂jφ→ Q =
f

M2
eff

∫
d3xφ∂i∂jφ =

fλthickness

M2
eff

∫
d2x ∂i∂jφ (11)

=

√
λv

µ

∫
dΩ

f v

M2
eff

jθϕ,

where v is the VEV of φ breaking Z2, µ is the φ mass as the result of this breaking, and λthickness is given in Eq. (7).
A delta function is obtained from the derivative of a step function in the angle direction. It is shown in Fig. 5. Here,
the parameter Meff is defined at the radius r so that Q becomese 1,

M2
eff =

√
λ
f2v3

µ
, (12)

and

jθϕ(θ, ϕ) =
1

r2
δ(cos θ − cos θ0)δ(ϕ− ϕ0). (13)

With the current conservation, this surface integral is related to the head charge of the tadpole,

∂µj
µi = 0→ Qi ∝

∫
V

d3x
∂

∂xj
jji =

∫
Σr

d2σr j
ri, (14)

where Σr is the surface orthogonal to the radial direction. The current conservation used in (14) is obtained via the
equation of motion ∂2ψ = −m2ψ and ∂2ψ∗ = −m2ψ∗,

∂µj
µi =

1

2

[
ψ∗∂i∂2ψ + (∂µψ

∗)∂i∂µψ − (∂2ψ∗)∂iψ − (∂µψ
∗)∂i∂µψ

]
=

1

2

[
ψ∗∂i∂2ψ − (∂2ψ∗)∂iψ

]
= 0. (15)
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FIG. 6: A charged black hole.

FIG. 7: A field vacua around a black hole.

V. CONCLUSION

Showing that discrete charges carry hairs in the bottom-up approach, we argued that discrete symmetries are
respected by gravity. It is based on the fact that discrete symmetries are realized with domain walls in the Universe
via the VEVs of Higgs fields, and the intersection of domain walls looks like a hair.

Appendix: Around a blackhole

Around a blackhole, the argument goes in parallel to the case of wormhole. So, we briefly point out the flux line
argument in a charged Universe and draw the similarity in case of discrete charges.

The larger event horizon (out of two solutions) of the Reissner-Nordström black hole [13] occurs at

r+ =
1

2

(
rS +

√
r2
S − 4r2

Q

)
(16)

where rS is the Schwarzschild radius without the charge. In Fig. 6 (a), we show the situation. The event horizon
takes into account the energy inside it, as depicted with the white illustration. It is basically the impossibility of
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FIG. 8: Hairs of a black hole: (a) for an electromagnetic charge, and (b) for a discrete tadpole.

the graviton field to go out of the horizon, bounded by Tµν . Any graviton field a spin-2 field, can end at another
energy point, due to the positive energy theorem, inside the blackhole horizon. When we consider mass of a charged
particle, it includes the field energy also. This count of energy subtracts the electromagnetic field energy permeating
from the horizon to infinity, which is shown as r2

Q in Eq. (16). Within the closed boundary shown in Fig. 6 (a), the
electromagnetic field cannot end inside the blackhole horizon for a net charge Q given inside the black hole. So, the
field line goes out of the horizon of the gravity field, which looks like a hair from the black hole. Of course, the outside
field is not included in Tµν on the right-hand side of the Einstein equation. So, if fields permeating over the whole
space are present, it is better to consider their effects just inside the blackhole. In Fig. 7 around a closed surface
black hole, the electromagnetic field configuration, not interfering with the fact of the closed surface nature of the
black hole, is illustrated.

Now, let us consider that the boundary of the fields is confined inside the horizon. If the field lines are forbidden
to cross the boundary for the spin-1 fields also, one cannot allow a net charge Q inside the horizon and must give up
the closed surface of the blackhole,5 and the metric must allow the open geometry as shown in Fig. 6 (b). By gauge
transformation, the electromagnetic fields of 6 (a) are transformed to those of Fig. 6 (b) where, in the most part of
the blackhole space, the gravity field is bounded within the dashed area but the electromagnetic field goes out into
the open space through the pinched hole. This is the hair we explain within our set-up. Spin-0 fields do not have
the flux lines but can have different quantum numbers distinguishing different domains of the spin-0 field vacua. For
spin-1 field the hair is the field strength and for spin-0 field we argued that it must be the intersection of domain
walls. This was named as ‘tadpole’. In Fig. 8, the hairs of U(1) gauge field and Z2 tadpole are shown. In Fig. 8 (b),
the discrete vacuum of the blackhole in the open geometry is q = 0. Here, we note the difference between the flux line
and the discrete tadpole. The electromagnetic flux carries energy and hence affects the blackhole radius. But, the
discrete vacua in Fig. 1 are degenerate and different vacua have the same energy. If they have strings (intersection
of domain walls), they must be taken into account in the energy calculation inside the blackhole, not considering the
outside part. So, the blackhole radius is not changed.

Vacua of spin-0 field are not constrained by the blackhole horizon, and the same vacuum can be connected to the
outside as the field lines of Fig. 6 (a). In Fig. 9, a Z2 tadpole is thrown into the q = 0 blackhole vacuum, and the
outside observer notices that he lost a discrete charge q = 1 to the blackhole. Namely, he notices that the black hole
has a Z2 hair. If the tail is cut, the outside observer notices that the blackhole ate only even number of Z2 charge
with some energy increase inside the blackhole but the discrete charge is not increased in the blackhole. Thus, the
existence of a blackhole does not violate the discrete symmetry.
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FIG. 9: A tadpole is thrown into the q = 0 vacuum.
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[3] L. E. Ibañez and G. G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in
supersymmetric versions of the standard model, Nucl. Phys. B 368, 3 (1992) [doi: 10.1016/0550-3213(92)90195-H].

[4] T. Kobayashi, H.P. Nilles, F. Plöger, S. Raby, and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries,
Nucl. Phys. B 768, 135 (2007) [arXiv:hep-ph/0611020].

[5] J.E. Kim, Abelian discrete symmetries ZN and ZnR from string orbifolds, Phys. Lett. B 726, 450 (2013) [arXiv:1308.0344
[hep-th]].

[6] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38, 1440 (1977)
[doi:10.1103/PhysRevLett.38.1440].

[7] S.M. Barr and D. Seckel, Planck-scale corrections to axion models, Phys. Rev. D 46, 539 (1992) [doi: 10.1103/Phys-
RevD.46.539];
M. Kamionkowski and J. March-Russel, Planck-Scale Physics and the Peccei-Quinn Mechanism, Phys. Lett. B 282, 137
(1992) [arXiv: hep-th/9202003];
R. Holman, S.D.H. Hsu, T.W. Kephart, R.W. Kolb, R. Watkins, and L.M. Widrow, Solutions to the strong CP problem
in a world with gravity, Phys. Lett. B 282, 132 (1992) [arXiv: hep-ph/9203206].

[8] Ya.B. Zeldovich, I.Yu. Kobzarev, L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry,
Zh. Eksp. Teor. Fiz.67 (1974) 3-11 [JETP 40 (1974) 1-5].

[9] J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rep. 150, 1 (1987) [doi:10.1016/0370-1573(87)90017-
2].

[10] P. Sikivie, Of axions, domain walls and the early Universe, Phys. Rev. Lett. 48, 1156 (1982) [doi: 10.1103/Phys-
RevLett.48.1156].

[11] J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43, 103 (1979) [doi: 10.1103/Phys-
RevLett.43.103];
M. A. Shifman, V. I. Vainstein, V. I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?,
Nucl. Phys. B 166, 4933 (1980) [doi: 10.1016/0550-3213(80)90209-6].

[12] A. Vilenkin and A. E. Everett, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons,
Phys. Rev. Lett. 48, 1867 (1982) [doi: 10.1103/PhysRevLett.48.1867];
S. M. Barr, K. Choi, and J. E. Kim, Axion cosmology in superstring models, Nucl. Phys. B 283, 591 (1987) [doi:
10.1016/0550-3213(87)90288-4].
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